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Abstract
While frailty is a prominent risk factor in an aging population, the underlying biology 
of frailty is incompletely described. Here, we integrate 979 circulating proteins across 
a wide range of physiologies with 12 measures of frailty in a prospective discovery co-
hort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic 
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1  |  INTRODUC TION

With improvements in cardiac intervention and prevention during 
the past three decades, individuals who would have previously 
succumbed to acute, non-communicable diseases (cardiovascular 
disease [CVD], oncologic) now survive to an older age with mul-
tiple advanced chronic conditions (Ijaz et al., 2022). This changing 
clinical landscape challenges the routine application of high-risk 
therapy in higher risk individuals specifically in age-related con-
ditions, like CVD (Jha et al.,  2017; Leon et al.,  2010; Smith 
et al.,  2011; Reardon et al.,  2017; Waksman et al.,  2018), where 
an interplay between cardiac and non-cardiac physiology impact 
outcomes. In this context, understanding how frailty—an impaired 
ability to maintain homeostasis during physiologic stress (Clegg 
et al.,  2013)—modifies treatment response is critical. Despite as-
sociations of several frailty measures with clinical outcomes (Clegg 
et al., 2013; Guralnik et al., 1994, 1995; Ijaz et al., 2022), there re-
mains significant heterogeneity in how frailty is assessed among 
older adults, including those with CVD (Rohrmann, 2020), with con-
cerns around how best to reproducibly define and quantify frailty 
across centers and conditions as major limitations to widespread 
adoption (Rockwood & Howlett, 2018). While efforts to define mo-
lecular correlates of chronological aging abound (Ahadi et al., 2020; 
Basisty et al.,  2020; Emilsson et al.,  2018; Lehallier et al.,  2019, 
2020; Sebastiani et al., 2021; Tanaka et al., 2018), their application 
in tissues accessible clinically (e.g., blood) has largely been limited 
to an epidemiologic context (Landino et al., 2021; Liu et al., 2022; 
Sathyan et al., 2020; Tanaka et al., 2020), without a clear ability to 
define the impact of circulating biochemistry on downstream, post-
therapy outcome (Ferrucci & Fabbri, 2018; Ramonfaur et al., 2022). 
Given the potential for early identification of “accelerated” aging 
and molecular intervention (Sinha et al.,  2014), identifying path-
ways of human frailty related to poorer tolerance of intervention 
may prioritize adjunctive avenues of therapy and investigation to 
enhance resilience in this growing population.

Here, we hypothesized that biological pathways of frailty—
revealed through integrating 12 measures of frailty with comprehen-
sive proteomic profiling—would identify older individuals at high risk 
of mortality despite intervention. We studied 809 individuals with 
symptomatic, severe aortic stenosis (AS) undergoing transcatheter 
valve implantation (TAVI)—an age-related cardiovascular condition in 
which frailty has had prognostic implication (Kiani et al., 2020). We 
quantified 979 circulating proteins alongside 12 measures of frailty en-
compassing body composition, cognition, nutrition, patient-centered 
assessment of well-being, functional measures, and biochemistry. 
We developed, validated, and characterized proteomic signatures of 
three composite axes of frailty against post-TAVI mortality, and ex-
plored the generalizability of our findings and their age dependence 
across multiple studies (35,559 community-dwelling adults from Ice-
land (Ferkingstad et al., 2021); human studies across the life-course 
(Lehallier et al.,  2019); and 1894 community-dwelling individuals in 
the Framingham Heart Study [FHS]). Ultimately, we sought to define a 
proteomic architecture of frailty in structural heart disease and char-
acterize its broad relevance to multi-organ phenotypes, function, and 
outcome to inform future studies of risk and therapy.

2  |  RESULTS

2.1  |  Study populations

To derive proteomic correlates of frailty in advanced heart disease, we 
studied 809 individuals with severe AS from a multicenter prospec-
tive cohort study (Perry et al., 2022; Stein et al., 2022) where frailty 
measures were systematically collected, split into two samples: (1) a 
derivation sample (N = 233) that had complete data on 12 measures of 
frailty and (2) a validation sample (N = 576) comprised of the remainder 
of our multicenter AS cohort that did not have complete data on the 12 
frailty measures (Table 1). Both samples had follow-up for vital status. 
Overall, the AS cohort had a median age 83 years (range 46–100 years, 
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TA B L E  1 Baseline characteristics of the aortic stenosis cohort.

Characteristic Overall (N = 809) Derivation (N = 233) Validation (N = 576) p-value

Age 83 (77, 88) 84 (78, 87) 83 (76, 88) 0.3

Female 352 (44%) 106 (45%) 246 (43%) 0.5

Race

White 781 (97%) 226 (97%) 555 (96%) 0.1

Black 18 (2.2%) 3 (1.3%) 15 (2.6%)

Asian 8 (1.0%) 2 (0.9%) 6 (1.0%)

Other 2 (0.2%) 2 (0.9%) 0 (0%)

Body mass index (kg/m2) 27.6 (24.3, 31.9) 26.8 (23.7, 30.1) 28.1 (24.6, 32.5) 0.004

History of smoking 421 (52%); 0.5% 130 (56%); 0.9% 291 (51%); 0.3% 0.2

Coronary artery disease 565 (70%) 157 (67%) 408 (71%) 0.3

Diabetes mellitus 315 (39%); 0.1% 66 (28%) 249 (43%); 0.2% <0.001

Katz Index of Independence in ADLs

1 5 (0.7%); 6.3% 1 (0.4%) 4 (0.8%); 8.9% 0.3

2 13 (1.7%); 6.3% 2 (0.9%) 11 (2.1%); 8.9%

3 9 (1.2%); 6.3% 1 (0.4%) 8 (1.5%); 8.9%

4 34 (4.5%); 6.3% 6 (2.6%) 28 (5.3%); 8.9%

5 121 (16%); 6.3% 36 (15%) 85 (16%); 8.9%

6 576 (76%); 6.3% 187 (80%) 389 (74%); 8.9%

KCCQ-12 summary score 47 (30, 66); 6.1% 53 (36, 70) 43 (27, 61); 8.5% <0.001

EQ-VAS score 60 (40, 75); 6.7% 60 (50, 80) 50 (40, 75); 9.4% <0.001

PHQ-2

0 357 (47%); 5.2% 116 (50%); 0% 241 (45%); 7.3% 0.8

1 124 (16%); 5.2% 38 (16%); 0% 86 (16%); 7.3%

2 138 (18%); 5.2% 40 (17%); 0% 98 (18%); 7.3%

3 65 (8.5%); 5.2% 18 (7.7%); 0% 47 (8.8%); 7.3%

4 42 (5.5%); 5.2% 10 (4.3%); 0% 32 (6.0%); 7.3%

5 16 (2.1%); 5.2% 6 (2.6%); 0% 10 (1.9%); 7.3%

6 25 (3.3%); 5.2% 5 (2.1%); 0% 20 (3.7%); 7.3%

Nutrition (MNA-SF) 12 (10, 13); 8.0% 12 (10, 13) 11 (10, 12); 11% 0.08

Mini-Cog total score

0 20 (2.7%); 6.9% 8 (3.4%) 12 (2.3%); 9.7% >0.9

1 87 (12%); 6.9% 27 (12%) 60 (12%); 9.7%

2 133 (18%); 6.9% 43 (18%) 90 (17%); 9.7%

3 157 (21%); 6.9% 45 (19%) 112 (22%); 9.7%

4 172 (23%); 6.9% 53 (23%) 119 (23%); 9.7%

5 184 (24%); 6.9% 57 (24%) 127 (24%); 9.7%

Average gait speed (m/s) 0.68 (0.49, 0.86); 8.4% 0.68 (0.54, 0.86) 0.67 (0.48, 0.87); 12% 0.6

Average handgrip strength (kg) 20 (14, 27); 9.9% 18 (13, 26) 20 (14, 27); 14% 0.4

Psoas muscle area index (cm/m2) 6.74 (5.62, 8.04); 54% 6.60 (5.63, 7.89) 7.03 (5.62, 8.29); 76% 0.3

Visceral fat area index (cm/m2) 69 (43, 96); 63% 67 (43, 91) 70 (43, 104); 88% 0.6

Albumin (g/dL) 3.80 (3.40, 4.10); 0.6% 3.70 (3.40, 4.00) 3.80 (3.40, 4.20); 0.9% 0.05

Hemoglobin (mg/dL) 12.30 (11.00, 13.50); 0.6% 12.60 (11.30, 13.80) 12.20 (10.90, 13.30); 0.9% 0.004

eGFR 58 (45, 75); 0.6% 63 (48, 77); 0.9% 56 (43, 73); 0.5% 0.03

Note: Continuous variables are reported as median (25th percentile, 75th percentile); % missing (if any). Categorical variables are reported as N (%); 
% missing (if any). P values are from Wilcoxon rank sum test for continuous variables and chi-squared test for categorical variables where expected 
cell counts were >5. Fisher's exact test was used for all other categorical variables.
Abbreviations: ADLs, Activities of Daily Living; KCCQ-12, Kansas City Cardiomyopathy Questionnaire summary score; EQ-VAS, EuroQol Visual 
Analog Scale; PHQ-2, Patient Health Questionnaire-2; MNA-SF, Mini Nutritional Assessment Short Form; eGFR, estimated glomerular filtration rate.
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44% women), with a high prevalence of coronary artery disease (70%) 
and diabetes (nearly 40%). The derivation and validation samples were 
largely comparable, with some imbalance in diabetes prevalence (43% 
in validation vs. 28% in derivation), body mass index, and in some 
measures of self-reported health status (e.g., KCCQ-12 and EQ-VAS).

In general, our replication cohorts had broad age distribution 
(Icelandic studies, N = 35,559, mean age 55 ± 17 years; 57% women; 
Eiriksdottir et al., 2021; Ferkingstad et al., 2021); multicenter study of 
171 individuals across four centers in the United States and Europe, 
age range 21–107 years; 51% women (Lehallier et al., 2019); FHS co-
hort, N = 1894 age 55 ± 10, 54% women, Table S2 (Liu et al., 2022). 
The FHS cohort had lower prevalent cardiometabolic morbidity in 
FHS relative to our AS cohort, consistent with its younger mean age 
and being a community-based population. As we conducted original 
analyses in FHS, the study population is reported in Table S2. For 
detailed cohort characteristics of the other replication cohorts, the 
reader is directed to the parent publications (Eiriksdottir et al., 2021; 
Ferkingstad et al., 2021; Lehallier et al., 2019).

2.2  |  Multidimensional frailty measures are 
classified into three broad phenotypic groups

Distribution of frailty measures in our derivation sample is in Table 1 
with correlations in Figure S1. Given the physiologic and statistical 
relatedness across frailty measures, we used principal component 
analysis (PCA) to identify composite axes of frailty (Figure 2). The 
top three principal components (PCs) explained ≈49% of variance 
in the frailty phenome studied (loadings for each of the three PCs 
in Figure 2a). The first PC (“axis”) was weighted predominantly on 
patient-reported metrics of well-being, including PHQ-2, EQ-VAS, 
KCCQ-12, and MNA-SF (hereafter called “patient-reported out-
comes”). The second axis was weighted highly on body composition 
(visceral fat area index, psoas muscle area index) with lesser weights 
for grip strength and cognitive scores (hereafter labeled “body 
composition”). The third axis was weighted on objective measures 
of physical function (Katz ADL score, gait speed, grip strength) and 
biochemical measures included in frailty (hemoglobin, albumin), and 
was termed “physical function.” Frailty axes demonstrated a similar 
heterogeneity across age as previously reported for individual frailty 
metrics (Rohrmann, 2020; Figure 2b), with only a modest correlation 
between each component with age (maximum Spearman |ρ| = 0.20). 
In addition, consistent with known phenotypic dimorphism by sex, 
we observed higher body composition and physical functional 
scores for men relative to women (Figure S3).

2.3  |  Proteomic correlates of frailty identify 
older adults at high risk for mortality after cardiac 
intervention

To identify proteomic signatures of frailty, we next used linear re-
gression methods (both ordinary and LASSO) across the proteome as 

independent variables with each individual frailty measure or each 
composite frailty axis (from the PCA above) as the dependent vari-
able in separate models (results in the Data File S1). Hemoglobin and 
albumin were related to the greatest number of proteins, followed 
by gait speed, nutrition, and KCCQ-12. LASSO regressions for each 
of the three frailty axes selected 191 unique proteins, with fewer 
proteins selected in models for patient-reported outcomes than 
for body composition or physical function. LASSO-based protein 
signatures of each frailty axis (protein “score” for that phenotypic 
axis, see Section 4) had variable model fits, with model fits generally 
poorest for patient-reported outcomes (fit for hold-out folds during 
LASSO optimization shown in Figure S4a; fit across entire deriva-
tion sample shown in Figure S4b). To validate these protein scores 
of frailty, we imputed missing frailty data in the validation sample 
(using multivariate imputation by chained equations, see Section 4) 
to correlate frailty axes with the protein scores. This demonstrated 
similar relations as the derivation sample: a poor relation in models 
for patient-reported outcomes (Spearman ρ = 0.17), moderate cor-
relations for body composition (Spearman ρ = 0.40), and physical 
function (Spearman ρ = 0.41). Given the need for complete data in 
PCA, the use of imputation for data missingness was restricted only 
to test replication of association of protein scores to the composite 
axes of frailty. We did not observe effect modification by sex on 
the relationship between individual proteins and frailty axes after 
FDR adjustment (Benjamini–Hochberg) for multiple testing of inter-
action terms. Each protein score was related to the frailty measures 
most heavily loaded in the parent frailty axis from which it was de-
rived (Figure S5). Accordingly, each protein score exhibited a similar 
age and sex relation as the parent frailty axes (maximum Spearman 
|ρ| = 0.29 for age across all protein scores).

We next assessed the relation of each protein score and frailty 
axis from which it was derived with all-cause mortality. Across 
a median 3.2 years of follow-up (in derivation sample; 25th-75th 
percentile 1.3–3.6 years), each of the three frailty axes had point 
estimates for post-TAVI mortality in a protective range, with only 
physical function significantly related to mortality after clinical risk 
adjustment (Figure  3). Protein scores of frailty exhibited similar 
estimates for mortality in both derivation and validation samples, 
generally robust to multivariable adjustment at a median 2.9 years 
follow-up (25th-75th percentile 1.2–3.9 years). Of note, in sensitivity 
analyses, associations with mortality were robust to adjustment for 
simpler biomarkers canonically associated with cardiovascular mor-
tality (NT-proBNP, hemoglobin, albumin (Ibrahim & Januzzi Jr., 2018; 
Table S3).

2.4  |  The proteome implicates both 
known and novel pathways of human frailty

We used proteins associated with the 12 frailty measures in linear 
models for pathway analysis, respectively (at a 5% FDR). The pro-
teins identified implicated broad pathways of innate and adaptive 
immunity (e.g., cytokine signaling and TNF), canonical cell growth 
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and signaling pathways (e.g., PI3K-Akt signaling), and organ fibrosis 
and metabolism (e.g., extracellular matrix remodeling and turnover, 
glycosylation; Figure  S6). In addition to proteins with known rela-
tion to body composition (e.g., leptin and insulin-like growth factor 
binding proteins), several novel proteins with roles in adipose tissue 
metabolism and inflammation were identified (in association with 
frailty axes), including PLIN1 (higher expression related to increased 
adipocyte size, altered lipid handling, and improved whole-body 
glucose tolerance Kern et al.,  2004), INHBC (involved in activin C 
signaling in adipocytes via ALK7, implicated in human obesity; Carls-
son et al.,  2009; Goebel et al.,  2022), MEP1B (metalloproteinase; 
murine deletion results in weight gain with limited human data; Png 
et al., 2023), ADGRG1 (implicated in islet function and reduced islet 
expression in diabetes and hyperglycemic stress (Duner et al., 2016), 
and RET (implicated in anorectic responses downstream of GDF-15; 
Li et al., 2017). Similarly, the physical function proteome (proteins 
associated with “physical function” frailty axis) included proteins 
previously widely implicated in inflammation, muscle function, and 
cachexia, including GDF-15 (Crunkhorn, 2020; Siddiqui et al., 2022), 
MSTN (Schafer et al., 2016), IL6 (Strassmann et al., 1992), and FABP4 
(Kim et al., 2013; Lee et al., 2017), as well as a host of proteins not 
widely reported in frailty biology, with roles in innate inflamma-
tion (IL-17A Ying et al., 2022), IL-10 Deans et al., 2009, TLR3 Graber 
et al.,  2018), myogenesis or muscle regeneration (ITGA11 Grassot 
et al.,  2014, EFNA1 Alonso-Martin et al.,  2016, LRRN1 McKellar 
et al., 2021), cachexia (ASGR1 Narasimhan et al., 2020), lysosomal 
metabolism (dynamic with muscle atrophy; cathepsin CTSL; Wu 
et al.,  2011), organ fibrosis (MZB1 Schiller et al.,  2017), oxidative 
stress (LGALS9 Nunoue et al.,  2021), neurogenesis (SDC1 Mou-
thon et al., 2020), and metabolism (ANGPTL4 Gusarova et al., 2018, 
PLIN1).

2.5  |  Chronological age does not fully account for 
broad variability in the frailty proteome

Given relevance of implicated pathways across the life-course (e.g., 
immunity, cell growth, and metabolism), we next sought to quantify 
the extent to which proteins related to frailty axes were explained by 
age. In the AS cohort, age only accounted for a small fraction of the 
total variability in protein scores (Figure 4a), with sex, and BMI ac-
counting for more of the variability, and protein scores were weakly 
related to age (Figure 4b). To test whether this observation was pre-
sent in a broader age range, we examined 50 circulating proteins that 
overlapped with proteins associated with any frailty axis (from single 
protein linear regression) in 171 individuals across four cohorts (age 
21–107 years; Lehallier et al., 2019; Figure 4c), resolving three pre-
dominant patterns with age: (1) proteins exhibiting higher (GDF-15, 
IGFBP2, REN, consistent with prior studies; Liu et al., 2021; van den 
Beld et al., 2019) or (2) lower (CA6, MSTN, RET) circulating levels 
at older age; and (3) proteins that did not exhibit a clear monotonic 
association with age (LEP, LTBR, IL4R, EPO; characteristic raw data 
plots in Figure S7). These life-course patterns may largely have been 

established by the time advanced heart disease (AS) requiring inter-
vention had developed (purple line demonstrating age range of AS 
cohort, Figure 4c), accounting for the low variation explained by age 
in our AS sample.

2.6  |  The frailty proteome and clinical risk

Given the physiologic relevance of frailty-implicated pathways 
across multiple organs in advanced CVD, we next studied relations 
of the frailty proteome to health status and disease-free longevity. 
In proteins associated with any frailty axis in our AS studies that 
were measured in a large Icelandic cohort (70 proteins; Ferkingstad 
et al., 2021), we found (1) a limited effect of age on protein concentra-
tion and (2) associations between proteins and multi-organ morbid-
ity generally in a directionally plausible manner (Figure 5a). Of note, 
queried proteins were strongly related to metabolic-inflammatory 
phenotypes not directly cardiac (glycemic control, body composi-
tion, inflammatory markers, malignancy).

We next studied the relation of our composite proteomic frailty 
axes scores in the 1894 FHS participants to frailty measures, and 
cause-specific mortality. Recalibration efforts (described in Statis-
tical methods) were excellent (Spearman ρ range 0.89–0.92), with 
resulting scores in FHS demonstrating similar sex-based differences 
and limited association with age (Pearson |r| 0.06–0.11; Figure S8). 
Proteins used to recalibrate the scores from our discovery cohort 
(Olink) to the FHS (SomaScan) demonstrated a moderate correlation 
(median Spearman ρ = 0.58 [25%–75%: 0.21–0.71]), where available, 
in published data (Katz et al., 2022). Protein scores for body com-
position and physical function (at FHS Exam 5) exhibited generally 
concordant relation to visceral and subcutaneous fat or measures of 
physical function/frailty, respectively, at a median 6.9 years later (for 
frailty measures), though with mitigation of effect size after age- and 
sex-adjustment for several measures, consistent with the broader 
age range in FHS (Table S4).

We next examined the relation of protein scores with cause-
specific mortality in FHS (Table  2). At a median 26 years after 
proteomics (25th–75th percentile 19–27 years, 755 deaths, 211 
CVD-related), a higher physical function protein score was asso-
ciated with lower all-cause mortality in FHS (Figure  5b; Table  2). 
Given the strong association between all-cause mortality and the 
proteomics of physical function, we next sought to examine whether 
that mortality association would be driven by non-cardiovascular 
(versus cardiovascular) causes. We carried that score forward into 
competing risk models for CVD versus non-CVD mortality in FHS, 
where we found that the proteomics of physical function were asso-
ciated with non-CVD mortality in FHS (Figure 5b; Table 2).

3  |  DISCUSSION

Here, we quantify 979 circulating proteins in 809 older individu-
als with severe AS to identify a proteomic “fingerprint” of frailty 
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defined across 12 measures (Afilalo et al.,  2017) spanning physi-
cal function, cognition, nutrition, biochemistry, self-reported well-
being, and body composition. We determined proteomic correlates 
of frailty measures, specifying canonical pathways of organ function 
(e.g., inflammation, cell growth and senescence, cachexia) as well a 
host of mediators of tissue-specific biology not previously widely 
reported in human frailty (e.g., myogenesis, adipose tissue inflam-
mation, and lysosomal metabolism). Protein scores of three major 
frailty axes defined by integrating 12 frailty measures and proteins 
were strongly related to mortality after cardiac intervention, inde-
pendent of clinical risk. Despite reported statistically significant 
age association in epidemiologic cohorts with a broader range of 
age (Ferkingstad et al.,  2021), BMI and sex accounted for signifi-
cantly greater variability in protein scores of frailty axes than age 
in older patients with AS (Figure 4a). Across eight decades of life 
(≈20–100 years), we observed heterogeneous patterns of abundance 
of frailty-related proteins across age (Figure 4c), with patterns well-
established by advanced age. Across a large number of individuals, 
frailty-related proteins were associated with a broad array of non-
cardiac comorbidities and outcomes, including directionally consist-
ent associations with mortality in long-term follow-up in thousands 
of community-dwelling individuals (Figure 5). In FHS, we observed 
a significant association between the protein score corresponding 
to physical function with all-cause and non-CVD mortality over two 
decades. Collectively, these findings extend the growing aging liter-
ature toward the cardiovascular space and emphasize the potential 
for proteomic studies in the context of advanced CVD to identify 
functional, prognostic pathways of risk for interrogation in advanced 
heart disease.

Separating “biological” from “chronological” aging using 
molecular information has been the subject of a large body of 
work in aging research (Ahadi et al.,  2020; Basisty et al.,  2020; 
Emilsson et al.,  2018; Lehallier et al.,  2019, 2020; Sebastiani 
et al., 2021; Tanaka et al., 2018). Approaches that generate mo-
lecular “clocks” using epigenetic (Horvath,  2013), transcriptional 
(Peters et al.,  2015; Shavlakadze et al.,  2019), genomic (Singh 

et al.,  2019), proteomic (Tanaka et al.,  2018), and metabolomic 
(Cheng et al., 2015) information have been advanced to identify 
relevant pathways of and individuals with “accelerated” aging ul-
timately connected to longevity, including some reports of cause-
specific mortality (Eiriksdottir et al.,  2021). While these studies 
have illuminated mechanisms and biomarkers of aging, most do 
not study individuals with CVD at older ages, where varying de-
grees of multi-organ frailty (beyond chronologic aging itself) may 
play a critical role (Collard et al.,  2012). Given the prognostic 
relevance and reversibility of frailty (Chang et al.,  2004; Gural-
nik et al.,  1994, 1995; Pandey et al.,  2023; Perera et al.,  2006; 
Puthoff,  2008; Volpato et al.,  2008), clinical studies and care in 
advanced heart disease have recently prioritized frailty to opti-
mize outcome after cardiac intervention (Afilalo et al., 2017; Den-
feld et al.,  2017; Flint et al.,  2012; Murali-Krishnan et al.,  2015; 
Patel et al., 2018). Nevertheless, varied definitions across studies, 
difficulties in standardizing measures (e.g., grip strength Cooper 
et al., 2021), and lack of specificity of common metrics (e.g., grip 
strength, walk speed, and albumin) for specific biology challenges 
clinical application and mechanistic discovery outside of con-
trolled, non-clinical cohort studies (Kameda et al., 2020; Landino 
et al., 2021; Lehallier et al., 2019; Liu et al., 2022; Pan et al., 2021; 
Rizza et al., 2014; Santos-Lozano et al., 2020; Sathyan et al., 2020; 
Walston et al., 2002). With an aging population at high-risk for ad-
vanced heart disease eligible for high-risk intervention (e.g., des-
tination left ventricular assist device Flint et al., 2012), objective 
measures that personalize variations in clinical status and biology 
across individuals are critical.

Our study directly addresses these limitations by employing 
molecular discovery in a common clinical situation where frailty is 
routinely considered and prognostic (AS) (Kiani et al., 2020). Unlike 
prior cohort-based reports (Liu et al., 2022; Sathyan et al., 2020; 
Walston et al., 2002), our cohort had a dramatically higher rate of 
CVD and diabetes (≈70% and ≈40% overall, respectively), consis-
tent with CVD estimates in this age range seen clinically (Yazdan-
yar & Newman, 2009). In this context, the use of common frailty 

TA B L E  2 Protein scores of frailty are associated with all-cause mortality and non-cardiovascular mortality. Cox regression models for all-
cause mortality and Fine-Gray competing risk models for CVD and non-CVD mortality.

Variable

Model Aa Model Bb

HR (95% CI) p value HR (95% CI) p value

All-cause mortality (N = 1894; deaths = 755)

Protein score (PC3) 0.82 (0.76, 0.88) 1.23e-07 0.85 (0.78, 0.92) 3.47e-05

Protein score (PC2) 1.04 (0.96, 1.13) 0.36 0.98 (0.90, 1.08) 0.71

Protein score (PC1) 0.88 (0.81, 0.95) 9.68e-04 0.91 (0.84, 0.99) 0.02

Fine-Gray competing risk model (N = 1890; CVD deaths = 211; non-CVD deaths = 544)

Protein score (PC3)—CVD death 0.95 (0.82,1.1) 0.52 1.07 (0.91,1.25) 0.41

Protein score (PC3)—Non-CVD death 0.83 (0.75, 0.91) 5.4e-05 0.83 (0.75, 0.91) 1.2e-04

aAdjusted for sex and age.
bAdjusted for sex, age, BMI, smoking status, diabetes, anti-hypertensive medication treatment, total cholesterol/HDL cholesterol, systolic blood 
pressure, and prevalent CVD.
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measures extending prognostic multi-organ structure–function 
(the “Essential Frailty Toolset”; Afilalo et al., 2017) to guide discov-
ery is a fundamental strength to move beyond clinical gestalt in 
frailty assessment (Ijaz et al., 2022). Furthermore, the inability of 
age to capture a large variation in the frailty proteome at the time 
of TAVI (relative to comorbidity) in our older population highlights 
importance of discovery in a clinical CVD context. Despite statis-
tical age associations in up to 80% of the quantified proteome in a 
large age range in epidemiology, the reported effect sizes are small 
(Ferkingstad et al.,  2021). We observed similarly weak relations 
with age when examining proteins related to frailty in our analy-
sis (Figure 5a), suggesting that mechanisms beyond chronological 
age are likely involved in the biology of frailty. In an older popu-
lation undergoing clinical cardiac intervention, it is possible that 
an age-related alteration in the proteome may already be preva-
lent/established, with inter-individual differences determined by 
comorbidity (Figure  4). This notion broadly underscores the po-
tential importance of patient-level heterogeneity and human mo-
lecular studies to prioritize targets for therapeutic or mechanistic 
discovery in frailty. Indeed, “anti-aging” pharmacology directed at 
metabolism may impact the proteome decades earlier to “prepare” 
organs for intervention (metformin and GDF-15; Coll et al., 2020); 
SGLT2 inhibition and PLIN1 (Yang et al., 2021), RNA therapeutics 
(Fitzgerald et al., 2017; Solomon et al., 2019).

Biologically, our results implicated broad pathways relevant to 
both cardiac and non-cardiac physiology in aging around a theme 
of host inflammatory response, cell growth and senescence, and 
cachexia. Several proteins related to body composition and muscle 
function specified known pathways (leptin signaling, IGFBPs, GDF-
15, IL6, MSTN), concordant with prior human observations and ca-
nonical mechanisms of human frailty. For example, our results are 
broadly consistent with a reported fall in myostatin (MSTN) with age, 
a relation to greater lean mass and grip strength (in men) (Bergen III 
et al., 2015), and a decreased muscle oxidative capacity and force 
generation in MSTN-null mice (Amthor et al., 2007). Moreover, our 
integrative approach facilitated discovery of an array of molecules 
with novel, emerging roles across a broad tissue biology relevant to 
aging, including adipose tissue metabolism and inflammation (e.g., 
PLIN1, Kern et al.,  2004), activin signaling (Carlsson et al.,  2009; 
Goebel et al., 2022), and PTX3 (Kocyigit et al., 2014), islet cell func-
tion (ADGRG1 Duner et al., 2016), muscle cell physiology (ITGA11 
Grassot et al.,  2014), EFNA1 (Alonso-Martin et al.,  2016), LRRN1 
(McKellar et al., 2021), lysosomal metabolism (CTSL Wu et al., 2011), 
extracellular matrix handling and fibrosis (SDC1 Yang & Friedl, 2016), 
among others that specify frailty mechanisms not necessarily spe-
cific to the heart. These broad mechanistic implications are consis-
tent with our phenotype and outcome associations across thousands 
of individuals in Iceland and FHS for a broad array of metabolic-
inflammatory conditions (Figure  5a) and non-cardiovascular death 
(Figure 5b) that are neither fully nor directly reversible with cardiac-
only intervention. These results are consistent with all-cause mortal-
ity in a subset of the Icelandic population across a broader age range 
(≈22,000 individuals, ≈20–100 years old), where several proteins 

related to lower physical function in our study (both canonical, e.g., 
GDF-15, and more novel, e.g., MZB1, ASGR1) were associated with 
increased mortality (Eiriksdottir et al., 2021).

From a clinical perspective, these results are compelling given 
recent reports suggesting potentially greater benefit to physical 
rehabilitation interventions in individuals with advanced heart dis-
ease who display greater frailty (Pandey et al., 2023). The novelty 
of this approach is the application of broad molecular characteriza-
tion to frailty at the point of its clinical utility for CVD, addressing 
heterogeneity in how frailty is assessed in clinical practice (Cooper 
et al., 2021). Certainly, direct clinical application of proteomics as an 
actionable biomarker requires demonstration of its reversibility with 
intervention and advancing from a broad “omic” space with relative 
quantification (as done in nearly all molecular studies of aging and 
frailty) to a more precise, select panel with absolute quantification. 
Importantly, for some therapies where earlier application in patients 
with more advanced multimorbidity is currently standard (e.g., TAVI), 
proteomics cannot be viewed as a “gatekeeper” to intervention, 
but as a barometer for rapid stratification of individuals in need of 
more aggressive pharmacologic or rehabilitative therapy (in addition 
to TAVI) to limit poor outcome (Kitzman et al.,  2021). Indeed, our 
results suggest high residual risk post-TAVI captured by the frailty 
proteome—a unique opportunity to intervene more aggressively 
after acute CVD has been addressed. By analogy, application of 
these results to interventions with high morbidity and resource uti-
lization (e.g., ventricular assist and transplant) may offer additional 
pre-intervention opportunities to target individuals at high risk for 
adjunctive intervention. While not clinically available, some proteins 
identified in our analysis have published pharmacologic modifiers 
(He et al., 2021; Vandeghinste et al., 2018). While our results suggest 
both cardiac and non-cardiac implications of the frailty proteome in 
large populations (FHS), utilization of these or similar signatures to 
parse cardiac from non-cardiac morbidity after “correction” of car-
diac output deficits (e.g., with ventricular assist) is a striking potential 
for future work. Finally, as our proteomic platforms broaden, these 
clinical opportunities may be met by potential molecular targets for 
intervention to improve frailty, similar to what has been attempted in 
other spaces in heart disease (e.g., RNA-based therapies Fitzgerald 
et al., 2017; Solomon et al., 2019).

Several limitations of our study merit comment. Our AS sam-
ple included several non-continuous, non-normal exposures and 
some differences in covariates between discovery and validation 
subsamples (Table  1), potentially biasing discovery. In particular, 
the validation sample is biased to include individuals with greater 
BMI and diabetes due to CT based measures of adiposity being 
unavailable in participants at the extremes of waist circumference. 
In addition, while PCA-based frailty axes were internally consis-
tent with our clinical experience and were related to outcome, a 
larger sample size will likely be needed to examine potential sex 
differences in how the proteome relates to the frailty phenome. 
We recognize that matching frailty-related proteins from our AS 
cohort to other studies with aptamer-based proteomics offers 
unique challenges, including differences in specificity profile (Katz 
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et al.,  2022). While increased variance due to SomaScan-Olink 
platform differences may lead to null association (due to poor 
concordance for some proteins; Katz et al., 2022), we observed a 
consistent association with outcomes and phenotypes as well as a 
reasonable degree of correlation (median Spearman r = 0.58) be-
tween the two proteomic platforms on previously published data 
(Katz et al., 2022), where available, with a caveat that some pro-
teins were negatively correlated. While the cross-sectional rela-
tion of protein scores with frailty measures in FHS may be limited 
by survival bias (proteins measured ≈7 years prior to frailty mea-
sures), the longitudinal Cox regression results replicated, suggest-
ing these protein scores capture meaningful clinical outcomes. 
Lack of racial diversity across samples included here is a signifi-
cant limitation and reflects the limited diversity in transcatheter 
registries (Alkhouli et al., 2019). The use of molecular features in 
blood testing may facilitate broader implementation of objective 
measures of frailty to address racial disparities (Usher et al., 2021). 
Ultimately, broader studies across race, frailty, and disease states 
with an eventual aim of absolute quantification of risk will be es-
sential to personalize frailty assessment rapidly with prognostic 
and potential mechanistic implications.

In conclusion, we offer a paradigm to move past chronologi-
cal age to biological markers of frailty that are related to, but not 
dependent on, age. The circulating human proteome captures 
variability in frailty traits weakly related to age, exhibiting broad 
relations with metabolic-inflammatory phenotypes, outcomes, 
and mechanisms not specific to the heart. Sex and BMI accounted 
for a larger proportion of variability in the frailty proteome rela-
tive to age itself, with studies across a wider age range suggesting 
that proteins relevant to post-cardiac intervention outcomes may 
already be established by older age. Across younger populations 
at lower risk, proteomic signatures of frailty were associated with 
mortality, including cardiovascular and non-cardiovascular mortal-
ity. These results underscore the importance of human proteomic 
studies to guide discovery of functional biomarkers and potentially 
pharmacologically reversible pathways to optimize early interven-
tion and post-intervention clinical risk in advanced cardiovascular 
disease. Future studies should prioritize investigating the modifi-
ability of the frailty proteome and its correlation with mortality to 
establish proteomics as a potential cross-sectional and modifiable 
longitudinal measure of frailty.

4  |  METHODS

An overview of study design and statistical methods is shown in  
Figure 1 and Figure S1.

4.1  |  Study population

The discovery cohort comes from a multicenter, prospec-
tive cohort study of participants with symptomatic, severe AS 

undergoing TAVI (Perry et al.,  2022; Stein et al.,  2022). A key 
strength of this cohort is the systematic, prospective assessment 
of frailty (defined below). Severe AS was defined according to 
American Society of Echocardiography guidelines (peak velocity 
≥4 m/s, mean gradient ≥40 mm Hg, or indexed aortic valve area 
<0.6 cm2/m2; Baumgartner et al., 2017). All participants in the co-
hort underwent TAVI. Participants were enrolled from 10 centers 
across the United States between May 2014 and February 2017, 
with a final assessment of all-cause mortality between March and 
June 2020. We excluded 114 of 923 participants for not having 
protein data. Participants without missing data on the 12 frailty 
measures (“complete cases”) were included in the derivation sam-
ple, and participants with missing frailty data were evaluated for 
validation and prospective association. Coronary artery disease 
was defined as atherosclerosis in ≥1 coronary artery, prior myo-
cardial infarction, or prior revascularization. Diabetes was defined 
by a participant having been diagnosed or treated for diabetes by 
a healthcare provider.

To contextualize and validate findings, we sought to replicate our 
findings using published data from multiple human cohorts. To ex-
amine age-related changes in the frailty proteome, we analyzed data 
from (1) 171 individuals across the lifespan (age 21–107 years) with 
previously reported plasma proteomics (aptamer-based assay, So-
maScan, Somalogic) from several U.S. and European cohort studies 
of aging and age-related disease (VASeattle, PRIN06, PRIN09, and 
GEHA; Jha et al., 2017); (2) reported cross-sectional associations of a 
plasma proteome (aptamer-based, SomaScan) with 373 phenotypes 
from two Icelandic cohorts (Iceland Cancer Project and deCODE 
genetics) comprised of 35,559 community-dwelling adults with and 
without cancer (Ferkingstad et al., 2021); (3) participants from the 
FHS Offspring cohort with prospective frailty phenotypes and car-
diovascular and non-cardiovascular outcomes over median 26 year 
follow-up with aptamer-based plasma proteomics (SomaScan) (Ngo 
et al.,  2016). Cardiovascular disease in FHS was defined as prior 
myocardial infarction, coronary death, angina pectoris, coronary in-
sufficiency, heart failure, stroke or transient ischemic attack, or in-
termittent claudication (D'Agostino Sr. et al., 2008). The Institutional 
Review Board at each institution approved each study.

4.2  |  Proteomic profiling

4.2.1  |  Discovery cohort (AS/TAVI)

Venous blood was collected in AS samples prior to TAVI, processed 
within 30 minutes, and stored at −80°C. Plasma proteins were quan-
tified using the Olink Explore 1536 panel (Olink, Uppsala, Sweden) in 
three batches (Assarsson et al., 2014). Proteins related to frailty axes 
in the discovery cohort were matched to proteins in the replication 
cohorts using UniProt identifier.

We excluded 258 proteins from the Oncology panel across all 
batches due to a technical issue in the first batch that limited accu-
racy of these proteins. We used median normalization approaches to 
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perform batch correction (with batch 3 as the referent, given most 
samples were run in this batch). We excluded 154 proteins if >25% 
of reported values were below the reported level of detection and 
excluded 145 proteins with a coefficient of variation greater than 
40%, yielding 979 proteins available for analysis. Protein levels (in 
normalized protein expression units, log2 scale) were mean-centered 
and standardized to unit variance for modeling.

4.2.2  |  Replication cohorts

Aptamer-based proteomics (SomaScan) was used in all replica-
tion studies (Ferkingstad et al.,  2021; Lehallier et al.,  2019; Nayor 
et al.,  2020). Published data were used for Icelandic participants 
(Ferkingstad et al.,  2021) and the U.S. and European cohort stud-
ies of aging and age-related disease (VASeattle, PRIN06, PRIN09, 
and GEHA; Lehallier et al.,  2019). For FHS, proteomics was per-
formed in two batches as described (Nayor et al., 2020). FHS inves-
tigators accounted for batch effects as previously described (Nayor 
et al., 2020), via log-transforming and standardizing proteins in each 
batch separately, pooling batches, and subsequently rank normal-
izing the entire FHS sample. Plate-adjusted standardized residuals 
were subsequently used for regression to address batch effects 
comprehensively.

4.3  |  Frailty assessment

The discovery (AS) cohort prospectively assessed measures of 
frailty in all participants. Since there is not one universally accepted 
definition of frailty, for this analysis we selected elements of the 

Fried frailty phenotype combined with variables included in the Afi-
alo toolset that was developed specifically for the TAVI population 
then conducted a PCA to define axes (or dimensions) of frailty. We 
did not include categorical measures of frailty (such as exhaustion 
or unintentional weight loss from the Fried frailty phenotype) due 
to their heavy weightings in the discovery cohort (e.g., almost all 
participants reporting no unintentional weight loss) and incompat-
ibility with PCA. We included 12 separate measures of frailty in-
cluding questionnaire-based assessments, functional assessments, 
and biochemical and radiographic measures (Table S1). Three global 
assessments of frailty and quality of life were assessed via ques-
tionnaire, and included Katz Index of Independence in Activities of 
Daily Living (ADL) score (Katz et al., 1970), EuroQol Visual Analogue 
Scale (EQ-VAS; Nancy Devlin & Janssen, 2020), and the Kansas City 
Cardiomyopathy Questionnaire summary score (KCCQ-12; Green 
et al.,  2000). Physical frailty was assessed by average handgrip 
strength (by dynamometer), average gait speed (5-meter walk time), 
visceral fat area indexed to height2, and psoas muscle area indexed 
to height2. For participants who were unable to perform the gait 
speed test, a value of 0 was imputed. Pre-TAVI computed tomogra-
phy (CT) scans were used to measure psoas muscle area index and 
visceral fat area index using OsiriX software (Rosset et al., 2004). Bi-
lateral psoas muscle area and visceral fat area were measured man-
ually on a single 3 mm slice at the L4 level in the transverse plane. 
Cognitive (Mini-Cog total score; Borson et al., 2003), psychosocial 
(Patient Health Questionnaire-2 [PHQ-2] Kroenke et al.,  2003), 
and nutritional measures (Mini Nutritional Assessment-Short Form 
[MNA-SF]) were included as additional metrics of frailty (Ruben-
stein et al.,  2001). Finally, we included hemoglobin and albumin 
given their inclusion in the Essential Frailty Toolset and association 
with post-TAVI outcomes (Afilalo et al., 2017).

F I G U R E  2 PCA of 12 frailty measures identifies 3 composite axes of frailty. (a) Loadings of the three composite axes of frailty using PCA 
with varimax rotation. (b) Heatmap of study participants in the derivation sample (columns) demonstrates heterogeneity in PC scores and 
individual measures of frailty.
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4.4  |  Statistical analysis

4.4.1  |  Summarizing 12 frailty measures in 
composite phenotype measures

We observed correlations among measures of frailty (Figure S1), 
prompting an approach to generate composite axes of frailty using 

PCA. We conducted PCA (with varimax rotation; using psych in 
R; Revelle,  2022) on participants with complete data on all 12 
measures of frailty (“derivation” sample, N = 233). Frailty measures 
were mean-centered and standardized (mean = 0, variance = 1) for 
PCA. Principal components were selected by examination of a 
scree plot (generating 3 PCs summarizing 12 component frailty) 
and labeled based on loadings for that PC. Each PC score was used 

F I G U R E  3 Protein-based scores are independently related to all-cause mortality. Forest plots of Cox regression for all-cause mortality 
using phenotype and protein-based scores in derivation (a) and validation (b) samples. Hazard ratio is expressed per 1 standard deviation 
increase in score. Full adjustment includes age, sex, body mass index, smoking history, diabetes, coronary artery disease, and eGFR.
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individually as a summary measure of its composite axis in down-
stream models.

4.4.2  |  Identifying proteomic correlates of frailty

To identify proteins related to frailty within the derivation sample, 
we used linear regression with individual proteins as independent 
variables and each of the 12 measures of frailty as dependent vari-
ables, with adjustments for age and sex. A false discovery rate (FDR; 
Benjamini–Hochberg method) was used to control type 1 error. 
This regression approach was repeated with frailty axes scores 
(from PCA) as dependent variables. Proteins associated with the 12 
measures of frailty (FDR <0.05) were selected and mapped to both 
KEGG pathways and the Reactome database (clusterProfiler in R; 
Wu et al., 2021) respectively. Given our proteomic coverage did not 
cover all circulating proteins (N = 979), we used statistical tests only 
to select pathways for visualization (p values were generated by hy-
pergeometric tests and adjusted by Benjamini–Hochberg method). 
Proteins associated with any of the three frailty axes (generated by 
PCA) with an FDR <0.10 were examined in external datasets.

To construct parsimonious models for frailty, we next used 
LASSO regression (caret in R Kuhn, 2008) with frailty axes scores 
as dependent variables and all proteins (standardized to mean = 0, 
variance = 1) as penalized independent variables. LASSO models 
were developed in the subset of participants in the discovery (AS) 
cohort included in the PCA (derivation sample as mentioned above). 
Cross-validation (10 folds, with 5 repeats) was used to optimize 
model hyperparameters (e.g., lambda). Resulting models were then 
used to create protein scores for each of the frailty PCs, by taking 
the sum of the product of each regression coefficient and protein 
level for each individual. These protein scores represent a blood-
based proteomic “fingerprint” of frailty for downstream analyses. To 
understand the proportion of variance explained by age and morbid-
ity for each score, we performed type I ANOVA in models for each 
proteomic and phenotype score as a function of age, sex, body mass 
index (BMI), diabetes, smoking history, and renal function (estimated 
glomerular filtration rate [eGFR] by the CKD-EPI equation; Miller 
et al., 2022).

To validate these proteins scores of frailty, we imputed missing 
phenotype data in the 576 validation sample participants (individu-
als with AS without complete cases for 12 measures of frailty), using 

multivariate imputation by chained equations (R package mice; van 
Buuren & Groothuis-Oudshoorn, 2011). We applied the PCA model 
from the derivation sample in the validation sample (with imputed 
data) and correlated the resulting composite PC-based phenotypes 
with the protein scores from LASSO. While we recognize that the 
CT measures may not be fully missing at random (potentially limit-
ing imputation accuracy), given that this cohort was a highly unique 
set with severe cardiac disease (AS), proteomics, and follow-up, we 
conducted this analysis to test the generalizability of our result in 
the derivation sample. The imputed data were not used in any other 
part of the analysis.

4.4.3  |  Association of frailty with mortality in 
symptomatic, severe AS

We entered frailty axes scores or their proteomic surrogates (by 
LASSO) as independent variables in Cox regression for all-cause 
mortality. Of note, our AS sample did not have cause-specific 
mortality data reported. These regressions were performed in our 
derivation sample (N = 233), as well as a validation sample (N = 576). 
Models were adjusted for age, sex, BMI, smoking history, diabetes, 
coronary artery disease, and eGFR. In a sensitivity analysis, we fur-
ther adjusted for hemoglobin, albumin, and NT-proBNP to address 
potential confounding.

4.4.4  |  Studies in replication cohorts

We utilized several published studies (see Section  4.1) to further 
characterize relations of age and morbidity with circulating proteins 
corresponding to the “frailty proteome” identified in the AS cohort. 
All proteins associated with any frailty axis with an FDR <0.10 (re-
laxed to allow maximal discovery across the derivation AS sample 
and the replication cohorts) were selected and mapped to their pub-
lished data by UniProt identifiers. In a cross-sectional study of 171 in-
dividuals across the lifespan (age 21–107 years; Lehallier et al., 2019), 
we used LOESS models to describe the relation between protein 
level and age, with visualization of age-related predicted trajecto-
ries from these models. We leveraged a study of 35,559 community-
dwelling adults in Iceland (Ferkingstad et al., 2021) to examine the 
relation between proteins (those significantly associated with any 

F I G U R E  4 Proteomics of frailty are weakly related to age and appear to manifest decades prior to advanced age. (a) Stacked bar plot 
of the proportion variance explained in phenotype (frailty axes scores) and protein scores by age, sex, BMI, eGFR, diabetes, and smoking 
history (residuals not shown). Models for explanatory variance for phenotype scores are from the AS derivation sample with complete 
data on the 12 frailty measures (N = 233); models for protein scores pool all 809 participants (AS derivation and AS validation samples). (b) 
Scatterplots demonstrate relation between phenotype or protein scores with age, with correlation (Spearman). (c) Age-related changes in 
plasma proteins modeled by loess (based on Z-scores of protein levels) from 171 individuals (age range: 21–107 years; Lehallier et al., 2019). 
Proteins were selected based on association (FDR <0.10) with one of the frailty axes in the AS cohort and availability in the N = 171 sample. 
Of note, no proteins were associated with patient-reported outcomes (PC1) in linear models (see File S1), so this is not shown in the heat bar 
at the top of the heatmap. The 25th–75th percentile of age in the AS cohort is shown in purple beside the age heat bar, suggesting any age-
related changes in the proteome may already be established by the time of AS intervention. *Proteins/genes with FDR <0.10 in linear models 
of frailty axes in the human AS cohort.
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frailty axis also present in the Iceland dataset, matched by UniProt) 
with (1) age (from reported linear regression for protein as a function 
of age and sex) and (2) a subset of 44 reported phenotypes selected 

from a total 373 phenotypes based on relevance to aging across mul-
tiple systems (linear/logistic regression for phenotype as a function 
of protein, age, and sex).
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4.4.5 | Framingham Heart Study

We examined the association of protein scores with frailty meas-
ures and long-term CVD and non-CVD outcomes in the FHS 
Offspring cohort. We used recursive feature elimination on 367 
proteins common to FHS and the AS cohort (determined by match-
ing on UniProt identifier) in linear models (in caret Kuhn,  2008, 

with a 5% tolerance) to recalibrate scores developed using Olink 
data in our discovery sample (AS) for FHS (given the differences 
in proteomic coverage). Recalibration fit using this approach was 
good (Spearman ρ range = 0.89–0.92 across the 3 scores). The re-
fitted models were then applied to FHS by summing the product 
of each regression coefficient (from recursive feature elimina-
tion) and protein level for each individual. We used logistic and 

F I G U R E  5 The frailty proteome, systemic multimorbidity, and cause-specific mortality. (a) Heatmap of proteins associated with any 
frailty axis (FDR <0.10) also measured in >35,000 Icelanders (Icelandic Cancer Project and deCODE). Fill values are from age and sex linear 
adjusted models for each phenotype/outcome. The annotation bar presents the protein's relation with age in Icelanders and the protein's 
relation with frailty axes. Phenotype names are as provided by the parent study investigators (Ferkingstad et al., 2021). (b) Cumulative 
incidence curves for all-cause mortality, cardiovascular mortality, and non-cardiovascular mortality stratified by tertiles of protein score 
of physical function in FHS. These are for visualization of the survival association (unadjusted). The adjusted hazard ratio for a continuous 
marker (from Cox regression) is reported.
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linear regression to relate protein scores (from FHS Exam 5) to 
frailty measures collected at FHS Exam 7 (≈7 years later), including 
Rosow–Breslau questions (ability to do heavy work, ability to walk 
a half mile), Katz ADLs, grip strength (Jamar dynamometer), gait 
speed (4-meter walk at usual pace), and time to complete five chair 
stands (Liu et al., 2016). In addition, we included relations with vis-
ceral and subcutaneous adiposity as a measure of body composi-
tion (Fox et al., 2010). We used Cox regression to relate each of the 
3 protein scores with all-cause mortality with adjustments for sex 
and age in minimally adjusted models, with further adjustments 
for BMI, smoking status, diabetes, anti-hypertensive medication 
treatment, total and HDL cholesterol, systolic blood pressure, and 
prevalent CVD. We then used a competing risk model (Fine–Gray) 
to evaluate for CVD versus non-CVD mortality for protein scores 
that were associated with all-cause mortality in standard Cox 
models (D'Agostino et al., 2008; Fine & Gray, 1999).

R (versions 4.2.1 and 4.2.2) was used for analyses. A two-tailed 
p value less than 0.05 (with type 1 error control as specified above) 
was considered statistically significant.
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