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Abstract

Inferential Errors in Social Learning and Markets

by

Tristan Michael Gagnon-Bartsch

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Matthew Rabin, Chair

This dissertation explores economic implications of misinferring from others’ behavior. The
first two chapters study misinference in models of social learning. They explore in turn two
distinct inferential errors: (1) taste projection—the tendency for people to overestimate how
similar others’ tastes are to their own, and (2) redundancy neglect—people fail to realize
that those acting before them also infer from the behavior of predecessors. The final chapter
draws out the implications of taste projection in auctions.

More specifically, within social-learning environments, Chapter 1 explores the implica-
tions of “taste projection”: agents overestimate how common is their own taste. Agents
with heterogeneous tastes learn about unknown (taste-dependent) payoffs of actions from
the privately-informed choices of predecessors. For instance, investors with varied risk pref-
erences learn which prospect minimizes risk and which maximizes expected return. Inference
requires agents to assess if surprising action frequencies are likely provoked by uncommon
tastes or contrary private information. Taste projectors miscalculate these odds. In settings
where rational agents correctly learn their optimal choice, projection stops some or all from
ever learning the right choice. Long-run beliefs and behavior are determined by a player’s
taste, the degree of all players’ biases, and the nature of uncertainty. First, when each thinks
her taste is most common, society comes to believe a single action is best for all, irrespec-
tive of whether this is true. Second, when the bias is weaker, social beliefs and behavior
perpetually cycle—history never provides a clear message about the optimal choice. Third,
when quality is highly uncertain, popularity due to taste is systematically over-attributed to
quality. Finally, this form of biased learning can exacerbate and perpetuate a false-consensus
effect: if people neglect differences in perceptions when learning about the distribution of
tastes from others’ choices, then a small initial bias eventually leads all types to think their
own taste is most common. For contrast, I also characterize rational learning among Bayesian
agents with taste-dependent beliefs over the distribution of preferences.

Across a range of social-learning settings, Chapter 2 follows Eyster and Rabin (2010)
in studying the implications of agents who neglect the redundancy in information when
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learning from others.1 Players naively think each predecessor’s action reflects solely that
person’s private information. We explore new implications that arise in environments richer
than ER’s canonical binary-state setting. Whereas in both classical learning models and ER
society will with positive probability come to believe the true state, we characterize a set of
states that agents will always come to disbelieve even when true. Typically when the truth
lies in this set, society will “unlearn”: an early generation learns the truth, but society’s
beliefs move away and converge to wrong beliefs. Society only remains confident in those
hypotheses such that the behavior observed when people are fully confident in the hypothesis
most closely resembles the behavior we’d see by privately informed agents if that hypothesis
were true. We provide specific implications of these principles. First, in cases where options
such as restaurants or stocks have independent quality, people form polarized beliefs—they
come to believe that the best option is the best it could be and that all lesser options are the
worst they could be. Second, in an investment setting, polarized perceptions lead investors
to allocate all their wealth to a single prospect, generating a welfare loss through under-
diversification. Third, agents generally overestimate the extent of private information in the
economy.

Chapter 3 explores how taste projection affects bidding in auctions.2 We consider auc-
tions for a good with both private- and common-value elements. We model projection by
assuming bidders with higher private values perceive a distribution of valuations that first-
order stochastically dominates the perception of those with lesser private values. Those with
low private values perceive a distribution shifted to the left whereas those with high private
values perceive one shifted to the right. We draw out the implications of this assumption in
first- and second-price sealed-bid auctions and English auctions. When the good has only
private value, projection leads players to misperceive the extent of competition. This induces
overbidding, on average, in first-price auctions, but has no effect in second-price or English
auctions. If the good also has some common-value component, players draw inference about
others’ signals from their equilibrium bids. No matter the auction format, projection leads
to distorted inference that reduces efficiency. The probability the player with the highest
value receives the good is decreasing in the extent of projection.

1This chapter is co-authored with Matthew Rabin.
2This chapter will eventually be incorporated into a larger project joint with Marco Pagnozzi and Antonio

Rosato. In light of this, I write in first person plural.



i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Taste Projection in a Model of Social Learning 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Relation to Previous Research . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Basic Setting and Formalization of Naive Taste Projection . . . . . . . . . . 8

1.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Taste Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Naive Quasi-Bayesian Best Response . . . . . . . . . . . . . . . . . . 15
1.2.4 Basic Implications of Taste Projection and Discussion . . . . . . . . . 16

1.3 Learning about Horizontal Differentiation: Preliminaries . . . . . . . . . . . 16
1.3.1 Belief Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Effect of Taste Projection on Individual Inference: Comparative Stat-

ics on λ̂(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Learning About Horizontal Differentiation: Long-Run Beliefs . . . . . . . . . 25

1.4.1 Potential Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Stability of Confident Beliefs . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.3 Strong Taste Projection . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.4 Weak Taste Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.5 Biased Learning Under General Taste Projection . . . . . . . . . . . 38

1.5 Learning About Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.2 Biased Learning with Two Types . . . . . . . . . . . . . . . . . . . . 42
1.5.3 Biased Learning with Many Types . . . . . . . . . . . . . . . . . . . 45

1.6 Learning About Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.1 Extension of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6.2 Biased Long-Run Learning . . . . . . . . . . . . . . . . . . . . . . . . 48

1.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



ii

Appendices 53
1.A A Simple Model Of Taste Projection . . . . . . . . . . . . . . . . . . . . . . 53
1.B Smith and Sørensen’s Confounded Learning . . . . . . . . . . . . . . . . . . 55

1.B.1 Existence of Confounding Beliefs . . . . . . . . . . . . . . . . . . . . 56
1.C Rational Learning with Aggregate Preference Uncertainty . . . . . . . . . . . 56

1.C.1 Rational Long-Run Learning . . . . . . . . . . . . . . . . . . . . . . . 57
1.D Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.D.1 Can Some Rational Agents Correct Biased Learning? . . . . . . . . . 58
1.D.2 Alternative Forms of Misprediction . . . . . . . . . . . . . . . . . . . 59

1.E Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Naive Social Learning, Mislearning, and Unlearning 79
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.2.1 Social-learning Environment . . . . . . . . . . . . . . . . . . . . . . . 83
2.2.2 Naive Social Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.2.3 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.3 Naive Long-Run Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.3.1 Characterization of Stationary Beliefs . . . . . . . . . . . . . . . . . . 90
2.3.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.3.3 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.4 Portfolio Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.4.2 Belief and Allocation Dynamics . . . . . . . . . . . . . . . . . . . . . 102

2.5 Learning the Distribution of Information . . . . . . . . . . . . . . . . . . . . 105
2.5.1 Unknown Precision of Signals . . . . . . . . . . . . . . . . . . . . . . 106
2.5.2 Aggregate Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.6 Conclusion and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.6.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendices 112
2.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3 Projection of Private Values in Auctions 118
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.2.1 Auction Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2.2 Projection: Motivation and Model . . . . . . . . . . . . . . . . . . . . 123

3.3 Private Values: Overbidding . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3.1 Second-Price and English Auctions . . . . . . . . . . . . . . . . . . . 129
3.3.2 First-Price Auction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



iii

3.3.3 Revenue Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.4 Private and Common Values: Inefficiency . . . . . . . . . . . . . . . . . . . . 132

3.4.1 Second-Price Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.4.2 English Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendices 141
3.A Omitted Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 145

List of Figures

1.1 Examples of κ(π, θ). Each curve represents the minimal fraction of A’s (y-axis)
a θ-type must observe in period t in order for at to be interpreted as evidence for
ω = R given period-t belief π (x-axis). The curves differ only in the value of λ̂(θ). 23

1.2 Negative change the in public log-likelihood ratio, − log Ψθ(π), as a function of
the current belief, π, after observing action at/N = .75 for various values of λ̂(θ).
A θ-type interprets at as evidence for ω = R if and only if − log Ψθ(π) > 0. . . 24

1.3 Next-period’s public belief πθt+1 as a function of the current public belief, πθt , as-
suming choice A is observed in t. The 45◦-line is plotted for reference. . . . . . 25

1.4 Belief “phase diagram” for Strong Taste Projection. . . . . . . . . . . . . . . . . 33
1.5 Belief “phase diagram” for “weak” taste projection. . . . . . . . . . . . . . . . . 37
1.6 Set of Weak-Projection parameters leading to cyclical beliefs. . . . . . . . . . . . 39
1.7 Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.8. . . . . 39
1.8 Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.8 in phase

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.9 Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.9. . . . . 40
1.10 Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.9. . . . . 41
1.A.1Biased pmfs for β = 0.1 and θ ∼ U[0, 1]. . . . . . . . . . . . . . . . . . . . . . . 54
1.A.2Biased cdfs for β = 0.1 and θ ∼ U[0, 1]. . . . . . . . . . . . . . . . . . . . . . . 54
1.A.3Biased pmfs for β = 0.1 and θ ∼ Beta(8, 8). . . . . . . . . . . . . . . . . . . . . 55
1.A.4Biased cdfs for β = 0.1 and θ ∼ Beta(8, 8). . . . . . . . . . . . . . . . . . . . . 55

3.1 The true density (dashed black curve) and perceived densities for ti = {0, .2, .4, .6, .8, 1}.
when t ∼ Beta(3, 2), ρ = .5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



iv

3.1 The second-price bidding function as a function of t with θ = 1/2 for various
values of ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.2 The probability that the player with the highest taste t wins the auction as a
function of ρ. (Estimated from 1,000,000 simulated auctions.) . . . . . . . . . . 137

3.3 The probability that the player with the highest taste t wins the auction as a
function of ρ. (Estimated from 1,000,000 simulated auctions.) . . . . . . . . . . 139

List of Tables

1.1 State-dependent payoffs for left (θ = l) and right (θ = r) types. . . . . . . . . . 20
1.2 Expected evolution of rational beliefs and behavior. . . . . . . . . . . . . . . . . 35
1.3 Expected evolution of biased beliefs and behavior. . . . . . . . . . . . . . . . . . 35



v

Acknowledgments

This dissertation benefited greatly from helpful discussions with many professors, col-
leagues, and friends.3 I’d like to express my appreciation and gratitude. First and foremost,
I thank Matthew Rabin for invaluable advice and indefatigable support and encouragement.
He made writing this thing fun. He continues to be extremely generous with the opportuni-
ties and time he provides. I thank Shachar Kariv for his sage advice on navigating through
graduate school and academia. I’ve had the privilege to learn from him ever since I was an
undergrad here at Berkeley. Speaking of undergrad, I must thank Bryan Graham for his
support during those years. It’s safe to say I would’ve never won an NSF fellowship if not
for him. For helpful discussions and suggestions on the content of this dissertation, I thank
David Ahn, Ned Augenblick, Nick Barberis, Stefano DellaVigna, Erik Eyster, David Hirsh-
leifer, Shachar Kariv, Marc Kaufmann, Jussi Keppo, Brian Knight, Botond Kőszegi, Kristof
Madarasz, Takeshi Murooka, Omar Nayeem, Ted O’Donoghue, Marco Pagnozzi, Antonio
Rosato, Matthew Rabin, Josh Schwartzstein, Adam Szeidl, Xiaoyu Xia, and various seminar
audiences at UC Berkeley. Chapter 2 is coauthored with Matthew Rabin. Chapter 3 has
led to a larger project in progress with Marco Pagnozzi and Antonio Rosato. I thank the
National Science Foundation Graduate Research Fellowship for generous financial support.

Of course, I also benefit daily from these same friends, family, colleagues, and professors
in domains tangential to any specific results in this dissertation. It’s perhaps tradition to
acknowledge them here. While I can’t express my gratitude enough, they deserve way better
than a mere “thank you” written here. This venue—likely hidden deep in the university’s
archives—isn’t worthy for such appreciation. Instead, I hope to make it known to all of them
in much more regular and salient ways. That said, thanks! Especially to Cat, my parents,
Johann, and my grandmothers—I’m sure they would be proud.

3These sets are not disjoint.



1

Chapter 1

Taste Projection in a Model of Social
Learning

1.1 Introduction
How well do people predict others’ tastes? Do we accurately predict, say, the population
share that favors a Republican presidential candidate or the safety of bonds over stocks? Ev-
idence from many domains—economics, public policy, and social psychology—suggests that
our own tastes influence such predictions. While this inference is rational when knowledge
of others’ preferences is limited, the literature argues in favor of a systematic non-Bayesian
bias: people perceive their own taste as more common than it is. For example, people
overestimate how many share their views on income redistribution (Cruces, Perez-Truglia,
and Tetaz, 2013), and on the preferred political candidate (Delavande and Manski, 2012).
While research on this bias—called the “false-consensus effect” or interpersonal projection—
has progressed in showing its existence, few studies demonstrate the extent or scope of its
implications. When and how does it matter?

This paper argues that “taste projection” has important consequences in social learning.
Of course, inference from others’ behavior influences many economic decisions—it guides
technology adoption, participation in the stock market, voting behavior, and various forms
of consumption—but how we interpret the informational content of others’ choices depends
crucially on our perception of their preferences.1 Whether we believe an ambiguous tax
reform will help the poor or widen inequality after learning others’ positions depends on
whether we think most favor redistribution. Or, how we judge the quality of a new film
or restaurant based on popularity depends on our perception of peers’ tastes for the genre
or cuisine. To understand how projection distorts such inference, this paper formally mod-

1To give but a few examples, within the domain of technology adoption, Conley and Udry (2010) show
that social learning drives investment in new crops in Ghana; in a voting context, Knight and Schiff (2010)
show it generates momentum in U.S. primary elections; within consumption domains, Cai et al. (2009),
Salganik et al. (2006), and Moretti (2010) respectively show its impact on demand for restaurants, music,
and movies.
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els the bias and draws out its implications within social-learning environments: building
on canonical models of observational learning (Banerjee, 1992; Bikhchandani et al., 1992;
Smith and Sørensen, 2000), I examine how biased agents, each of whom overestimates the
commonness of her own taste or motive, learn from observing the actions—but not directly
the information or tastes—of other biased agents.

To outline the model, suppose investors with varied risk preferences wish to learn whether
new asset A is riskier (and has higher expected return) than a known alternative, B. A frac-
tion λ prefers the safer asset whereas 1 − λ prefers the higher-return alternative. From
experience with similar securities, investors have private but imperfect information about
the relative risk. To acquire additional information before adequate performance data mate-
rializes, investors use others’ choices. But heterogeneity in tastes complicates inference. Did
a predecessor choose A because she’s risk averse with private information that A is safe? Or
due to precisely opposite preferences and opposite information? Smith and Sørensen (2000)
characterize players’ long-run beliefs and behavior in such settings provided that λ—the dis-
tribution of preferences—is common knowledge. This paper, in contrast, does so assuming
agents project tastes: each overestimates how many seek their same objective. The risk
averse think λ̂ > λ; the return seekers think λ̂ < λ.

More generally, in settings where agents differ in their ideal features of an option, I char-
acterize long-run beliefs about the optimal action for each type of player. Inference requires
agents to assess if unexpected action frequencies are likely provoked by uncommon tastes
or contrary private information. Since agents have inconsistent theories of what provokes
actions, those with different tastes develop divergent beliefs. As a consequence, taste projec-
tors never reach long-run agreement. Hence, importantly, biased agents cannot all mutually
learn the truth: even in environments where rational agents necessarily learn, taste projec-
tion leads some to choose incorrectly in the long run. Long-run beliefs and behavior are
determined by a player’s taste, the degree of all players’ biases, and the nature of uncer-
tainty. When the bias is sufficiently strong, agents herd on a single action X, and all grow
confident (some rightly, some wrongly) that X is optimal for their taste. Taste projection
explains how confident, but false, beliefs can persist despite sufficient evidence to learn, and
why uniform herds may emerge despite differences in tastes.2 But when the bias is weaker,
the model yields a much different prediction: opinions and behavior forever cycle over time,
resembling fads. In addition, if agents also learn about others’ tastes from actions, the bias
in perceived taste distributions can be intensified: agents conclude more share their taste
than anticipated. That is, naive learning can exacerbate and perpetuate a false-consensus
bias.

Section 1.2 formalizes the model, which adds taste projection to an observational-learning
setting based on Smith and Sørensen (2000). A sequence of agents, N acting per period,

2The rational-herding literature shows that when learning from others, society may forever choose sub-
optimal actions. Importantly, as noted in Eyster and Rabin (2010), in any setting where an incorrect herd
may arise, rational agents never grow confident in the state of the world. The more likely is an incorrect
herd, the less confident is society in the the long run. As such, the rational-herding literature does not
explain how society may often develop confident beliefs in some false hypothesis.
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choose between two actions, A and B. An action’s payoff derives from its commonly-valued
quality, q, and a heterogeneously valued attribute, z. Players’ tastes for z are distributed
along a line; an agent prefers z closest to her “location”, θ (e.g., Hotelling, 1929). For
instance, q may be the quality of a restaurant or film, while z is the cuisine or genre. Or,
among investments, z and q respectively measure risk and transaction costs. Agents learn
about (q, z) from private signals and the complete history of predecessors’ choices. To crisply
identify the effects of projection, I focus on environments where rational agents learn the
state.3

To model taste projection, I assume agents mispredict the distribution of others’ tastes,
θ. A θ-type perceives a distribution that first-order stochastically dominates the perception
of any player with taste left of θ, but is dominated by the perceptions of those right of θ.
The more right-leaning is one’s taste, the higher is her estimate of those with right-leaning
tastes. For example, Anni and Benny, who are respectively risk averse and risk neutral,
disagree on the share of investors who are more risk averse than Anni; Anni thinks 75%,
Benny thinks just 25%. Additionally, I assume agents are naive about this bias; they neglect
that players with different tastes have divergent perceptions of population preferences. An
agent best responds to beliefs formed via Bayes rule using her misspecified model, which
assumes common knowledge that tastes are distributed according to her perception.4 Anni
wrongly assumes Benny agrees that 75% are risk averse.

Sections 3 and 4 begin with the case where the quality is known: the only uncertainty
is over horizontal location. Section 3 first develops preliminaries about individual decision-
making as a function of private beliefs and the public history of actions. Following Smith
and Sørensen (2000), there are two states of the world—A is to the left or right of B. Players
on the same side of the left-right taste spectrum prefer the same action and form identical
beliefs from the history; those on opposite sides form divergent beliefs. Importantly, I show
that an agent’s perceived fraction of those with right-leaning preferences, denoted λ̂, dictates
how she uses new observations. If she underestimates the variance in tastes—say, λ̂ = 0.9
when in truth λ = 0.75—then she perceives actions as more precise signals of underlying
private information; her beliefs overreact relative to rational beliefs. If she overestimates
the variance in tastes—say, λ̂ = 0.6—then she perceives actions as less informative, and
her beliefs underreact. If she mispredicts the majority taste—say, λ̂ = 0.4—then her beliefs
move opposite the rational belief after any observation.

Section 4 studies asymptotic properties of learning. Since agents mispredict how beliefs
3I assume private signals have unbounded informativeness. In this environment, it is well understood

that bounded informativeness generates information cascades: the information contained in the history of
play eventually swamps the information contained in the most informative signal. The setting also precludes
“confounded learning”, discovered by Smith and Sørensen (2000), where players converge to an uncertain
stationary belief. This outcomes arises only when the quality difference is sufficiently large. Appendix 1.B
addresses when confounded learning may occur, and how this possibility alters my basic results.

4Agents think others’ draw inference using a common model of the world, and that any differences in
beliefs are purely a result of private information. Indeed, in a panel survey of private investors, Egan, Merkle,
and Weber (2012) show that people overestimate how many share their beliefs about returns.
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map to action frequencies, convergence to stationary beliefs is not guaranteed, nor is con-
vergence to fully-incorrect beliefs ruled out. I derive conditions on agents’ perceptions that
determine whether a candidate equilibrium belief is stochastically stable: near equilibrium,
is the unexpected frequency of actions interpreted as evidence for or against that belief?5 A
belief is stable only if all players observe a greater share choosing their anticipated majority
action than expected. From this, I show it’s impossible for all taste projectors to converge
on identical long-run beliefs: some agents necessarily fail to learn. To understand how and
why learning fails, I closely analyze two classes of projection: (1) “strong”—where each type
thinks her preference is most common—and “weak”—where all agree on the majority taste.

When each thinks her taste is most common, agents herd on a single action X, and all
grow confident (some rightly, some wrongly) that X is optimal for their taste. Beliefs are
polarized according to taste: the risk averse grow confident asset A is safe; the return seeking
think it’s risky.6 Quite simply, since each thinks her taste is most common, absent strong
contrary signals, she wants to follow the herd. This result explains how confident, but false,
beliefs can persist despite sufficient evidence to learn, and why herds may emerge despite
heterogeneity in tastes.7 When many act per round (N →∞), dynamics are deterministic:
the minority necessarily learns incorrectly, and all choose the option optimal for the majority
taste. As an implication, the adoption of new technologies or welfare programs beneficial
only to a minority fails when people learn from others’ take-up decisions. Instead, soci-
ety inefficiently over-adopts practices optimal for the majority, implying that observational
learning is not only inefficient, but can be socially harmful.8

“Uniform” herding is not a general consequence. When taste projectors (correctly) agree
on the majority preference, they never settle on a fixed belief, let alone herd. Society’s opinion
of the optimal action perpetually cycles, offering an explanation for “fads” in settings where
rational behavior must converge.9 When society is confident that A is safe, 75% (the share
of risk averse agents) choose A. But risk-averse investors expect a higher frequency, say 90%.

5Gagnon-Bartsch and Rabin (2013) study a similar issue of stability in a model of biased social learning
where players neglect the redundancy in behavior.

6Agents’ beliefs display a strong form of polarization, where they grow fully confident in alternative
hypotheses. Other researchers studying how disagreement may persist in learning settings, like Andreoni and
Mylovanov (2012), demonstrate a much weaker form of polarization where agents with common preferences
disagree (but not confidently) on the optimal action. Rational models fail to explain confident disagreement.

7Sorensen (2006), who studies observational learning in the selection of health-care plans, demonstrates
that observing others leads to uniformity in choice, despite heterogeneity in individuals’ optimal plans. After
the study, many switch away from the “herd” plan. Similarly, some medical practices are widely believed to
be beneficial to all, when in fact efficacy depends on heterogeneous characteristics of patients.

8Although rational observational learning can cause incorrect herds, (e.g., Bikchandani, et al., 1992) it is
necessarily welfare improving, on average, relative to following private information. Eyster and Rabin (2010,
2013) show how a different form of naive learning can be socially harmful.

9Rational behavior fails to converge to a single action when players observe only immediate predecessors
(Çelen and Kariv, 2004). Acemoglu, Como, Fagnani and Ozdaglar (2012) show that opinions may persistently
fluctuate when learning in a network if some agents are “stubborn” and never update their beliefs. Such
models help explain, for instance, persistent fluctuations in political opinion (e.g., Kramer, 1971; and Cohen,
2003).
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Their best explanation for such low investment is that other risk-averse agents have strong
signals that B is safer. As the risk averse lose faith that A is safe, the share investing in A
falls so that even the risk seekers, who expect only 60% to choose A, start doubting A is
safe. Beliefs reverse: investors think B is safe. But since this logic will repeat itself, beliefs
perpetually oscillate.10 When the minority’s perceptions are sufficiently more biased than
those in the majority, a long spell where all believe A is safer is followed by a longer spell
where all think B is safer, and so on. Beliefs spend roughly equal time favoring each state,
and all players are worse off, on average, by observing others than if they simply followed
their private information.

Sections 1.5 and 1.6 expand the environment with additional dimensions of uncertainty,
and explore how projection leads to mislearning about quality differences and population
tastes, respectively. Intuitively, agents use these additional dimensions to best explain oth-
erwise anomalous herds. Section 5 allows for highly-uncertain quality, so that all players
may prefer the same action. For instance, a restaurant with astounding quality is preferred
by all diners, despite taste in cuisine. With two types, no matter the true quality difference,
society necessarily concludes it’s large enough so that all prefer the same choice. Projection
leads agents to herd on X, which they subsequently explain by assuming X has superior
quality. In essence, taste-based popularity is systemically over-attributed to quality. This
systematic misconstrual of “vertical” and “horizontal” components of preference may help ex-
plain the notoriously slow adoption of new agricultural technologies in environments where
their productivities vary across farms: low take-up up is mistaken for global ineffectiveness
rather than selective efficacy.11 Additionally, even when horizontal locations of A and B
are known—for instance, film goers know A is an action film, and B a romance—agents
still systematically mislearn quality. Fans of the romance attribute moderate popularity to
limited quality rather than admitting few enjoy such films, while action fans adopt a higher
perception of B’s quality in order to explain higher-than-expected attendance. Essentially,
those with the most positive view of B’s quality are those who prefer the attributes of A.

Section 1.6 more realistically assumes uncertainty over the distribution of tastes, so agents
revise their models of others’ preferences as they observe actions. Does learning about tastes
ameliorate errors in learning about payoffs? With uncertainty, an agent uses her taste
as information, so those with different tastes start with different priors. Still assuming
agents are naive—they neglect heterogeneity in priors—I show that learning needn’t correct
mislearning about payoffs and can intensify the bias in perceived taste distributions: all
agents confidently conclude that most share their taste. As such, naivete still generates
herds. When A is chosen most often, risk averse infer that A is likely safe and λ > 1

2
,

but to a risk-neutral agent, this indicates that A is likely risky and λ < 1
2
. Absent strong

10While tempting to think that non-convergence results from the coarseness of the state space—each
option takes one of two locations, implying agents expect to observe one of only two long-run frequencies—
one can generate examples with non-convergence in a continuous state space.

11Munshi (2003) shows that the adoption rates of hybrid “high-yield” crops in India greatly depend on
how variable is output with respect to inputs. Strands of hybrid rice with productivity sensitive to the mix
of inputs on the farm have very slow adoption rates.
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contrary information, each type best responds with A. When a herd arises, an agent’s best
explanation is that all investors share her taste.12

Throughout the paper, I contrast naive-learning results with those following from rational
taste-dependent perceptions that arise from uncertainty over the distribution.13 Rational
beliefs always converge and never grow fully polarized. However, learning may still fail. With
positive probability, agents converge to an interior belief where they cannot discern, say, if a
high frequency of A’s follows because A is safe and most are risk averse, or because A is risky
and most seek high return. Smith and Sørensen (2000) show that under perfect information
about the distribution, such beliefs exist only when quality differences are sufficiently large.
In contrast, I show that with imperfect information, they always exist. This extension
provides a simple and natural explanation for persistent disagreement.14 At a confounding
belief, people with different tastes disagree on payoffs: relative to a risk-seeking agent, a
risk-averse agent thinks it’s more likely that most are risk averse and that A is safe.

I conclude in Section 3.5 by putting both taste projection and social “mislearning” in
broader context. I discuss why and how taste projection can distort inference in more gen-
eral social-learning environments where agents can directly communicate beliefs or payoffs.
Mislearning results from taste projectors’ incorrect theories about others’ payoff functions
and how they form beliefs. Diners with “sophisticated” tastes may report mediocre payoffs
from a meal that typical diners find remarkable. Typical diners are misled if they underesti-
mate how often they glean advice from “sophisticates”. I also discuss settings where agents
have biased perceptions of the type distribution distinct from projection, such as a false
sense of uniqueness; the tools developed in this paper directly apply. I conclude the paper
by highlighting the shortcomings of this model and suggesting avenues for future research.

1.1.1 Relation to Previous Research

This paper contributes to a growing literature incorporating informational biases into eco-
nomics, and, more specifically, social learning, in order to explain how false or divergent
beliefs may persist.15 Ellison and Fudenberg (1993), who were among the first to study

12Exploring false-consensus perceptions in a social network, Flynn and Wiltermuth (2011) find that indi-
viduals with higher betweenness centrality—more exposure to others in the network—had higher (and more
incorrect) estimates of how common was their taste.

13This model, analyzed in the Appendix, is identical to Section 1.6 aside from the assumption of full
rationality.

14Alternative explanations include uncertainty over the distribution of private information, as explored
in Acemoglu, Chernozhukov, and Yildiz (2007 and 2009).

15One strand of this literature studies the consequences of probabilistic errors—like over-inferring from
small samples (Rabin, 2002; Rabin and Vayanos 2010) or under-appreciating properties of statistical pro-
cesses, like mean reversion (Barberis, Shleifer, and Vishny, 1998). A distinct strand studies agents that
neglect the information content of others’ behavior, providing explanations for the winner’s curse and ex-
cessive trading in asset markets (Eyster and Rabin, 2005; Eyster, Rabin and Vayanos, 2013). In this paper,
agents have incorrect beliefs about the distribution of tastes—at the root, a probabilistic error. But since this
leads to inaccurate perceptions of others’ information, agents additionally misinfer from others’ behavior.
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biased social learning among agents with heterogeneous tastes, explore the efficiency of
“rule-of-thumb” learning in a setting with observable payoffs, where agents with heteroge-
neous tastes simply choose whichever action performed best of those observed. While I
assume fully-Bayesian learning within a misspecified model, their naive learning rule is akin
to projection where each player thinks all share her taste. Similarly, they show that their
rule never leads to exact long-run efficiency, but efficiency improves as tastes become less
heterogeneous. Bohren (2010) studies a variant of the canonical Bikhchandani et al. (1992)
where only a fraction of players observe the history, and players mispredict this fraction. As
here, various degrees of misprediction can lead to both stable incorrect herds and persistent
fluctuations in beliefs. The focus, however, is on a commonly-held misprediction, where I
emphasize the interaction of misperceptions that differ across types of agents. Further, the
inferential error studied by Bohren (2010) has a much different motivation, as it captures
players’ ignorance of the redundancy in social behavior. This form of redundancy neglect has
been studied elsewhere in the literature, namely by DeMarzo, Vayanos and Zwiebel (2003),
Eyster and Rabin (2010, 2013) and Gagnon-Bartsch and Rabin (2014), who also show how
biased observational learning generates confident, yet false, beliefs. Finally, the basic er-
ror I analyze is closely related to information projection, explored in Madarasz (2012). He
assumes agents overestimate the likelihood that people have the same private information
as themselves and draws out the implications of this error in a variety of principal-agent
problems.

From a broader perspective, this paper studies learning among agents with both non-
common priors and inconsistent beliefs about others’ priors. While a large literature stud-
ies the implications of non-common priors, most notably as explanations for speculative
trade (e.g., Harrison and Kreps, 1978; and Morris, 1996), warranted caution on modeling
non-common priors has been advised. As subjective heterogeneous priors can justify any
outcome ex post, Morris (1995) argues that we should allow non-common priors only when
we can identify a source for the disagreement and precisely model these differences. This
paper proposes a disciplined way of incorporating non-common priors: an agent’s own taste
systematically dictates her beliefs about others’ tastes.16 Further, the literature on non-
common priors typically assumes people have correct beliefs about the distribution of these
priors—people simply “agree to disagree.” My key departure from this literature is that I
instead characterize learning among people who neglect disagreement, and wrongly believe
in a commonly-shared interpretation of public information.

16Models of overconfidence (e.g., Scheinkman and Xiong, 2003), where individuals disagree on the infor-
mation content of particular signals, are similar attempts to incorporate non-common priors in a structured
fashion.
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1.2 Basic Setting and Formalization of Naive Taste
Projection

This section describes the basic decision environment (Subsection 1.2.1) and proposes a
model of taste projection (Subsection 3.2.2). Subsection 1.2.3 defines a solution concept in
the presence of projection, pinning down beliefs about others’ perceptions and strategies.
Subsection 1.2.4 discusses some immediate implications of these assumptions: (1) players
with different tastes draw a distinct inference from any history of play, but (2) each player
wrongly thinks all draw the same inference.

1.2.1 Setting

Actions and States. There are two options {A,B} =: X ; each X ∈ X has quality qX ∈ QX ⊂
R, and location zX ∈ ZX ⊂ R. As in standard spatial-differentiation models, each players
prefers higher “vertical” quality, but preference over “horizontal” location depends on her
type.17 A player’s payoff from X is entirely determined by this point in the “characteristic
space”, (qX , zX) ∈ R2. Using Downs’ (1957) model of political competition as an example,
q may measure the competence or integrity of a political candidate, while z indicates how
liberal or conservative she is. Or, q is the skill of a chef or a writer, and z is his cuisine or
genre. Or, q is the transaction cost of an investment, and z measures its risk: assets to the
left are riskier—but have higher expected return—than those to the right. The collection of
each options’ characteristics, ω = ((qA, qB), (zA, zB)) comprises the state of the world which
agents aim to learn; ω ∈ Ω has common prior π1 ∈ ∆(Ω).

To make clear how taste projection can lead learning astray, I focus on the simplest such
environment: there are only two possible location profiles, (zA, zB) ∈ {(−1, 1), (1,−1)}.
That is, A is either to the left of B, (zA, zB) = (−1, 1), or to the right of B, (zA, zB) =
(1,−1).18 To keep notation simple, I write the decision-relevant information of a state
ω = ((qA, qB), (zA, zB)) using only two dimensions. Let ζ ∈ {L,R} denote the “location
state”, where ζ = L if and only if A is left of B, (zA, zB) = (−1, 1). And, as will become
clear, an agent’s choice depends on the difference in quality, ∆q := qA − qB, so, I write
ω = (ζ,∆q). Let D := {∆1, ...,∆D} be the set of possible quality differences; the state space
is Ω = {L,R} × D.

Preferences. Preference over horizontal location depends on one’s preference type, or
“taste”, θ ∈ Θ ⊂ R. θ denotes an individual’s most preferred location. For instance, θ may
measure risk aversion, reflecting a person’s optimal level of portfolio risk, or political ideology.
Preferences are represented by a von Neumann-Morgenstern utility function separable in

17Hotelling (1929) is the classic example of a location model, and Downs’ (1957) model of political
competition extends it to a two-dimensional characteristic space, as I similarly do here.

18While admittedly restrictive, this binary-state assumption is common in the literature. Smith and
Sørensen (2000), who study rational learning in a similar setting, also focus on two feasible location profiles,
noting that additional states come at “significant algebraic cost.”
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quality and location:
u(X, θ) = qX − k(zX − θ)2, (1.1)

where k > 0 is a commonly-known preference parameter.19 To simplify exposition, suppose
Θ is a grid: Θ = {θ : θ = ±jδ, j = 1, ..., J} for some δ > 0 and J ∈ N. Types are i.i.d.
across players with c.d.f. G.20

For the moment, I assume beliefs over the distribution of tastes, G, are degenerate. In
later sections, I allow uncertainty over G—people may be uncertain whether the majority is
risk averse or risk neutral—so an agent’s perceived distribution of tastes rationally depends
on her own type θ. I allow for this generalization to contrast learning in the presence of
rational taste-dependent distributional beliefs with learning under biased taste projection,
where a player’s belief about the taste distribution depends on taste beyond rational Bayesian
inference.

Discussing inference is simplified by classifying individuals according to their preferred
location z ∈ {−1, 1}. Ignoring quality differences, all types θ < 0 strictly prefer a left-located
option while θ > 0 strictly prefer a right-located option, leading to the following definition:

Definition 1. Preference types are dichotomously categorized as follows:

1. θ < 0 is referred to as a left type.

2. θ > 0 is referred to as a right type.

The measure of right types, λ := 1 − G(0), is a critical statistic of G for drawing inference
from predecessors’ actions. Without loss of generality, assume λ > 1

2
; right types are the

majority.

Assumption 1. (Right types comprise the majority.) λ = 1−G(0) > 1
2
.

Players and Timing. In every period t ∈ N, a new set of N ≥ 1 players is drawn according
to taste distribution G, and each takes an action X ∈ X . Players are labeled nt; t is the
period in which she acts, and n ∈ {1, 2, ..., N}. Let Xt = (X1t, ..., XNt) denote the profile
of actions taken in period t. Since all N players in t act independently conditional on the
history of play, the number of A’s taken in t, denoted by at ∈ {0, 1, ..., N}, is a sufficient
statistic for Xt. Hence, let ht = (a1, ..., at−1) denote the history of the game up to time t,
where h1 = ∅.

Beliefs. Before acting, Player nt observes her preference type θnt, a private i.i.d. signal
snt ∈ S about the state, and the complete ordered history of actions, ht.21 Her choice, based
on the combination of this information, partially reveals her private signal to followers. For

19The assumption that attribute z has value equal to the squared distance from one’s location is without
loss of generality. Results are identical if (zX − θ)2 is replaced by any metric d(zX , θ).

20As here, I often refer to preference types simply as “types”. Below, I endow players with private signals,
hence a complete description of a player’s type is her signal and preference type. I will be explicit whenever
I refer to the complete notion of type as to avoid confusion.

21Specific details of the signal structure are provided in the following section.
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each ω ∈ Ω, let πt(ω) denote the belief in ω drawn solely from history ht and the prior; I call
this the public belief in t.22 The sequence of public beliefs 〈πt〉 is this paper’s key object of
analysis.

Finally, let Γ denote this game form, and let Γ(G) denote it explicitly as a function of the
taste distribution (keeping all other aspects fixed). The next section makes the purpose of
this notation clear: if one misperceives the taste distribution as Ĝ 6= G, but has an otherwise
correct model of the game, her perceived game is Γ(Ĝ).

1.2.2 Taste Projection

This subsection reviews the literature motivating my main assumption of taste projection,
and provides a simple formulation of this bias, which consists of two key assumptions: (1)
an agent’s perceived preference distribution depends on her own taste, and (2) she neglects
that others’ perceptions depend on their tastes.

1.2.2.1 Evidence

The notion that people systematically misptredict others’ tastes is supported by several
strands of research. A large literature in social psychology studies inter-personal projection—
the idea that people’s own habits, values, and behavioral responses bias their estimates of
how common are such habits, values, and actions in the general population.23 Early work,
including Ross, Greene, and House (1977)—who coin the term “false-consensus effect”—find
positive correlation between subjects’ own preference responses and their estimates of others’
responses. Subjects in Ross, Greene, and House (1977) gave their own (binary) response to
a question and predicted the fraction of subjects who answered similarly. (E.g., “Are you
politically left of center?”; “Do you prefer basketball over football?”; “Will there be women
in the supreme court in the next decade?”; “Do you prefer Italian movies over French?”) Out

22I use the term “public belief” to conform to existing literature. “Public” in this context does not mean
the belief is common across society—taste projection and the solution concept introduced below naturally
imply that different taste types draw different inference from ht. Instead, “public” refers to the source of
the belief; that is, publicly observable behavior. The phrase “public belief” originates from a literature on
rational learning in which both of the points above are valid: when there is no aggregate uncertainty over
tastes, rational players do draw identical inference from ht in a Bayesian Nash equilibrium.

23For example, US citizens display taste-dependent responses when predicting how many support their
government’s use of torture. During the Bush administration, politicians advocating the use of controversial
interrogation methods often alluded to polls indicating the methods had wide public support. Gronke et
al. (2010) collected a more comprehensive data set that both falsifies these claims and demonstrates the
correlation between one’s own opinion on torture and their prediction of others’ opinions. Survey participants
stated their opinion on how frequently torture should be used—either never, rarely, sometimes or often—and
estimated the percent of people who chose each of those options. Each row in the table below shows the
predictions of a particular response type. For instance, the first row is comprised of estimates of people who
stated “never”—people who chose never, on average, guessed that 5% of people chose “often”, etc. The last
row shows the true percentages of responses.
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of 34 questions, responses to 32 were consistent with taste projection: those who answer
“yes” to a question overestimate how many others answer “yes” relative to those who answer
“no”. Many similar studies followed, documenting this correlation across a wide range of
domains, including preferences over political candidates and ideology, perceptions of the
income distribution and preferences for redistribution, and risk preferences.24

Each of these studies, however, simply document correlation between a subject’s own
taste and her prediction. Is such correlation necessarily indicative of an error? If there is
uncertainty about others’ tastes, the answer is no. As first noted by Dawes (1989), with
uncertainty, a Bayesian should use her own taste as information, resulting in rational type-
dependent estimates that appear consistent with a “false-consensus” bias.

Motivated by this critique to demonstrate a systematic error, Krueger and Clement (1994)
and others provide evidence that this “bias” remains even when subjects have information
about other’ preferences. They find that subjects use their own preference information more
so than that of anonymous others when making population predictions, inconsistent with
Bayesian rationality.25 In incentivized settings, Engelmann and Strobel (2012) verify that
a truly-false-consensus bias remains so long as subjects must exert a small amount of effort
to get information on others’ choices; when this information is not freely available or made
salient, people rely too heavily on their own choice when predicting the choices of others.
So long as attending to others’ tastes comes at some cost, this result suggests that people
can hold incorrect type-dependent beliefs about population preferences even in settings with
ample opportunity to observe others—where the “Dawes critique” should have little bearing.26

Taste-Dependent Predictions
Prediction

Never Rarely Sometimes Often

Response

Never 31% 25% 39% 5%
Rarely 7% 51% 35% 7%

Sometimes 3% 26% 67% 4%
Often 4% 12% 48% 36%
True 30% 24% 29% 17%

24Marks and Miller (1987) review 45 different studies documenting the false-consensus effect published
over the decade following Ross, Greene, and House (1977). Mullen, Atkins, Champion, Edwards, Hardy,
Story, and Vanderlok (1985) find robust evidence of this correlation in a meta-study of 115 tests. Evidence
of type-dependent misprediction has been found in a variety of domains. For instance, Brown (1982) and
Rouhana, O’Dwyer and Vaso (1997) find type-dependent perceptions of political preference. Cruces, et al.
(2013) find type-dependent misprediction of the income distribution in Argentina, and demonstrate that this
leads to misprediction of population preferences for income redistribution. Faro and Rottenstreich (2006)
find correlation between subjects’ own risk preference and their perception of others’ risk preferences.

25Krueger and Clement (1994) deduce that when estimating the percent of subjects that endorse some
action or preference, subjects use their own response nearly twice as much as the response of an anonymous
other. A rational Bayesian should, of course, use these two responses equally.

26Using data from the American Life Panel, Delavande and Manski (2012) show that perceptions of others’
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Relatedly, economists have argued intra-personal projection bias—exaggerating the de-
gree to which future preferences resemble current preferences—influences behavior.27 To
the extent that preferences of contemporaneous others are similarly difficult to predict, we
should expect the logic of intrapersonal projection bias to suggest interpersonal-projection.
An intuition for intrapersonal projection is that we “mentally trade places” with our future
selves, and in doing so, project our current preference states. But this exact logic applies
when empathizing with another. Indeed, Van Boven and Loewenstein (2003) show that the
same transient preference states shown to warp subjects’ perceptions of own future prefer-
ences also distort predictions of others’ preferences. Subjects’ predictions of whether thirst
or hunger would be more bothersome to hypothetical hikers lost without food or water were
biased in the direction of subjects’ own exercise-induced thirst. More economically relevant,
Van Boven, Dunning and Loewenstein (2000, 2003) show that sellers who experience an en-
dowment effect project their high valuation of a good onto the valuations of potential buyers,
causing sellers to set inefficiently high prices.

1.2.2.2 Perceived Distributions: Biased First-Order Beliefs Over Tastes

I model taste projection by assuming an individual’s preference type θ influences her per-
ceived distribution of types. In truth θ ∼ G(·). Denote a θ type’s perception of G(·) by
Ĝ(· | θ). Consistent with the false-consensus effect, I assume right-leaning types think right
types are relatively more common, while left-leaning types think the opposite. I capture this
intuition with the following assumption:

Assumption 2. (Stochastically Dominating Perceptions.) Ĝ(θ | θ′) weakly first-order
stochastically dominates Ĝ(θ | θ′′) if and only if θ′ > θ′′. That is, whenever θ′ > θ′′,
Ĝ(θ | θ′) ≤ Ĝ(θ | θ′′) for all θ ∈ Θ.28

The more right-leaning is an agent’s taste, the higher is her estimate of those with right-
leaning tastes. People with conservative political views overestimate the share of people who
prefer the conservative candidate. Or, those with high risk aversion overestimate the share
seeking safe investment strategies. The perceived measure of right types, which is a key

candidate preferences in the 2008 U.S. presidential election and 2010 congressional election were consistent
with the false-consensus effect even after the release of poll results. While this finding may indicate additional
statistical biases (e.g., failure to appreciate the Law of Large Numbers—see Benjamin, Raymond, and Rabin,
2013), it shows that taste-dependent perceptions can persist despite opportunity to learn about others’ tastes.

27For empirical studies see Busse, Pope, Pope, and Silva-Risso (2012), Simonsohn, (2010), and Conlin,
O’Donoghue, and Vogelsang (2007). For example, Busse, et al. shows that projection bias affects demand
and prices in large, high-stakes markets for cars and houses. Loewenstein, O’Donoghue, and Rabin (2003)
provide a general overview of the evidence and draw out implications of a formal theoretical model.

28 I assume weak domination to allow different θ’s to hold identical perceptions. If θ′ > θ′′ then the two
types need not have different perceptions of the distribution of tastes; however, if their perceptions do differ,
it must be the case that Ĝ(θ | θ′) strictly first-order stochastically dominates Ĝ(θ | θ′′): Ĝ(θ | θ′) ≤ Ĝ(θ | θ′′)
for all θ ∈ Θ with strict inequality for some θ. Let % and � denote weak and strict first-order stochastic
dominance, respectively.
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statistic of Ĝ in drawing inference from actions, is denoted by λ̂(θ); importantly, dominance
implies λ̂(θ) is weakly increasing in θ. Note that I model the bias in perception relative to
others’ perceptions.29

I also assume that perceptions have full support. This ensures that no player ever observes
“off-equilibrium-path” actions arising from preference types she assumed did not exist.

Assumption 3. (Identical Supports.) For all θ ∈ Θ, supp
(
Ĝ(· | θ)

)
= supp(G).

All individuals agree on the possible tastes others’ may have, but may disagree on the
likelihood of these tastes.

Most basic results follow from Assumptions 12 and 3, but for sake of clear intuition,
I often focus extensively on a particular form of error I call choice-dependent projection:
one’s perceived distribution depends only on her preferred location, not on the intensity of
this preference. All left types share a common misperception of G—call it Ĝl—as do right
types—Ĝr.30 Formally:

Definition 2. Players suffer choice-dependent projection if they have the following misper-
ceptions of G:

Ĝ(θ | θ′) =





Ĝl(θ) if θ′ < 0

Ĝr(θ) if θ′ > 0
(1.2)

where Ĝr � G � Ĝl.

Under choice-dependent projection, there are essentially just two types—left and right. Left
types think the measure of right types is λ̂l := 1 − Ĝr(0), while right types perceive it as
λ̂r := 1− Ĝl(0). Stochastically-dominating perceptions (i.e., Ĝr � G � Ĝl) implies λ̂l < λ <
λ̂r: left types underestimate the measure of right types, but right types overestimate it.31

29Assumptions 12 and 3 characterize how perceptions compare across types. How do perceptions relate to
the truth? Section 1.A in the appendix gives a simple paramaterization of perceived distributions where each
depends only on the true distribution and a single bias parameter, β ∈ [0, 1]. That model, which specifies
perceptions relative to the truth, satisfies Assumption 12: perceptions relative to others’ exhibit dominance.

30The term “choice dependent” follows from the fact that under this class of misperceptions, when the
characteristics of the options are known, people overestimate the share of others that would choose the same
option as themselves. However, they don’t necessarily overestimate the share of people with their identical
taste parameter, θ. Hence we can think of one’s preferred choice or behavior as the object of projection
rather than the underlying intensity of that choice.

31This model of taste projection makes assumptions directly on perceived distributions of tastes, and main-
tains that players understand how taste θ translates into decision utility. Alternatively, following Loewen-
stein, O’Donoghue and Rabin’s (2003) model of intrapersonal projection, we could assume a player with
taste θ mispredicts the utility of a player with taste θ̃, which ultimately leads to a misperception of the
measure of players that prefer different actions. This footnote briefly demonstrates the equivalence of these
two approaches. Suppose that it is known that A is on the right and B on the left. A taste-type θ whose
own location-dependent utility from consuming A is u(A, θ) = −k(1 − θ)2 mispredicts a θ̃-type’s location-
dependent utility from A as ûθ(A, θ̃) = −αk(1− θ)2 − (1− α)kd(1− θ̃)2 where α ∈ [0, 1] parameterizes the
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Within the regime of choice-dependent projection (λ̂l < λ < λ̂r), two classes of errors,
which I now differentiate and define, lead to very different learning properties.

Definition 3. Suppose players suffer choice-dependent projection where left and right types
believe the measure of right types is λ̂l and λ̂r, respectively.

1. (λ̂l, λ̂r) satisfy strong taste projection if λ̂l < 1
2
< λ < λ̂r.

2. (λ̂l, λ̂r) satisfy weak taste projection if 1
2
< λ̂l < λ < λ̂r.

Strong and weak taste projection differ in whether people agree on the majority preference.
Strong projection implies that types disagree on the majority preference: each type thinks
her own taste is most common. A weak false consensus implies that all players correctly
acknowledge that right types comprise the majority.

1.2.2.3 Naivete: Biased Second-Order Beliefs Over Tastes

I assume that a taste projector is naive about her bias: she neglects that those with different
tastes have alternative perceptions of the distribution. She thinks all agents share a common
perception.

Assumption 4. (Naivete.) For any θ′ ∈ Θ, a θ-type believes Ĝ(· | θ′) = Ĝ(· | θ).

Naivete pins down second-order beliefs—beliefs about others’ perceived distributions—and
implies they are incorrect. An individual with taste θ perceives the game as Γ(Ĝ(· | θ)); she
assumes the structure of Γ—including Ĝ(· | θ)—is common knowledge to all players. For
instance, a risk-averse agent who thinks 90% of investors are risk averse naively assumes
that a risk-neutral agents thinks the same. In essence, agents imagine they are playing
a game with common priors, when in fact priors are heterogeneous. Naivete is the key
assumption that differentiates “taste projection” from a model with rational taste-dependent
distributional beliefs. Rational agents know precisely the map between an agent’s type and
her belief about the distribution.

extent of the bias: θ’s perception of θ̃’s utility is a linear combination of θ̃’s true utility and θ’s own utility—θ
projects her own valuation onto θ̃’s. It follows that a θ-type’s perception of the measure of individuals who
prefer A to B in terms of location is the measure of θ̃ such that

θ̃ > − α

1− αθ. (1.3)

The true measure is that of the set of types that satisfy Equation 1.3 when the right-hand side of is set
to zero. But when θ > 0—the agent has right-leaning preferences—the right-hand side of Equation 1.3 is
negative. She thus overestimates the share of players that prefer the right-positioned option. Similarly, when
θ < 0, the left-type θ underestimates the fraction that prefer right-located options. Hence, projection of
utility leads to the same qualitative result that people overestimate the share of payers that prefer their
desired action that I directly assume here.
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Further, naivete departs from much of the literature on non-common priors, which as-
sumes individuals have rational expectations about the distribution of heterogeneous beliefs
across players.32 Here, however, players assume the distribution of beliefs (about G) is
degenerate on their own perception. As such, within the particular application of observa-
tional learning, this paper provides a first step in analyzing the implications of neglecting
heterogeneity in beliefs.33

1.2.3 Naive Quasi-Bayesian Best Response

This subsection completes the model by specifying a solution concept, called Naive Quasi-
Bayesian Best Response, formalizing how agents draw inference from past play. It incorpo-
rates naivete into the standard notion of Bayesian Nash equilibrium.

Aside from naive taste projection—which implies incorrect first- and second-order beliefs
about G—each player nt upholds basic epistemic conditions governing play in a Bayesian
Nash equilibrium of her perceived game, Γ(Ĝ(· | θnt)). First, each player is “quasi-Bayes
rational” in that she maximizes expected payoffs given beliefs, which are formed by engaging
in putatively correct Bayesian updating using her (false) model of the world.34 Second, each
assumes common knowledge of Bayes rationality within her perceived game. Thus, players
correctly predict others’ strategies—the map σ : Θ × S → X from one’s preference θ and
private signal to an action.35 But since they fail to account for others’ discrepant models,
they systematically mispredict other types’ beliefs.

To summarize, each player nt best responds given beliefs she draws from Bayesian
inference—using her misspecified model Γ(Ĝ(· | θnt))—from the history of play ht assuming:
(correctly) that all predecessors follow the strategy σ, and (incorrectly) that all predecessors
draw the same inference as herself from any all histories hτ , τ < t.36 The model of non-

32For instance, see Harrison and Kreps (1979) or Morris (1996).
33Little work has been done in this area, however there are many domains where this form of neglect

seems plausible and worthy of further exploration. Nisbett and Ross (1980), when discussing how people fail
to allow for uncertainties in others’ perceptions, make the following point emphasizing the need to address
naivete: “The real source of difficulty does not lie in the fact that human beings subjectively define the
situations they face, nor even in the fact that they do so in variable and unpredictable ways. Rather, the
problem lies in their failure to recognize and make adequate inferential allowance for this variability and
unpredictability.”

34This modeling technique—assuming people are “quasi-Bayesian”—is often used in a growing literature
in economics studying the implications of systematic biases on inference. While pioneered by Barberis,
Shleifer and Vishny (1998) to study biased inference in asset markets, it has since been adopted, to name
a few, by Rabin (2002), Rabin and Vayanos (2010) to study inference by believers in the “law of small
numbers”, Madarasz (2012) to study information projection, and Benjamin, Rabin and Raymond (2012) to
study inference by non-believers in the law of large numbers.

35Here, the strategy σ is in fact the rational Bayesian-equilibrium strategy.
36Note that the social-learning game studied in this paper, which is dominance solvable, requires only

a weak solution concept of best response rather than equilibrium. For this reason, I make no additional
assumptions relating to the equilibrium condition of consistent beliefs about strategies—whether players
believe others hold correct beliefs about their strategy.



CHAPTER 1. TASTE PROJECTION IN A MODEL OF SOCIAL LEARNING 16

rational play simply comprises a particular theory of how players form the incorrect beliefs
against which they optimize.

1.2.4 Basic Implications of Taste Projection and Discussion

A central implication of taste projection is that players who differ in their perceptions of G
draw different inference from the same history of play. Let πθt be the inference drawn by a
θ-type from ht. It’s clear that for any t, πθt = πθ

′
t if and only if Ĝ(· | θ) = Ĝ(· | θ′). πθt

is θ’s perception of the public belief at time t, but contrary to its name it’s not commonly
shared by all players observing ht. However, naivete implies each agent projects her mode
of inference, and hence thinks her “public” belief is commonly shared. Simply put, agents
unknowingly draw distinct beliefs from behavior.

There are two errors a naive projector commits when arriving at πθt : she commits the
“individual” error of updating using the wrong type distribution, and the “social” error of
neglecting how others draw inference. Consider inference after observing action X1 = A in
t = 1. With a common prior π1, an observer knows player 1’s initial belief. However, so long
as Ĝ(· | θ) 6= G, the inference drawn by a θ-type, πθ2, is incorrect. In t = 2, the observer
additionally commits the “social” error—she assumes Player 2 also thinks πθ2 after observing
X1 = A. But this is only true if Player 2 happens to have to taste θ. The observer has
the wrong theory of the player 2’s public belief, and thus mislearns about Player 2’s private
infromation.37

Importantly, aside from Section 1.6, I assume players don’t revise their model of Ĝ and
maintain their belief that others are rational. I do so for two reasons. First, it seems reason-
able that if one is unaware of her own mistake, then she likely fails to conclude that others
make this same mistake. Agents likely fail to realize over time that others use misspecified
models, let alone decipher these models. Thus a fixed perception is a reasonable starting
point for analyzing this error. Second, it is standard within models of non-common priors to
assume players have rational expectations about the distribution of beliefs. A primary goal
of this paper is to understand the consequences when this assumption is relaxed—that is,
when agents neglect heterogeneity in perceptions.

1.3 Learning about Horizontal Differentiation:
Preliminaries

In this section and the next, I analyze learning about the horizontal locations of A and B
when the quality difference is known. The unknown payoff state is simply ω = ζ ∈ {L,R}:

37Nisbett and Ross (1980) fittingly point out: “One of the most important consequences of this state
of affairs is that when people make incorrect inferences about situational details, or fail to recognize that
the same situation can be construed in different ways by different people, they are likely to draw erroneous
conclusions about individuals whose behavior they learn about or observe.” Here, neglecting the fact that
others hold different perceptions of the taste distribution leads to erroneous conclusions about others’ beliefs.
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the only uncertainty is whether A is located to the left (ω = L) or right (ω = R) of B.
For example, suppose the transaction costs, q, of two investments are known, but their
risk is not: assets to the left are riskier—but have higher expected return—than those to
the right. Agents with high values of θ prefer the safer asset. Or, consider learning about
the characteristics of two jobs beyond observable starting wages (q). Jobs to the “left”
offer greater flexibility, and those to the right offer greater opportunity for promotions and
bonuses; θ represents an agents’ taste for flexibility.38

The remainder of this section derives players’ choice and inference rules. Implications of
projection on individual inference are discussed in Subsection 1.3.2, while the implications
on long-run learning are the focus of Section 1.4.

Private Information. Before acting, each player nt observes her preference type θnt, and a
private signal snt about ω from which she computes via Bayes’ rule her private belief pnt that
ω = R. Following Smith and Sørensen (2000), I work directly with the distribution of private
beliefs. Conditional on ω, private beliefs are i.i.d. across individuals with c.d.f. Fω; FL and
FR are differentiable, and mutually absolutely continuous with common support supp(F ), so
that no signal perfectly reveals the state of the world. Additionally, the distributions satisfy
the following two assumptions:

Assumption 5. (Monotone Likelihood Ratio Property (MLRP).) Let fω denote the density
of private beliefs in state ω. fR(p)/fL(p) is increasing in p.

Assumption 6. (Unbounded Private Beliefs.) For each ω, co(supp(Fω)) = [0, 1].

Assumption 5 simply implies private beliefs in favor of ω are relatively more likely whenever
ω is true. MLRP implies private-belief distributions exhibit first-order stochastic dominance:
for all p ∈ (0, 1), FR(p) ≤ FL(p). Assumption 6 implies private beliefs are unbounded: from
any non-degenerate prior π and for any r̄ ∈ (0, 1), a player moves with positive probability
to beliefs at most r̄ and with positive probability to beliefs at least r̄. Hence, players
receive signals ranging from nearly fully revealing, to uninformative, to (rarely) nearly fully
misleading. The “unbounded” signal structure provides a sharp rational benchmark, as it
allows rational agents to learn ω.39

38Holding the average quality of the two jobs fixed, the assumption of negatively-correlated characteristics
seems reasonable—the same job will not specialize in both flexible work hours and pecuniary perks. The
risk-aversion example also fits this negatively-correlated characteristic paradigm, as the market naturally
generates higher expected return on riskier assets. Additional applications include learning about new
technologies with known prices but unknown productivities that depend on θ—for example, hybrid seeds
with output that depends on soil or other input characteristics, θ. Farmers prefer the seed type that’s most
productive on their plot.

39An understanding has emerged that unbounded private beliefs lead to the successful aggregation of
information in a variety of models and contexts. Aside from Smith and Sørensen (2000), Acemoglu, Dahleh,
Lobel, and Ozdaglar (2011) and Smith and Sørensen (2008), respectively, show that unbounded beliefs lead
to learning in a large class of networks and sampling regimes. Mossel, Sly and Tamuz (2012) show that
unbounded beliefs lead to learning in a setting with repeated interactions.
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Public Information and Individual Decision-Making. Before acting, each Player nt ob-
serves the history ht, and computes public belief πt, the probability of ω = R conditional on
ht.40 From private belief p and public belief π, a player forms posterior r that ω = R via
Bayes’ rule: r(p, π) = pπ/[pπ+(1−p)(1−π)]. Players maximize expected utility given their
beliefs: type θ takes action A if and only if

r
[
qA−k(1−θ)2

]
+(1−r)

[
qA−k(−1−θ)2

]
≥ r
[
qB−k(−1−θ)2

]
+(1−r)

[
qB−k(1−θ)2

]
.41 (1.4)

Rearranging yields the following decision rule:

Lemma 1. Player nt with private belief p and public belief π has the following decision rule:

1. If θnt < 0, then Xnt = A⇔ r(p, π) ≤ r̄(θ)

2. If θnt > 0, then Xnt = A⇔ r(p, π) ≥ r̄(θ)

where
r̄(θ) :=

1

2
+

∆q

2k∆d(θ)
, and ∆d(θ) := (1− θ)2 − (−1− θ)2 = −4θ. (1.5)

∆d(θ) is the difference between a θ type’s (squared) distance from 1 and −1. The decision
rule is intuitive. If ∆q < 0, then a “right” type (θ > 0) has a cutoff r̄(θ) > 1

2
: she must be

quite certain that A is to the right of B in order to forgo the quality advantage of B and
choose A. In terms of the investment example, when B has enticingly low transaction costs,
a risk-averse investor must be fairly confident that A is safer if she’s to choose A over B.

Observers learn about Player nt’s private information pnt from her action, Xnt. Observers
invert her strategy (Lemma 1) to form cutoffs on pnt: conditional on θnt, Xnt reveals if her
private signal was above or below this cutoff.42 I now derive these private-belief cutoffs
critical for drawing inference.

First, there may be some players who’s action reveals no private information: when
∆q > 0, for values of θ near 0—agents with weak preferences over location—the posterior-
belief cutoff r̄(θ) /∈ (0, 1). That is, the quality advantage of A outweighs the benefit of
choosing B no matter their belief about ω, and hence they always choose A. I call such
players passive, while a players who’s beliefs influence her choice is active. The following
lemma identifies the set of passive players.

Lemma 2. Suppose ∆q ≥ 0.
40To be clear, the public belief, π, is drawn solely from the history of play while the private belief, p, is

derived solely from one’s private signal.
41The implicit assumption that A is chosen when indifferent is without loss of generality. Given continuous

signals, indifference is a zero-probability event.
42While the solution concept implies that a naive projector correctly knows others’ strategies, she mispre-

dicts their private-belief thresholds—she neglects that other types have divergent perceptions of the public
belief. This error, which I highlight in the next subsection, is one of the two ways in which a naive projector
mislearns from others’ actions.
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1. The set of active left types is Θl = {θ ∈ Θ | kθ < −∆q/4k}.

2. The set of active right types is Θr = {θ ∈ Θ | θ > ∆q/4k}.

3. The set of passive types is Θp = {θ ∈ Θ | −∆q/4k ≤ θ ≤ ∆q/4k}.

So that learning takes place, I assume there exist some active right and left types.

Assumption 7. There exists a positive measure of both active left types and active right
types:

∑
θ∈Θl g(θ) > 0, and

∑
θ∈Θr g(θ) > 0.

I present the private-belief cutoffs in terms of the public likelihood ratio, ` := (1− π)/π,
which is the inverse of the relative likelihood of state R; the lower is `, the more likely is
ω = R. Since a player’s posterior as a function of ` is r(p, `) = p/[p + (1 − p)`], it follows
from Lemma 1 that agents’ decisions reflect the following cutoff rule on private beliefs:

Lemma 3. Suppose ∆q ≥ 0. Player nt with private belief p and public likelihood ratio ` has
the following decision rule:

1. If θnt ∈ Θl, then Xnt = A⇔ p ≤ p(`, θ)

2. If θnt ∈ Θr, then Xnt = A⇔ p ≤ p(`, θ)

3. If θnt ∈ Θp, then Xnt = A for all p ∈ (0, 1)

where
p(`, θ) :=

`

v(θ) + `
, and v(θ) :=

1− r̄(θ)
r̄(θ)

=
4kθ + ∆q

4kθ −∆q

. (1.6)

The private-belief threshold p(`, θ) is the private belief that renders an active θ type
indifferent between A and B given public likelihood ratio `. Intuitively, a “left” type must
have a sufficiently strong private belief that A is located to the left in order to choose A—her
p must be sufficiently low—while a “right” type must have a sufficiently strong private belief
that A is located to the right—her p must be sufficiently high. v(θ) is the likelihood ratio at
which a θ type is indifferent. v(θ) is decreasing in θ on both Θl and Θr: θl := max Θl must
be most convinced of ω = R in order to be indifferent, while θr := min Θr must be most
convinced of ω = L to be indifferent.

The private-belief thresholds are very simple when each option has the same quality,
∆q = 0. First, from Equation 1.6, p(`, θ) = `/(1 + `) = 1 − π is independent of θ. Each
player simply chooses the action that is most likely closest to her. Second, there are no
passive players: Θl = {θ ∈ Θ | θ < 0} and Θr = {θ ∈ Θ | θ > 0}. These two implications
greatly simplify the inference problem analyzed in the following subsection, and since fixing
∆q = 0 has little impact qualitatively, I assume ∆q = 0 for the remainder of Sections 1.3
and 1.4, unless I specifically mention otherwise. There is, however, one important loss of
generality that comes with this assumption, which I address in Section 1.3.1.
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Two-Type Example. At several points in the paper, I consider the model with only two
types: Θ = {−1, 1}. In such cases, I synonymously use θ = l, r (“left” and “right”) in place
of θ = −1, 1. λ = Pr(θnt = r) > 1

2
is the fraction of right types. λ̂l and λ̂r are left and right

types perceptions of λ. Players are active so long as 4k > ∆q. Table 1.1 shows the payoff
matrix.

type-l
ω/X A B
L qA qB − 4k
R qA − 4k qB

type-r
ω/X A B
L qA − 2k qB

R qA qB − 2k

Table 1.1: State-dependent payoffs for left (θ = l) and right (θ = r) types.

1.3.1 Belief Dynamics

This subsection describes the stochastic processes of public likelihood ratios 〈`θt 〉. From
Section 1.2.4, types with distinct perceptions of G draw different inference from history ht;
consequently, their public beliefs follow distinct processes. Let `t ∈ R|Θ|+ be the vector of each
type’s public likelihood ratio in t, ordered from least to greatest θ. Let `θt denote a generic
element of `t. When there are just two distinct perceptions, as is so with choice-dependent
projection (Definition 2), I write `t = (`lt, `

r
t ), where `t; := `t(θ < 0) is a left type’s inference

from ht, and, `rt := `t(θ > 0) is a right type’s.
Each process 〈`θt 〉 is described by the initial value `θ1 = 1 (recall players beginning with

common prior π1 = 1/2) and Bayesian transition equation

`θt+1 =
P̂rθ(at | `θt , L)

P̂rθ(at | `θt , R)
`t, (1.7)

where P̂rθ(at | `θt , ω) is the probability of observing at people choose A in state ω according
to type-θ’s incorrect model, in which all players in t share public belief `θt , and tastes have
distribution Ĝ(· | θ). For notational purposes, let ψθ(a | `, ω) := P̂rθ(a | `, ω). Since behavior
of each player in t is independent conditional on ht,

ψθ(a | `, ω) =

(
N

a

)
αθ(`, ω)a

[
1− αθ(`, ω)

]N−a
, (1.8)

where αθ(`, ω) := P̂rθ(Xnt = A | `, ω) is a θ-type’s perceived probability that a random
player chooses A given ` and ω; that is, conditional on ht, the perceived distribution of
actions within a period is Binomial(N ,αθ(`, ω)).

Note that

αθ(`, ω) =
∑

θ̃∈Θl

Fω
(
p(`, θ̃)

)
ĝ(θ̃ | θ) +

∑

θ̃∈Θr

[
1− Fω

(
p(`, θ̃)

)]
ĝ(θ̃ | θ) +

∑

θ̃∈Θp

ĝ(θ̃ | θ). (1.9)
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From left to right, the terms in Equation 1.9 are the probabilities that Player nt: (1) is an
active left type and receives private information low enough to provoke action A, p < p(`, θ);
(2) is an active right type and receives private information high enough to provoke action A,
p > p(`, θ); and (3) is passive, and necessarily chooses A. Equation 1.9 simplifies greatly when
∆q = 0, so that belief thresholds are independent of θ and all types are active. Equation 1.9
simplifies to

αθ(`, ω) =


∑

θ̃<0

ĝ(θ̃ | θ)


Fω

(
p(`)

)
+


∑

θ̃>0

ĝ(θ̃ | θ)


[1− Fω

(
p(`)

)]

=
[
1− λ̂(θ)

]
Fω
(
p(`)

)
+ λ̂(θ)

[
1− Fω

(
p(`)

)]
. (1.10)

The first (second) term of Equation 1.10 is just the perceived measure of left (right) types
times the perceived probability that a left (right) type takes A. In contrast, the true prob-
ability that of Xnt = A in state ω, denoted α(`, ω), depends on the current beliefs of all
types, `:

α(`, ω) =
∑

θ̃∈Θl

g(θ̃)Fω
(
p(`θ̃t )

)
+
∑

θ̃∈Θr

g(θ̃)
[
1− Fω

(
p(`θ̃t )

)]
. (1.11)

Comparing Equations 1.10 and 1.11 makes clear the two errors a naive taste-projector com-
mits when learning from actions: she (a) mispredicts the frequency of types, ĝ, and (b)
wrongly thinks all types share her public belief `, so she miscalculates other types’ cutoffs
p(`), and thus mispredicts the probability that other types take A.

Piecing these probabilities together, the transition function for type-θ’s beliefs given
observation a and current belief ` (Equation 1.7) is simply

ϕθ(a, `) = ψθ(a | `, L)/ψθ(a | `, R)` = Ψθ(a, `)`. (1.12)

where the ratio Ψθ is the likelihood of observing a in L relative to R given θ’s model of the
world. Next period’s public likelihood ratio is a multiplicative factor Ψθ of today’s public
likelihood ratio.

Confounded Learning. The assumption that ∆q = 0, which I make for the remainder of
this section and 1.4, comes at some loss of generality. Smith and Sørensen (2000) show that
rational observational learning with heterogeneous preferences may fail even when private
beliefs are unbounded. Specifically, there may exist an interior steady-state belief ˆ̀, which
they call a “confounding belief”, such that ϕ(a, `) = ` for any a ∈ {0, ..., N}; each possible
observation is equally likely in ω = L and ω = R. If beliefs converge to this interior point,
which happens with positive probability whenever ˆ̀ exists, then agents never learn. In this
environment, a confounding belief exists only if |∆q| is sufficiently large. Hence, assuming
∆q = 0 rules out this possibility. However, ∆q = 0 is not a knife-edge case; the non-existence
of confounding beliefs is robust.

Lemma 4. Fixing all components of the game Γ aside from ∆q, there is a robust (open,
non-empty) set of quality differences ∆q for which there exist no confounding beliefs.
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As a function of the perceived distributions of tastes, one can find a ∆̃q > 0 such that for all
∆q ∈ (−∆̃q, ∆̃q), no confounding belief exists.

Appendix 1.B discusses confounded learning in more detail, and derives bounds on ∆q

such that no confounding belief exists. Further, it explores how the basic results derived
under the assumption of ∆q = 0 change when a confounding belief exists. If so, the logic
under ∆q = 0 still holds, and results are identical aside from the possibility of convergence
to to confounding belief. Consequently, results indicating the possibility, or impossibility, of
society reaching some confident belief are unchanged by the presence of a confounding belief.

1.3.2 Effect of Taste Projection on Individual Inference:
Comparative Statics on λ̂(θ)

This subsection analyzes comparative statics of λ̂(θ) on the belief-transition equation `t+1 =
ϕθ(a, `t), demonstrating how taste projection distorts inference. The results established here
play a key role in understanding the long-run dynamics studied in Section 1.4.

First, one’s current belief and perception of tastes, λ̂(θ), dictates the interpretation of an
observation at ∈ {0, ..., N}; at is evidence in favor of ω = R whenever `θt+1 = ϕθ(at, `

θ
t ) < `θt .

Lemma 5. For each θ ∈ Θ and perceived public likelihood ratio `θt ∈ R+, there exists a value
κ
(
`θt , θ

)
∈ (0, 1) such that observation at is interpreted as evidence in favor of ω = R if and

only if

at
N
> κ

(
`θt , θ

)
and λ̂(θ) >

1

2
or

at
N
< κ

(
`θt , θ

)
and λ̂(θ) <

1

2
,

(1.13)

where
κ(`, θ) =

1

1 + log
(
αθ(`,L)
αθ(`,R)

)/
log
(

1−αθ(`,R)
1−αθ(`,L)

) . (1.14)

An investor who thinks most are risk averse must observe sufficiently many choose A in order
to interpret at as evidence that A is safer than B, but one who thinks most are risk seeking
must see a sufficiently few choose A. Figure 1.1 depicts κ(π, θ) for 4 values of λ̂(θ).43

The limit values of κ(π, θ)—values near π = 0 and π = 1—are critical for determining
whether a confident belief is “stable”: if players grows confident, what they subsequently
observe maintains this confidence. For instance, when λ̂(θ) > 1

2
, limπθ→1 κ(π, θ) = λ̂(θ),

so if a θ-type grows nearly confident that ω = R (π ≈ 1), then she must observe at least
λ̂(θ) A’s (in frequency) for beliefs to continue growing toward 1. But if fraction λ < λ̂(θ)
is observed—the true fraction that prefer A in ω = R—then πθ actually moves downward

43This example of κ(π, θ) assumes private beliefs have conditional pdfs fR(p) = 2p and fL(p) = 2(1− p).
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Figure 1.1: Examples of κ(π, θ). Each curve represents the minimal fraction of A’s (y-axis)
a θ-type must observe in period t in order for at to be interpreted as evidence for ω = R
given period-t belief π (x-axis). The curves differ only in the value of λ̂(θ).

from 1; observing exactly what a rational agent expects to see in ω = R reduces the biased
agent’s confidence in ω = R. This fact is critical for understanding when some constellation
of beliefs across types is stable, and is developed further in Section 1.4.

Figure 1.2 demonstrates this effect on beliefs. Suppose N = 100 and at = 75 is observed.
The various curves show the effect of at on beliefs as a function of the current public belief
(x-axis) for various values of λ̂(θ). The y-axis is the (negative) change in the log-likelihood
ratio: log `θt+1− log `θt . If this value is positive, the agent perceives at as evidence for ω = R;
if it is negative, then at supports ω = L.

Another key feature of Lemma 5, evident from Figure 1.2, is what I call the perceived-
majority effect : two agents may draw precisely opposite interpretations from the same ob-
served behavior.

Proposition 1. (Perceived-Majority Effect.) For any `θt ∈ R+, if at/N > λ̂(θ), then `θt+1 <

`θt if and only if λ̂(θ) > 1
2
. Similarly, if at/N < 1 − λ̂(θ), then `θt+1 > `θt if and only if

λ̂(θ) > 1
2
.

Corollary 1. (Single-File Majority Effect.) Suppose N = 1. If Xt = A then `θt+1 < `θt if
and only if λ̂(θ) > 1

2
. Similarly, if Xt = B then `θt+1 > `θt if and only if λ̂(θ) > 1

2
.

Proposition 1 states that when a sufficiently large proportion of agents choose X in t, people
who disagree on the majority preference will disagree on the interpretation of this evidence.
If 75% of investors buy A in period t, then one who thinks 60% are risk averse concludes
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Figure 1.2: Negative change the in public log-likelihood ratio, − log Ψθ(π), as a function of
the current belief, π, after observing action at/N = .75 for various values of λ̂(θ). A θ-type
interprets at as evidence for ω = R if and only if − log Ψθ(π) > 0.

A is likely safe, but another who thinks 40% are risk averse thinks A is likely risky. The
corollary, which assumes agents act in single file (N = 1), is even more straightforward: an
individual always interprets A as evidence for ω = R if and only if she believes that the
majority of players are right types. This result has very different implications depending
on whether people suffer strong or weak projection (Definition 3). If it’s weak—all agree
on the majority taste—then all always agree on the interpretation of an A choice. But, if
it’s strong, then left and right types always disagree: two individuals can observe the same
evidence but disparately conclude that it supports opposite hypotheses.

The preceding result determines how λ̂(θ) influences the direction in which beliefs move.
The next result, which I call the variance effect, addresses the magnitude of changes in
beliefs.

Proposition 2. (Variance Effect.) Suppose N = 1. For any `θt ∈ R+ and Xt ∈ {A,B},
|`θt+1 − `θt | strictly increasing in λ̂(θ) on

[
1
2
, 1
]
and strictly decreasing in λ̂(θ) on

[
0, 1

2

]

The perceived variance in whether a player is a right or left type is λ̂(θ)
[
1− λ̂(θ)

]
, which is

maximized at λ̂(θ) = 1
2
and decreasing as λ̂(θ) moves away from 1

2
in either direction. Hence,

Proposition 2 implies that as one’s perceived variance in types decreases, her beliefs change
by a greater amount after any observation. λ̂(θ) dictates the (perceived) informativeness of
actions.As perceived variance decreases, a player becomes more confident about the tastes of
those whom she observes—observed choices are more precise signals of the decision maker’s
private information. If she overestimates the likelihood that predecessors are right types,
then observing A, say, is interpreted as overly strong evidence that A is optimal for right
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types. This result has important implications in the case of weak projection. Fixing an
initial belief, the right-type belief changes by a greater amount than the rational belief after
any action—beliefs are volatile, and over-responsive. The left-type belief, however, changes
by a smaller amount than is rational—they are relatively conservative, and under-responsive.
In terms of an example, a very risk-averse investor (a right type) reacts too strongly to a
predecessor’s choice, as she’s too confident that it reflects her own best investment strategy.
But a risk-neutral investor (a left type), is too skeptical of the evidence—if she thinks her
processor was roughly equally likely risk averse or risk neutral, then his choice tells her
relatively little about her own optimal strategy.

Figure 1.3 demonstrates both the “single-file” majority and variance effects. The plot
shows tomorrow’s belief, πθt+1, supposing A is observed today, as a function of today’s belief,
πθt . The various curves assume different values of λ̂(θ). Comparing λ̂(θ) = 0.25 to the other
cases highlights the perceived-majority effect: unlike when λ̂(θ) > 1/2, A causes tomorrow’s
belief to move below today’s. Comparing the curves with λ̂(θ) > 1/2 demonstrates the
variance effect: the magnitude of changes in beliefs increases with λ̂(θ).
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Figure 1.3: Next-period’s public belief πθt+1 as a function of the current public belief, πθt ,
assuming choice A is observed in t. The 45◦-line is plotted for reference.

1.4 Learning About Horizontal Differentiation:
Long-Run Beliefs

Building on the setup of Section 1.3 where agents learn about horizontal locations, this sec-
tion investigates the effect of taste projection on long-run beliefs and behavior. I show that
when the bias is strong, taste projection always leads to inefficient herds and fully-confident
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beliefs. But when it is weak, it leads to cyclical behavior and persistently fluctuating be-
liefs. Subsection 1.4.1 introduces the possible learning outcomes under projection, and 1.4.2
derives conditions on players’ perceptions of λ that determine which equilibrium beliefs are
stochastically stable: if beliefs reach the neighborhood of a fixed point, does the (unexpected)
resulting behavior confirm or contradict these beliefs? This analysis, conducted directly on
the primitive λ̂—the vector of each types’ perception, ordered from least to greatest θ—
assumes a general model of perceptions, where each of an arbitrary finite number of types
may hold a distinct perception λ̂(θ); I only assume λ̂(θ) is increasing in θ. To build intuition
for the particular way in which learning fails as a function of λ̂, and to explore comparative
statics, Subsections 1.4.3 and 1.4.4 assume a simple two-type setting (“choice-dependent”
projection), where left and right types have distinct perceptions, λ̂ = (λ̂l, λ̂r), and beliefs,
`t = (`lt, `

r
t ). Subsection 1.4.5 discusses how these “two-type” results generalize to cases with

many perceptions.

1.4.1 Potential Learning Outcomes

I first introduce terminology for the various learning outcomes that can occur. Learning
among θ-types is (1) complete if πθt converge almost surely to the truth; (2) incorrect if πθt
converges to certainty in a false state; (3) incomplete if πθt does not converge to certainty in
any state. Learning fails for type-θ if it is incorrect or incomplete. Finally, I say universal
learning is complete if learning is complete for all θ ∈ Θ. Otherwise, universal learning fails.
Without loss of generality, I assume ω = R—action A is located on the right—so complete
learning for type-θ entails Pr(limt→∞ π

θ
t = 1) = 1, or, in terms of the public likelihood ratio,

`θt
a.s.−→ 0.44

As a benchmark, given the assumption of no quality differences, if people are fully-rational
(λ̂(θ) = λ for all θ ∈ Θ), then they necessarily come to learn the true state in the long run.

Proposition 3. If λ̂(θ) = λ for all θ ∈ Θ, then learning is complete: πθt
a.s.−→ 1 for all θ ∈ Θ.

This result—first derived in Smith and Sørensen (2000)—follows from the martingale charac-
ter of rational public beliefs. Provided λ̂(θ) = λ for each θ, `θt is identical across θ in all t, and
〈`θt 〉 is a martingale conditional on state ω = R. It follows from the Martingale Convergence
Theorem that 〈`θt 〉 converges almost surely to some random variable `θ∞ := limt→∞ `

θ
t .

Yet with projection, public beliefs do not form a martingale:

Lemma 6. The likelihood-ratio processes 〈`θt 〉 is a martingale conditional on state R if and
only if λ̂(θ) = λ for all θ ∈ Θ.

As long as λ̂(θ) 6= λ for some θ ∈ Θ, all players mispredict the distribution of actions
in t. The perceived probability of outcome at in ω = R according to any θ’s model of
the world, ψθ

(
at | `θt , R

)
, is generically not equal to the true probability of observing at in

44While much of the analysis is in terms of the public likelihood ratio, for sake of intuition, I present some
results in terms of the sequence of beliefs, πθt .
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ω = R, which depends on all types’ beliefs, `t. Why? First, if λ̂(θ) 6= λ, then a θ-type
directly mispredicts the distribution of actions in t via her misprediction of the distribution
of preferences. Second, even if λ̂(θ) = λ but λ̂(θ′) 6= λ, then a θ-type mispredicts the beliefs
of θ′-types.

Lemma 6 implies we cannot rely on standard martingale methods to study the limit
properties of the joint-belief process 〈`t〉. To proceed, I first identify the set L ⊂ R|Θ|+ of
potential limit points such that if biased agents converges to stationary beliefs, they must
lie in L . I call L the set of “candidate equilibria”.45 Second, I evaluate whether these
candidate equilibria are stochastically stable.

I now show that L is the set of confident beliefs : ` such that for each θ, `θ ∈ {0,∞}.
Conditional on state ω = R, the process of actions and beliefs 〈at, `t〉 is a discrete-time
Markov process on {0, ..., N} × R|Θ|+ with transitions along the θ-dimension given by

`θt+1 = ϕθ
(
a, `θt

)
with probability ψ(a, `t) (a = 0, ..., N), (1.15)

where ϕθ(a, `) is the belief-transition function introduced in Section 1.3.1 (Equation 1.12) and
ψ(a, `) is the true probability of observing a at `. Granted stationary limits exist, Theorems
B.1 and B.2 of Smith and Sørensen (2000) determine `θ∞ for a such a Markovian belief
process with state-dependent transitions. Since private beliefs are continuously distributed
and the transition functions ϕθ(a, ·) are continuous for all a, it follows from their result
that any ˆ̀θ ∈ supp

(
`θ∞
)
is a fixed point of the Markov process: for each component ˆ̀θ of

ˆ̀∈ supp(`∞) and all a ∈ {0, ..., N},

ˆ̀θ = ϕθ
(
a, ˆ̀θ

)
. (1.16)

The following lemma shows that the only fixed points of process 1.15—the only possible
stationary beliefs—are confident beliefs. This follows from the assumption of unbounded
private beliefs—learning never stops at uncertain beliefs.46

Lemma 7. Suppose that there exists a real, nonnegative random variable `θ∞ such that `θt
a.s.−→

`θ∞. Then supp
(
`θ∞
)
⊆ {0,∞}.

Lemma 7 implies that L = {0,∞}|Θ|. For sake of presenting key results in terms of beliefs
π ∈ [0, 1], rather than likelihood ratios ` ∈ R+, let Π be the set of candidate equilibria in
belief space. From Lemma 7, any long-run stationary belief lies in Π := {0, 1}|Θ|.

We have now identified our candidate long-run stationary equilibria: Π. But to which of
these equilibria will society converge? The next subsection (1.4.2) shows that agents percep-
tions of population preferences, λ̂, dictate which, if any, of these beliefs are asymptotically
stable. The subsections to follow apply the stability criterion developed in 1.4.2 to two
regimes of projection—strong and weak.

45The term equilibrium, in this context, refers to a profile of beliefs ` which is a fixed point of the beliefs
process.

46Recall that ∆q = 0 implies no confounding outcomes exist.
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1.4.2 Stability of Confident Beliefs

This section derives, as a function of mispredictions λ̂, a condition specifying when a fixed
point of the belief process is locally stable: if the process enters a neighborhood of the
fixed point, then with positive probability it remains in that neighborhood forever after.
Section 1.4.2.1 derives sufficient conditions on the Markov process (1.15) for a fixed point
to be either stable or unstable. From these abstract conditions, Section 1.4.2.2 derives a
stability criterion based directly on the primitives of the model: each agent’s perception of
others’ tastes, λ̂(θ).

1.4.2.1 Local Stability of the Joint-Belief Process

Let ˆ̀∈ L denote a fixed point of process 1.15 with generic element ˆ̀θ. Formally, stability
is defined as follows.

Definition 4. Fixed point ˆ̀ is stable if for any open ball about ˆ̀, N (ˆ̀), there is a positive
probability that `t ∈ N (ˆ̀) for all t ∈ N provided `1 ∈ N (ˆ̀).

The conditions for stability follow from the logic of stability theory for linear systems. Al-
though the belief process is nonlinear, near the fixed point we can approximate the process by
its first-order Taylor series expansion, and stability is assessed locally by applying standard
linear-system criteria to this “linearized” approximation.

More formally, near fixed point ˆ̀, each type’s belief process 〈`θt 〉 is well approximated
by the following stochastic difference equation: starting at (at, `

θ
t − ˆ̀θ), the continuation is(

at+1,
∂
∂`
ϕθ(at, ˆ̀)(`θt − ˆ̀θ)

)
with chance ψ(at, ˆ̀). That is, the continuation is well approxi-

mated by the first-order Taylor expansion of ϕθ
(
at, `

θ
t

)
about fixed point ˆ̀θ. Now, for any

linear process 〈yt〉, where yt+1 = bayt with chance pa for a = 0, 1, ..., N , we can write

yt = b
I0(t)
0 × ...× bIN (t)

N y1 (1.17)

where Ia(t) counts the realization of a’s in the first t − 1 steps. Since Ia(t)/t → pa almost
surely by the Strong Law of Large Numbers, the product χ := bp00 ×...×bpNN fixes the long-run
stability of the stochastic system 〈yt〉 near 0:

lim
t→∞

yt = lim
t→∞

(bp00 × ...× bpNN )t y1 = lim
t→∞

χty1. (1.18)

Clearly from Equation 1.18, the linear process converges to the fixed point 0 if and only if
the product χ < 1. The analog of χ for the linearized belief process in the neighborhood of
ˆ̀ is

χθ(ˆ̀) :=
N∏

a=0

(
∂

∂`
ϕθ
(
a, ˆ̀θ

))ψ(a,`)

(1.19)

Accordingly, χθ(ˆ̀)—which I call the stability coefficient of type-θ’s beliefs near ˆ̀—determines
the local stability of the original nonlinear system ( 1.15) near ˆ̀.
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Lemma 8. Suppose ˆ̀∈ L . ˆ̀ is stable if χθ(ˆ̀) < 1 for all θ ∈ Θ, and unstable if for any
θ ∈ Θ, χθ(ˆ̀) > 1.

Lemma 8 and the preceding discussion is simply an extension of Smith and Sørensen’s
(2000) Theorem 4, which establishes this stability criterion for an arbitrary Markov process
as in 1.15 so long as continuation functions ϕθ(a, ·) and transition probability functions
ψ(a, ·) are C1 (once continuously differentiable). While they use this condition to show
stability of interior fixed points of the rational learning process, I use it to demonstrate both
the instability of correct beliefs and the stability of false beliefs within the biased learning
model.

1.4.2.2 Characterization of Confident Equilibria

This subsection derives from Lemma 8 a stability criterion based directly on the primitives
of the model—people’s perceptions of others’ tastes. This key proposition shows that we
can asses the stability of an equilibrium belief simply by comparing what people expect to
observe at that belief with what they actually observe.47 This requires some final pieces of
notation. Let F̂θ : X × R+ → [0, 1] be a θ-type’s perceived probability of observing action
X given `θ, and let F : X ×R|Θ|+ → [0, 1] be the true probability of observing action X given
belief profile `. Additionally, let Mθ : R+ → X denote the the expected majority action
according to θ’s model at `:

Mθ(`) = arg max
X∈X

F̂θ(X, `) (1.20)

Finally, the main stability result follows.

Proposition 4. Let ˆ̀∈ L be a fixed point of the joint-belief process.

1. ˆ̀ is a stable if for all θ ∈ Θ, F̂θ

(
M
(
ˆ̀θ
)
, ˆ̀θ
)
< F

(
M
(
ˆ̀θ
)
, ˆ̀
)
.

2. ˆ̀ is unstable if for any θ ∈ Θ, F̂θ

(
M
(
ˆ̀θ
)
, ˆ̀θ
)
> F

(
M
(
ˆ̀θ
)
, ˆ̀
)
.

Note that F (A, ˆ̀) is the long-run frequency of action A if all players beliefs are fixed
at ˆ̀. So, Proposition 4 states that, given long-run behavior F (A, ˆ̀), stationary-equilibrium
belief ˆ̀ is stable if all players observe a greater share choosing their anticipated majority

47Gagnon-Bartsch and Rabin (2014) study a similar issue of stability in a model of biased social learning
in which players draw inference from the history of play, but wrongly assume the behavior of each person
they observe reflects solely that person’s private information. In some settings, the behavior of a generation
confident in the true state can lead observers to beliefs far from the truth: confident, correct beliefs are
unstable. The “inferential naiveté” bias in Gagnon-Bartsch and Rabin (2014) was first studied in a more
standard environment by Eyster and Rabin (2010), and a similar error where people neglect the redundancy
in information when learning socially is analyzed by DeMarzo, Vayanos and Zwiebel (2003).
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action than expected; it is unstable if any player observes fewer than expected choosing her
anticipated majority action.

For example, suppose a risk-averse agent believes most seek the safer asset (λ̂r > 1
2
),

and grows nearly confident that A is safe. Then she must observe a long-run frequency of
A at least equal to λ̂r in order for her to remain confident, if not, she necessarily becomes
less confident over time. Essentially, observing a larger majority share than expected only
corroborates a player’s hypothesis about which action is optimal for the majority taste.
The concept is similar self-confirming equilibrium (e.g., Fudenberg and Levine, 1993): an
incorrect belief may be stable so long as the behavior of those best responding to that belief
reinforces the false hypothesis. Even if the investor wrongly concludes that A is safe, so long
as more people choose it than she anticipates, she’ll continue to believe it is safe.

An implication of Proposition 4 is that agents cannot all hold identical beliefs in the long
run:

Proposition 5. For any degree of taste projection, long-run agreement across types does not
arise. That is, for each π̂ ∈ {0, 1}, Pr(limt→∞ π

θ
t = π̂ ∀ θ) = 0.

An immediate, but important, corollary is that not all agents can learn the truth.

Corollary 2. For any degree of taste projection, universal learning fails.

Since rational agents necessarily learn the truth in this setting, Corollary 2 demonstrates a
discontinuity of rational learning. Adding any degree of taste projection implies some agents
necessarily fail to learn. The basic intuition is that if beliefs grow close to the truth—A
is optimal for the majority taste—society would observe roughly λ > 1

2
choose A. But

people with the majority taste—who overestimate their commonness—expect to observe a
frequency of A’s strictly greater than λ. By Proposition 4, their beliefs necessarily become
less confident over time.

The mere fact that some agents necessarily fail to learn tells us little about what agents
do come to believe, or their long-run behavior. Within a simple two-type setting, the next
two subsections use Proposition 4 to answer these questions, which crucially depends on the
extent of players’ biases. Section 1.D of the Appendix applies Proposition 4 to two additional
settings: (1) subsection 1.D.1 shows that universal learning still fails among biased agents
when an arbitrary fraction of society is fully rational, and (2) subsection 1.D.2 shows how
learning may fail when agents suffer alternative distributional errors distinct from projection,
such as a false sense of uniqueness.

1.4.3 Strong Taste Projection

In this subsection (1.4.3) and the next (1.4.4), suppose agents suffer “choice-dependent”
projection (Definition 2). Hence, there are just two distinct perceptions of λ, λ̂ = (λ̂l,λ̂r), and
two distinct belief sequences, `t = (`lt, `

θ). Subsections 1.4.3 and 1.4.4 apply Proposition 4
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respectively to the cases of strong and weak projection (Definition 3), identifying Π∗(λ̂l, λ̂r)—
the set of stable equilibrium beliefs given misperceptions λ̂l, λ̂r—and showing in each case
specifically how and why learning fails.

When each agent thinks her own taste is most common (“strong” taste projection), in-
evitably all herd on a single action X, and each grows confident that X is optimal for her
taste. Beliefs of different types grow polarized. For example, two types of investors—risk-
averse (“right types”) and risk neutral (“left types”)—each think their type is most common;
say, λr = 0.8, and λl = 0.4, when in truth, λ = 0.6. In a large market—many act per
period—agents have very different expectations about first-period purchases: risk averse ex-
pect roughly 80% buy A if A is safe, while risk seeking expect roughly 40% buy A if safe.
Assuming A is safe, they observe roughly 60%. Recall that Proposition 1 states that agents
with opposite tastes may interpret the same observation as evidence of opposite states. Here,
risk averse perceive A as evidence that A is safe, but risk seeking think it indicates A is risky.
After one round, risk averse are quite confident that A is safe, while risk seeking are quite
confident that A is risky. With these polarized beliefs, nearly all investors in the next round
best respond by buying A, which only further corroborates the investors’ divergent beliefs.
All risk seekers grow confident in the incorrect state. A numerical version of this example,
demonstrating precise values of beliefs, is provided in Section 1.4.3.1. Formally, we have the
following result.

Proposition 6. Assume a strong taste projection. Π∗(λ̂l, λ̂r) = {(0, 1), (1, 0)}: πrt converges
almost surely to either 0 or 1, each outcome arising with positive probability when N is finite.
If πrt converges to 0 (1), then πlt almost surely converges to 1 (0).

The intuition is simple, and precisely that displayed in the example above. Eventually,
some action, say A, earns a majority following, and, absent strong contrary signals, all
individuals believe it’s optimal to follow the herd; agents flock to A. As such, the action
frequency of A grows in expectation, reinforcing an observer’s belief that A suits the more
common taste—and hence her taste. Players don’t realize that those with different tastes
develop opposing beliefs, and thus don’t expect all to choose A. After such a history, left
types expect right types to choose B, and vice versa. But all best respond to this surprising
history with A. The equilibrium is essentially self confirming: behavior following from
polarized beliefs reinforces, and never contradicts, false beliefs.

When N <∞, the number of players acting per period is finite, either action may be most
popular in early periods. Hence, the action on which players inevitably herd is ex-ante ran-
dom.48 Society suffers a form of “social” confirmation bias, where initial evidence dominates
long-run beliefs. Since players don’t expect a herd, the surprisingly uniform behavior quickly

48In simulations of the model with signal densities fR(p) = 2p and fL(p) = 2(1 − p) and parameters
λ = 0.75, λ̂r = 0.9, λ̂l = 0.4 and N = 1 (agents move in single file), the majority type learns correctly
roughly 80% of the time.
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moves naive agents to confident beliefs.49 The numerical example in Section 1.4.3.1highlights
this point. While either herd is possible, the majority type learns correctly more often when
λ or N increases. Higher values of these variables increase the likelihood that the action
optimal for the majority taste, A, is most popular in early periods. As N → ∞, agents
almost surely herd on A.

The logic above explains that polarized beliefs π̂ = (0, 1), and π̂ = (1, 0) are stable,
and Proposition 4 rules out the stability of π̂ = (0, 0) and π̂ = (1, 1).50 When society is
nearly certain that ω = R, then fraction λ chooses A. To left types, who think they’re most
common, this observation suggests ω = L, reducing confidence that ω = R. Biased beliefs
do not form a martingale; instead, taste projection imparts predictable drift on beliefs. Near
the truth ˆ̀= (0, 0), both `lt and `rt are strict submartingales—they drift away from the truth.

Lemma 9. Assume strong taste projection. There exists a neighborhood about the truth
ˆ̀= (0, 0) such that:

1. `rt is a strict submartingale: E[`rt+1 | `lt, `rt ] > `rt

2. `lt is a strict submartingale: E[`lt+1 | `lt, `rt ] > `lt.

Relating back to the stability condition in Proposition 4, near ˆ̀ = (0, 0) each player sees
fewer than expected choose the action she thought would be most popular. Figure 1.4 shows
the drift in beliefs for all regions of the joint-belief space.51 Beliefs drift away from each fixed
point where people agree, π̂ = (0, 0) and π̂ = (1, 1), but drift toward confident disagreement.

Strong taste projection leads to an extremely strong form of herding. With heteroge-
neous preferences, a “herd” is typically defined (e.g., Smith and Sørensen, 2000) by players
of each type acting identically—rational “herds” do not preclude heterogeneity in behavior.
With strong projection, however, players of every type act identically, an outcome I call uni-
form herding. Heterogeneity in long-run behavior is eliminated by strong taste projection.
Agents inefficiently over adopt the popular action. Sorensen (2006) shows an interesting
example of this in the domain of health-care plans. Workers within an academic department
learn about others’ choices before making a selection, but employees differ in their preferred

49See Rabin and Schrag (1999) for a discussion of confirmatory bias in individual learning settings. Eyster
and Rabin (2010) also show how biased social learning causes society to grow too confident too quickly in
which ever state initial evidence supports.

50 This is also a direct consequence of Proposition 5. For sake of explaining the intuition for Proposition
5, I walk through the intuition for why different types fail to agree in the long run.

51As shown in Figure 1.4, there are four regions with distinct martingale properties. The label (+,−),
for example, implies that `lt is a submartingale and `rt is a supermartingale when restricted to the indicated
region of R2

+. In general, there exists a function Ll : R+ × [0, 1] → R+ such that if λ̂l > 1/2, then
E[`lt+1 | `t] > `lt ⇔ `rt > Ll(`

l
t, λ̂

l), and if λ̂l < 1/2, then E[`lt+1 | `t] > `lt ⇔ `rt < Ll(`
l
t, λ̂

l). Similarly, there
exists a function Lr : R+× [0, 1]→ R+ such that if λ̂r > 1/2, then E[`rt+1 | `t] > `rt ⇔ `lt < Lr(`

r
t , λ̂

r), and if
λ̂r < 1/2, then E[`rt+1 | `t] > `rt ⇔ `lt > Lr(`

r
t , λ̂

r). Both Ll and Lr are monotonic in `θ and intersect exactly
once. Figure 1.4 (and also Figure 1.5) show Lθ in units of probabilities rather than likelihood ratios. That
is, the figures plot Pθ(π) := Lθ

(
π/(1− π), λ̂(θ)

)
/
[
1 + Lθ

(
π/(1− π), λ̂(θ)

)]
.
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Figure 1.4: Belief “phase diagram” for Strong Taste Projection.

plan characteristics. Despite this, employees tend to herd on a particular plan.52 Many
employees later switch, reflecting the heterogeneity in the optimal match. In the extensions
considered in Sections 1.5 and 1.6 agents explain the uniform herd using additional dimen-
sions of uncertainty: respectively, it (wrongly) indicates large quality differences or very little
heterogeneity in tastes.

As a result of uniform herding, observing others can be socially harmful. That is, public
information reduces welfare, on average. Recall, a share ν ∈ {1 − λ, λ} correctly learns,
while 1 − ν chooses the inferior option. For sufficiently precise private signals, individuals
are necessarily worse off by observing others than if they simply followed private information.
Supposing 50-50 priors, an agent choosing solely on private information does so correctly with
probability ρ := 1− FR(.5). So long as

ρ >
λE
[
u(A, θ)− u(B, θ) | θ > 0

]

λE
[
u(A, θ)− u(B, θ) | θ > 0

]
+ (1− λ)E

[
u(B, θ)− u(A, θ) | θ < 0

]

=
λE
[
θ | θ > 0

]

λE
[
θ | θ > 0

]
− (1− λ)E

[
θ | θ < 0

] , (1.21)

observing others reduces social welfare. With only two types, θ ∈ {−1, 1}, condition 1.21
reduces to ρ > λ: it’s more likely that an agent has a correct signal than that a random other
shares her taste. The welfare loss is asymmetric in that within each game, it falls entirely

52Employees only observe choices of others’ within their department. Interestingly, the “herd” plan varies
across departments.
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on agents with a particular taste. For large N , the inefficiency falls entirely on those in the
minority.

Uniform herding, and hence polarized beliefs, are robust consequences of strong projection
under a variety of perturbations to the canonical environment. First, both arise when more
than two actions are available. So long as each thinks her taste is most common, net of
private information, she finds it optimal to follow whichever action is most popular. Second,
uniform herding is robust to non-Bayesian inference within the misspecified model. For
instance, if agents neglect that others infer from the history and think others’ actions rely
solely on their private information (as in Eyster and Rabin, 2010), then the logic for uniform
herding is unchanged—agents still have incentive to follow the herd. Non-Bayesian “agreeing
to disagree” also leads to this conclusion. Suppose each individual believes her taste is
most common, and that these conflicting perceptions are common knowledge. Right types
are confident they are correct to think they are most common, and think left types have
incorrect perceptions; left types think precisely the opposite. A uniform herd still emerges.
In contrast to when players are naive, players are aware that some fraction of players err by
following the herd. However, each thinks it’s the other type who plays incorrectly.

1.4.3.1 Example

Building on the investment story that starts this subsection (1.4.3), this numerical example
provides values of beliefs and the likelihood people choose the herd action, A. Specifically,
it demonstrates how quickly biased agents grow confident in opposite hypotheses. Suppose
that λ = 0.6, but λ̂l = 0.4 and λ̂r = 0.8, and 100 people act each period (N = 100). I
calculate (expected) beliefs in periods 2 and 3 as a function of the initial choices in period 1,
and compare the belief path of biased players, with that of rational players. I assume private
beliefs have conditional densities fR(p) = 2p and fL(p) = 2(1− p), and that ω = R.

Table 1.2 shows the evolution of behavior and beliefs for rational agents, and Table 1.3
does so for biased agents of each type. Each row of the table shows dynamics for a different
initial observation, a1 ∈ {45, 55, 65}.53 The second column specifies beliefs upon observing
a1, and the third column shows the likelihood that a θ-type takes A given these beliefs. The
fourth column is the expected observation in t = 2 given investors’ updated beliefs, πθ2. The
final column gives beliefs assuming the expected behavior in column 4 is observed.

Most striking is the last column of Table 1.3—the speed at which a herd emerges. Recall
from Proposition 1, if λ̂(θ) > 1

2
, then no matter her prior, a θ-type interprets a > λ̂(θ)N as

unambiguous evidence for ω = R. Likewise, if λ̂(θ) < 1
2
, a > (1 − λ̂(θ))N is unambiguous

evidence for ω = L. In this example, if a2 > 80, all the risk averse view a2 as evidence that
A is safe, and all the risk seeking view it as evidence that A is risky. What’s the likelihood of
observing such strong evidence for one state or the other? Under biased learning, if a1 = 55,
then Pr(a2 > 80) = 0.9995—99.95% of the time, investors observe evidence that necessarily

53 Given the signal structure, E[a1 | R] = 55 and E[a1 | L] = 45, so these initial conditions match exactly
what rational players expect to see for some ω. Additionally, given ω = R, the probability of such initial
values are Pr(a1 = 45) = 0.0107, Pr(a1 = 55) = 0.0800, and Pr(a1 = 65) = 0.0107.



CHAPTER 1. TASTE PROJECTION IN A MODEL OF SOCIAL LEARNING 35

Rational Inference
a1 π2 Pr(Xn2 = A | θn2 = θ) E[a2] π3

45 0.1185 Pr(Xn2 = A | θn2 = l) = 0.7770 0.4446 0.1615
Pr(Xn2 = A | θn2 = r) = 0.2230

55 0.8815 Pr(Xn2 = A | θn2 = l) = 0.0140 0.7430 0.9140
Pr(Xn2 = A | θn2 = r) = 0.9860

65 0.9976 Pr(Xn2 = A | θn2 = l) = 0 0.6000 0.9976
Pr(Xn2 = A | θn2 = r) = 1

Table 1.2: Expected evolution of rational beliefs and behavior.

Biased Inference
a1 πθ2 Pr(Xn2 = A | θn2 = θ) E[a2] πθ3

45 πl2 = 0.8815 Pr(Xn2 = A | θn2 = l) = 0.0140 0.0081 πl3 = 0.9999
πr2 = 0.0020 Pr(Xn2 = A | θn2 = r) = 0.0041 πr3 = 0.0015

55 πl2 = 0.1185 Pr(Xn2 = A | θn2 = l) = 0.7770 0.9108 πl3 = 0.0004
πr2 = 0.9980 Pr(Xn2 = A | θn2 = r) = 1 πr3 = 0.9983

65 πl2 = 0.0024 Pr(Xn2 = A | θn2 = l) = 0.9952 0.9981 πl3 = 0.0021
πr2 = 1 Pr(Xn2 = A | θn2 = r) = 1 πr3 = 1

Table 1.3: Expected evolution of biased beliefs and behavior.

pushes them toward polarized, divergent beliefs. In contrast, under rational learning, such
evidence is extremely rare: Pr(a2 > 80) = 4.5678× 10−6. Evidence that rational people find
unambiguously in favor of ω = R—a2 > 60—is still relatively rare: Pr(a2 > 60) = 0.4394.
Since behavior under rational play is quite heterogeneous, rational beliefs grow confident
more slowly.

1.4.4 Weak Taste Projection

While “strong” taste projection presents a clear herding logic, uniform herding is not a
general consequence of taste projection. Under the weak form of the bias, where people
exhibit projection but still agree on the majority preference, agents never settle on a fixed
belief, let alone herd on a single action.

Proposition 7. Assume weak taste projection. Π∗(λ̂l, λ̂r) = ∅: There exists no stable fixed
point for `lt or `rt .

Since no belief is stable, beliefs of each type almost surely fail to converge to a fixed value.
Agents never observe a pattern of behavior consistent with any hypothesis in their model of
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the world. As such, beliefs perpetually oscillate from favoring one state to the other. With
respect to her own model, an agent’s belief process forms a martingale: she anticipates that
her opinion will eventually settle down on the truth. However, whenever it begins to settle
down, she observes new, “shocking” evidence (with respect to her model) that pushes her
back toward uncertainty. The agent is continually surprised, as she sees the most popular
action repeatedly swing from A to B.

What is the logic for non-convergence? It relates to the “variance effect” discussed in
Section 1.3.2. Since right types overestimate their frequency, λ̂r > λ, they underestimate
the variance in tastes; they think actions reveal more private information than is so. In
particular, when a right type observes a “contrarian” action—one that deviates from the
most likely choice—she overweights the possibility that it’s due to a player who shares her
taste, but has strong information contrary to the current public opinion.54 Importantly,
contrarian actions are overattributed to private information rather than taste. When society
is nearly confident of the truth, ω = R, people observe a frequency of A near λ. But a right
type expects a frequency near λ̂r > λ—she observes roughly λ̂r − λ more contrarian choices
(in frequency) than anticipated. And each of these choices pushes her belief toward ω = L
more so than is rational. It follows that `rt is a submartingale when nearly certain of the
truth: beliefs drift toward less confident beliefs.

On the other hand, `lt are a supermartingale near `θ = 0—left-type beliefs move toward
` = 0 in expectation. A left type observes more As than anticipated, reinforcing her belief
in ω = R.

Lemma 10. Assume weak taste projection. There exists a neighborhood about the truth
ˆ̀= (0, 0) such that:

1. `rt is a submartingale: E[`rt+1 | `lt, `rt ] > `rt

2. `lt is a supermartingale: E[`lt+1 | `lt, `rt ] < `lt.

Despite Lemma 10, `lt must eventually move away from 0. For a contradiction, suppose
`lt remained near 0 for all t. As right-type beliefs move toward greater uncertainty, the
frequency at which right types choose B increases, and the observed frequency of B increases
in expectation. Since the only fixed points of 〈`rt 〉 are 0 and ∞, `rt diverges to infinity,
implying the frequency of B converges to 1. But a left type is aware she is in the minority;
an arbitrarily long herd on B must cause her to eventually think ω = L. This logic makes
clear that while right-type beliefs move from favoring ω = R to ω = L, the resulting behavior
causes left-type beliefs to follow. Once all agree that ω = L is most likely, the logic repeats,
sending right-type beliefs back toward uncertainty. No matter which state society agrees on,
no action ever gains as much support as the majority anticipates—the majority never grow
confident their optimal action.

54In this setting, a contrarian action is defined relative to an individual’s belief: action Xnt is contrarian
if it’s the action least likely observed according to an observer with belief `θt .
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Figure 1.5 shows the expected drift in biased beliefs for all regions of the joint-belief
space. Beliefs drift away from each fixed point. But they do so in a particular way: play
near each potential equilibrium reinforces the beliefs of some types, while deteriorating the
beliefs of others.
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Figure 1.5: Belief “phase diagram” for “weak” taste projection.

Weak projection generates persistent opinion fluctuations. Given the pattern of drift
shown in Figure 1.5) and that there exists no stable limit point, each type’s beliefs enter of
the four regions of belief space infinitely often. As a consequence, for any degree of weak
projection and each θ = l, r, 〈πθt 〉 crosses 0.5 infinitely often. Society forever alternates
between supporting ω = R—where most people choose A—and supporting ω = L—where
most choose B. Behavior resembles “fad” behavior, where spells in which A is most popular
are followed by those in which B is most popular. Although ubiquitous, such behavior is not
well explained by rational learning models in settings with strongly connected networks or
“unbounded” private information. For example, Çelen and Kariv (2004) show that if rational
players observe only immediate predecessors and receive private signals with bounded infor-
mativeness, then fads can occur. Acemoglu, Como, Fagnani and Ozdaglar (2012) suggest an
alternative model for persistent oscillations in the public opinion. They explore learning in a
network where some agents are “stubborn” and never update their beliefs. Acemoglu, Como,
Fagnani, and Ozdaglar (2012) suggest that such models help explain persistent fluctuations
in political opinion, documented by Kramer (1971) and Cohen (2003). In my model, the pub-
lic is surprised how little support a policy receives, rationalizing that if the policy was in fact
optimal for the majority, it would garner more support. But when society changes its mind,
the alternative policy also fails to earn sufficient support. People perpetually misinterpret
the “surprising” amount of heterogeneity in choice.
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As with strong projection, weak projection can harm social welfare. This occurs whenever
beliefs spend a significant proportion of time below 1

2
. To determine when this occurs, we

must consider the long-run distribution of beliefs. The distribution depends on the relative
magnitudes of the mispredictions, λ̂l and λ̂r. Near ˆ̀ = (0, 0), λ̂r dictates how quickly `rt
moves away from 0, while λ̂l dictates how quickly `lt moves toward 0. The dynamics are
most interesting when λ̂r is sufficiently close to λ. In particular, let

λ̄r(λ̂l, λ) = 1−
(

1− λ
λ

)
λ̂l, (1.22)

and consider the case when λ̂r < λ̄r(λ̂l, λ). Simulations confirm that each belief process
oscillates between increasingly confident beliefs in the two states.

Mispredictions of λ such that condition 1.22 holds—shown in Figure 1.6—lead to “cycli-
cal beliefs.” With parameters in this set, Figure 1.7 depicts a simulated sample path of
log `θt : beliefs of each type spend longer and longer near each confident fixed point before
transitioning to the next. Additionally, Figure 1.8 shows this same path, but in “phase”
space. The unstable orbit increases in its distance from neutral beliefs, ` = (0, 0). Notice
from Figure 1.7, at most points in time, players are mutually confident in the same state.
When confident in ω = R, all choose optimally—all right types, a fraction λ, take A. But
when confident in L, all choose incorrectly—all left types, a fraction 1−λ take A. Figure 1.9
displays this finding: the frequency at which players choose A oscillates between λ and 1−λ.
Finally, Figure 1.10 shows a sample path of log `θt for parameters that fail condition 1.22:
the beliefs take on a much more stationary limit distribution.

When society exhibits “cyclical beliefs”, expected welfare falls below the autarkic level.
Roughly 50% of the time, each agent holds nearly confident, but false, beliefs and chooses the
incorrect action. But when relying solely on private infromation, agents necessarily choose
correctly more than 50% of the time. Observing others makes society worse off, on average.

1.4.5 Biased Learning Under General Taste Projection

The previous subsections draw out the implications of taste projection within the domain
of “choice-dependent” projection. This imposed that all players on a particular side of the
taste spectrum share the same perception of λ. The assumption essentially implies only
two types—left and right. Here, I briefly characterize learning when misperceptions may
differ across an arbitrary finite number of types. The only assumption on perceptions is
Assumption 12: those with high θ hold perceptions that first-order stochastically dominate
the perceptions of those with lower θ, so that λ̂(θ) is monotonically increasing in θ.

I focus on conditions on perceptions that define when stable equilibria exist. Let W
denote the share of types that wrongly think left types comprise the majority. Define θ̃ =
arg maxθ λ̂(θ) subject to λ̂(θ) < 1/2; θ̃ is the right-most type who believes left types comprise
the majority. If θ̃ exists, then W = G(θ̃), otherwise W = 0. Let θ = min Θ and θ = max Θ.

Proposition 8. A stable equilibrium exists if and only if
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Figure 1.6: Set of Weak-Projection parameters leading to cyclical beliefs.
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Figure 1.7: Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.8.

1. θ̃ < 0 and W + λ > max
{

1− λ̂(θ), λ̂(θ)
}

2. θ̃ > 0 and 2− (W + λ) > max
{

1− λ̂(θ), λ̂(θ)
}

The left-hand side of each condition in Proposition 8 is the measure of agents who believe
it is optimal to follow the majority action. The right-hand side is the most biased percep-
tion of the extent of the majority held by any agent. So long as all agents observe more
people than they anticipated choosing a single action, then the equilibrium is stable. In any
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Figure 1.9: Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.9.

stable equilibrium, it is always the extreme types (those far from indifferent) who (rightly or
wrongly) follow the majority action. They are the types who most overestimate how many
share their taste. It is those with weak preference over location who concede that they have
less-common preferences and choose the minority action. Turning to equilibrium beliefs, θ̃
represents a turning point in beliefs: all types to one side of θ̃ agree on the state, while those
on opposite sides disagree.

Proposition 8 generalizes the findings of “strong” and “weak” projection to a broad class
of taste-dependent perceptions, λ̂. Strong projection implies all agents choose identically.
Here, relative to the efficient outcome, any stable equilibrium requires that too many agents
adopt the popular action. “Over-adoption” of the majority choice is the general implication
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Figure 1.10: Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.9.

of a stable projection equilibrium; strong projection demonstrates a particularly limit case
in which all choose a single action. Additionally, so long as each type correctly recognizes
the majority preference, λ̂(θ) > 1

2
for all θ ∈ Θ, then results match those of the “weak”

projection case: there exist no stable equilibrium beliefs. As such, the two-type examples
of “strong” and “weak” accurately capture the essence of learning with projection, albeit in
extreme fashion.

1.5 Learning About Quality
While the previous sections analyze an environment where the commonly-valued quality of
A and B are known, there are natural settings with uncertainty about horizontal location
and quality. This section assumes quality differences are highly uncertain and potentially
large enough that all players prefer a single option. While in Sections 1.4 and 1.4, beliefs
about location dictated choice, here quality concerns may dominate decisions. How might
taste projection distort inference about quality?

To build on examples above, consider learning about the prospects of investing in foreign
real estate. Countries vary drastically on the fixed costs associated with acquiring real
estate—both in taxes and fees charged by local intermediaries that buy the property. These
fees may be difficult to assess prior to going forth with the investment, so agents glean
information from past choices. If they find a country has very low fees, all may prefer this
investment irrespective of risk preferences. I also discuss an example where farmers learn
which seed is most productive on their plot—productivity depends on inputs, like soil type,
but it may be that some seed is universally most productive, irrespective of inputs.

Perceived quality is always mislearned. With two types, if people suffer strong taste
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projection, then society necessarily comes to believe in the largest possible quality differ-
ence. Differences in vertical quality are always weakly exaggerated. This mislearning both
arises from, and perpetuates, uniform herding, where all agents choose the action with the
perceived quality advantage. With a continuum of types, if long-run behavior is stable and
heterogeneous—there exist some types that prefer different actions—then the equilibrium
must display a particular form of mislearning about quality differences: people underesti-
mate the quality of the option close to their location relative to those far from it.

1.5.1 Preliminaries

States. There are now two dimensions of uncertainty associated with each action: (1) quality,
and (2) location—whether A is to the left or right of B. Recall from Section 1.2, the
unknown state is characterized by (ζ,∆q) ∈ {L,R} × D. Let the minimal and maximal
quality differences be ∆ := minD and ∆ := maxD. Since u(qX , zX) = qX − k(zX − θ)2,
all agents prefer A over B if ∆q > ∆̂ := 4kθ, where θ = max Θ. Likewise, all prefer B
if ∆q < −∆̂. I call a state aligned when the quality of an option trumps any concern for
horizontal differentiation, so all prefer the same action. Such states occur so long as ∆ > ∆̂
or ∆ < −∆̂. If society grows confident in some state ω, players expect to observe uniform
behavior if and only if ω is aligned; otherwise, agents anticipate heterogeneous behavior.

Private Information and Public Beliefs. Despite multi-dimensional uncertainty, I assume
a simple uni-dimensional signal structure. Players receive signals informing them which
action is optimal for their own taste. For each θ, let Ωθ ⊂ Ω denote the set of states in which
it is optimal for a θ-type to take action A. Hence, each θ-type receives signals indicating
whether ω ∈ Ωθ; her private belief that ω ∈ Ωθ has distribution FA whenever ω ∈ Ωθ,
and otherwise has distribution FB. FA and FB meet precisely the same assumptions as FH
and FL, respectively (Assumptions 5 and 6). I assume this signal structure simply for ease
of exposition: agents follow decision rules analogous to those derived in Section 1.3. The
structure still allows rational agents to learn the optimal action, and I emphasize below that
it does not drive any incorrect-learning results.

While private information alone leads to coarse inference over Ω, this signal structure
implies agents achieve finer inference when observing others—agents can discern which action
is optimal for each type. Let πθt (ζ,∆q) denote a θ-type’s perception of the public belief that
ω = (ζ,∆q) in t; let π1(ω) denote the common prior for ω.

1.5.2 Biased Learning with Two Types

Suppose only two types, Θ = {−1, 1}—a left type (θ = −1) and a right type (θ = 1)—and
the probability any agent is a right type is λ := Pr(θnt = 1).55 In this setting, if people suffer

55For continuity with previous sections, I use the superscript l to denote perceptions held by θ = −1 and
r for those of θ = 1.
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strong taste projection, then society necessarily comes to believe in a state in which quality
dominates preferences. Differences in vertical quality are always weakly exaggerated.

With two types, observing actions leads players to hold public beliefs over a partition of
Ω comprised of four subsets—players can only determine which action is optimal for each
type. These subsets are

ΩAA = {ω = (ζ,∆q) | ∆q ≥ ∆̂},
ΩAB = {ω = (ζ,∆q) | ∆q ∈ (−∆̂, ∆̂) , zA = L},
ΩBA = {ω = (ζ,∆q) | ∆q ∈ (−∆̂, ∆̂) , zA = R}, and
ΩBB = {ω = (ζ,∆q) | ∆q ≤ −∆̂}.

The set ΩXX′ contains all the states where it is optimal for left types to chose X and right
types to choose X ′. For instance, ΩAB—the set of states where A is on the left and actions
have intermediate quality values—is the set of states where left types prefer A, and right
prefer B. Let πθt (XX ′) denote a θ-type’s belief that the state is in set ΩXX′ after observing
history ht.

The following proposition characterizes long-run beliefs, and demonstrates that left and
right types never agree on the location state, but always agree that one action has superior
quality.

Proposition 9. Suppose players suffer strong taste projection and ∆ > ∆̂ and ∆ < −∆̂.

1. Any confident joint belief with πr(AB) = πl(AB) = 1 or πr(BA) = πl(BA) = 1 is
unstable: agents never agree on the location state in the long run.

2. Suppose the number of players per period is arbitrarily large, N → ∞, and agents
observe only those in the previous period. If in truth ω ∈ ΩBA ∪ ΩAA, then for each θ,
πθt (AA) → 1. Otherwise, πθt (BB) → 1 for each θ. Agents necessarily converge to an
aligned state.

Part 1 of Proposition 9 follows from the stability criteria established in Proposition 4.
The logic is identical to learning under strong taste projection absent quality differences
(Section 1.4.3)—agents never agree on the location state, and instead form fully-polarized
beliefs over ζ. Whenever the majority chooses A, left types come to believe ζ = L, while
right types conclude ζ = R. As usual, all agents believe A is optimal; a uniform herd on A
emerges.

Part 2 of Proposition 9 is a consequence of how agents explain this uniform herd. Variable
quality allows agents to make sense of the herd: when all choose A, it must be that A simply
has superior quality, ∆q > ∆̂. The observation structure, where the number of agents each
period is infinite but players observe only the behavior of the previous generation, is assumed
simply to make precise claims about limit beliefs—limit beliefs are deterministic.
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This result implies society necessarily concludes that quality differentiation trumps hor-
izontal differentiation. And this is independent of priors: even as the prior of an aligned
state becomes arbitrarily small, Pr(ω ∈ ΩAA ∪ ΩBB)→ 0, people still conclude some option
has such a large quality advantage that all should choose it irrespective of preferences. This
has important consequences in markets with niche goods. Even when some product or tech-
nology is optimal for a minority of consumers, low demand is misinterpreted as a signal of
poor quality.56

Consider an example where farmers learn whether to adopt new hybrid rice (A) over
the status-quo crop (B). Suppose farmers fall into two categories, those with high-salinity
soil (θ = r) and those with low (θ = l). It is known that the hybrid seed is sensitive to
salinity, but the direction is unknown. The status-quo crop is insensitive. Further, farmers
are uncertain about the potential yield of the new seed. It’s possible that even when sowed
on suboptimal soil, the hybrid may trump the alternative. Suppose in truth that this is not
the case; the new seed is only beneficial for low-salinity farms, which account for 40% of the
region’s farms. Before investing in the new crop, farmers cultivate a small test plot—they
have noisy signals if the new seed is a good match with their farm. Initial adoption in t = 1
is based on this private information. In t = 2, farmers use both private information and
the fraction of neighbors that previously adopted, say roughly 40%. If both low- and high-
salinity farms perceive themselves as the majority, then both types find the initial demand
too weak to adopt. The next period, new farmers learn that none of those from the previous
generation adopted the new seed. The only reasonable conclusion is that the yield is inferior
to the status quo, irrespective of variation across farms: A is suboptimal for all farmers.

With more general signal structures, society always overestimates quality differences, even
when it is commonly known that agents never all prefer the same choice; that is, in cases
where quality is necessarily in the intermediate range ∆q ∈ (−∆̂, ∆̂) so ΩAA = ΩBB = ∅. This
follows immediately from the logic of Proposition 9, Part 1. If agents receive independent
private information about the quality and location of each option, then Proposition 9, Part
1 remains true. But beliefs can be stable when left and right types disagree on location. If
this is so, all agents choose an identical action. While agents understand that no possible
state leads to such behavior, they must decide which state best explains it. So long as signals
about quality follow the monotone likelihood-ratio property so that increasing ∆q increases
the chance an agent chooses A, then a herd on A is best explained by ∆q = ∆. Society
comes to believe A attains the largest possible quality advantage.

The model above rules out learning from own past experience by assuming each agent
makes a single choice. While allowing for multiple choices over time complicates the inference
problem, it does not necessarily imply that taste projection has no effect on learning. So
long as feedback from experience is stochastic and the number of predecessors any agent
observes is large relative to the number of choices she makes, then the (misinterpreted)
public information can dominate personal experience. If society wrongly concludes that large

56An older literature in industrial organization attempts to explain how social learning may deteriorate
the market share of niche goods. See McFadden and Train (1996).
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crowds at a restaurant imply high-quality food and service, when in reality the restaurant
has mediocre quality but serves the majority’s preferred style of cuisine, then a diner may
continue visiting the restaurant despite many bad experiences. The diner is convinced that
in this information-rich environment, the only way such a herd could persist is if quality is
high; she concedes that she simply has bad luck.

1.5.3 Biased Learning with Many Types

With many types, there may exist long-run stable equilibria in which society learns the true
location state and behavior remains heterogeneous. While agents may hold correct beliefs
along the horizontal dimension, such equilibria entail an interesting form of mislearning along
the quality dimension. Instead of universally concluding one action has superior quality,
agents disagree on quality in a particular way. If all agents are confident that action A best
suits right-leaning tastes (ζ = R), then, relative to left types, right types conclude A has
low quality. Those with innate taste for an option develop a relatively pessimistic view of
its quality.

The logic is simple. Consider agents learning about two films newly released at the local
cinema. They rightfully conclude that film A is an action film, but B is a romance. Upon
observing box-office sales, action fans—who overestimate the share of action fans—find the
attendance to A surprisingly low, while romance aficionados find it surprisingly high. Action
fans attribute this to quality: the action movie must have limited quality if so many are
passing in favor of the romance film. But romance fans think precisely the opposite.

The previous subsection and this one reiterate an important point: taste projectors must
disagree on some dimension in order to explain observed behavior. If they agree on quality,
then they must disagree on location, and vice versa.

To show this result formally, I assume choice-dependent projection (Definition 2), and
assume a continuum of types: Θ = [θ, θ]. Although there are many types, there are only
two distinct perceptions of the taste distribution: Ĝl held by θ < 0 and Ĝr held by θ > 0,
and right-type perceptions dominate left in the sense of FOSD. I argue that the logic of the
equilibria discussed here extends to the case where each type holds a distinct perception in
an intuitive way. I also assume the number of players each period is large so that the fraction
choosing A each round, denoted αt = at/N , is a deterministic function of beliefs and the
state.

Suppose all agents agree on the location state ζ, and with out loss of generality, ζ = R.
Let ∆l

q and ∆r
q denote perceived quality differences held by left and right types, respectively.

Does there exist (∆l
q,∆

r
q) that jointly rationalizes fraction α choosing A each period? Types

that choose A are those with θ > θ̂, where θ̂ denotes the agent indifferent between A and
B. In state (R,∆q), the marginal type is θ̂ = −∆q/4k. Let θ̂l and θ̂r denote each type’s
perceived marginal agent. Equilibrium requires α = 1 − Ĝl(θ̂

l) and α = 1 − Ĝr(θ̂
r), which

in turn implies
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∆l
q = −4kĜ−1

l (1− α),

∆r
q = −4kĜ−1

r (1− α). (1.23)

Since Ĝr(x) ≤ Ĝl(x), it follows that ∆r
q ≤ ∆l

q. Summarizing in a proposition, we have the
following.

Proposition 10. Suppose a continuum of types suffer choice-dependent projection. If agents
agree that A is optimal for right-leaning tastes (ζ = R), then right-leaning agents have a lower
perception of A’s quality than do left-leaning agents: ∆r

q ≤ ∆l
q.

In general, with perceptions that can vary for each θ, the equilibrium requirement is
α = 1 − Ĝ(θ̂(θ) | θ) for all θ, where Ĝ(· | θ) is a θ-type’s perceived distribution and θ̂(θ) is
her perception of the marginal agent. This condition does not necessarily hold—existence
requires the degree to which Ĝ(· | θ) varies across θ to be small.57 However, in any such
equilibrium, it’s clear that perceptions of the relative quality of A are decreasing in type.
α = 1− Ĝ(θ̂(θ) | θ) implies θ̂ = Ĝ−1(1− α | θ), and using θ̂ = −∆q(θ)/4k yields

∆q(θ) = −4kĜ−1(1− α | θ), (1.24)

where ∆q(θ) denotes a θ-type’s perception of the quality difference. By first-order stochastic
dominance (Assumption 12), Ĝ−1(1− α | θ) is increasing in θ, so ∆q(θ) is decreasing in θ.

1.6 Learning About Preferences
This section explores learning about horizontal differentiation, as in Sections 1.3 and 1.4,
among agents who revise their models of others’ preferences after observing actions. In
Sections 1.3 and 1.4, agents have fixed perceptions: they believe the distribution of tastes
(which they mispredict) is perfectly known by all agents.58 Was this restrictive assumption
responsible for errors in long-run learning? This section considers a more realistic model
where all agents perceive some uncertainty over the distribution, and learn about others’
tastes through their actions. When the true taste distribution lies in the support, does
updating their models ameliorate agents’ mislearning of payoffs? If agents are naive—they
neglect that different types start at different priors—then the answer is no. Specifically,
agents with different tastes rationally form divergent priors over the distribution. A naive
agent only errs by wrongly assuming all others share her prior, and, hence, she develops
incorrect beliefs about what other types infer. It is not heterogeneous priors, per se, that

57 General conditions on the collection of perceptions that guarantee such an equilibrium are beyond the
scope of this paper.

58While this sounds dogmatic, this assumption forms the premise of many Bayesian games, including the
canonical model of Smith and Sørensen (2000).
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leads agents astray, but rather that they neglect others’ discrepant beliefs. I show that a
particular class of priors can cause agents to become fully biased in their perceptions of
others tastes: they wrongly conclude society shares a common preference.

Subsection 1.6.1 extends the model and defines taste projection in a setting with uncer-
tainty. For the sake of demonstrating how naivete can generate incorrect learning even when
agents put positive weight on the true environment, I consider the most simple variant of the
model. Within this setting, Subsection 1.6.2 explores properties of biased long-run learning.

1.6.1 Extension of the Model

Consider the model of Section 1.3 and 1.4 with no uncertainty over quality nor quality
differences, ∆q = 0. Further, assume only two types, Θ = {−1, 1}—a left type (θ = −1) and
a right type (θ = 1); the probability any agent is a right type is λ := Pr(θnt = 1). Learning
about the taste distribution entails learning a single parameter, λ.

Public and Private Beliefs. Suppose that λ is a random draw from distribution µ0 on
Λ = {λ1, λ2, ..., λK} with λ = min Λ and λ = max Λ. The state space is now {L,R} × Λ,
consisting of payoff states, ω ∈ {L,R}, and distribution states, λk. Let πθt (ω, λk) denote a
θ-type’s public belief that the state is (ω, λk) after observing ht. Without loss of generality,
suppose the state is (R, λ∗) for some λ∗ ∈ Λ, and let `θt (ω, λk) denote the likelihood ratio of
(ω, λk) relative to the truth (R, λ∗). Correct learning entails `θt (ω, λk) → 0 for all (ω, λk) 6=
(R, λ∗). Finally, let the conditional distributions of private beliefs, Fω, meet Assumptions 5
and 6 from Section 1.3.

Priors. Assume Pr(ω = R) = 1/2. In truth, λ has distribution µ0. Importantly, with
uncertainty over population preferences, one’s taste is information about λ. Learning θ
causes an agent to revise her prior µ0. I model taste projection as a biased perception of
revised priors over λ. Specifically, in period 0, each player learns her taste θ, and uses it as
a proper Bayesian to update prior µ0(λk) to posterior µθ(λk) = Pr(λk | θ). But naive agents
neglect that players who receive conflicting signals (i.e., tastes) arrive at different priors: a
θ-type thinks all players share her prior µθ regardless of their tastes.59 This is the only way
in which a θ-type’s model is misspecified: she has a perfectly rational theory of how λ is
distributed, but an incorrect theory of what others think. Explicitly, left and right types
derive priors µl, and µr, respectively, from µ0 where60

µr(λk) := Pr(λk | θ = r) =
λkµ0(λk)∑
i λiµ0(λi)

=

(
λk
E[λ]

)
µ0(λk),

µl(λk) := Pr(λk | θ = l) =
(1− λk)µ0(λk)∑
i(1− λi)µ0(λi)

=

(
1− λk

1− E[λ]

)
µ0(λk). (1.25)

59This assumption is similar to Madarasz’s (2012) model of “information projection”. A θ-type forms
beliefs as if her private-taste signal was publicly observed by all agents. But she also projects ignorance: she
neglects that other agents may receive contradictory information.

60For continuity with previous sections, I use the superscript l for θ = −1 and r for θ = 1.
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I make the admittedly strong assumption that an agent thinks others’ priors match exactly
her own.61 It will become clear that this is stronger than necessary, and I assume this
only because the error is particularly simple. All that is necessary in order for agents to
mislearn with positive probability is that an agent (unknowingly) infers too much (relative
to a Bayesian) from her private taste, which means that agents underappreciate the extent
to which priors differ across types.

Decision Making and Updating. While beliefs about λ dictate the interpretation of ac-
tions, an individual’s decision depends only on her belief about whether A is to the right.
This belief, the marginal probability of ω = R, is denoted by πθt :=

∑
k π

θ
t (R, λk), and let

`θ = (1 − πθ)/πθ denote the likelihood ratio that ω = L relative to ω = R; agents follow
the same decision rule as in Section 1.3 (Lemma 3). Since a naive agents thinks all share a
common prior, she thinks all types share her public belief πθt (ω, λk) in each state, for all t.

After observation a ∈ {0, 1, ..., N} in period t, type-θ beliefs update according to

`θt+1(ω, λk) = `θt (ω, λk)
ψθ(a | `θt , ω, λk)
ψθ(a | `θt , R, λ∗)

, (1.26)

where ψθ(a | `θ, ω, λk) is the probability of observing a in state (ω, λk) given `θt according to
type-θ. The key difference between rational and naive updating is that a rational player has
correct second-order beliefs—she knows that left and right types have different beliefs—so,
in a rational model, ψ depends on both `lt and `rt .

1.6.2 Biased Long-Run Learning

This subsection shows that incorrect second-order beliefs over λ arising from naivete can
generate polarized beliefs about location and tastes. For some priors, agents disagree on the
interpretation of actions, causing left types to grow confident that ω = L while right types
grow certain that ω = R. With polarized beliefs about payoffs, a uniform herd develops—
all agents take the same action. To explain this herd, agents’ perceptions of others’ tastes
also become polarized: each interprets the herd as an indication that her taste is maximally
common. I provide sufficient conditions on priors guaranteeing that such an outcome occurs
with positive probability.

In general, uniform herding can occur whenever an arbitrarily long herd on some action,
say A, is polarizing—left and right types always (unknowingly) disagree on the interpretation
of A no matter how often it is played. The herd on A leads left types to believe ω = L, and
right types to believe ω = R.

A simple test determines whether agents may, with positive probability, converge to
precisely opposite beliefs. Within a given environment, suppose people act in single file.

61This notion of naivete is entirely consistent with the earlier definition in Assumption 13. A more
general definition of naivete that extends to settings with uncertainty is that all players think each agent
shares her prior over the taste distribution. Then Assumption 13 follows from this definition in settings with
no uncertainty—where the prior is degenerate—as in previous sections.
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Let πθt (ht) be a θ-type’s belief in ω = R entering period t following history ht. Let hAt
be a history of length t − 1 consisting of all A’s. Then fully-polarized beliefs occur in
this environment if for all t ∈ N, πrt+1(A, hAt ) > πrt (h

A
t ) and πlt+1(A, hAt ) < πlt(h

A
t ). Right-

type beliefs are monotonically increasing along paths of all A’s and left-type beliefs are
monotonically decreasing along such paths.

Although rational beliefs never satisfy this condition—eventually agents must agree on
the interpretation of A—they may be polarized by finite sequences of A’s. For example,
suppose the fraction of risk-averse agents is λ ∈ Λ = {1

4
, 3

4
}. Suppose rational people agree

on prior µ0(3/4) = 0.6. Then, after learning one’s own risk preference, a risk-averse agent
thinks λ = 3/4 with approximately 0.82 chance. But a risk-neutral agent thinks λ = 1/4
with chance 2/3. That is, initially, before observing any actions, each type rationally believes
her taste is most common. If the first player chooses A, each agent reasons that the first
player likely shared her taste. Thus, a risk-neutral agent believes A is likely risky, while a
risk-averse believes A is likely safe. Observing A polarizes rational agents’ beliefs over the
riskiness of A.

But so long as agents are rational, A cannot forever polarize beliefs. After a sufficiently
long string of A’s, an additional A must move rational players’ beliefs in the same direction.
Why? Agents have correct second-order beliefs: they know exactly what people of opposite
tastes believe. A rational agent cannot simultaneously grow confident of some hypothesis
while fully aware that another rational agent is confident of another after observing precisely
the same information.62 In the example above, observing a second A tells everybody very
little—all know that each type likely chooses A irrespective of private information. After
a long enough sequence of A’s, people eventually rely on the original prior µ0 to draw
conclusions, not their taste dependent prior. In the example above, all people eventually
agree that a long sequence of A’s is strong evidence for (R, 3/4). Beliefs of the two types
eventually grow close.

This logic needn’t hold for biased agents. In the example above, a risk-averse agent thinks
all share her initial belief that Pr(λ = 3/4) = 0.82. She neglects the fact that risk-neutral
agents—who think Pr(λ = 3/4) = 1/3—initially disagree on the interpretation of A. As
more A’s are played, beliefs converge toward opposite payoff states. However, agents are not
aware that other types are learning differently: risk averse think all agree that the sequence
is indicative of (R, 3/4), while risk neutral think all agree that (L, 1/4) is most likely.

In general, if actions can have a lasting polarizing effect on the two types, then with pos-
itive probability agents with different tastes converge to confident beliefs in opposite payoff
states, and a uniform herd results. Why? If the game starts with a long sequence of A’s,
which occurs with positive probability, then agents’ beliefs grow polarized. Starting from this
“initial condition”, where people unknowingly disagree on the state, most continue to choose
A—risk neutral are confident A is risky, and risk averse are confident it’s safe. Crucially,
these polar-opposite beliefs are stable: they lead all agents to play A with high probability,

62 Acemoglu, Chernozhukov, and Yildiz (2007, 2009) show that rational agents may “agree to disagree”
on the interpretation of an infinite sequence of evidence, however, they never fully disagree.
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which only reinforces these beliefs. Thus, so long as beliefs can reach a neighborhood of
the polar-opposite beliefs—which occurs with positive probability whenever A has a lasting
polarizing effect on agents—then society may forever remain at these polar beliefs.

1.6.2.1 Two-Point Distributions

I first demonstrate mislearning in the simple case where, like the example above, λ takes
one of two values. Suppose Λ = {λ, λ} with λ < λ. The following lemma establishes what
a player comes to believe after observing an arbitrarily long herd on A as a function of her
prior, assuming she believes all people share this prior. In this setting with |Λ| = 2, let µθ
denote a θ-type’s perceived probability that λ = λ.

Lemma 11. Suppose Λ = {λ, λ}. For any λ < 1
2
< λ, there exists a value µ̂(λ, λ) ∈ (0, 1)

such that µθ < µ̂(λ, λ) implies limt→∞ π
θ
t (h

A
t ) = 0 and µθ > µ̂(λ, λ) implies limt→∞ π

θ
t (h

A
t ) =

1.

Lemma 11 implies that if agents are initially sufficiently confident that λ = λ, then a herd
on A indicates (R, λ). But if µθ is low, the herd indicates (L, λ). Hence, whenever agents
have priors that fall on opposite sides of µ̂(λ, λ), the two types disagree on the interpretation
of an arbitrarily long herd. However, if λ > 1

2
or λ < 1

2
, so that both λ and λ lie on the

same side of 1
2
, then the two types always agree on the interpretation of a herd. The logic

of Lemma 11 implies the following mislearning result.

Proposition 11. Suppose µl < µ̂(λ, λ) < µr. With positive probability, πrt (R, λ) → 1 and
πlt(L, λ)→ 1.

Agents grow fully polarized along both dimensions on which they learn: they disagree on the
payoff state, and each type of agent thinks all others share her taste. In the next subsection,
I show that this same phenomenon occurs for more general distributions of λ, and discuss
the intuition and significance of these results.

1.6.2.2 General Distributions

I now discuss when this logic holds for any general support Λ ⊆ [0, 1]. While it has not been
shown formally, I believe the following conjecture provides a sufficient condition for polarized
long-run beliefs.

Suppose Λ = [0, 1]. Suppose type-dependent prior µl is strictly decreasing on
Λ, and µr is strictly increasing on Λ. If the number of players each round is
arbitrarily large, N →∞, then πrt (R, λ)→ 1 and πlt(L, λ)→ 1. Actions converge
on option A.

The intuition is as follows. Suppose the truth is (R, λ∗) with λ∗ > 1
2
. First period actions

a1 collapse beliefs onto the truth and (L, λ′) for some λ′ < 1
2
. Type-r believes (R, λ∗) is
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most likely, and type-l believes (L, λ′) is most likely. In period 2, net of private information,
each type believes A is optimal. And, since agents thinks their beliefs are commonly shared,
each expects a player with taste different than her own to choose B. Agents neglect the
fact that all have incentive to choose A. Thus, a2 exceeds what any player expects to see
in either state. Given monotonic priors, the most likely explanation for this unexpectedly-
high outcome within a right-type’s model is that λ > λ∗. Within a left-type’s model, the
most likely explanation is λ < λ′. That is, a2 polarizes the agent’s beliefs about λ: a right
type’s estimate moves toward 1, while a left-type’s estimate moves toward 0. Increased
polarization implies still more choose A in round 3—a3 > a2, and polarization increases
further. In general, at+1 > at for all t, and at/N → 1. In the long-run, all choose A. Type-r
thinks (ω, λ) = (R, 1) and type-l believes in (ω, λ) = (L, 0).

Similar to Section 1.5, where agents explain a uniform herd by assuming one option has
superior quality, agents here explain the herd by assuming common preferences. A risk-averse
agent’s best explanation for why all invest in A is that A is safe and all have preferences
similar to her own. A risk-neutral agent concludes precisely the opposite. The equilibrium
is essentially self confirming: agent’s incorrect beliefs never generate evidence inconsistent
with these beliefs.

The fact that perceptions of population tastes become fully polarized emphasizes that
learning can exacerbate taste projection when agents aren’t aware of their initial bias. Agents
move from a mild error—they assume others share their uncertain beliefs about λ—to a
strong error—they are confident that all share their taste. That is, naive learning can
generate a strong false-consensus bias. This result highlights the role of neglecting others’
discrepant beliefs in learning settings. Aside from wrong theories of others’ beliefs, agents
have precisely correct models of the world. Even so, ignoring heterogeneity in beliefs can
lead society far from the truth.

1.7 Discussion and Conclusion
This paper demonstrates the implications of taste projection on social learning. I clearly
demonstrate how one’s interpretation of others’ behavior depends on the lens through which
it is observed—those with different perceptions of tastes often develop drastically different
beliefs about the state of the world. And in many cases, this discrepancy in beliefs can
lead behavior far from the optimum. The results of this paper help explain three important
phenomenon inconsistent with rational learning models. First, taste projection offers an
explanation for why uniform behavior may arise despite diverse preferences. Second, it
shows how society can develop and maintain confident but false beliefs even when observing
an arbitrarily large sample of privately-informed behavior. Third, false-consensus errors can
arise from naive learning: when people ignore differences in prior beliefs, otherwise rational
learning leads agents to think their own taste is most common.

While the formal model focuses exclusively on observational learning, I conjecture that
taste projection has important consequences in other natural social-learning environments.
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For instance, consider a setting where agents directly share their experiences. Players ob-
serve the action and payoff of all predecessors, consistent with word-of-mouth learning (e.g.,
Banerjee and Fudenberg, 2004) or learning from online reviews. Projection still leads learn-
ing astray. Suppose restaurant X generates stochastic outcomes y, which provide a θ-type
with utility u(y, θ). And suppose an observer sees a large collection of payoffs from random
sample of the population. With correct knowledge of the distribution of θ, a rational ob-
server could back out the distribution of Y from the sample of payoffs. But a taste projector,
who has wrong beliefs about the distribution of θ, develops a distorted perception of the un-
derlying distribution of outcomes, Y . If some unsophisticated diners earn high payoffs from
average-quality meals, “foodies” who think high payoffs come only from exceptional meals
will be mislead by the shining reviews of those with limited taste, and vice versa.

From a broad perspective, a novel feature of this paper is the assumption that agents
within a non-common-prior environment neglect heterogeneity in beliefs. Of course, this
paper focuses on the very specific case of social learning, but it naturally provokes curios-
ity about how similar forms of naivete alter the results of well-known non-common-prior
models like Harrison and Kreps (1978), Morris (1996), and Scheinkman and Xiong (2003).
What do speculative traders come to believe about returns when they neglect disagreement?
Beyond taste projection, there are other reasons to expect disagreement neglect. For ex-
ample, Malmendier and Nagel (2011) find that market conditions experienced early in life
shape investors expectations about stock-market returns. It seems natural that investors
under-appreciate the influence of experience on perceptions, and may wrongly conclude that
investors from different generations hold similar perceptions. How do conflicting expecta-
tions interact in the market, and how does this interaction shape the perceptions of the
current young generation? And how does this naive learning process play out in the long
run? These questions are left open for future research.
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Appendix

1.A A Simple Model Of Taste Projection
This section presents a simple model of taste projection, providing a specific parameterization
for the general bias outlined in Section 3.2.2. The model specifies an agent’s perceived taste
distribution as a function of her own taste, the true distribution, and a single bias parameter,
β ∈ [0, 1].

Consider the model of preferences introduced in Section 1.2.1 with finite type space Θ.
Suppose θ are distributed according to c.d.f. G with mass function g. As formalized in
Section 3.2.2,type θ perceives the taste distribution as Ĝ(· | θ), and let ĝ(· | θ) be the
associated mass function. The perceived mass function is given by

ĝ(θ̃ | θ) = (1− β)|θ̃−θ|g(θ̃)/Φθ (A.1)

where β ∈ [0, 1] is the degree of the bias, and Φθ is a normalization constant,

Φθ :=
∑

θ̃∈Θ

(1− β)|θ̃−θ|g(θ̃). (A.2)

Essentially, for a player with taste θ, the true mass function is scaled by a weighting
function wθ(θ̃) = (1− β)|θ̃−θ| that gives higher weight to types close to her own. β controls
how quickly the weighting function decreases when moving away from one’s own type. Note
that β = 0 corresponds to rational perceptions: ĝ(· | θ) = g(·). At the other extreme, β = 1
implies full projection—the player believes all share her taste: ĝ(θ | θ) = 1 and ĝ(θ̃ | θ) = 0
for all θ̃. This simple parameterization of taste projection meets the general conditions
assumed in Section 3.2.2: (1) first-order stochastic dominance in θ (Assumption 12), and (2)
full support (Assumption 3).63

The following figures give a sense of perceived distributions under this parameterization.
In each, Θ = {jδ | j = 0, ..., 100} and δ = 0.01. Figures 1.A.1 and 1.A.2 show the biased pmfs
and cfs, respectively, for various θ-types supposing the true distribution is (approximately)
U[0, 1]. Figures 1.A.3 and 1.A.4 do the same when the true distribution is (approximately)
Beta(8, 8).

63Trivially, Assumption 3 holds so long as β 6= 1.
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Figure 1.A.1: Biased pmfs for β = 0.1 and θ ∼ U[0, 1].
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Figure 1.A.2: Biased cdfs for β = 0.1 and θ ∼ U[0, 1].
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Figure 1.A.3: Biased pmfs for β = 0.1 and θ ∼ Beta(8, 8).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cd
f

θ

 

 

θ̃ = 0.2

θ̃ = 0.5

θ̃ = 0.8

Figure 1.A.4: Biased cdfs for β = 0.1 and θ ∼ Beta(8, 8).

1.B Smith and Sørensen’s Confounded Learning
Consider the model of Sections 1.3 and 1.4 where ∆q is known. This section demonstrates
that confounding beliefs only exist when |∆q| is sufficiently large, and show how their exis-
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tence changes the basic results derived in above. Smith and Sørensen (2000) show that in
this setting, observational learning with heterogeneous preferences may lead to “confounded
learning”. With rational agents, there may exist an interior steady-state belief, π̂, such that
if public beliefs reach this value, then learning stops. Beliefs remain at π̂. The steady state
is such that the probability of any observation a is equal in both states R and L. Ob-
serving a when public beliefs are at the steady state reveals no new information. In terms
of updating process defined above, π̂ is the value that satisfies ψ(a | ˆ̀, R) = ψ(a | ˆ̀, L)
where ˆ̀ = (1 − π̂)/π̂. Smith and Sørensen (2000) show that under rational play, if such a
confounding belief exists, long-run beliefs converge to this value with positive probability.

1.B.1 Existence of Confounding Beliefs

Lemma A.1. Let θ̄l = maxθ Θl. Then no confounding beliefs exist if

∆q < k∆d(θ
l
)(1− ξθ)/(1 + ξθ),

where

ξθ := min

{√∑
θ′∈Θl ĝ(θ′ | θ)∑
θ′∈Θr ĝ(θ′ | θ) ,

√∑
θ′∈Θr ĝ(θ′ | θ)∑
θ′∈Θl ĝ(θ′ | θ)

}
< 1.

1.C Rational Learning with Aggregate Preference
Uncertainty

This section characterizes long-run learning among rational agents with taste-dependent dis-
tributional beliefs, which arise from uncertainty over the taste distribution (as in Section 1.6).
For instance, investors are uncertain if others are primarily risk averse or risk neutral, so an
agent’s own preference is information.

Rational learning contrasts sharply with learning under naive projection. Namely, ra-
tional beliefs always converge, and people with different tastes never reach fully-polarized
beliefs—they never grow confident in different states. The various failures in learning that
arise with naive projection—incorrect learning, fully-polarized beliefs, and perpetually fluc-
tuating beliefs—are thus not a sole consequence of taste-dependent distributional beliefs.
Rather, they result from ignorance regarding others’ taste-dependent beliefs—from thinking
others’ think like oneself.

However, rational learning in this setting is not complete. Depending on the sample path,
rational agents either fully learn or converge to an interior fixed point. Disagreement may
exist in a long-run equilibrium, but in such cases, society remains uncertain: two agents with
different tastes never grow confident in two distinct hypotheses. Interestingly, when there
is uncertainty over the type distribution, confounded learning always arises with positive
probability. This contrasts the standard Smith and Sørensen (2000) model, where it arises
only if quality differences, |∆q|, are sufficiently large.
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1.C.1 Rational Long-Run Learning

The model I consider here is identical to the model in Section 1.6 with the following exception:
agents are fully-rational, so second-order beliefs are correct. Each player knows precisely the
priors of all others.

Rational learning may still fail in an important way. In particular, confounding beliefs
exist for any quality difference ∆q. Let πθt =

∑
k π

t
n(R, λk) denote marginal probability of

preference state ω = R. I now define “confounding beliefs”.

Definition A.1. Let the pair π̂l and π̂r be public beliefs held by types l and r, respectively.
The pair (π̂l,π̂r) are confounding beliefs if for all states given positive weight—ζ, ζ ′ ∈ {L,R}
and λk, λj ∈ Λ such that π̂θ(ζ, λk), πθ(ζ ′, λj) > 0,

Pr(a | π̂l, π̂r, ζ, λk) = Pr(a | π̂l, π̂r, ζ ′, λj)

for any a ∈ {0, 1, ..., N}.

The next proposition shows that such belief profiles generically exist when there is un-
certainty about λ.

Proposition A.1. For any Λ with |Λ| ≥ 2 and any non-degenerate prior µ0 ∈ ∆(Λ), there
exists at least one pair of confounding beliefs (π̂l,π̂r) satisfying Definition A.1.

However, to show learning is complete, it must be the case that beliefs converge with
positive probability to such a profile. The next proposition establishes this.

Proposition A.2. At least one pair of confounding beliefs is locally stochastically stable:
a confounding outcome occurs with positive probability. However, the probability of correct
learning goes to 1 as π1 → 1; for each θ, Pr(πθt (R, λ

∗)→ 1) = 1 as π1 → 1.

This result is similar to that of Jackson and Kalai (1997). In a model of “recurring games”
with both type uncertainty and payoff uncertainty, behavior doesn’t converge to Bayesian
Nash equilibrium of the stage game with known type distributions whenever payoffs depend
on type. Here we see such non-convergence. However, players still learn with positive
probability. Uncertainty doesn’t imply society necessarily fails to learn.

Rational learning with uncertainty about tastes provides a simple and natural explanation
for persistent disagreement. At a confounding belief, people with different tastes disagree on
payoffs: relative to a risk-seeking agent, a risk-averse agent thinks it’s more likely that most
are risk averse and that A is safe. Despite continually observing behavior, players persistently
disagree. Why? At a confounding belief, new observations reveal no new information.
Hence beliefs across types depend on priors, which are necessarily taste specific. There are
alternative explanations for how individuals who observe the same evidence disagree in the
long run. Such models include uncertainty over the distribution of private information, as
explored in Acemoglu, Chernozhukov, and Yildiz (2007 and 2009), or public signals about a
single dimension of uncertainty despite an environment with many dimensions of uncertainty
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(Andreoni and Mylovanov, 2012). In all cases, so long as players are rational, disagreement
is never “fully” polarized. As I’ve argued, full polarization—where agents grow confident in
alternative hypotheses, can occur under taste projection.

1.D Extensions

1.D.1 Can Some Rational Agents Correct Biased Learning?

Can the existence of fully-rational agents—those who know λ, but also know how others
misperceive λ—correct biased learning among naive agents? Following the analysis in Sec-
tions 1.4.3 and 1.4.4, I address this question assuming agents suffer choice-dependent. The
answer is no; no matter how many individuals are rational, biased learning remains incom-
plete.

To see this, suppose a fraction γ ∈ (0, 1) are fully rational. And suppose rationality is
independent of taste. A rational player knows λ and λ̂(θ) for each θ—they know exactly
how taste maps to perception. Let 〈πct 〉 denote the belief process among rational—“correct”—
agents. Since all correct players agree on the model of the world, beliefs are independent of
taste. First, learning is complete among rational players.

Proposition A.3. For any γ ∈ (0, 1), λ, and λ̂(θ), πct → 1 a.s.

This follows immediately from the fact that 〈`ct〉—the process of rational likelihood ratios—
forms a conditional martingale, and hence must converge to a finite fixed point of the process.
The only such fixed point is `c = 0.

Since rational agents learn, all rational right types choose A in the long run. Hence in any
candidate stable equilibrium π̂ = (π̂l, π̂h), the frequency of A is γλ+(1−γ)[(1−λ)(1− π̂l)+
λπ̂h]. We can simply invoke Proposition 4 to determine whether the equilibrium is stable.
From logic identical to Proposition 5, biased beliefs never converge to a point of agreement,
and hence never converge to the truth. While rational agents never lead biased agents to
the truth, the next two propositions (which follow from direct applications of Proposition 4)
demonstrate the limited impact of rational agents on biased learning outcomes in both the
strong and weak case.

Proposition A.4. Assume strong taste projection. For all γ ∈ (0, 1), universal learning
fails. Furthermore, there exist γ and γ, γ < γ, such that

1. If γ < γ, then naive beliefs π̂ = (0, 1) and π̂ = (1, 0) are stable.

2. If γ ∈ (γ, γ), then only π̂ = (0, 1) is stable.

3. If γ > γ, then no naive beliefs are stable.
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In Proposition A.4, the values γ and γ are

γ = min

{
λ̂l

λ
,
1− λ̂r
λ

}
γ = min

{
λ̂l

1− λ,
1− λ̂r
1− λ

}

It follows that a sufficiently large proportion of rational agents, γ > γ, can break a uniform
herd. For example, when λ = 0.6, but (λ̂l, λ̂r) = (0.4, 0.8), then γ = 1

2
.

Proposition A.5. Assume weak taste projection. For all γ ∈ (0, 1), universal learning fails.
Furthermore, there exists γ̃ ∈ (0, 1) such that

1. γ ∈ (0, γ̃) implies both 〈`lt〉 and 〈`rt 〉 are non-convergent.

2. γ ∈ (γ̃, 1) implies only 〈`rt 〉 is non-convergent.

The value γ̃ satisfies

λ̂l = γ̃λ+ (1− γ̃)E[Xnt = A | θnt = r, `lt = 0∀t]

γ̃ is the value such that the expected frequency of A in the long-run exactly matches a low-
type’s expected frequency. Since this value depends on the limit distribution of right-type
behavior—which only converges in distribution—γ̃ depends on the distribution of signals.
For example, if fR(p) = 2p, fL(p) = 2(1− p), λ = 0.75, λ̂l = 0.6 and λ̂r = 0.9, then γ̃ ≈ 0.2.
So a rather modest fraction of rational players ensures that low-type beliefs converge. The
existence of rational players can ensure that the frequency of A never falls below λ̂l, even
when right-type beliefs favor ω = L.

1.D.2 Alternative Forms of Misprediction

This section considers alternative distributional errors distinct from projection. For instance,
people might perceive a false sense of uniqueness. The analysis of limit beliefs contained in
Sections 1.4.1 and 1.4.2 was independent of assumptions placed on λ̂. Hence, those results
can be applied to λ̂ exhibiting any particular pattern of error.

Following simply from Proposition 4, which tells us when a confident equilibrium belief is
stable, we have the following general result for any form of misprediction of type proportion
λ̂:

Proposition A.6. As N → ∞, economy-wide learning is complete if and only if for all
θ ∈ Θ, λ̂(θ) ∈

(
1
2
, λ
]
.

When all individuals mutually underestimate the share of people that have the majority
preference, then the truth is asymptotically stable. Near an equilibrium, people observe
more people taking the majority action than they anticipated, only strengthening their
beliefs. However, this logic implies learning may backfire in settings with small N : people
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may grow confident in a false state of the world. As N grows large, however, the probability
of incorrect learning goes to 0.

In all other scenarios not discussed in this paper, some—and possibly all—types hold non-
convergent beliefs. A particular example of interest is when people suffer a “false-uniqueness”
bias: each type thinks her type is least common.64 In such a case, it’s intuitive that action
frequencies evolve in a cyclical fashion. As some option gains popularity, say A, an individual
of either type believes B best suits her tastes. Her reasoning is that she has the minority
preference, thus the less popular option is most likely optimal. But since all people follow this
reasoning, B will eventually become the majority choice. At this point, individuals will admit
they must have been wrong, once again believing A must be optimal for their preference.
Under the false-uniqueness bias, followers avoid the majority action, causing society’s most
prevalent choice to oscillate over time. This contrasts sharply with the intuition of the strong
false-consensus bias: there, followers flock to the majority action, increasing the frequency
at which it is chosen over time.

1.E Proofs
Proof of Lemma 1.

Proof. From Equation 1.4 and using definitions ∆q := qA−qB and ∆d(θ) := (1−θ)2− (−1−
θ)2 = −4θ, it follows that an individual chooses A if and only if

r∆d(θ) ≤
∆d(θ)

2
+

∆q

2k
. (A.3)

Dividing through by ∆d(θ) and noting that ∆d(θ) > 0⇔ θ < 0 yields the decision rule.

Proof of Lemma 2.

Proof. Type-θ is actively learning if r̄(θ) ∈ [0, 1] where r̄(θ) = 1
2

+ ∆q

2k∆d(θ)
. r̄(θ) /∈ [0, 1] ⇔

∆q

∆d(θ)
> k or ∆q

∆d(θ)
< −k. It follows that passive types comprise the set Θp := {θ ∈ Θ |

−∆q < k∆d(θ) < ∆q}. Active left types comprise the set Θl := Θ ∩ (−∞, 0) \ Θp. Given
that θ < 0⇒ ∆d(θ) > 0, Θl = {θ ∈ Θ | k∆d(θ) ≥ ∆q}. Similarly, since θ > 0⇒ ∆d(θ) < 0,
Θr := Θ ∩ [0,∞) \Θp = {θ ∈ Θ | k∆d(θ) ≤ −∆q}

Proof of Lemma 3.

Proof. For θ /∈ Θp, the cutoff rule followa immediately from rewriting the posterior r in
Lemma 1 as r = p/(p + (1 − p)`) and solving for a threshold on p. By definition, θ ∈ Θp

choose A for all p ∈ (0, 1).
64 Wallace (1996) puts it well: “everybody is identical in their unspoken belief that way deep down they

are different from everyone else.”
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Proof of Lemma 4.

Proof. See Lemma A.1.

Proof of Lemma 5.

Proof. Fix θ ∈ Θ and `θt ∈ R+. Suppose at/N > λ̂(θ). From Equation 1.12, `θt+1 < `θt ⇔
ψ(at | `θt , L) < ψ(at | `θt , R)⇔ αθ(`

θ
t , ω)a

[
1− αθ(`θt , L)

]N−a
< αθ(`

θ
t , R)a

[
1− αθ(`θt , R)

]N−a
,

⇔
(
αθ(`

θ
t , L)

[
1− αθ(`θt , R)

]
[
1− αθ(`θt , L)

]
αθ(`θt , R)

)a(
1− αθ(`θt , R)

1− αθ(`θt , L)

)N
< 1

⇔ a log

(
αθ(`

θ
t , L)

[
1− αθ(`θt , R)

]
[
1− αθ(`θt , L)

]
αθ(`θt , R)

)
+N log

(
1− αθ(`θt , R)

1− αθ(`θt , L)

)
< 0. (A.4)

If
(
αθ(`θt ,L)

[
1−αθ(`θt ,R)

]
[

1−αθ(`θt ,L)
]
αθ(`θt ,R)

)
> 1, then inequality A.4 holds iff

a/N <
1

1 + log
(
αθ(`θt ,L)

αθ(`θt ,R)

)/
log
(

1−αθ(`θt ,R)

1−αθ(`θt ,L)

) ≡ κ(`θt , θ).

Otherwise, A.4 holds iff a/N > κ(`θt , θ). Finally, note that
(
αθ(`θt ,L)

[
1−αθ(`θt ,R)

]
[

1−αθ(`θt ,L)
]
αθ(`θt ,R)

)
> 1 ⇔

αθ(`
θ
t , L) > αθ(`

θ
t , R)⇔ λ̂(θ) + [1− 2λ̂(θ)]FL(p(`θt )) > λ̂(θ) + [1− 2λ̂(θ)]FR(p(`θt ))⇔ λ̂(θ) <

1/2, since FR(p(`θt )) < FL(p(`θt )) by Assumption 5.

Proof of Proposition 1.

Proof. Fix θ ∈ Θ `θt ∈ R+. Let m = min{1− λ̂(θ), λ̂(θ)} and m = max{1− λ̂(θ), λ̂(θ)}. To
proceed, I show that for all `θt ∈ R+, κ(`θt , θ) ∈ [m,m]. Since κ(`θt , θ) is monotonic in `θt , we
must consider lim`→0 κ(`, θ) and lim`→∞ κ(`, θ). First, note that lim`→0 αθ(`, ω) = λ̂(θ) and
lim`→∞ αθ(`, ω) = 1− λ̂(θ). Thus, we must use L’Hoptial’s rule to evaluate the limits:

∂

∂`
log

(
αθ(`, L)

αθ(`, R)

)
=

(
αθ(`, L)

αθ(`, R)

)−1 αθ(`, R) ∂
∂`
αθ(`, L)− αθ(`, L) ∂

∂`
αθ(`, R)

αθ(`, R)2
,

∂

∂`
log

(
1− αθ(`, R)

1− αθ(`, L)

)
=

(
1− αθ(`, R)

1− αθ(`, L)

)−1 ∂
∂`
αθ(`, L)− ∂

∂`
αθ(`, R) + αθ(`, L) ∂

∂`
αθ(`, R)− αθ(`, R) ∂

∂`
αθ(`, L)

[1− αθ(`, L)]2
,
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and, since Equation 1.10 implies

∂

∂`
αθ(`, ω) =

[
1− 2λ̂(θ)

]
fω
(
p(`)

) ∂
∂`
p(`),

it follows that

lim
`→0

∂
∂`

log
(
αθ(`,L)
αθ(`,R)

)

∂
∂`

log
(

1−αθ(`,R)
1−αθ(`,L)

) =
1− λ̂(θ)

λ̂(θ)
,

and

lim
`→∞

∂
∂`

log
(
αθ(`,L)
αθ(`,R)

)

∂
∂`

log
(

1−αθ(`,R)
1−αθ(`,L)

) =
λ̂(θ)

1− λ̂(θ)
.

As such, lim`→0 κ(`, θ) = λ̂(θ) and lim`→∞ κ(`, θ) = 1− λ̂(θ), and κ(`, θ) ∈ [m,m] for all ` ∈
R+. Suppose at/N > λ̂(θ). If λ̂(θ) > 1/2, then at/N > m > κ(`θt , θ) and Lemma 5 implies
`θt+1 < `θt . Otherwise, Lemma 5 implies `θt+1 > `θt . Now suppose at/N < 1− λ̂(θ). Similarly,
if λ̂(θ) > 1/2, then at/N < m < κ(`θt , θ) and Lemma 5 implies `θt+1 > `θt . Otherwise, if
λ̂(θ) < 1/2, Lemma 5 implies `θt+1 < `θt .

Proof of Corollary 1.

Proof. Fix an arbitrary θ ∈ Θ and suppose she has likelihood ratio `θt ∈ R+. Given obser-
vation Xt at public belief `θt , Equation 1.12 implies `θt+1 > `θt ⇔ Ψθ(Xt, `

θ
t ) > 1 ⇔ ψ(Xt |

`θt , L) > ψ(Xt | `θt , R). Suppose N = 1 and Xt = A and let p̄ := p(`θt ) denote θ’s private-
belief threshold in t.. Then Equation 1.10 implies ψ(Xt | `θt , L) > ψ(Xt | `θt , R) if and only
if [

1− λ̂(θ)
]
FL(p̄) + λ̂(θ)

[
1− FL(p̄)

]
>
[
1− λ̂(θ)

]
FR(p̄) + λ̂(θ)

[
1− FR(p̄)

]
,

which holds if and only if
[
1− 2λ̂(θ)

]
FL(p̄) >

[
1− 2λ̂(θ)

]
FR(p̄). (A.5)

By Assumption 5, FL(p̄) > FR(p̄) for all `θt ∈ R+, so Relation A.5 holds if and only if
λ̂(θ) < 1

2
.

Proof of Proposition 2.

Proof. Fix an arbitrary θ ∈ Θ and suppose she has likelihood ratio `θt ∈ R+. AssumingN = 1
and Xt = A, Proposition 1 Ψθ(Xt = A, `θt ) > 1 ⇔ λ̂(θ) < 1

2
. First consider λ̂(θ) ∈ (1

2
, 1) so

Ψθ(Xt = A, `θt ) < 1. We want to show |`θt+1 − `θt | is increasing in λ̂(θ) on this domain. Note
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that |`θt+1 − `θt | = `θt |Ψθ(A, `
θ
t ) − 1|, which is increasing in λ̂(θ) ⇔ Ψθ(A, `

θ
t ) is decreasing in

λ̂(θ). Let p̄ := p(`θt ) denote θ’s private-belief threshold in t. Note

Ψθ(A, `
θ
t ) =

[
1− λ̂(θ)

]
FL(p̄) + λ̂(θ)

[
1− FL(p̄)

]
[
1− λ̂(θ)

]
FR(p̄) + λ̂(θ)

[
1− FR(p̄)

]

=
λ̂(θ)

[
1− 2FR(p̄)

]
+ FR(p̄)

λ̂(θ)
[
1− 2FL(p̄)

]
+ FR(p̄)

(A.6)

so ∂

∂λ̂(θ)
Ψθ(A, `

θ
t ) < 0 if and only if

λ̂(θ)
[
1− 2FR(p̄)

][
1− 2FL(p̄)

]
+ FR(p̄)

[
1− 2FL(p̄)

]
>

λ̂(θ)
[
1− 2FL(p̄)

][
1− 2FR(p̄)

]
+ FL(p̄)

[
1− 2FR(p̄)

]
,

which holds if and only if FL(p̄) > FR(p̄), which is true for all `θt ∈ R+. Next, suppose that
λ̂(θ) ∈ (0 < 1

2
) so Ψθ(Xt = A, `θt ) > 1. We want to show that |`θt+1 − `θt | = `θt |Ψθ(A, `

θ
t )− 1|

is decreasing in λ̂(θ) on this domain. This is true iff Ψθ(A, `
θ
t ) is decreasing in λ̂(θ), which

was shown in the case above. The logic is identical for Xt = B, but uses the fact that
Ψθ(Xt, `

θ
t ) > 1⇔ λ̂(θ) > 1

2
.

Proof of Proposition 3.

Proof. If λ̂l = λ̂r, then play and beliefs correspond to the true Bayesian equilibrium and for
all t ∈ N, πθt = πθ

′
t for all θ, θ′ ∈ Θ. This equilibrium is studied in Smith and Sørensen (2000)

and this result follows directly from their Theorem 5. Intuition is as follows: By Lemma 6,
〈`θt 〉 forms a conditional martingale on ω = R. By the Martingale Convergence Theorem,
it must converge almost surely to some stationary limit. By Lemma 7, the only stationary
limit points are ` ∈ {0,∞}. But rational beliefs never converge to fully-incorrect beliefs, so
it must be that `θt → 0 a.s.

Proof of Lemma 6.

Proof. Fix an arbitrary θ ∈ Θ and suppose ω = R. Note that

E[`θt+1 | `t] =
N∑

at=0

ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
`θt (A.7)

Thus in order for 〈`θt 〉 to form a Martingale conditional on R, we would need

N∑

at=0

ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
= 1. (A.8)

for all `θt ∈ R+. But note
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N∑

at=0

ψ(at | `t, R)Ψθ(at, `
θ
t ) =

N∑

at=0

ψ(at | `t, R)
ψθ
(
at | `θt , L

)

ψθ
(
at | `θt , L

)

=
N∑

at=0

ψ(at | `t, R)

ψθ
(
at | `θt , R

)ψθ
(
at | `θt , L

)
(A.9)

Trivially, by the Law of Total Probability,
∑N

at=0 ψθ(at | `θt , L) = 1. Hence in order for
Equation A.8 to hold generically, we require ψ(at | `t, R) = ψθ(At | `θt , R) for all at ∈
{0, 1, ..., N} in each t ∈ N, which is only true if λ̂(θ) = λ and for each θ, θ′ ∈ Θ, `θt = `θ

′
t in

each t ∈ N. But `θt = `θ
′
t in each t ∈ N ⇔ λ̂(θ) = λ̂(θ′). Hence, the martingale condition

holds if and only if λ̂(θ) = λ for all θ ∈ Θ.

Proof of Lemma 7.

Proof. This is a direct application of Theorem B.1 and B.2 of S&S. They show that any limit
point must be a steady-state of the process. That is, if `θ ∈ supp

(
`θ∞
)
, then it must be that

ϕ(X, `θ) = `θ. For all θ ∈ Θ, the only beliefs that satisfy this condition are πθ ∈ {0, 1}.
Proof of Lemma 8.

Proof. Adapted from Theorem C.1 of Smith and Sørensen (2000).

Proof of Proposition 4.

Proof. Let ˆ̀ be a fixed point of the joint belief process 1.15. From Lemma 8, ˆ̀ is stable
if χθ(ˆ̀) < 1 for all θ ∈ Θ, and unstable if χθ(ˆ̀) > 1 for some θ. I determine when this
condition holds as a function of λ̂, which dictates the action frequency each type expects
at fixed point ˆ̀. At ˆ̀, a θ-type believes all share confident belief ˆ̀θ, and thus expects A
with frequency αθ

(
ˆ̀θ, ω); the true frequency is α(ˆ̀). To determine whether this unexpected

frequency reinforces each θ’s beliefs, we must calculate χθ(ˆ̀) =
∏N

a=0

(
∂
∂`
ϕθ
(
a, ˆ̀θ

))ψ(a,`)

for
each θ.
Step 1: Calculate ∂

∂`
ϕθ(a, `).

Recall ϕθ(a, `) = Ψθ(a, `)`, where Ψθ(a, `) = ψθ(a | `, L)/ψθ(a | `, R). From the definition
of ψθ(a | `, ω) in Equation 1.8, it follows that

∂

∂`
ψθ(a | `, ω) =

(
N

a

)(
aαθ(`, ω)a−1

[
1− αθ(`, ω)

]N−a ∂
∂`
αθ(`, ω)

−(N − a)αθ(`, ω)a
[
1− αθ(`, ω)

]N−a−1 ∂

∂`
αθ(`, ω)

)

=
∂

∂`
αθ(`, ω)

(
a
ψθ(a | `, ω)

αθ(`, ω)
− (N − a)

ψθ(a | `, ω)

1− αθ(`, ω)

)
. (A.10)
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From Equation 1.10 it follows that

∂

∂`
αθ(`, ω) =

[
1− 2λ̂(θ)

]
fω
(
p(`)

) ∂
∂`
p(`).

Plugging this into Equation A.10 and using the fact p(`) = `/(1 + `)⇒ ∂
∂`
p(`) = 1/(1 + `)2

yields

∂

∂`
ψθ(a | `, ω) =

[
1− 2λ̂(θ)

]

(1 + `)2
ψθ(a | `, ω)fω

(
p(`)

)
(

a−Nαθ(`, ω)

αθ(`, ω)
[
1− αθ(`, ω)

]
)
. (A.11)

From the definition of Ψθ(a, `), we have

∂

∂`
Ψθ(a, `) =

∂
∂`
ψθ(a | `, L)

ψθ(a | `, R)
−Ψθ(a, `)

∂
∂`
ψθ(a | `, R)

ψθ(a | `, R)
, (A.12)

so Equation A.10 implies

∂

∂`
Ψθ(a, `) = Ψθ(a, `)

{[
1− 2λ̂(θ)

]

(1 + `)2

[
fL
(
p(`)

)
(

a−Nαθ(`, L)

αθ(`, L)
[
1− αθ(`, L)

]
)

− fR
(
p(`)

)
(

a−Nαθ(`, R)

αθ(`, R)
[
1− αθ(`, R)

]
)]}

. (A.13)

Finally, ∂
∂`
ϕθ(a, `) = Ψθ(a, `) + ` ∂

∂`
Ψθ(a, `), so Equation A.13 implies

∂

∂`
ϕθ(a, `) = Ψθ(a, `)

{
1 +

[
1− 2λ̂(θ)

]
`

(1 + `)2

[
fL
(
p(`)

)
(

a−Nαθ(`, L)

αθ(`, L)
[
1− αθ(`, L)

]
)

− fR
(
p(`)

)
(

a−Nαθ(`, R)

αθ(`, R)
[
1− αθ(`, R)

]
)]}

. (A.14)

Step 2: Evaluation of χθ(ˆ̀).
While we want to assess whether χθ(ˆ̀) exceeds 1 at the candidate equilibrium belief, the

fact that fixed points are confident beliefs adds a complication to this approach. If each
component of ˆ̀ is 0 or ∞,then χθ(ˆ̀) = 1 for all θ ∈ Θ. I now show this.

It is clear from Equation A.14 that if ` ∈ {0,∞}, then ∂
∂`
ϕθ(a, `) = Ψθ(a, `). Furthermore,

it is easy to show that Ψθ(a, 0) = Ψθ(a,∞) = 1: if θ is confident in ω, then her perceived
probability of outcome a is identical in each ω ∈ {L,R}, so ψθ(a | 0, L) = ψθ(a | 0, R) and
ψθ(a | ∞, L) = ψθ(a | ∞, R). Formally, consider ˆ̀θ = 0. The private belief threshold is
p(ˆ̀θ) = 0, so the perceived probability that a random player takes A in ω is αθ(0, ω) =

[
1−
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λ̂(θ)
]
Fω(0) + λ̂(θ)

[
1−Fω(0)

]
= λ̂(θ). If instead ˆ̀θ =∞, then p

(
ˆ̀θ
)

= 1 and αθ(∞, ω) = 1−
λ̂(θ). In either case, αθ

(
ˆ̀θ, ω

)
is independent of ω, so it follows immediately from Equation 1.8

that ψθ
(
a | ˆ̀θ, ω

)
is also independent of ω. Hence Ψθ

(
a, ˆ̀θ

)
= ψθ

(
a | ˆ̀θ, L

)
/ψθ
(
a | ˆ̀θ, R

)
= 1.

So for any π̂ ∈ Π and corresponding likelihood ratios ˆ̀,

∂

∂`
ϕθ
(
a, ˆ̀θ

)∣∣∣∣
`=ˆ̀

= 1. (A.15)

It follows from Equation 1.19 that χθ(ˆ̀) = 1, which tells us nothing about the stability
of the process in the neighborhood of ˆ̀. To address this, note that χθ(·) is differentiable
with respect to any `θ in the neighborhood of any ˆ̀. So, stability is determined by whether
lim`θ→ˆ̀θ χθ(`

θ, `−θ) = 1 from below or above. If it’s from below, then χθ(`) < 1 at all
points ` in the neighborhood of ˆ̀. So any linear approximation of the system within this
neighborhood converges toward the fixed point, implying stability. But if χθ(`) approaches
1 from above, χθ(`) > 1 at all points ` in the neighborhood of ˆ̀, implying the fixed point is
not stable. Hence the sign of the derivative of χθ(`) with respect to ˆ̀θ determines stability
analogously to Lemma 8: ˆ̀ is stable if ∂

∂
χθ(ˆ̀) < 0 for all θ ∈ Θ, and unstable if ∂

∂`
χθ(ˆ̀) > 0

for some θ ∈ Θ.
To proceed, I determine when ∂

∂
χθ(ˆ̀) ≶ 0 for an arbitrary θ-type at each of the possible

limit points, ˆ̀θ = 0 and ˆ̀θ =∞, respectively.
Step 3: Stability of `θt near ˆ̀θ = 0.

Suppose π̂(θ) = 1⇒ ˆ̀θ = 0. Note that ∂
∂`θ
χθ(`) > 0⇔ ∂

∂`θ
logχθ(`) > 0. Notice

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑

a=0

ψ(a, ˆ̀)

(
∂

∂`
ϕθ(a, 0)

)−1(
∂2

∂`2
ϕθ
(
a, `θ

)∣∣∣∣
ˆ̀θ=0

)

+
N∑

a=0

(
∂

∂ ˆ̀θ
ψ(a, `)

∣∣∣∣
`=ˆ̀

)
log

(
∂

∂`
ϕθ(a, 0)

)

=
N∑

a=0

ψ(a, ˆ̀)

(
∂2

∂`2
ϕθ
(
a, `θ

)∣∣∣∣
ˆ̀θ=0

)
(A.16)

where the final equality follows from ∂
∂`
ϕθ(a, 0) = 1 (as shown above in Equation A.15).

Since

∂2

∂`2
ϕθ(a, `) =

∂2

∂`2
{Ψθ(a, `)`} = 2

∂

∂`
Ψθ(a, `) + `

∂2

∂`2
Ψθ(a, `), (A.17)

Equation A.16 reduces to

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑

a=0

2ψ(a, ˆ̀)
∂

∂`
Ψθ(a, 0) (A.18)
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From Equation A.13 and using the fact that p(0) = 0⇒ αθ(0, ω) = λ̂(θ) and Ψθ(a, 0) = 1,

∂

∂`
Ψθ(a, 0) =

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
(

a−Nλ̂(θ)

λ̂(θ)
[
1− λ̂(θ)

]
)
, (A.19)

so Equation A.18 implies

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
2
[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]

λ̂(θ)
[
1− λ̂(θ)

]
N∑

a=0

ψ(a, ˆ̀)
(
a−Nλ̂(θ)

)

=
2
[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]

λ̂(θ)
[
1− λ̂(θ)

]
(
Nα(ˆ̀)−Nλ̂(θ)

)
. (A.20)

where the second equality follows from the fact that
∑N

a=0 ψ(a, ˆ̀) = 1 and
∑N

a=0 aψ(a, ˆ̀)

is simply the expected value of a Binomial(N ,α(ˆ̀)) random variable, so
∑N

a=0 aψ(a, ˆ̀) =

Nα(ˆ̀). Since fL(0)− fH(0) > 0, Equation A.20 implies the following result:

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔





λ̂(θ) < α(ˆ̀) if λ̂(θ) > 1
2

λ̂(θ) > α(ˆ̀) if λ̂(θ) < 1
2
.

(A.21)

Step 4: Stability of `θt near ˆ̀θ =∞:
Recall that `θt is the likelihood ratio of state L relative to state R, hence `θt =∞ indicates

confidence in state L. This is equivalent to the likelihood ratio of state R relative to state
L—the inverse of `θt—equal to 0. Denote the inverse likelihood ratio by rθt := (`θt )

−1. In
order to follow the logic of the case in Step 3, which determined stability of ˆ̀θ = 0, I assess
the stability of ˆ̀θ = ∞ by determining the stability of the inverse likelihood ratio r at 0.
The stability coefficient of interest is now that of the inverse likelihood ratio:

χ̃θ(r̂) =
N∏

a=0

(
∂

∂r ϕ̃θ
(
a, r̂θ

))ψ̃(a,r)
(A.22)

where ϕ̃θ(a, r) is the transition equation for the process 〈rθt 〉:

ϕ̃θ(a, r) = Ψ̃θ(a, r)r,
with

Ψ̃θ(a, r) =
ψ̃θ(a | r, R)

ψ̃θ(a | r, L)
.

ψ̃θ(a | r, ω) is the direct analog of ψθ(a | `, ω): it is the probability of observing a at belief r
in state ω according to type-θ’s theory of tastes.
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As above, χ̃θ(r̂) = 1 if r̂θ = 0, so we must calculate the derivative or χ̃θ(r̂) with respect
to rθ and evaluate the sign at 0. As above, the fixed point is stable the sign is negative, and
unstable when positive. Identical calculations to those in Step 3 yield

∂

∂rθ log χ̃θ(r)
∣∣∣∣
r=r̂

=
N∑

a=0

2ψ̃(a, r̂) ∂
∂rΨ̃θ

(
a, r
)∣∣∣∣
r=r̂
. (A.23)

Note that

∂

∂rΨ̃θ(a, r) = Ψ̃(a, r)
{[

1− 2λ̂(θ)
]

(1 + r)2

[
fL
(
p(r)

)
(

a−Nαθ(r, L)

αθ(r, L)
[
1− αθ(r, L)

]
)

fR
(
p(r)

)
(

a−Nαθ(r, R)

αθ(r, R)
[
1− αθ(r, R)

]
)]}

. (A.24)

At r = 0, p(r) = 1 and αθ(r, ω) = 1− λ̂(θ), so when r̂θ = 0,

∂

∂rθ Ψ̃θ

(
a, rθ

)∣∣∣∣
r=r̂

=
[
1− 2λ̂(θ)

][
fL(1)− fR(1)

]
(
a−N

(
1− λ̂(θ)

)

λ̂(θ)
[
1− λ̂(θ)

]
)
. (A.25)

Plugging into Equation A.23,

∂

∂rθ log χ̃θ(r)
∣∣∣∣
r=r̂

=
2
[
1− 2λ̂(θ)

][
fL(1)− fR(1)

]

λ̂(θ)
[
1− λ̂(θ)

]
(
Nα(r̂)−N

(
1− λ̂(θ)

))
. (A.26)

Since fR(1) > fL(1), we have the following result:

∂

∂rθ χ̃θ(r)
∣∣∣∣
r=r̂

< 0⇔
{

1− λ̂(θ) > α(r̂) if λ̂(θ) > 1
2

1− λ̂(θ) < α(r̂) if λ̂(θ) < 1
2

(A.27)

Step 5. Linking stability to expected action frequencies.
Finally, I write the stability conditions derived in Steps 3 and 4—Results A.21 and A.27—

in terms of the expected and true action frequencies at ˆ̀. First, note that

F̂θ

(
Mθ(ˆ̀), ˆ̀

)
=

{
λ̂(θ) if λ̂(θ) > 1

2

1− λ̂(θ) if λ̂(θ) < 1
2
.

(A.28)

Second, note that by definition, α(ˆ̀) = F (A, ˆ̀) and 1 − α(ˆ̀) = F (B, ˆ̀). Plugging these
identities into Results A.21 and A.27 respectively yield

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔
{

F̂θ

(
Mθ(0), 0

)
< α(ˆ̀) = F (A, ˆ̀) if λ̂(θ) > 1

2

F̂θ

(
Mθ(0), 0

)
< 1− α(ˆ̀) = F (B, ˆ̀) if λ̂(θ) < 1

2
,

(A.29)
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and

∂

∂rθ χ̃θ(r)
∣∣∣∣
r=r̂

< 0⇔
{

F̂θ

(
Mθ(∞),∞

)
< 1− α(ˆ̀) = F (B, ˆ̀) if λ̂(θ) > 1

2

F̂θ

(
Mθ(∞),∞

)
< α(ˆ̀) = F (A, ˆ̀) if λ̂(θ) < 1

2
.

(A.30)

Finally, we can rewrite the F (X, ˆ̀) terms on the right-hand side of the expressions above
in terms of a θ-type’s expected majority action at ˆ̀. Note

Mθ(0) =

{
A if λ̂(θ) > 1

2

B if λ̂(θ) < 1
2
,

and Mθ(∞) =

{
B if λ̂(θ) > 1

2

A if λ̂(θ) < 1
2
.

(A.31)

Appropriately incorporating these identities into A.32 and A.33 finally yields the following
stability conditions:

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔
{

F̂θ

(
Mθ(0), 0

)
< F

(
Mθ(0), ˆ̀) if λ̂(θ) > 1

2

F̂θ

(
Mθ(0), 0

)
< F (Mθ(0), ˆ̀) if λ̂(θ) < 1

2
,

(A.32)

and

∂

∂rθ χ̃θ(r)
∣∣∣∣
r=r̂

< 0⇔
{

F̂θ

(
Mθ(∞),∞

)
< F (Mθ(∞), ˆ̀) if λ̂(θ) > 1

2

F̂θ

(
Mθ(∞),∞

)
< F (Mθ(∞), ˆ̀) if λ̂(θ) < 1

2
.

(A.33)

Hence, in all cases—ˆ̀∈ {0,∞} and λ̂(θ) ≶ 1
2
—that the stability condition holds for a θ type

if and only if

F̂θ

(
M
(
ˆ̀(θ)

)
, ˆ̀(θ)

)
< F

(
M
(
ˆ̀(θ)

)
, ˆ̀
)
, (A.34)

completing the proof.

Proof of Proposition 5.

Proof. Suppose ˆ̀∈ L is such that ˆ̀θ = 0 for all θ ∈ Θ. I show that this point of long-run
agreement is necessarily unstable; the proof for the alternative case where ˆ̀θ = ∞ for all
θ ∈ Θ, which follows analogously, is omitted.

Instability of asymptotic agreement is established along the lines of Proposition 4. How-
ever, to demonstrate the robustness of this result, I extend the proof of Proportion 4 to
allow for known quality differences. Without loss of generality, assume ∆q ≥ 0. The logic
is identical: ˆ̀ is unstable if ∂

∂`θ
χθ(`)

∣∣
`=ˆ̀> 0 for some θ ∈ Θ. The only aspect of that proof
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that we must change is the function αθ(`θ, ω) (now given by Equation 1.9). Since ∆q 6= 0,
∂
∂`
p(0, θ) = 1/v(θ). Hence

∂

∂`
αθ(0, ω) = fω(0)


∑

θ̃∈Θl

ĝ(θ̃ | θ)
v(θ̃)

−
∑

θ̃∈Θr

ĝ(θ̃ | θ)
v(θ̃)


 . (A.35)

We can now rely on many of the derivations in Proposition 4. It follows that

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑

a=0

2ψ(a, ˆ̀)
∂

∂`
Ψθ(a, 0)

=
2
[
fL(0)− fR(0)

]

αθ(0, ω)
[
1− αθ(0, ω)

]


∑

θ̃∈Θl

ĝ(θ̃ | θ)
v(θ̃)

−
∑

θ̃∈Θr

ĝ(θ̃ | θ)
v(θ̃)




N∑

a=0

ψ(a, ˆ̀)(a−Nαθ(0, ω)). (A.36)

The first equality follows from Equation A.18. To arrive at the second equality, first plug
∂
∂`
αθ(0, ω) from A.35 into the expression for ∂

∂`
ψθ(a | `, ω) in Equation A.10, then plug

the result into Equation A.12, and evaluate the expression at `θ = 0. Given ∆q ≥ 0, all
right and passive players take A at ˆ̀, so αθ(0, L) = αθ(0, R) = 1 −∑θ̃∈Θl ĝ(θ̃ | θ)—θ’s
perceived measure of all types other than active left types. Since

∑N
a=0 ψ(a, ˆ̀)a = E[ã]

assuming ã ∼ Binomial(N,α(ˆ̀)), and since fL(0) > fR(0), it follows from Equation A.36
that ∂

∂`θ
logχθ(`)

∣∣
`=ˆ̀> 0 if and only if

∑

θ̃∈Θl

ĝ(θ̃ | θ)
v(θ̃)

−
∑

θ̃∈Θr

ĝ(θ̃ | θ)
v(θ̃)


 [α(ˆ̀)− αθ(0, ω)

]
> 0. (A.37)

I now argue that, generically, Condition A.37 must hold for some θ ∈ Θ. First, for any
θ ∈ Θr, αθ(0, ω) > α(ˆ̀). If not, this implies that an active right type overestimates the share
of active left types, providing a contradiction. Similarly, for any θ ∈ Θl, αθ(0, ω) < α(ˆ̀).
Next, define V (θ) :=

∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)
−∑θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

. The only way for condition A.37 to fail at all
θ is if V (θ) < 0 for all θ ∈ Θl, and V (θ) > 0 for all θ ∈ Θr. For a contradiction, suppose this
is true. Recall v(θ) = (4kθ+ ∆q)/(4kθ−∆q). From the definition of Θr in Lemma 2, 1/v(θ)

is increasing on Θr. Because Ĝ(θ̃ | θ) first-order stochastically dominates Ĝ(θ̃ | θ′) whenever
θ > θ′,

∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

is increasing in θ. Hence, for large enough θ, V (θ) < 0. Similarly, for
small enough θ, V (θ) > 0. Thus Condition A.37 must fail for some θ, implying a vector of
beliefs such that all agents agree on the state is necessarily unstable.

Proof of Proposition 6.
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Proof. Proposition 4 determines Π∗. From Proposition 5, we know (0, 0) /∈ Π∗ and (1, 1) /∈
Π∗. But π̂ = (0, 1) and π̂ = (1, 0) satisfy the stability requirement of Proposition 4: each
type observes more taking her anticipated majority action than expected. We need only
show that beliefs reach a neighborhood of these stable limit points. Suppose 〈`lt, `rt 〉 reaches
the north-west quadrant of belief space (see Figure 1.4), which we define by all points `t
such that `rt > Ll(`

l
t) and `lt < Lr(`

r
t ) (see footnote 51). Call this set LNW . Restricted to

LNW , each 〈`lt〉 and 〈1/`rt 〉 are non-negative supermartingales, and thus, by the Martingale
Convergence Theorem, converge. Since 0 is a stable limit point of each of these processes,
they either both converge to 0 (which occurs with positive probability) or exit LNW in
finite time. Similarly, consider the south-east quadrant defined by all points `t such that
`rt < Ll(`

l
t) and `lt > Lr(`

r
t ). Call this space LSE. Restricted to LSE, each 〈`rt 〉 and 〈1/`lt〉 are

non-negative supermartingales, and thus converge. Hence, if process 〈`lt, `rt 〉 enters LSE, it
either converges to (∞, 0) (which occurs with positive probability) or exits. Further more,
since no stable limit points exist outside of LNW ∪ LSE, the process must enter LNW ∪ LSE
infinitely often. Thus, eventually, the process converges to one of the two stationary points.

Proof of Lemma 9.

Proof. Since

E[`θt+1 | `t] =
N∑

at=0

ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
`θt , (A.38)

E[`θt+1 | `t] > `θt ⇔ ξθ(`
l
t, `

r
t ) ≡

∑N
at=0 ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
> 1. We want to assess whether

this holds for each θ in a neighborhood of ` = 0 = (0, 0). Since 0 is a fixed point of the belief
process for each θ, ξθ(0, 0) = 1. Hence we consider the (first-order) Taylor-Series expansion
of ξθ(`lt, `rt ) near 0. Note that

ξθ(ε, ε) ≈ ξθ(0, 0) +
N∑

a=0

ψ(a | 0, R)
∂

∂`θ
Ψθ

(
a, 0
)

+ ε

(
N∑

a=0

(
∂

∂`l
ψ(a | 0, R) +

∂

∂`r
ψ(a | 0, R)

)
Ψθ

(
a, 0
)
)
. (A.39)

From Equation A.40,

∂

∂`θ
ψ(a | 0, R) = (1− 2λ)ψ(a | 0, R)fR(0)

(
a−Nλ
λ(1− λ)

)
, (A.40)

and since Ψθ

(
a, 0
)

= 1,

N∑

a=0

∂

∂`θ
ψ(a | 0, R)Ψθ

(
a, 0
)

= (1− 2λ)fR(0)
N∑

a=0

ψ(a | 0, R)

(
a−Nλ
λ(1− λ)

)
,
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which equals (1 − 2λ)fR(0)E[a − Nλ]/[λ(1 − λ)] where the expectation is with respect to
a ∼ Binomial(N, λ). Thus, E[a−Nλ] = 0. Substituting this result into Equation A.39 yields

ξθ(ε, ε) ≈ 1 +
N∑

a=0

ψ(a | 0, R)
∂

∂`θ
Ψθ

(
a, 0
)
.

Finally, recall that E[`θt+1 | `t = (ε, ε)] > `θt = ε⇔ ξθ(ε, ε) > 1⇔∑N
a=0 ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0
)
>

0. From Equation A.19,

∂

∂`
Ψθ(a, 0) =

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
(

a−Nλ̂(θ)

λ̂(θ)
[
1− λ̂(θ)

]
)
,

so
N∑

a=0

ψ(a | 0, R)
∂

∂`θ
Ψθ

(
a, 0
)

= N

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]

λ̂(θ)
[
1− λ̂(θ)

] (λ− λ̂(θ)),

which exceeds 0 if and only if
[
1− 2λ̂(θ)

][
λ− λ̂(θ)

]
> 0. With Strong projection, λ̂r > λ >

1/2, so [1 − 2λ̂r][λ − λ̂r] > 0. Hence, `rt is locally a submartingale in the neighborhood of
` = (0, 0). Likewise, λ̂l < 1/2, so [1− 2λ̂l][λ− λ̂l] > 0. Hence, `lt is locally a submartingale
in the neighborhood of ` = (0, 0).

Proof of Proposition 7.

Proof. We must show that 〈`t〉 is unstable at each ˆ̀. First consider a limit point in which
types agree, ˆ̀ = (0, 0). At this belief, the observed frequency of A converges to λ, while
right types anticipate λ̂r > λ. By Proposition 4, `rt is unstable near 0. `lt must also be
unstable near 0: by Lemma 10, there exists an ε > 0 such that `rt is submartingale so long
as `lt < ε. If `lt < ε for all t, then `rt diverges to ∞ and the frequency of A converges to 1,
which necessarily implies `lt → ∞, a contradiction. The analogous argument holds at any
potential limit point ˆ̀: for some θ ∈ {l, r}, `θt is immediately unstable by Proposition 4, and
the martingale property of the unstable `θt , which moves away from ˆ̀θ in expectation, implies
`θ
′
t θ′ 6= θ necessarily exits a neighborhood about ˆ̀θ′ , contradicting stability of `θ′t .

Proof of Lemma 10.

Proof. The proof of Lemma 9 shows that E[`θt+1 | `t = (ε, ε)] > `θt = ε ⇔
[
1 − 2λ̂(θ)

][
λ −

λ̂(θ)
]
> 0. This holds for λ̂r > λ > 1/2, but fails for λ̂l ∈ (1/2, λ). Hence `rt is locally a

submartingale in the neighborhood of ` = (0, 0) whereas `lt is locally a supermartingale in
the neighborhood of ` = (0, 0).

Proof of Proposition 8.
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Proof. This follows from a direct application of Proposition 4. In any stable equilibrium, all
players who think their taste matches the majority taste must take the majority action, X.
In Case 1 (θ̃ < 0), all right types (measure λ) and all left types with λ̂(θ) < 1/2 (measure
G(θ̃)) take the majority action. By Proposition 4, this outcome is stable if and only if no
type expects to observe a share greater than G(θ̃) +λ take X at their respective equilibrium
beliefs. This is true so long as G(θ̃) + λ > max

{
1 − λ̂(θ), λ̂(θ)

}
. In Case 2 (θ̃ > 0), some

right types think they are in the minority. Now all left types (measure 1−λ) and right types
with λ̂(θ) > 1/2 (measure 1−G(θ̃)) take X. Hence, by Proposition 4, this outcome is stable
if and only if (1− λ) + 1−G(θ̃) = 2− (λ−−G(θ̃)) > max

{
1− λ̂(θ), λ̂(θ)

}
.

Proof of Proposition 9.

Proof. As N grows large, for any θ, there exists some (X,X ′) such that πθ2(X,X ′) is arbitrar-
ily close to 1. The only case in which this does not imply that a2/N is arbitrarily close to 0
or 1—nearly all players take the same action—is when either πl2(B,A) ≈ 1 and πr2(B,A) ≈ 1
or πl2(A,B) ≈ 1 and πr2(A,B) ≈ 1. That is, we do not observe a (nearly) uniform herd in
period 2 whenever both types grow confident in a state where it is optimal for players with
opposing tastes to take different actions. I focus on the case where πθ(B,A) is arbitrarily
close to 1 for each θ.65 So a2/N ≈ λ. More precisely, by the Strong Law of Large Numbers,
there exists some ε(N) > 0 such that a2/N = λ − ε(N), where ε(N) → 0 as N → ∞. Now
we evaluate the perceived likelihood ratio of observing a2/N ≈ λ − εN in state (B,A) with
(B,A) for a right type. Notice that a right type expects to observe a2/N = λ̂r − ε̂(N) for
some ε̂(N) > 0 such that ε̂(N)→ 0 as N →∞. So this likelihood ratio is

Lr =







P̂r
θ
(
Xn2 = A

∣∣∣∣ ω ∈ ΩBA

)

P̂r
θ
(
Xn2 = A

∣∣∣∣ ω ∈ ΩAB

)




a2/N 


1− P̂r
θ
(
Xn2 = A

∣∣∣∣ ω ∈ ΩBA

)

1− P̂r
θ
(
Xn2 = A

∣∣∣∣ ω ∈ ΩAB

)




1−a2/N



N

(A.41)

Lr =

(
λ̂r − ε̂(N)

1− λ̂r + ε̂(N)

)λ−εN (
1− λ̂r + ε̂(N)

λ̂r − ε̂(N)

)1−λ+εN

=

(
λ̂r − ε̂(N)

1− λ̂r + ε̂(N)

)2λ−1−2εN

(A.42)

Note that (Lr)1/N > 1 if and only if both λ̂r > 1
2

+ ε̂(N) and λ > 1
2

+ ε(N). Since
λ̂r > λ > 1

2
, this holds for sufficiently large N . So (Lr)1/N > 1 implies Lr →∞ as N →∞.

So right types in period 3 are arbitrarily confident that A is their optimal choice.
Left types, however, draw the opposite inference. As above,

65Proving the alternative case in which all types are arbitrarily confident in (A,B) is essentially identical.
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Ll =

(
λ̂l − ε̂l(N)

1− λ̂l + ε̂l(N)

)2λ−1−2ε(N)

, (A.43)

so (Ll)1/N > 1 if and only if both λ̂l > 1
2

+ ε̂l(N) and λ > 1
2

+ ε(N). Since λ̂l < 1
2
, this fails to

hold for sufficiently large N . So (Ll)1/N < 1 implies Ll → 0 as N →∞. Hence left types in
t = 3 grow arbitrarily confident that A is their optimal choice. Thus all players enter t = 3
arbitrarily confident that A is their optimal choice. Only those in t = 3 with strong contrary
signals take B, but the measure of such players goes to 0 as N → ∞. Hence a3/N → 1
as N → ∞. Once a3/N ≈ 1 is observed, players remain confident that A is optimal for all
types. As all ω ∈ ΩAA are absorbing states, beliefs remain confident that ω ∈ ΩAA for all
future periods.

Proof of Proposition 11.

Proof. Let ω := (L, λ) and ω := (R, λ). Suppose the history up to time t is a herd on A:
ht = hAt . For any finite t, this occurs with positive probability. By Lemma 11, for large t, this
initial history moves both πl(ω) and πr(ω) close to 1. Hence, given arbitrary neighborhoods
about beliefs degenerate on states ω and ω, denoted N (ω) and N (ω), respectively, with
positive probability, πlt ∈ N (ω) and πrt (ω) ∈ N (ω) for some finite t. Now we must simply
show that the joint-belief process is stochastically stable within these neighborhoods. I
build on the stability arguments of Proposition 4, extending the logic to larger state spaces
(the state space considered in Proposition 4 is binary). As above, I work with likelihood
ratios. Only for the purpose of this proof, I define left-type likelihood ratios relative to state
ω, but right-type’s relative to ω; let `lt(ω) := πl(ω)/πl(ω) and `rt (ω) := πr(ω)/πr(ω). Let
`lt = (`lt(L, λ), `lt(R, λ), `lt(R, λ)) and `rt = (`rt (L, λ), `rt (L, λ), `rt (R, λ)). With these definitions,
πlt ∈ N (ω) and πrt ∈ N (ω) ⇔ for each θ = l, r, `θt is in a neighborhood about the origin,
0 ∈ R3

+.
Step 2: Linearized System Like Proposition 4, I show the stability of the linear

approximation of the system near fixed points ˆ̀l = 0 and ˆ̀r = 0. The system is multi-
dimensional; let `θt+1 = ϕ(a, `θt ) define the transition function for a θ-type’s vector of beliefs,
and each element evolves according to `θt+1(ω) = ϕθ(a, `

θ
t , ω) := `θt (ω)ψθ(a | `θt , ω)/ψθ(a |

`θt , ω
∗) where ω∗ = ω if θ = r, and ω∗ = ω if θ = l.
For each θ, the system is approximated by the Jacobian of ϕθ(a, `θ) at ˆ̀θ = 0. Note that

the (ω′, ω) term of the Jacobian (the derivative of the `θt (ω′) transition function with respect
to belief `θt (ω)) is

∂

∂`(ω)
ϕ(a, `, ω′) = `(ω′)

∂

∂`(ω)

(
ψθ(a | `, ω′)
ψθ(a | `, ω∗)

)
+
∂`(ω′)

∂`(ω)

(
ψθ(a | `, ω′)
ψθ(a | `, ω∗)

)
(A.44)

which, evaluated at ` = 0, is 0 when ω′ 6= ω—off-diagonal terms of the Jacobian are 0.
Hence, the approximate system is diagonal: to a first-order approximation, the likelihood
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ratio of ω′ has no effect on the evolution of the likelihood ratio of ω 6= ω′. As such, the
fixed point is stable if each dimension satisfies the uni-dimensional stability criterion de-
veloped in Proposition 4. Accordingly, the remainder of this proof follows the same steps
as Proposition 4, but within this modified environment; for brevity, the arguments here are
terse—some analogous derivations in 4 are referenced for details.

From Proposition 4, `θt will remain in the neighborhood of 0 so long as for each θ, the
“stability coefficient” (Equation 1.19) for each ω and a ∈ {0, 1, ..., N} is less than one at
ˆ̀l = 0, ˆ̀

r
= 0:

χθ(ˆ̀
l
, ˆ̀
r
, ω)

∣∣∣∣
(ˆ̀
l
,ˆ̀
r
)=(0,0)

< 1, (A.45)

where

χθ(ˆ̀
l
, ˆ̀
r
, ω) =

N∏

a=0

(
∂

∂`(ω)
ϕθ
(
a, `θ, ω

))ψ(a,ˆ̀
l
,ˆ̀
r
)

, (A.46)

and ψ(a, ˆ̀
l
, ˆ̀
r
) is the true probability of observation a at beliefs ˆ̀l, ˆ̀r. Note ψ(a,0,0) =

1 ⇔ a = N , and 0 otherwise; all agents play A at these beliefs. So, χθ(0,0, ω) < 1 ⇔
∂

∂`(ω)
ϕθ
(
N,0, ω

)
< 1. From A.44, for any ω, ∂

∂`(ω)
ϕθ
(
N, `θ, ω

)
= ψθ(N | 0, ω)/ψθ(N |

0, ω∗) = αθ(0, ω)/αθ(0, ω
∗), where αθ(`θ, ω) is the probability a random player chooses A at

beliefs `θ according to a θ-type. (At `l = 0, `r = 0, left types think all left types choose A,
and right types think all right types choose A.) First consider θ = l, so ω∗ = ω = (L, λ),
and αl(0, ω

∗) = 1 − λ. If ω = (ζ, λ) for either ζ ∈ {L,R}, then αl(0, ω)/αl(0, ω
∗) =

(1 − λ)/(1 − λ) < 1 since λ < λ, so χl(0,0, ω) < 1. For ω = (R, λ), αl(0, ω)/αl(0, ω
∗) =

(1−λ)/(1−λ) = 1, and the stability test is inconclusive. Before turning to the inconclusive
case, consider θ = r: ω∗ = ω = (R, λ), and αr(0, ω

∗) = λ. If ω = (ζ, λ) for either
ζ ∈ {L,R}, then αr(0, ω)/αr(0, ω

∗) = λ/λ < 1, so χr(0,0, ω) < 1. For ω = (L, λ),
αr(0, ω)/αr(0, ω

∗) = (1−λ)/(1−λ) = 1. So, for each type, we’ve established stability along
each dimension except for one.

To deal with the “inconclusive” cases where χθ(0,0, ω) = 1, I follow Proposition 4, and
show that ∂

∂`θ(ω)
χθ(0,0, ω) < 0—the stability coefficient is less than one at all points in

the neighborhood of the fixed-point (excluding the fixed point itself). Analogous to Equa-
tion A.19,

∂

∂`θ(ω)
logχθ(ˆ̀

l
, ˆ̀
r
, ω)

∣∣∣∣
(ˆ̀
l
,ˆ̀
r
)=(0,0)

= 2
N∑

z=0

ψ(a,0,0)
∂

∂`θ(ω)

(
ψθ(a | 0, ω)

ψθ(a | 0, ω∗)

)
. (A.47)

For ω = (ζ, λ) and ω∗ = (ζ∗, λ∗), analogous to Equation A.13

∂

∂`θ(ω)

(
ψθ(a | `θ, ω)

ψθ(a | `θ, ω∗)

)
=

(
ψθ(a | `θ, ω)

ψθ(a | `θ, ω∗)

){
∂pθ(`θ)

∂`θ(ω)

[
[1− 2λ]fζ

(
pθ(`θ)

)
(

a−Nαθ(`θ, ω)

αθ(`
θ, ω)

[
1− αθ(`θ, ω)

]
)
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− [1− 2λ∗]fζ∗
(
pθ(`θ)

)
(

a−Nαθ(`θ, ω∗)
αθ(`

θ, ω∗)
[
1− αθ(`θ, ω∗)

]
)]}

, (A.48)

where pθ(`θ) is the probability of location state L according to a θ-type. For each θ, let Σθ

be the sum of the components of `θ; for θ = l, pl(`l) = (1 + `l(L, λ))/(1 + Σl), and for θ = r,
pl(`l) = (`r(L, λ) + `r(L, λ))/(1 + Σr). Note that pl(0) = 1 and pr(0) = 0. Note A.47 is less
than 0 so long as A.48 is less than 0 when evaluated at `l = 0, `r = 0, and a = N . Assuming
λ = λ∗ (which is always so in any “inconclusive case”), this holds if and only if

Cθ(ω) :=
∂pθ(0)

∂`θ(ω)
[1− 2λ∗]

[
1− αθ(0, ω∗)

][
fζ
(
pθ(0)

)
− fζ∗

(
pθ(0)

)]
< 0. (A.49)

Hence I need only show show C l(R, λ) < 0 and Cr(L, λ) < 0. From the definition of
pθ above, ∂pl(0)/∂`l(R, λ) < 0, and ∂pr(0)/∂`r(L, λ) > 0. So, θ = l ⇒ ω∗ = (L, λ) ⇒
C l(R, λ) < 0 ⇔ λ[1 − 2λ]

[
fR(1) − fL(1)

]
> 0, which holds since fR(1) > fL(1) and λ < 1

2
.

And, θ = r ⇒ ω∗ = (R, λ) ⇒ Cr(L, λ) < 0 ⇔ (1 − λ)[1 − 2λ]
[
fL(0) − fR(0)

]
< 0, which

holds since fL(0) > fR(0) and λ > 1
2
.

Proof of Lemma A.1.

Proof. From Equation 1.9,

αθ(`, ω) =
∑

θ′∈Θp

ĝ(θ′ | θ)+
∑

θ′∈Θl

ĝ(θ′ | θ)Fω(`/(v(θ′)+ `))+
∑

θ′∈Θr

ĝ(θ′ | θ)[1−Fω(`/(v(θ′)+ `))],

(A.50)
so

∂

∂`
αθ(`, ω) = fω(`)

(∑

θ′∈Θr

ĝ(θ′ | θ)v(θ′)/(v(θ′) + `)2 −
∑

θ′∈Θl

ĝ(θ′ | θ)v(θ′)/(v(θ′) + `)2

)
.

(A.51)
Since fL(0) > fH(0), ∂

∂`
αθ(0, R) < ∂

∂`
αθ(0, L) when

∑
θ′∈Θr ĝ(θ′ | θ)/v(θ′) >

∑
θ′∈Θl ĝ(θ′ |

θ)/v(θ′). Similarly, since fL(1) > fH(1), ∂
∂`
αθ(∞, R) < ∂

∂`
αθ(∞, L) when

∑
θ′∈Θr ĝ(θ′ |

θ)v(θ′) <
∑

θ′∈Θl ĝ(θ′ | θ)v(θ′). Thus there exists some ¯̀θ such that αθ(¯̀θ, L) = αθ(¯̀θ, R) so
long as both of the preceding inequalities hold, or both fail.

Let θl := max Θl and θl := min Θr. We want to find conditions on ∆q such that for any
given ĝ(· | θ), no such point ¯̀θ exists. Hence we need one of the inequalities to hold, and
one to fail. Suppose

∑
θ′∈Θr ĝ(θ′ | θ) > ∑θ′∈Θl ĝ(θ′ | θ). Since v(θ′) > v(θ′′) for all θ′ ∈ Θr

and θ′′ ∈ Θl, trivially
∑

θ′∈Θr ĝ(θ′ | θ)v(θ′) >
∑

θ′∈Θl ĝ(θ′ | θ)v(θ′). So no confound exists
so long as

∑
θ′∈Θr ĝ(θ′ | θ)/v(θ′) >

∑
θ′∈Θl ĝ(θ′ | θ)/v(θ′). Since θr = arg maxΘr v(θ) and

θ
l
= arg minΘl v(θ),

∑

θ′∈Θr

ĝ(θ′ | θ)/v(θ′) > (1/v(θr))
∑

θ′∈Θr

ĝ(θ′ | θ),
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and
(1/v(θ

l
))
∑

θ′∈Θl

ĝ(θ′ | θ) >
∑

θ′∈Θl

ĝ(θ′ | θ)/v(θ′).

So no confound exists if v(θ
l
)/v(θr) >

∑
θ′∈Θl ĝ(θ′ | θ)/∑θ′∈Θr ĝ(θ′ | θ). While not necessary,

assuming Θ is a grid, θl = −θr, so v(θ
l
) = 1/v(θr). Hence no confound exists whenever

v(θ
l
)2 >

∑
θ′∈Θl ĝ(θ′ | θ)/∑θ′∈Θr ĝ(θ′ | θ)⇔ ∆q < k∆d(θ

l
)(1− ξ)/(1 + ξ) where

ξ :=

√∑
θ′∈Θl ĝ(θ′ | θ)∑
θ′∈Θr ĝ(θ′ | θ) < 1.

The case for
∑

θ′∈Θr ĝ(θ′ | θ) < ∑
θ′∈Θl ĝ(θ′ | θ) follows nearly identically, and we find no

confound exists if ∆q < k∆d(θ
l
)(1− ξ′)/(1 + ξ′) where

ξ′ :=

√∑
θ′∈Θr ĝ(θ′ | θ)∑
θ′∈Θl ĝ(θ′ | θ) < 1.

Together, we see that no confound exists for any type’s belief process so long as

∆q < k∆d(θ
l
)(1− ξθ)/(1 + ξθ)

where

ξθ := min

{√∑
θ′∈Θl ĝ(θ′ | θ)∑
θ′∈Θr ĝ(θ′ | θ) ,

√∑
θ′∈Θr ĝ(θ′ | θ)∑
θ′∈Θl ĝ(θ′ | θ)

}
< 1.

Proof of Proposition A.1.

Proof. Let λ, λ be arbitrary elements of Λ with λ < λ. I show that there exists a confounding
belief that puts positive weight on states ω := (L, λ) and ω := (R, λ), and zero weight on
all other states. At this belief, players are nearly certain the state is one of ω or ω, but
cannot discern which is true. We want to find π̂l and π̂r such that Pr(at | π̂l, π̂r, L, λ) =
Pr(at | π̂l, π̂r, R, λ), which holds so long as the probability any random player chooses A
given these beliefs is equal in each state of the world. Denote this probability α(π̂l,π̂r, ω).
When ω = (ζ, λ) for ζ ∈ {L,R}, then α(π̂l,π̂r, ω) = λ

[
1− Fζ(1− π̂r)

]
+ (1− λ)Fζ(1− π̂l). I

now construct π̂l and π̂r that meet the condition for “confounding” beliefs, above. For each
θ, parameterize beliefs by some pθ ∈ (0, 1): let π̂θ(ω) = pθ, π̂θ(ω) = 1 − pθ, and π̂θ(ω) = 0
for all ω 6= ω, ω. Importantly, we can write both pl and pl as a function of some neutral
belief p. Note that pθ is the belief that ω = ω held by an agent with taste θ after history h.
Consider a neutral observer who observes history h, but does not yet know her taste—say
her belief that ω = ω is p. If she then learns her taste is θ, then pθ must follow from Bayes’
rule as a function of p: pl(p) = Pr(ω | h, θ = l) = (1 − λ)p/((1 − λ)p + (1 − λ)(1 − p)) and
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pr(p) = Pr(ω | h, θ = r) = λp/(λp + λ(1 − p)). Clearly, for each θ, limp→0 p
θ(p) = 0 and

limp→1 p
θ(p) = 1. Now consider the condition for confounding beliefs: Pr(at | π̂l, π̂r, L, λ) =

Pr(at | π̂l, π̂r, R, λ)⇔ α(π̂l,π̂r, ω) = α(π̂l,π̂r, ω)⇔

λ
[
1− FL(pr(p))

]
+ (1− λ)FL(pl(p)) = λ

[
1− FR(pr(p))

]
+ (1− λ)FR(pl(p)). (A.52)

I now argue that there must exist p ∈ (0, 1) such that Equation A.52 holds. At p = 0, the
left-hand side is λ, and the is λ. At p = 1, the left is 1 − λ, and the right is 1 − λ. Since
λ < λ, the left-hand side is less than the right at p = 0, but greater than than the right
at p = 1. By continuity, there exists p ∈ (0, 1) so that Equation A.52 holds. Hence, I’ve
constructed a pair of confounding beliefs, π̂l and π̂r.

Proof of Proposition A.2.

Proof. Let λ, λ be arbitrary elements of Λ with λ < λ, and let ω := (L, λ) and ω := (R, λ).
Consider the confounding belief constructed in the proof of Proposition A.1, above. That
is, π̂l and π̂r such that, for each θ, π̂θ(ω) = pθ, π̂θ(ω) = 1 − pθ, and p̂iθ(ω) = 0, where
pl(p) = Pr(ω | h, θ = l) = (1−λ)p/((1−λ)p+ (1−λ)(1− p)) and pr(p) = Pr(ω | h, θ = r) =
λp/(λp + λ(1 − p)), and p is the value that solves Equation A.52. I show that the neutral
belief process—the belief of a player who does not know her taste—is stochastically stable
in the neighborhood of p. If this is so, then taste dependent beliefs converge with positive
probability to the confounding belief identified above. Let the neutral likelihood ratio of
state ω relative to ω after history ht be denoted by `nt . Let ψ(a | `nt , ω) be the probability of
observation a ∈ {0, 1, ..., N} in state ω given neutral belief `nt . Fix ω = ω. Then process 〈`nt 〉
evolves according to `nt+1 = `nt ψ(a | `nt , ω)/ψ(a | `nt , ω) := ϕ(a, `nt ) with transition probability
ψ(a | `nt , ω). We want to show this process is stable in the neighborhood of ˆ̀n := p/(1− p),
where p generates the confounding belief, given above. By definition of the confounding
belief, ˆ̀n is a fixed point of the neutral-belief Markov process: ˆ̀n = ϕ(a, ˆ̀n) for any a. We
can use Lemma 8 to assess whether ˆ̀n is stable. That is, it must be that χ(ˆ̀n) < 1, where

χ(ˆ̀n) =
∏N

a=0

(
∂
∂`
ϕ(a, ˆ̀n)

)ψ(a|ˆ̀n,ω)

. If this Markov process is also a martingale, then χ(ˆ̀n) <

1 (see Smith and Sørensen (2000), Theorem 4). Clearly, 〈`nt 〉 forms a martingale conditional
on ω = ω: E[`nt+1 | `nt ] =

∑N
a=0 ψ(a | `nt , ω)ϕ(a, `tn) = `tn

∑N
a=0 ψ(a | `nt ω) = `nt .
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Chapter 2

Naive Social Learning, Mislearning, and
Unlearning

2.1 Introduction
People make inferences from the behavior of others when making economic and social de-
cisions. In the canonical example, diners might use the crowd gathered at a restaurant to
infer its quality. Or, investors may use others’ portfolio choices to glean information about
an asset’s expected payoff. A large literature, building from Banerjee (1992), Bikchandani,
Hirshleifer, and Welch (1992), and Smith and Sørensen (2000), has fleshed out how such
inference by fully rational people might lead them to imitate others rather than follow their
private information, and how in some particular settings such imitation can lead society
to herd with high probability on actions that people know with high probability might be
wrong. In such settings, several recent papers (DeMarzo, Vayanos, and Zwiebel, 2003; Eyster
and Rabin, 2010, 2013; Bohren, 2013) draw out implications of naive agents who fail to ap-
preciate the redundancy in information when learning from one another. Eyster and Rabin
(2010) (henceforth, “ER”) propose a simple model of inferential naivete where each agent
neglects that her predecessors are themselves learning from those before them: she assumes
each observed action reflects solely that predecessor’s private signal. For instance, a naive
diner thinks each person crowding at a restaurant is there on the basis of independent private
information. She fails to realize that the last in line likely joined because of his inference from
those already in the queue. Since naive observers wrongly think that each member of the
crowd has positive private information about the restaurant, more naive agents line up at the
restaurant, which in turn causes later observers to grow even more confident that it has high
quality. ER shows that naive agents inevitably grow unwarrentedly confident in some state
of the world. And in information-rich environments where rational observers surely learn the
truth, with positive probability naive observers grow confident in some wrong hypothesis.

Moving beyond this false confidence result, this paper explores new implications of ER’s
model of naive inference that emerge in an array of environments richer than those previously
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studied. Our central insight is that naivete sharply defines the set of hypotheses society may
come to believe in. In many settings, there exist states of the world that people always
come to disbelieve, even if true. While ER shows that in very simple environments society
mislearns with positive probability, we show that in more general settings, there exist states
where people mislearn with probability 1. That is, people necessarily grow confident in
some false hypothesis. As a corollary, we show that society can “unlearn”: in some states of
the world, even though early generations perfectly learn the truth, society inevitably assign
arbitrarily high weight to some false state. Additionally, in many settings naivete predicts
the nature of those hypotheses agents come to believe. For instance, when agents care not
only about ranking payoffs of actions but wish to learn the size of payoff differences, naivete
predicts polarization in perceived payoffs: people think the payoff difference between the best
option and all alternatives is as large as possible. And in settings with uncertainty about
the distribution of private information, it predicts that people overestimate the precision of
private signals.

The environment studied ER precludes these results. They assume a canonical social-
learning environment with perfect negative correlation in payoffs: if one restaurant is good,
the other must be bad. Classical rational-choice social-learning models rule out the possibility
that actions are equally good (or bad) solely for analytical ease, and it’s still unknown
the extent to which these simplified settings create a loss of generality. Leveraging the
tractability of the naive model, we consider more general—and more natural—settings where
agents learn the size of payoff differences across actions, which can range from large down to
zero.1 In doing so, we highlight additional implications of naive learning otherwise hidden
by the simple environments previously considered. For instance, when agents have common
preferences, so long as payoffs are not perfectly correlated, then there are necessarily some
payoff states that naive agents always come to disbelieve, even if true. While ER illustrate
that particular calibrations of their model lead naive agents to incorrectly learn the state
11% of the time, in some states within richer models naive agents mislearn 100% of the time.

Section 2 presents our basic model. Every period, a new generation of players take
actions. Payoffs are initially unknown, but each player learns from conditionally independent
private signals and predecessors’ behavior. Following ER, we assume players naively infer
from past behavior: each wrongly infers as if others learn nothing from predecessors; she
thinks their actions reflect solely their private information and the common prior. While we
discuss how our results extend in an array of environments, we focus on a setting with two
key features: (1) each generation observes only the behavior of the preceding generation,
and (2) the number of players in each generation is arbitrarily large. The first assumption
simplifies exposition. The second stacks the deck against long-run mislearning. Since an
infinite population of privately informed agents act independently in the first period—so
naivety has no implications—the law of large numbers implies the second generation of
either rational or naive agents immediately learns the state.

1The environments we consider are not developed to generate novel or pathological results, but are
natural generalizations of those previously considered.
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While Generation 2 correctly infers the state, naive inference can lead Generation 3
astray. They wrongly assume Generation 2 acts “autarkically”—relying only on noisy private
signals—neglecting that Generation 2 has perfect information. How do they interpret Gen-
eration 2’s confident behavior through this “autarkic” lens? Since confident behavior needn’t
match the action distribution predicted by autarkic play in any state, naive Generation 3
puts probability 1 on the state that best explains this behavior.2 If the true state does so,
then Generation 3 learns correctly, as do all remaining generations. But the “best explana-
tion” need not be the correct one. When the autarkic interpretation of optimal confident
behavior suggests some state other than the truth, Generation 3 unlearns. Indeed, if learn-
ing doesn’t settle down by Generation 3, then beliefs can never settle down on the truth. If
social beliefs converge on a state, it must be a “fixed point” of this process: when interpreted
through the autarkic lens, the behavior of those confident in the state is best explained by
that same state.

For clarity, consider the following example. Consumers wish to learn the quality of a
durable good offered by Firms 1 and 2. Firm m’s quality qm reflects, say, the probability
that its good remains operational at least a year after purchase. Suppose q1 ∈ {.4, .8},
q2 ∈ {.1, .6}, and qualities are independent. Signal distributions generate the following map
from the state (q1, q2) to the percent of first-generation consumers who buy 1: (.8, .1)→ 90%,
(.4, .1) → 70%, (.8, .6) → 60%, and (.4, .6) → 40%. Suppose in truth (q1, q2) = (.8, .6), so
60% select 1 in t = 1. Generation 2 correctly infers that 1 has a quality advantage, so all
buy 1. Generation 3 is puzzled—no state predicts uniform behavior in autarky. Generation
3’s best explanation is the state most likely to produce this observation.3 Out of all states,
(.8, .1) maximizes the likelihood that a consumer buys 1 based on private signals alone;
Generation 3 puts probability 1 on this state. By this logic, Generation 3 puts probability
1 on (.8, .1) whenever it observes a herd on 1—whenever (q1, q2) ∈ {(.8, .1), (.4, .1), (.8, .6)}.
Consumers inevitably believe in one of two states, (.8, .1) or (.4, .6), no matter what is true.

Section 2.3 discusses general implications of naive inference on long-run beliefs. First,
we provide a key lemma characterizing the set of states on which naive agents can settle,
Ω∗. Ω∗ consists of those hypotheses such that the distribution behavior observed when
people are fully confident in the hypothesis most closely resembles the behavior we’d see by
privately informed agents if that hypothesis were true. Formally, we show that “closeness” is
naturally defined by the cross-entropy distance between the realized action distribution and
that predicted by autarkic play. Sections 2.3.2 and 2.3.3 go on to show several applications of
this characterization, which reveal the extent to which naive inference limits the conclusions
society is able to draw. For instance, we show that Ω∗ may be a singleton—society draws a
unique conclusion no matter the true state—or it may be empty—beliefs forever cycle, and
society never settles on a singular conclusion.

2Formally, Generation 3 settles on the state ω that minimizes the cross-entropy distance between the
observed action distribution and the action distribution predicted by autarkic play in ω. Details are provided
in Section 3.

3Naive agents attribute any discrepancy between observed and predicted action distributions to sampling
variation.
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Section 2.3.2 presents a simple implication of naive inference in settings where players
with common preferences choose among options with payoffs independent of one another.
Consider, for instance, investors learning the payoffs to independent stocks, or diners as-
sessing the quality of various restaurants. Naive perceptions of payoffs inevitably grow
“polarized”: people think the best option is as good as it can be, while all lesser options are
the worst they could be. Once a herd starts, people think they observe (infinitely) many
independent signals indicating that the herd action is better than all alternatives. Under
natural assumptions on the signal structure, this observation suggests a state with polarized
payoffs.4 Intuitively, the essence of herding is that people converge on all taking an action
based on shared information that would be less universally chosen if people were acting solely
on their private information. Naivety leads people to rationalize such uniform behavior by
polarized beliefs that the chosen action is as superior as possible to those unchosen. Al-
though ER’s setting precludes this result by assuming only 2 states, naivete sharply restricts
the constellation of payoffs society may deem true.

Section 2.4 demonstrates how naivete harms welfare by exploring this notion of polariza-
tion within an allocation problem where investors must choose how to split wealth between
a risky and safe asset. Investors observe private signals about the risky asset’s average re-
turn, µ, and draw inference about µ from predecessors’ allocations. Although, in truth, the
first-period allocation resolves uncertainty, naive traders continually draw inference from allo-
cations as if they reveal new information. When µ beats expectations, neglecting redundancy
causes perceptions of µ to increase over time. Loosely, investors infer from the first-period
split that µ beats expectations; the amount allocated to the risky asset in the second period
revises upward in response to this news. But since later investors neglect that predecessors
learn from past investments, they wrongly attribute this revised allocation to new positive
information. Investment in the risky asset increase yet again. Eventually, investors allocate
all wealth to the risky asset. The same logic holds when when µ falls sufficiently short of
expectations: allocation to the risky asset decreases over time. Investors inevitably invest
all wealth in a single asset, implying inefficient under-diversification. Furthermore, it’s not
necessarily so that investors allocate all wealth to the asset with the higher payoff: for some
realizations of the risky asset’s payoff, investors eventually perceive the dominated asset as
superior.

Section 2.5 explores naive inference about the distribution of information in the economy.
Preceding sections follow the standard social-learning literature in assuming players know
the distribution of private signals conditional on the payoff-relevant state. We relax this
assumption in two ways. In Section 2.5.1, the precision of private information is uncertain.
Since naive observers expect variation in actions proportional to the variation in private
information, a herd indicates that signals have the highest possible precision. Naive observers
become convinced that others have perfect private information about the payoff state.

Section 2.5.2 characterizes learning in an environment with aggregate uncertainty—after
4We assume signals indicating high quality are increasingly likely as quality increases. Formally, for all

qualities q > q′, signal densities f(s | q) and f(s | q′) satisfy the monotone likelihood ratio property.



CHAPTER 2. NAIVE SOCIAL LEARNING, MISLEARNING, AND UNLEARNING 83

combining all information in the economy, a rational agent is still uncertain about payoffs.
In this setting, a naive player rightfully anticipates that she’ll remain uncertain in the long
run. Much to her surprise, however, she inevitably grows confident in some (perhaps false)
payoff state. For example, investors learn about the probability that an asset will yield
positive return. Naive individuals conclude that the most popular asset will payoff for sure
and that the remaining assets never will. In contrast, a rational observer correctly learns
the probability that each asset pays off, but remains uncertain about the payoff realization.
Relative to rational inference, naive inference implies overconfidence about the payoff state.

We conclude in Section 3.5 by putting these principles of naive learning in broader context.
First, we argue that our results hold when agents can observe the complete history of play or
when only a finite number act each period. Second, we discuss how naive inference generates
mislearning in more general social-learning environments where agents can learn from their
own past experiences, or where some observe different predecessors than others. Finally, we
attempt to make sense of the fact that agents in our model may continually observe events
to which they assign zero probability ex-ante. Often there are natural ways to extend the
state space so that agents can explain the long-run distribution of actions.

2.2 Model
This section provides our general model. Section 2.2.1 describes our social-learning environ-
ment. Within this environment, Section 2.2.2 formally defines naive inference. Section 2.2.3
discusses the environment and results of Eyster and Rabin (2010) to make clear the differ-
ences between our setting and theirs.

2.2.1 Social-learning Environment

In every period t = 1, 2, 3, ..., a new set of N players enters, and each simultaneously takes
an action Xnt ∈ A.5 Each player is labeled nt, where t is the period in which she acts and n
is an index ranging from 1 to N . To ease exposition, we assume the action space is discrete;
A ≡ {A1, ..., AM} for some finite M ≥ 2.6 For each m = 1, ...,M , let at(m) denote the
fraction of players in t who take action Am:

at(m) =
1

N

N∑

n=1

1{Xnt = Am}.

Vector at = (at(1), ..., at(M)) is the action distribution played in period t. Let ht =
(a1, ..., at−1) denote the history of the game up to time t, where h1 = ∅.

5This environment closely resembles Jackson and Kalai’s (1997) notion of a “recurring game”: each
period, a new set of players—randomly drawn according to a time-invariant type distribution—play an
identical stage game.

6Our model naturally extends to continuous settings. Some of the applications in later sections assume
a continuous action space or continuous state space.
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Players wish to learn an unknown payoff-relevant state of the world ω ∈ {ω1, ω2, ..., ωK} ≡
Ω, K < ∞. Players share a common prior π1 ∈ ∆(Ω), where π1(k) > 0 denotes the
probability of state ωk. We also permit heterogeneous preferences: conditional on ω, the
payoff from Am depends on a player’s preference type θ ∈ {θ1, θ2, ...θJ} ≡ Θ; payoffs are
denoted by u(Am | ω, θ). Preference types are private information and i.i.d. across players
according to a commonly-known probability measure g ∈ ∆(Θ).7

Players learn about the state from two information channels: private signals and social
observation. Each Player nt is endowed with a private signal snt about the state of the
world. From this signal and prior π1, Player nt computes via Bayes’ rule the probability of
each state ωk ∈ Ω, denoted pnt(k). We call the belief vector πnt ∈ ∆(Ω) derived solely from
private information Player nt’s private belief. Following Smith and Sørensen (2000), we work
directly with the distribution of private beliefs, rather than signals.8 It is common knowledge
that in state ω, πnt are conditionally independent and identically distributed across players
with c.d.f. Fω. Our only assumption on distributions {Fω} is an identification assumption,
which we make after discussing public information.

Our framework is quite general regarding the extent to which the current generation
observes behavior of previous generations. We model observability by specifying for each
Player nt an observation set Ont, which consists of all predecessors whose actions are observed
by Player nt:

Definition 1. Player nt’s observation set Ont is the set of all players observed by nt.

Definition 2. The observation structure O is the collection of all players’ observation sets:
O ≡ {{Ont}Nn=1}∞t=1.

While this framework provides a language to argue that our results are robust to various
observation structures, we primarily focus on a particular simple structure. Unless noted
otherwise, we impose the following two assumptions. First, we assume players observe only
the behavior of the previous period:

Assumption 8. (Recent Observations.) Players observe only the actions of those acting in
the previous generation: for each t ≥ 2 and all n = 1, ..., N , Ont = {(n′, t−1) | n′ = 1, ..., N}.

Second, so that observing the most recent generation is sufficient for full learning, we assume
each generation is arbitrarily large:

Assumption 9. (Large Populations.) The set of players acting each period is arbitrarily
large: N →∞.

7As noted in Smith and Sørensen (2000), a model with multiple but observable preference types is
informationally equivalent to one with a single preference type.

8 While we only need to consider private-belief distributions for abstract results, in some of the applica-
tions below we explicitly specify the signal distributions that lead to private beliefs.



CHAPTER 2. NAIVE SOCIAL LEARNING, MISLEARNING, AND UNLEARNING 85

Assumption 9 simplifies the analysis as it implies deterministic dynamics: by the Law of
Large Numbers, action frequencies in each period t are pinned down by the signal distribution
and agents’ priors entering t.

Together, Assumptions 8 and 9 represent large overlapping generations. Each generation
is present for two periods: in the first, they observe the actions of the preceding generation,
and in the second, they take actions based on the beliefs formed from this observation. We
argue in Section 2.6.1 that our results hold when replacing Assumption 8 with other obser-
vation structures, including the most common structure in the literature (e.g., Bikchandani,
Hirshleifer, and Welch (1992), or Smith and Sørensen (2000)) in which players observe all
past actions in order. Assumption 9 is also unnecessary for our results, so long as the total
number of predecessors later generations observe grows large. We impose these assump-
tions for tractability and to starkly highlight how dynamics under naive inference differ from
rational dynamics.

Following the literature, we call Player nt’s belief formed solely from observed actions
her public belief. Under Assumption 8, generation t observes the full distribution of actions
played in t− 1, at−1, and forms public belief πt ∈ ∆(Ω) using Bayes’ rule:

πt(k) =
Pr(at−1 | ωk)π1(k)∑K
k̃=1 Pr(at−1 | ωk̃)π1(k̃)

. (2.1)

We assume a naive player only errs in her calculation of Pr(at−1 | ωk). She forms beliefs
via Bayes rule using her misperception of Pr(at−1 | ωk) and maximizes expected utility with
respect to these beliefs. For simplicity, we assume that all players are naive.

In each period t ≥ 2, players combine public and private information and optimize
against these beliefs.9 From πnt and πt, Player nt arrives via Bayes rule at posterior belief
rnt ∈ ∆(Ω):

rnt(k) =
pnt(k)[πt(k)/π1(k)]∑K
k̃=1 pnt(k̃)[πt(k̃)/π1(k̃)]

.

Finally Player nt chooses an action maximizing expected utility given her beliefs:

Xnt ∈ arg max
A∈A

K∑

k=1

rnt(k)u(A | ωk, θnt).10

The environment described above defines an observational-learning game,

Γ =
〈
Ω,Θ,A, u,O, {Fω}, g,π1

〉
.11

9In Period 1, there is no social observation; actions are based solely on private signals.
10When indifferent, we assume players uniformly choose some action from the set of optimal actions at

random.
11 The game form Γ generalizes the canonical social-learning models developed by Banerjee (1992),

Bikchandani, Hirshelifer, and Welch (1992), and Smith and Sørensen (2000). Each of these models as-
sume full observability (Ont = {(n′, k) | n′ = 1, ..., N and k < t} for all n and t) and a single-file sequence
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2.2.2 Naive Social Inference

We now introduce formally how naive players learn from predecessors’ behavior. Following
Eyster and Rabin (2010), a naive individual thinks that any predecessor’s action relies solely
on that player’s private information. This implies that a naive agent draws inference as
if she assumes all her predecessors ignored the history of play and hence learned nothing
from others’ actions. That is, she infers as if all her predecessors acted “in autarky”.12 In
Equation 2.1 above, a naive player miscalculates Pr(at−1 | ω)—the likelihood of observing
action profile at−1 conditional on the state. Why? The true probability depends on the
beliefs of Generation t − 1, which in turn depend on what t − 1 has observed. While a
rational agent knows how at−1 depends on at−2 and so on, a naive agent infers as if at−1 is
based entirely on the private information of players in t−1. As such, Generation t thinks at−1

reflects solely the distribution of posteriors given some signal distribution Fω and prior π1,
and wrongly neglects that at−1 contains any information gleaned from earlier generations.13

Aside from this error in how others use information, naive individuals are otherwise fully

of players (N = 1). Banerjee (1992) and Bikchandani, Hirshleifer, and Welch (1992) assume discrete sig-
nal distributions and common preferences (|Θ| = 1), and Smith and Sørensen (2000) generalize the model
by allowing continuous signals and multiple unobserved preference types. Eyster and Rabin (2010) study
naive inference in a binary-state observational-learning environment nearly identical to Smith and Sørensen’s
(2000) aside from restricting attention to homogeneous preferences and, following Lee (1993), allowing for
continuous actions.

12This is a literal interpretation of the bias in terms of the model at hand. While it gives an intuition
as to how to model the error, it does not match the motivating psychology: we believe people neglect that
others use public information, not that people wrongly believe others don’t have access to such information.
In our social-learning settings, these two assumptions are isomorphic. Formally, one could model naivete
a long these lines by assuming agents best respond within a perceived game which exactly matches Γ
aside from a misperception of observation structure O. Denote Player nt’s misperception of O by Ônt =
{{Ôñt̃}Nñ=1}∞t̃=1

. Each Player nt thinks that all players aside from herself face an autarkic observation set
(i.e., O = ∅), while she herself faces the true observation set specified by O. Aside from this misconception
of the game form, we assume all individuals are perfectly Bayesian within their wrong model of the game
Γ̂nt =

〈
Ω,Θ,A, u, Ônt, {Fω}, g,π1

〉
.

Definition 3. A player is inferentially naive if she plays a best response to the game Γ̂nt =〈
Ω,Θ,A, u, Ônt, {Fω}, g,π1

〉
where Ônt = {{Ôñt̃}Nñ=1}∞t̃=1

is such that

1. Ônt = Ont

2. If ñ 6= n or t̃ 6= t, then Ôñt̃ = ∅.

Definition 3 implies a naive player has a correct perception of whom she observes, but thinks all others
act solely on private information—she believes all others observe no predecessors. This definition of naive
inference is isomorphic to, but distinct from, the one originally proposed by Eyster and Rabin (2008). They
assume naive players best respond to the belief that all other players are fully cursed in the sense of Eyster
and Rabin’s (2005) “Cursed Equilibrium”.

13In essence, naive players fail to realize that past behavior (in t > 2) already incorporates all private
information. There is nothing new to learn from at, t > 2. Yet followers use at as if it reflects new
independent information. Eyster and Rabin (2013) refer to this as “redundancy neglect”. In simple single-file
settings, this directly generates over-counting of early signals.
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rational in that they form beliefs using Bayes rule within their incorrect model and maximize
expected utility with respect to these beliefs.

The primitives of Γ will determine two objects that are key in determining belief dynam-
ics. For each state ω, the autarkic action distribution is the expected distribution of actions
that occurs in the first generation in both the naive and rational model. It’s the distribution
that emerges when players in fact act solely on private signals and priors.

Definition 4. (Autarkic Distribution.) Conditional on ω, Pω ∈ ∆(A) is the distribution of
actions generated by autarkic play. That is, Pω(m) is probability that a random player takes
Am based solely on her realized private belief π.14

The converged action distribution is the expected distribution of actions that occurs in Gen-
eration t when players in t are certain (rightly or wrongly) that the state is ω.

Definition 5. (Converged Distribution.) Tω ∈ (∆A) is the distribution of actions generated
when all players put probability 1 on ω.15

Finally, we make an identifiability assumption that the autarkic distribution in each state
is distinct. Thus, as generations grow arbitrarily large, naive agents anticipate that at−1

perfectly reveals the state ω.

Assumption 10. (Identifiability.) The collection of private belief distributions {Fω} is such
that for all ω, ω′ ∈ Ω, there exists m ∈ {1, ...,M} such that Pω(m) 6= Pω′(m) whenever
ω 6= ω′. That is, no two distinct states generate identical autarkic action distributions.

14Formally, to derive Pω from primitives, we first define the probability that type θ takes Am in ω when
relying solely on her private belief:

ψω(m, θ) ≡ Pr

(
Am = arg max

X∈A
Eω̃
[
u(X | θ, ω̃)

∣∣ π
] ∣∣∣∣ ω

)
. (2.2)

Recall that our definition of private belief π is the updated belief over states given one’s private signal and
prior π1. Hence, while not explicit in the definition of ψ above, ψ depends heavily on prior π1. Aggregating
across types gives the autarkic frequency of action m:

Pω(m) =
∑

θ∈Θ

g(θ)ψω(m, θ). (2.3)

15 Formally, to derive Tω from primitives, denote the set of types who prefer Am in ω by

Θω(m) ≡
{
θ ∈ Θ

∣∣∣∣ Am = arg max
X∈A

u
(
X
∣∣ θ, ω

)}
. (2.4)

Within a generation confident in ω, it is only those θ ∈ Θω(m) who take Am; thus,

Tω(m) =
∑

θ∈Θ

g(θ)1
{
θ ∈ Θω(m)

}
. (2.5)
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Taken together, Assumptions 9 and 10 imply that each naive Generation t is fully confident
in some state upon observing their predecessors’ behavior, at−1:16

Observation 1. Assume Assumptions 8, 9, and 10 hold. For each ω ∈ Ω, let δ(ω) ∈ ∆(Ω)
be the degenerate distribution that places probability 1 on state ω. For each t ≥ 2, πt → δ(ω)
as N →∞ for some ω ∈ Ω.

Conditional on state ω, naive agents in Generation t expect to observe autarkic distri-
bution at−1 = Pω. Intuitively, since they think predecessors use only private signals, they
believe play in each round should match (in the limit as N →∞) the autarkic distribution.
However, by Observation 1, Generation t actually observes the behavior of a Generation t−1
who’s perfectly confident in some state ω′. That is, in truth, they observe at−1 = Tω′ . As we
show in detail in Section 2.3, the interplay between the collection of autarkic and converged
distributions precisely determines what naive agents come to believe.

Before turning to learning dynamics in Section 2.3, it’s worth noting a few important
implications of our setting. First, since Generation 1 does act solely on private information,
a1 = Pω in state ω. Second, our identifiability assumption implies that as N → ∞, Gener-
ation 2, whether naive or rational, perfectly infers the true state ω from a1. Hence, action
frequencies in t = 2 converge to Tω. It’s straightforward that, if all agents are rational,
behavior converges by t = 2: all future generations will also play Tω. The rational Bayesian
Nash equilibrium calls for Generation t ≥ 3 to simply imitate t − 1, since at−1 is optimal
given all available information. But naive followers may move away from Tω, because their
inference assumes Tω is the result of autarkic play—they neglect that there is nothing left to
learn from Tω. Whether and when naive players will converge to Tω, and what they converge
to if not, is the basic premise of this paper, and studied generally in the next section.

2.2.3 Related Models

For sake of contrast, we briefly review Eyster and Rabin’s (2010) model upon which we build
and discuss other related approaches in the literature. We extend ER only by applying their
model of naive inference to a broader array of settings. ER explores a simple binary-state
model with a continuum of actions, common preferences, and one player acting per round.
Specifically, Ω = {0, 1}, A = [0, 1], and u(X|ω) = −(X − ω)2. With these preferences,
a player optimally chooses X ∈ [0, 1] equal to her belief that ω = 1; actions perfectly
reveal an agent’s posterior belief. Their main result is that with positive probability, society
grows confident in the wrong state. Essentially, naive players treat announced posteriors
as independent signals despite the fact that posteriors incorporate predecessors’ signals. As

16Naive agents are fully confident only in the limit as N → ∞. For finite large N , we can choose an N
large enough to achieve any arbitrary level of confidence.
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such, players vastly over-count early signals. If early signals are misleading—which happens
with positive probability—then players grow confident in the wrong state.17

The logic of how early misleading signals can lead society astray is the crux of how naivete
plays out in ER’s environment. However, because we assume N →∞, early signals are never
misleading in our setting. This is reflected in the result that a2 = Tω for the correct ω in
period 2. We emphasize how a naive society can still mislearn despite early generations
perfectly inferring the state.

Additionally, ER impose perfect-negative correlation in payoffs across states: whenever
X = 1 is optimal, payoffs are strictly decreasing in X, and learning the payoff of X = 1 pins
down the payoff of all other actions. In contrast, we consider a more natural array of settings
where payoffs aren’t perfectly correlated. Unlike ER’s setting, knowing that X is superior
to X ′ doesn’t necessarily tell us by how much X is preferred to X ′. In sections to follow,
we demonstrate exactly why this distinction matters. Not only will agents grow confident
in false states, but when tasked with learning the size of payoff differences, naive agents
systematically overestimate them. Naive inference imposes restrictions on the constellation
of payoffs agents can come to believe in the long run.

Eyster and Rabin’s model of naive inference is related to many alternative approaches
which attempt to capture the fact that people neglect redundancies in information. DeMarzo,
Vayanos, and Zweibel (2003) propose a model of “Persuasion Bias” in which neighbors in a
network communicate posterior beliefs. Building on DeGroot’s (1974) model of consensus
formation, they assume players form posteriors by taking the average of neighbors’ beliefs as
if they reflected independent signals with known precision. Importantly, players neglect that
stated beliefs already incorporate signals previously shared, which generates over-counting
of early signals. Our model is also related to Level-k thinking (e.g., Crawford and Iriberri,
2007) in this particular environment. Specifically, our agents act like Level-2 thinkers: they
best respond to the belief that others use only private information (Level-1). Additionally,
Bohren (2013) studies a model in which only fraction α of players can observe past actions,
and those who do have wrong beliefs about α. Our model of naive inference corresponds to
the case where α = 1, but all players think α̂ = 0.

Empirically, lab experiments show direct evidence that people neglect redundancies in
information when learning from predecessors’ actions. Eyster, Rabin, and Weizsäcker (2013)
tell subjects the difference in the number of Heads and Tails from 100 flips of a coin. Moving
in sequence, each subject must estimate the total difference in Heads and Tails across all
predecessors, including herself, and announce this estimate. A Bayesian Nash equilibrium
strategy is to add ones observation to the estimate of the previous subject. However, they
find that players tend to sum the announcements of all predecessors, suggesting that subjects
fail to understand that the most recent predecessor’s behavior incorporates the information
of earlier predecessors. Enke and Zimmermann (2013) find similar redundancy neglect in a

17In contrast with the rational model, wrong herds are likely to occur only when those herding are
relatively uncertain of the state. Rational herding models do not provide theories of society thinking it
knows things it doesn’t.
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laboratory asset-trading experiment, but do so in environments similar to DeMarzo, Vayanos,
and Zweibel (2003) where it is not redundancy of actions that people are neglecting.18

2.3 Naive Long-Run Beliefs
This section presents some general implications of naive inference on long-run beliefs. Our
central insight is a simple characterization of the set of hypotheses society may come to
believe in. In Section 2.3.1, we show that there can exist states of the world that people
always come to disbelieve, even if true. Further, we show that society can unlearn: in some
states of the world, when public beliefs assign arbitrarily high weight to the truth (as in
period 2), they inevitably assign arbitrarily high weight to some false state the following
period.

Section 2.3.2 applies our characterization to a natural environment in which players have
common preferences and actions have payoffs independent of one another. Naive inference
leads to polarized beliefs about quality: people conclude the best option is as good as it
can be, while all others are as bad as possible. In Section 2.3.3, we go on to show two
additional examples which demonstrate the extent to which naive inference restricts the set
of hypotheses society can learn. First, this set may be a singleton: society inevitably comes
to the same conclusion no matter what is true. Second, the set may be empty, so beliefs
continually cycle: each generation is confident in a hypothesis different than that assumed
true by the generation before.

2.3.1 Characterization of Stationary Beliefs

This section characterizes the potential limit beliefs of the naive-learning process. In doing
so, we present a key lemma that identifies the set of states naive agents come to believe in,
denoted Ω∗. Ω∗ consists of those hypotheses such that the distribution of behavior observed
when people are fully confident in the hypothesis most closely resembles the behavior we’d see
by privately informed agents if that hypothesis were true. Formally, we show that “closeness”
is naturally defined by the cross-entropy distance between the realized action distribution
and that predicted by autarkic play.

To arrive at general convergence principles, we first walk through the inferential logic of
the first 3 periods. Within our environment, only 3 periods are necessary to demonstrate
the main intuition of how naivete leads inference astray.

Naive beliefs and behavior in the first two periods match those of rational players. Sup-
pose the true state is ω∗. Since the first generation in fact acts in autarky, a1 = Pω∗ .
Generation 2 (and only Generation 2) is correct in thinking it’s predecessors act solely on
private signals; by Assumption 10, Generation 2 perfectly learns ω = ω∗. Accordingly, their
behavior matches the converged action distribution given ω∗: a2 = Tω∗ .

18Eyster and Rabin (2010) discuss how findings from earlier experimental work, like Kübler andWeizsäcker
(2004), suggest that people neglect redundancy.
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Naivete potentially has an effect starting in period 3: Generation 3 neglects that 2 learns
from 1, thinking players in t = 2 act solely on private signals. As such, Generation 3 expects
a2 to reflect some autarkic distribution Pω. In general though, Generation 3 is surprised
by a2 = T∗ω: there need not exist ω such that Pω = Tω∗ . Any discrepancy between a2 and
the distributions predicted by autarkic play is attributed to sampling variation. Hence, to
explain why a2 6= Pω for any ω, Generation 3 concludes that Generation 2 realized a very
unlikely constellation of signals. Inference in t = 3 entails deciding which ω ∈ Ω is most
likely to generate such a signal distribution.

Generation t = 3 comes to believe in state ω̂ that best predicts a2. Formally, ω̂ is the
state whose predicted autarkic distribution Pω̂ is closest to the observed distribution Tω∗ in
terms of “cross-entropy” distance. To see this, recall from Equation 2.1 that the public belief
in t = 3 that ω = ωj is

π3(j) =
Pr(a2 | ωj)π1(j)∑K
k=1 Pr(a2 | ωk)π1(k)

.

Naive agents miscalculate Pr(a2 | ω). Under their model, they think that conditional on
ω, Na2 ∼ Multinomial(N,Pω). That is, the behavior of each predecessor is an independent
realization drawn from autarkic action distribution Pω. Thus, they perceive

Pr(a2 | ω) = C(N, a2)
M∏

m=1

Pω(m)Na2(m) = C(N, a2)

(
M∏

m=1

Pω(m)Tω∗ (m)

)N

, (2.6)

where C(N, a2) is a normalization constant independent of ω.19 Since it plays a recurring role
in our analysis, we define the “likelihood” function L(ω | a) of observing action distribution
a in ω as

L(ω | a) ≡
M∏

m=1

Pω(m)a(m). (2.7)

So, P(a2 = T∗ω | ω) = C(N, a2)L(ω | T∗ω)N . It follows that the naive likelihood ratio between
any two states ωj and ωk is

π3(j)

π3(k)
=

(L(ωj | Tω∗)
L(ωk | Tω∗)

)N
.

Since N →∞, π3 puts all weight on ω̂ (π3 → δ(ω̂)) that solves

ω̂ = arg max
ω∈Ω
L(ω | Tω∗) = arg max

ω∈Ω

M∏

m=1

Pω(m)Tω∗ (m) (2.8)

Simply put, ω̂ is the state most likely to generate a2 assuming Generation 2 acts solely on
private information

19If Nat ∼ Multinomial(N,Pω), then C(N,at) = N !/
∏M
m=1Nat(m)!.
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In slightly different terms, we can model inference as a comparison across autarkic distri-
butions given the observed action distribution: Generation 3 grows confident in the state ω̂
whose autarkic distribution Pω̂ most closely resembles the converged distribution Tω∗ . Our
metric for “closeness” is the cross-entropy distance between Pω̂ and Tω∗ : for any P,T ∈ ∆(A),
the cross entropy is defined as H(T,P) ≡ −∑M

m=1 T(m) logP(m).20 This notion of distance
follows naturally from the definition of ω̂ in Equation 2.8. State ω̂ equivalently solves

ω̂ = arg min
ω∈Ω
− logL(ω | T∗ω) =

(
−

M∑

m=1

Tω∗(m) logPω(m)

)
(2.9)

As such, Generation 3 grows confident in state ω̂ which minimizes entropy between the
predicted distribution Pω̂ and the observed distribution Tω∗ .

Having established how a naive Generation 3 wrongly infers from the confident behavior of
its predecessors, we extend this logic to describe long-run dynamics. Since each Generation t
grows confident from at−1, we can deterministically characterize belief and action dynamics.
To do so, we introduce belief-transition function φ : Ω → Ω which maps the belief of
Generation t to the belief of Generation t + 1.21 Formally, suppose Generation t is certain
of ω̂ ∈ Ω, so at → Tω̂. Then define

φ(ω̂) = arg min
ω∈Ω

H(Tω̂,Pω). (2.10)

To describe the belief process, let ω̂t satisfy limN→∞ πt = δ(ω̂t). Beliefs thus evolve according
to

ω̂t+1 = φ(ω̂t), (2.11)

starting from initial condition ω̂2 = ω∗—Generation 2 correctly infers the true state ω∗ from
the truly autarkic play of Generation 1.

Naturally, we are interested the limit of this belief process: what hypothesis, if any, will all
generations eventually agree upon? Large generations (N →∞) ensure that beliefs converge
to a point belief within each generation. To characterize convergence across generations, we
make the following definition:

Definition 6. Public-belief process 〈πt〉 converges in t if there exists τ and ω such that as
N →∞, πt → δ(ω) in all t ≥ τ .

20 Our reference to H as a metric is colloquial: because it is not symmetric, it is not a proper metric.
This measure of distance is well-known in information theory and the literature on model selection. (See,
for example, Burnham and Anderson, 1989.) The measure is also used in recent work within economics on
learning with incorrect or uncertain models. Examples include Acemoglu, Chernozhukov, and Yildiz (2009),
Schwartzstein (2013), and Esponda and Pouzo (2013). An older literature in statistics on Bayesian learning
with misspecified models, starting with Berk (1966), takes a similar approach.

21 Despite being a function that maps how beliefs over Ω evolve, the domain and range of φ is Ω rather
than ∆(Ω). Defining a map over ∆(Ω) is unnecessary given that each Generation t is confident of some
ω ∈ Ω. Thus φ denotes the state in which Generation t+ 1 grows certain as a function of the state assumed
by Generation t.
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It follows immediately that beliefs converge in t to ω only if ω is a fixed point of map φ.
Formally:

Lemma 1. If 〈πt〉 converges in t to some ω ∈ Ω, then ω ∈ Ω∗, where Ω∗ is the set of fixed
points of minimum-entropy map φ:

Ω∗ ≡ {ω ∈ Ω | φ(ω) = ω}. (2.12)

Lemma 1 is central to our applications and an important result in it’s own right. In some
sense, Lemma 1 is trivial after establishing transition function φ: of course, a limit point of
ω̂t must be a fixed point of φ. Its usefulness lies in identifying the map φ that governs long-
run stationary beliefs. In applications, once we specify environment Γ, Lemma 1 predicts
exactly what naive agents inevitably believe.

More specifically, the necessary condition in Lemma 1 sharply restricts the set of states
that naive agents can learn. Ω∗ consists of only those hypotheses such that the group
behavior observed when people are fully confident in the hypothesis most closely resembles
the behavior we’d see by privately informed agents if that hypothesis were true. That is,
those states ω where out of all Pω′ , Pω is closest to Tω.

It follows that beliefs never settle down on any ω /∈ Ω∗: there can exist states that people
never come to believe even if they are true. While in ER’s canonical environment society
mislearns with positive probability, Lemma 1 implies that in our setting, there exist states
where people mislearn with probability 1—people necessarily grow confident in some false
hypothesis. And this result is independent of priors: even if priors assign arbitrarily low
probability to Ω∗, people inevitably conclude one of these extremely unlikely states has been
realized.

Assumptions 8 and 9, which imply deterministic dynamics, make the logic behind Lemma 1
straightforward. But the result is much more general. We argue in 2.6.1 that it holds when-
ever observation sets grow large in t. In short, if beliefs converge in t to ω, then the long-run
distribution of behavior must converge to Tω.22

It’s noteworthy that naive inference can cause unlearning across generations. Recall that
Generation 2 necessarily grows confident in the true state, ω∗. Generation 3 in turn becomes
certain of state ω̂ = φ(ω∗). Whenever ω∗ /∈ Ω∗ so ω̂ 6= ω∗, then society never converges to
truth. Agents “unlearn” ω∗ between Generations 2 and 3. Even if social beliefs return to ω∗
at some later date, they necessarily move away the following period.

This logic highlights a more general result of this environment: if Generation 3 fails to
learn the truth ω∗, then beliefs never converge in t to ω∗. Similarly, if society correctly learns,
it does so quickly. If ω∗ ∈ Ω∗, then Generation 3 learns correctly. And so do all remaining
periods: a3 = a2 = Tω∗ , so t = 4 draws exactly the same inference exactly as t = 3. It

22In order for naive agents to remain confident in ω, it must be that ω = arg minω′∈ΩH(Pω′ ,Tω). Es-
sentially, instead of comparing autarkic distributions with per-period action distributions, agents compare
them to the long-run distribution. For convergence, the relationship between the autarkic and long-run
converged distribution most satisfy exactly the same condition as the one described here between autarkic
and short-run action distributions.
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follows that at = Tω∗ for all t ≥ 2, and all generations put probability 1 on ω∗. Unlike the
mislearning and unlearning characterized by Lemma 1, this result is an artifact of our large
generations assumption. When N is small—like when agents act in single file—beliefs need
not converge to the truth even when the truth lies in Ω∗. As we argue in Section 2.6.1, for
each ω ∈ Ω∗, beliefs converge with positive probability to δ(ω).

The remainder of the paper studies a variety of applications of Lemma 1. While there
is little to say about general properties of Ω∗ without specifying autarkic distributions, we
present one immediate and fairly general implication here. Namely, if agents have common
preferences and there are more states than actions, then there are necessarily some states
that society never settles down on: Ω∗ is a strict subset of Ω.

Proposition 1. If |Ω| > |A| and for all ω and θ 6= θ′, u(· | ω, θ) = u(· | ω, θ′), then Ω∗ ⊂ Ω.

To understand Proposition 1, note that from Assumption 10, Generation 2 identifies the
optimal action. Since they share common tastes, all players in t = 2 choose that action
(there is a herd). From Assumption 10 again, there is a unique state that best predicts this
herd. Since a herd on any action Am, m = 1, ...,M , indicates at most one state, there are
at most M fixed points of φ. Thus if |Ω| > M , there exist states that naive agents never
assume true after observing a herd. This logic is hidden by ER, who assume |Ω| ≤ |A|.
But |Ω| > |A| naturally applies to many environments: this holds whenever payoffs are not
perfectly correlated across states—the payoff of Am doesn’t pin down the payoff of Aj.

2.3.2 Polarization

We now present a key implication of naive inference in settings where players with common
preferences choose among options with independent payoffs—the payoff of each option is
independent of the payoff of any other options. Naive perceptions of payoffs inevitably grow
“polarized”: people think one option is as good as it can be, while all other options are as bad
as possible. The intuition is that once a herd starts, people think they observe (infinitely)
many independent signals indicating that the herd action is better than all alternatives.
Under natural assumptions on the signal structure, this suggests a state with polarized
payoffs. ER precludes this polarization result by assuming the payoff difference between
options is constant in magnitude across states.

Consider a setting where each option Am ∈ {A1, ..., AM} has unknown quality indepen-
dent of the others. For instance, diners learn about the quality of various restaurants in
town, or investors learn about the returns to unrelated assets. The payoff-relevant state
ω = (q1, ..., qM) is a vector specifying the quality of each action. Players have homogeneous
and monotonic preferences over quality, u(Am | ω) = qm; the payoff of action m depends
only on the quality of m. For each m = 1, ...,M , quality qm is drawn from a compact set
Qm according to known prior πm with full support over Qm, and, for any j 6= m, qj and qm
are independent. Hence, any quality profile is a feasible state of the world: Ω = ×Mm=1Qm.

To make sharp claims, we consider a specific but natural class of signal structures that
satisfy the standard monotone likelihood ratio property (MLRP). Each player receives a
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signal sm ∈ Sm ⊆ R about each qm, and signals are independent across actions—news about
qm provides no information about qj, j 6= m. For each m, sm has c.d.f. Fm(·|qm) and density
fm(·|qm) with full support over Sm.23

Assumption 11. (Monotone Likelihood Ratio Property.) For each m, fm(s|qm)/fm(s|q′m)
is increasing in s if and only if qm > q′m.

The MLRP assumption means higher signals unambiguously indicate higher quality. Finally,
to rule out trivialities, we assume that in any state, each action is chosen with positive
probability in autarky: for each m, priors are such that for all ω ∈ Ω, there exists a subset
of signals S∗(m) with positive measure yielding m = arg maxj E[qj | s] whenever s ∈ S∗(m).
That is, for all ω, autarkic distribution Pω has full support.

Importantly, MLRP implies Pω(m) is increasing in qm. Holding all other qualities fixed,
increasing qm increases the share of players who choose Am in autarky. Naturally, if higher
quality generates more positive news, then more people autarkicly choose an action more
often when its quality increases. Further, it implies arg maxω∈Ω Pω(m) is the state in which
qm takes its maximum value, and, for all j 6= m, qj takes its minimum value. We define such
a state as a “polar state”:

Definition 7. Define“polar state m”, denoted by ωPm, as follows:

1. qm = maxQm.

2. qj = minQj for all j 6= m.

Our assumptions on the signal structure imply the following lemma.

Lemma 2. Under the MLRP signal structure (Assumption 11), Pω(m) is increasing in qm
and decreasing in qj for all j 6= m. Hence Pω(m) is maximized in state ωPm.

Lemma 2 implies that under naive learning, society inevitably grows confident in a polar
state. People conclude that one option is the best it could be, while all others are the
worst they could be. To see why, suppose q1 = max(q1, ..., qM). Then a1 perfectly reveals
to Generation 2 that A1 is optimal. Hence, in t = 2, all choose A1: a2 → (1, 0, ..., 0).
Generation 3 comes to believe in the state most likely to induce such a herd under autarkic
play. Intuitively, this state must maximize the chance of good news about A1, but minimize
the chance of good news about any other option. As a consequence of Assumption 11, this
happens when q1 = maxQ1, and qm = minQm for all m ≥ 2. This is the intuition behind
Lemma 2—ωP1 is the state that maximizes the likelihood of observing A1 in autarky. As
such, public beliefs in t = 3 converge on ωP1 . Since Generation 3 correctly believes A1 is
optimal, all choose A1: a3 = a2. By induction, all Generations t ≥ 3 observe the same

23Signals also satisfy the maintained assumptions made in Section 2.2.1: (i) for each m, smnt—Player nt’s
signal about qm—is conditionally independent and identically distributed across all players, and (2) in the
limit as N →∞, the autarkic distribution perfectly reveals payoff differences across actions.
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behavior, and, hence, all conclude ω = ωP1 . Long-run naive learning is summarized in the
following proposition.

Proposition 2. In the independent-qualities environment outlined here (Section 2.3.2)

1. If qm = max(q1, ..., qM), then naive public beliefs converge on ωPm: πt → δ(ωPm) as
N →∞.

2. Ω∗ is the set of all polar states.

The driving force behind Proposition 2 is that people mistake herds caused by social
learning as evidence that the solely chosen option has far superior quality. Rational social
learning at its best allows society to determine the optimal action by aggregating individuals’
private information. With common preferences, this generates a herd on the best option, no
matter how small a quality advantage it has over alternatives.24 In our setting, aggregation
and herding occurs by t = 2. But all following naive generations neglect that herding is
a result of aggregation; instead, they think the herd reflects the underlying distribution of
quality across options. To them, the only way to explain why so many choose a single action
based purely on private signals is that the quality difference between it and all alternatives
is as large as possible.

Part 2 of Proposition 2 demonstrates how naivete restricts the hypotheses society can
come to believe. The restriction is most stark in the case where each Qm is a closed interval,
and hence Ω contains an uncountable infinity of states. Despite this, |Ω∗| = M : society
necessarily concludes one of M polar states is true.

Quite clearly, naivete necessarily produces exaggerated perceptions of quality differences.
Eyster and Rabin’s (2010) canonical environment precludes this result. They assume binary
actions and binary quality: A = {A1, A2}, and for m = 1, 2, Qm = {0, 1}. Crucially, they
focus on two states, (q1, q2) ∈ {(1, 0), (0, 1)}. Thus qm are not independent, but instead
perfectly negatively correlated. Our result shows that if quality is independent—states (1, 1)
and (0, 0) occur with positive probability—then, in the long run, people never come to believe
(1, 1) or (0, 0), even when those states are true. Society necessarily concludes one action is
better than the other.

Despite exaggerating quality differences, in this simple environment society does learn
the optimal choice. While naivete has no welfare consequences here, polarization suggests
natural welfare implications in richer environments. For instance, Section 2.4 shows that in
an investment setting, naivete leads investors form polarized beliefs about returns. This leads
to suboptimal under-diversifcation. Additionally, in settings with queuing costs, polarized

24 When there is no uniquely best option, beliefs still converge on some polar state. However, which polar
state society comes to believe is stochastic. For example, suppose q1 = q2 > qj for all j = 3, ...,M . First
round behavior makes it clear that options 1 and 2 have similarly superior quality. In t = 1, most players
choose either action 1 or 2, and the fraction of players who choose 1 is roughly the same as the fraction
choosing 2. Generation 2 herds on whichever m ∈ {1, 2} that is chosen most often in t = 1. Since these
action frequencies are identical in expectation (because q1 = q2), the herd action depends on the particular
realization of signals, making it stochastic.
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beliefs imply inefficiently high congestion. Since agents assume a polar state, they are less
willing—relative to rational players—to switch to the next-best option when congestion costs
are high.

The logic of polarization is quite generally, and applies beyond the particular environment
specified here. Specifically, polarization arises in any environment where the conclusion of
Lemma 2 holds—that is, whenever the autarkic frequency of action m is increasing in qm and
decreasing in qj for all j 6= m. That said, our result is sensitive to some our assumptions,
particularly that signals about qm are independent of all qj, j 6= m. If instead signals are
positively correlated—people are more likely to receive good news about A1 the better is
A2—then, whenever people observe a herd on A1, naive players conclude that both options
have high quality.

2.3.3 Additional Examples

The environments considered in this section reveal the extent to which naive inference limits
the conclusions society is able to draw. While in the independent-quality setting analyzed
above society can only converge to a polar state, the examples here entail more stark re-
strictions on Ω∗. The first shows that in a setting with heterogeneous preferences, Ω∗ is a
singleton: society draws a unique conclusion no matter the true state. The second provides
a setting where Ω∗ is empty: society never settles on a singular conclusion.

2.3.3.1 State-Independent Learning (|Ω∗| = 1)

This example shows how naivete can cause society to reach the same conclusion no matter
what is true. This can occur when agents have heterogeneous tastes: when learning which of
two preference types some new technology best suits, so long as signals are sufficiently rare,
people inevitably conclude it suits the more common taste.

To demonstrate the logic, consider a scenario where farmers learn whether to adopt a
new hybrid seed (A) or stick with a well-known variety (B). The new seed A is sensitive
to inputs, such as soil type—it’s optimal to use A only if the seed matches well with one’s
plot.25 Suppose there are two soil types, high salinity (θ = H) and low salinity (θ = L). And,
thus, there are two states: A is compatible with type H (ω = H) or with type L (ω = L).
Suppose the status-quo crop B grows equivalently for all types, but yields limited output; a
farmer prefers B if and only if A is a poor match (i.e., type θ prefers A iff θ = ω). Finally,
suppose some (but not all) farmers are informed about the optimal match. For instance, an
NGO educates some farmers whether to use the new seed. Specifically, fraction ρ ∈ (0, 1)
perfectly knows the state, while 1 − ρ receives no information. Assume payoffs and priors
are such that farmers only switch from B to A when they learn the truth and the seed is a
good match; people choose A only if informed.

25Munshi (2003) studies learning among farmers in India who choose between hybrid strains of rice or
wheat. The output of rice is very sensitive to soil attributes, but wheat grows similarly irrespective of soil
type.
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To determine what farmers come to believe, we must compare the autarkic and converged
action distributions across states. Let λ ≡ Pr(θ = H) be the fraction of “high-type” farmers;
suppose λ > 1

2
. In autarky, Player nt chooses A if both informed and θnt = ω. Thus

PL(A) = ρ(1 − λ) and PH(A) = ρλ. If a generation is confident of ω, all those with
θ = ω choose A: TL(A) = 1 − λ and TH(A) = λ. Comparing Pω with Tω, social learning
naturally leads more to adopt than in autarky: even those without private information
might adopt based on information gleaned from predecessors. Naive individuals misattribute
this learning-based increase in adoption to preferences. When a large share adopts, they
conclude the new seed must be optimal for the majority type. Essentially, people may
mistake converged behavior in ω = L for autarkic play in ω = H.

Suppose in truth ω = L—only the less-common low types should adopt the new seed. In
the first period, behavior converges to the true autarkic distribution, and ρ(1 − λ) adopt.
This perfectly reveals ω = L to Generation 2. In t = 2, all of those with θ = L choose A,
yielding adoption rate 1 − λ. But Generation 3 expects to see either rate ρλ or ρ(1 − λ).
Given their naive autarkic interpretation, Generation 3 decides which state is most likely to
yield rate 1−λ via sampling variation. When fraction 1−λ lies “closer” to ρλ than ρ(1−λ),
they interpret rate 1−λ as evidence of ω = H.26 From Equation 2.7, the likelihoods of each
state are

L(L | 1− λ) = PL(A)1−λPL(B)λ =
[
ρ(1− λ)

]1−λ[
1− ρ(1− λ)]λ, (2.13)

L(H | 1− λ) = PH(A)1−λPH(B)λ =
[
ρλ
]1−λ[

1− ρλ]λ. (2.14)

One can show that unless ρ is sufficiently large, L(H | 1 − λ) > L(L | 1 − λ), so ω = H
seems most likely after 1 − λ choose A. And if Generation 3 believes ω = H, all following
Generations also infer ω = H. Why? In t = 3, all θ = H— fraction λ—adopt. Since
λ > ρλ > λ(1 − λ), Generation 4 observes more adopt than predicted in any state. Thus,
they must come to believe the state that predicts the highest adoption rate, ω = H. It
follows that in all Generations t ≥ 3, people are confident that ω = H and all high types
adopt the new seed.

By the same logic, when in fact ω = H, society always learns correctly. Fraction λ chooses
A in Generation 2. While this level of adoption is higher than any predicted by Generation
3, their best explanation is the correct one, ω = H. Simply put, when the new technology
is best for the majority preference, society always correctly learns. But when it is best for
the minority preference, society may wrongly interpret the high adoption rates, relative to
autarky, that result from social learning. They intuitively (but wrongly) conclude that high
adoption rates indicate that the new technology is best for the majority type. In summary:

Proposition 3. In the environment outlined here (Section 2.3.3.1):

1. If ω = H, then naive public beliefs converge on ω = H: for all t ≥ 3, πt → δ(H) as
N →∞.

26“Closer” in terms of cross-entropy distance: H(TL,PH) < H(TL,PL).
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2. If ω = L, there exists a value ρ̄(λ) ∈ (0, 1) such that naive public beliefs converge on
ω = H if and only if ρ < ρ̄(λ).

Hence if ρ < ρ̄(λ), all Generations t ≥ 3 believe ω = H no matter if ω = H or ω = L.

To give a concrete example, suppose λ = 0.6 and ρ = 0.8. Naive players expect 32% to
choose A in ω = L and 48% do so in ω = H. If ω = H, then λ = 60% choose A in t = 2.
This more closely resembles the 48% expected in ω = H than the 32% expected in ω = L.
Hence, Generation 3 (and all following generations) conclude ω = H. But if ω = L, then
1 − λ = 40% choose A in t = 2. Is this more indicative of H or L? Naive players compute
the likelihoods: L(L | .4) = [0.32].4[0.86].8 = 0.5030 < L(H | .4) = [0.48].4[0.52].6 = 0.5036.
Hence, Generation 3 wrongly concludes ω = H is more likely. When λ = 0.6, ρ̄(λ) = 0.8036:
society is correct in ω = L only if ρ > 0.8036.

2.3.3.2 Non-Convergence (Ω∗ = ∅)
This example shows that Ω∗ may be empty. Every generation grows confident in some
hypothesis distinct from that assumed true by the previous generation. Hence, naive beliefs
are potentially unstable—they need not converge to any fixed belief over time.

Recall that Ω∗ is empty whenever the belief transition function φ has no fixed points.
We simply construct an example where this is so. Consider a setting with three actions,
A = {A,B,C}, and three states, Ω = {A,B,C}. Players are risk neutral. The payoffs of
action X ∈ A as a function of state ω are listed in the table below, where we assume ε > 0
is arbitrarily close to 0.

X/ω A B C
A 1 0 1− ε
B 1− ε 1 0
C 0 1− ε 1

With perfect information, it’s optimal for players to choose X = ω. But if players are
fairly confident—but not certain—that ω = X, it may be optimal to take some action
¬X. As such, some signal structures are such that the most commonly chosen action in
autarky, Y , does not match the state. That is, private signals about ω lead a majority of
players to rationally take an action different from the perfect-information optimum. To see
this, suppose that in ω = A, most people receive a private signal that generates posterior
π(A) = 2/3 − δ/2, π(B) = 1/3 − δ/2, and π(C) = δ. In the limit as δ → 0 and ε → 0, the
expected values of A, B, and C, are respectively 2/3, 1, and 1/3. A player with such a signal
rationally chooses B. While A is the action most likely to yield the highest possible payoff,
it also has the largest downside—she plays it safe and chooses B. Specifically, suppose there
are 3 possible signals, s ∈ {a, b, c}. The probabilities of each signal realization conditional
on ω are listed in the table below.
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s/ω A B C

a 2
3
− δ

2
1
3
− δ

2
δ

b δ 2
3
− δ

2
1
3
− δ

2

c 1
3
− δ

2
δ 2

3
− δ

2

When agents start with a uniform prior over states, it’s straightforward that a player with
an a signal takes B, a b signal takes C, and an c signal takes A.

This autarkic decision rule leads to cyclical naive beliefs when δ and ε are small. Suppose
ω = A. In t = 1, approximately share 2/3 − δ/2 take action B. Among Generation 2, this
is clear evidence that ω = A. Since they act with confidence, all players in t = 2 choose
A. But in autarky, the state that maximizes the share of players who choose A is state
ω = C. As such, Generation 3 is convinced that ω = C, and all choose C. Again, under an
autarkic interpretation, a herd on C indicates ω = B: all players in Generation 4 choose B.
Iterating forward, this cycling persists over time. Confident beliefs in any state ω leads to
herd behavior that, when interpreted as autarkic, indicates some alternative state ω′ 6= ω.

Proposition 4. In the environment outlined here (Section 2.3.3.2), the set of potential limit
points is empty: Ω∗ = ∅.

Proposition 4 demonstrates how severely naivete can limit society’s ability to reach a con-
sensus over time. While previous results show that naivete reduces the set of hypotheses on
which society may settle, Proposition 4 makes clear that there may not exist any such hy-
pothesis. Each Generation t grows confident in some hypothesis distinct from that believed
by the preceding generation.

2.4 Portfolio Choice
In this section, we demonstrate how naivete harms welfare within an allocation problem
where investors must choose how to split wealth between a risky and safe asset. When
naive investors learn about the risky asset’s payoff from predecessors’ allocations, two forms
of inefficiency emerge: (1) when optimal to diversify, they inevitably allocate all wealth to
a single asset, and (2) for some payoff realizations, they misperceive the expected payoff
rankings of the two assets, whereby allocating all wealth to a dominated asset. While the
logic follows along the lines of our polarization results in Section 2.3.2, this application differs
in that polarized perceptions have negative welfare consequences.

2.4.1 Setting

Suppose there are two assets that pay off in terms of a consumption good at the end of each
period. The “safe” asset has expected payoff equal to one unit of the consumption good.
The “risky” asset has expected payoff equal to 1 + µ units, but the realization of random
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variable µ is unknown ex ante. Investors learn about shock µ from private signals and
predecessors’ allocations. Additionally, both assets are subject to aggregate uncertainty—
payoffs are distorted by i.i.d. mean-zero random shocks about which there is no information
in the economy. We include aggregate shocks to model scenarios where rational risk-averse
investors diversify even when µ is perfectly known. Summarizing, payoffs of Asset 1 (safe)
and Asset 2 (risky) are

d1 = 1 + η1, (2.15)
d2 = 1 + µ+ η2, (2.16)

where we assume µ is normal with mean µ1 and precision τµ (i.e., variance 1/τµ), and the
random shocks ηm are i.i.d. normal with mean zero and precision τη.27

Investors have noisy signals about µ, but no information about η1 or η2. Each Investor
nt receives signal snt = µ + εnt where εnt is i.i.d. normal with mean zero and precision τε.
Investor nt’s information set Int ≡ {snt, x̄t−1} consists of her private signal and the aggregate
share invested in the risky asset in the preceding period, denoted x̄t−1.28

Each Investor nt has initial wealth W0 and allocates fraction xnt ∈ [0, 1] to the risky
asset. To abstract from pricing dynamics, we assume the price of each asset is fixed at 1.
Final wealth is

Wnt = W0

[
(1− xnt)η1 + xnt(µ+ η2)

]
. (2.17)

We assume investors have exponential utility, u(W ) = − exp (−αW ), where α is an individ-
ual’s coefficient of absolute risk aversion. With these preferences and normally distributed
wealth, Investor nt’s demand solves

xnt = arg max
x

Ê[Wnt | Int]−
1

2
αV̂[Wnt | Int]. (2.18)

Importantly, the expectation Ê and variance V̂ are those perceived by naive Investor nt
with information Int given her incorrect autarkic model. From budget constraint 2.17 and
objective 2.18, it follows that

xnt =
1

2 + τηV̂[µ | Int]

{
1 +

τη
αW0

Ê[µ | Int]
}
. (2.19)

Since we assume large markets (the number of investors N → ∞), the aggregate share
allocated to the risky asset in period t is x̄t = Et[xnt], where Et is the expectation with
respect to the true model as of time t.

27Although both assets have uncertain payoffs, we refer to Asset 2 as the “risky” asset since its payoff has
an additional dimension of uncertainty, and, as typical in the literature, investors update their beliefs about
this asset with the arrival of new information. There is nothing to learn about the safe asset.

28The game form exactly follows the general model outlined in Section 2.2.1. Specifically, we maintain
the Large-Overlapping-Generations assumption. Investor nt participates in the market for a single period,
t, and observes the allocation realized by the Generation immediately before her own, t− 1.
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2.4.2 Belief and Allocation Dynamics

We now solve for belief and allocation dynamics in the naive model, and contrast them with
rational dynamics. In the first period, investors act solely on private signals. Since early
investors have no opportunity to mislearn from past investments, perceived expectations and
variances are correct: for all n in t = 1, In1 = {sn1},

Ê[µ | Int] =
τε

τε + τµ
snt +

τµ
τε + τµ

µ1,

V̂[µ | Int] =
1

τε + τµ
.

Lemma 3 shows that the first-period allocation must satisfy a linear “Autarkic demand
function”, x̄1 = β + γµ, where β and γ are known constants. Specifically:

Lemma 3. In t = 1, the aggregate share invested in the risky asset must satisfy the autarkic
equilibrium price function x̄1 = β + γµ where

β =
1

2(τε + τµ) + τη

{
τµ

(
τη
αW0

µ1 + 1

)
+ τε

}
, (2.20)

γ =
τη
αW0

(
τε

2(τε + τµ) + τη

)
. (2.21)

The first-period allocation efficiently aggregates all private signals. Since we assume the
market is large, this implies that x̄1 perfectly reveals µ.

In periods t ≥ 2, investors use x̄t−1 to draw inference about µ. Naive investors misin-
terpret x̄t−1: they think demand in t − 1 is based solely on private information, and hence
think x̄t−1 must satisfy the autarkic demand function. That is, each Generation t wrongly
thinks x̄t−1 = β + γµ. Generation t inverts this relation to arrive at their (mis)perception of
predictable shock µ, µ̂t = (x̄t−1 − β)/γ.

In truth, however, investors do learn (albeit incorrectly) from past allocations. As such,
for all t ≥ 2, x̄t is generically distinct from the autarkic demand. Since Generation 1 does
act solely on private information, x̄1 = β + γµ. Generation 2 correctly and precisely infers
µ: for all investors in t = 2, Ê[µ | In2] = µ̂2 = µ, V̂[µ | In2] = 0. Demand in t = 2 properly
adjusts to these new perceptions. From Equation 2.19, it follows that

x̄2 = xn2 =
1

2

(
1 +

τη
αW0

µ

)
. (2.22)

The inferential error begins among Generation 3. They neglect that investors in t = 2
perfectly infer µ from x̄1 and consequently think µ must solve x̄2 = β + γµ. It follows that
for all t ≥ 2, Generation t grows certain that µ has value

µ̂t = (x̄t−1 − β)/γ, (2.23)
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which leads to aggregate allocation

x̄t = xnt =
1

2

(
1 +

τη
αW0

µ̂t

)
.29 (2.24)

Taken together, Equations 2.23 and 2.24 recursively define the law of motion for the allocation
process, 〈x̄t〉, which we characterize in Lemma 4 .

Lemma 4. If investors are naive, then aggregate allocations 〈x̄t〉 evolve as follows: for all
t ≥ 2,

x̄t =





0 if κx + κx̄t−1 < 0,

κx + κx̄t−1 if κx + κx̄t−1 ∈ (0, 1),

1 if κx + κx̄t−1 > 1,

(2.25)

where

κx = − τµ
2τε

(
τη
αW0

µ1 + 1

)
, (2.26)

κ = 1 +
2τµ + τη

2τε
> 1, (2.27)

starting from initial condition x̄1 = β + γµ.

It’s clear that this process implicitly defines 〈µ̂t〉 via the linear relation in Equation 2.24.30

Before analyzing investment dynamics, it’s worth contrasting naive and rational alloca-
tions. The rational allocation remains constant across all t ≥ 2. Rational investors realize
that predecessors efficiently use all available information, and thus perfectly infer the pre-
dictable payoff from any predecessor’s split. Relative to the autarkic demand, they allocate
more wealth to the risky asset if and only if they learn µ > 0. Furthermore, because of
aggregate uncertainty, unless µ is very large in absolute value, rational investors always
diversify—that is, 0 < x̄t < 1.31 It’s clear from Lemma 4, however, that naive allocations
are not static. Investors in t form beliefs as if Generation t − 1 used new independent in-
formation to arrive at x̄t−1. As such, naive investors always think that past demand reflects
information not yet accounted for.32

29This argument assumes x̄t−1 ∈ (0, 1). Proposition 5 deals with the case of x̄t−1 ∈ {0, 1}.
30This is true so long as the system hasn’t yet reached the boundary. Proposition 5 shows that once

x̄t = 1, then µ̂t =∞ for all τ > t. Likewise, if x̄t = 0, then µ̂τ = −∞ for all τ > t.
31More specifically, a player invests all wealth to the risky asset if perceived return µ̂ exceeds value µ such

that Equation 2.24 equals 1. Hence, µ = αW0/τη. Likewise, she invests all wealth to the safe asset whenever
µ̂ < µ, where µ is the value of µ̂ such that Equation 2.24 equals 0: µ = −αW0/τη.

32Naive investors expect allocations to be constant across all generations. They anticipate that x̄t = β+γµ
for all t. Consequently, naive investors think last-period’s demand x̄t−1 is sufficient for the entire allocation
path up to time t.
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We now describe how allocations evolve over time. Belief dynamics reveal two ways in
which naivete can lead investors astray: (1) they inevitably allocate all wealth to a single
asset, which often implies under-diversification, and (2) with positive probability, they invest
all wealth in an asset dominated by its alternative.

First, the perceived payoff difference between the two assets grows over time. As t grows
large, naive agents form polarized perceptions about the risky asset’s return: beliefs about
µ diverge to positive or negative infinity. As such, the allocation converges to either 1 or 0.
Formally:

Proposition 5. For any realization of µ:

1. Starting in t = 2, 〈µ̂t〉 and 〈xt〉 are either both increasing or both decreasing in t.

2. 〈µ̂t〉 and 〈x̄t〉 are increasing if and only if µ > µ∗ where

µ∗ ≡ 1

2τµ + τη

(
2τµµ1 − αW0

)
. (2.28)

That is, if and only if the realized return is sufficient large relative to initial expecta-
tions.

3. If 〈x̄t〉 is increasing, then limt→∞ x̄t = 1 and limt→∞ µ̂t =∞. Otherwise, limt→∞ x̄t = 0
and limt→∞ µ̂t = −∞.

Part 1 of Proposition 5 shows that beliefs and allocations either increase or decrease
monotonically in t. Why and when they increase (or decrease) is captured by the logic
of Part 2: it increases if and only if the predictable return is sufficiently high relative to
initial expectations. From Lemma 3, the autarkic demand is a linear combination of the
initial expectation µ1 and the realization of µ. When investors learn µ in t = 2, allocations
rationally respond to this information. Roughly speaking, if µ beats expectations, allocations
increase; if not, they decrease.

More precisely, the allocation to the risky asset increases between periods 1 and 2 if and
only if µ > µ∗, where µ∗ (Equation 2.28) is somewhat below µ1. That is, investment may
increase even when µ falls below expectations. This follows from risk aversion. Autarkic
investment is cautious: since players are risk averse and uncertain of µ, they choose a
conservative split. Upon learning µ in t = 2, the perceived variance in the risky asset’s
payoff decreases, increasing players’ willingness to invest.

The change in allocation between periods 1 and 2 creates momentum that propagates
through all future periods. Assuming that the allocation increases between periods 1 and
2, if followers treat the revised split as the autarkic demand, then they infer a higher value
of µ than the previous generation. As such, today’s allocation moves yet higher. This logic
plays out across all periods: each new generation observes a larger “autarkic” allocation than
the last, which continually leads followers to allocate more to the risky asset. Similarly,
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whenever the initial (rational) change in allocation is downward—which happens whenever
µ < µ∗—then demand and perceived payoffs decrease over time.

The error is driven by investors continually using the past demand as if it reflects new
information.33 This is the essence of redundancy neglect. Investors neglect that observed
demand already incorporates all information in the economy, and attribute any changes to
private information. When the current generation incorporates this “new” information, the
allocation moves yet again in the same direction as the initial (rational) adjustment. As
such, naive inference provides a plausible explanation for momentum even when no new
information is realized.

Part 3 of Proposition 5 establishes that aggregate allocations increase or decrease until
investors either allocate all or no wealth to the risky asset. This clearly implies that naive
risk-averse investors are worse off relative to rational investors whenever the true predictable
return leads rational investors to diversify—whenever µ ∈ (−αW0/τη, αW0/τη). Even more
damning, naive investors may fail to correctly identify which asset yields the higher payoff,
whereby allocating all wealth to the dominated asset.

Corollary 1. For any collection of parameters (µ1, τµ, τε, α), there exists an open interval
M such that whenever µ ∈M, investors incorrectly rank the payoffs of the two assets.

The intuition is straightforward in light of Proposition 5. First, the payoff of the risky
asset is higher than the safe asset whenever µ > 0. Consider the case when µ1 > µ∗ > 0:
people expect the risky asset to outperform the safe asset. Whenever µ ∈ (0, µ∗) this
expectation is realized. But because µ falls sufficiently short of expectations, by Part 2
of Proposition 5, perceptions of µ decrease over time. Eventually, investors conclude that
the safe asset yields a higher payoff and consequently allocate no wealth to the risky asset.
Investors similarly come to believe µ is large even when µ∗ < µ < 0.

2.5 Learning the Distribution of Information
This section explores how naive inference distorts players’ perceptions of the distribution
of private information in the economy. We consider settings where players not only decide
which payoff structure best explains herds, but what information structure most likely causes
autarkic players to herd. Until now, we followed the standard social-learning literature in
assuming players know the distribution of private signals conditional on the payoff-relevant
state. We expand on our polarization results of Section 2.3.2 by relaxing this assumption in
two ways. In Section 2.5.1, the precision of private information is unknown. Since naive ob-
servers expect variation in actions proportional to the variation in private information, they
conclude signals have the highest possible precision after observing a herd. In Section 2.5.2
we add aggregate uncertainty to the environment: a rational agent remains uncertain about

33This assumption is quite opposite that of Eyster, Rabin, and Vayanos (2013). They study asset pricing
when traders fail to learn from price. Our assumptions lead investors to over -infer from past behavior—they
draw inference even when demand provides no new information.
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payoffs even if she receives an infinite number of private signals. A naive player rightfully an-
ticipates that she’ll remain uncertain about payoffs in the long run. Much to her surprise, she
inevitably grows confident in some (likely false) payoff state. In attempt to rationalize herd
behavior, naive observers come to believe in the state with the least aggregate uncertainty.

2.5.1 Unknown Precision of Signals

We first consider an environment where the precision of private information is unknown.
Social learning causes people to herd on a single action. Naive followers, who assume those
herding do so based on private information, conclude that private signals must be as precise
as possible. Since the amount of variation in autarkic behavior decreases as the precision of
private information increases, very precise private information is the best (naive) explanation
for why all predecessors make the same choice.

To clearly make this point, we focus on the simplest variant of the independent-quality
setting described in Section 2.3.2. Each of M actions has independent binary quality qm ∈
{0, 1} with prior Pr(qm = 1) = 1/2. Each player receives a conditionally-independent binary
signal sm ∈ {0, 1} about each qm. Assume Pr(sm = qm | qm) = ρ for each m; a signal is
accurate with probability ρ. The precision of private information—ρ ∈ [.5, 1]—is unknown,
and players share a common prior with full support over [.5, 1].34 A state ω = (q1, ..., qM ; ρ)
is a vector of qualities for each m and the precision parameter: Ω = {0, 1}M × [.5, 1].

To determine naive long-run beliefs, we must first determine how people behave in au-
tarky. As in Section 2.3.2, we assume u(Am|ω) = qm. So, when acting solely on private
signals, Player nt chooses at random among those options about which she receives good
news (i.e, smnt = 1). If smnt = 0 for all m, then she chooses at random from all options.
Behavior of Generation 1 follows this decision rule. Generation 2 rationally infers that the
action chosen most often by Generation 1 has the highest expected quality among all options.
Denote this action by m∗ ≡ arg maxm=1,...,M(a1(1), ..., a1(M)). It follows that all players in
Generation 2 rationally choose Am∗ .

To explain the herd, Generations t ≥ 3 come to believe in whichever state maximizes
the likelihood that Am∗ is chosen in autarky. That is, the state that maximizes P(q,ρ)(m

∗).
From Proposition 2, we know that for a fixed ρ, (ωPm∗ , ρ) maximizes P(q,ρ) if and only if ωPm∗
is the polar quality vector from Definition 7—qm∗ = 1 and qm = 0 for all m 6= m∗. So, all
Generations t ≥ 3 must believe q = ωPm∗ . What do they think about the precision of signals?
Fixing this belief q = ωPm∗ , P(ωP

m∗ ,ρ)(m
∗) as a function of ρ is

P(q,ρ)(m
∗) =

M−1∑

k=0

1

k + 1

(
M − 1

k

)
ρM−k(1− ρ)k +

1

M
(1− ρ)ρM−1. (2.29)

.
34We restrict attention to ρ ∈ [.5, 1] so that signals satisfy MLRP (Assumption 11) and uniquely reveal

the payoff state when aggregated: sm = 1 occurs more often than sm = 0 if and only if qm = 1. If ρ ∈ [0, 1],
then this is no longer true. Acemoglu, Chernozhukov and Yildiz (2009) study learning with this type of
ambiguity about signal interpretation.
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Maximizing P(q,ρ)(m
∗) with respect to ρ yields ρ = 1. This is straightforward: for any value

of ρ < 1, autarkic players occasionally receive misleading signals and thus take actions other
than Am∗ . The only case in which all players behave identically in atuarky is when there is
a uniquely optimal action and misleading signals are impossible; that is, q = ωPm∗ and ρ = 1.
Formally:

Proposition 6. Let m∗ ≡ arg maxm=1,...,M(a1(1), ..., a1(M)). Naive public beliefs converge
on state (ωPm∗ ; 1): for all t > 2, πt → δ(ωPm∗ , 1) as N →∞. Hence, perceived precision ρ̂→ 1
in N .

Since naive observers expect that actions are based solely on private signals, they anticipate
that the dispersion in behavior reflects the dispersion in private information. And since they
observe a herd, they conclude this dispersion is minimal.

An important feature of this environment is that herds are consistent with a naive player’s
model of the world. That is, there exist states in which all players choose identically in
autarky. The environments explored in Section 2.3 don’t have this feature. For instance,
consider the environment here when ρ < 1 is known. From Section 2.3.2, we know that
players herd on a single action Am∗ and conclude that qm∗ = 1 and qm = 0 for all m 6= m∗.
While this state best explains the herd—it minimizes the cross-entropy distance between the
predicted and observed play—the long-run distribution of actions doesn’t converge to the
anticipated value specified by Equation 2.29. Although players expect that a strictly interior
fraction of the population takes Am∗ , they see the full population do so. Allowing agents to
simultaneously draw inference about the signal distribution and payoff structure alleviates
this issue of “inexplicable” behavior, permitting naive agents to make sense of what they
observe.35

2.5.2 Aggregate Uncertainty

We now consider an information structure which incorporates aggregate uncertainty about
the payoff state: an agent remains uncertain about payoffs even when she receives an in-
finitely collection of signals. In this environment—where rational agents always remain
uncertain about payoffs—naive individuals inevitably become confident (and, in general,
wrong) about payoffs despite fully anticipating to never grow certain. In the previous case
with unknown precision of signals, an arbitrarily large collection of signals identifies the
payoff state. As such, naive agents expect (and do) grow fully confident about payoffs after
observing a large number of predecessors. Here, naive players rationally believe ex-ante that
aggregate uncertainty remains in the long-run, but their naive interpretation of a herd leads
them to believe in the unlikely event that uncertainty vanishes.

To show this, we consider a slightly modified version of the setting in Section 2.5.1. For
sake of exposition, we take the M options to be assets. Unlike Section 2.5.1, the “quality”

35Claiming that a positive-probability event is “inexplicable” with respect to an agent’s model is more
nuanced than than it may seem. Gagnon-Bartsch and Rabin (2014) discuss in detail the concept of “expli-
cablity” in economic models.
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of an asset qm ∈ [0, 1] is not its payoff, but its expected payoff. Each asset m pays off zm ∈
{0, 1} independent of one another. Payoff zm is unknown, but has prior Pr(zm = 1) = qm.
Importantly, qm is also unknown; each qm is drawn independently from common prior π1 with
full support on [0, 1]. Each player receives a conditionally-independent signal sm about each
qm such that Pr(sm = 1) = qm. That is, the probability of getting a good signal matches the
probability the asset pays off. There are two unknown vectors: the vector of expected payoffs,
q = (q1, ..., qM) ∈ [0, 1]M , and the vector of realized payoffs, z = (z1, ..., zM) ∈ {0, 1}M . The
payoff relevant state is ω = z, while q dictates the distribution of information in the economy.
We analyze beliefs about joint state ω = (q, z) ∈ [0, 1]M × {0, 1}M .

In autarky, players follow the same decision rule as 2.5.1. Player nt chooses at random
among those options about which she receives good news (i.e, smnt = 1), and if smnt = 0 for all
m, then she chooses at random from all options. Observing autarkic play reveals information
about the signal distribution, and hence about q. While this provides information about the
likelihood that various assets payoff, it reveals nothing about realized payoffs. Generation 2
(correctly) infers that the action most often chosen in t = 1 has the highest expected payoff;
without loss of generality, denote this asset by m = 1. In period 2, all people (rationally)
herd on A1.

How do naive players interpret this herd? There is a unique q̂ that precisely predicts an
autarkic herd on A1. Namely, the q̂ such that q̂1 = 1—all players receive a positive signal
about Asset 1—and q̂m = 0 for all m > 1—all players receive negative signals about all
other assets. Conditional on q̂, each player deterministically chooses A1. Further, q̂ implies
that all assets have deterministic payoffs: each pays off with probability 1 or 0. As such,
when naive agents grow confident that q = q̂, they in turn grow confident about the payoff
realization of each asset, z. Formally:

Proposition 7. If qm = max(q1, ..., qM), then naive public beliefs converge on state (q̂m, ẑm)
where q̂mm = ẑmm = 1 and q̂mj = ẑmj = 0 for all j 6= m. That is, for all t > 2,πt → δ(q̂m, ẑm)
as N →∞. Hence, observers grow certain of the payoff state.

An important implication of Proposition 7 is that a naive agent grows confident about the
payoff state even when she expects to remain uncertain. Naive agents rationally predict that
aggregated signals, and hence social behavior, won’t perfectly reveal payoffs. But behavior
does reveal some information about payoffs. Followers use this information and herd on the
asset most likely to payoff. Naive agents mistake this as evidence that all predecessors are
privately informed about the optimal action

This form of naive overconfidence is conceptually different from that shown by Eyster and
Rabin (2010). In ER, naive players may grow overconfident relative to rational inference, but
not relative to their own expectations. For instance, with discrete signals and actions it is
well known that rational inference leads to an information cascade in which rational players
remain uncertain about payoffs. Naive players, on the other hand, continually treat actions
as if they reveal new independent information. They anticipate that, in the long-run, they’ll
observe an infinite sequence of independent signals. Since ER assumes no aggregate uncer-
tainty, this implies long-run confidence. With aggregate uncertainty, however, agents grow
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overconfident relative to their own expectations. While they anticipate observing an infinite
collection of independent signals, they don’t expect such information to deliver confidence.

2.6 Conclusion and Extensions

2.6.1 Robustness

This section discusses how our results extend to various observation structures. First, we
believe that Lemma 1, which characterizes the set of states on which naive public beliefs can
converge, holds irrespective of the observation structure so long as the number of predecessors
each agent observes grows large in t. That is, Assumptions 8 and 9 are not necessary if, as
t → ∞, the number of actions observed by a player in t also goes to infinity. A primary
example of such a structure is the canoncial “herding” model where one agent acts per round
and each agent observes the full history of play (e.g., Bikchandani, Hirshleifer, and Welch,
1992, or Smith and Sørensen, 2000).

We provide a heuristic sketch demonstrating why the conclusion of Lemma 1 must still
hold. Formally, suppose our only assumption on the observation structure is that for all
n = 1, ..., N , limt |Ont| = ∞. Now suppose that πt(k) converges almost surely to 1: society
grows confident in state ωk. We show that ωk must be a fixed point of φ. Since a naive agent
treats each observation as reflecting independent private information, the observed order
of actions does not influence her inference. Naive inference depends only on the aggregate
distribution of behavior across all players she observes. Let a(Ont) be the distribution of
actions in Player nt’s observation set.

If beliefs converge, then, as t grows large, players act with near confidence. Granted that
actions are continuous in beliefs in some neighborhood about δ(πωk), this implies that the
distribution of play converges to Tωk . It follows that, eventually, observed distributions re-
semble Tωk . That is, limt→∞ a(Ont) = Tωk . In turn, for large enough t Player nt observes an
arbitrarily large population taking actions distributed according to Tωk . The naive probabil-
ity of this observation conditional on ω is given by Equation 2.6 replacing T∗ω with Tωk . From
Section 2.2.2, the state that maximizes this likelihood is ω̂ = arg minω∈ΩH(Tωk ,Pω) = φ(ωk),
where the final equality follows directly from the definition of map φ (Equation 2.10). In or-
der for agent nt to remain confident in ωk, it must be that ωk = φ(ωk). If not, we contradict
our assumption that πt converge to δ(ωk).

This argument and that of Lemma 1 differ only in how quickly observed behavior con-
verges to Tωk . Our assumption of large generations guaranteed that behavior after a single
round of observation converges to Tωk . Here, behavior may converge to Tωk only in the
limit. In either case, so long as observation sets grow large, a necessary condition for beliefs
to converge to certainty in ωk is that ωk best explains Tωk under the assumption of autarkic
play. That is, we require ωk = φ(ωk).

A consequence of our large-generation assumption is that beliefs follow a deterministic
sequence. An important implication of this assumption is that whenever the true state
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lies in Ω∗, society necessarily learns correctly. With small N , limit beliefs depends on the
sample path of signals and beliefs may converge to any ω ∈ Ω∗. As such, society mislearns
with positive probability even when the truth is in Ω∗. Following Eyster and Rabin (2010)
Proposition 4, so long as ω ∈ Ω∗, there exists a sample path of signals realized with positive
probability such that beliefs converge to δ(ω) in t.

Finally, it’s worth noting that we assume an extreme form of naivety in this paper:
each player thinks predecessors entirely neglect the informational content of others’ actions.
Eyster and Rabin (2014) show that a weaker form of this bias generates the same conclu-
sions as Eyster and Rabin (2010). They generalize this extreme form of the bias by assuming
players think each predecessor’s action reveals some arbitrarily small amount of her private
information.36 We conjecture that the our main results also hold under weaker generaliza-
tions of naivete. For instance, we believe that no matter the extent of redundancy neglect,
naive beliefs converge over time toward polarized perceptions of payoffs.

2.6.2 Discussion

This paper explores new predictions of Eyster and Rabin’s (2010) model of naive inference
that emerge in an array of environments richer than those previously studied. With a range
of possible payoff-relevant states, naive inference restricts the set of states upon on which
society may converge. In many natural environments, there exist states that naive agents
always disbelieve in the long-run no matter if they are true. Eyster and Rabin’s (2010)
obscured this result by focusing on a binary-state setting in which players always grow
confident in one of the two states. In particular, we show that when agents care not only
about ranking actions but wish to learn the size of payoff differences, naive inference leads
to polarization in perceived payoffs. In settings where agents care about diversification, this
distortion in beliefs generates inefficiencies through under-diversification. The force driving
polarization in perceived payoffs also extends to beliefs about the distribution of information
in the economy. In some settings, agents wrongly come to believe that private information
is as precise as possible or that aggregate uncertainty is resolved.

This is not the first paper to study “redundancy neglect” in settings with rich state spaces.
However, it does provide predictions distinct from earlier work. For instance, DeMarzo,
Vayanos, and Zweibel (2003) consider a variant of the DeGroot (1974) model in which players
share their signals about a normally-distributed state ω with their neighbors in a network.
Each round, players observe the posterior mean belief of their neighbors and accordingly
update their own beliefs. Player i treats her neighbors’ reports as raw signals; she neglects
that neighbors share posteriors which already incorporate information from initial signals
that were previously shared. Since agents over-count signals, they grow confident in some
false state whenever initial signals are misleading. The implications of this error differ
from ours in two ways. First, agents in DeMarzo, Vayanos, and Zweibel’s model don’t

36 In the extreme form, Eyster and Rabin (2010) assume that players think each predecessors’ action fully
reveals her private signal.
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adopt fully polarized perceptions over time. Since players use a naive averaging rule, beliefs
converge on a weighted average of initial signals rather than tending to extreme values.
Second, when the number of agents observed grows large, players in DeMarzo, Vayanos, and
Zweibel’s model are correct in the long run. By the Law of Large Numbers, the first round
of communication sends players directly to a confident and correct posterior. In our setting,
even if players correctly learn the state after one round of observation, later generations
mislearn by reinterpreting confident behavior as if it were autarkic. Relative to existing
models, polarization and unlearning are distinct predictions Eyster and Rabin’s model of
naive inference.
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Appendix

2.A Proofs
Proof of Lemma 1.

Proof. For a contradiction, suppose 〈πt〉 converges in t to some ω /∈ Ω∗. Formally, suppose
there exists τ such that in all t > τ , limN→∞ πt = δ(ω). Fix t > τ . Since πt = δ(ω), at = Tω.
Generation t + 1 infers πt+1 = δ(ω̂t+1) where ω̂t+1 = arg minω̂∈Ω H(Pω̂,Tω) = φ(ω). Since
ω /∈ Ω∗, φ(ω) 6= ω. Thus ω̂t+1 6= ω. This contradicts the assumption that 〈πt〉 converges in
t to ω.

Proof of Proposition 1.

Proof. By Observation 1, each t ≥ 2 acts with confidence. By the assumption of common
tastes, in each t at represents a herd: for some m = 1, ...,M , at(m) = 1 and at(j) = 0 for
all j 6= m. Denote this distribution by am. For each adjacent generation, ω̂t+1 = φ(ω̂t) =
arg minω∈Ω H(Pω, am) for some m. Since H is concave, by Assumption 10, the solution is
unique. Thus, there are at most M states society can conclude are true after a herd. Let
Ω̃ ≡ {ω ∈ Ω | ω = arg minω′∈ΩH(Pω′ , am), m = 1, ...,M} be the set of states in which
society grows confident after observing any herd. Since each at for t ≥ 2 represents a herd,
φ must map any point in Ω̃ back to Ω̃, and thus any fixed point of φ must lie in Ω̃. Hence,
Ω∗ ⊆ Ω̃ ⊂ Ω.

Proof of Lemma 2.

Proof. Without loss of generality, we prove the result for the autarkic frequency of action
A1. We make use of two well-known implications of the MLRP assumption (e.g., Milgrom,
1981):

Observation 2. Suppose Assumption 11 holds.

1. For each m, Fm(s|qm) satisfies first-order stochastic dominance in s: if qm > q′m, then
Fm(s|qm) ≤ Fm(s|q′m) for all s ∈ Sm, and the inequality is strict for some s ∈ Sm.

2. For each m, E[qm | sm] is increasing sm.
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In autarky, a player with signal realization s chooses A1 if 1 = arg maxm∈{1,...,M} E[qm | s].
Since we assume signals are independent across options, E[qm | s] = E[qm | sm] for each
m. Let s̃ = (s2, ..., sM) denote the signal vector excluding the first entry. Let v(s̃) =
maxm≥2 E[qm | sm]; v(s̃) is the expected value of the best option among m = 2, ...,M . Fixing
priors on Ω and realization s̃, let σ(s2, ..., sM) = σ(s̃) be the realization of s1 necessary to
be indifferent between A1 and the best option among A2, ..., AM . That is, σ(s̃) is defined
implicitly by E[q1 | σ(s̃)] = v(s̃).37 It follows that an autarkic agent with signal realization
s chooses A1 ⇔ s1 > σ(s̃). Let q = (q1, ...qM) be the realized vector of qualities, and let
q̃ = (q2, ..., qM). Then, the autarkic frequency of action A1 is given by

Pω(1) = Pr

(
s1 > σ(s̃)

∣∣∣∣ q
)

= Es̃

[
1− F 1

(
σ(s̃)

∣∣q1

) ∣∣∣∣ q̃
]

= 1− Es̃

[
F 1
(
σ(s̃)

∣∣q1

) ∣∣∣∣ q̃
]
, (A.1)

where Es̃[· | q̃] indicates the expectation over random variable s̃ given q̃.
First we show that Pω(1) is increasing in q1. It follows from Part 1 of Observation 2 that

Es̃

[
F 1
(
σ(s̃)

∣∣q1

) ∣∣ q̃
]
< Es̃

[
F 1
(
σ(s̃)

∣∣q′1
) ∣∣ q̃

]
whenever q1 > q′1. Hence, from Expression A.1,

Pω(1) is increasing in q1.
Next, we show Pω(1) is decreasing in qm for all m ≥ 2. Note that from Part 2 of

Observation 2, v(s̃) is weakly increasing in each sm, m ≥ 2; thus, by that same observation
and the definition of σ, σ(s̃) must also weakly increase in each sm, m ≥ 2. It follows from
Part 2 of Observation 2 that σ is weakly increasing in sm for each m ≥ 2: increasing the
signal of any m ≥ 2 weakly increases one’s estimate of the second-best quality. Consider any
m ≥ 2. By the law of iterated expectations and independence,

Es̃

[
F 1
(
σ(s̃)

∣∣q1

) ∣∣∣∣ q̃
]

= Esm
[
Es̃

[
F 1
(
σ(s̃)

∣∣q1

) ∣∣ q̃, sm
] ∣∣∣∣ qm

]
, (A.2)

and since σ is increasing, Es̃

[
F 1
(
σ(s̃)

∣∣q1

) ∣∣ q̃, sm
]
is an increasing function of sm. So, since

the distribution of sm exhibits first-order stochastic dominance in qm,

Esm
[
Es̃

[
F 1
(
σ(s̃)

∣∣q1

) ∣∣ q̃, sm
] ∣∣∣∣ qm

]
is increasing qm. It follows from A.1 that Pω(1) is

decreasing in qm.
Since Pω(1) is strictly increasing in q1 and strictly decreasing in qj for all j ≥ 2, it follows

that ωP1 uniquely maximizes Pω(1).

Proof of Proposition 2.

Proof. Without loss of generality, index options such that q1 = arg maxm{qm}. By As-
sumption 10, a1 = (a1(1), ..., a1(M)) reveals the utility ranking of options {A1, .., AM} to

37This definition does not restrict σ(s̃) to lie in S1—the set of signals over which s1 has positive density.
σ(s̃) is the necessary signal value, whether feasible or not, such that a player is indifferent between A1 and
the best option among A2, ..., AM .
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Generation 2. Rationally, all N in t = 2 choose A1: a2(1) = N and a2(m) = 0 for m ≥ 2.
Among Generation 3, the likelihood ratio of observing a2 in ωP1 relative to any ω 6= ωP1 is

π3(ωP1 )

π3(ω)
=

∏M
m=1 PωP1 (m)a2(m)

∏M
m=1 Pω(m)a2(m)

=

(PωP1 (1)

Pω(1)

)N
.

Hence, naive beliefs in t = 3 converge to δ(ωP1 ) in N if and only if ωP1 = arg maxω∈Ω P(A1 | ω),
which is true by Lemma 2.

Proof of Proposition 3.

Proof. Part 1. Suppose ω = H. As N →∞, a2 → TH with TH(A) = λ. From Equation 2.7,
the likelihood ratio π3(H)/π3(L) entering t = 3 converges to

lim
N→∞

[L(H | a2)

L(L | a2)

]N
= lim

N→∞

[(
PH(A)

PL(B)

)λ(PH(B)

PL(B)

)1−λ
]N

. (A.3)

Since PH(A) = ρλ and PL(A) = ρ(1− λ), Equation A.3

π3(ω = H)

π3(ω = L)
→ lim

N→∞

[(
λ

1− λ

)λ(
1− ρλ

1 + ρλ− ρ

)1−λ
]N

,

which diverges to ∞ iff ξ(λ, ρ) ≡
(

λ
1−λ

)λ ( 1−ρλ
1+ρλ−ρ

)1−λ
> 1. Hence to show π3(H) → 1, it

suffices to show ξ(λ, ρ) > 1. Since ξ(λ, ρ) is decreasing in ρ, ξ(λ, ρ) > 1 for all ρ if it’s true
at ρ = 1. Note ξ(λ, 1) =

(
λ

1−λ

)λ (1−λ
λ

)1−λ
= ( λ

1−λ)2λ−1 > 1 since, by assumption, λ > 1/2.
Since π3(H)→ 1, a3 → T3. By induction, πt(H)→ 1 for all t ≥ 3.

Part 2. Suppose ω = L. As N →∞, a2 → TL with TL(A) = 1− λ. Like Equation A.3,
the likelihood ratio π3(H)/π3(L) entering t = 3 converges to

π3(ω = H)

π3(ω = L)
→ lim

N→∞

[(
λ

1− λ

)1−λ(
1− ρλ

1 + ρλ− ρ

)λ]N
,

which converges to ∞ iff ξ̃(λ, ρ) ≡
(

λ
1−λ

)1−λ
(

1−ρλ
1+ρλ−ρ

)λ
> 1. Fixing λ > 1/2, ξ̃(λ, ρ) > 1 ⇔

(
1−ρλ

1+ρλ−ρ

)
> Λ where Λ ≡

(
1−λ
λ

) 1−λ
λ < 1. This holds so long as ρ < 1−Λ

λ−Λ(1−λ)
≡ ρ̄(λ). Note

that ρ̄(λ) is decreasing in λ: ∂
∂λ
ρ̄(λ) < 0⇔

(
2λ− 1

λ2

)(
log

(
1− λ
λ

)
+ 1

)
Λ < 1. (A.4)
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But for any λ ∈ (1/2, 1): (i) 2λ−1
λ2

< 1, (ii) log
(

1−λ
λ

)
+ 1 < 1, and (iii) Λ < 1. Thus

Condition A.4 must hold on the interior of [.5, 1]. On the boundaries, it’s straightforward to
verify ρ̄(.5) = 1 and ρ̄(1) = 0. Thus for any λ ∈ (1/2, 1), ρ̄(λ) ∈ (0, 1). And ρ < ρ̄(λ) implies
π3(H)→ 1 as N →∞. Thus a3 = TH with TH(A) = λ. This is the initial condition of the
game analyzed in Part 1, thus it must be that πt(H)→ 1 for all t ≥ 3.

Proof of Lemma 3.

Proof. Since priors and signals about µ are normal, it follows (e.g., DeGroot, 1970) that an
investor with signal snt has a normal posterior about µ with mean and variance

Ê[µ | Int] =
τε

τε + τµ
snt +

τµ
τε + τµ

µ1,

V̂[µ | Int] =
1

τε + τµ
.

Given these perceptions, individual demand (Equation 2.19) is

xn1 =
τε + τµ

2(τε + τµ) + τη

{
1 +

τη
αW0

(
τε

τε + τµ
sn1 +

τµ
τε + τµ

µ1

)}
.

Aggregate demand is x̄1 = E1[xn1]. Since sn1 is the only random variable in xn1 and E1[sn1] =
µ,

x̄1 =
τε + τµ

2(τε + τµ) + τη

{
1 +

τη
αW0

(
τε

τε + τµ
µ+

τµ
τε + τµ

µ1

)}
. (A.5)

Defining β and γ accordingly yields the result.

Proof of Lemma 4.

Proof. Plugging Equation 2.23, which defines µ̂t, into the equation for demand (Equa-
tion 2.24) and using the definition of γ (Lemma 3) yields

x̄t =
1

2

(
1 +

τη
αW0

(x̄t−1 − β)/γ

)
=

1

2
− κβ + κx̄t−1,

where κ = 1 + (2τµ + τη)/2τε > 1. It follows from the definition of β (Lemma 3) that

κx ≡
1

2
− κβ = − τµ

2τε

(
τη
αW0

µ1 + 1

)
.

Proof of Proposition 5.
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Proof. Part 1. We show that 〈x̄t〉 is monotonic. It’s clear from Equation 2.24 that µ̂t is
monotonic if and only if x̄t is. From Lemma 4, x̄t > x̄t−1 ⇔ κx + κx̄t−1 > x̄t−1 ⇔ x̄t−1 >
−κx/(κ−1) ≡ x̄∗. (Recall from Lemma 4 that κ−1 > 0.) Thus we need only check whether
the initial value x̄1 > x̄∗. If so, then x̄2 > x̄1 > x̄∗, and by induction, all x̄t > x̄∗. Thus, 〈x̄t〉
is increasing. Similarly, if x̄1 < x̄∗, then 〈x̄t〉 is decreasing.

Part 2. From Part 1, 〈x̄t〉 is increasing if and only if x̄1 > x̄∗. Using Lemma 4,

x̄∗ =
−κp
1− κ =

τµ
2τµ + τη

(
τη
αW0

µ1 + 1

)
. (A.6)

It follows that 〈x̄t〉 is increasing iff x̄1 > x̄∗ ⇔ β+γµ > x̄∗. After substituting Equations A.5
and A.6, this condition reduces to

µ >
1

2τµ + τη

(
2τµµ1 − αW0

)
.

We define the right-hand side of the above inequality as µ∗.
Part 3. We show that allocation differences ∆x(t) ≡ x̄t− x̄t−1 are increasing in magnitude

in t. Note ∆x(t) = x̄t − x̄t−1 = κx + (κ − 1)x̄t−1. But ∆x(t + 1) = x̄t+1 − x̄t = κx + (κ −
1)(κx + κx̄t−1) = κ[κx − (κ − 1)x̄t−1] = κ∆x(t). Thus, since κ > 1, |∆x(t + 1)| > |∆x(t)|.
Since t is arbitrary, |∆x(t)| is increasing in t. As such, 〈x̄t〉 must converge to 0 or 1. If
〈x̄t〉 is increasing, then limt→∞ x̄t = 1. Otherwise, limt→∞ x̄t = 0. Furthermore, x̄t reaches
boundary value 0 or 1 in finite time. We now show that µ̂t+1 =∞ if x̄t = 1 and µ̂t+1 = −∞
if x̄t = 0. x̄t implies that each Investors nt in t chooses xnt = 1. From Equation 2.19, if
acting in autarky, xnt = 1⇔ snt > c, where c = (1− β)/γ. For any two possible realizations
of µ, µ′ and µ′′, the autarkic likelihood ratio of µ′ relative to µ′′ after observing all investors
choose xnt = 1 is 


1−Ψ

(
c−µ′√
τ−1
ε

)

1−Ψ

(
c−µ′′√
τ−1
ε

)




N

,

where Ψ(·) is the standard-normal cdf. This likelihood ratio converges to 0 in N whenever
µ′ < µ′′. Thus, for any arbitrarily high value of µ′′, any value µ′ > µ′′ is infinitely more likely
than µ′′. Letting µ′′ → ∞ establishes that µ̂t+1 diverges to ∞. An analogous argument
shows that µ̂t+1 diverges to −∞ whenever x̄t = 0.

Proof of Corollary 1.

Proof. Since the aggregate shock is identically distributed for both assets, if µ is known, then
Asset 2 dominates Asset 1 if and only if E[d2 | µ] > E[d1 | µ]⇔ µ > 0. There are two cases to
consider: µ∗ > 0 and µ∗ < 0. First, suppose µ1 > αW0/2τµ, so µ∗ > 0. DefineM = (0, µ∗).
From Proposition 5, for any realization of µ ∈ M, 〈µ̂t〉 diverges to −∞. Hence, whenever
µ ∈M, investors believe Asset 1 provides infinitely better payoff than Asset 2 despite Asset
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1 being the dominated asset. Now consider the case where µ < αW0/2τµ, so µ∗ < 0. Define
M = (µ∗, 0). For any realization of µ ∈M, 〈µ̂t〉 diverges to +∞. Hence investors believe it
provides infinitely higher payoff than Asset 1, despite the fact it’s dominated by Asset 1.

Proof of Proposition 6.

Proof. Fix ρ ∈ [.5, 1] and letm∗ ≡ arg maxm=1,...,M(a1(1), ..., a1(M)). Given the decision rule,
it follows that Generation 2 rationally infersm∗ = arg maxm E[qm | a1]. Since players are risk
neutral, a2(m∗) = 1. Generation 3 grows certain of whichever state maximizes P(q,ρ)(m

∗).
Fixing ρ, it follows from Proposition 2 that the q maximizing P(q,ρ)(m

∗) is q = ωPm∗ which
assigns qm = 0 for all m 6= m∗ and qm∗ = 1. Since the maximizing q is independent of ρ, we
simply maximize P(ωP

m∗ ,ρ) with respect to ρ:

P(ωP
m∗ ,ρ)(m

∗) =
M−1∑

k=0

1

k + 1

(
M − 1

k

)
ρM−k(1− ρ)k +

1

M
(1− ρ)ρM−1.

Clearly as ρ → 1, all terms in the expression above go to zero aside from the first term of
the sum, which converges to 1. Hence, Generation 3 grows confident that q = ωPm∗ and that
ρ→ 1. Given these beliefs, it’s optimal for each player in t = 3 to choose Am∗ . By induction,
all future Generations t > 3 observe the same action distribution as Generation 3, and thus
draw the same inference as Generation 3. That is, for all t > 2, πt → δ(ωPm∗ , 1) as N →∞.

Proof of Proposition 7.

Proof. This result follows trivially from Proposition 2. Suppose for the moment that q
represent payoffs rather than expected payoffs. Since this environment meets the assumptions
of Proposition 2, society grows confident that q = ωPm∗ if m∗ = arg maxm qm. Since players
are risk neutral, the proof of Proposition 2 holds no matter if qm represents the expected
payoff from Am or the realized payoff from Am. As such, agents grow certain that m∗ pays
off for sure (i.e., zm∗ = 1) and all other assets payoff with probability zero (i.e., zm = 0 for
all m 6= m∗).
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Chapter 3

Projection of Private Values in Auctions

3.1 Introduction
Evidence from social psychology and economics suggests that people mispredict others’ pref-
erences in a systematic way: people perceive their own taste as more common than it is.
For instance, those with a particular taste for art, sports, or wine tend to overestimate how
many share that taste (Ross, Greene, and House, 1977). Such misperceptions also pervade
domains with greater social importance, like preferences for income redistribution (Cruces,
Perez-Truglia, and Tetaz, 2013) and political candidates (Delavande and Manski, 2012).
While a large literature provides empirical evidence demonstrating this bias—commonly
known as the “false-consensus effect” or “taste projection”—very little research studies its
implications.1 This paper explores how taste projection affects bidding strategies, efficiency,
and revenue across a variety of auction environments and formats. We find that projec-
tion induces overbidding in private-value auctions and reduces efficiency in auctions with
both private and common value—relative to rational bidding, players with optimistic signals
about the common value are more likely to win than those with the highest private value.

Why taste projection might affect behavior in auctions is straightforward. Many auc-
tion mechanisms induce bidding strategies dependent on a bidder’s perceived distribution
of others’ valuations. Projection implies that players with different private values perceive
this distribution differently. Those with high valuations overestimate the likelihood that
others have high valuations—they overestimate the extent of competition in private-value
auctions—while those with low valuations overestimate the prevalence of low valuations—
they underestimate competition. Projection introduces an additional error when the good
up for auction has some common-value element. Since bids depend on both private tastes
and private signals about the common value, players draw inference about the common value
from others’ bids. But since a taste projector has wrong beliefs about others’ tastes, she
systematically draws biased estimates of others’ signals when conditioning on their bids.
Specifically, we show that a player’s biased estimate of the common value of the good is

1Section 3.2.2.1 reviews some of this evidence.
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inversely related to her private value.
To see this, consider a real-estate auction for a house with a modern architectural design.

Bidders may differ in their taste for modern versus traditional architecture—how much one
likes the property’s design determines her private value. But bidders also care about the
future resale value of the home—which is commonly valued—and each has a private signal of
this value. To see how projection distorts inference, consider an English auction with three
bidders, Frank, Ludwig, and Andrea. Ludwig is fanatical about modern architecture, but
Andrea is a traditionalist. Suppose Frank withdraws first, and does so at price p. Ludwig
and Andrea glean information about Frank’s common-value signal from p. But projection
implies they draw different—and incorrect—conclusions from p. Ludwig assumes that Frank
most likely has a high private value for the house, and thus attributes his withdrawal to a
pessimistic common-value signal. Andrea, however, assumes Frank likely has a low private
value, which he thinks explains Frank’s withdrawal. Consequently, Andrea develops a more
optimistic belief about Frank’s common-value signal. Importantly, it is Ludwig—the bidder
with the high private value for the house—who develops the most pessimistic belief about
the property’s common value. As such, Ludwig bids less aggressively than if he were rational.
This is the source of the additional inefficiency which projection adds to auctions with private
and common value.

Section 2 presents our basic model, which incorporates Gagnon-Bartsch’s (2014) model
of taste projection into Goeree and Offerman’s (2003) analysis of auctions with private and
common value. Players have a private value for the good and a noisy signal of the common
value. In truth, private values t are independently drawn from distribution G.2 To model
projection, we assume that a player with private valuation ti wrongly thinks t ∼ Ĝ(· | ti).
Specifically, players with above-average private values perceive a distribution of valuations
that’s shifted to the right of the true distribution whereas those with below-average private
values perceive a distribution shifted to the left.3 The amount by which Player i’s perceived
distribution is shifted is increasing in a parameter ρ and in the distance between her value
and the mean value. The parameter ρ ∈ [0, 1] provides a natural measure of the extent of the
bias: ρ = 0 corresponds with rational exceptions whereas ρ = 1 implies each player believes
she has the mean valuation.

We close the model by assuming each player is naive about the heterogeneity in percep-
tions. That is, each Player i believes she is playing a Bayesian game in which all players agree
that t ∼ Ĝ(· | ti). With this assumption, solving the model is relatively straightforward.
Player i plays her Bayesian-Nash-equilibrium strategy of the auction where Ĝ(· | ti) is com-
monly known. For instance, if β(ti;G) is the Bayesian Nash bidding strategy in the rational
common-prior auction with distribution G, then Player i follows strategy β

(
ti; Ĝ(· | ti)

)
in

an auction with projection.
2For simplicity, we focus on uniformly distributed private values. We discuss throughout how the intu-

itions behind our results are independent of this uniform assumption.
3This implies that a player’s perceived distribution first-order stochastically dominates the perceptions

of those with lower valuations. This structure allows for a tractable ordering of perceptions.
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As a benchmark, Section 3.3 explores the effect of projection when the good has only
private value. In both a sealed-bid second-price or English auction, projection has no effect
on the symmetric equilibrium in which players simply bid their private value. This follows
naturally from the fact that the bidding strategy doesn’t depend on beliefs about the taste
distribution. Strategies in a first-price auction, however, call for each Player i to bid her
estimate of the second-highest valuation conditional on herself having the highest. A player
with above-average private value overestimates the share with a valuation above her own.
As such, she overestimates the second-highest valuation. She perceives competition as more
fierce than it is, and consequently overbids. Conversely, a player with below-average private
value underestimates the extent of competition, and thus underbids. Since those who overbid
are most likely to win, projection increases expected revenue. Revenue equivalence does not
hold: first-price auctions revenue dominate second-price auctions.

Section 3.4 adds a common-value component to the model. In addition to misperceiv-
ing the extent of competition, projection distorts bidders’ equilibrium inference. As such,
we show that projection affects outcomes even in second-price or English auctions where
perceptions of the competition only influence bidding strategies through inference—unlike
first-price auctions, there is no direct incentive to bid higher when one thinks others likely
have high private valuations. Our main result is that, in both second-price and English
auctions, efficiency—the probability that the player with the highest value is allocated the
good—is decreasing in the extent of projection, ρ.

First, Section 3.4.1 derives biased bidding strategies for second-price auctions with private
and common values. Projection biases bids in exactly the opposite way that it does in first-
price auctions with private values: those with above-average taste draw overly-pessimistic
inference about the common value and underbid whereas those with below-average taste
draw overly-optimistic inference and overbid. The rationale is similar to that in the real-
estate-auction example above. In equilibrium, Player i bids her expected value of the object
conditional on tying with the highest bidder, Player j. Supposing i has high private value,
what does she infer about j’s signal conditional on a tie? Holding j’s bid fixed, since i
exaggerates the chance that j has high private value, she overestimates the chance that
j has a bad private-value signal. As such, relative to the rational inference, she forms a
pessimistic estimate of the common value. The logic is reversed for those with low private
values. Since they overestimate how many have low taste for the good, they overestimate the
likelihood that the highest bidder has optimistic information about the common value. The
overall effect is a compression of expected valuations across players—those with low taste
think too highly of the common value, while those with high taste think too poorly of the
common value. Consequently, relative to rational bidding, it’s more likely that somebody
with low private value wins the auction. This probability is naturally increasing in ρ, since
the larger is ρ, the more distorted are common-value inferences.

Second, Section 3.4.2 derives the biased bidding strategies for an English auction. Projec-
tion has very much the same effect here as it does in second-price auctions. However, players
additionally draw biased inference from prices at which early bidders withdraw. Again, this
inference is increasingly pessimistic the higher is one’s private value. For instance, if Player
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i has high private value, she thinks most others similarly have high private value. Thus,
when Player i observes Player k withdraw at a low price, she overestimates the likelihood
that k does so on the basis of pessimistic information about the common value. Like the
second-price auction, biased inference decreases allocational efficiency.

This paper adds to a growing literature that incorporates behavioral biases into auction
theory. Many of these papers offer explanations for the widely-documented phenomenon that
people overbid in a variety of auctions in ways inconsistent with classical theory. Overbidding
is most famously associated with common-value auctions, where bidders must avoid falling
victim of the “winner’s curse”. Explanations include cursed thinking a la Eyster and Rabin
(2005) and level-k thinking a la Crawford and Iriberri (2007). Eyster and Rabin (2005)
assume people neglect the informational content of others’ behavior and consequently fail to
understand that bids reveal private information in equilibrium.4

Although cursed thinking predicts rational bidding in private-value auctions, overbidding
is also observed in this environment. There is an experimental literature on independent-
private-value auctions that documents a widespread (though not universal) tendency for
subjects to bid higher than the risk-neutral Bayesian Nash equilibrium (RNNE) benchmark.
Many researchers attribute this finding to cognitive errors. For instance, Goeree, Holt, and
Palrefy (2002) provide lab evidence of overbidding and attempt to explain it with Quantal-
Response equilibrium. Level-k thinking also predicts overbidding in first-price auctions so
long as the distribution of values is not uniform.5 Compte (2002, 2004) suggests a model in
which bidders overestimate the precision of their private-value signals, generating a “winner’s
curse” within private-value auctions. Finally, some researchers attribute this phenomenon to
non-standard preferences. Cox, Smith, and Walker (1992), for instance, argue that bidders
display “joy of winning”. A weakness of such preference-based theories, however, is that
behavior consistent with such preferences is observed in some auction formats, but not all.

We conclude in Section 3.5 by discussing the limitations of our model and how our notion
of taste projection relates to other approaches in the literature. We also review avenues for
drawing further implications from our model.

3.2 Model
This section presents our model. Section 3.2.1 introduces bidders’ preferences and the various
auction formats we consider. Section 3.2.2 describes our model of projection: we specify how
players form taste-dependent perceptions of the distribution of valuations. We also provide
some motivating evidence for taste projection.

4Our model proposes an alternative form of “belief neglect”. Unlike Eyster and Rabin (2005), players in
our model understand that bids depend on private information. But, because they neglect heterogeneity in
beliefs about the distribution of values, they fail to understand the map from others’ signals to their bids.
As a consequence, they draw incorrect inference when conditioning on others’ behavior.

5In contrast, we show that projection predicts overbidding despite uniformly distributed private values.
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3.2.1 Auction Environment

We consider auctions for a good with both private and common value. Our basic setup
follows Goeree and Offerman (2003) who characterize the rational equilibria of auctions with
private and common values.6 Let N = {1, . . . , N} denote the set as well as number of
players. Each Player i has valuation (net of price) u(ti, v) = ti + v, where ti ∈ T ≡ [t, t]
denotes i’s private taste and v ∈ V ≡ [v, v] denotes the commonly-valued quality of the
good. Private tastes are independently and identically distributed across players according
to c.d.f. G. Common value v is unknown; each Player i receives an i.i.d. private signal
θi ∈ Θ about v’s value. Let θi ∼ F , and take F as common knowledge. The total common
value is defined as the sum of all signals: v ≡∑N

i=1 θi.
7 For tractability, we assume both F

and G are uniform on [0, 1].8 However, we emphasize throughout how the intuition of our
results extends to general distributions. Finally, we denote by p the price dictated by the
auction mechanism.

We consider three auction formats in this paper: (1) first-price sealed bid, (2) second-
price sealed bid, and (3) ascending English auction. In the sealed-bid formats, each player
i simultaneously submits bid bi ∈ R, and Player i∗ = arg maxi∈N bi is allocated the good.
Under the first-price mechanism, p = bi∗ ; under the second-price mechanism the price equals
the second highest bid, p = arg maxi∈N\{i∗} bi. Denote by β : T × Θ → R a type’s bidding
strategy. Our model of the English auction follows Milgrom and Weber (1982): the auction-
eer continuously raises the price and bidders publicly reveal when they withdraw from the
auction; exit decisions are irreversible. We describe the formal strategies when we analyze
English auctions in Section 3.4. Fixing the auction format, let Γ(G) denote a generic auction
in which G is the commonly known distribution of private values. The purpose of this nota-
tion is made clear when we introduce taste projection: each Player i misperceives the game
as Γ(Ĝ(· | ti)), and, hence, plays her part in a Bayesian Nash equilibrium of Γ(Ĝ(· | ti)).

To motivate our private-and-common-value setting, we provide a few examples. First,
suppose firms are competing for a license to operate in a market. The cost structure of a
firm—dictated by the firm’s private technology—constitutes a private value element. The
demand in the market constitutes the common-value component. In the canonical mineral-
rights example, a firm’s profit depends on the common value of the well and its private
idiosyncratic drilling costs. Projection will imply firms overestimate how similar others’
costs are to one’s own. Alternatively, consider auctions for consumer goods with resale
markets, like real estate, art, or wine. Bidders competing for a painting are motivated

6For other articles analyzing auctions with private and common signals see Compte and Jehiel (2002),
Jehiel and Moldovanu (2001), Pagnozzi (2007) and Pesendorfer and Swinkels (2000).

7We model the common-value component of utility with an additive value function as in the “Wallet
Game” introduced in Klemperer (1998) and Bulow and Klemperer (2002). Goeree and Offerman (2003)
assume that the common value component of a bidder’s utility is equal to the average of the bidder’s
common value signals: v ≡ 1

n

∑N
i=1 θi. Our formulation is qualitatively equivalent to theirs but easier to

work with under taste projection.
8In Section 3.3, we consider an environment with purely private values. That is, v = 0, and F is

degenerate on zero. When we add common value to the model in Section 3.4, we maintain that θi
iid∼ U[0, 1].
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by two factors: (1) their idiosyncratic taste for the painting—which determines immediate
consumption utility when they hang the painting on their wall, and (2) the common resale
value of the painting—which is realized when they ultimately sell the painting. Projection
implies that those who get the most pleasure from consuming the product overestimate it’s
resale value.

3.2.2 Projection: Motivation and Model

This section reviews the literature motivating our main assumption of taste projection and,
following Gagnon-Bartsch (2014), provides a simple formulation of this bias. The model
consists of two key assumptions: (1) an agent’s perceived preference distribution depends on
her own taste, and (2) she neglects that others’ perceptions depend on their tastes.

3.2.2.1 Evidence of Taste Projection

The notion that people systematically misptredict others’ tastes is supported by several
strands of research. A large literature in social psychology studies inter-personal projection—
the idea that people’s own habits, values, and behavioral responses bias their estimates of
how common are such habits, values, and actions in the general population. Early work,
including Ross, Greene, and House (1977)—who coin the term “false-consensus effect”—find
positive correlation between subjects’ own preference responses and their estimates of others’
responses. Subjects in Ross, Greene, and House (1977) gave their own (binary) response to
a question, and predicted the fraction of subjects who answered similarly. (E.g., “Are you
politically left of center?”; “Do you prefer basketball over football?”; “Will there be women
in the supreme court in the next decade?”; “Do you prefer Italian movies over French?”)
Out of 34 questions, 32 were consistent with taste projection: those who answer “yes” to
a question overestimate how many others will answer “yes” relative to those who answer
“no”. Many similar studies followed, documenting this correlation across a wide range of
domains, including preferences over political candidates and ideology, perceptions of the
income distribution and preferences for redistribution, and risk preferences.9

Each of these studies, however, simply document correlation between a subject’s own
taste and her prediction. Is such correlation necessarily indicative of an error? If there is
uncertainty about others’ tastes, the answer is no. As first noted by Dawes (1989), with
uncertainty, a Bayesian should use her own taste as information, resulting in rational type-
dependent estimates that appear consistent with a “false-consensus” bias.

9Marks and Miller (1987) review 45 different studies documenting the false-consensus effect published
over the decade following Ross, Greene, and House (1977). Mullen, Atkins, Champion, Edwards, Hardy,
Story, and Vanderlok (1985) find robust evidence of this correlation in a meta-study of 115 tests. Evidence
of type-dependent misprediction has been found in a variety of domains. For instance, Brown (1982) and
Rouhana, O’Dwyer and Vaso (1997) find type-dependent perceptions of political preference. Cruces, et al.
(2013) find type-dependent misprediction of the income distribution in Argentina, and demonstrate that this
leads to misprediction of population preferences for income redistribution. Faro and Rottenstreich (2006)
find correlation between subjects’ own risk preference and their perception of others’ risk preferences.
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Motivated by this critique to demonstrate a systematic error, Krueger and Clement (1994)
and others provide evidence that this “bias” remains even when subjects have information
about other’ preferences. They find that subjects use their own preference information more
so than that of anonymous others when making population predictions, inconsistent with
Bayesian rationality.10 In incentivized settings, Engelmann and Strobel (2012) verify that
a truly-false-consensus bias remains so long as subjects must exert a small amount of effort
to get information on others’ choices; when this information is not freely available or made
salient, people rely too heavily on their own choice when predicting the choices of others.
So long as attending to others’ tastes comes at some cost, this result suggests that people
can hold incorrect type-dependent beliefs about population preferences even in settings with
ample opportunity to observe others—where the “Dawes critique” should have little bearing.11

Relatedly, economists have argued intra-personal projection bias—exaggerating the de-
gree to which future preferences resemble current preferences—influences behavior.12 To
the extent that preferences of contemporaneous others are similarly difficult to predict, we
should expect the logic of intrapersonal projection bias to suggest interpersonal-projection.
An intuition for intrapersonal projection is that we “mentally trade places” with our future
selves, and in doing so, project our current preference states. But this exact logic applies
when empathizing with another. Indeed, Van Boven and Loewenstein (2003) show that the
same transient preference states shown to warp subjects’ perceptions of own future prefer-
ences also distort predictions of others’ preferences. Subjects’ predictions of whether thirst
or hunger would be more bothersome to hypothetical hikers lost without food or water were
biased in the direction of subjects’ own exercise-induced thirst. More economically relevant,
Van Boven, Dunning and Loewenstein (2000, 2003) show that sellers who experience an en-
dowment effect project their high valuation of a good onto the valuations of potential buyers,
causing sellers to set inefficiently high prices.

3.2.2.2 General Properties of Projection

Our model of taste projection, which follows Gagnon-Bartsch (2014), assumes a player’s
private value t influences her perceived distribution of types. In truth, tastes t are i.i.d.
across players with according to c.d.f. G. Denote a type-t’s perception of G(·) by Ĝ(· | t).

10Krueger and Clement (1994) deduce that when estimating the percent of subjects that endorse some
action or preference, subjects use their own response nearly twice as much as the response of an anonymous
other. A rational Bayesian should, of course, use these two responses equally.

11Using data from the American Life Panel, Delavande and Manski (2012) show that perceptions of others’
candidate preferences in the 2008 U.S. presidential election and 2010 congressional election were consistent
with the false-consensus effect even after the release of poll results. While this finding may indicate additional
statistical biases (e.g., failure to appreciate the Law of Large Numbers—see Benjamin, Raymond, and Rabin,
2013), it shows that taste-dependent perceptions can persist despite opportunity to learn about others’ tastes.

12For empirical studies see Busse, Pope, Pope, and Silva-Risso (2012), Simonsohn, (2010), and Conlin,
O’Donoghue, and Vogelsang (2007). For example, Busse, et al. shows that projection bias affects demand
and prices in large, high-stakes markets for cars and houses. Loewenstein, O’Donoghue, and Rabin (2003)
provide a general overview of the evidence and draw out implications of a formal theoretical model.
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Before proposing a simple specification for Ĝ, we make 2 general assumptions on players
perceptions.

First, consistent with the false-consensus effect, we assume high types think high private
valuations, or “tastes”, are relatively more common, while low types think the opposite. We
capture this intuition by assuming Ĝ(· | t) dominates Ĝ(· | t′) in the sense of first-order
stochastic dominance whenever t > t′:

Assumption 12. (Stochastically Dominating Perceptions.) Ĝ(· | ti) first-order stochasti-
cally dominates Ĝ(· | tj) if and only if ti > tj. That is, whenever ti > tj, Ĝ(t | ti) ≤ Ĝ(t | tj)
for all t ∈ T , and the inequality is strict for some t ∈ T .

Fixing any threshold t̄, the higher is a player’s private value, the higher is her estimate of the
share of competitors with value exceeding t̄. For example, lovers of Italian wine think 90%
of bidders in a wine auction have a private valuation for Italian wine that exceeds $300. But
those who prefer French wine think only 50% of bidders have a private valuation for Italian
wine that exceeds $300.

Second, we assume that a projector is naive about her bias: she neglects that those with
different tastes have alternative perceptions of the distribution. She thinks all agents share
a common perception.

Assumption 13. (Naivete.) For any player j with private valuation tj, a player with valua-
tion ti believes Ĝ(· | tj) = Ĝ(· | ti). That is, player i thinks that all players ¬i have identical
perceptions equal to Ĝ(· | ti).

Player i with taste ti thinks type distribution Ĝ(· | ti) is common knowledge to all players.
In essence, agents imagine they are playing a game with common priors, when in fact priors
are heterogeneous. With this assumption, solving the model is relatively straightforward.
Player i plays her Bayesian-Nash-equilibrium strategy of the auction where Ĝ(· | ti) is the
commonly-known taste distribution. For instance, if β(ti;G) is the Bayesian Nash bidding
strategy in the rational common-knowledge sealed-bid auction with distribution G, then
Player i follows strategy β

(
ti; Ĝ(· | ti)

)
in an auction with projection.13 It follows that each

Player i’s strategy is part of a Bayesian Nash equilibrium of game Γ
(
Ĝ(· | ti)

)
. We call the

resulting profile of of strategies a “naive equilibrium” of Γ.14

13Henceforth, we simply write β(ti) to denote ti’s bidding strategy, which implicitly depends on her
perception Ĝ(· | ti).

14Note that a “naive equilibrium” is not a true equilibrium since players’ beliefs are systematically biased
away from observed outcomes. Instead, each player’s strategy is a best response to her incorrect belief
about others’ actions. “Naive equilibrium” is a very weak concept as it only imposes that each player
plays a Bayesian Nash equilibrium strategy of her perceived game. In this setting, however, we impose
further structure by focusing on symmetric equilibria. We solve for the symmetric monotone Bayesian Nash
equilibrium as if all players were fully rational, then consider the naive equilibrium in which all players think
they play their part in this particular symmetric monotone equilibrium. Essentially, players agree on which
equilibrium they are in, but miscalculate their optimal strategy within this equilibrium.
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Aside from these errors in perceptions about G, players are Bayes rational. They draw
inference using Bayes’ Rule given their incorrect model of the game, and maximize expected
payoffs given these inferred beliefs.15

3.2.2.3 Parametric Model

For the purpose of this paper, we propose a simple parametric specification for the family
of perceived distributions {Ĝ(· | t)}t∈T . We assume that each type perceives a distribution
with the same shape as G, but shifted to the right or left by an extent proportional to
her private value. Those with low private value perceive a distribution shifted to the left;
those with high private value perceive one shifted to the right. Our specification captures
the notion that people overestimate how “representative” their valuation is. The perceived
support is shifted such that a player’s valuation is closer to the “center” of the support. To
proceed, we first define the shifted support and then define the perceived distribution as a
“re-normalization” of the true distribution over this new support.

To derive the perceived support, it is useful to think of the true support T = [t, t] as an
interval of about some central statistic µ:

T =
[
µ−∆, µ+ ∆

]
(3.1)

where ∆ ≡ µ − t and ∆ = t − µ. Bidders project with respect to this central statistic µ:
each player wrongly thinks her private value is closer to statistic µ of G than it really is.
Our model is agnostic about µ—it could be the mean, mode, or some other salient statistic.
Player i with taste ti thinks µ has value µ̂(ti), which we define as the convex combination of
her taste and the true value of µ:

µ̂(ti) = ρti + (1− ρ)µ. (3.2)

We call parameter ρ ∈ [0, 1] the extent of projection.16 ρ = 0 implies correct perceptions,
while ρ = 1 implies each type thinks her valuation lies exactly at the µ statistic. Intermediate
ρ implies for all ti 6= µ, |µ̂(ti) − ti| < |µ − ti|: people perceive their value as more central
than it is. Only the type with valuation exactly equal to µ has a correct perception of µ.

15Naivete is the key assumption that differentiates “taste projection” from a model with rational taste-
dependent distributional beliefs. Rational agents know precisely the map between an agent’s type and her
belief about the distribution. Further, naivete departs from much of the literature on non-common priors,
which assumes individuals have rational expectations about the distribution of heterogeneous beliefs across
players. See, for example, Harrison and Kreps (1979) or Morris (1996). Here, however, players assume the
distribution of beliefs (about G) is degenerate on their own perception. As such, within the particular domain
of auctions, this paper provides a first step in analyzing the implications of neglecting heterogeneity in beliefs.
The importance of this line of research has been previously emphasized by Nisbett and Ross (1980): “The
real source of difficulty does not lie in the fact that human beings subjectively define the situations they
face, nor even in the fact that they do so in variable and unpredictable ways. Rather, the problem lies in
their failure to recognize and make adequate inferential allowance for this variability and unpredictability.”

16For simplicity, we assume each player has the same extent of projection.
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A player with taste ti thinks the support is T̂ (ti). The misperceived support is

T̂ (ti) =
[
µ̂(ti)−∆, µ̂(ti) + ∆

]
. (3.3)

Player i wrongly thinks the support is “centered” about the taste-dependent estimate of
µ̂(ti).17

We now describe a player’s perceived distribution. We assume each perceived distribution
Ĝ(· | ti) has precisely the same shape as the true distribution G, but is shifted to fit over
T̂ (ti). If t denotes the true random variable from which private values are drawn, a player
with valuation ti thinks types are drawn from random variable t̂(t | ti) = t+ [µ̂(ti)−µ]; t̂(ti)
is a simple linear shift of the true random variable. It follows that the c.d.f. of t̂(ti) is

Ĝ(τ | ti) = G

(
t̂−1(τ | ti)

)
= G

(
τ −

[
µ̂(ti)− µ

])
.18 (3.4)

Equation 3.4 pins down our family of perceived distributions in terms of the true distribution
and projection parameter ρ. Let Êi[·] denote the expectations operator for agent i with
valuation ti, which is with respect to Ĝ(· | ti).

How should we interpret Ĝ(· | ti)? While it has precisely the same shape as G, it’s
worth clarifying what this means. First, players correctly perceive the percentile of µ̂(ti).
It follows directly from Equation 3.4 that for any ti, Ĝ(µ̂(ti) | ti) = G(µ). For instance, if
µ is the median so G(µ) = 0.5, then µ̂(ti) is the median of Ĝ: Ĝ(µ̂(ti) | ti) = 0.5. Players
systematically mispredict the percentile of other types in a similar way. Consider Player
i’s perception of opponent τ ’s percentile. Player i thinks that τ ’s position in her perceived
support is such that fraction y of the perceived support falls below τ :

y =
τ − t(ti)
t− t

Our model says that i’s perception of τ ’s percentile equals the true percentile of the type τ
who is such that faction y of the true support falls below τ ′—τ ′ solves

y =
τ ′ − t
t− t .

17To be clear, our model of projection relies on 2 parameters, µ and ρ. Projection is with respect to some
statistic of the private-value distribution, denoted µ. ρ measures the extent to which players underestimate
the distance between their own value and statistic µ. µ is specified by the game, while ρ is an exogenous
“behavioral” parameter.

18Denote by ĝ(· | ti) Player i’s perceived density, which we obtain by differentiating 3.4:

ĝ(t | ti) =
1

σ
g

(
1

σ
(t− µ̂(ti)) + µ

)
.
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In other words, if τ ∈ T̂ (ti) and τ ′ ∈ T have identical proportional positions within T and
T̂ , τ − t(ti) = τ ′ − t, then i perceives τ at the same percentile as τ ′’s true percentile.19

More generally, the model implies that players misperceive their own percentile in the
taste distribution. All players underestimate the distance (in terms of percentile) between
their own valuation and µ̂(ti).

Lemma 1. Let µ̂(ti) = ρti + (1−ρ)µ. For all ti,
∣∣Ĝ
(
ti | ti

)
− Ĝ

(
µ(ti) | ti

)∣∣ < |G(ti)−G(µ)|.

Lemma 1 implies that those below the G(µ)-percentile overestimate their percentile—those
with low private value overestimate how many have valuations lower than themselves. And
those above theG(µ)-percentile underestimate their percentile—those with high private value
overestimate how many have valuations higher than themselves. Players with extreme values
fail to appreciate how much their taste differs from the general population. For instance,
suppose µ is the median of G so G(µ) = 0.5. An agent at the 70th percentile estimates that
she’s at the πth percentile for some π ∈ (50, 70). Likewise, an agent at the 10th percentile
estimates that she’s at the π̃th percentile for some π̃ ∈ (10, 50).

For a graphical example of our model, suppose in truth T = [0, 1], t ∼ Beta(3, 2), and µ
is the mean of t (µ = 0.6). The plot below shows the true density (thick black curve) and
the perceived densities for types ti ∈ {0, .2, .4, .6, .8, 1} for ρ = 0.5.

While we provide a general model of projection, in our auction environments we focus
on the case where t ∼ U[0, 1]. With uniformly distributed values, we believe that µ = 1/2
is the most the natural candidate for the statistic about which players project. As such,
we assume µ = 1/2 unless explicitly assume otherwise. In this case, our model implies that
Player i thinks t ∼ U[t(ti), t(ti)] where

t(ti) = ρti + (1− ρ)/2− 1/2

t(ti) = ρti + (1− ρ)/2 + 1/2. (3.5)

Player i thinks the mean valuation is Êi[t] = ρti + (1− ρ)/2.
19Since our model assumes that agents misperceive the support of valuations, it is conceivable that agents

observe behavior they thought was impossible. To rule this out, we can slightly augment our definition of the
perceived distribution so that the true support T is a subset of the perceived support for all t. Let Ĝ(· | ti)
and T̂ (ti) be defined as above, and let the perceived support be T̃ ≡ T̂ (ti) ∪ T , and define the perceived cdf
as G̃(t | ti) = (1 − ε)Ĝ(t | ti) + ε t−t

t−t for some ε > 0. That is, the agent puts weight 1 − ε on the perceived
distribution defined in Equation 3.4, and weight ε on a uniform distribution over the true support. In the
limit as ε→ 0, all of our analysis using Ĝ rather than G̃ consists of nearly-exact approximations, and agents
never observe behavior they thought was impossible. This is, of course, not a realistic model of perceptions,
but it eliminates any possibility of observing supposedly-impossible behavior. Essentially, anything that can
happen in reality can happen in the false model, but things that the agent thinks can happen in the false
model never happen in reality. An agent never observes anything that contradicts the model.
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Figure 3.1: The true density (dashed black curve) and perceived densities for ti =
{0, .2, .4, .6, .8, 1}. when t ∼ Beta(3, 2), ρ = .5.

3.3 Private Values: Overbidding
In this section, we study how taste projection affects bidding and revenue in auctions with
independent private values. Since there is no common-value component, players infer nothing
about the value of the good from others’ bids. Despite this, projection distorts a players’
perception of the competition. We first consider second-price and English auctions, then
turn to first-price auctions.

3.3.1 Second-Price and English Auctions

We begin with the most basic scenario: a second-price sealed-bid auction with independent
private values. With rational bidders, the symmetric Bayesian equilibrium bidding strategy
is simply β(ti) = ti—a player bids her valuation of the good. No matter the extent of the
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bias, this is still an equilibrium under projection. The English auction has an equivalent
equilibrium: each player remains in the auction until the price exceeds her private value.

Hence, if we restrict attention to these symmetric strategies, we conclude that projection
has no effect on bidding:

Proposition 1. In both a second-price or English auction with independent private values,
the strategy profile where all players bid their private value is a naive equilibrium no matter
the extent of projection. That is, β(ti) is constant in ρ.

It follows that expected revenue is identical with biased or rational bidders. Further, the
auction is efficient—the player with the highest private value is always allocated the good.
Note that these results are entirely independent of any assumptions on the parametric form
of projection or the distribution of private values. It follows entirely from the fact that a
player’s strategy does not depend on her beliefs about others’ private values. As we show
next, this is not the case in a first-price auction.

3.3.2 First-Price Auction

Suppose players engage in a first-price sealed-bid auction with independent private values.
The symmetric Bayesian Nash equilibrium calls for Player i to bid her estimate of the
second-highest valuation conditional on her having the highest valuation: β(ti) = Êi[tk =
maxj∈N\{i} tj | ti = maxj∈N tj]. Clearly, this bid depends on Player i’s perception of others’
valuations, and thus projection distorts her bid.

To solve for biased bidding strategies, some notation is in order. Let τ1(ti) be the first-
order statistic of tastes among all bidders other than i. That is, τ1(ti) = maxj∈N\{i} tj. Let
Ĝ1(· | ti) and ĝ1(· | ti) denote the c.d.f. and p.d.f. of τ1(ti), respectively.20 Bidder i solves

max
bi

Ĝ1

(
β−1 (bi) | ti

)
× (ti − bi) , (3.6)

yielding first-order condition

ĝ1 (β−1 (bi) | ti)
β′ (β−1 (bi))

(ti − bi)− Ĝ1

(
β−1 (bi) | ti

)
= 0.

In a symmetric equilibrium bi = β (ti) , yielding the following differential equation:

d

dti

(
Ĝ1 (ti | ti) β (ti)

)
= tiĝ1 (ti | ti) .

To solve the above differential equation, we need an initial condition. In the rational model,
this condition is β (t) = t, since the lowest type knows she will never win. With projection,

20Given our assumption of independent private values, Ĝ1(t | t1) = Ĝ(t | ti)N−1.
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type ti assumes an analogous condition: she thinks that type t(ti) = ρti + (1 − ρ)/2 − σ/2
bids β (t(ti)) = t(ti). Hence:

β (ti) =
1

Ĝ1 (ti | ti)

∫ ti

t(ti)

yĝ1 (y | ti) dy

= Êi [τ1(ti) | τ1 (ti) < ti] .

Since Bidder i has perception that t is uniform on [t(ti), t(ti)], Êi [τ1(ti) | τ1 (ti) < ti] =
t(ti)+ N−1

N
(ti − t(ti)). From the definition of t(ti) in Equation 3.5, the naive bidding strategy

is
β(ti) =

(
N − 1

N

)
ti +

ρ

N

(
ti −

1

2

)
. (3.7)

In contrast, the rational bidding strategy βR(t) conditions on the fact that t ∼ [0, 1]. Setting
ρ = 0 in Equation 3.7 yields

βR(ti) =

(
N − 1

N

)
ti. (3.8)

The next proposition shows that the naive bidding strategy leads players with high private
valuations to overbid while others underbid.

Proposition 2. Consider a first-price auction with independent private values.

1. The naive bidding function is β(ti) =
(
N−1
N

)
ti + ρ

N

(
ti − 1

2

)
.

2. The naive bid is larger than the rational bid if and only if ti > µ = 1
2
. All players with

above-average taste overbid. Players with below-average taste underbid.

The intuition for Part 2 of Proposition 2 is as follows. Each bidder i attempts to guess
the value of the second-highest valuation (conditional on i having the highest) and slightly
outbid her. A player with high private value (ti > µ) uses a distribution shifted to the right:
her estimate of the second-highest value is necessarily too high. She perceives competition as
more fierce than it is, and consequently overbids. Conversely, a player with low private value
(ti < µ) overestimates the share of bidders with valuation below her own. She underestimates
the extent of competition, and, thus, underbids. Since the bidder with the highest valuation
wins the auction, projection has no effect on efficiency. Further, since high value players set
the price in the auction, projection increases expected revenue so long as types who overbid
are sufficiently common. We provide this result in the following section.

3.3.3 Revenue Comparisons

We now assess how projection affects expected revenue across auction formats and how
revenue changes with the extent of projection. In a first-price auction, revenue is increasing
in the extent of projection, ρ. In second-price or English auctions, ρ has no effect on revenue.
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Proposition 3. Consider tn auction with independent private values, and suppose bidders
play a symmetric equilibrium.

1. In a first-price auction, expected revenue is higher with projection than with rational
bidders. Furthermore, expected revenue is increasing in ρ.

2. In a second-price or English auction, expected revenue with projection is identical to
expected revenue with rational bidders.

The intuition for Part 1 of Proposition 3 follows from the fact that the player with the
highest value sets the price. Since the distribution of the highest value among N places
most density over high values of t, the winner is typically of the type who overbids. That
is, t∗ = maxi∈N ti exceeds 1/2 frequently enough to off-set any revenue-reducing effects of
those who underbid.21 Part 2 of Proposition 3 follows immediately from Proposition 1: the
standard second-price and English equilibria are unchanged by projection, thus revenue is
constant in ρ. Taken together, Parts 1 and 2 of Proposition 3 imply that revenue equivalence
doesn’t hold across first-price and second-price auctions.

Corollary 2. Revenue equivalence does not hold with projection: if ρ > 0, then a first-price
auction revenue dominates a second-price or English auction.

Other models of bidding behavior similarly predict a failure of revenue equivalence, with
risk aversion and loser regret (see Filiz-Ozbay and Ozbay, 2007) being among the most
widely-cited explanations. However, both risk aversion and loser regret predict that all
bidders, irrespective of their taste, bid above the RNNE benchmark. Taste projection,
instead, predicts a “bifurcation”: bidders with above-average valuations overbid compared
to the RNNE benchmark whereas bidders with below-average valuations underbid. Hence,
analyzing the full spectrum of bidding data could differentiate these two theories.

3.4 Private and Common Values: Inefficiency
We now analyze the effect of projection in auctions when the good also has some common-
value component. Intuitively, others’ bids now provide an agent with additional information
about her own value of the object. Hence, in equilibrium, she must condition on these

21In the model we analyze here, this is always the case. But it needn’t be true in general. Recall that
our model of projection has players misperceive the value of statistic µ. Those with ti > µ overestimate µ,
while ti < µ underestimate µ. The value µ is the turning point at which all ti > µ necessarily overbid. As
µ increases, the fraction of over-bidders decreases, making it less likely that such a type is present in the
auction. That is, the event in which the highest type is an under-bidder becomes more likely. In general,
there is a cutoff value µ̄ such that µ < µ̄ implies revenue increases with projection. For instance, when
perceptions are uniformly distributed, expected revenue increases with projection so long as µ < 1− 1

N—the
expected value of the first-order statistic of t. As argued above, we believe that µ = 1

2 is most consistent
with taste projection when t ∼ U[0, 1].
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bids. However, projection causes her to incorrectly assess the likely motivation for a bid.
Those with high tastes over-attribute a competitor’s bid to taste, while those with low
tastes over-attribute a competitor’s bid to the common-value signal. Now, in addition to the
“competition effect” highlighted above, projection distorts bids by biasing players’ estimates
of the common-value component. We make clear both the intuition and effect of biased
inference within the context of each particular auction format and show that it always
reduces efficiency.

3.4.1 Second-Price Auctions

We first consider a second-price auction, where the role of misinfernce in equilibrium bidding
strategies is most straightforward. While we solve for the bidding function for a general N
number of bidders below, we begin by assuming N = 2 in order to build intuition.

Suppose N = 2. Following Georee and Offerman (2003), the symmetric Bayesian Nash
equilibrium calls for Player i to bid her expected value of the object conditional on tying
with her opponent. That is:

β(ti, θi) = ti + θi + Êi[θj | tj + θj = ti + θi]. (3.9)

As we formally show in the next lemma, projection distorts a player’s equilibrium inference
about her opponent’s signal in a systematic way.

Lemma 2. The difference between Player i’s inference and the rational inference, Êi[θj |
tj + θj = ti + θi]− E[θj | tj + θj = ti + θi], is decreasing in Player i’s private value, ti.

Lemma 2 shows that, relative to rational inference, the higher is one’s private value, the
more pessimistic is her inference about the common value of the good. The intuition is as
follows. A Player i with high private value overestimates the average taste of her opponent;
thus, conditional on a tie, Player i must underestimate her opponent’s private signal. That
is, holding fixed the opponent’s surplus tj + θj, the higher is j’s expected taste, the lower
must be j’s expected signal.22 Since the perceived expected value of tj is increasing in ti,
the higher is a player’s taste, the more pessimistic an inference about θj she draws.

Specifically, if i thinks t ∼ U [ρti + (1− ρ)/2− 1/2, ρti + (1− ρ)/2 + 1/2], then

Êi[θj | tj + θj = ti + θi] =
1

2

(
Êi[tj + θj | tj + θj = ti + θi]− t(ti)

)

=
1

2

(
ti + θi − (1− ρ)ti − (1− ρ)/2 + 1/2

)

=
1

2

(
θi + (1− ρ)ti + ρ/2

)
. (3.10)

22Following Goeree and Offerman (2003), we refer to the sum of a player’s private value and her signal
as her private “surplus”.
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Combining this expression with the bidding function in Equation 3.9 yields

β(ti, θi) =
1

2

(
(3− ρ)ti + 3θi + ρ/2

)
.

A rational player, however, bids

βR(ti, θi) =
3

2
(ti + θi).

Upon comparing the biased and rational bidding strategies, it’s straightforward that
projection reduces efficiency relative to rational bidding. Since βR(ti, θi) = 3

2
(ti + θi), even

a rational auction may be inefficient—the player with the highest ti loses—when a player
with a low taste has a very high common-value signal. Note that rationality implies that a
bidder equally weights her taste and signal. With projection, the winner is he who has the
highest value of (3 − ρ)ti + 3θi: players put relatively more weight on their signal than on
their taste. As such, inefficient outcomes occur more frequently relative to the case where
bidders are rational.

The intuition is as follows. From Lemma 2, the naive equilibrium inference biases high
private-value bidders’ estimates of the common value downward, while it biases low private-
value bidders’ estimates upward. Thus, the difference in the expected total value of the good
between high private-value bidders and low private-value bidders is reduced. Since low and
high types now have more similar valuations, it’s more likely that a low type is misallocated
the good.

We now show that this same intuition holds with more than two bidders. To extend the
analysis to N bidders, we need a new piece of notation. Let (t + θ)(k) be the kth highest
value of t+ θ among the N bidders. Let θ(k) be the value of θ in (t+ θ)(k) Following Goeree
and Offerman (2003), Player i bids the expected value of the item given that she wins but
ties with the player owning the second-highest surplus. That is:

β(ti, θi) = ti + θi +
N∑

j=2

Êi
[
θ(j)

∣∣ (θ + t)(2) = θi + ti

]
. (3.11)

To evaluate this expression, first note that with perception t ∼ U[t(ti), t(ti)],

Êi
[
θ(j)

∣∣ (θ + t)(2) = θi + ti
]

=
1

2

(
Êi
[
(θ + t)(j)

∣∣ (θ + t)(2) = θi + ti
]
− t(ti)

)
. (3.12)

Thus,
N∑

j=2

Êi
[
θ(j)

∣∣ (θ + t)(2) = θi + ti

]
=

1

2

N∑

j=2

(
Êi
[
(θ + t)(j)

∣∣ (θ + t)(2) = θi + ti
]
− t(ti)

)

=
1

2

(
Êi
[
θj + tj

∣∣ θj + tj = θi + ti
]
+

(N − 2)Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]
− (N − 1)t(ti)

)
. (3.13)
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The second equality above follows from the fact that the expectation of the sum of all order
statistics of N i.i.d. draws is simply N times the expected value of a single draw. Finally,
since Êi

[
θj + tj

∣∣ θj + tj = θi + ti
]

= ti + θi, plugging Equation 3.13 into 3.11 yields the
following bidding strategy:

β(ti, θi) =
3

2
(ti + θi) +

N − 2

2
Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]
− (N − 1)ρ

(
ti − 1/2

)
. (3.14)

Proposition 4. Consider a second-price auction with N ≥ 2 bidders. With projection, the
bidding strategy is

β(ti, θi) =

{
β2
L(ti, θi) if ρ(ti − 1/2) < ti + θi ≤ ρ(ti − 1/2) + 1

β2
H(ti, θi) if ρ(ti − 1/2) + 1 < ti + θi ≤ ρ(ti − 1/2) + 2

(3.15)

where
β2
L(ti, θi) =

2N + 5

6
(θi + ti)−

ρ (2N − 1)

6
(ti − 1/2) , (3.16)

β2
H(ti, θi) =

3

2
(θi + ti) +

N − 2

2

(
A2(ti, θi)

B2(ti, θi)

)
− ρ

2
(N − 1) (ti − 1/2) , (3.17)

A2(ti, θi) = 16 (θi + ti)
3 − 12 (θi + ti)

2 (−ρ+ 2ρti + 4)

+ ρ (2ti − 1)
(
−12ρ+ ρ2 + 4ρ2t2i + 24ρti − 4ρ2ti + 24

)
+ 16, (3.18)

and

B2(ti, θi) = 24 (θi + ti)
2 − 24 (θi + ti) (−ρ+ 2ρti + 4)

+ 6
(
−8ρ+ ρ2 + 4ρ2t2i + 16ρti − 4ρ2ti + 8

)
. (3.19)

The logic of Lemma 2 implies that those with high tastes underbid, and those with low
tastes overbid. While this is not immediately clear from the bidding function in Proposition 4,
Figure 3.1 clearly reveals this bias in bidding strategies.

The following proposition formalizes our intuition about efficiency. Efficiency is always
lower with projection and decreases in the extent of projection.

Proposition 5. Consider a second-price sealed-bid auction with N bidders for a good with
both common and private value. The probability that the auction is efficient is decreasing in
the extent of projection, ρ.

The logic is similar to the case discussed above with N = 2. Those with high private values
underestimate the common value and those with low private values overestimate it. As such,
relative to rational inference, the total perceived value of the good varies by less than it
should across players with different tastes. As a consequence, it’s more likely for Player i
with a low private value to outbid Player i∗ with the highest private value when i has a
high signal. From Lemma 2, i∗’s perception of the common value is biased downward by
more than any other player’s. Increasing ρ only further decreases i∗ perceptions relative to
the rational inference, which further decreases efficiency. Figure 3.2 shows how efficiency
changes with ρ.
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Figure 3.1: The second-price bidding function as a function of t with θ = 1/2 for various
values of ρ.

3.4.2 English Auctions

We now consider an ascending-price English auction. Biased bidders suffer a similar mis-
inference in the English auction as they do in the second-price auction. When inferring
from the prices at which other bidders have exited, a player still in the auction misinterprets
the signals of those already withdrawn. A high-taste player forms overly pessimistic beliefs
about a withdrawn bidder’s signal, while a low-taste player forms overly optimistic beliefs.

For simplicity, we focus on the case with N = 3 bidders. Each Player i’s strategy consists
of two dropout prices, p1

i and p2
i . First, p1

i = p1(ti, θi) is the price at which i exits the auction
conditional on no other player dropping out prior to price p1

i . The price at which the first
player drops out of the auction is thus p̄1 = mini p

1
i . Second, p2

i = p2(ti, θi, p̄
1) is the price at

which i drops out if one player has already dropped out at p̄1. p2
i naturally depends on the

previous dropout price p̄1, which reveals information about the private signal of the player
who drops out first.

Following Goeree and Offerman (2003), p1
i is the price at which i is indifferent between

winning at p1
i and dropping out, conditional on no player previously dropping out. Since i

wins at p1
i only if all players dropout at p1

i , p1
i = p1(ti, θi) = Êi[v+ ti | θj + tj = θi + ti ∀ j] =
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Figure 3.2: The probability that the player with the highest taste t wins the auction as a
function of ρ. (Estimated from 1,000,000 simulated auctions.)

θi + ti + 2Êi[θj | θj + tj = θi + ti]. Since Êi[θj | θj + tj = θi + ti] = 1
2
[θi + (1− ρ)ti + ρ/2] by

Equation 3.10, it follows that p1(ti, θi) = φ(θi + ti)− γi where φ is a fixed constant across all
players—φ = 3

2
—and γi is a type dependent distortion caused by misperception of the taste

distribution—γi = ρ(ti− 1/2). As will be crucial below, Player i thinks γi depends solely on
the distribution of tastes, and is thus constant across players. Simplifying, the first player
to dropout does so at price

p̄1 = min
i

{
2θi + (2− ρ)ti + ρ/2

}
.

To derive p2
i , we must solve for a remaining players’ inference from observing the first

player drop at p̄1. Say that k drops at p̄1. Then i thinks p̄1 = φ(θj + tj)− γi; hence

Êi[θk | φ(θk + tk)− γi = p̄1] =
1

2

(
(p̄1 + γi)/φ− ρ(ti − 1/2)

)
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=
1

4

(
p̄1 − ρ(ti − 1/2)

)
. (3.20)

The next lemma follows immediately from the previous expression:

Lemma 3. Suppose the first player k drops out at price p̄1. For each i 6= k, Êi[θk | p̄1] is
decreasing in ti.

Lemma 3 is the dynamic analogue of Lemma 2. Since Player i assumes the first bidder to
withdraw (k) has taste similar to her own, i’s taste distorts her perception of k’s private
information. Rational inference about θk shouldn’t depend on one’s own taste whatsoever.
Here, of course, it does in a systematic way. The higher is ti, the lower is i’s expectation of
θk. A bidder with a strong private taste for the object thinks there is no way anybody would
dropout early unless she has very negative private information about the common value.

Supposing that players i and j remain, i bids up to

p2(ti, θi, p̄
1) = ti + θi + Êi[θj | θj + tj = θi + ti] + Êi[θk | p̄1].

From Equations 3.10 and 3.20

p2(ti, θi, p̄
1) = ti + θi +

1

2

(
θi + (1− ρ)ti + ρ/2

)
+

1

4

(
p̄1 − ρ(ti − 1/2)

)

=
3

2
[ti + θi] +

1

4
p∗1 −

3

4
ρ(ti − 1/2). (3.21)

Intuitively, the bid is increasing in surplus, past drop-out price, and decreasing in the
extent of the rightward shift of the support. Making explicit the weight p̄2

i puts on θi relative
to ti,

p2(ti, θi, p̄
1) =

3

2
θi +

3

2
(1− ρ/2) ti +

1

4
p∗1 +

3

8
ρ.

That is, people put too little weight on ti relative to θi. Their bid should weight these equally,
but they weight ti less by a factor of 1− ρ/2 ∈ (.5, 1). This nicely shows how inefficiency is
increasing in ρ. The weight on ti approaches the rational benchmark only as ρ→ 0.

The final price of the good is the minimum of the expression among those players still in
the auction: p̄2 = minl∈{i,j} p

2(tl, θl).

Proposition 6. Consider an English auction with N = 3. With projection, the bidding
strategy consists of the following type- and history-dependent dropout prices:

p1(ti, θi) = 2θi + (2− ρ)ti +
1

2
ρ

p2(ti, θi, p̄
1) =

3

2
θi +

3

4
(2− ρ) ti +

1

4
p∗1 +

3

8
ρ. (3.22)

As in the second-price auction, the fact that inference about the common value is in-
creasingly pessimistic in a player’s taste, inefficiency increases with the extent of projection.
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Proposition 7. Consider an English auction with N = 3. The probability that the auction
is efficient is decreasing in ρ.

The logic behind 7 is essentially a dynamic analogue of the logic as to why projection
decreases efficiency in second-price auctions. Suppose i has the highest private value and
k withdraws first at price p̄1. Lemma 3 implies that i draws a more pessimistic inference
from p̄1 than does j. As such, if i projects, she’s more likely to drop out early relative to a
rational Player i. Figure 3.3 shows how efficiency changes with ρ.
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Figure 3.3: The probability that the player with the highest taste t wins the auction as a
function of ρ. (Estimated from 1,000,000 simulated auctions.)

3.5 Conclusion
This paper explores how systematically mispredicting others’ tastes affects the revenue and
efficiency of several auction formats. In particular, we show that in private-value settings,
projection leads to overbidding in first-price auctions. When the good also has some common-
value component, projection causes misinference about the common value and consequently
distorts bidding strategies regardless of the auction format. A player’s biased estimate of the



CHAPTER 3. PROJECTION OF PRIVATE VALUES IN AUCTIONS 140

common value is always inversely related to her private value of the good. This misinference
leads to reduced efficiency in both second-price and English auctions.

While a large literature provides empirical evidence that people project preferences, this
is one of very few papers to formally draw out implications of the bias. Goeree and Grosser
(2007) explore the consequences of a consensus effect in two-party voting settings—liberals
overestimate the fraction of liberals, and conservatives overestimate the fraction of conserva-
tives. Miscalculated probabilities of being pivotal can lead to inefficient election outcomes.
Gagnon-Bartsch (2014) examines the impact of projection on social learning in general set-
tings where players learn which action is best for themselves by observing predecessors’
choices. Projection can cause society to believe a single practice is best for all individuals
when in fact different types should optimally choose different actions.

This paper leaves open several questions that we hope to address in future research. While
we characterize projection’s effect on efficiency in settings with both private and common
value, we do not fully explore how it affects expected revenue. This question is particularly
complex in first-price auctions with private and common value. On the one hand, those with
high private values overestimate the extent of competition, which pushes their bids upward.
But, on the other hand, they draw the most pessimistic inference about the common value,
pushing their bids downward. Understanding which of these forces dominates, and why, is
still a work in progress.

Additionally, there are two related models—information projection and rational uncer-
tainty about tastes—which may yield similar predictions to naive taste projection. First, the
model of information projection by Madarasz (2012), in its most simple form, posits that
player i with private signal θi thinks that all other players observe θi in addition to their own
other private information. In essence, people treat their private signal as if it were public
information. It is an open question how the predictions of taste projection and information
projection differ in auctions with both common and private value. Second, the rational ex-
planation for the false-consensus effect assumes the true distribution of values is unknown. A
Bayesian agent uses her own valuation to update her beliefs about the distribution. Players
with different private values update differently, arriving at conflicting perceptions of G. The
key difference between naive projection and rational misprediction is that rational players
know that people have conflicting beliefs and account for this disagreement when drawing
inference. Differentiating the predictions of these various models will guide us in inferring
from auction data which, if any, of these models are likely driving behavior.



141

Appendix

3.A Omitted Proofs
Proof of Lemma 1

Proof. Let µ̂(ti) = ρti + (1− ρ)µ. From Equation 3.4,

Ĝ(ti | ti) = G

(
ti −

[
µ̂(ti))− µ

])
= G

(
(1− ρ)ti + ρµ

)
,

and
Ĝ(µ̂(ti) | ti) = G(µ).

Thus, we want to show
∣∣Ĝ
(
ti | ti

)
−Ĝ
(
µ(ti) | ti

)∣∣ =
∣∣G
(
(1−ρ)ti+ρµ

)
−G(µ)

∣∣ < |G(ti)−G(µ)|.
SinceG is increasing, G

(
(1−ρ)ti+ρµ

)
−G(µ) > 0⇔ (1−ρ)ti+ρµ⇔ ti > µ⇔ G(ti)−G(µ) >

0. Thus, G
(
(1− ρ)ti + ρµ

)
−G(µ) > 0 if and only if G(ti)−G(µ) > 0, which is true if and

only if ti > µ. So, we consider two cases: (1) ti > µ, and (2) ti < µ. Suppose ti > µ.
Our claim holds iff G

(
(1 − ρ)ti + ρµ

)
< G(ti), which holds iff (1 − ρ)ti + ρµ < ti, which is

true by assumption ti > µ if ρ ∈ (0, 1]. Similarly, suppose ti < µ. Then our claim holds iff
(1− ρ)ti + ρµ < ti, which is true by assumption ti < µ if ρ ∈ (0, 1].

Proof of Proposition 1

Proof. From our naivete assumption, each player i thinks she’s participating in an auction
where it’s common knowledge that t ∼ Ĝ(· | ti). Let Γ denote either the second-price
or English auction. As such, she plays a strategy that’s part of a rational Bayesian Nash
equilibrium of game Γ(Ĝ(· | ti)). Let β(ti) denote type ti’s bidding strategy—in the second-
price auction, β(ti) denotes the bid, and in the English auction it denotes ti’s exit price. For
any belief Ĝ, it is well known that β(ti) = ti is a rational Bayesian Nash equilibrium strategy
of Γ(Ĝ(· | ti)).

Proof of Proposition 2

Proof. Part 1. In text.
Part 2. From Equations 3.7 and 3.8, β(ti)− βR(ti) = ρ

N
ti − ρ

2N
> 0⇔ ti >

1
2
.
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Proof of Proposition 3

Proof. We must compare the expected winning bid under projection with the expected win-
ning bid under rational expectations. Since both biased and rational bidding functions are
increasing in ti, we take expectations with respect to ti conditional on ti = maxj∈N tj. Note
that ti = maxj∈N tj has distribution GN , so g(ti | ti maxj∈N tj) = NGN−1(t)g(t). Assuming
t ∼ U[0, 1], g(ti | ti maxj∈N tj) = NtN−1 and expected revenue is

E[β(ti) | ti = max
j∈N

tj] = N

∫ 1

0

β(ti)t
N−1
i dti

=

(
N − 1 + ρ

N

)
N

N + 1
− ρ

2N

=
N − 1 + ρ

N + 1
− ρ

2N
. (A.1)

Letting ρ = 0, it follows that expected revenue under rational bidding is N−1
N+1

. Expected
revenue with projection is larger so long as

ρ

N + 1
>

ρ

2N
⇔ N > 1

so long as ρ > 0. Furthermore, from Equation A.1 the derivative of expected revenue with
respect to ρ is (N − 1)/[2N(N + 1)] > 0 for N > 1. Thus, expected revenue is increasing in
ρ.

Proof of Lemma 2

Proof. Player i perceives t ∼ U[t(ti), t(ti)] where t(ti) and t(ti) are given in Equation 3.5. It
follows that Êi[θj | tj + θj = ti + θi] = 1

2

[
θi + ti − t(ti)

]
= 1

2

[
θi + (1− ρ)ti + ρ/2

]
. A rational

player forms expectations with respect to t ∼ U[0, 1], hence E[θj | tj+θj = ti+θi] = 1
2

[
θi+ti

]
.

Hence,

Êi[θj | tj + θj = ti + θi]− E[θj | tj + θj = ti + θi] =
ρ

4

(
1− 2ti

)
,

which is clearly decreasing in ti.

Proof of Proposition 4

Proof. Consider a second-price auction with N ≥ 2 bidders. From Equation 3.14,

β(ti, θi) =
3

2
(ti + θi) +

N − 2

2
Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]
− (N − 1)ρ

(
ti − 1/2

)
. (A.2)

Thus, we need only compute Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]
. Since Player i thinks t ∼

U[t(ti), t(ti) + 1] where t(ti) = ρ (ti − 1/2), Player i thinks z ≡ (θ + t) follows a triangular
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distribution on with density

fZ (zi) =





z − t(ti) if t(ti) ≤ z ≤ t(ti) + 1

2 + t(ti)− z if t(ti) + 1 ≤ z ≤ t(ti) + 2

and c.d.f.

FZ (zi) =





(
z−t(ti)

)2
2

if t(ti) ≤ z ≤ t(ti) + 1

z
(
t(ti) + 2

)
− z2i

2
− t(ti)

(
t(ti)+4

)
2

− 1 if t(ti) + 1 ≤ z ≤ t(ti) + 2

.

Hence,

Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]

=



2
∫ θi+ti
t(ti)

z
(
z−t(ti)

)
dz(

θi+ti−t(ti)
)2 if t(ti) ≤ z ≤ t(ti) + 1

2
∫ t(ti)+1

t(ti)
z
(
z−t(ti)

)
dz+

∫ θi+ti
t(ti)+1

z
(
t(ti)−z+2

)
dz

2(θi+ti)
(
t(ti)+2

)
−(θi+ti)

2−t(ti)
(
t(ti)+4

)
−4

if t(ti) + 1 ≤ z ≤ t(ti) + 2

Using t = ρ(ti − 1/2), it follows that

Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]

=





2
3

(θi + ti) + ρ
3

(
ti − 1

2

)
if t(ti) ≤ z ≤ t(ti) + 1

A2(ti, θi)

B2(ti, θi)
if t(ti) + 1 ≤ z ≤ t(ti) + 2

where

A2(ti, θi) = 16 (θi + ti)
3 − 12 (θi + ti)

2 (−ρ+ 2ρti + 4)

+ ρ (2ti − 1)
(
−12ρ+ ρ2 + 4ρ2t2i + 24ρti − 4ρ2ti + 24

)
+ 16,

and

B2(ti, θi) = 24 (θi + ti)
2 − 24 (θi + ti) (−ρ+ 2ρti + 4)

+ 6
(
−8ρ+ ρ2 + 4ρ2t2i + 16ρti − 4ρ2ti + 8

)
.

Plugging this expression for Êi
[
θj + tj

∣∣ θj + tj < θi + ti
]
into the bidding function (Eua-

tion A.2) yields the strategy stated in the proposition.

Proof of Proposition 5
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Proof. (Sketch.) As ρ increases, the weight that the bidding function places on t decreases
relative to the weight on θ. To see this, consider low types (i.e., t+ θ < ρ(t− 1/2) + 1) who
bid β(t, θ) = βL(t, θ) (see Equation 3.15). It’s clear that ∂

∂θ
β(t, θ)− ∂

∂t
β(t, θ) = ρ(2N − 1)/6.

Thus, when ρ = 0, an incremental change in θ has the same effect on β as an incremental
change in t. But when ρ > 0, increasing θ has a larger effect on β than increasing t. Holding
types fixed, increasing ρ alters the ordering of bids in a way that makes those with high
signals more likely to win. More precisely, fix the vector of tastes (t1, ..., tN) and assume
t1 > ti for all i = 2, ..., N . For any i = 2, ..., N and any realization of θ1, the measure of
signals θi such that β(ti, θi) > β(t1, θ1) is larger the larger is ρ. This follows from the fact
that the difference in βi and β1 due solely to taste is smaller the larger is ρ. As such, Player
i with ti < t1 doesn’t need as high a signal in order to outbid Player 1 the higher is ρ. One
can arrive at similar conclusions for β(t, θ) = βL(t, θ), although the algebra is significantly
more involved.

Proof of Proposition 7

Proof. Let i = arg maxl∈N tl. We show that the probability that Player i drops out in the
first or second stage is increasing in ρ. Player i drops out in the first stage if p1

i∗ = minl∈N p
1
l .

This occurs with probability Pr (p1(ti, θi) < p1(tk, θk)) Pr (p1(ti, θi) < p1(tj, θj)). Since for
any l ∈ N , p1(tl, θl) = θi + (2− ρ)ti + 1

2
ρ,

Pr

(
p1(ti, θi) < p1(tl, θl)

)
= Pr

(
θi + (2− ρ)ti < θl + (2− ρ)tl

)

= Pr

(
θl − θi > (2− ρ)(ti − tl)

)
.

Since ti > tl, the right-hand side of the inequality above is decreasing in ρ. Thus, the
probability is clearly increasing in ρ. As such, the probability that i drops out first is
increasing in ρ. Now suppose that k drops out first at price p̄. The probability that i loses
is Pr(p2(ti, θi, p̄

1) < p2(tj, θj, p̄
1)). From Proposition 6,

Pr

(
p2(ti, θi, p̄

1) < p2(tj, θj, p̄
1)

)
= Pr

(
3

2
θi +

3

4
(2− ρ) ti <

3

2
θj +

3

4
(2− ρ) tj

)

= Pr

(
θj − θi >

1

2
(2− ρ)(ti − tj)

)
.

Again, since the right-hand side is decreasing in ρ, the probability is increasing. Thus,
inefficiency is increasing in ρ.
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