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Abstract: Postmenopausal breast cancer is the most common obesity-related cancer death among
women in the U.S. Insulin resistance, which worsens in the setting of obesity, is associated with
higher breast cancer incidence and mortality. Maladaptive eating patterns driving insulin resistance
represent a key modifiable risk factor for breast cancer. Emerging evidence suggests that time-
restricted feeding paradigms (TRF) improve cancer-related metabolic risk factors; however, more
flexible approaches could be more feasible and effective. In this exploratory, secondary analysis, we
identified participants following a low-glucose eating pattern (LGEP), defined as consuming energy
when glucose levels are at or below average fasting levels, as an alternative to TRF. Results show that
following an LGEP regimen for at least 40% of reported eating events improves insulin resistance
(HOMA-IR) and other cancer-related serum biomarkers. The magnitude of serum biomarkers changes
observed here has previously been shown to favorably modulate benign breast tissue in women
with overweight and obesity who are at risk for postmenopausal breast cancer. By comparison, the
observed effects of LGEP were similar to results from previously published TRF studies in similar
populations. These preliminary findings support further testing of LGEP as an alternative to TRF
and a postmenopausal breast cancer prevention strategy. However, results should be interpreted
with caution, given the exploratory nature of analyses.

Keywords: eating physiology; food intake regulation; blood glucose; metabolism; weight management;
obesity; adherence

1. Introduction

High obesity rates among women in the United States and worldwide are leading to a
continued rise in obesity-related cancers, most notably postmenopausal breast cancer [1],
which is the leading cause of obesity-related cancer deaths among women in the U.S. [2].
Research shows that excessive weight gain and obesity are significant risk factors for
postmenopausal breast cancer among women with and without increased genetic risk [3–9].
Postmenopausal breast cancer and obesity are linked through insulin resistance—a key
modifiable risk factor. By losing weight, women with obesity improve their metabolic- and
cancer-related risk biomarkers, including insulin resistance and insulin-signaling adipokines,
and circulating pro-inflammatory cytokines that promote tumorigenesis [10,11].
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In a seminal Phase II feasibility study of a 6-month intensive lifestyle intervention
conducted in postmenopausal overweight and obese women at increased risk for breast
cancer, Fabian et al. demonstrated that weight losses of at least 10% effectively reduced
serum biomarkers, including insulin resistance (HOMA-IR), at a magnitude that favorably
modulated benign breast tissue biomarkers [12,13]. While intensive lifestyle interventions
that promote chronic energy restriction, such as that implemented in Fabian’s study, are
effective at improving outcomes related to cancer risk in both women at high risk and
breast cancer survivors [11,14,15], they are resource-intensive, and similar interventions
reported poor long-term adherence. Thus, post-intervention weight regains often hinder
long-term treatment effectiveness [16–18]. This and other research suggest that alternative
weight loss and cancer prevention approaches with clinically meaningful outcomes are
essential.

Intermittent fasting paradigms have become increasingly popular among researchers
and health-conscious individuals. These eating paradigms aim to align meal-timing with
circadian rhythms. Restricting the consumption of energy intake to a daily timespan of
4–10 h (e.g., time-restricted feeding, TRF) enhances synchronization between the central
circadian clock (synchronized by light) and peripheral circadian clocks (entrained by
nutrient intake) [19,20]. Desynchronization of the central and peripheral circadian clocks
was shown to negatively impact insulin sensitivity [21] and beta-cell function [22–24].
Compared to chronic energy restriction, human and animal models have shown that TRF
reduces metabolic disease risk by improving metabolic homeostasis [25]. Despite published
support for TRF to improve metabolic outcomes, meta-analyses of research conducted in
women and men (mean age range: 21–77 years) with and without metabolic abnormalities
over a median of 6 to 8 weeks concluded that TRF has only modest effects on weight
(−1.7 to −0.1 kg) and metabolism [26,27], which could limit its utility as a cancer prevention
strategy. Moreover, research and healthcare communities acknowledge that TRF and other
fasting paradigms might be inappropriate, unacceptable, or result in lower adherence over
time among some individuals [28–30]. As such, it is reasonable to explore alternative eating
paradigms that are effective and may be more broadly adopted.

Eating when pre-prandial (pre-meal) glucose levels are low (“low-glucose eating
pattern”) is an evidence-based strategy to improve maladaptive eating patterns. Research
shows that eating without physiological hunger is a modifiable health risk behavior associ-
ated with excessive weight gain and increased metabolic risk [31,32]. Consistent with this
research, we have shown that individuals with obesity are over-sensitive to changes in glu-
cose levels [32] and that low-glucose eating patterns (defined by personalized thresholds)
can be taught as an effective self-regulation strategy that promotes weight control [33,34].
Glucose-guided eating (GGE; historically referred to as hunger training) is a timed eating
intervention that teaches people to differentiate between physiological hunger and the
hedonic desire to eat [35]. In an intervention setting, individuals taught to eat by the GGE
paradigm self-monitor their glucose levels using continuous glucose monitors (CGM) or
commercially available glucometers and are instructed to eat when two conditions are met:
(a) the desire to eat arises and (b) their glucose levels are at or below their personalized
threshold. Typically, this training regimen is implemented for 3–4 weeks while people
practicing GGE learn to associate symptoms of hunger with their personalized glucose
threshold. The GGE paradigm does not rely on glucose as a valid proxy for hunger for
GGE. Rather, it is that, to promote metabolic homeostasis, energy intake should not occur
when circulating glucose is the primary source of fuel [32].

The modification of glucose eating patterns by GGE is feasible [33,36] and has re-
sulted in clinically significant, average weight loss of 7.4% in 5 months and improve-
ments in eating behavior (including reductions in hedonic eating) and cancer-related
risk biomarkers [34,36–39]. GGE has resulted in improvements in whole-body insulin
sensitivity by 31% (Matsuda index, 7.1 ± 4.1 to 9.4 ± 5.2) in non-diabetic, lean adults
(BMI = 23 ± 4 kg/m2) [38]. Insulin resistance is the most important modifiable risk factor
for postmenopausal breast cancer and is caused by obesity and maladaptive eating patterns.



Nutrients 2021, 13, 4508 3 of 11

Insulin resistance has downstream effects on insulin signaling (e.g., IGF-1), adipokines
(including adiponectin), and circulating pro-inflammatory cytokines that promote tumori-
genesis [40,41]. GGE has shown a beneficial effect on insulin sensitivity is greater than that
noted in the study by Fabian et al. [12], suggesting that GGE could be more effective at
reducing insulin resistance than weight loss alone. Similar to TRF, GGE has an advantage
over intensive lifestyle weight loss programs in that it does not promote chronic energy re-
striction and it requires minimal human resources. This affords GGE the possibility of wide
dissemination. There is a great potential benefit of the GGE intervention in postmenopausal
breast cancer prevention, and this needs examination.

The key aspect of the GGE intervention is eating when glucose is low, defined as
under one’s personalized glucose threshold. The goal of the current study is to explore the
impact of low- vs. high-glucose eating patterns on changes in body weight and the selected
serum biomarkers of breast cancer risk after 16 weeks and compare these results with
those reported in recent TRF studies in similar populations of older women and with the
intensive lifestyle intervention conducted by Fabian et al. in postmenopausal overweight
and obese women at increased risk for breast cancer. The findings of the current study are
intended to support further testing of GGE to promote a low-glucose eating pattern as a
strategy to reduce breast cancer risk in postmenopausal women. Therefore, this exploratory,
secondary analysis aims to examine the potential effect of a low-glucose eating pattern on
postmenopausal breast cancer risk.

2. Materials and Methods

Project Take Charge [42] was a 16-week, 2-arm randomized controlled trial in 50
women at risk of postmenopausal breast cancer. Take Charge aimed to assess the feasibility
of adding GGE to a highly disseminated, comprehensive weight-loss intervention, the
Diabetes Prevention Program (DPP) [43]. As a standalone intervention, the DPP results in
weight losses typically observed in traditional weight-loss interventions of 4–7% [44]. In
Project Take Charge, it was hypothesized that, if feasible, the addition of GGE to the DPP
versus the DPP alone could synergistically improve weight loss and effects on biomarkers
of cancer risk similar to earlier work [12]. Forty-six women completed the Take Charge
trial (86%), which found that GGE was feasible, but the planned analyses (group × time
ANCOVA adjusting for baseline measures) did not result in a synergistic effect when added
to the DPP on changes in body weight or the cancer-related serum biomarkers assessed
in the parent study, including those reported in the current study [42]. As such, data
from women in the DPP-only and DPP + GGE groups were merged. Interestingly, in
post-hoc analyses described in the current study, we found that women assigned to both
the DPP-only and the DPP + GGE interventions changed their eating patterns in a manner
consistent with GGE.

As part of a randomized feasibility study, GGE was added to a 16-week version of the
DPP intervention that targeted women at risk of postmenopausal breast cancer (defined, in
part, as Gail model lifetime risk > 20% or 5-year risk > 1.66%) [45]. Participants (N = 50) were
predominantly White, non-Hispanic older women who were well-educated; lived in the
Houston, Texas, metropolitan area; and had a BMI > 27 kg/m2. This study was approved by
the Institutional Review Board and registered at clinicaltrials.gov (NCT03546972). Women
provided informed consent prior to initiating the study.

The Project Take Charge protocols were fully described elsewhere [42]. Briefly, as part
of Project Take Charge, anthropometric measures (weight and height) and metabolic and
cancer risk biomarkers (total cholesterol, HDL, LDL, VLDL, triglycerides, HbA1c, fasting
glucose, fasting insulin, insulin resistance by HOMA-IR, CRP, adiponectin, IGF-1) were
collected at baseline (week 0) and post-intervention (week 16). Weight (light clothing) and
height (without shoes) were measured in duplicate using calibrated equipment to within
0.2 kg and 0.3 cm by trained study staff at baseline, 8 weeks, and 16 weeks. Metabolic and
breast cancer risk biomarkers were assessed at baseline and 16 weeks. Fasting blood draws
were conducted and processed for analysis according to standardized laboratory protocols

clinicaltrials.gov
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at The University of Texas MD Anderson Cancer Center and nearby Labcorp location.
Insulin resistance was assessed as HOMA-IR using fasting glucose and insulin levels by
the following equation: (Fasting Glucose (mg/dL) X Fasting Insulin (mU/L)/405 [46].

The women enrolled in Project Take Charge additionally provided blinded CGM data
using Dexcom G5 (Dexcom, Inc., San Diego, CA, USA) at week 0 (baseline), week 8, and
week 16 (post-intervention) for up to 10 days at a time. From the collected CGM data,
the mean amplitude of glycemic excursions (MAGE) was calculated using EasyGV [47]
as a measure of glycemic variability. The women were trained to record their dietary
intake and mealtimes using the combination of a familiar and commercially available
diet tracker (MyFitnessPal) and self-captured food photographs shared via email. Diet
tracking apps, including MyFitnessPal, were found to be a valid means of assessing energy
and nutrient intakes [48,49]. Time-stamped dietary intake was concurrently collected
with blinded CGM data for up to 7 days at all three time points. Reported mealtimes
were confirmed by the study dietitian using the time-stamped food photos that were
matched to MyFitnessPal records. Dietary intake (energy and macronutrient composition)
was estimated by transferring the digital diet records into the University of Minnesota
Nutrition Data System for Research (NDSR) software. The dietary data transfer was
conducted by the study dietitian trained to use NDSR and audited for quality control by
the study PI. Dietary records with mealtimes were then merged with the CGM data within
5 min of the time-stamped meals. Discrete eating events were defined as energy intake
from foods or beverages of greater than 25 kcals and occurring more than 15 min apart.
Women were included in this exploratory analysis if they provided at least 3 valid days of
blinded CGM data and time-stamped dietary intake at week 16. A valid day was defined as
having at least 2 time-stamped eating events with corresponding CGM data. This resulted
in an analytical subgroup of N = 19 women.

Women were categorized into eating patterns based on week 16 dietary and CGM
data. Those who consumed at least 40% of their recorded meals when their pre-prandial
glucose levels were below their personalized threshold will be referred to as following a
“low-glucose eating pattern (LGEP)”; whereas those who ate less than 40% of their meals
when pre-prandial glucose was below their threshold will be referred to as following a
“high-glucose eating pattern (HGEP)”. The threshold of 40% eating events was chosen to
define the groups post hoc to maximize between-group differences in reductions of HOMA-
IR at 16-weeks. LGEP and HGEP were quantified at all three time points using blinded
CGM was calculated as the percentage of reported eating occasions where a participant’s
glucose was equal to or less than their computed, personalized threshold (reflected by the
average of two, fasted 5 am glucose levels were collected using blinded CGM during the
initial week run-in period).

Outcomes between the original intervention groups were similar. Specifically, the
intervention groups (DPP-only vs. DPP + GGE) had comparable changes from baseline to
16 weeks in weight (−5.0 kg vs. −4.9 kg) and HOMA-IR (−0.3 vs. −0.4). Therefore, for this
analysis, the data from the DPP-only and DPP + GGE groups were combined. The 16-week
changes in weight and serum biomarkers were compared between women in the LGEP and
HGEP groups using SPSS version 28. The means, standard deviations, medians, and ranges
are reported here and compared to findings from Fabian et al. [12] and published TRF
studies in comparable study populations [50,51]. The p-values or other tests of significance
were not reported due to the secondary and exploratory nature of this analysis. TRF studies
were identified using MedLine. Only those articles with predominantly older women at or
near an age consistent with the onset of menopause (>45 years) were considered.

3. Results

Table 1 shows that this analytical sample of women (N = 19) were predominantly
older, White, non-Hispanic, college-educated women, with a BMI in the obese range at
baseline. Out of the 19 women with CGM and dietary data, eight (42%) were identified as
following a low-glucose eating pattern at post-intervention (week 16) and categorized in
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the LGEP group. Women in the LGEP were comparable demographically to those in the
HGEP group with modestly greater BMI (Table 1).

Table 1. Baseline characteristics of participants according to glucose eating pattern.

Low-Glucose Eating Pattern High-Glucose Eating Pattern

N N = 8 N = 11
DPP + GGE group, n (%) 5 (63%) 6 (55%)

White, non-Hispanic, n (%) 8 (100%) 11 (100%)
Married, n (%) 7 (88%) 11 (100%)

College educated, n (%) 8 (100%) 10 (90%)
Age (years) 59.4 ± 7.0 61.9 ± 4.9

Body mass index (kg/m2) 32.6 ± 6.2 36.0 ± 7.0
Values are mean ± standard deviation unless otherwise indicated. GGE = Glucose-Guided Eating; DPP = Diabetes
Prevention Program.

At baseline (prior to starting the intervention), nearly 70% of reported eating events
occurred when glucose was above fasting levels (“HGEP”). By week 8 in the LGEP
group, the majority of reported eating events occurred when glucose levels were below
the personalized thresholds (approximately 60%). This change in the LGEP group was
maintained at week 16. In the HGEP, fewer reported eating events occurred when glucose
levels were below personalized thresholds from baseline to mid-intervention to post-
intervention (Figure 1).
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Figure 1. Glucose eating patterns over 16 weeks. Error bars represent standard deviation.

Women in the LGEP group experienced notable improvements in adiponectin, HOMA-
IR, fasting insulin, and glycemic variability (calculated as the mean amplitude of glycemic
excursions or MAGE) (Figure 2). These changes were evident without substantial differ-
ences in energy intake (−323 kcal vs. −445 kcal) or weight loss (−7.4 vs. −5.8 kg) for
LGEP vs. HGEP at post-intervention week 16 (Supplementary Table S1). Additionally,
LGEP women showed marked reductions in CGM mean glucose levels, as exemplified in
Figure 3.
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When results of this study are compared to those from published TRF interventions in
similar populations, it suggests that LGEP induces nominally larger average weight loss
and reductions in HOMA-IR and fasting insulin that is not explained by changes in energy
intake (Table 2). The comparison of LGEP to the intensive lifestyle intervention led by
Fabian et al. [12] highlights the potential of an LGEP to induce changes in fasting insulin,
HOMA-IR, CRP, and adiponectin, that might similarly translate into favorable modulation
of benign breast tissue.
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Table 2. Comparison of LGEP to previously published research in similar populations.

LGEP (4 Months) TRF 4HR (2 Months) TRF 6HR (2 Months) TRF 8HR (3 Months) ILI, >10% Weight
Loss (6 Months)

Current study Cienfuegos, 2020 [50] Cienfuegos, 2020 [50] Gabel, 2018 [51] Fabian, 2013 [12]
N N = 7 N = 16 N = 19 N = 23 N = 24

Participants
Postmenopausal

women at risk for
BrCa without DM

90% women 90% women 87% women
Postmenopausal

women at risk for
BrCa without DM

BMI inclusion (kg/m2) >27 >30 >30 >30 >25
Age (years), mean ± SD 59 ± 7 49 ± 2 46 ± 3 50 ± 2 57 ± 5

Body weight (kg) −7.4 (−8%) −3.0 (−3%) −3.0 (−3%) −3.0 (−3%) −12.8, (−16%)
Fasting glucose (mg/dL) −3.3, (−3%) −5.0 (−6%) −2.3 (−2%) +3 (+4%) −3.0, (−3.0%)
Fasting insulin (µIU/mL) −6.6, (−32%) −2.3 (−19%) −1.9 (12%) −2.6 (−31%) −3.7, (−57%)

Insulin resistance (HOMA-IR) −0.7, (−32%) −0.8 (−29%) −0.5 (−12%) −0.6 (−38%) −0.5, (−56%)
IGF-1 (nM) +7.8, (+8%) NR NR NR +0.6, (+6%)

Adiponectin +1.8 (+26%) NR NR NR +3.5, (+31%)
TNF-α (pg/mL) NR −2.4 (−29%) −0.4 (−3%) NR −0.2, (−4%)
CRP (µg/mL) −0.5 (−33%) NR NR NR −1.0, (−39%)

Energy intake (kcals) −323 (−16%) −528 (−30%) −566 (−29%) −341 (−20%) −387, (−21%)
Macronutrient composition as

percentage of energy intake (fat,
carbohydrates, protein)

36%, 47%, 18% 36%, 46%, 18% 40%, 40%, 20% 37%, 46%, 17% 20%, 60%, 21%

Values are mean (%) unless otherwise indicated. LGEP = Low-glucose eating pattern; TRF = time-restricted eating; ILI = intensive lifestyle
intervention; BrCa = breast cancer; DM = diabetes mellitus; BMI = body mass index; HOMA-IR = homeostasis model assessment-estimated
insulin resistance; IGF-1 = Insulin-like growth factor 1; TNF-α = Tumor necrosis factor; CRP = c-reactive protein, NR = not reported.

4. Discussion

This study supports the potential efficacy of a low-glucose eating pattern (LGEP) to im-
prove metabolic and cancer risk biomarkers, including insulin resistance, in older women.
Importantly, these data support a viable alternative to TRF for improving health outcomes.
Furthermore, the positive metabolic effects of an LGEP might be achieved without eating
all meals under the personalized glucose threshold, further supporting the flexibility of
LGEP and the robust effects of LGEP in relation to metabolic health. Specifically, following
LGEP at ≥40% of eating events is associated with significant improvements in weight and
serum markers of cancer risk over time. These findings are similar to previously reported
findings of the GGE intervention, where modest protocol adherence was associated with
clinically relevant weight loss and improvements in eating behavior [38]. However, this
is the first analysis to examine the association between LGEP and serum biomarkers of
breast cancer risk. Importantly, the magnitude of observed improvements in HOMA-IR in
response to LGEP was comparable to those previously shown to impact postmenopausal
breast cancer risk at the tissue level. We feel these preliminary findings support further
testing of LGEP as a breast cancer prevention strategy.

Comparing our results to those from TRF studies suggests that LGEP could be as
effective or more effective at reducing the risk of postmenopausal breast cancer. We
hypothesize that GGE could effectively teach women to follow LGEP to achieve these
outcomes. The results shown here suggest it is worthwhile to conduct a clinical trial aimed
at comparing the effects of these interventions on biomarkers of postmenopausal breast
cancer. Key features of such a trial should include adherence for a range of population
groups and durability of effects after the intervention has ceased. A previous pilot study
showed that GGE is acceptable from a patient perspective and outlined adherence barriers
and enablers [39]. Further examination and direct comparison of participants’ barriers and
challenges to adherence and unwanted side effects in response to GGE and TRF will be
needed to confirm GGE as an acceptable alternative to TRF. Comparison of our results to
those of Fabian et al. [12] suggests that the magnitude of changes in weight and cancer-
related biomarkers produced by LGEP, consistent with GGE, particularly changes in fasting
insulin, HOMA-IR, and adiponectin, could have meaningful changes in benign breast
tissue indicative of reduced postmenopausal breast cancer risk.

Of note, this and the related Project Take Charge studies to exemplify the benefit of
using biological feedback (here glucose levels) to motivate and support effective behavior
change (here maladaptive eating patterns). While systematic reviews demonstrated the
utility of glucose monitoring in obesity research [52], limited research has been conducted
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to examine the mechanisms of action by which biological feedback motivates positive
health behavior change [53]. One possibility is that GGE may act through the Health Belief
Model; wherein, people experience a change in perceived risk by associating their dietary
intake to health risk outcomes. Future research will be needed to understand and leverage
the use of biological feedback as a cancer prevention strategy better [54].

Strengths of this study include objective quantification of LGEP through passive
glucose monitoring and the range of biomarkers tested. However, this analysis is limited
by our small, homogeneous sample, which limits the generalizability of our findings.
Our findings are most appropriate for hypothesis driving rather than hypothesis testing,
and results should be interpreted with caution given the exploratory nature of analyses.
Furthermore, the TRF studies were of shorter duration than the current study, which could
have implications on comparing the magnitudes of observed effects. It is also unclear
why women in Project Take Charge, who were randomized to the DPP-only intervention,
changed to their LGEP without additionally receiving the GGE intervention. Future DPP
intervention research could test the robustness of these findings. While other clinical
trials have tested GGE as a standalone intervention [34,36], following an LGEP, which
is promoted by GGE, has not been objectively examined as it was here. As such, it will
be important to test the effect of GGE as a standalone intervention (vs. the DPP + GGE)
on LGEP and metabolic- and cancer-related biomarkers to ensure the robustness of these
preliminary findings in larger and more diverse samples. Furthermore, while 40% of eating
events is an achievable change in eating patterns that were sufficient to drive improvements
in metabolic outcomes in this group, further research is needed to confirm the adherence
level needed for favorable outcomes.

5. Conclusions

This exploratory analysis of the impact of LGEP on weight and metabolic markers of-
fers direction for the next steps in testing GGE as an intervention to prevent postmenopausal
breast cancer. The adherence goal of 40% offers a feasible target for future GGE interven-
tions and potential for health benefits, most critically a reduction in risk of postmenopausal
breast cancer.
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