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Test-negative designs are commonplace in assessments of influenza vaccination effectiveness, estimating this value
from the exposure odds ratio of vaccination among individuals treated for acute respiratory illness who test positive for
influenza virus infection. This approach is widely believed to recover the vaccine direct effect by correcting for differential
health-care-seeking behavior among vaccinated and unvaccinated persons. However, the relationship of themeasured
odds ratio to true vaccine effectiveness is poorly understood. We derived the odds ratio under circumstances of real-
world test-negative studies. The odds ratio recovers the vaccine direct effect when 2 conditions are met: 1) Individuals’
vaccination decisions are uncorrelated with exposure or susceptibility to the test-positive or test-negative conditions,
and 2) vaccination confers “all-or-nothing” protection (whereby certain individuals have no protection while others are
perfectly protected). Biased effect-size estimates arise if either condition is unmet. Such bias might suggest misleading
associations of vaccine effectiveness with time since vaccination or the force of infection of influenza. The test-negative
design could also fail to correct for differential health-care-seeking behavior among vaccinated and unvaccinated per-
sons without stringent criteria for enrollment and testing. Our findings demonstrate a need to reassess how data from
test-negative studies can inform policy decisions.

influenza; test-negative design; vaccine effectiveness

Abbreviations: ARI, acute respiratory illness; OR, odds ratio; VE, vaccine effectiveness or efficacy.

Observational study designs (1, 2) are needed to measure vac-
cine effectiveness (VE) when randomized trials are infeasible or
unethical, as with the new formulations of influenza vaccines
used each year (3). The “test-negative” design—a modification
of the traditional case-control design—has become popular for
measuring clinical effectiveness of seasonal influenza vaccines
(1). It resembles earlier designs, such as the indirect cohort
method (4) and the selection of “imitation disease” controls in
case-control studies (5). Individuals who experience acute
respiratory illness (ARI) and present for care receive a labora-
tory test for influenza virus infection, and their vaccination his-
tory is ascertained. The exposure odds ratio (OR) of vaccination
among test-positive and test-negative subjects, in some instances
adjusted for potential confounding using stratification or re-
gression, has frequently been used to measure VE (6), where
 = ( − ) ×VE OR1 100% (7). Causal interpretations of re-
sulting estimates have become the basis for policy making,
such as the USAdvisory Committee on Immunization Practices
recommendation that quadrivalent live attenuated influenza

vaccine should not be used in the US during the 2016–2017 and
2017–2018 seasons (3, 8, 9).

Unlike VE estimates from traditional case-control studies,
the test-negative measure is expected to correct for differential
treatment-seeking behaviors among vaccinated and unvaccinated
persons because only individuals who seek care are included
(10). However, potential confounding, misclassification, and
selection biases under the test-negative design (2, 11–13) have
ignited debate about the suitability of test-negative studies as a
basis for policymaking. Whereas directed acyclic graphs have
been useful in revealing such biases (9, 14, 15), quantitative im-
plications of these biases for VE estimates remain uncertain (16).

To resolve this uncertainty, we derived the relationship of the
test-negative odds ratio to true VE, defined as the vaccine-
conferred reduction in susceptibility to influenza infection
and/or influenza-caused ARI (vaccine “direct effect” (17)).
We used thismathematical relationship to assess the quantitative
impact of potential biases in test-negative studies. We con-
sidered a test-negative study of VE against seasonal influenza
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as a guiding example, noting that our findings have implications
for test-negative studies of vaccines against rotavirus (18, 19),
cholera (20, 21), meningococcus (22), pneumococcus (4), and
other infections.

NOTATION

For consistency, we used notation from a previous study (10)
where possible; we list all parameters and definitions in Table 1.
We assumed that ARI could result from influenza infection (I)
or other causes (N). Susceptible individuals acquire infection at
time-constant rates λI and λN; we show later that results hold for
seasonal or otherwise time-varying acquisition rates λ(t). We
defined t = 0 as the start of the influenza season and assumed
individuals were vaccinated around this time (before extensive
transmission). Infections cause ARI with probability πI and πN,
respectively. Out of the entire population P, a proportion of in-
dividuals (v) receive vaccine. Because individuals who opted
for vaccination might differ from others in their likelihood for
seeking treatment for ARI, we defined the probability of seek-
ing treatment for an ARI episode as μV among the vaccinated
and μU among the unvaccinated; we address how differential
treatment seeking for test-positive and test-negative conditions
influences estimates in a later section.

Because a single type or subtype of influenza typically domi-
nates each season, we assumed that naturally acquired immu-
nity protects against within-season reacquisition of influenza.
The proportion of individuals remaining susceptible to infection
at time t is thus −λe tI . We assumed further that the various non-
influenza causes of ARI (N) are unlikely to provide immunity
against one another, so that the full population remains at risk
of N throughout; we show later that this assumption does not
affect estimates (WebAppendix 1, available at https://academic.
oup.com/aje).

We considered 2 mechanisms by which vaccination protects
against infection. We defined φ as the proportion of individuals

responding to vaccine, so that a proportion − φ1 remains unaf-
fected by vaccination; here we assumed individuals’ likelihood
of responding was unassociated with exposure or susceptibility
to infection. Among the responders, we defined θ as the hazard
ratio for infection (measured relative to the hazard rate of infec-
tion among nonresponders and unvaccinated persons) resulting
from vaccine-derived protection (23, 24). The special case
where θ = 0 and 0 < φ < 1 corresponds to a situation of
“all-or-nothing” protection for responders and nonresponders,
respectively, while “leaky” protection for all recipients arises
under φ = 1 and 0 < θ < 1 (17, 23, 24), whereby all vaccine
recipients experience a reduced rate of acquiring infection.
We note that this definition of “leaky” protection is unrelated
to the relative risk for vaccine recipients and nonrecipients to
experience progression of infection to symptomatic disease
(17), and we consider this issue in a subsequent section. The
general circumstances of 0 < φ < 1 and 0 < θ < 1 correspond
to an intermediate scenario of “leaky-or-nothing” protection.
Perfect protection attains for θ = 0 and φ = 1, and no protec-
tion attains when φ = 0 (no individuals respond to vaccina-
tion) or θ = 1 (responders receive no protection). The vaccine
direct effect on susceptibility to infection is the rate ratio of
infection given vaccination:

= − [( − φ) + θφ] = φ( − θ)VE 1 1 1 .

This parameter is of interest in vaccine studies as the basis
for calculating the effective reproductive number and the criti-
cal population to vaccinate (25). To highlight design-level fea-
tures most pertinent to the interpretation of test-negative studies,
and in line with typical reporting of VE estimates, our analysis
does not address heterogeneity in vaccine response beyond the
consideration of “all-or-nothing” and “leaky-or-nothing” pro-
tection, nor do we address impacts of vaccination on infectious-
ness, given that estimates from conventional test-negative studies
do not capture indirect effects. We refer readers to previous stud-
ies addressing such issues in the contexts of differing study de-
signs (17, 26–28). Where applicable, we addressed sources of
confounding in test-negative studies that could lead to incor-
rect inferences of heterogeneity in vaccine effects among indi-
viduals or over time.

PERFORMANCEOF THEODDSRATIO UNDER
VACCINATIONUNCONFOUNDEDBYEXPOSUREOR
SUSCEPTIBILITY TO THECONDITIONS

Here we considered the case where individuals’ decision-
making about whether to receive influenza vaccine is uncorrelated
with their a priori risk of acquiring influenza and test-negative
conditions and with the probability that these conditions would
cause ARI (or another clinical endpoint of interest for study
enrollment; πI and πN). To examine the potential for the test-
negative design to correct for treatment-seeking biases, we al-
lowed vaccine recipients and nonrecipients to have different
probabilities of seeking treatment for ARI (μV and μU),
assuming for now that these probabilities are unaffected by
the cause of the ARI. We relax this assumption in a later
section.

To understand what the odds ratio measures in test-negative
studies, we derived the rate at which individuals enter into the study

Table 1. Parameters Describing the Incidence of Test-Positive and
Test-Negative Diagnoses, Referenced in Order of Appearance

Parameter Definition

λ Force of infection (baseline rate of infection
acquisition per susceptible)

π Probability of ARI given infection

P Total population

v Proportion of the population vaccinated

μ Probability of seeking treatment given ARI

φ Proportion of individuals responding to vaccine

θ Hazard ratio for infection resulting from vaccine-
derived protection (among responders)

α Hazard ratio for infection (relative to population average)
due to factors other than vaccine-derived protection

ξ Probability of laboratory diagnostic testing given
health-care seeking for ARI

ρ Relative risk of ARI given infection due to vaccine-
derived protection

Abbreviation: ARI, acute respiratory illness.
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as test-positive or test-negative subjects given their vaccination sta-
tus. The rate of ascertaining test-positive, vaccinated persons is

Λ ( ) = λ π μ [( − φ) + φθ ]−λ −θλt e e vP1 ,VI I I V
t tI I

where the force of infection (λI) is applied upon as-yet-
uninfected members of the vaccinated population; we fur-
ther account for the proportion (π μ )I V of individuals expected
to show symptoms and seek treatment. The rate of ascertaining
test-positive, unvaccinated subjects is

Λ ( ) = λ π μ ( − )−λt e v P1 .UI I I U
tI

Test-negative vaccinated and unvaccinated persons are as-
certained at the rates

Λ ( ) = λ π μt vPVN N N V

and

Λ ( ) = λ π μ ( − )t v P1 ,UN N N U

respectively, assuming vaccination does not affect suscepti-
bility to the test-negative conditions.

Test-negative studies typically measure the odds ratio of vac-
cination among the test-positive and test-negative subjects, simi-
lar to the exposure odds ratio in case-control studies, using
cumulative cases (C). For the test-positive outcome,

( ) = π μ [( − φ)( − ) + φ( − )]−λ −θλC t e e vP1 1 1VI I V
t tI I

( ) = π μ ( − )( − )−λC t e v P1 1 .UI I U
tI

Under the assumption that test-negative infections are not
immunizing, cumulative cases are proportional to the inci-
dence rate and study duration:

( ) = λ π μC t vPtVN N N V

( ) = λ π μ ( − )C t v Pt1 .UN N N U

We consider the case of immunizing test-negative out-
comes inWeb Appendix 1. Using the vaccine-exposure odds
ratio measured from cumulative cases,

⎛
⎝⎜

⎞
⎠⎟

− ( ) = − ( ) ( )
( ) ( )

= − ( − φ)( − ) + φ( − )
−

= φ − −
−

( )

−λ −θλ

−λ

−θλ

−λ

OR t
C t C t

C t C t

e e

e

e

e

1 1

1
1 1 1

1

1
1
1

. 1a

C VI UN

UI VN
t t

t

t

t

I I

I

I

I

Under the special case of “all-or-nothing protection” (θ = 0),

− ( ) = φOR t1 ,C

equal to the vaccine direct effect against infection. In contrast,
under the special case of “leaky” protection for all recipients
(φ = 1),

− ( ) = − −
−

−θλ

−λOR t
e

e
1 1

1

1
,C

t

t

I

I

resulting in a bias toward the null value of 0. This bias is non-
existent near = ( [ − ( )] = θ)

→
t OR t0 lim 1

t

C

0
, but grows as t

increases ( [ − ( )] = )
→∞

OR tlim 1 0
t

C .

Despite the lack of data in test-negative studies on the popula-
tion (or person-time) at risk for infection, this result (equation 1a)
is equal to VE measures from the relative risk in random-
ized controlled trials. While methods have previously been
proposed to recover the vaccine effect on susceptibility through
uses of population-at-risk or person-time-at-risk data (23, 29),
we note that the absence of such measurements presents a un-
ique obstacle to bias correction in test-negative studies.

Studies can alsomeasure time-specific odds ratios, for instance
by stratifying analyses into subseasonal intervals (30–33) or by
allowing vaccination and time to interact in logistic regression
models fitted to individual-level data (34, 35). In comparison
with odds ratios estimated from cumulative cases, such esti-
mates are often sought to gauge differences over time in VE, for
instance due to waning of protection. As the time increment ap-
proaches zero, terms included in the odds ratio approach the
ascertainment rates of test-positive and test-negative subjects.
We therefore define this measurement as

− ( ) = − Λ ( )Λ ( )
Λ ( )Λ ( )

= − [( − φ) + φθ ]
= φ( − θ ) ( )

Λ

−λ (θ− )

−λ (θ− )

OR t
t t

t t

e

e

1 1

1 1

1 , 1b

VI UN

UI VN
t

t

1

1

I

I

again reducing to

− ( ) = φΛOR t1

under “all-or-nothing” protection but allowing bias to persist
under “leaky” protection for all recipients:

− ( ) = − θΛ −λ (θ− )OR t e1 1 .t 1I

Here bias is again nonexistent at t = 0 and worsens as
→ ∞t , further increasing with λI. Intuitively, the bias arises

due to differential depletion of vaccinated and unvaccinated
susceptible individuals, consistent with other study designs (23,
36, 37). Presuming the vaccine is efficacious, more unvacci-
nated than vaccinated individuals will have been depleted later
in the epidemic, confounding instantaneous comparisons.

We illustrate functional forms of − ( )OR t1 C and − ( )ΛOR t1
under scenarios of “leaky” and “leaky-or-nothing” protection in
Figures 1 and 2, respectively. Considering first a “leaky” vac-
cine with − θ =1 50% efficacy, under conditions of λI =
0.001, 0.005, and 0.01 infections/person-day, VE estimates
based on cumulative cases are 2.2%, 11.2%, and 22.1% lower
than the true vaccine efficacy, respectively, after 90 days of
influenza transmission (Figure 1); by this point, 8.6%, 36.7%,
and 59.3% of unvaccinated individuals are expected to have
been infected. Serological studies have revealed cumulative
infection rates in the range of 20%–40% for seasonal influenza
(38, 39) and up to 47% for influenza A(H1N1)pdm09 (40)
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Figure 1. Test-negativemeasures under “leaky” protection.We illustrate test-negative vaccine efficacy (VE) estimates obtained from the exposure odds ratio (OR) for a vaccine conferring “leaky” pro-
tection (φ = 1) to all recipients; Figure 2 includes extensions to “leaky-or-nothing” protection with differing values of φ. Estimates use cumulative case data (1 − ORC) (panels A–E) and ascertainment
rates (1 − ORΛ) (panels F–J), under an assumption of no correlation between vaccination and exposure or susceptibility. Panels A–C and F–H illustrate measurements at set times (t) under differing
transmission intensity (λI equal to rates of 0.001, 0.005, and 0.01 infections per susceptible day at risk for blue, orange, and purple lines, respectively). A) andF)Measurement at t = 1day. B) andG)Mea-
surement at t = 90 days. C) and H)Measurement at t = 180 days. Panels D, E, I, and J illustrate changes over time in estimated vaccine effectiveness, under scenarios of vaccine effectiveness equal to
−25%, 25%, 50%, and 75% for green, orange, blue, and purple lines, respectively. Dashed grey lines are plotted for reference to true effect sizemeasures. D) and I) Estimates under λI = 0.001 infections
per susceptible day at risk. E) and J) Estimates under λI = 0.01 infections per susceptible day at risk.

A
m

J
E
p
id
em

iol.
2018;187(12):2686

–2697

T
est-N

egative
D
esign

forV
accine

D
irectE

ffects
2689



among unvaccinated (and presumably susceptible) children,
suggesting that reported VE estimates might fall in the middle
of this range in terms of bias; differences in susceptibility across
ages and risk strata could, however, result in differential rates of
infection and differential degrees of bias in estimates (41). The
exposure-dependent biases we identify worsen with lower vac-
cine efficacy: For − θ =1 20%, estimated values fall 3.6%,
17.1%, and 32.4% below the true effect for λI = 0.001, 0.005,
and 0.01, respectively. Estimates based on the ascertainment
rate ( − ( ))ΛOR t1 would show greater bias at the same point in
time: VE estimates are reduced by 4.6%, 25.2%, and 56.8% for
a vaccine conferring 50% efficacy, and by 7.3%, 37.7%, and
78.9% for a vaccine conferring 20% efficacy.

Figure 2 illustrates how bias is further influenced by the con-
tributions of vaccine response probabilities to overall vaccine
efficacy. For a vaccine conferring 50% efficacy based on 90%
of individuals responding (so that θ = =[φ − ]

φ
44.4%0.5 ), and

again defining λI = 0.001, 0.005, and 0.01 infections/person-day,
− ( )OR t1 C as of t = 90 yields values subject to 2.0%, 10.0%,

and 20.0% downward bias, respectively. With the same efficacy
based on 60% of individuals responding (θ = 16.7%), the degree
of bias is reduced to 0.8%, 3.9% and 8.2% below the true effect.

To aid interpretation in the context of previous studies (2, 11),
we have also illustrated the modeled causal process using a
directed acyclic graph (Figure 3), revealing that the special
case of “all-or-nothing” protection precludes bias from vaccine-
derived protection against influenza infections occurring before
theARI episode for which an individual seeks care.We deriveVE
estimators accounting for additional real-world circumstances—
including time-varying transmission intensity during an influ-
enza season and the use of naturally immunizing test-negative
endpoints—in Web Appendix 1, showing that the odds ratio re-
tains the biases identified under our simpler initial assumptions.

In some applications, testing for a protective or harmful effect
of the vaccine might take priority over obtaining precise mea-
surements of effect size. The conclusions of such hypothesis tests
rest on an assumption that the odds ratio is not subject to sign
bias, reflecting the circumstance ( ) >OR t 1 for an effective vac-
cine (as defined by the condition θ < 1), or ( ) <OR t 1 for an
ineffective vaccine (for which θ > 1). The plots of − ( )ΛOR t1
in Figures 1 and 2 illustrate that VE estimates based on the ascer-
tainment rate of cases might encounter sign bias. The odds ratio
measured from ascertainment rates reaches one—suggesting no
vaccine effect—when the cumulative transmission towhich a pop-
ulation has been exposed (λ × )tI reaches a particular threshold:

λ = (θ)
θ −

t
ln

1
;I

wederive this threshold inWebAppendix 2.Once at least this pro-
portion of the unvaccinated population has become immune to
infection, cases will appear with higher frequency among vacci-
nated individuals than among unvaccinated individuals evenwhen
vaccine-derived protection does not wane. These circumstances
demonstrate the need for caution in interpreting time-specific (con-
tinuous or subseasonal) VEmeasurements from test-negative stud-
ies (30–33), or for strategies to account for previous infection
prevalence among vaccinated and unvaccinated persons.

PERFORMANCEOF THEODDSRATIO UNDER
DIFFERENTIAL EXPOSUREORSUSCEPTIBILITYOF
VACCINATEDANDUNVACCINATEDPERSONS TO THE
CONDITIONS

The test-negative design is typically employed in observa-
tional studies where individuals have received vaccination vol-
untarily. In contrast to assumptions in the above section
that vaccination is uncorrelated with exposure or susceptibility to
infection, variation in vaccine uptake across risk groups is
well-recognized (2). For instance, preferential vaccine receipt
has been reported among relatively healthy older adults (42, 43)
and among persons prioritized for vaccination such as health-
care workers (who might have elevated risk of encountering
infected persons) and individuals with underlying health con-
ditions (who might be at risk for severe outcomes if infected)
(44, 45). This circumstance corresponds to the presence of a
confounder (“G” in Figure 3) related to disease risk as well as
vaccination.

Absent vaccine-derived protection, we defined α α/VI UI and
α α/VN UN as the relative rates at which individuals who seek
vaccination would be expected to acquire influenza and test-
negative conditions, respectively, measured against the expected
rates among individuals who do not seek vaccination. These rela-
tive rates do not consider the biological effect of the vaccine but
only the counterfactual associated with vaccine-seeking status.

Accounting further for vaccine-induced protection, the ascer-
tainment rates of test-positive and test-negative subjects are

Λ ( ) = α λ π μ [( − φ) + φθ ]−α λ −θα λt e e vP1VI VI I I V
t tVI I VI I

Λ ( ) = α λ π μ ( − )−α λt e v P1UI UI I I U
tUI I

Λ ( ) = α λ π μt vPVN VN N N V

αΛ ( ) = λ π μ ( − )t v P1 ,UN UN N N U

resulting in cumulative case measures

( ) = π μ [( − φ)( − ) + φ( − )]−α λ −α θλC t e e vP1 1 1VI I V
t tVI I VI I

( ) = π μ ( − )( − )−α λC t e v P1 1UI I U
tUI I

( ) = α λ π μC t vPtVN VN N N V

( ) = α λ π μ ( − )C t v Pt1 .UN UN N N U

Estimating VE from cumulative cases,

⎛
⎝⎜

⎞
⎠⎟

− ( )

= − ( ) ( )
( ) ( )

= − α
α

( − φ)( − ) + φ( − )
−

( )
−α λ −α θλ

−α λ

OR t
C t C t

C t C t

e e

e

1

1

1
1 1 1

1
, 2a

C

VI UN

UI VN

UN

VN

t t

t

VI I VI I

UI I

whereas the estimate based on ascertainment rates is
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Figure 2. Test-negative measures under “leaky-or-nothing” protection. We illustrate test-negative vaccine efficacy (VE) estimates obtained from the exposure odds ratio (OR) for a vaccine
conferring “leaky-or-nothing” protection; compare against Figure 1 for the special case of “leaky” protection (φ = 1). Estimates use cumulative case data (1 −ORC) (panels A–E) and ascertain-
ment rates (1 − ORΛ) (panels F–J), under an assumption of no correlation between vaccination and exposure or susceptibility. Panels A–C and F–H illustrate measurements at set times (t)
under differing transmission intensity (λI equal to rates of 0.001 and 0.01 infections per susceptible day at risk for dotted and solid lines, respectively); we illustrate performance of the estimator
with differing degrees of vaccine response, illustrating φ equal to 0.8, 0.6, and 0.4 for blue, orange, and purple lines, and θ = (φ − VE) φ − 1. A) and F) Measurement at t = 1 day. B) and G) Mea-
surement at t = 90 days. C) and H) Measurement at t = 180 days. Panels D, E, I, and J illustrate changes over time in estimated vaccine effectiveness. As in Figure 1, green, orange, blue, and
purple lines signify scenarios of –25%, 25%, 50%, and 75% vaccine effectiveness; dashed, dotted, and solid lines signify φ equal to 0.4, 0.6, and 0.8, respectively. Dashed grey lines are plotted
for reference to true effect size measures. D) and I) Estimates under λI = 0.001 infections per susceptible day at risk. E) and J) Estimates under λI = 0.01 infections per susceptible day at risk.
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⎛
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− ( ) = − Λ ( )Λ ( )
Λ ( )Λ ( )

= − α
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α
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[( − φ)

+ φθ ] ( )
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⎠⎟− ( ) = − ( − φ) α
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−α λOR t
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under “leaky” protection.

Consider alternatively that π π/VI UI and π π/VN UN are the rel-
ative risks of ARI given influenza and test-negative infections,
respectively, for individuals who seek vaccination, measured
against the risk among individuals who do not seek vaccina-
tion; we again distinguish that these differences owe to factors
other than vaccine-derived protection (17), and we consider
vaccine protection against disease progression in a subsequent
section. Incorporating πI and πN into the odds ratios formulated
above,
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reducing to φ if differences between vaccinated and unvaccinated
persons equally affect progression of influenza and test-negative
conditions to symptoms (i.e., =π
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). For a vaccine conferring

“leaky” protection to all recipients,
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to the bias present when vaccine-

seeking is uncorrelated with exposure or susceptibility to infec-
tion (equations 1a and 1b).

Incorporating heterogeneity in both acquisition and progression,
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Figure 3. Causal directed acyclic graph illustrating a key source of
bias for leaky vaccines. Health-care-seeking (H) drives receipt of the vac-
cine (V) as well as receipt of a test (T). By design, studies select on test-
ing, given that only tested individuals are included. The effect of interest,
signified by the dotted arrow, is that of vaccination on influenza at the
time of testing (It). However, influenza might also occur at a preceding
point in the season (Ipre, dashed arrow). The test-positive outcome (T+)
ariseswhen an individual is infected at the time of testing (It→T+). Natural
immunity prevents influenza reinfection during the season (Ipre→It). The
fact that Ipre is not—and cannot be—conditioned on leads to a second
pathway not of direct interest (V→Ipre→It), biasing the estimate of the
direct effect V→ It in the case of leaky vaccine. This bias is not present in
the case of all-or-nothing protection. Here, 2 distinct subgraphs can be
envisioned. In the first—applicable only to the proportion (φ) of protected,
vaccinated individuals—the path V→Ipre→It is not of concern, because
Pr[Ipre|V] = 0. In the second, applying to the remaining proportion (1 – φ)
of unprotected individuals, the paths V→Ipre→It and V→It are null, consis-
tent with the situation where V = 0. Subsequent sections of this manu-
script focus on other sources of bias evident in this graph. The first
concerns the impacts of a confounder (G) of exposure or susceptibility to
influenza infection (here indicated in blue; see also Figure 3 of Lipsitch
et al. (2)). The second concerns selection bias resulting from differential
health-care-seeking behavior among vaccinated and unvaccinated per-
sons along the pathwayV←H→T (here highlighted in red).
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These circumstances underscore that differential vaccine
uptake among persons at high and low risk for infection or for
symptoms given infection—a well-known phenomenon in
observational studies of vaccines and other health interventions—
could undermine causal interpretations of the odds ratio in test-
negative studies.

BIAS ASSOCIATEDWITHDIFFERENTIAL TREATMENT
SEEKINGAMONGTHE VACCINATEDAND
UNVACCINATED

To this point we have considered ARI as a singular clinical
entity and assumed all individuals seeking care for ARI are tested
for influenza. However, different infections can cause clinically
distinct presentations, influencing the likelihood that individuals
seek treatment or the likelihood that clinicians test for influenza
(46). Here we address the possibility for such a scenario to lead
to selection bias from conditioning on the collider T (testing), the
pathway V H T I← → ← in Figure 3.

Consider that the spectrum of clinical presentations can
be discretized into “moderate” (M) and “severe” (S) classes, oc-
curring with probabilities π = π + πVI VI

M
VI
S , π = π + πUI UI

M
UI
S ,

π = π + πVN VN
M

VN
S , and π = π + πUN UN

M
UN
S . We defined μV

M ,
μV

S , μU
M , and μU

S as the associated probabilities of seeking
care given symptoms and vaccination status, and let ξM and
ξS indicate the probabilities of receiving a test given symptoms.
Bias associated with differential treatment-seeking persists unless
the relative risk of testing given infection (which includes
experiencing symptoms, seeking treatment, and being tested)
does not differ for influenza and other conditions:

π μ ξ + π μ ξ
π μ ξ + π μ ξ

=
π μ ξ + π μ ξ
π μ ξ + π μ ξ
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we derive the associated VE estimators in Web Appendix 3.
Expressed more generally, this bias arises unless

( | )
( | )

= ( | )
( | )

( )V I
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U N

Pr Test ,

Pr Test ,

Pr Test ,

Pr Test ,
5

when accommodating all possible factors that influence whether
individuals are tested. Ensuring that the above condition is met
can guide study implementation and circumvent possible biases
owing to associations of vaccination with care-seeking given ill-
ness, receipt of clinical testing, and willingness to participate in
the study.

A possible correction exists when enrollment and testing are
tied to stringently defined clinical criteria (i.e., criteria for which
equation 5 holds). For example, if tests are performed contingent
on cases resembling awell-defined andmonotypic “severe” entity
(substituting ξM = 0 in equations 5a and 5b), the odds ratio retains
bias only from differential infection rates and symptom risk
between the vaccinated and unvaccinated:
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whenmeasured from the ascertainment rate (resembling equa-
tions 4a and 4b). Absent any association of the decision to
receive the vaccinewith individuals’ exposure or susceptibility to
infection and ARI, equations 6a and 6b reduce to equations 1a
and 1b.

MEASURINGVACCINE EFFECTIVENESSAGAINST
PROGRESSION

In addition to protection against infection, reductions in
symptom risk given infection are of interest in VE measures
(17). Let ρ be defined as the relative risk for vaccine-protected
individuals to experience symptoms given infection owing to
vaccine-derived immunity. When decisions to vaccinate are not
correlatedwith exposure or susceptibility to the infections, other
than through vaccine-derived immunity,

Λ ( ) = λ π μ [( − φ) + φρθ ]−λ −θλt e e vP1VI I I V
t tI I

and
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Under the special case that a vaccine reduces risk of symp-
toms without protecting against infection (θ = 1)—as might
apply to oral cholera vaccines (47–49)—thesemeasures reduce
to

− ( ) = − = φ( − ρ)ΛOR t OR1 1 1 ,C

an unbiased estimate of VE against progression. Under con-
founding between vaccination and exposure or susceptibility
to the infections,
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for a vaccine protecting against symptoms only (θ = 1).

IMPLICATIONS

Recent years have seen growing enthusiasm for the integra-
tion of data from observational studies in decisions surrounding
influenza vaccine policy (50), in part based on a belief that vac-
cine direct effects—which have traditionally been measured in
prospective, randomized controlled trials—can be recovered
under the test-negative design (6, 10, 16, 24). However, uptake
of the test-negative design by researchers and policy makers
has preceded thorough examination of its theoretical justifica-
tion (14). Our analysis highlights limitations to interpreting VE
estimates based on the exposure odds ratio from test-negative
studies.

Our most troubling finding is that the odds ratio measured by
test-negative studies is unsuited to estimating the vaccine direct
effect on susceptibility to infection even under circumstances
consistent with randomized vaccine allocation, unless protection
is known to follow an “all-or-nothing” mechanism of action.
These results echo longstanding concerns about measurement of
the effectiveness of “leaky” vaccines in case-control studies (23,
51–53) as well as clinical trials (36, 37). The underlying bias oc-
curs because unvaccinated persons become immune via natural
infection faster than vaccinated ones, causing the groups to
appear more similar over time. Researchers rarely know a priori
to what extent a vaccine confers “leaky” or “all-or-nothing” pro-
tection, making it difficult to know under what circumstances
studiesmight be subject to the resulting bias.

We also showed that certain traditionally recognized sources
of confounding in observational studies—arising due to differen-
tial exposure or susceptibility to infection and symptoms among
vaccinated and unvaccinated persons—persist under the

test-negative design. Because resulting biases could lead to
time-varying estimates of VE, declines in 1 − odds ratio over
a season might not support inference of waning vaccine protec-
tion (31–35). Last, whereas the test-negative design has been
viewed as a strategy to eliminate treatment-seeking bias, we found
that that bias could persist under differential symptom severity for
influenza and test-negative infections.

Several assessments of test-negative studies based on directed
acyclic graphs (2, 11) have pointed to similar sources of con-
founding, and the practical importance of these findings has been
debated amid uncertainty about the magnitude of associated bias
in estimates (16). The framework we have used provides a basis
for quantifying bias directly. We showed that the odds ratio of
test-negative studies can supply VE estimates that are not equal
to the causal vaccine effect on susceptibility and that sign bias
could arise such that the instantaneous odds ratio leads to incor-
rect inferences about whether a vaccine is effective or not. This is
contrary to the frequent assumption that the odds ratio provides,
at minimum, a valid and direction-unbiased test of the null
hypothesis of no causal effect (11).

Other approaches have been taken to assess bias in test-
negative studies. In informal comparisons, VE estimates from
test-negative studies of live oral rotavirus vaccines and oral
cholera vaccines have appeared similar to VE estimates from
randomized controlled trials in the same settings (54, 55).While
these findings could suggest that the biases we identify are not
always large in practice, our study and others (36, 37) have
pointed to potential sources of bias that could also affect esti-
mates of the vaccine direct effect in randomized controlled
trials. Moreover, seasonal influenza vaccine trials are not con-
ducted on a year-to-year basis amid alterations to the strain
composition of vaccines and changes to the immune profile of
hosts. This has led to difficulty accounting for instances where
conclusions of randomized controlled trials and test-negative
studies have appeared to be in conflict. For instance, effective-
ness of live attenuated influenza vaccine has appeared poor in
test-negative studies undertaken since the emergence in 2009 of
a novel H1N1 influenza A virus (56, 57), despite superior effi-
cacy of live attenuated influenza vaccine over inactivated influ-
enza vaccine among children in earlier randomized controlled
trials (58–60).

Many of the biases we identified result from differential
acquisition of natural immunity among vaccinated and unvacci-
nated persons. The strength and duration of such immunity differs
among infectious diseases for which test-negative studies have
been undertaken to estimate VE; specific implications for weakly
immunizing infections such as rotavirus (18, 19) and respiratory
bacterial agents (4, 22) should be assessed. Uses of the test-
negative design in increasingly innovative applications, such as
an evaluation of cluster-randomized deployments ofWolbachia-
infectedmosquitoes to prevent dengue (61, 62), furthermerit con-
sideration in terms of transmission dynamic parameters such
as those we consider here.

STRATEGIES TOCOUNTERACTBIAS

While our analysis identified limitations to the validity of VE
estimates based on the vaccine-exposure odds ratio under the
test-negative design, the results highlight specific improvements
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that can be made to the interpretation of data from test-negative
studies. We have shown that the use of strict clinical criteria or
case definitions for enrollment and testing can reduce bias due to
differential health-care-seeking behavior among vaccinated
and unvaccinated persons. Whereas test-negative studies typi-
cally stratify estimates according to influenza type/subtype or
even the genetic clade, our findings suggest bias might persist if
there are meaningful epidemiologic differences in risk factors
for infection and disease among vaccinated and unvaccinated
persons. This bias can be reduced by stratifying estimates to
minimize within-stratum differences in exposure or susceptibil-
ity to infection among vaccinated and unvaccinated persons.
While we point out the inability of test-negative studies to mea-
sure “leaky” or “leaky-or-nothing” protection accurately, the
persistence of such bias in randomized controlled trials echoes a
broader need to consider epidemiologic approaches for the
measurement of imperfect forms of immunity (23, 51–53).
Because biases resulting from the “leaky” nature of vaccine
protection have lower impact in populations less exposed to
transmission, VE estimates from early in the influenza sea-
son might be more reliable than those obtained later. This
circumstance suggests a need to maximize statistical power
for test-negative studies in the initial weeks or months of
seasonal or pandemic influenza transmission. In addition,
monitoring the cumulative incidence of infections in popula-
tions (for example, through serological studies) could facilitate
correction for the differential prevalence of naturally acquired
immunity among vaccinated and unvaccinated persons. Evi-
dence from test-negative studies of VE against influenza should
be interpreted with the limitations we report here in mind, in
particular for vaccination policymaking.

ACKNOWLEDGMENTS

Author affiliations: Division of Epidemiology, School of
Public Health, University of California, Berkeley, California
(JosephA. Lewnard); Center for CommunicableDisease
Dynamics, Department of Epidemiology, Harvard T.H. Chan
School of PublicHealth, Boston,Massachusetts (JosephA.
Lewnard, Christine Tedijanto,Marc Lipsitch); andWorldHealth
Organization Collaborating Center for InfectiousDisease
Epidemiology andControl, School of Public Health, Li Ka Shing
Faculty ofMedicine, University of HongKong,HongKong
Special Administrative Region, China (Benjamin J. Cowling).

This work was supported by the National Institute of
General Medical Sciences (grant U54GM088558).

Conflict of interest: none declared.

REFERENCES

1. Sullivan SG, Feng S, Cowling BJ. Potential of the test-negative
design for measuring influenza vaccine effectiveness: a
systematic review. Expert Rev Vaccines. 2014;13(12):
1571–1591.

2. Lipsitch M, Jha A, Simonsen L. Observational studies and the
difficult quest for causality: lessons from vaccine effectiveness
and impact studies. Int J Epidemiol. 2016;45(6):2060–2074.

3. JacksonML, Chung JR, Jackson LA, et al. Influenza vaccine
effectiveness in the United States during the 2015–2016
season.N Engl J Med. 2017;377(6):534–543.

4. Broome CV, Facklam RR, Fraser DW. Pneumococcal disease
after pneumococcal vaccination: an alternative method to
estimate the efficacy of pneumococcal vaccine.N Engl J Med.
1980;303(10):549–552.

5. Wacholder S, Silverman DT, Mclaughlin JK, et al. Selection of
controls in case-control studies: II. Types of controls. Am J
Epidemiol. 1992;135(9):1029–1041.

6. JacksonML, Nelson JC. The test-negative design for
estimating influenza vaccine effectiveness. Vaccine. 2013;
31(17):2165–2168.

7. Sullivan SG, Cowling BJ. “Crude vaccine effectiveness” is a
misleading term in test-negative studies of influenza vaccine
effectiveness. Epidemiology. 2015;26(5):e60.

8. Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and
control of seasonal influenza with vaccines: recommendations
of the Advisory Committee on Immunization Practices—
United States, 2016–17 influenza season.MMWR Recomm
Rep. 2016;65(5):1–54.

9. Belongia EA, Karron RA, Reingold A, et al. The Advisory
Committee on Immunization Practices recommendation
regarding the use of live influenza vaccine: a rejoinder.
Vaccine. 2018;36(3):343–344.

10. Foppa IM, Haber M, Ferdinands JM, et al. The case test-
negative design for studies of the effectiveness of influenza
vaccine. Vaccine. 2013;31(30):3104–3109.

11. Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical
basis of the test-negative study design for assessment of
influenza vaccine effectiveness. Am J Epidemiol. 2016;184(5):
345–353.

12. Ainslie KEC, Shi M, Haber M, et al. On the bias of estimates of
influenza vaccine effectiveness from test-negative studies.
Vaccine. 2017;35(52):7297–7301.

13. Demicheli V, Jefferson T, Di Pietrantonj C, et al. Vaccines for
preventing influenza in the elderly. Cochrane Database Syst
Rev. 2018;2:CD004876.

14. Westreich D, HudgensMG. Invited commentary: beware the
test-negative design. Am J Epidemiol. 2016;184(5):354–356.

15. Small PA Jr., Cronin BJ. The Advisory Committee on
Immunization Practices’ controversial recommendation
against the use of live attenuated influenza vaccine is based on
a biased study design that ignores secondary protection.
Vaccine. 2017;35(8):1110–1112.

16. Ferdinands JM, Foppa IM, Fry AM, et al. Re: “Invited
commentary: beware the test-negative design”. Am J
Epidemiol. 2017;185(7):613.

17. HalloranME, Struchiner CJ, Longini IM Jr.. Study designs for
evaluating different efficacy and effectiveness aspects of
vaccines. Am J Epidemiol. 1997;146(10):789–803.

18. Bar-Zeev N, Kapanda L, Tate JE, et al. Effectiveness of a
monovalent rotavirus vaccine in infants in Malawi after
programmatic roll-out: an observational and case-control
study. Lancet Infect Dis. 2015;15(4):422–428.

19. Boom JA, Tate JE, Sahni LC, et al. Effectiveness of
pentavalent rotavirus vaccine in a large urban population in the
United States. Pediatrics. 2010;125(2):e199–e207.

20. Azman AS, Parker LA, Rumunu J, et al. Effectiveness of one
dose of oral cholera vaccine in response to an outbreak: a case-
cohort study. Lancet Glob Health. 2016;4(11):e856–e863.

21. FrankeMF, Jerome JG, Matias WR, et al. Comparison of two
control groups for estimation of oral cholera vaccine
effectiveness using a case-control study design. Vaccine. 2017;
35(43):5819–5827.

Am J Epidemiol. 2018;187(12):2686–2697

Test-Negative Design for Vaccine Direct Effects 2695



22. Noronha CP, Struchiner CJ, HalloranME. Assessment of the
direct effectiveness of BCmeningococcal vaccine in Rio de
Janeiro, Brazil: a case-control study. Int J Epidemiol. 1995;
24(5):1050–1057.

23. Smith PG, Rodrigues LC, Fine PE. Assessment of the
protective efficacy of vaccines against common diseases using
case-control and cohort studies. Int J Epidemiol. 1984;13(1):
87–93.

24. HalloranME, Longini IM Jr., Struchiner CJ. Design and
interpretation of vaccine field studies. Epidemiol Rev. 1999;
21(1):73–88.

25. Anderson RM,May RM. Vaccination and herd immunity to
infectious diseases.Nature. 1985;318(6044):323–329.

26. HalloranME, Haber M, Longini IM Jr.. Interpretation and
estimation of vaccine efficacy under heterogeneity. Am J
Epidemiol. 1992;136(3):328–343.

27. HalloranME, Longini IM Jr., Struchiner CJ. Estimability and
interpretation of vaccine efficacy using frailty mixing models.
Am J Epidemiol. 1996;144(1):83–97.

28. Longini IM Jr., Halloran ME. A frailty mixture model for
estimating vaccine efficacy. J R Stat Soc Ser C. 1996;45(2):
165–173.

29. Haber M, Longini IM Jr., Halloran ME. Estimation of vaccine
efficacy in outbreaks of acute infectious diseases. Stat Med.
1991;10(10):1573–1584.

30. McLean HQ, ThompsonMG, SundaramME, et al. Impact of
repeated vaccination on vaccine effectiveness against influenza
A(H3N2) and B during 8 seasons.Clin Infect Dis. 2014;
59(10):1375–1385.

31. Castilla J,Martínez-Baz I,Martínez-Artola V, et al. Decline in
influenza vaccine effectiveness with time after vaccination,
Navarre, Spain, season 2011/12.Euro Surveill. 2013;18(5):20388.

32. McMenamin J, Andrews N, Robertson C, et al. Effectiveness
of seasonal 2012/13 vaccine in preventing laboratory-
confirmed influenza infection in primary care in the United
Kingdom: mid-season analysis 2012/13. Euro Surveill. 2013;
18(5):20393.

33. Kissling E, ValencianoM, Larrauri A, et al. Low and
decreasing vaccine effectiveness against influenza A(H3) in
2011/12 among vaccination target groups in Europe: results
from the I-MOVEmulticentre case-control study. Euro
Surveill. 2013;18(5):20390.

34. Ferdinands JM, Fry AM, Reynolds S, et al. Intraseason waning
of influenza vaccine protection: evidence from the US
influenza vaccine effectiveness network, 2011–2012 through
2014–2015. Clin Infect Dis. 2017;64(5):544–550.

35. Belongia EA, SundaramME,McClure DL, et al. Waning
vaccine protection against influenza A (H3N2) illness in
children and older adults during a single season. Vaccine.
2015;33(1):246–251.

36. Lopman BA, Pitzer VE. Waxing understanding of waning
immunity. J Infect Dis. 2018;217(6):851–853.

37. O’Hagan JJ, HernánMA,Walensky RP, et al. Apparent
declining efficacy in randomized trials: examples of the Thai
RV144 HIV vaccine and South African CAPRISA 004
microbicide trials. AIDS. 2012;26(2):123–126.

38. Monto AS, Koopman JS, Longini IM Jr.. Tecumseh study of
illness. XIII. Influenza infection and disease, 1976–1981. Am J
Epidemiol. 1985;121(6):811–822.

39. Hayward AC, Fragaszy EB, Bermingham A, et al.
Comparative community burden and severity of seasonal and
pandemic influenza: results of the FluWatch cohort study.
Lancet Respir Med. 2014;2(6):445–454.

40. Van KerkhoveMD, Hirve S, Koukounari A, et al. Estimating
age-specific cumulative incidence for the 2009 influenza

pandemic: a meta-analysis of A(H1N1)pdm09 serological
studies from 19 countries. Influenza Other Respir Viruses.
2013;7(5):872–886.

41. Lewnard JA, Cobey S. Immune history and influenza vaccine
effectiveness. Vaccines (Basel). 2018;6(2):E28.

42. Jackson LA, JacksonML, Nelson JC, et al. Evidence of bias in
estimates of influenza vaccine effectiveness in seniors. Int J
Epidemiol. 2006;35(2):337–344.

43. Simonsen L, Taylor RJ, Viboud C, et al. Mortality benefits of
influenza vaccination in elderly people: an ongoing
controversy. Lancet Infect Dis. 2007;7(10):658–666.

44. Blank PR, Schwenkglenks M, Szucs TD. Influenza vaccination
coverage rates in five European countries during season 2006/
07 and trends over six consecutive seasons. BMC Public
Health. 2008;8:272.

45. Hill HA, Elam-Evans LD, YankeyD, et al. Vaccination coverage
among children aged 19–35months—United States, 2015.
MMWRMorbMortal Wkly Rep. 2016;65(39):1065–1071.

46. Presanis AM, De Angelis D, New York City Swine Flu
Investigation Team, et al. The severity of pandemic H1N1
influenza in the United States, from April to July 2009: a
Bayesian analysis. PLoSMed. 2009;6(12):e1000207.

47. Black RE, Levine MM, Clements ML, et al. Protective efficacy
in humans of killed whole-vibrio oral cholera vaccine with and
without the B subunit of cholera toxin. Infect Immun. 1987;
55(5):1116–1120.

48. Sanchez JL, Vasquez B, Begue RE, et al. Protective efficacy of
oral whole-cell/recombinant-B-subunit cholera vaccine in
Peruvian military recruits. Lancet. 1994;344(8932):
1273–1276.

49. Lewnard JA, AntillónM, Gonsalves G, et al. Strategies to
prevent cholera introduction during international personnel
deployments: a computational modeling analysis based on the
2010 Haiti outbreak. PLoSMed. 2016;13(1):e1001947.

50. Frieden TR. Evidence for health decision making—beyond
randomized, controlled trials. N Engl J Med. 2017;377(5):
465–475.

51. Greenland S, Frerichs RR. On measures and models for the
effectiveness of vaccines and vaccination programmes. Int J
Epidemiol. 1988;17(2):456–463.

52. Haber M, OrensteinWA, Halloran ME, et al. The effect of
disease prior to an outbreak on estimates of vaccine efficacy
following the outbreak. Am J Epidemiol. 1995;141(10):
980–990.

53. Rodrigues LC, Smith PG. Use of the case-control approach in
vaccine evaluation: efficacy and adverse effects. Epidemiol
Rev. 1999;21(1):56–72.

54. Schwartz LM, HalloranME, Rowhani-Rahbar A, et al. Rotavirus
vaccine effectiveness in low-income settings: an evaluation of the
test-negative design. Vaccine. 2017;35(1):184–190.

55. Ali M, You YA, Sur D, et al. Validity of the estimates of oral
cholera vaccine effectiveness derived from the test-negative
design. Vaccine. 2016;34(4):479–485.

56. Chung JR, Flannery B, ThompsonMG, et al. Seasonal
effectiveness of live attenuated and inactivated influenza
vaccine. Pediatrics. 2016;137(2):e20153279.

57. Gaglani M, Pruszynski J, Murthy K, et al. Influenza vaccine
effectiveness against 2009 pandemic influenza A(H1N1) virus
differed by vaccine type during 2013–2014 in the United
States. J Infect Dis. 2016;213(10):1546–1556.

58. Ashkenazi S, Vertruyen A, Aristegui J, et al. Superior relative
efficacy of live attenuated influenza vaccine compared with
inactivated influenza vaccine in young children with recurrent
respiratory tract infections. Pediatr Infect Dis J. 2006;25(10):
870–879.

Am J Epidemiol. 2018;187(12):2686–2697

2696 Lewnard et al.



59. Fleming DM, Crovari P, Wahn U, et al. Comparison of the
efficacy and safety of live attenuated cold-adapted influenza
vaccine, trivalent, with trivalent inactivated influenza virus
vaccine in children and adolescents with asthma. Pediatr Infect
Dis J. 2006;25(10):860–869.

60. Belshe RB, Edwards KM, Vesikari T, et al. Live attenuated
versus inactivated influenza vaccine in infants and young
children.N Engl J Med. 2007;356(7):685–696.

61. Anders KL, Cutcher Z, Kleinschmidt I, et al. Cluster randomized
test-negative design (CR-TND) trials: a novel and efficient
method to assess the efficacy of community level dengue
interventions.Am J Epidemiol. 2018;187(9):2021–2028.

62. Jewell NP, Dufault S, Cutcher Z, et al. Analysis of cluster-
randomized test-negative designs: cluster-level methods
[published online ahead of print February 12, 2018].
Biostatistics. (doi:10.0193/biostatistics/kxy005).

Am J Epidemiol. 2018;187(12):2686–2697

Test-Negative Design for Vaccine Direct Effects 2697

http://dx.doi.org/10.0193/biostatistics/kxy005

	Measurement of Vaccine Direct Effects Under the Test-Negative Design
	NOTATION
	PERFORMANCE OF THE ODDS RATIO UNDER VACCINATION UNCONFOUNDED BY EXPOSURE OR SUSCEPTIBILITY TO THE CONDITIONS
	PERFORMANCE OF THE ODDS RATIO UNDER DIFFERENTIAL EXPOSURE OR SUSCEPTIBILITY OF VACCINATED AND UNVACCINATED PERSONS TO THE C...
	BIAS ASSOCIATED WITH DIFFERENTIAL TREATMENT SEEKING AMONG THE VACCINATED AND UNVACCINATED
	MEASURING VACCINE EFFECTIVENESS AGAINST PROGRESSION
	IMPLICATIONS
	STRATEGIES TO COUNTERACT BIAS
	ACKNOWLEDGMENTS
	REFERENCES




