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We study an analog of Serre’s modularity conjecture for projective representations ρ : Gal(K/K) → PGL2(k), where K is a totally real
number field. We prove cases of this conjecture when k = F5.

number theory | modular forms | Galois representations

Let K be a number field, and consider a continuous representation

ρ :GK →GL2(k),

where k is a finite field. (Here GK denotes the absolute Galois group of K ; for this and other notation, see 1.A. Notation below.) We
say that ρ is of Serre type, or S type, if it is absolutely irreducible and totally odd, in the sense that for each real place v of K and each
associated complex conjugation cv ∈GK , det ρ(cv ) =−1.

Serre’s conjecture and its generalizations assert that any ρ of S type should be automorphic (see for example refs. 1 and 2 in the
case K =Q, ref. 3 when K is totally real, and ref. 4 for a general number field K ). The meaning of the word “automorphic” depends
on the context but when K is totally real, for example, we can ask for ρ to be associated to a cuspidal automorphic representation π
of GL2(AK ), which is regular algebraic of weight 0 (2.A. Automorphy of Linear and Projective Representations). Serre’s conjecture is
now a theorem when K =Q (5, 6). For a totally real field K , some results are available when k is “small.” These are summarized in
Theorem 1.1, which relies upon refs. 2 and 7–10:

Theorem 1.1. Let K be a totally real number field, and let ρ :GK →GL2(k) be a representation of S type. Then ρ is automorphic provided
|k | ∈ {2, 3, 4, 5, 7, 9}.

One can equally consider continuous representations

σ :GK →PGL2(k),

where again k is a finite field. We say that σ is of S type if it is absolutely irreducible and totally odd, in the sense that if k has odd
characteristic, then for each real place v of K , σ(cv ) is nontrivial. One could formulate a projective analog of Serre’s conjecture,
asking that any representation σ of S type be automorphic. A theorem of Tate implies that σ lifts to a linear representation valued in
GL2(k ′) for some finite extension k ′/k , and by σ being automorphic we mean that a lift of it to a linear representation is automorphic
(2.A. Automorphy of Linear and Projective Representations). Thus, if k is allowed to vary, this conjecture is equivalent to Serre’s
conjecture, since any representation ρ has an associated projective representation Proj(ρ), and any projective representation σ lifts
to a representation valued in GL2(k ′) for some finite extension k ′/k ; moreover, ρ is of S type if and only if Proj(ρ) is, and ρ is
automorphic if and only if Proj(ρ) is.

However, for fixed k the two conjectures are not equivalent: Certainly if ρ is valued in GL2(k) then Proj(ρ) takes values
in PGL2(k), but it is not true that any representation σ :GK →PGL2(k) admits a lift valued in GL2(k), and in fact in gen-
eral the determination of the minimal extension k ′/k such that there is a lift to GL2(k ′) is somewhat subtle. It is therefore of
interest to ask whether the consideration of projective representations allows one to expand the list of “known” cases of Serre’s
conjecture.

Significance

The connection between modular forms and Galois representations plays a significant role in modern algebraic number theory. J.-P.
Serre made an influential conjecture relating mod p modular forms and mod p representations of the absolute Galois group of Q.
Such a relationship has consequences for classical Diophantine questions, for example implying Fermat’s Last Theorem, and is also
a mod p analogue of the Langlands program. It is thus important to study analogues of Serre’s conjecture in the broadest possible
context. Serre’s modularity conjecture, definitively stated in 1986, was proved by Khare–Wintenberger in 2009. In this paper we
prove new cases of extensions of Serre’s conjecture to mod p representations of absolute Galois groups of totally real number
fields.
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Our main theorem affirms that this is indeed the case. Before giving the statement we need to introduce one more piece of
notation. We write ∆ : PGL2(k)→ k×/(k×)2 for the homomorphism induced by the determinant. We say that a homomorphism
GK → k×/(k×)2 is totally even (resp. totally odd) if each complex conjugation in GK is a trivial (resp. nontrivial) image.

Theorem 1.2. Let K be a totally real number field, and let σ :GK →PGL2(k) be a representation of S type. Then σ is automorphic
provided that one of the following conditions is satisfied:

1) |k | ∈ {2, 3, 4}.
2) |k |= 5, [K (ζ5) :K ] = 4, and ∆ ◦σ is totally even.
3) |k |= 5, [K (ζ5) :K ] = 4, and ∆ ◦σ is totally odd.
4) |k |= 7 and ∆ ◦σ is totally odd.
5) |k |= 9 and ∆ ◦σ is totally even.

We note the exceptional isomorphisms PSL2(F9) =A6, PGL2(F5) =S5, PGL2(F3) =S4, PGL2(F2) =S3, which link our results
to showing that splitting fields of polynomials of small degree over K arise automorphically.

The proof of Theorem 1.2 falls into three cases. The first one is when |k | is even or k =F3. When |k | is even, the homomorphism
GL2(k)→PGL2(k) splits, so we reduce easily to Theorem 1.1. When k =F3, the homomorphism PGL2(Z[

√
−2])→PGL2(F3) splits

and we can use the Langlands–Tunnell theorem (7) to establish the automorphy of σ.
The second case is when |k | is odd and −1 is a square in k (resp. a nonsquare in k) and ∆ ◦σ is totally even (resp. totally odd). In

this case we are able to construct the following data:

• A solvable totally real extension L/K and a representation ρ1 :GL→GL2(k) such that Proj(ρ1) =σ|GL (by showing that L/K can
be chosen to kill the Galois cohomological obstruction to lifting).
• A representation ρ2 :GK →GL2(Qp) such that Proj(ρ2) and σ are conjugate in PGL2(Fp) (by choosing an arbitrary lift of σ to

GL2(Fp) and applying the Khare–Wintenberger method).

We can then use Theorem 1.1 to verify the automorphy of ρ1 and hence the residual automorphy of ρ2|GL . An automorphy lifting
theorem then implies the automorphy of ρ2|GL , hence ρ2 itself by solvable descent, and hence finally of σ.

The final case is when k =F5 and ∆ ◦σ is totally odd. In this case there does not exist any totally real extension L/K such that
σ|GL lifts to a representation valued in GL2(k) (there is a local obstruction at the real places). However, it is possible to find a CM
extension L/K such that σ|GL lifts to a representation valued in GL2(k) with determinant the cyclotomic character. (By definition,
a CM number field is a quadratic, totally imaginary extension of a totally real field.) When k =F5, such a representation necessarily
appears in the group of 5-torsion points of an elliptic curve over L (8) and so we can use the automorphy results over CM fields
established in ref. 11 together with a solvable descent argument to obtain the automorphy of σ.
Remark 1.3: In the final case above of a representation σ :GK →PGL2(F5) with nonsolvable image, the residual automorphy of
the lift ρ :GL→GL2(F5) ultimately depends on ref. 11, theorem 7.1, which proves the automorphy of certain residually dihedral
2-adic Galois representations. The residual automorphy of these 2-adic representations is verified using automorphic induction.
In particular, our proof in this case does not depend on the use of the Langlands–Tunnell theorem. This is in contrast to the
argument used in, e.g., ref. 8, theorem 4.1 to establish the automorphy of representations ρ′ :GK →GL2(F5) with cyclotomic
determinant.

This “2–3 switch” strategy can also be used to prove the automorphy of representations σ :GK →PGL2(F3) with ∆ ◦σ totally
odd using the 2-adic automorphy theorems proved in ref. 12; see Theorem 3.1. This class of representations includes the projective
representations associated to the Galois action on the 3-torsion points of an elliptic curve over K . This gives a way to verify the
modulo 3 residual automorphy of elliptic curves over K , which does not rely on the Langlands–Tunnell theorem (and in particular
refs. 13 and 14) but only on the Saito–Shintani lifting for holomorphic Hilbert modular forms (15). (We note that we do need to
use the Langlands–Tunnell theorem to prove the automorphy of representations σ :GK →PGL2(F3) with ∆ ◦σ totally even; cf.
Theorem 2.12.)

We now describe the structure of this paper. We begin in 2. Lifting Representations by studying the lifts of projective representations
and collecting various results about the existence of characteristic 0 lifts of residual representations and their automorphy. We are
then able to give the proofs of Theorem 1.1 and the first two cases in the proof of Theorem 1.2 described above. In 3. Modularity of
Mod 3 Representations we expand on Remark 1.3 by showing how the main theorems of ref. 12 can be used to give another proof of the
automorphy of S -type representations σ :GK →PGL2(F3) (still under the hypothesis that K is totally real and ∆ ◦σ is totally odd).
Finally, in 4. Modularity of Mod 5 Representations we use similar arguments, now based on the main theorems of ref. 11, to complete
the proof of Theorem 1.2.
A. Notation. If K is a perfect field, then we write GK = Gal(K/K ) for the Galois group of K with respect to a fixed choice of algebraic
closure. If K is a number field and v is a place of K , then we write Kv for the completion of K at v and fix an embedding K →K v

extending the natural embedding K →Kv ; this determines an injective homomorphism GKv →GK . If v is a finite place of K , then
we write Frobv ∈GKv for a lift of the geometric Frobenius, k(v) for the residue field of Kv , and qv for the cardinality of Kv ; if v is
a real place, then we write cv ∈GKv for complex conjugation. Any homomorphism from a Galois group GK to another topological
group will be assumed to be continuous.

If p is a prime and K is a field of characteristic 0, then we write ε :GK →Z×p for the p-adic cyclotomic character, ε :GK →F×p
for its reduction modulo p, and ω :GK →F×p /(F×p )2 for the character ε mod (F×p )2. More generally, if ρ :GK →GLn(Qp) is a rep-
resentation, then we write ρ :GK →GLn(Fp) for the associated semisimple residual representation (uniquely determined up to
conjugation).

If k is a field, then we write Proj : GLn(k)→PGLn(k) for the natural projection and ∆ : PGLn(k)→ k×/(k×)n for the character
induced by the determinant. We use these maps only in the case n = 2.

If K is a field of characteristic 0, E is an elliptic curve over K , and p is a prime, then we write ρE ,p :GK →GL2(Fp) for the
representation associated to H 1(EK ,Fp) after a choice of basis. Thus det ρE ,p = ε−1.
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2. Lifting Representations
In this section we study different kinds of liftings of representations: liftings to characteristic 0 (and the automorphy of such liftings)
and liftings of projective representations to true (linear) representations. We begin by discussing what it means for a (projective or
linear) representation to be automorphic.

A. Automorphy of Linear and Projective Representations. Let K be a CM or totally real number field. If π is a cuspidal, regu-
lar algebraic automorphic representation of GL2(AK ), then (16, 17) for any isomorphism ι :Qp→C, there exists a semisimple
representation rι(π) :GK →GL2(Qp) satisfying the following condition, which determines rι(π) uniquely up to conjugation: For
all but finitely many finite places v of K such that πv is unramified, rι(π)|GKv

is unramified and rι(π)|ssGKv
is related to the

representation ι−1πv under the Tate-normalized unramified local Langlands correspondence. (See ref. 18, section 2 for an expla-
nation of how the characteristic polynomial of rι(π)|GKv

may be expressed in terms of the eigenvalues’ explicit unramified Hecke
operators.) In this paper we need only to consider automorphic representations that are of regular algebraic automorphic repre-
sentations π that are of weight 0, in the sense that for each place v |∞ of K , πv has the same infinitesimal character as the trivial
representation.

Let k be a finite field of characteristic p, viewed inside its algebraic closure Fp . In this paper, we say that a representation
ρ :GK →GL2(k) is automorphic if it is GL2(Fp) conjugate to a representation of the form rι(π), where π is a cuspidal, regular alge-
braic automorphic representation of GL2(AK ) of weight 0. We say that a representation σ :GK →PGL2(k) is automorphic if it is
PGL2(Fp) conjugate to a representation of the form Proj(rι(π)), where π is a cuspidal, regular algebraic automorphic representation
of GL2(AK ) of weight 0.

We say that a representation ρ :GK →GL2(Qp) is automorphic if it is conjugate to a representation of the form rι(π), where π is
a cuspidal, regular algebraic automorphic representation of GL2(AK ) of weight 0. We say that an elliptic curve E over K is modular
if the representation of GK afforded by H 1(EK ,Qp) is automorphic in this sense.

Lemma 2.1. Let K be a CM or totally real number field, let ρ :GK →GL2(k) be a representation, and let σ= Proj(ρ). Then,
1) Let χ :GK → k× be a character. Then ρ is automorphic if and only if ρ⊗χ is automorphic.
2) σ is automorphic if and only if ρ is automorphic.

Proof: If χ :GK → k× is a character, then its Teichmüller lift X :GK →Q×p is associated, by class field theory, to a finite-order Hecke
character Ξ :A×K →C×. If π is a cuspidal automorphic representation that is regular algebraic of weight 0 and rι(π) is conjugate to
ρ, then π⊗ (Ξ ◦det) is also cuspidal and regular algebraic of weight 0 and rι(π⊗ (Ξ ◦det)) is conjugate to ρ⊗χ.

It is clear from the definition that if ρ is automorphic, then so is σ. Conversely, if σ is automorphic, then there is a cuspidal,
regular algebraic automorphic representation π of GL2(AK ) and isomorphism ι :Qp→C such that Proj(rι(π)) = Proj(ρ). It follows
that there exists a character χ :GK →F×p such that ρ is conjugate to rι(π)⊗χ. The automorphy of ρ follows from the first part of
Lemma 2.1.

B. Lifting to Characteristic 0. We recall a result on the existence of liftings with prescribed properties. We first need to say what it
means for a representation to be exceptional. If K is a number field and σ :GK →PGL2(k) is a projective representation, we say
that σ is exceptional if it is PGL2(Fp) conjugate to a representation σ′ :GK →PGL2(F5) such that σ′(GK ) contains PSL2(F5) and
the character (−1)∆◦σ′

ε is trivial. [Here we write (−1)∆◦σ′
for the composition of ∆ ◦σ′ with the unique isomorphism F×5 /(F

×
5 )2∼=

{±1}.] We say that a representation ρ :GK →GL2(k) is exceptional if Proj(ρ) is exceptional. If K is totally real, then this is equivalent
to the definition given in ref. 19, section 3. The exceptional case is often excluded in the statements of automorphy lifting theorems
(the root cause being the nontriviality of the group H 1(σ(GK ), Ad0ρ(1))).

Theorem 2.2. Let K be a totally real field, let ρ :GK →GL2(k) be a representation of S type, and let ψ :GK →Z×p be a continuous
character lifting det ρ such that ψε is of finite order. Suppose that the following conditions are satisfied:

1) p> 2 and ρ|GK(ζp)
is absolutely irreducible.

2) If p = 5, then ρ is nonexceptional.

Then ρ lifts to a continuous representation ρ :GK →GL2(Zp) satisfying the following conditions:
1) For all but finitely many places v of F , ρ|GKv

is unramified.
2) det ρ=ψ.
3) For each place v |p of K , ρ|GKv

is potentially crystalline and for each embedding τ :Kv→Qp , HTτ (ρ) = {0, 1}. Moreover, for any v |p
such that ρ|GKv

is reducible, we can assume that ρ|GKv
is ordinary, in the sense of ref. 18, section 5.1.

Proof: This follows from ref. 20, theorem 7.6.1, on noting that the condition (A2) there can be replaced by the more general condition
that ρ is nonexceptional [indeed, the condition (A2) is used to invoke ref. 21, proposition 3.2.5, which is proved under this more
general condition]. To verify the existence of a potentially crystalline lift of ρ|GKv

for each v |p (or in the terminology of loc. cit., the
compatibility of ρ|GKv

with type A or B) we apply ref. 20, proposition 7.8.1 (when ρ|GKv
is irreducible) or ref. 22, lemma 6.1.6 (when

ρ|GKv
is reducible).

We next recall an automorphy lifting theorem.

Theorem 2.3. Let K be a totally real number field, and let ρ :GK →GL2(Zp) be a continuous representation satisfying the following
conditions:

1) p> 2 and ρ|GK(ζp)
is absolutely irreducible.
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2) For all but finitely many finite places v of K , ρ|GKv
is unramified.

3) For each place v |p of K , ρ|GKv
is de Rham and for each embedding τ :Kv→Qp , HTτ (ρ) = {0, 1}.

4) The representation ρ is automorphic.

Then ρ is automorphic.
Proof: This follows from ref. 19, theorem 9.3.

We now combine the previous two theorems to obtain a “solvable descent of automorphy” theorem for residual representations,
along similar lines to refs. 23 and 24.

Proposition 2.4. Let K be a totally real number field and let ρ :GK →GL2(k) be a representation of S type. Suppose that there exists a
solvable totally real extension L/K such that the following conditions are satisfied:

1) p> 2 and ρ|GL(ζp)
is absolutely irreducible. If p = 5, then ρ is nonexceptional.

2) ρ|GL is automorphic.

Then ρ is automorphic.
Proof: Let ψ :GK →Z×p be the character such that ψε is the Teichmüller lift of (det ρ)ε, and let ρ :GK →GL2(Zp) be the lift of ρ
whose existence is asserted by Theorem 2.2. Then Theorem 2.3 implies the automorphy of ρ|GL , and the automorphy of ρ itself and
hence of ρ follows by cyclic descent, using the results of Langlands (13).

We can now give the proof of Theorem 1.1, which we restate here for the convenience of the reader:

Theorem 2.5. Let K be a totally real field and let ρ :GK →GL2(k) be a representation of S type. Suppose that |k | ∈ {2, 3, 4, 5, 7, 9}. Then
ρ is automorphic.
Proof: Many of the results we quote here are stated in the case of K =Q but hold more generally for totally real fields with minor
modification. We apply them in the more general setting without further comment.

If ρ is dihedral, then this is a consequence of results of Hecke (ref. 2, section 5.1). If k =F3, it is a consequence of the Langlands–
Tunnell theorem (7) (see the discussion following theorem 5.1 in ref. 25, chap. 5). We may thus assume for the remainder of the proof
that |k |> 3. We may also assume that for any abelian extension L/K , the restriction ρ|GL(ζp)

is absolutely irreducible (as otherwise ρ
would be dihedral).

Next suppose that k =F5. We note that ρ is not exceptional, by ref. 19, lemma 3.1. Let L/K be the totally real cyclic extension cut
out by (det ρ)ε. By ref. 8, theorem 1.2, there is an elliptic curve E over L such that ρE ,5

∼= ρ|GL and ρE ,3(GL) contains SL2(F3). By
the k =F3 case of the theorem and by Theorem 2.3, we see that E is automorphic and hence so is ρ|GL . The automorphy of ρ then
follows from Proposition 2.4. The k =F7 case is similar, using ref. 9, proposition 3.1 instead of ref. 8, theorem 1.2.

Next suppose that k =F4. We can twist ρ to assume that it is valued in SL2(F4). Then ref. 8, theorem 3.4 shows that there is an
abelian surface A over F with real multiplication by OQ(

√
5) such that the GK representation on A[2]∼=F2

4 is isomorphic to ρ and
such that the GK representation on A[

√
5]∼=F2

5 has an image containing SL2(F5). By the k =F5 case of the theorem, Theorems 2.2
and 2.3, we see that A is automorphic, and hence so is ρ.

Finally suppose that k =F9. Let L/K be the totally real cyclic extension cut out by (det ρ)ε. Then the argument of ref. 10, section 2.5
shows that there is a solvable totally real extension M /K containing L/K and an abelian surface A over M with real multiplication by
OQ(

√
5) such that the GM representation on A[3]∼=F2

9 is isomorphic to ρ|GM ⊗ ε and such that the GM representation on A[
√

5]∼=F2
5

has an image containing SL2(F5). By the k =F5 case of the theorem, Theorems 2.2 and 2.3, we see that A is automorphic, and hence
so is ρ|GM . The automorphy of ρ follows from Proposition 2.4.
Remark 2.6: The 2–3 switch strategy employed in Theorem 3.1 below can be used to prove automorphy of totally odd representations
ρ :GK →GL2(F3) without using the Langlands–Tunnell theorem.

C. Lifting Projective Representations. We now consider the problem of lifting projective representations.

Lemma 2.7. Let K be a number field, and let σ :GK →PGL2(k) be a continuous homomorphism. Then there exists a finite extension k ′/k
such that σ lifts to a homomorphism ρ :GK →GL2(k ′).
Proof: The obstruction to lifting a continuous homomorphism σ :GK →PGL2(k) to a continuous homomorphism ρ :GK →GL2(k)

lies in H 2(GK , k
×

). Tate proved that H 2(GK , k
×

) = 0 (ref. 26, section 6.5), so a lift always exists.

Lemma 2.8. Suppose that p> 2, let K be a number field, and let σ :GK →PGL2(k) be a homomorphism. Let S be a finite set of places of
K such that for each v ∈S , there exists a lift of σ|GKv

to a homomorphism ρv :GK →GL2(k). Then we can find the following data:

1) A solvable S -split extension L/K .
2) A homomorphism ρ :GL→GL2(k) such that Proj(ρ) =σ|GL and for each v ∈S and each place w |v of L, ρ|GLw

= ρv .

Moreover, if K is a CM field, we can choose L also to be a CM field.
Proof: Let H denote the 2-Sylow subgroup of k×, of order 2m , and let H ′≤ k× denote its prime-to-2 complement. If 0≤ k ≤m , we
write Gk = GL2(k)/(2m−kH ×H ′), which is an extension

1→H /2m−kH →Gk→PGL2(k)→ 1.

We show by induction on k ≥ 0 that we can find a solvable, S -split extension Lk/K and a homomorphism ρk :GLk →Gk lifting σ|GLk

and such that for each v ∈S and each place w |v of Lk , ρk |GLk,w
= ρv mod 2m−kH ×H ′. The case k = 0 is the existence of σ. The

case k =m implies the statement of the lemma, since GL2(k) =Gm ×H ′. (Note that in ref. 27, chap. X, theorem 5 implies that any
collection of characters χv :GKv →H ′ can be globalized to a character χ :GK →H ′.)
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For the induction step, suppose the induction hypothesis holds for a fixed value of k . We consider the obstruction to lifting ρk to a
homomorphism ρk+1 :GLk →Gk+1. This defines an element of H 2(GLk ,Z/2Z), which is locally trivial at the places of Lk lying above
S . We can therefore find an extension of the form Lk+1 =Lk ·Ek+1, where Ek+1/K is a solvable S -split extension, such that the
image of this obstruction class in H 2(GLk+1 ,Z/2Z) vanishes and so there is a homomorphism ρ′k+1 :GLk+1→Gk+1 lifting ρk |GLk+1

.

If v ∈S and w |v is a place of Lk+1, then there is a character χw :GLk+1,w →Z/2Z such that ρ′k+1|GLk+1,w
= (ρv mod 2m−(k+1)H ×

H ′) ·χw . We can certainly find a character χ :GLk+1→Z/2Z such that χ|GLk+1,w
=χw for each such place w . The induction step is

complete on taking ρk+1 = ρ′k+1 ·χ.
It remains to explain why we can choose K to be CM if L is. Since the extensions Ek in the proof are required only to satisfy some

local conditions, which are vacuous if K is CM, we can choose the fields Ek to be of the form KE ′k , where E ′k is a totally real extension,
in which case the field L constructed in the proof is seen to be CM.
Remark 2.9: We remark that if v is a real place of K and σ(cv ) 6= 1, then there exists a lift of σ|GKv

to GL2(k) if and only if either −1

is a square in k× and ∆ ◦σ(cv ) = 1 or −1 is not a square in k× and ∆ ◦σ(cv ) 6= 1. We also note the utility of the “S -split” condition:
We can add any set of places at which σ is unramified to S and in this way ensure that the S -split extension L/K is linearly disjoint
from any other fixed finite extension of K .

Here is a variant.

Lemma 2.10. Suppose that p> 2. Let K be a number field, let σ :GK →PGL2(k) be a homomorphism, and let χ :GK → k× be a
character. Suppose that the following conditions are satisfied:

1) ∆ ◦σ=χ mod (k×)2.
2) For each finite place v of K , σ|GKv

and χ|GKv
are unramified.

3) For each real place v of K , σ(cv ) 6= 1 and χ(cv ) =−1.

Then there exists a homomorphism ρ :GK →GL2(k) such that Proj(ρ) =σ and det(ρ) =χ.
Proof: We consider the short exact sequence of groups

1→{±1}→GL2(k)→PGL2(k)×∆ k×→ 1,

where the last group is the subgroup of (g ,α)∈PGL2(k)× k× such that ∆(g) =α mod (k×)2. By hypothesis the pair (σ,χ) defines
a homomorphism Σ :GK →PGL2(k)×∆ k× such that for every place v of K , Σ|GKv

lifts to GL2(k) (Remark 2.9). The subgroup of
locally trivial elements of H 2(GK , {±1}) is trivial, by class field theory, so Σ lifts to a homomorphism ρ :GK →GL2(k), as required.

We now prove an analog of Proposition 2.4 for projective representations.

Proposition 2.11. Let K be a totally real number field and let σ :GK →PGL2(k) be a representation of S type. Suppose that there exists a
solvable totally real extension L/K satisfying the following conditions:

1) p> 2 and σ|GL(ζp)
is absolutely irreducible. If p = 5, then σ is nonexceptional.

2) σ|GL is automorphic.

Then σ is automorphic.
Proof: By Lemma 2.7, we can lift σ to a representation ρ :GK →GL2(k). Then ρ|GL is automorphic and we can apply Proposition 2.4
to conclude that ρ is automorphic and hence that σ is automorphic.

We are now in a position to establish a large part of Theorem 1.2.

Theorem 2.12. Let K be a totally real number field and let σ :GK →PGL2(k) be a representation of S type. If one of the following
conditions holds, then σ is automorphic:

1) |k | ∈ {2, 3, 4}.
2) |k |= 5 or 9 and ∆ ◦σ is totally even. If |k |= 5, then σ is nonexceptional.
3) |k |= 7 and ∆ ◦σ is totally odd.

Proof: When k =F2 or F4, the map SL2(k)→PGL2(k) is an isomorphism, so σ trivially lifts to a GL2(k) representation and we can
apply Theorem 2.5. The case when |k |= 3 follows from ref. 7. In the other cases, we can assume that σ|GK(ζp)

is absolutely irreducible
(as otherwise σ lifts to a dihedral representation). Let S∞ be the set of infinite places of K and choose a finite set S ′ of finite places of

K at which σ is unramified such that Gal(K
ker(σ|GK(ζp)

)
/K ) is generated by {Frobv}v∈S ′ . We can apply Lemma 2.8, see also Remark

2.9, with S =S∞ ∪S ′ to find a solvable, totally real extension L/K such that σ lifts to a representation ρ :GL→GL2(k) such that
ρ|GL(ζp)

is absolutely irreducible and ρ is not exceptional if p = 5. Then Theorem 2.5 implies the automorphy of ρ and Proposition 2.11
implies the automorphy of σ, as desired.

3. Modularity of Mod 3 Representations
In this section, which is a warmup for the next one, we give a proof of the following theorem that does not depend on the Langlands–
Tunnell theorem:

Theorem 3.1. Let K be a totally real number field, and let σ :GK →PGL2(F3) be a representation of S type such that ∆ ◦σ is totally odd.
Then σ is automorphic.
Proof: We can assume that σ is not dihedral; by the classification of finite subgroups of PGL2(F3), we can therefore assume that
σ(GK ) contains PSL2(F3). By Proposition 2.11, we can moreover assume, after replacing K by a solvable totally real extension, that
σ is everywhere unramified and that for each place v |2 of K , qv ≡ 1 mod 3 and σ|GKv

is trivial.
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Lemma 3.2. There exists a solvable totally real extension L/K and a modular elliptic curve E over L satisfying the following conditions:

1) σ(GL) contains PSL2(F3). In particular, σ|GL is of S type.
2) The homomorphism Proj(ρE ,3) is PGL2(F3) conjugate to σ|GL .

Proof: The character (∆ ◦σ)ω :GK →F×3 is totally even and so cuts out a totally real (trivial or quadratic) extension L/K , and σ(GL)
contains PSL2(F3) and satisfies ∆ ◦σ|GL =ω. Using Lemma 2.10, we can find a lift ρ :GL→GL2(F3) of σ|GL satisfying the following
conditions:

• det ρ= ε−1.
• For each place v |2 of L, ρ|GL is trivial.
• ρ(GL) contains SL2(F3). In particular, ρ|GL(ζ3)

is absolutely irreducible.

We can then apply ref. 11, lemma 9.7 to conclude that there exists an elliptic curve E/L satisfying the following conditions:

• There is an isomorphism ρE ,3
∼= ρ.

• For each place v |2 of L, E has multiplicative reduction at v and the valuation at v of the minimal discriminant of E is 3.
• ρE ,2(GL) = SL2(F2).

Then ref. 12, p. 1237, corollary implies that E is modular, proving the lemma.
We see that σ|GL is automorphic. We can then apply Proposition 2.11 to conclude that σ itself is automorphic, as required.

4. Modularity of Mod 5 Representations
In this section we complete the proof of Theorem 1.2 by proving Theorem 4.1 below.

Theorem 4.1. Let K be a totally real field, and let σ :GK →PGL2(F5) be a representation of S type that is nonexceptional and such that
∆ ◦σ is totally odd. Then σ is automorphic.
Proof: By the classification of subgroups of PGL2(F5), automorphic induction, and the Langlands–Tunnell theorem, we can assume
that σ(GK ) contains PSL2(F5). By Theorem 2.2, Lemma 2.7, and Proposition 2.11 we can assume, after possibly replacing K by a
solvable totally real extension, that the following conditions are satisfied:

• There exists a representation ρ :GK →GL2(F5) such that Proj(ρ) is PGL2(F5) conjugate to σ. Moreover, ρ is everywhere
unramified.
• There exists a representation ρ :GK →GL2(Q5) lifting ρ, which is unramified almost everywhere.
• For each place v |5 of K , ζ5 ∈Kv , ρ|GKv

is trivial, and ρ|GKv
is ordinary, in the sense of ref. 18, section 5.1.

• Let χ= det ρ. Then χε has finite-order prime to 5 and for each finite place v of K , χε|GKv
is unramified. In particular, χ is

everywhere unramified.

Let K ′/K denote the quadratic CM extension cut out by the character (∆ ◦σ)ω.

Lemma 4.2. The representation ρ|GK ′ is decomposed generic in the sense of ref. 28, definition 4.3.1.
Proof: It is enough to find a prime number l such that l splits in K ′ and for each place v |l of K ′, qv ≡ 1 mod 5 and the eigenvalues
of ρ(Frobv ) are distinct. The argument of ref. 28, lemma 7.1.5 (3) will imply the existence of such a prime l if we can show that if
M =K ′(ζ5) and M̃ /Q is the Galois closure of M /Q, then σ(GM̃ ) contains PSL2(F5). To see this, first let K̃/Q be the Galois closure
of K/Q. Then K̃ is totally real, and so σ(GK̃ ) =σ(GK ) = PGL2(F5) because ∆ ◦σ is totally odd. The extension MK̃/K̃ is abelian,
so M̃ /K̃ is abelian and σ(GM̃ ) must contain PSL2(F5).

By construction, ∆ ◦σ|GK ′ = ε−1 mod (F×5 )2, so by Lemma 2.10, σ|GK ′ lifts to a continuous homomorphism τ :GK ′→GL2(F5)

such that det τ = ε−1. In particular, there is a character ψ :GK ′→F×5 such that τ = ρ|GK ′ ⊗ψ. Let ψ denote the Teichmüller lift of
ψ; then the determinant of ρ|GK ′ ⊗ψ equals ε−1.

Lemma 4.3. The representation τ satisfies the following conditions:

1) τ |GK ′(ζ5)
is absolutely irreducible and τ is nonexceptional.

2) τ is decomposed generic.

Proof: The representation τ |GK ′(ζ5)
is absolutely irreducible because its projective image contains PSL2(F5). If ζ5 ∈K ′, then

√
5∈K and so K ′=K (∆ ◦σ) =K (ζ5); this possibility is ruled out because σ is nonexceptional. It follows that τ is nonexcep-

tional. The representation τ is decomposed generic because ρ|GK ′ is (and this condition depends only on the associated projective
representation).

Due to Lemma 4.3, we can apply ref. 11, lemma 9.7 and ref. 11, corollary 9.13 to conclude the existence of a modular elliptic curve
E over K ′ such that ρE ,5

∼= τ and for each place v |5 of K ′, E has multiplicative reduction at the place v . We can then apply the
automorphy lifting theorem (ref. 11, theorem 8.1) to conclude that ρ|GK ′ ⊗ψ is automorphic and hence that ρ|GK ′ is automorphic.
It follows by cyclic descent (13) that ρ and hence σ are also automorphic, and this completes the proof.
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2. J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. 54, 179–230 (1987).
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