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Mechanism Design for
Demand Response Programs

Deepan Muthirayan, Dileep Kalathil, Kameshwar Poolla, Pravin Varaiya

Abstract—Demand Response (DR) programs serve to reduce the
consumption of electricity at times when the supply is scarce
and expensive. Consumers or agents with flexible consumption
profiles are recruited by an aggregator who manages the DR
program. The aggregator calls on a subset of its pool of recruited
agents to reduce their electricity use during DR events. Agents are
paid for reducing their energy consumption from contractually
established baselines. Baselines are counter-factual consumption
estimates of the energy an agent would have consumed if they
were not participating in the DR program. Baselines are used
to determine payments to agents. This creates an incentive for
agents to inflate their baselines in order to increase the payments
they receive. There are several newsworthy cases of agents gam-
ing their baseline for economic benefit. We propose a novel self-
reported baseline mechanism (SRBM) where each agent reports
its baseline and marginal utility. These reports are strategic and
need not be truthful. Based on the reported information, the
aggregator selects or calls on agents with a certain probability
to meet the load reduction target D. Called agents are paid for
observed reductions from their self-reported baselines. Agents
who are not called face penalties for consumption shortfalls below
their baselines. Under SRBM, we show that truthful reporting
of baseline consumption and marginal utility is a dominant
strategy. Thus, SRBM eliminates the incentive for agents to inflate
baselines. SRBM is assured to meet the load reduction target.
Finally, we show that SRBM is almost optimal in the metric of
average cost of DR provision faced by the aggregator.

I. INTRODUCTION

The core problem in power systems operations is to maintain
the fine balance of electricity supply and demand at all times.
This must be done economically through markets while re-
specting resource and reliability constraints. Adeptly managing
flexible demand is a far better alternative to increased reserve
generation, since it is inexpensive, produces no emissions, and
consumes no resources. While most DR programs are limited
to infrequent peak shaving applications, it is recognized that
demand flexibility has the potential to offer more lucra-
tive ancillary services such as frequency regulation or load-
following. These applications can support balancing supply
and demand to compensate for the variability of renewables.
This paper, however, is concerned only with peak shaving DR
applications.

Deepan Muthirayan is with the School of Electrical Engineering and Com-
puter Science, UC Irvine. Dileep Kalathil is the Department of Electrical and
Computer Engineering, Texas A&M University, College Station. Kameshwar
Poolla and Pravin Varaiya are with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley.
πSupported in part by the National Science Foundation under Grants

EECS-1129061/9001, CPS-1239178; and by CERTS under sub-award 09-206;
PSERC S-52.

In DR programs, aggregators recruit residential or industrial
customers who are willing to reduce their electricity consump-
tion in exchange for financial rewards. The aggregator serves
as an intermediary and represents these flexible consumers or
agents to the local utility. The aggregator receives a payment
from the utility for the ability to reduce demand at short notice,
and, in-turn, pays the agents for their consumption reduction
during DR events. The key difficulty is in measuring this
reduction in consumption. While the actual consumption of
agents is measured, their intended consumption or baseline is
a counter-factual.

Commonly used baselines include historical averages of con-
sumption on similar days (by the agent, or by a peer group of
similar agents). However, there are newsworthy cases where
agents have deliberately inflated their baseline to extract larger
payments [1]. Inaccurate baselines can result in over-payment,
compromising the cost-effectiveness of the DR program, or
in under-payment, adversely affecting the ability to recruit
participants into DR programs. Finally, fairness can be of
concern. An agent who happens to be on vacation during a DR
event receives a payment for load reduction without suffering
any hardship. This can be perceived as unfair by other agents
who deliberately curtail their consumption and suffer some
dis-utility. Addressing these issues is essential to encourage
and sustain wider use of DR programs.

A. Our Contributions

We approach DR program planning as a mechanism design
problem. We propose a novel self-reported baseline mecha-
nism (SRBM) where agents self-report baselines which are
forecasts of their intended future consumption, and their
marginal utilities to an aggregator who manages the DR
program. Agents need not be truthful in their reporting. The
self-reported baseline is used to determine payments in the
DR program. The objective of the aggregator is to design an
incentive mechanism so that (a) the DR program delivers any
load reduction target, (b) each agent reports their true baseline
and true marginal utility, and (c) the DR program delivers the
load reduction target at minimum cost to the aggregator.

Under SRBM, we show that truthful reporting of baseline
consumption and marginal utility is a dominant strategy for
each agent. We show that agents are faithful to their baseline
consumption when not called for DR, and that agents maxi-
mally reduce their consumption when called for DR. Under
this mechanism, the aggregator can ensure adequate response,
i.e. an assurance of being able to deliver the load reduction
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target D. We characterize the minimum possible average cost
φmin of DR provision per KWh under a class of mechanisms.
We then show that SRBM is nearly optimal in the metric of
expected cost of DR provision, i.e. it results in a cost close to
φmin.

There is extensive literature on network resource allocation
problems and all of them consider an infinitely divisible good
or service that is to be efficiently shared among distributed
agents acting with self interests [2], [3]. Our setting also
considers an infinitely divisible service request and selfish
service providers (DR providers) but the difference being that
the service provided is not measurable because of the lack of
baseline against which DR service provided has to be mea-
sured. This is a challenge for mechanism design. Moreover,
the literature in network resource allocation problems [2], [3]
consider multishot setting and study convergence properties
to a Nash Equilibrium over repeated reporting, allocation and
pricing. The few works which consider a single shot setting
require the consumers to report a very high dimensional bid
for convergence in a single shot. Here we study convergence
in a single shot with an additional challenge of lack of
baseline measurement. Therefore our contribution is proposing
a resource allocation dominant strategy mechanism in a single
shot setting with this new challenge.

B. Related Work

Traditional DR programs reward participating agents for load
reduction during peak demand periods. Agents have an incen-
tive to deliberately inflate their baselines to increase the pay-
ments they receive [4]–[7]. Alternative baseline mechanisms
(ex: aggregate baselines) which improve market efficiency are
offered in [5]. These do not explicitly address baseline inflation
concerns. Adverse selection and double payment effects are
two other issues that arise from rewarding agents based on
estimated baselines [4].

There is a substantial literature on baseline estimation meth-
ods. These can be broadly classified into (a) averaging, (b)
regression, and (c) control group methods.

Averaging methods determine baselines by averaging the con-
sumption on past days that are similar (ex: in temperature or
workday) to the event day. There are many variants such as
weighted averaging and using an adjustment factor to account
for variations between the event day and prior similar days. A
detailed comparison of different averaging methods in offered
in [8]–[10]. While averaging methods are attractive because of
their simplicity, they suffer from estimation biases that can be
substantial [10], [11]. Also, these methods require significant
data access, especially for residential DR programs [12].

Regression methods fit a load prediction model to historical
data, which is then used to predict the baseline [13], [14].
They can potentially overcome biases incurred by averaging
methods [12]. They often require considerable historical data
for acceptable accuracy, and the models may be too simple to
capture the complex behavior of individual agents.

TABLE I
NOTATIONS

E[X] expected value of the random variable X
D load reduction target
m number of DR events agents must participate in
N number of agents recruited by aggregator
uk utility of agent k
qk discretionary energy consumption of agent k
bk true baseline consumption of agent k
πk true marginal utility of agent k
πmax upper bound on marginal utilities, πmax ≥ maxk πk
αk probability that agent k is selected
fk baseline report of agent k
µk marginal utility report of agent k
πrk reward/kWh awarded to agent k
πpk penalty/kWh imposed on agent k
πe retail price of energy
πo recruitment cost per enrolled agent
Pi pod i
Si pod core i
Hi pod header i
βi probability that pod i is selected for DR
νi maximum reported marginal utility in pod i
φ average cost of DR provision per KWh
ψ payout to agents per DR event

Control group methods are found to be more accurate than
averaging or regression methods [16]. While they do not
require large amount of historical data, they require additional
metering infrastructure. This complicates and raises the costs
of implementation, particularly for large numbers of recruited
agents. Finally, [11] proposes a probabilistic method using
Gaussian statistics to estimate baselines. We refer the readers
to [17] for a discussion on these different baseline schemes.

Most of the methods mentioned above focus on baseline esti-
mation. They often overlook the behavioral or gaming aspects
of agents intentionally inflating their baselines. There are some
exceptions, notably [18] which considers a linear penalty when
agents deviate from their baselines and shows that the penalty
induces users to report their true baselines. In [19], again
under linear penalties, a centralized DR scheduling algorithm
is proposed to guarantee incentive compatibility in the case
of two agents. A DR market assuming known baselines is
proposed in [20], [21]. The approaches in [18]–[21] either
assume knowledge of utility functions or true baselines. In
[22] authors propose an optimal contract mechanism for the
DR aggregator. However they assume that true reduction can
be observed at a later time, and the payment depends on this
information. Our approach doesn’t require this assumption.
Instead we propose a joint design of baseline estimation and
incentive design to address both problems together.
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II. PROBLEM FORMULATION

A. Consumer Model

Let uk(qk) be the utility of agent k derived by consuming
qk units of energy. We assume that the utility functions uk(·)
have the piece-wise linear form

uk(qk) =

{
πkqk if qk < bk
πkbk if qk ≥ bk

(1)

Here bk is the maximum possible consumption of agent k. Any
additional consumption will not increase its utility. We call πk
the true marginal utility of agent k. We assume that πks are
i.i.d and so are bks and that πk and bks are independent of
each other.

Let πe be the retail price of electricity offered by the utility.
The net utility Uk(·) of agent k is

Uk(qk) =

{
πkqk − πeqk if qk < bk
πkbk − πeqk if qk ≥ bk

We clearly require πk > πe, else agent k would not consume
electricity. Equivalently, for every agent, the marginal utility
derived from electricity consumption exceeds the retail elec-
tricity price.

qkbk

uk

πk

qkbk

Uk

πk − πe

−πe

Fig. 1. (a) Utility, and (b) net utility of agent k

The optimal consumption for agent k maximizes the net utility.
This is bk as is evident from Figure 1(b). We call bk the true
baseline consumption of agent k.
Remark 1. We are only modeling the discretionary electricity
consumption of an agent. This is the consumption that the
agent is willing to forgo in exchange for monetary compensa-
tion. With this interpretation, bk is the maximum consumption
reduction that agent k is willing to provide, and πk is the
minimum compensation per KWh it requires to provide this
reduction.
Remark 2. The agent utility functions are private information.
The aggregator does not have knowledge of agent baselines
and marginal utilities. We assume that the aggregator has
knowledge of an upper bound on the agent marginal utilities,
i.e. it knows πmax where

πmax ≥ max
k

πk. (2)

We note that πmax has the interpretation of the maximum price
that the aggregator is willing to pay agents per KWh of demand
reduction.
Remark 3. We assume that the agent parameters πk and bk
are independent across the agents. This is reasonable because
the true marginal utility and the true baseline of an agent are
not dependent on the behavior of other agents.

Remark 4. The agent’s utility function is chosen to be a
piecewise linear concave function. This simplifies the problem
setting and allows a more tractable analysis while retaining
all the challenges that the general problem poses. If the
agent’s utility function is modeled by a general concave
function, as in network resource allocation problems, then for
convergence in single shot this would necessarily require the
mechanism designer to elicit very high dimensional bids. This,
in addition to the lack of baseline measurement, makes the
general problem complex for analysis. We suggest this as a
future direction for research.

B. Aggregator Model

The utility is financially motivated to reduce its procurement
costs at times when supply is scarce and expensive. It pur-
chases demand response services from aggregators in capacity
markets. Suppose the aggregator commits to offer the utility
D KWh of demand reduction during DR events over some
contract window. It recruits N agents into its DR program
from a large candidate pool. We will see later that N is a
function of the consumer selection mechanism. The cost of
recruitment is πo per enrolled agent. The recruited agents are
obligated to participate in m DR events contractually.

The aggregator profit is the revenue from the utility, minus the
payout to the agents and recruiting costs. It may also receive
penalty revenue from agents, but we will show that this is not
the case under our baseline mechanisms. The total expected
cost faced by the aggregator is

Jagg = mE[ψ] + πoE[N ]

where ψ is the payout per DR event, N is the number of
recruited agents and expectation is over consumer baseline
and marginal utility. The aggregator’s expected cost of demand
response φ, i.e. the average cost per KWh of demand reduction
is then

φ =
Jagg

D
=

E[ψ]

D︸ ︷︷ ︸
payout per KWh

+
πoE[N ]

mD︸ ︷︷ ︸
recruitment cost

(3)

C. Event Time-line
The time-line of events in our problem formulation is shown
in Figure 2. We divide these events into four periods.

Period 1 Period 2 Period 3

utility notifies
agg of DR event

agents report
private info fk, µk

agg selects
agents for reduction

agg publishes
penalty/reward prices

agents decide
consumption qk

agents pay penalties
or recieve rewards

Fig. 2. Event Time-line

Period 0 (Common information): The aggregator recruits N
agents into its DR program. Agents enroll based on the op-
portunity to receive financial rewards. The aggregator informs
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participating agents of (a) agent selection mechanism, and (b)
the mechanism which sets penalty and reward prices.

Period 1 (Reporting): The utility notifies the aggregator of an
anticipated DR event during which it is obligated to deliver D
KWh of demand reduction. All agents (indexed by k) report
their baselines and marginal utilities, fk and µk respectively,
to the aggregator. Agents need not be truthful. We stress that
the agent reports (fk, µk) are strategic, i.e. agents may opt to
deliberately submit incorrect reports.

Period 2 (Selection): The aggregator delivers the aggregate
load reduction target D by selecting a subset of agents to
call on for consumption reduction. This selection is based on
the collective reports submitted by the agents. The aggregator
notifies selected agents to reduce their consumption. The
aggregator computes and publishes reward prices πrk for agents
who are called, and a penalty price πpk for agents who are not
called. These can be agent-specific.

Period 3 (Load reduction and payment): During the DR event,
all agents decide on their actual consumption qk. If agent k is
called, it receives an ex post reward

R = πrk(fk − qk)+. (4)

If agent k is not called, it is assessed an ex post penalty

P = πpk(fk − qk)+. (5)

Thus, selected agents are rewarded for consumption reduction
from their reported baselines, and agents that are not selected
are penalized for consumption shortfalls below their reported
baselines.

D. The Agent’s Problem

We assume that the agents are rational and non-cooperative.
Each agent faces a two stage decision problem. In the first
stage, it has to decide the value of its reports (fk, µk). In the
second stage, it has to decide on its actual energy consumption
qk during the DR event. This second stage decision depends
on whether or not agent k is called for the DR event.

There are two serious complexities that arise. First, agents
are selected at random by the aggregator in response to a
DR event. The selection probability depends on the details of
the aggregator’s mechanism, which, in turn, depends on the
submitted reports of all agents. Second, the reward and penalty
prices faced by agent k are set by the aggregator. These vary
by agent and depend on the collective reports of the other
agents i 6= k.

We could approach the agent’s decisions through a com-
plicated game-theoretic formulation, but this is unnecessary.
It happens that for our self reported baseline mechanism
(detailed in Section IV), truthful reporting is the dominant
strategy. Equivalently, agent k will choose to reveal its true
baseline and true marginal cost in the first stage. This results in
the lowest expected cost for agent k, regardless of the reports
of other agents (see Theorem 4).

III. BASELINE-ONLY REPORTING

Before we describe our self-reported baseline mechanism, we
consider a simpler scheme where agents (a) only report their
baselines, and (b) face uniform reward and penalty prices
independent of their reports, set by the aggregator. This in-
termediate analysis will inspire our more complex mechanism
where agents report both their baselines and marginal utilities,
and face nonuniform prices.

A. Mechanism Definition

The aggregator recruits N agents who are contractually obli-
gated to participate in m DR events. In response to a DR event,
all recruited agents are required to only report their baselines
fk. The decisions of agents are not coupled as the penalty and
reward prices πr, πp are constants chosen by the aggregator.
The aggregator selects agents independently with probability
α until∑

k

fk > D. (6)

Meeting (6) requires that a sufficient number N of agents be
recruited. We will explore this aspect of the mechanism in
Theorem 3.

The aggregator’s choices under this mechanism are
(N, πr, πp, α). The decision variables for agent k are
its reported baseline fk and second stage consumption qk
during the DR event.

B. Agent Decisions

The objective of each agent is to minimize its expected cost.
Agent k solves a two-stage optimization problem. In the first
stage, it optimally selects its baseline report fk. In the second
stage, it is informed whether or not it is selected, and then
optimally selects its consumption qk during the DR event.

Suppose agent k submits a baseline report fk. If this agent is
selected, its second stage cost function is

Js(qk, fk) = πeqk − u(qk)− πr(fk − qk)+.

If the agent is not selected, it second stage cost function is

Jns(qk, fk) = πeqk − u(qk) + πp(fk − qk)+.

Define the optimal consumptions

q∗s = arg min
qk

Js(qk, fk), q∗ns = arg min
qk

Jns(qk, fk).

Note that these depend on the first stage decision fk, i.e. the
reported baselines.

Let α be the selection probability. The first stage decision
problem of agent k is to minimize its expected cost:

J(fk) = αJs(q
∗
s , fk) + (1− α)Jns(q

∗
ns, fk).

Let f∗k be the optimal first stage decision of agent k, i.e. its
reported baseline:

f∗k = arg min J(fk).
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We have the following result.

Theorem 1. Suppose the mechanism prices satisfy πr ≥
πmax − πe, πp ≥ πe, and the probability of an agent being
called satisfies α ≤ πe/(πr + πe). Under the baseline-only
reporting mechanism,

(a) agents truthfully report their baselines, i.e. f∗k = bk
(b) called agents consume q∗s = 0

(c) agents that are not called consume q∗ns = b

(d) the aggregator receives no penalty revenue
(e) the load reduction target D is met.

Proof: Refer Appendix
Remark 5. Result (a) assures us that there is no baseline
inflation. Result (b) states that called agents maximally reduce
their discretionary consumption. Result (c) implies that agents
who are not called consume the same amount of electricity
as they would have if they were not participating in the DR
program.

C. Aggregator Cost

We now examine the aggregator’s perspective. Consider the
class C of self-reporting baseline mechanisms with linear
reward and penalty functions as specified in (4) and (5). The
reward prices can be agent-specific. Our next result offers a
lower bound on the minimum possible cost per KWh of DR
provision under any mechanism in C.

Theorem 2. Suppose agent true baselines {b1, b2, · · · } and
agent true marginal utilities {π1, π2, · · · } are i.i.d. random
variables. Assume bis and πks are independent for all i, k.
Let C denote the class of self-reporting baseline mechanisms
with linear reward and penalty functions. Then, the expected
cost for DR provision under any mechanism in C satisfies

φ ≥ 1

E[1/π]
− πe +

πo

mπeE[b]E[1/π]
= φmin (7)

where E[b] = E[bi] and E[1/π] = E[1/πk].

Proof: Refer Appendix
Remark 6. Note that the marginal utilities are bounded and
bounded away from zero as πe ≤ πk ≤ πmax. A standard
calculation reveals that

1/E[π] ≤ E[1/π] ≤ 1/E[π] +O(σ2/m3)

where (m,σ2) are the mean and variance of π. Thus, if
the variance of true marginal utilities is modest, we can
approximate E[1/π] ≈ 1/E[π], and the minimum expected
cost of DR provision over any mechanism in C is

φmin ≈ E[π]− πe +
πoE[π]

mπeE[b]
(8)

We next compute the minimal cost of DR under the baseline-
only reporting mechanism. Minimizing this cost requires the
aggregator to select the smallest possible reward price πr, and
the fewest number of customers N (or the largest selection
probability α). We have the following:

Theorem 3. Suppose agent true baselines {b1, b2, · · · } and
agent true marginal utilities {π1, π2, · · · } are i.i.d. random
variables. Assume bis and πks are independent for all i, k.
Under baseline-only reporting, the aggregator’s profit is max-
imized by the optimal parameters:

(a) reward price: πr = πmax − πe

(b) penalty price: πp ≥ πe

(c) selection probability: α = πe/πmax

The resulting expected cost per KWh of DR provision is

φBO ≤ (πmax− πe)
(

1 +
πeE[b]

πmaxD

)
+

πoπmax

mπeE[b]
+

πo

mD
(9)

Proof: Refer Appendix
Remark 7. The penalty price does not affect the aggregator’s
cost as it derives no penalty revenue. The only constraint is
that πp ≥ πe in order for agents to report truthfully.
Remark 8. For large demand reduction targets D, our upper
bound (9) on the average cost of DR provision becomes

φBO ≤ πmax − πe +
πoπmax

mπeE[b]
(10)

Comparing this with (8), we see that the baseline-only report-
ing mechanism incurs a large cost of DR provision because the
aggregator does not have information about the true marginal
utilities of agents. It only has access to the upper bound πmax.
Cost increase stems from the inflation of πmax over E[π].
Example 1. Assume that the marginal utilities of recruited
agents are uniformly distributed on [0.3, 1.3] $/KWh. Equiva-
lently, the mix of recruited agents demand this distribution of
payments for their DR services. We use typical numbers from
the PG&E jurisdiction for residential DR:
πo $2/agent recruitment cost
πmax $1.30 max DR payment demanded by agents
E[b] 5KWh average reduction/DR event
m 10 max number of DR events
πe $0.15 retail price of electricity
D 100KWh DR target

This yields an average cost of DR provision of $1.51/KWh
under baseline-only reporting. This compares unfavorably with
the lower bound φmin = $0.71/KWh of Theorem 2. 2

The cost of DR provision per KWh under baseline-only
reporting can be quite large. It is set by the maximum marginal
utility of consumers in the recruited pool. Doing any better
requires agents to reveal their true marginal utilities, allowing
the aggregator to set lower reward prices while assuring that
agents yield their discretionary consumption. This observation
motivates us to consider a more complex mechanism which
offers the promise of lower cost DR provision.

IV. SELF-REPORTED BASELINE MECHANISM (SRBM)

A. SRBM Mechanism Definition

The cost of DR provision under baseline only reporting
inspires us to consider a more complex mechanism which
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we call Self-Reported Baseline Mechanism (SRBM). Under
SRBM, all agents submit reports fk of their baselines and µk
of their marginal utilities. Agents may not be truthful. The key
idea is to design the mechanism so that agents reveal their true
baselines and marginal utilities. This allows the aggregator to
set lower reward prices, without compromising on the delivery
of the DR target. Under SRBM, the reward prices for selected
agents is determined by the submitted reports of other agents.
In this aspect, SRBM resembles classic mechanisms such as
Vickrey-Clarke-Groves (VCG) auction pricing.

The SRBM mechanism definition is as follows:

Step 1 (Pod Sorting):
Based on the submitted reports, the aggregator sorts agents into
M pods, P1, · · · ,PM . A pod is a minimal subset of recruited
agents that can deliver the demand reduction target D under
SRBM. We later describe a specific pod sorting algorithm that
delivers the DR target cost effectively in Subsection IV-C.

Step 2 (Pod Selection):
The aggregator selects one pod from the set of M pods to
deliver the demand reduction target D. Pod Pi will be selected
with probability βi. The selection probability βi and a specific
pod selection mechanism is described in Subsection IV-C.

Step 3 (Agent Selection):
Agents in pod Pi are sorted in increasing order of their
reported marginal utility µk. Pods are broken into their core
and their header, as sown in Figure 3. The first k∗ agents form
the pod core Si where

k∗∑
k=1

fk ≥ D,
k∗−1∑
k=1

fk < D. (11)

Equivalently, k∗ is the smallest index such that the first k∗

agents from pod Pi in the sorted list of marginal utilities can
deliver the target D. If pod Pi is selected in response to a
DR event, agents in its core Si are called on to provide their
demand reduction. The remaining agents form the pod header
Hi. So, the core and header of the pod are defined as,

Si = {1, . . . , k∗}, Hi = Pi \ Si

Pod Pi

Core Si Head Hi

νi = maximum reward priceagents sorted by increasing
reported marginal utility µk

Fig. 3. Pod structure: core and header.

Step 4 (Reward Pricing):
Selected agents (i.e. in Si) receive a reward price πrk $/KWh
for consumption reduction (fk−qk)+ below their self-reported
baseline. Selected agents do not face penalties.

Let S−k be the set of agents who would have been selected
from pod Pi if agent k was not participating in the DR

program. Define the reward price for agent k to be

πrk = max{µj} − πe , j ∈ S−k. (12)

We stress that the reward price πrk depends on the target D,
and is agent-specific.

Step 5 (Penalty Pricing):
Agents who are not selected (i.e. those in the header Hi) face
a penalty price πp for consumption deficits (fk − qk)+ below
their reported baselines. Under SRBM, the penalty price πp

for agent k is chosen to satisfy πp ≥ πe. It is best to select the
smallest penalty price, i.e. πp = πe, so as not to discourage
agents from participating.

This completes the SRBM mechanism definition.

B. Agent Decisions

As with the baseline-only mechanism, agent k solves a two-
stage optimization problem. In the first stage, it optimally
selects its baseline report fk. In the second stage, it is informed
whether or not it is selected, and then optimally selects its
consumption qk during the DR event. The complexity is that
reward price πrk for agent k depends on its submitted reports
(fk, µk) and the reports of all other agents (f−k, µ−k). These
other reports are private information, unavailable to agent k.

Suppose agent k submits a baseline report fk. If this agent is
selected, its second stage cost function is

Js(qk, fk) = πeqk − u(qk)− πrk(fk − qk)+.

If the agent is not selected, it second stage cost function is

Jns(qk, fk) = πeqk − u(qk) + πp(fk − qk)+.

Selected agents are rewarded for consumption reduction from
their reported baselines, and agents that are not selected
are penalized for consumption shortfalls below their reported
baselines.

Define the optimal consumptions

q∗s = arg min
qk

Js(qk, fk), q∗ns = arg min
qk

Jns(qk, fk).

Note that these depend on the first stage decision fk, i.e. the
reported baselines.

Let βk be the probability that agent k is selected. Its first stage
decision problem is to minimize its expected cost:

Jk(fk, µk | f−k, µ−k) = βkJs(q
∗
s , fk)+(1−βk)Jns(q

∗
ns, fk)

We use the following notion.

Definition 1. [Dominant strategy]
Let Jk(fk, µk | f−k, µ−k) be the expected cost for agent k
when it reports (fk, µk) and other agents report (f−k, µ−k).
The pair (f∗k , µ

∗
k) is a dominant strategy report for agent k if

Jk(f∗k , µ
∗
k | f−k, µ−k) ≤ Jk(fk, µk | f−k, µ−k)

for all reports (fk, µk) and (f−k, µ−k).

The agents have knowledge of only what is informed to them
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as outlined in section II-C. In particular each agent is informed
the following, a) that the agent is recruited with a set of agents
such that their net reported capacity meets the load reduction
requirement, b) that the agents in this group are ordered in
increasing order of their marginal utility reports, c) that when
this group is called for DR service all or some of the agents
in set S which consitute the first k∗ agents (as given by (11))
are selected to provide DR service, d) that the reward and
penalty are determined by (12) and πpk = πe, and d) that the
probability of calling an agent k in this set S is given by,
βk = πe/(πrk + πe).
Hence under SRBM, agents are not privy to the pod sorting
algorithm. We call this as the partial information (PI) setting.
Our next result establishes that truthful reporting of baselines
and marginal utilities is a dominant strategy for SRBM under
this partial information setting. Mechanism design for truthful
reporting under complete information revelation where a con-
sumer is also informed of the pod sorting algorithm is much
more complex, and is discussed in the appendix.

We now offer our main result which establishes key properties
of SRBM.

Theorem 4. Under the partial information setting (PI), SRBM
has the following properties:

(a) truthful reporting of baselines and marginal utilities is a
dominant strategy

(b) called agents consume q∗s = 0, providing the maximal
reduction in their discretionary consumption

(c) agents that are not called consume q∗ns = bk
(d) the aggregator receives no penalty revenue
(e) the load reduction target D is met by each pod core.

Proof: See Appendix E.
Remark 9. Under SRBM, each consumer reports its true
baseline bk. As a result, measuring load reduction from the
reported baseline coincides with the true load reduction, and
called agents are paid accurately for the services they offer.
This makes SRBM fair Agents who are not called consume
bk, which is exactly what they would have if they were
not participating in the DR program. SRBM has a fairness
property. An agent who happens to be on vacation will
report their intended consumption, and must incur dis-utility
to receive a DR payment. The selection process (11) meets the
load reduction target D. This is because the selected agents
completely yield their discretionary electricity consumption
during the DR event, curtailing their consumption precisely by
bk. This is an artifact of our piece-wise linear utility function
model. A more nuanced analysis with general concave utilities
will yield a nonzero actual consumption. This analysis is more
complex and only serves to mask the simplicity of our SRBM.
Remark 10. We have assumed that agent utility functions
(and resulting true baseline consumption bk) are deterministic.
However, bk depends on (exogenous) random parameters such
as temperature and occupancy. For example, A more realistic
model would accommodate dependence on exogenous random
processes such as temperature and occupancy. This might
result, for example, in a baseline consumption of the form

bk = bk+ak|θ−θ0|. Here, θ is the realized temperature during
the DR event, and θ0 is the predicted temperature. In this
case, agents can be required to report their best-effort forecast
bk of their baseline consumption along with the temperature
sensitivity ak. Historical consumption data can be used to
assist agents in making these reports. The SRBM mechanism
can be easily extended to incorporate these more complex
reporting scenarios. The most general scenarios with uncertain
utility functions that explicitly depend on exogenous random
processes θ is challenging and is an ongoing work.

C. A Pod Sorting Algorithm

We now offer a specific algorithm that sorts recruited agents
into pods. From the aggregator’s perspective, this sorting is
attractive as it results in an expected cost of DR provision that
is nearly optimal (see Therorem 6). The selection probability
of a pod Pi is set as,

βi = πe/νi ≤ βik = πe/(πrk + πe) , k ∈ Si (13)

Remark 11. Pod selection probability βi may not be consistent
with the individual selection probabilities of an agent k in Si,
which is βik. When D is large enough and b is small, one can
expect βik ∼ βi and SRBM to be consistent with the individual
seleciton probabiliy βik. In order for SRBM to be consistent,
an agent k(∈ Pi) is made available for selection, even after
Pi is selected for up to βi fraction of time, till the agent k’s
frequency adds up to βik. It is in this sense the consumers
are informed that all or some consumers belonging to the pod
core would be selected when the pod is selected for DR service
(Refer Section IV-B).

For a selected pod Pi to deliver the DR target, the pod
core must contain k∗ agents, where

∑k∗

1 bk ≥ D. In order
to compute the reward prices πrk, the pod header must also
contain sufficiently many agents to determine the reward prices
πrk. More precisely, we require that if any agent in the core
S is removed, we can still find sufficiently many agents to
determine S−k. A sufficient condition for this is that the header
Hi contain k∗∗ agents, where

∑k∗+k∗∗

k∗+1 bk ≥ D. Thus the
selection criterion for pods cores and headers is identical.
Since agents in the header of a pod are not called, they can
serve as the core of another pod. This key idea is illustrated
in Figure 4. It allows us to reduce the total number of agents
that must be recruited which is one component of the cost of
DR provision.

Core S1 Core S2 Core SM

Head H1 Head HM−1 Head HM

ν1 νM−1 νMagents sorted by
increasing reported
marginal utility µk

Fig. 4. Illustration of pod sorting: cores, headers, and max reward prices.

The second key idea in our pod selection algorithm is to
organize agents into pods so that pods with large rewards
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are selected with low probability. This reduces the expected
payout to agents. We begin by sorting agents in increasing
order of their reported marginal utility as shown in Figure
4. The maximum reward price paid to agents in pod Pi is
bounded by

πrk ≤ νi − πe, where νi = max
k∈Pi

πk.

Also, pod Pi is selected with probability βi = πe/νi. As
a result, pods with larger reward prices are selected with
lower probability, reducing the expected cost of DR provision.
Agents with high marginal utility are called on less frequently,
reducing the expected dis-utility. This simple sorting algorithm
is detailed below in pod sorting algorithm.

1) Pod Selection: A random number u ∼ U [0, 1] is drawn.
Pod core Si is selected for DR if u ∈ [

∑i−1
j=1 β

j ,
∑i
j=1 β

j ].
To be consistent with the selection probability of an individual
consumer a consumer k in Si is selected for all draws
u ∈ [

∑i−1
j=1 β

j ,
∑i−1
j=1 β

j + βik]. Consumers who are selected
are rewarded for reduction from reported baseline based on
unit reward announced to them. Consumers who are not
selected are penalized for consuming less than the reported
baseline. Because the number of pods that are recruited is such
that

∑M−1
i βi < 1 ≤

∑M
i βi, this pod selection procedure

guarantees that the required target D is delivered always.

Pod Sorting Algorithm
1 Sort agents in the increasing order of reported marginal

utilities
2 Set pod index i = 1. Set n = 1
3 Place k∗(i) agents indexed from n to n + k∗(i) − 1 in

pod core Si where k∗(i) is the smallest number such that
n+k∗(i)−1∑

j=n

fj ≥ D. Increment n← n+ k∗(i)

4 Place k∗(i+1) agents indexed from n to n+k∗(i+1)−1
in pod header Hi where k∗(i+ 1) is the smallest number

such that
n+k∗(i+1)−1∑

j=n

fj ≥ D.

Increment n← n+ k∗(i+ 1)
5 Define the pod Pi = Si ∪ Hi. Define the pod selection

probability βi = minβik, k ∈ Si. Increment i← i+ 1
6 Define Si = Hi−1.
7 If

∑
i β

i < 1, go to step 4. Else stop.

Next, we give a characterization of the number of pods M and
number of recruited agents N under this pod sorting algorithm.

Theorem 5. Let N be the number of recruited agents, ψ be
the payout to agents per DR event, and M be the number of
pods. Under the pod sorting algorithm,

E[N ] ≤ (E[M ] + 1) (D/E[b] + 1),

E[M ] ≤ E[π] πe + 3.

Proof. Refer Appendix

D. Aggregator Cost

We are now in a position to compute the expected cost of DR
provision under SRBM with our pod sorting algorithm. This
given in the following theorem.

Theorem 6. Suppose agent true baselines {b1, b2, · · · } and
agent true marginal utilities {π1, π2, · · · } are i.i.d. random
variables. Assume bis and πks are independent for all i, k.
Then, the expected cost φ per KWh of DR provision under
SRBM with the pod sorting algorithm satisfies

φSRBM ≤ E[π]+2πe+

(
πo

mE[b]
+

πo

mD

)(
E[π]

πe
+ 3

)
(14)

Proof: Refer Appendix
Remark 12. For large demand reduction targets D, our upper
bound (14) on the average cost of DR provision becomes

φSRBM ≤ (E[π] + 3πe)− πe +
πo(E[π] + 3πe)

mπeE[b]
(15)

If the spread of true marginal utilities is modest, we have
argued (see (8)) that the minimum expected cost of DR
provision over any mechanism in the class C is

φmin ≈ E[π]− πe +
πoE[π]

mπeE[b]
(16)

If the retail electricity price πe is small compared to expected
marginal utility E[π] of the recruited agents, we have

φSRBM ≈ φmin

Comparing expressions (15) and (16), we conclude that SRBM
is nearly optimal in the metric of expected cost of DR
provision.

V. CASE STUDY AND SIMULATIONS

In this section, we illustrate the performance advantages of the
SRBM mechanism compared to other standard mechanisms
through numerical examples and simulations.

A. SRBM vs Baseline-Only Reporting Mechanism

Assume that the marginal utilities of recruited agents are
uniformly distributed on [0.3, 1.3] $/KWh. Equivalently, the
mix of recruited agents demand this distribution of payments
for their DR services. We use typical numbers from the PG&E
jurisdiction for residential DR as given in the table below.

πo $2/agent recruitment cost
πmax $1.30 max DR payment demanded by agents
E[b] 5KWh average reduction/DR event
m 10 max number of DR events
πe $0.15 retail price of electricity
D 100KWh DR target

This yields an average cost of DR provision of $1.51/KWh
under baseline-only reporting. This compares unfavorably with
the lower bound φmin = $0.68/KWh of Theorem 2.
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However, the average cost of DR provision under SRBM
in this case is is $0.84/KWh. This is only modestly larger
than the lowest possible average cost for DR provision of
$0.71/KWh found from Theorem 2. SRBM compares very
favorably with baseline-only reporting which has an average
cost of $1.51/KWh.

B. Numerical Simulations

Fig. 5. Left above: E [Cost/kWh] vs 1/E[b] (D = 100 kWh), right above:
E[N] vs 1/E[b] (D = 100 kWh), left middle: E[M] vs 1/E[b](D = 100 kWh),
right middle: E[Cost/kWh] vs 1/E[b] (D = 20 kWh), left below: E[N] vs
1/E[b] (D = 20 kWh). right below: E[M] vs 1/E[b](D = 20 kWh). Upper
bounds are from Theorems 5 and 6

In Fig. 5, we provide simulation results that illustrate the
superior performance of SRBM mechanism. The first three
plots starting from top left provides the average cost, average
number of consumers recruited and average number of pods
for D = 100 kWh (which is representative of a large
demand reduction requirement). The next three plots are for
D = 20 kWh which is representative of smaller demand
reduction requirement. Each plots also contains the theoretical
upper/lower bound on the quantities of interests. We use the
same values for the prices as in the previous subsection.

It follows from the plots that the cost/kWh of SRBM is
significantly lower compared to upper bound and the baseline-
only mechanism for all the scenarios. Moreover, the cost for
SRBM is close to the optimal cost (given by the lower bound).
The figures also show that the actual number of consumers
required for enabling the DR is very close to that predicted
by Theorem (5) which further suggests the accurate modeling
and analysis of the SRBM mechanism.

Tables III and II summarizes the result from the simulations.
In order to succinctly characterize the performance optimality,
we use the notion of competitive ratio (CR) which is the ratio
of cost of the mechanism to the optimal cost possible. The
CR is close to 1, though it increases with 1/E[b], which is
expected from the upper bound in Eq. (14).

TABLE II
SRBM PERFORMANCE: D = 20 KWH

E[b] 5 4 3 2 1
SRBM 0.77 0.83 1.04 1.24 1.96
φmin 0.71 0.76 0.84 0.99 1.44
CR 1.08 1.09 1.24 1.26 1.36

TABLE III
SRBM PERFORMANCE: D = 100 KWH

E[b] 5 4 3 2 1
SRBM 0.84 0.9 1.05 1.27 1.97
φmin 0.72 0.76 0.84 0.99 1.43
CR 1.18 1.19 1.26 1.29 1.38

C. Self-Reported vs CAISO Baseline

California Independent System Operator (CAISO) estimates
baseline by the 10/10 method. In the 10/10 method, a
raw baseline b̄c is estimated by averaging the consumption
of 10 non-event similar days closer to the event day. In
addition an adjustment factor is calculated to account for
any variation on the event day. This adjustment factor is
calculated based on the consumption qp couple of hours prior
to the event and the average consumption b̄p at the same
time on the selected non-event days. This factor is capped
at 20% both upwards and downwards. With this baseline
estimation approach, the payment Rc to a consumer is given
by Rc = πrk

(
qp
b̄p
b̄c − q

)
. Lets consider the same example

as before, where π ∼ U [0.3, 1.3] and πe = 0.15. Lets also
consider the case where the uninflated value of qp = b̄c = b̄p
and that b̄c and b̄p are the true values. Here we ignore any
incentives from the consumer side to alter b̄c and b̄p. From
Eq. (12) it is clear that πrk ≥ π− πe ≥ πe for each consumer.
One the day of the event, if an individual consumer inflates
its consumption qp then it gains at the rate of πrk for each unit
of increase and its loss is at the rate of retail price πe (follows
from the piecewise linear utility model Eq. (1)). Here the gain
and the loss is evaluated in terms of the net utility for the hours
before the DR event and during the DR event. Since πrk ≥ πe
increasing qp results in a net positive gain for the consumer
on the event day. Then each consumer will increase qp by the
maximum allowed that is 20% resulting in 20% inflation of
baseline and payments, while self-reporting nullifies any such
incentive to inflate (Theorem 4).

VI. CONCLUSION

In this paper, we have addressed the baseline estimation prob-
lem that is central to demand response programs. We proposed
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a mechanism where agents participating in a DR program self-
report their baselines and marginal utilities. Under this self
reported baseline mechanism (SRBM), agents reveal their true
baselines and marginal utilities. Agents that are selected for
demand reduction maximally curtail their load. When agents
are not selected, their actual consumption is faithful to their
baselines. As a result, the aggregator is able to meet any
feasible load reduction target with certainty by selecting agents
whose measured reductions adds up to the total reduction. We
have also derived a lower bound φmin on the expected cost per
KWh of DR provision for any mechanisms in the class C with
piece-wise linear penalty and reward functions. We argue that
SRBM comes close to deliver DR provision at this minimum
cost.

Our work has assumed that the true baseline consumption is
deterministic and that the utility function is piece-wise linear.
In practice, DR mechanisms must account for uncertainty in
agents intended consumption during the DR delivery window.
The exploration of the DR mechanisms for general utility
functions u(q; θ) where θ is an exogenous random variable
remains to be explored.
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APPENDIX

A. Mathematical Preliminaries

We require two preliminary results based on the classical
optional stopping theorem and the closely related Wald’s
equation.

Proposition 1. (Wald’s equation) Let X = {Xk : k =
1, 2, · · · } be a sequence of independent identically distributed
random variables. Let χ = E[Xk]. Let N be a stopping time
with respect to X , i.e. an integer valued random variable that
depends only on {X1, · · · , XN}. Suppose E[N ] <∞. Then

E[X1 + · · ·+XN ] = χE[N ] (17)

Proof: Theorem (1.6), Chapter 3 in [23] 2

Proposition 2. Let X = {Xk : k = 1, 2, · · · } be a sequence
of independent identically distributed random variables. Let
χ = E[Xk] and define the partial sums

S0 = 0, S1 = X1, S2 = X1 +X2, · · ·

Fix D and consider the random variable

N = min{t : St ≥ D}.

Then,
D

χ
≤ E[N ] <

D

χ
+ 1

Proof: We prove the result in three steps.

a) First we show that E[N ] is bounded.
Construct the sequence of i.i.d random variables defined by

Yk =

{
0 If Xk < a
a If Xk ≥ a

(18)

Call a trial k a success if Yk = a. Let T denote the first success
in a sequence of trials. Denote the probability of success on
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a given trial by p. Then p = P(Yk = a) and T is a geometric
random variable with probability distribution

P(T = k) = (1− p)k−1p. (19)

From (19) it follows that

E[T ] = 1/p = 1/P(Xk ≥ a).

Define, Rt =
∑t
k=1 Yk and M = min{t : Rt > D}. Then

M ≤ Number of trials needed for dD/ae+1 successes (20)

Denote T kk−1 as the number of trials to reach k th success
after the (k − 1)th success. Then from (20)

E[M ] ≤ E
dD/ae+1∑
k=1

T kk−1 =

dD/ae+1∑
k=1

E[T kk−1] (21)

Observe that T kk−1 and T are identically distributed. As a
result, E[T kk−1] = E[T ] and

E[M ] ≤
dD/ae+1∑
k=1

E[T ] = (dD/ae+ 1) /P(Xk ≥ a) (22)

From the construction of Yn it trivially follows that Yn ≤ Xn

which implies that Rt ≤ St. So clearly, N ≤M . So,

E[N ] ≤ E[M ] ≤ (dD/ae+ 1) /P(Xk ≥ a) <∞ (23)

b) It is straightforward to show that N is a stopping time
with respect to the sigma algebra generated by Xk, k =
{1, 2, ..., n}. We omit the proof.

c) We show that D
χ < E[N ] ≤ D

χ + 1:

Since N is a stopping time,

E[SN ] = χE[N ] ≥ D =⇒ E[N ] ≥ D/χ

Since (N − 1) is also a stopping time,

E[SN−1] = (N − 1)χ < D =⇒ E]N ] < D/χ+ 1.

2

B. Three Intermediate Results

We first explore second-stage decision of agents under truthful
reporting of baselines. We show that if the reward price
exceeds the marginal utility, selected agents completely yield
their discretionary consumption. Conversely, if πr < πk−πe,
the reward price is insufficient to persuade agents to offer
any demand reduction. If the penalty prices is non-negative,
participation in the DR program does not alter the energy
consumption of agents who are not selected. We have the
following:

Proposition 3. Suppose agent k faces a penalty price πp and
receives a reward price πr. Assume agent k reports its baseline
truthfully, i.e. fk = bk.

(a) Suppose agent k is not selected. If πp ≥ 0, its unique
optimal second-stage decision and resulting optimal cost are

q∗ns = bk, Jns(q
∗
ns) = −(πk − πe)bk

(b) Suppose agent k is selected. If πr > πk − πe, its unique
optimal second-stage decision and resulting optimal cost are

q∗s = 0, Js(q
∗
s ) = −πrbk

(c) Suppose agent k is selected. If πr < πk−πe, agent k will
not yield any of its discretionary consumption, i.e. q∗s = bk.

Proof: (a) If agent k is not selected, its cost function is

Jns(q) = πeq − u(q) + πp(bk − q)+

which is piece-wise linear in the decision variable q. We
compute the slopes:

dJns(q)

dq
=

{
πe − πk − πp if q < bk

πe if q > bk

=

{
< 0 if q < bk
> 0 if q > bk

Thus q∗ns = bk is the unique minimizer of the cost function
Jns. The resulting optimal cost is clearly −(πk − πe)bk.

(b) If agent k is selected, its cost function is

Js(q) = πeq − u(q)− πr(bk − q)+

This is piece-wise linear in the decision variable q. We
compute the slopes:

dJs(q)

dq
=

{
πe − πk + πr if q < bk

πe if q > bk

=

{
> 0 if q < bk
> 0 if q > bk

Thus q∗s = 0 is the unique minimizer of the cost function Js.
The resulting optimal cost is clearly −πrbk.

(c) If πr < πk − πe, we have

dJs(q)

dq
=

{
< 0 if q < bk
> 0 if q > bk

Thus q∗s = bk is the unique minimizer of Js. 2

We next explore conditions on the penalty and reward prices,
and the selection probability which induce agents to truthfully
report their baselines.

Proposition 4. Assume the mechanism prices and selection
probability satisfy πp ≥ πe, α ≤ (πe)/(πr + πe). Then,

(a) an optimal first stage decision for agent k is to truthfully
report its baseline, i.e. f∗k = bk.

(b) if further, πr > πk − πe, truthful reporting of baselines
is the unique optimal decision.

Proof: (a) Consider agent k, and fix the submitted first-stage
baseline report f . Define the constant

c = πebk − u(bk) = (πe − πk)bk.

The selection probability inequality can be re-written as

−απr + (1− α)πe ≥ 0. (24)

We first compute the optimal consumption decided by agents
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in the second stage in two cases:

(i) Agent is not called. Its cost function is

Jns(q, f) = πeq − u(q) + πp(f − q)+

Since this is a continuous piece-wise linear function, it easy
to verify that the optimal consumption is either q∗ = bk or
q∗ = f . The optimal cost is:

Jns(q
∗, f) = min{c+ πp(f − bk)+, πef − u(f)}

=

{
min{c+ πp(f − bk), c+ πe(f − bk)} if f > bk

min{c, c+ (πk − πe)(bk − f)} if f < bk

=

{
c+ min{πp, πe} · (f − bk) if f > bk

c+ min{0, (πk − πe)(bk − f)} if f < bk

=

{
c+ πe(f − bk) if f > bk

c if f < bk

(ii) Agent is called. Its cost function is

Js(q, f) = πeq − u(q)− πr(f − q)+

Since this is a continuous piece-wise linear function, it easy
to verify that the optimal consumption is either q∗ = 0 or
q∗ = bk. The optimal cost is:

Js(q
∗; f) = min{−πrf, c− πr(f − bk)+}

=

{
min{−πrf, c− πr(f − bk)} if f > bk

min{−πrf, c} if f < bk

=

{
−πrf + min{0, c+ πrbk} if f > bk

min{−πrf, c} if f < bk

Combining (i) and (ii), we can write the expected cost as

J(f) = αJs + (1− α)Jns

=

 −απ
rf + αmin{0, c+ πrbk}

+(1− α)(c+ πe(f − bk)) if f > bk
αmin{−πrf, c}+ (1− α)c if f < bk

Note that J(f) is continuous and piece-wise linear. We com-
pute the slopes

dJ(f)

df
=

{
−απr + (1− α)πe if f > bk
either − απr or 0 if f < bk

(25)

=

{
≥ 0 if f > bk
≤ 0 if f < bk

Here, we have used (24). Consequently, f∗ = bk is a
minimizer of J(f).

(b) Next suppose πr > πk − πe. Notice that

c+ πrbk = (πe − πk)bk + πrbk > 0.

Define g = −c/πr, and notice that for f < g,

c+ πrf < c+ πrg = 0.

It is easy to verify that the expected cost simplifies to

J(f)=

 −απ
rf + (1− α)(c+ πe(f − bk)) if f > bk
−απrf + (1− α)c if g < f < bk

c if f < g

Note that J(f) is continuous and piece-wise linear. We com-

pute the slopes

dJ(f)

df
=

 −απ
r + (1− α)πe if f > bk
−απr if g < f < bk

0 if f < g

Consequently, f∗ = bk is the unique minimizer of J(f). 2

Finally, we show that if the selection probability is too large,
agents will arbitrarily inflate their baselines.

Proposition 5. Assume the selection probability satisfies
α > (πe)/(πr + πe). Then the optimal first stage decision is
to report the maximum, i.e., f∗ = bmax.

Proof: We follow the calculation of Proposition 4. The selec-
tion probability inequality can be re-written as

−απr + (1− α)πe < 0.

It follows from (25) that

dJ(f)

df
=

{
< 0 if f > bk
≤ 0 if f < bk

Thus J(f) is monotone decreasing. The optimal first-stage
decision is f∗ = bmax, i.e. agents will arbitrarily inflate their
baselines. 2

C. Proof of Theorem 1

Proof: (a) From Proposition 4, we know that an optimal first
stage decision is for agents to truthfully report their baselines,
i.e. f∗k = bk.
(b) and (c) now follow immediately from Proposition 3.
(d) is immediate on observing that πp(f∗k − q∗ns) = 0.
(e) Recall that agents are selected at random until (see (6))∑

fk ≥ D.

Note that (a) agents report baselines truthfully, and (c) selected
agents completely yield their discretionary consumption. As a
result, the set of selected agents provide

∑
k bk in demand

reduction, meeting the target D. 2

Proof: We consider mechanisms where agents that are called
receive a payment πrk(bk − qk)+ for consumption reduction
from their true baseline. The reward price can be agent
specific.

From Proposition 3 (c), if the reward price is too low, i.e.
πrk < πk − πe, agent k will not yield any of its discretionary
consumption to the DR program. So, we must have πrk ≥
πk − πe, and under this condition, selected agents completely
yield their discretionary consumption.

If agent k knows with certainty that it will be called for a DR
event, its first-stage cost function is

J(fk, qk) = −πkr (fk − qk)+ + πeqk − u(qk).

As its optimal second stage decision is q∗ = 0, the resulting
first-stage decision problem is

min
fk
−πkr fk.
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This implies that agent k will arbitrarily inflate its baseline,
resulting in an unbounded expected cost for DR provision.
As a result, we must allow for agent k to be selected at
random with a sufficiently small probability. From Proposition
5, the selection probability αk for agent k must satisfy
αk ≤ (πe)/(πrk + πe), else agent k will arbitrarily inflate
its baseline, resulting in an unbounded expected cost for DR
provision.

To minimize its DR payments to agents, the aggregator should
select the smallest possible reward, i.e. it should choose πrk =
πk − πe. To minimize its recruitment costs, the aggregator
should recruit the smallest number of agents or maximize the
selection probability. Thus we set

αk =
πe

πrk + πe
=
πe

πk

Any other mechanism in C would result in a higher expected
cost for DR provision.

With these choices, under any mechanism in the class C,
the expected demand reduction from agent k is αkbk, and
the expected payout to agent k is αkπrkbk. The expectations
here are over the randomness of being selected under the DR
mechanism.

Define the random variables Xk = bkwk where wk = πe/πk.
Notice that {b1, b2, · · · } and {w1, w2, · · · } are i.i.d. Also, bis
and wks are independent. Thus {X1, X2, · · · } is i.i.d. and

E[X] := E[Xk] = πeE[b]E[1/π] (26)

To meet the load reduction target D, we must recruit N
customers where

N∑
1

αkbk =

N∑
1

πe

πk
bk =

N∑
1

Xk ≥ D.

Using Proposition 2, we have

E[N ] ≥ D

E[Xk]
=

D

πeE[b]E[1/π]
. (27)

The expected payout ψ to the agents (over the random vari-
ables bk, πk) is

E[ψ] = E

[
N∑
1

αkπ
r
kbk

]
= E

[
N∑
1

πe(πk − πe)
πk

bk

]

= E

[
N∑
1

(πebk − πeXk)

]
= πeE[N ] (E[b]− E[X])

= πeE[N ]E[b] (1− πeE[1/π])

In the final step above, we have used Wald’s equation (see
Proposition 1) together with (26). Combining this with (27),
we obtain

E[ψ] ≥ D

E[1/π]
− πeD.

We can now compute a lower bound on the expected cost of

DR provision:

φ =
E[ψ]

D︸ ︷︷ ︸
payout per KWh

+
πoE[N ]

mD︸ ︷︷ ︸
recruitment cost

≥ 1

E[1/π]
− πe +

πo

mE[b]
· 1

πeE[1/π]

proving the claim. 2

D. Proof of Theorem 3

Proof: To minimize its DR payments to agents, the aggregator
should select the smallest possible reward, i.e. it should choose
(see Theorem 1) πr = πmax−πe. To minimize its recruitment
costs, the aggregator should recruit the smallest number of
agents or maximize the selection probability. Thus we set
(see Theorem 1), α = (πe)/(πr + πe) = (πe)/(πmax). The
number of recruited agents needed to service the DR target is
the smallest integer N such that

N∑
1

αbk ≥ D.

From Proposition 2, we have

E[N ] <
D

αE[b]
+ 1 =

Dπmax

πeE[b]
+ 1.

If agent k is selected, it delivers bk KWh of demand reduction.
The expected payout to the agents is then From Theorem 1,
the expected payout is

E[ψ] = E[

N∑
1

πrαbk] = πrE[N ]αE[b] < πrD+
πrπeE[b]

πmax

We can now compute an upper bound on the expected cost of
DR provision:

φ =
E[ψ]

D︸ ︷︷ ︸
payout per KWh

+
πoE[N ]

mD︸ ︷︷ ︸
recruitment cost

≤ (πmax − πe)
(

1 +
πeE[b]

πmaxD

)
+

πoπmax

mπeE[b]
+

πo

mD
.

E. Proof of Theorem 4

Proof: Under SRBM, we have πp ≥ πe. We first bound the
selection probability. Suppose agent k in pod Pi is selected.
The reward price offered to agent k satisfies

πrk ≤ max
k∈Pi

µk − πe = νi − πe.

The probability βk that agent k is called satisfies

βk = (πe)/(πrk + πe).

This is also independent of agent k’s reports. We therefore
meet all the conditions of Proposition 4. We conclude that all
agents will report its baselines truthfully, or f∗k = bk for all
k. More precisely, we have

J(µk, fk | µ−k, f−k) ≥ J(µk, bk | µ−k, f−k).
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We next show that agents are also best served by reporting
their marginal utility truthfully, i.e.

J(µk, bk | µ−k, f−k) ≥ J(πk, bk | µ−k, f−k).

Observe that the reward price for agent k under SRBM is
determined by the reports of other agents, i 6= k. Suppose
agent k is selected. By the partial information setting this
implies that the agent is part of S in its group or pod. If it
remains selected when it reports its true marginal utility then
it receives the same reward price. So it is no worse off being
truthful.

Suppose agent k is not selected. If it remains not selected when
it reports its true marginal utility, it faces the same penalty
price. So again, agent k is no worse off being truthful.

The only remaining situations to consider are when agent k
strategically reports its marginal utility to alter the selection
decision:

• Agent k is selected, but would not selected if it is truthful.
Since agent k is selected, from Proposition 3, its optimal
cost is either J1 = −πrkbk or J1 = −(πk − πe)bk
depending on whether πrk ≥ πk − πe or πrk ≤ πk − πe
resply. The reward price received by agent k under SRBM
is

πrk = max{µj} − πe , j ∈ S−k

If agent k is not selected when it is truthful, using
Proposition 3, its optimal cost is J2 = −(πk − πe)bk.
Since agent k is not selected, we can drop k from
the list of agents in determining the set of selected
agents. Thus, the set of selected agents in this sub-case
is simply S−k, and since agent k is not selected, we have
πk > maxj∈S−k

µk = πrk+πe. As a result, πrk < πk−πe,
which implies J1 ≥ J2. Thus agent k is better off being
truthful.

• Agent k is not selected, but would be selected if it is
truthful.
Since agent k is not selected, using Proposition 3, its
optimal cost is J1 = −(πk − πe)bk.
If agent k is selected when it is truthful, using Proposition
3, its optimal cost is J2 = −πrkbk or J2 = −(πk−πe)bk.
Also,

πrk = max{µj} − πe , j ∈ S−k

Since agent k is selected when truthful, we have πk <
max{µj : j ∈ S−k}. As a result, πrk > πk − πe, which
implies J1 ≥ J2. Thus agent k is better off being truthful.

In all situations, agent k is no worse off by truthfully reporting
its marginal utility and baseline, proving (a).
(b) and (c) now follow immediately from Proposition 3.
(d) is a straightforward observations.
(e) Recall that the set of selected agents from pod Pi (see
(11)) is S = {1, · · · , k∗} where

k∗∑
k=1

fk ≥ D,
k∗−1∑
k=1

fk < D

Note that (a) agents report baselines truthfully, and (c) selected
agents completely yield their discretionary consumption. As a
result, the agents in pod core when selected provide

∑k∗

k=1 bk
in demand reduction, meeting the target D. 2

F. Proof of Theorem 5

Proof:

(a) Let Ni be the number of agents in the pod core Si. Recall
agents are sorted into Si so that∑

k∈Si
bi ≥ D.

Using Theorem 2, we can bound the expected number of
agents in the pod core Si as

D

E[b]
≤ E[Ni] ≤

D

E[b]
+ 1 (28)

for all i. Note that this is also a bound on the number of agents
in any pod header Hi. Next observe from Figure 4 that the
header for pod Pi serves as the core Si+1 for the subsequent
pod. Thus the total number of agents recruited is

N =

M+1∑
1

Ni.

It is easy to observe that Nis are i.i.d. The number of pods
M is determined using the stopping criterion

∑M
1 βi ≥ 1 and

hence M is a stopping time. Using Wald’s equation, from the
above equation we get,

E[N ] = (E[M ]+1)E[N1] ≤ (E[M ]+1)(D/E[b]+1) (29)

(b) We now bound the number of pods M . Recall that we
keep forming pods until

M−1∑
1

βi < 1 ≤
M∑
1

βi, where βi =
πe

νi
(30)

Since the harmonic mean of a collection of numbers is always
less than arithmetic mean, we have

M − 1

1/ν1 + · · ·+ 1/νM−1
≤ ν1 + · · ·+ νM−1

M − 1

As a result, we have

(M − 1)2 ≤ πe(1/ν1 + · · ·+ 1/νM−1) · ν
1 + · · ·+ νM−1

πe

<
ν1 + · · ·+ νM−1

πe

The final inequality above follows from (30). Note that (M −
1)2 is a convex function of M . Taking expectations, using
Jensen’s inequality, we obtain

(E[M − 1])2 ≤ E[(M − 1)2] <
1

πe
E

[
M−1∑
i=1

νi

]
(31)

Define SM+1 = HM . Agents in this (M + 1)th pod core are
never called. They are only needed to serve as the pod header
HM in order to determine reward prices for pod PM under
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SRBM. Define π[k], k = 1, 2, · · · to be the agent marginal
utilities sorted in increasing order. Notice that (see Figure 4)

νi ≤ π[k] for k ∈ Si+2.

Therefore

Ni+2ν
i ≤

∑
k∈Si+2

π[k]

where Ni is the number of agents in pod core Si.
As a result, we have

M−1∑
i=1

Ni+2ν
i ≤

M−1∑
i=1

∑
k∈Si+2

π[k] =
∑

k∈S3∪···∪SM+1

π[k]

≤
∑

k∈S1∪···∪SM+1

π[k] =

N∑
k=1

π[k] =

N∑
k=1

πk (32)

The final equality follows because the sum of all of the sorted
random variables π[k] is identical to the sum of the unsorted
random variables πk. Taking expectations of both sides of (32),

E

[
M−1∑
i=1

Ni+2ν
i

]
≤ E

[
N∑
k=1

πk

]
= E[N ]E[π]

= E[N1]E[(M + 1)]E[π]. (33)

where we used (29) to get the last equality. Notice that Ni+2

and νi are independent, and since Nis are i.i.d., by a simple
conditioning argument,

E

[
M−1∑
i=1

Ni+2ν
i

]
= E[N1]E

[
M−1∑
i=1

νi

]
(34)

From (34) and (33),

E

[
M−1∑
i=1

νi

]
≤ E[(M + 1)]E[π] (35)

Combining (31) and (35), we obtain

(E[M ] + 1) (E[M ]− 3]) ≤ (E[(M−1)])2 ≤ E[M + 1]E[π]

πe

This simplifies to

E[M ] <
E[π]

πe
+ 3

proving the claim. 2

G. Proof of Theorem 6

Agent k in Pod Pi is selected with probability βik = πe/(πrk+
πe). Selected agents deliver D KWh of demand reduction.
Thus, the expected payout to agents per DR event is

E[ψ] ≤ E[

M∑
i=1

∑
k∈Si

βikπ
r
kbk] ≤ E[

M∑
i=1

πeD]

= E[

M∑
i=1

πeD] ≤ E[M ]πeD. (36)

From (3), the average cost of DR provision per KWh of
demand reduction is

φ =
E[ψ]

D
+
πoE[N ]

mD

Using the bound on E[ψ] from (36) and the bound on E[N ]
from Theorem 5, we get the desired result. 2

H. SRBM for Complete Information (CI) Setting

The main challenge in the mechanism design is that the se-
lection probabilities of individual consumers has to be limited
(see Theorem 1) so that the reported baselines are not inflated.
This is unlike traditional resource allocation problems where
the baseline is available. This necessitates the mechanism
designer to recruit more than the minimum number of agents
required to meet the target D. SRBM recruits multiple such
sets of consumers and sorts them in to pods, where each
pod has a core that contains the minimum number of agents
required to meet the target D. Supposing that the agents reveal
the true values of their baseline and marginal utility, then the
mechanism can minimize its payout by selecting pod cores
of higher marginal utilities by a lower proability. The reward
design ((12)), would then imply that pod cores with higher
rewards are selected less often.

In the complete information setting this can couple the se-
lection probabilities with the agent reporting. As a result, a
characterization like Thm. 1 might not be feasible. So the
challenge here is to design a pod sorting algorithm, combined
with a pod selection and reward pricing mechanism such that
the incentive for the agents to inflate their baseline reports or
their marginal utility reports to increase payments is nullified
while pod sorting is cost effective.

Below we discuss the mechanism for this complete infor-
mation setting. Agents are sorted in to pods based on their
reported marginal utility as in Fig. 4. Agent k’s selection
probability and unit reward is given by,

βik = cikπ
e/νi+1
−k ; πrk = νi−k − πe (37)

Where,

µj+k = νj−k

νj+2
−k − e

j
k

(
νj+1
−k

)2

/νj−k

νj+2
−k − e

j
kν
j+1
−k

, c1k = 1 , ejk =
cj+1
k

cjk

µj+k = νi−1
−k , if j > i , µj+k = νj−1

−k if j ≤ i ,
And νj−k = highest report in j th pod if k was excluded

And i is the pod allotted to consumer k (38)

The above equation can be rewritten as,

ejk =
νj+2
−k (µj+k − ν

j
−k)

νj+1
−k (µj+k − ν

j+1
−k )

> 0 (39)

Remark 13. There are three differences from mechanism for PI
setting, the reward, the selection probability and the inclusion
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of an additional factor in the calculation of the selection
probability.

The number of pods M in the mechanism is chosen such
that

∑M−1
j=1 βj < 1 ≤

∑M
j=1 β

j , where a Pi’s core Si is such
that

∑N−1
k=1 fk < D ≤

∑N
k=1 fk and N is the number of

consumers in Si. Here the difference is that βi 6= minβk.
Selection: a random number u ∼ U [0, 1] is drawn. Pod core
Si is selected for DR if u ∈ [

∑i−1
j=1 β

j ,
∑i
j=1 β

j ]. To be
consistent with the selection probability of an individual
consumer a consumer k in Si is selected for all draws
u ∈ [

∑i−1
j=1 β

j ,
∑i−1
j=1 β

j + βk]. Agents who are selected are
rewarded for reduction from reported baseline based on unit
reward announced to them. Agents who are not selected are
penalized for consuming less than the reported baseline.

Difference between SRBM for CI and SRBM for PI: Unlike
SRBM for PI, the selection probability of agent k has an
additional jump factor cik. This guarantees that the selection
probability of an individual agent decays at a sufficient rate
that the agent does not have the incentive to misreport and
jump to a higher pod just to gain higher reward. Also note
that the reward and the probability without the factor are also
different. In SRBM for PI, the reward is πrk = νi−1

−k −πe while
in SRBM for CI the reward is πrk = νi−k − πe. Similarly the
selection probability in SRBM for PI is βik = πe/νi−k while in
SRBM for CI the selection probability without the jump factor
is βik/c

i
k = πe/νi+1

−k . This change in the selection probability
and the reward enables design of a mechanism where the jump
factors are computable using the reported information.

Theorem 7. The modified SRBM for the complete information
setting has the following properties,

(a) truthful reporting of baselines and marginal utilities is a
dominant strategy

(b) called agents consume q∗s = 0, providing the maximal
reduction in their discretionary consumption

(c) agents that are not called consume q∗ns = bk
(d) the aggregator receives no penalty revenue
(e) the load reduction target D is met by each pod core.

Proof. The jump factor cik ((38)), that is used in the
selection probability of agent k, is only dependent on
µ

(i−1)+
k , νi−1

−k , ν
i+1
−k , ν

i
−k and ci−1

k . Hence the recursive
scheme for computation of cik is independent of the agent
report µk and that the jump factor cik is independent of the
reports of agent k. This implies that the selection probability
of a agent k, βk = cikπ

e/νi+1
−k is independent of its reports.

Now all we need to check is that whether βk ≤ πe/(πrk+πe).
When ejk is zero on the right of (38), we get,

µj+k ≤ ν
j−1
−k < νj−k

νj+2
−k − e

j
k

(
νj+1
−k

)2

/νj−k

νj+2
−k − e

j
kν
j+1
−k

∣∣∣∣∣∣∣
ejk=0

= νj−k

(40)

Calling right hand side of (38) as g(νj−k, ν
j+1
−k , ν

j+2
−k , e

j
k), it is

easy to check using chain rule for differentiation that dg

dejk
<

0. And g(νj−k, ν
j+1
−k , ν

j+2
−k , e

j
k) = 0 when cj+1

k =
cjkν

j+2
−k νj

−k

(νj+1
−k )2

.

Combining these two observations it is clear that there is a cik
such that,

0 < cik <
ci−1
k νi+1

−k ν
i−1
−k

(νi−k)2
(41)

Similarly it follows that,

0 < ci−1
k <

ci−2
k νi−kν

i−2
−k

(νi−1
−k )2

(42)

Applying recursively we get that,

0 < cik <
ν1
−kν

i+1
−k

ν2
−kν

i
−k

<
νi+1
−k
νi−k

(43)

This implies the selection probability of agent k satisfies,

βk = cikπ
e/νi+1
−k <

νi+1
−k
νi−k

πe/νi+1
−k =

πe

νi−k
=

πe

πrk + πe
(44)

From the above observation and the fact that βk and πrk are
independent of agent k’s reports. Then the proof of Thm. 1
applies here and it follows that the agent k reports its true
baseline i.e. fk = bk.

Note that it is trivial to show that the agent does not gain
by changing its marginal utility report such that it is still
within Si (pod core allotted if agent k reports truthfully) but
at a different position. This is because the rewards, selection
probabilities for a agent k does not change once its pod core
is fixed. Next we show that the agent does not gain either by
jumping to a lower or a higher pod core.

Denote by i the pod core number that is allotted to agent k on
reporting truthfully and denote by U ik the net utility of agent
k in Si. Then,

U ik = βikπ
r
kbk + (1− βik)(πk − πe)bk =

cikπ
e

νi+1
−k

(νi−k − πe)bk

+

(
1− cikπ

e

νi+1
−k

)
(πk − πe)bk (45)

Define Ũ jk as the utility of agent k in Sj , but using the
computed jump factor cjk when k is allotted Si. Then,

Ũ jk = βjkπ
r
kbk + (1− βjk)(πk − πe)bk

=
cjkπ

e

νj+1
−k

(νj−k − π
e)bk +

(
1−

cjkπ
e

νj+1
−k

)
(πk − πe)bk

(46)

Case j ≥ i: Here we first show that Ũ j+1
k ≤ Ũ jk and then

show that U jk ≤ Ũ jk ≤ Ũ ik = U ik. Taking the difference of
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Ũ j+1
k and Ũ jk we get,

Ũ j+1
k − Ũ jk =

cj+1
k πe

νj+2
−k

νj+1
−k bk +

(
1−

cj+1
k πe

νj+2
−k

)
πkbk

−
cjkπ

e

νj+1
−k

νj−kbk −

(
1−

cjkπ
e

νj+1
−k

)
πkbk

=
cj+1
k πe

νj+2
−k

νj+1
−k bk −

cj+1
k πe

νj+2
−k

πkbk −
cjkπ

e

νj+1
−k

νj−kbk

+
cjkπ

e

νj+1
−k

πkbk

=
cjkπ

ebk

νj+2
−k ν

j+1
−k

(
ejk(νj+1

−k )2 − νj+2
−k ν

j
−k − πk(ejkν

j+1
−k − ν

j+2
−k )

)
=
cjkπ

ebkπk

νj+2
−k ν

j+1
−k

(
πk

(
νj+2
−k − e

j
kν
j+1
−k

)
−νj−k

(
νj+2
−k − e

j
k

(νj+1
−k )2

νj−k

))
(47)

Then from (38), (47) and the fact that µj+k = νi−1
−k ≥ πk,

because agent k’s true marginal utility πk satisfies νi−2
−k ≤

πk ≤ νi−1
−k , we get,

Ũ j+1
k − Ũ jk ≤

cjkπ
ebkπk

νj+2
−k ν

j+1
−k

(
µj+−k

(
νj+2
−k − e

j
kν
j+1
−k

)
− νj−k

(
νj+2
−k − e

j
k

(νj+1
−k )2

νj−k

))
= 0

⇒ Ũ j+1
k ≤ Ũ jk (48)

Next we show that cjk∈Sr ≤ cjk∈Si , when r > i, and then
it trivally follows that U jk ≤ Ũ jk . If the agent k jumps
to higher pod core r (by reporting high) then the value
µj+k∈Sr = min{νj−1

−k , ν
r−1
−k } ≥ νi−1

−k = µj+k∈Si ∀ j > i and
µj+k∈Sr = νj−1

−k = µj+k∈Si ∀ j ≤ i . Also, (38) becomes
µ

(j−1)+
k∈Sr = g(νj−1

−k , ν
j
−k, ν

j+1
−k , e

j−1
k∈Sr ). For a particular j > i,

every argument of g is fixed except ejk, which depends on
the core r agent k is in. We showed before that the right
hand side of (38) i.e. g(νj−k, ν

j+1
−k , ν

j+2
−k , e

j
k) is decreasing

in ejk. Then it follows that ejk∈Sr ≤ ejk∈Si r > i. Since
c1k = 1 always it follows that cjk∈Sr ≤ cjk∈Si when r > i.
Setting j = r it follows that cjk∈Sj ≤ cjk∈Si . This implies
that U jk ≤ Ũ

j
k . From here it follows that U jk ≤ Ũ

j
k ≤ Ũ ik = U ik.

Case j < i: First the agent does not have any incentive to
move to a pod core Sj where j ≤ i − 2. This is because
the reward for agent k when it is in a core j ≤ i − 2 is
πrk = νj−k ≤ νi−2

−k ≤ πk. This implies that the incentive to
reduce is not sufficient in any of these pod cores. Hence the
agent’s utility U jk = (πk − πe)bk < U ik. From (38) it follows
that cjk∈Sj = cjk∈Si and cik∈Sj = cik∈Si when j = i − 1. This
implies U jk = Ũ jk = Ũ i−1

k . Finding the difference between Ũ ik

and Ũ i−1
k we get,

Ũ ik − Ũ i−1
k =

ci−1
k πebkπk

νi+1
−k ν

i
−k

(
πk
(
νi+1
−k − e

i−1
k νi−k

)
− νi−1

−k

(
νi+1
−k − e

i−1
k

(νi−k)2

νi−1
−k

))

≥
ci−1
k πebkπk

νi+1
−k ν

i
−k

(
νi−2
−k

(
νi+1
−k − e

i−1
k νi−k

)
− νi−1

−k

(
νi+1
−k − e

i−1
k

(νi−k)2

νi−1
−k

))
(49)

Then from (38) it follows that,

Ũ ik − Ũ i−1
k ≥

ci−1
k πebkπk

νi+1
−k ν

i
−k

(
νi−2
−k

(
νi+1
−k − e

i−1
k νi−k

)
− νi−1

−k

(
νi+1
−k − e

i−1
k

(νi−k)2

νi−1
−k

))
= 0⇒ Ũ ik ≥ Ũ i−1

k ⇒ U ik ≥ U i−1
k = U jk (50)

This establishes the first point. The other points follow from
here. Hence proved.
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