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1 Introduction

Traditionally, tissue histopathology slide examination under the microscope by a human pathologist
is considered the gold standard for cancer diagnosis and determining treatment options for a patient.
In recent years, digital pathology has revolutionized the clinical practice of pathology by capturing
the entire tissue slide using a slide scanner to create high-resolution whole slide images (WSIs) [1].
The increasing availability and adoption of WSIs for routine diagnosis have also given rise to the new
discipline of computational pathology, which aims at addressing the often time-consuming and costly
diagnosis process by the development of computer vision and machine learning techniques to automat-
ically analyze WSIs and assist pathologists in diagnostic tasks [2, 3]. Such recent advances in machine
learning have rapidly improved pathology workflow by providing more objective and reproducible re-
sults, leading to better patient care [4, 5].

However, existing methods in computational pathology have suffered from major limitations [6, 7].
One of the main bottlenecks is the lack of high-quality labeled data needed for training models with
high accuracy and robustness, where annotations are a labor-intensive and error-prone task to acquire
and relies on medical expertise. To compensate for the scarcity of labeled datasets, the development
of efficient unsupervised and self-supervised techniques is essential. Moreover, the computational com-
plexity associated with whole slide images is considered another main challenge. Training a deep
learning network on entire WSIs at full resolution is computationally intractable as the size of WSIs
could reach multi-gigapixles. Another major limitation, of the current deep learning techniques, is
that they are inefficient when dealing with relation-aware representations, thus, they cannot benefit
from the organization and the structure of the cells and the tissues in the WSI. Such limitations have
slowed the transition from research results to clinically deployed applications.

To address the computational complexity issue associated with WSI, the typical and most used ap-
proach is to sub-divided the image into small patches, where each patch is processed independently in
the neural network [7], then the predicted scores for each patch within a WSI are aggregated [8, 9, 10].
However, patches provide a limited visual context, and the optimal resolution and patch size for anal-
ysis is highly problem-dependent. Further, the correlations among these patches are ignored during
traditional deep learning feature learning. Consequently, machine learning methods that are based on
patch-level cannot capture the overall structure and organization of the tissue in a WSI. Modern deep
learning variations of graph neural networks (GNNs) have made a significant impact in many tech-
nological domains for describing relationships. Thus, it can be utilized to estimate the dependencies
between patches and enhance the discriminative ability of the network features. Graphs, by definition,
capture relationships between entities and can thus be used to encode relational information between
variables [11]. Given the utility of graphs in modeling the histology of cancer tissue, special emphasis
has been placed to exploit recent developments in deep learning for graphs in this domain. However,
these applications are still in their nascent stages when compared to existing typical conventional deep
learning methods. There are challenges associated with the adoption of GNNs into digital pathol-
ogy. Such challenges have existed at the following levels: 1) entity graph construction, 2) the training
paradigms, 3) explainability of graph models, 4) complexity of graph models, 5) the embedding of
expert knowledge and many others.

Optimal Transport (OT) is a mathematical framework that defines the problem of finding the most
efficient way (i.e., lowest cost) of moving an object such as probability distribution from one configura-
tion onto another (e.g., matching two distributions or finding the similarity between two distributions).
OT problems were initiated by Gaspard Monge (1746–1818), a French mathematician, in the 18th cen-
tury [12]. OT has been gaining in recent years increasing attention as a promising and useful tool in
the machine-learning community. This success is due to its capacity to exploit the geometric property
of the samples at hand. OT methods have been successfully employed in a wide variety of machine
learning applications [13, 14, 15, 16, 14, 17], computer vision [18, 19], generative adversarial networks,
domain adaptation [20]. Recently, applications of OT to biology have been proposed [21, 22, 23, 24].

The main goals of this research are the following:

Goal #1: Utilize the power of OT in conjunction with deep learning to address the annotations
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scarcity issue of pathology WSI.

Goal #2: Develop optimization frameworks to capture relation-aware representations of differ-
ent entities from whole slide pathology images.

Goal #3: Improve upon the existing automated cancer biomarkers detection AI-based methods.

To accomplish these goals, we intend to complete the following projects:

1. We aim to use contrastive learning using optimal transport to self-assign labels for non-annotated
whole-slide pathology images, thus, achieving Goal #1.

2. We aim to build an OT-based mathematical framework to construct cell-level graphs from pathol-
ogy images which would then be used to train GCN.

3. We aim to extend our graph reconstruction framework to include different types of entities such
as different tissues and cells from the same image, by constructing hierarchical multi-level graphs.

4. We plan to develop a graph contrastive learning based on optimal transport to address the lack
of pathology image annotations.

Projects 2 and 3 will help achieve Goal #2. We plan to benchmark and evaluate the performance of
our developed methods using real pathology images from The Cancer Genome Atlas in breast cancer
(TCGA) [25], thus, achieving Goal #3.

This report is organized as follows: Section 2 describes the background for optimal transport.
Section 3 shows an OT-based learning framework we developed named OTCC, alongside the results.
Section 4 shows our second framework named CLOT, which is built based on OTCC for cluster
assignment. In sections 5 to 8, we provide brief descriptions of the future projects we aim to accomplish
in the Ph.D. time. Section 9 talks about the datasets to be used to evaluate our methods and prediction
tasks to be accomplished. Section 10 shows the timeline of our proposed research. In the last section,
we conclude the report.

2 Background on optimal transport

Optimal Transport [26] is a mathematical framework that defines the problem of finding the most
efficient way of moving an object such as probability distribution from one configuration onto another
(e.g., matching two distributions or finding the similarity between two distributions). Efficient here
means with a lower cost. Let X = {xi}Ni=1 and Y = {yi}Ki=1 be two point clouds representing the
source and target samples, respectively. Let p ∈ HN and q ∈ HK to be two discretized distributions
of interest, where HN , and HK are histograms of N , K bins, with {p ∈ RN

+ ,
∑

i pi = 1}, {q ∈
RK

+ ,
∑

i qi = 1}, respectively. Thus,

q =

K∑
i=1

qiδyi and p =

N∑
j=1

pjδxj

where δ is the Dirac function. Let Q = (Qij)i,j defined as a transportation plan or the couplings
matrix that describes the amount of mass pj found at xj to be flowed toward the mass qi at yi. In
addition for Q to being nonnegative, it must satisfy the following two conditions

N∑
j=1

Qij = qi ∀i ∈ {1, ..,K} and

K∑
i=1

Qij = pj ∀j ∈ {1, .., N}

Optimal Transport addresses the problem of optimally transporting p toward q, given a cost Cij

measured as a geometric distance between xi and yj . The total cost of a transport plan is then:

⟨C,Q⟩F =

K∑
i=1

N∑
j=1

CijQij (1)
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where ⟨ · , · ⟩ is the Frobenius dot-product of two matrices. The optimal transport is therefore given
by the following optimization problem:

minimize
Q

⟨C,Q⟩F

subject to

N∑
j=1

Qij = qi ∀i ∈ {1, ..,K}

K∑
i=1

Qij = pj ∀j ∈ {1, .., N}

Qij ≥ 0 ∀(i, j) ∈ {1, ..,K} × {1, .., N}

(2)

At each bin, the transport must distribute the exact amount of the mass pi and must match the
final amount of targeted mass qj . We can state the optimization problem even more compactly

minimize
Q

⟨C,Q⟩F

subject to Q1N = q QT1K = p Q ≥ 0
(3)

where 1N , 1K denote the vectors of ones in dimension N , and K, respectively. We define the set of
all admissible couplings or transport plans Q(p,q) between histograms is given by

Q(p,q) = {Q ∈ RK×N | Q1N = q, QT1K = p}

.
More specifically, when the cost C is a distance matrix. The optimal transport is the Wasserstein
distance on HN ×HK which is defined as:

W (p,q) = min
Q∈Q(p,q)

⟨C,Q⟩F = min
Q∈Q(p,q)

K∑
i=1

N∑
j=1

CijQij (4)

Although the Wasserstein distance has appealing theoretical properties and an intuitive formula-
tion, its computation involves the resolution of a linear program and can thus be solved in polynomial
time, which is nonpractical especially when histograms’ dimension exceeds thousands if not millions.
To address this computation issue, Cuturi [26] has proposed to smooth the classic optimal transport
problem with an entropic regularization term, and show that the resulting optimum can be computed
through Sinkhorn’s matrix scaling algorithm at a speed that is several orders of magnitude faster than
that of transport solvers. Thus, the modified optimal transport, also called dual-sinkhorn distance, is
given by

minimize
Q∈Q(p,q)

⟨C,Q⟩F −
1

λ
S(Q) (5)

where S(Q) = −
∑N

i=1

∑K
j=1 Qij logQij is the entropy. This entropy regularization forms a simple

structure on the optimal regularized transport. According to transport theory [27], the optimum Qλ

can be written as a rescaled version of e−λC . The existence and uniqueness of Qλ follows from the
boundedness of the set Q(p,q) and the strict convexity of minus the entropy. To find Qλ, we use
the method of Lagrange multipliers, we first find the Lagrangian of equation (5) L(Q,α, β) with dual
variables α ∈ RK , β ∈ RN for the two equality constraints in Q(p,q). The Lagrangian is given by

L(Q,α, β) =

K∑
i=1

N∑
j=1

[ 1
λ
Qij logQij +QijCij

]
+ αT (Q1N − q) + βT (Q1K − p) (6)

For any couple (i, j), (∂L/Qij = 0)⇒ Qij = e1/2−λαie−λQije−1/2−λβj . Sinkhorn’s theorem (1967)
states that there exists a unique matrix of the form diag(u) e−λC diag(v) that belongs to Q(p,q)
where u ≥ 0K , v ≥ 0N . Qλ is thus necessarily that matrix, and can be computed with Sinkhorn’s
fixed point iteration, where u and v are updated such that the constraints are satisfied, in such a way
(u, v)← (q./(e−λCv),p./((e−λC)Tu)).

4



Part I

Completed projects

3 Self-labeling as an optimal transport

3.1 Motivation

Deep neural networks (DNNs) have achieved considerable progress in learning strong and discriminative
representations. While considerable breakthroughs have been made by DNNs in diverse applications
such as computer vision and medical imaging, speech recognition, natural language processing, and
time series analysis [28], learning a powerful representation often requires a large-scale dataset with
manually curated ground-truth labels, which has proven to be a bottleneck for the continued develop-
ment of state of the art performance and in its deployment in many application areas.

Self-supervised learning (SSL) is an increasingly popular framework that aims at obtaining features
without using manual annotations [29, 30]. State-of-the-art SSL paradigms are designed in learning
image representations while using a clustering algorithm in an end-to-end fashion as a means of provid-
ing pseudo labels for training a deep model in downstream applications. Typical deep learning-based
clustering algorithms are based on alternation learning in which they alternate between the representa-
tion learning and clustering assignment steps [31, 32]. Such methods work iteratively to assign features
in a latent space into clusters. It then uses these assignments to update the deep network. A main
drawback of this approach is that clustering should pass through image features of the entire dataset
(i.e., offline), which makes it less applicable to large-scale learning scenarios. Further, this approach
suffers from an accumulated error during the two stages of representation learning and clustering. In
order to address this issue, online clustering methods are required.

In this project, we employ optimal transport theory to assign cluster labels simultaneously (online).
We develop a clustering method called Optimal Transport-based Contrastive Clustering (OTCC).
Thus, providing a robust self-supervised deep training. Our framework extends the standard cross-
entropy minimization to an optimal transport problem and solves it using a fast variant of the Sinkhorn-
Knopp algorithm to produce the cluster assignments. Moreover, inspired by contrastive learning, we
enforce consistency between the produced assignments obtained from views of the same image. The
features and the labels are learned online which allows our method to scale to unlimited amounts of
data. Our deep learning framework is illustrated in 1.

3.2 Proposed method

Consider a given mini-batch X of N images {x1, ..., xN}. The idea of OTCC is to compute two random

augmentations X̃
a
and X̃

b
, and compute their latent space feature vectors using an encoder network

fθ, and a projection head g1(·) consists two stacked nonlinear MLP layers projects into a subspace with
a dimensionality of the cluster number followed by a softmax (i.e., prototype layer). It outputs the
predicted cluster assignment probabilities or the cluster-level representations pa, pb ∈ RN×K , where
K is the number of clusters.

Building upon the work of Cuturi et. al [26] on optimal transport, we encode the cluster labels
as posterior distributions q(y = k|xi), and we formulate the problem of finding optimal assignments
as an optimal transport optimization problem. We compare the class label predictions obtained from
the projection head with assignments obtained when solving the optimization problem. If the two
features pa and pb capture the same information, it should be possible to predict the label from the
other feature vector. Thus, consistency is enforced.

To mathematically formulate the self-labeling problem as an optimal transport, we encode the
labels as posterior distributions in the average cross-entropy objective [32, 33]. In this case, our loss
will be

LOpt(p, q) = − 1

N

N∑
i=1

K∑
k=1

q(y = k|xi) log p(y = k|xi) (7)
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Figure 1: OTCC clustering framework. In the first module, data pairs X̃
a
, X̃

b
are constructed using

two augmentations of dataX. Then the features are extracted from the pairs using a shared encoder fθ,
followed by a projection head to obtain the class label probabilities. In the second module, the cluster
assignment probabilities obtained from the head are used by the Sinkhorn-Knopp (SK) algorithm to
generate ground-truth-like cluster assignments. The same head is used twice to generate the probability
vector from the two views of the images. The outputs of the head are used in a way to enforce
consistency in the cross-entropy loss function.

where the values in the vector p(y|xi) ∈ {pai , pbi}, and q(y|xi) ∈ {qai , qbi }. Optimizing q is the same
as reassigning the labels, which leads to a degenerate solution, i.e., (7) can be trivially minimized by
assigning all data points to a single and arbitrary class label. A common way to avoid this is by adding
a constraint that enforces an equally-sized partition [33]. The learning objective is thus

minimize
q

LOpt(p, q)

subject to

N∑
i=1

q(y = k|xi) =
N

K
, q(y = k|xi) ∈ {0, 1}.

(8)

At this step, we only optimize the labels, keeping the predictions p fixed, given a batch of images.
The constraints mean that each data point xi is assigned to exactly one class label and the N data
points is split equally among the K classes. By reforming it as an optimal transport using the notations
in [26], let Py,i = p(y|xi) be the K ×N matrix of joint probabilities which is estimated by the model,
and Qy,i = q(y|xi)/N be theK×N matrix of assigned joint probabilities. Using the notation of [26], we
restrict the matrix Q to the transportation polytopeQ = {Q ∈ RK×N | Q1N = 1

K1K , QT1K = 1
N 1N},

where 1N denotes the vector of ones in dimension N . The constraints enforce that the matrix Q
splits the data uniformly. We then can rewrite the optimization problem (8) as

minimize
Q∈Q

⟨Q,− logP ⟩ (9)

where ⟨ · , · ⟩ is the Frobenius dot-product of two matrices. This optimization problem is linear
optimization, and we would solve it using the last version of Sinkhorn-Knopp algorithm [26], which
amounts by introducing a regularization term

minimize
Q∈Q

⟨Q,− logP ⟩ − 1

λ
S(Q) (10)

where S(Q) = −
∑N

i=1

∑K
j=1 qij log qij is the entropy. This problem can be solved using the Lagrange

multiplier for the entropy constraint of Sinkhorn distances [26], and its minimizer can be written as

Q = Diag(u)Pλ Diag(v), (11)

where u and v are normalization vectors chosen such that the resulting matrix Q is also a probability
matrix (see above for a derivation). Once Q is found, we optimize the overall objective defined next
section to find the optimal P (i.e., the model parameters).
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(a) 20 epoch (b) 150 epoch

(a) 300 epoch (b) 700 epoch

Figure 2: The evolution of features and cluster assignments across the training process on ImageNet-
10. The colors indicate the cluster assignment obtained from the cluster assignment module and the
features for t-SNE are computed from ResNet-34.

3.3 Results

Datasets: The proposed method was evaluated on three image datasets: CIFAR-100 [34], STL-10
[35], and ImageNet-10 [36]. Each dataset contains 10 classes except CIFAR-100, which contains 20
classes.

Implementation Details: We implement ResNet34 as an encoder backbone architecture [37] and
use the Adam optimizer [38] to simultaneously optimize the two projection heads and the backbone
network, with cosine learning rate scheduler [39]. The weight decay is set to 0.0001. ResNet is designed
for images of size 224 × 224, so we resize all input images to this size. The projection head consists
two-layer nonlinear MLP. ReLU activation was used between the two layers. Softmax activation was
used int he in the cluster-level contrastive projection head to produce soft labels as in [40]. Following
[41]. The batch size is set to 256 due to the memory limitation. All the models are trained from
scratch for 1000 epochs. The training is carried out on UC Merced Pinnacles Cluster using one 2x
NVIDIA Tesla A100 PCIe v4 40GB HBM2 Single GPU.

Data Augmentations: Following [41, 40] we use random cropping, color jittering, grayscale transfor-
mation, horizontal flipping, and Gaussian blurring for augmentation. Each transformation is applied
with a certain probability.

Evaluation Metrics: We utilize three common clustering evaluation metrics including Accuracy
(ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI). Higher values indi-
cate better performance.

In Table 1, we present the comparisons between our method with eight state-of-the-art cluster-
ing methods including K-means [42], CC [40], DCCM [43], PICA [44], DAC [36], DEC [45], JULE
[46], VAE [47]. Clustering results of DAE, DCGAN, DeCNN, and VAE are obtained by applying
k-means on the latent space features extracted from images. Results shown in Table 1 demonstrate
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Table 1: The clustering performance on three image benchmarks. The best results are shown in
boldface.

CIFAR-100 STL-10 ImageNet-10

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 0.130 0.085 0.028 0.192 0.125 0.061 0.241 0.119 0.057
JULE 0.137 0.103 0.033 0.277 0.182 0.164 0.300 0.175 0.138
VAE 0.152 0.108 0.040 0.282 0.200 0.146 0.334 0.193 0.168
DEC 0.185 0.136 0.050 0.359 0.276 0.186 0.381 0.282 0.203
DAC 0.238 0.185 0.088 0.470 0.366 0.257 0.527 0.394 0.302
DCCM 0.327 0.285 0.173 0.482 0.376 0.262 0.710 0.608 0.555
PICA 0.317 0.310 0.171 0.713 0.611 0.531 0.870 0.802 0.761
CC 0.429 0.431 0.266 0.850 0.764 0.726 0.893 0.859 0.822
OTCC(Ours) 0.501 0.492 0.309 0.872 0.797 0.762 0.913 0.892 0.851

the clustering ability of OTCC, which outperforms the baselines by a large margin on all of three
datasets. Specifically, OTCC outperforms the closest competitor (CC) on the three datasets in terms
of the three evaluation measures. The largest margin has been achieved on CIFAR-100, which is in-
teresting as it has the largest number of classes. The results demonstrate how meaningful the cluster
assignments obtained by solving the labeling problem as an optimal transport are. Figure 2 shows the
evolution of features obtained from the backbone and cluster assignments across the training process
on ImageNet-10. It demonstrates the ability of our method to cluster the instances.

4 Combining with contrastive learning

4.1 Motivation

To further improve the performance of OTCC, we proposed a modification to the original model by
including the concepts of contrastive learning besides optimal transport. We thus propose a deep-
based clustering method called Contrastive Learning driven and Optimal Transport-based (CLOT)
clustering which focuses on the problem of obtaining the labels simultaneously. We contribute a new
simultaneous and dual contrastive learning-based clustering framework that consists of two stages. In
the first stage, instance- and cluster-level representations are learned by maximizing the similarities of
the projections of positive pairs while minimizing those of negative ones, thus pushing away features
from different images while pulling together those from the augmented views of the same image.

In the second stage, CLOT extends the standard cross-entropy minimization to an optimal trans-
port problem and solves it using a fast variant of the Sinkhorn-Knopp algorithm to produce the cluster
assignments. The cluster-level representation notion is used for the first time in [40], where it’s learned
beside the instance-level representation which is obtained by optimizing the typical contrastive objec-
tive. Our work improves upon both objectives by considering a third objective that compares the class
assignments obtained from solving the self-labeling in an online fashion as an optimal transport and
enforces consistency between the produced assignments obtained from views of the same image. Our
framework thus allows contrasting different image views not only in terms of features but also in terms
of cluster assignments. CLOT is similar to OTCC, however, we add a second project head to output
the feature vector in a latent space besides two contrastive loss functions. The modified framework is
illustrated in figure 3.

4.2 Proposed method

Contrastive learning maximizes the similarities of positive pairs (i.e., the transformed views of the
same image) while minimizing those of negative ones by pushing away features from different images
while pulling together those from the augmented views of the same image.
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Figure 3: CLOT clustering framework. In the first module, data pairs X̃
a
, X̃

b
are constructed using

two augmentations of data X. Then the features are extracted from the pairs using a shared encoder
fθ. In the second module, two different MLPs are used as projection heads to project the features into
latent space (the blue head) and into subspace with a dimensionality of the cluster number followed
by a softmax (the yellow head). Finally, the cluster assignment probabilities obtained from the yellow
head are used by the Sinkhorn-Knopp (SK) algorithm to generate ground-truth-like cluster assignment,
consistency is enforced as in OTCC. Losses are used in three levels, at the instance-level, cluster-level
(soft labels), and at the output of the optimal transport problem.

To get the most out of contrastive learning power, we compute the latent space feature vectors
za, zb ∈ RN×D using an encoder network fθ, and a projection head g2(·) (two stacked nonlinear
MLP layers). For a specific sample xa

i , there are 2N − 1 pairs in total, among which we choose its
corresponding augmented sample xb

i to construct the positive pair {xa
i , x

b
i}, and leave the rest 2N − 2

to be negative. The features za, zb in this case are the instance representations. We utilize an extra
two loss functions. The first loss for a given sample xa

i is of the form

La
I,i=−log

exp

(
s(zai , z

b
i )

τI

)
N∑

j=1

{
exp

(
s(zai , z

a
j )

τI

)
+exp

(
s(zai , z

b
i )

τI

)} , (12)

where s(·, ·) is the pair-wise cosine distance, and zai and zbi are two corresponding rows from the feature
matrices za and zb, respectively. Here, τI is the instance-level temperature parameter [48] that is used
to control the “softness” of this loss function.

Similarly, the cluster-level representation loss is utilized to distinguish cluster-level representations
of positive pairs from the rest as follows

La
C,i=−log

exp
(

s(pai ,p
b
i )

τc

)
K∑

j=1

{
exp

(
s(pai , p

a
i )

τc

)
+ exp

(
s(pai , p

b
i )

τc

)} , (13)

where pai and pbi are two corresponding columns from the probability matrices pa and pb, respectively,
that comes from the second projection head. Here τc is the cluster-level temperature parameter. To
include every possible positive pair across the dataset, the instance-level contrastive loss, and the
cluster-level contrastive loss are as follows:

LI=
1

2N

N∑
i=1

(La
I,i+ Lb

I,i) and LC=
1

2K

K∑
i=1

(La
C,i+ Lb

C,i)− S(p),

9



(a) 20 epoch (b) 150 epoch

(a) 300 epoch (b) 700 epoch

Figure 4: The evolution of features and cluster assignments across the training process on ImageNet-
10. The colors indicate the cluster assignment obtained from the cluster assignment module and the
features for t-SNE are computed from ResNet-34.

where S(p) = −
∑K

i=1[p
a
i log p

a
i + pbi log p

b
i ] is the entropy of cluster assignment probabilities added to

prevent assigning all instances within the mini-batch to the same cluster [49]. The functions Lb
I,i and

Lb
C,i are defined similarly as in (12) and (13), respectively.

4.3 Objective Function

In our method, the optimization is done in an end-to-end process. The parameters θ of the backbone
and the two heads are simultaneously optimized. Thus, the overall objective function consists of (1)
the instance-level contrastive loss, (2) the cluster-level contrastive loss, and (3) the two cross-entropy
loss functions that enforce the consistency:

L(z, p) = LI + LC + La
Opt + Lb

Opt (14)

Our objective enables robust training at both the latent feature and the code assignment levels.
In general, we solve two optimization problems: the first is to find the labels and the second is to find
the predictions of the model (i.e., the model parameters). We do so by alternating between two steps:
1. Given the current model’s parameters θ, we first compute the log probabilities P , then, we find Q

using (11).
2. Given the current label assignments Q, we optimize the model parameters θ by minimizing (14).

This step is the same as training the model but with a multi-loss function.

4.4 Results

We used the same implementation details as in the previous section. However, here we added a second
projection head to output the feature vectors. Following [41] we set the dimension of the latent vector
to 128 and the temperatures parameters to 0.5. The same evaluation metrics were used (ACC, NMI,
and ARI). Comparisons were done using the baselines.
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Table 2: The clustering performance on three image benchmarks. The best results are shown in
boldface.

CIFAR-100 STL-10 ImageNet-10

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 0.130 0.085 0.028 0.192 0.125 0.061 0.241 0.119 0.057
JULE 0.137 0.103 0.033 0.277 0.182 0.164 0.300 0.175 0.138
VAE 0.152 0.108 0.040 0.282 0.200 0.146 0.334 0.193 0.168
DEC 0.185 0.136 0.050 0.359 0.276 0.186 0.381 0.282 0.203
DAC 0.238 0.185 0.088 0.470 0.366 0.257 0.527 0.394 0.302
DCCM 0.327 0.285 0.173 0.482 0.376 0.262 0.710 0.608 0.555
PICA 0.317 0.310 0.171 0.713 0.611 0.531 0.870 0.802 0.761
CC 0.429 0.431 0.266 0.850 0.764 0.726 0.893 0.859 0.822
OTCC(Ours) 0.501 0.492 0.309 0.872 0.797 0.762 0.913 0.892 0.851
CLOT(Ours) 0.559 0.570 0.352 0.898 0.863 0.822 0.927 0.901 0.875

Again, results shown in Table 2 demonstrate the clustering ability of CLOT, which outperforms
the baselines by a large margin on all three datasets. It also outperforms OTCC by a good margin
in terms of the three evaluation measures. The results demonstrate that this robustness is a result
of combining both contrastive learning and contrasting cluster assignments obtained by solving the
labeling problem as an optimal transport. Figure 4 shows the evolution of instance features and cluster
assignments across the training process on ImageNet-10. It’s clear that CLOT has a higher ability to
separate the instances and put them into clusters than OTCC.
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Part II

Proposed (future) projects

5 Project I: An optimal transport contrastive learning for
clustering tissues from histopathology images

5.1 Motivation

Manual annotation of gigapixel WSIs is a labor-intensive and error-prone task and requires domain
knowledge from experts. While seasoned pathologists are busy diagnosing tens of hundreds of slides
each day, it is infeasible to ask pathologists to label routine cases for supervised CNN training. To solve
the annotation shortage problem, many efforts have been made by researchers to develop annotation-
efficient CNN training methods for WSI analysis. Current popular solutions can be weakly supervised,
semi-supervised, or self-supervised methods. However, the above methods still need a certain num-
ber of manual annotations. Therefore, fully annotation-free WSI analysis methods are yet to be
explored. Recent successes of contrastive learning methods [37, 41, 50] in natural image classification
have largely advanced the progress of unsupervised visual representation learning and sheds the light
on annotation-free WSI analysis. The contrastive learning approaches leverage input data themselves
as the supervision via multiple image augmentations to train an encoder for a discriminative visual
embedding generation. Many contrastive learning-based approaches have shown effectiveness in WSI
analysis. However, these works still rely on annotations in fine-tuning process for downstream tasks
and thus fall in the category of semi-supervised methods. In contrast to existing methods, we pro-
pose to learn from annotation-free histopathology images. We aim to adopt CLOT, the OT-based
framework we developed to cluster patches of the same WSIs based on different tissue types.

5.2 The proposed method

In order to build the association between the patches of a WSI with the corresponding tissue types
without manual labels. We need to build a mapping from WSI patches to a discriminative embedding
space where different tissues can be distinguished based on semantic distance. To this end, we will use
CLOT, a framework based on optimal transport to cluster the patches. To better extract pathology-
specific contextual features from WSIs, we plan to make a change on the encoder of CLOT output
features at a multi-scale, thus, including low-level and high-level features in the final image embedding.
We argue that the local tissue texture (i.e., low-level features) could tell critical information about WSI
diagnosis such as cell malignancy. In the end, a global average pooling operation can be employed to
average the features obtained at a multi-scale.

6 Project II: Optimal transport approach for capturing cellu-
lar topology in whole slide pathology images

6.1 Motivation

Due to the large size of the multi-resolution and multi-gigapixel WSIs, existing methods in compu-
tational pathology suffer from the associated computational complexity [51, 52]. This makes training
a deep learning network on entire WSIs at full resolution computationally intractable. To tackle the
computational complexity issue, the typical approach is to sub-divided the image into small patches,
where each patch is processed independently in the neural network [52, 53, 54, 55]. Then, the pre-
dicted scores for each patch within a WSI are aggregated by combining their results with one of the
aggregating strategies. However, patch-level-based analysis has serious drawbacks. First, patches pro-
vide a limited visual context, and determining the optimal resolution and patch size depends of the
problem. For example, patches drawn at a high magnification level lead to less contextual and spatial
information whereas patches at lower magnification levels may not capture cell-level features [51]. As
a result, patch-level machine learning methods cannot capture the overall structure of the tissue in a
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WSI. Secondly, in most prediction problems in computational pathology, the available labels are only
at the WSI level. Secondly, in most prediction problems in computational pathology, only WSI-level
labels are often available. It is non-trivial to assign the association of different patches with a target
class, which makes the patch-level approach less applicable.

The cell-graph technique was introduced to learn the structure-function relationship by modeling
the geometric structure of the tissue using graph theory [56, 57]. It is based on the assumption that
structural and spatial patterns of cell organizations in a tissue are not random but associated with the
underlying functional state. As a result, cell-graph constructions have been successfully used to charac-
terize the spatial proximity of histopathologic primitives in tasks [58, 59]. However, those graph-based
methods with deep learning classifiers were all trained on a per-patch basis which has limited visual
context. Extra patch-based voting methods are necessary to assess the functional state of a given WSI.

In this project, we propose a cell-graph-based model to handle these limitations of existing methods.
Instead of extracting small patches from the WSI and doing analysis on a limited visual field for
prediction, we introduce a new method based on optimal transport which constructs a graph from
the nuclei level to the entire WSI level. A graph convolutional neural network is then used for WSI-
level prediction. This method accounts for both cell-level information and contextual information by
modeling cellular architecture and interactions in the form of a graph.

6.2 The proposed method

The proposed graph generation from images method first builds a graph representation Gi = G(xi) of
a WSI and then uses a graph convolutional neural network (GCN) to generate slide level predictions.
The framework consists three steps, first, we plan to use HoVer-Net to segment nuclei simultaneously
[60] and extract nuclear features. Second, we use optimal transport principals to self-match the nuclei
and its corresponding features, and to find the connections between the nuclei. Solving the problem
as an optimal transport will capture cellular topology of the WSI. Lastly, the graph built on the entire
WSI is taken as an input to a GCN to do predictions.

HoVer-Net is a convolutional neural network for simultaneous nuclear segmentation. For a given
WSI, it results in a set of N nuclei in conjunction with the type and morphological features of each
nucleus. We consider each nucleus as a node, thus we have a vertex set V . We formulate the graph-
matching task as an optimal transport problem that leads to correspondences between the graph nodes.
Specifically, we want to determine the optimal transportation plan A represented by a matrix of size
N ×N with N = |V | that matches the set of the same nodes V (i.e., self-matching). In other words,
each coefficient Aij of A provides the transfer route for conveying a certain quantity of mass from a
node vi ∈ V to another one vj ∈ V . A trivial solution to this problem is the node itself. Therefore,
we add a constraint on the diagonal of the transport matrix A to stay zero. Mathematically, we can
model the self-matching problem by solving the following optimization problem:

minimize
A

⟨C,A⟩F

subject to

N∑
j=1

Aij = q(vi) ∀i ∈ {1, .., N}

N∑
i=1

Aij = p(vj) ∀j ∈ {1, .., N}

Aii = 0 ∀i ∈ {1, .., N}
Aij ≥ 0 ∀(i, j) ∈ {1, .., N} × {1, .., N}

(15)

where q(vi) and p(vj) are the masses located at the nodes. Each value Cij represents the coefficient of
a cost matrix C, which accounts for the transportation cost to move a portion of mass from vi to vj .
The values for q(vi) and p(vj) are user-specified, however, we set it to 100, which means that there are
100 mass units that existed at each node that needs to be transposed to the rest of the nodes. In terms
of biology, this means that the most related nuclei (i.e., the ones that share similar morphological
features) share the larger portion of this number. Thus, A is weighted not a binary matrix. We use
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the MILP solver as provided by Vielma [61] to get a solution for the resulting optimization problem.
The cost matrix C can be generated by measuring the dissimilarities between morphological features
of the nodes (e.g., negative cross-correlation, cosine, or Euclidean distance).

7 Project III: Hierarchical graph representation from digital
pathology using optimal transport

7.1 Motivation

In project II, the proposed method represents pathological images by cell graphs. Though a cell graph
efficiently encodes the cell microenvironment, cellular morphology, and topology, it cannot extensively
capture the tissue microenvironment, i.e., the distribution of tissue regions such as necrosis, stroma,
epithelium, etc., thus, it discards tissue distribution information that is vital for appropriate repre-
sentation of histopathological structures. Similarly, a tissue graph comprising the set of tissue regions
cannot depict the cell microenvironment. Cellular or tissue interactions alone are insufficient to fully
represent pathological structures. Therefore, an entity-graph representation using a single type of en-
tity set is insufficient to comprehensively describe the tissue composition. Thus, to learn the intrinsic
characteristics of cancerous tissue it is necessary to aggregate multilevel structural information.

To address this issue, we use optimal transport theory to construct a multi-level hierarchical entity
graph representation consisting of multiple types of entity sets, i.e., cells and tissue regions to encode
both cell and tissue microenvironment. The proposed construction method encodes individual entity
attributes and intra- and inter-entity relationships to hierarchically describe a histology image.

7.2 The proposed method

Here we detail our proposed methodology for hierarchical graph representation. Given a pre-processed
whole slide histology image, we first identify pathologically relevant entities (cells and tissues) and
construct a graph representation of the region of interest by incorporating the morphological and
topological distribution of the entities. Then, we employ a GCN to map the hierarchical graph to a
corresponding category, e.g., cancer subtype.

More specifically, we consider nuclei and tissue regions as entities. Therefore, the Hierarchical graph
consists of three components: 1) a low-level cell graph, capturing cell morphology and interactions,
2) a high-level tissue graph, capturing morphology and spatial distribution of tissue regions, and 3)
cells-to-tissue hierarchies, encoding the relative spatial distribution of cells with respect to the tissue
distribution. The cell-graph and the tissue-graph topology configuration can be constructed using our
proposed approach in project III, that’s based on optimal transport. However, for the cells-to-tissue
hierarchies, we here describe a modified version of our proposed approach in Project III.

To find cell-to-tissue interactions, we match the two graphs by optimal transportation. Let Gc

and Gt be the cell and tissue graph computed by solving the optimization problem described in the
previous section, respectively. The two graphs are not the same size, cell graph has a much larger
number of nodes than the tissue graph. Therefore, we formulate the graph matching task as an OT
problem that leads to “many-to-one” correspondences between the graph nodes. OT will find the
group of cell nodes that best matches a corresponding tissue. Specifically, we want to determine the
optimal transportation plan A (the adjacency matrix) represented by a matrix of size K × N with
K = |Vc| and N = |Vt|, that matches the set of nodes Vc to Vt. In other words, each coefficient Aij

of A provides the transfer route for conveying a certain quantity of mass from a node vci ∈ Vc to
another one vtj ∈ Vt. Mathematically, we can model this matching problem by solving the following
optimization problem:
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minimize
A

⟨C,A⟩F

subject to

N∑
j=1

Aij = q(vci ) ∀i ∈ {1, ..,K}

K∑
i=1

Aij = p(vtj) ∀j ∈ {1, .., N}

Aij ≥ 0 ∀(i, j) ∈ {1, ..,K} × {1, .., N}

(16)

where q(vci ) and p(vcj) are the masses located at the nodes of the cell and tissue graph, respectively.
The values for q(vti) and p(vtj) are user-specified, however, we set it to 100, which means that there
are 100 mass units existed at each cell node that needs to be transposed to the corresponding tissue
nodes. In terms of biology, this means that the most related nuclei (i.e. the ones that share similar
morphological features with the corresponding tissue) share a larger portion of this number with the
corresponding tissue. Thus, A is weighted not a binary matrix. Each value Cij represents the coeffi-
cient of a cost matrix C, which accounts for the transportation cost to move a portion of mass from
vi to vj .

We use the MILP solver as provided by Vielma [61] to get a solution for the resulting optimization
problem. The cost matrix C can be generated by measuring the dissimilarities between morphological
features of the nodes (e.g., negative cross-correlation, cosine, or Euclidean distance).

7.3 Framework description

The framework consists of three steps, first, nuclei and tissue segmentation step. Second, hierarchical
graph topology configuration by optimal transportation. Finally, graph learning using GCN.
For cell graphs, nodes denote cells and encode cell morphology, and edges denote cellular interactions
and encode cell topology. It is constructed in three steps: i) nuclei detection, ii) nuclei feature extrac-
tion, and iii) topology configuration. We plan to use HoVer-Net to segment nuclei simultaneously [60]
and extract nuclear features. Then we mathematically formulate the problem as described above as
an optimal transportation to configure the cellular topology of the graph.

On the other hand, a tissue graph depicts a high-level tissue microenvironment, where the nodes
and edges denote tissue regions and their interactions, respectively. A tissue graph is constructed by
first identifying tissue regions ( e.g., epithelium, stroma, lumen, necrosis), followed by encoding the
tissue regions, and finally the topology building. to detect and semantically segment tissue regions in
histology images, and to extract feature representations of tissue regions, we plan to use the approach
used by Mercan et al. [62]. Tissue graph topology is then configured by optimal transport as described
in the previous section.

The last stage is graph learning. We first plan to test the power of GCN in handling hierarchical
graphs. In case GCN shows limited performance, we might come up with our new graph neural network
architecture or we may use an existing architecture from the literature.

8 Project IV: Optimal transport contrastive graph convolu-
tional networks for pathology images

8.1 Motivation

Very few Contrastive learning methods have been proposed for applications on graph data [63, 64, 65].
This is due to the challenges brought by the complex, non-Euclidean structure of graph data, which
limits the direct analogizing of traditional augmentation operations on other types of images, video or
text data. To the best of our knowledge, no one utilizes contrastive learning on graphs from digital
pathology images. Contrastive learning is a self-supervised approach to address unlabeled data, in our
case, unlabeled graphs. In this project, we examine the capability of graph contrastive learning and

15



optimal transport for predictions on whole slide histopathology images. Typically, a graph contrastive
learning framework includes three main components: a GDA module that generates different views of
the given graph data, a GNN-based encoder to compute the representations, and a contrastive learning
objective to train the model. Besides the contrastive learning objective, we aim to come up with new
optimal transport-based objectives for robust training procedures.

8.2 The proposed method

More specifically, GDA modules will perform graph augmentations to generate different views of the
same graph, which encompasses techniques of increasing/generating training data without directly
collecting or labeling more data. In graph machine learning, in contrast to regular and Euclidean data
such as grids (e.g., images) and sequences (e.g., sentences), the graph structure is encoded by node
connectivity, which is non-Euclidean and irregular. Thus, most structured augmentation operations
are used frequently in computer vision or and NLP cannot be easily analogized to graph data. However,
some rule-based augmentation approaches can be used to generate many views of the same graph, such
as edge dropping [66], data interpolation, counterfactual augmentations [67], attribute augmentation
[68], subgraph Substituting, feature masking [69], subgraph cropping [70]. Another class of graph aug-
mentation is based on learning approaches, where no learnable parameters are involved during data
augmentation (see [70] for more details).

In the second module, the GCN-based encoder is aimed to be used as a backbone to compute the
latent space graph representations. Because each graph is augmented twice, GCN outputs representa-
tions for each augmented view. Then the cost matrix is obtained using a similarity measure between
the two representations. The last module is to apply OT in order to find the best match (lowest cost)
between the two representations. The output cost is used in a loss function to update the network
parameters. Thus, unsupervised learning is achieved with the help of OT.

9 Datasets and prediction tasks

In this section, we explain the prediction problems aimed to be achieved to validate our proposed
methods on real histopathology images. We explain five cancer-related prediction takes. Each proposed
project is assigned one or more tasks. We also explain the corresponding datasets we plan to use to
accomplish these tasks.

9.1 Detection of Ki67 hot-spots in whole tumor slide images: (projects I,
IV)

The high resolution of WSIs opens a wide range of possibilities for addressing challenging image anal-
ysis problems, including the identification of tissue-based biomarkers. In this task, we aim to detect
proliferating activity patterns in tumor WSIs based on Ki67 immunohistochemistry. Hot spots (HSs)
are tumor regions that usually exhibit high proliferating activity. Pathologists need tools that can
quantitatively characterize these HS patterns. To respond to this clinical need, we plan to use our
proposed clustering methods with the aim of identifying Ki67 HSs in whole tumor slide images.

We aim to conduct our experiments using the AIDPATH breast cancer database [71], which is
composed of breast tissue cohorts from four institutions and pathology labs around Europe. The
dataset includes: 501 WSI breast cancer specimens stained with Ki67/MIB-1 antibody and counter-
stained with hematoxylin (blue). It also contains 509 WSI breast cancer specimens stained with HE
(violet).

9.2 Prediction of the status of growth factor receptor HER2 and PR
(projects II, III)

Here, we consider two prediction problems: prediction of the status of human epidermal growth factor
receptor 2 (HER2) and progesterone receptor (PR) expression from WSIs of HE-stained tissue slides of
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breast cancer. HER2 is a growth-promoting biomarker/protein that helps breast cells grow, divide, and
repair themselves and breast cancer cells that over-express HER2 are called HER2-positive. HER2-
positive breast cancers grow and spread faster than HER2-negative cancers but are much more likely
to respond to treatment with specific drugs. Similarly, PR is a prognostic biomarker for determining
survival, drug response, and progression [72, 73]. Our method will be used to predict, thus, determine
the HER2 and PR status from histopathology images.

We plan to evaluate the performance of our proposed network on the same HE stained cohort from
The Cancer Genome Atlas in breast cancer (TCGA-BRCA) [25]. This dataset has 710 WSIs. Among
them, in HER2 status differentiation, there are 608 HER2 negative and 101 HER2 positive images
while in PR status differentiation, 452 PR positive and 256 PR negative images are included.

9.3 Survival and death time prediction from whole slide pathological im-
ages (projects II, III, IV)

In the medical analysis domain, survival and death analysis aims to predict the time of death, cardiac
arrest, or occurrence of a specific disease. Accurate survival and death prediction can help doctors
make correct diagnoses with fewer mistakes, thereby improving the treatment quality and quality of
life among patients, it also helps them to evaluate the progression of the disease and how critical is the
situation of the patient. Most of the existing methods either focused on ranking the death occurrences
of patients or predicting survival times, which does not provide sufficient information in practical di-
agnosis since the prediction of the death order among patients and the survival time for each patient
are both essential. In this task, we aim to take advantage of both risk or death prediction and survival
time prediction, thereby enabling the prediction of survival times with higher accuracy in the correct
sequence.

We plan to conduct our experiments on two datasets, bladder and brain cancer datasets obtained
from TCGA [25]: bladder urothelial carcinoma (TCGA-BLCA), and glioblastoma multiforme (TCGA-
GBM).
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10 Timeline of proposed research

Here we provide our proposed research plan from Summer 2023 to Spring 2025 with specific research
activities and targeted conferences/journals that we expect to present the results. Project I is aimed
to be done in summer 2023. From fall 2023 to summer 2024, we plan to investigate the ability of OT in
capturing the different topological properties from whole slide pathology images, which is corresponding
to projects II and III. Project IV is planned to be investigated in the fall of 2024. Time in the last
semester (spring 2025) will be spent writing the Ph.D. dissertation and conducting the defense. The
following table summarizes two years plan, including (but not limited to) the proposed work:

Timeline
Semester Proposed work

Summer 2023

1) Evaluate CLOT framework on pathology images, and perform clustering of
tissues for detection and quantitative assessment of Ki67 Hot-Spots.

2) Write a journal paper to be submitted to the Scientific Reports

Fall 2023

1) Design an OT-based mathematical optimization framework for constructing
cell-level graphs from pathology images.

2) Complete a Python implementation of the framework and obtain results.
3) Write and submit a conference paper to CVPR 2024.

Spring 2024

1) Design an OT-based mathematical optimization framework for constructing
hierarchical multi-level graphs from pathology images.

2) Complete a Python implementation of the framework.

Summer 2024

1) Implement a version of a graph convolutional network that handles
hierarchical graphs and complete the training and testing.

2) Write and submit a journal paper to the IEEE Journal of Biomedical
and Health Informatics.

Fall 2024

1) Design a graph contrastive learning framework based on OT for unlabeled
graphs.

2) Implement, train, and test, the proposed framework.
3) Write and submit a paper to the International Journal of Medical

Informatics.

Spring 2025
1) Start writing the PhD dissertation.

2) Defend the Ph.D. dissertation at end of the semester.

Table 3: Timeline of the proposed research.
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11 Conclusion

In this report, we have shown our achieved work and explored the utility of optimal transport in de-
veloping deep-learning methods for digital whole-slide histopathology images. OT has been gaining in
recent years increasing attention as a promising and useful tool in the machine-learning community.
This success is due to its capacity to exploit the geometric property of the samples at hand.

We presented the results of our first method on natural scene images. Our method ”CLOT” ben-
efits from the power of contrastive learning and OT to address the cluster assignment problem and
to self-generate the labels. In contrast to other methods, ours optimizes three objectives during fea-
ture learning and during clustering, thus providing a robust training setting. Our method which is
based on OT outperformed the state-of-the-art methods in terms of three evaluation metrics. This
promising performance motivates us to apply our method to real pathology images, for the sake of ad-
dressing the time-consuming and costly diagnosis process and assisting pathologists in diagnostic tasks.

Furthermore, we showed in detail our proposed research for the rest of the Ph.D. We illustrated
four projects on employing OT in conjunction with graph-deep neural networks. More specifically, in
our first project, we aim to use the CLOT framework on pathology images and perform clustering of
tissues for detection and quantitative assessment of Ki67 Hot-Spots. In the second project, we plan
to design an OT-based mathematical optimization framework for constructing cell-level graphs from
pathology images. In the third project, we aim to improve our third method and design an OT-based
mathematical optimization framework for constructing hierarchical multi-level graphs from pathology
images, that incorporates tissue-level graphs besides cell-level graphs. In the last project, we aim to
explore and develop a graph contrastive learning framework based on OT for unlabeled graphs.

Further, we explained the prediction problems aimed to be achieved to validate our proposed
methods on real histopathology images. We explained five cancer-related prediction takes. Each
proposed project is aimed to be assigned to solve at least one task.
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