
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Histone demethylase LSD1: Connecting developmental signals, chromatin, and cell 
response

Permalink
https://escholarship.org/uc/item/4d66k5c2

Author
Vinckier, Nicholas

Publication Date
2017

Supplemental Material
https://escholarship.org/uc/item/4d66k5c2#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4d66k5c2
https://escholarship.org/uc/item/4d66k5c2#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO 

 

Histone demethylase LSD1: Connecting developmental signals, chromatin, and cell response 

 

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of 

Philosophy 

 

 

in 

 

 

Biomedical Sciences 

 

 

by 

 

 

Nicholas Kyle Vinckier 

 

 

Committee in charge: 

Professor Maike Sander, Chair 
Professor Sylvia Evans 
Professor Lawrence Goldstein 
Professor Karl Willert 
Professor Eugene Yeo 

 
 
 
 
 
 

2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Nicholas Kyle Vinckier, 2017 

All rights reserved  



 
 

 

 

 

 

The Dissertation of Nicholas Kyle Vinckier is approved, and it is acceptable in quality and form for 

publication on microfilm and electronically: 

 

 

 

 

 

 

Chair 

University of California, San Diego 

2017 

 

  

iii 



DEDICATION 
 
 

I would first like to dedicate this dissertation to my incredible wife, Gwendolyn, who has 
been impossibly patient during my studies and in all aspects of our lives together. 

I truly would not have been able to do this without your unwavering support. 
Thank you for believing in me, especially when my confidence faltered. 

 
You are my world. 

 
 
 

To Mom and Dad, thank you for raising me to be a scientist and for always letting me ask 
questions, even when it annoyed you, you hid it well. 

To my sister, Erin, the first Dr. Vinckier, thank you for putting up with me growing up 
and for the awesome nephew and niece. I hope science helps make the world better for 

Joey and Sami. 
 
 
 

To all my friends, thank you for keeping me grounded and helping me balance work and 
play; and to my crazy dog, Moose, whose smile never failed to brighten my day. 

 
And to Dan, whose infectious love of science instilled within me a renewed passion for 

research. 
We miss you, buddy. 

  

iv 



TABLE OF CONTENTS 

SIGNATURE PAGE.........................................................................................................................iii 

DEDICATION..................................................................................................................................iv 

TABLE OF CONTENTS...................................................................................................................v 

LIST OF ABBREVIATIONS...........................................................................................................viii 

LIST OF FIGURES...........................................................................................................................x 

LIST OF TABLES............................................................................................................................xi 

LIST OF SUPPLEMENTAL FILES.................................................................................................xii 

ACKNOWLEDGEMENTS..............................................................................................................xiii 

VITA...............................................................................................................................................xiv 

ABSTRACT OF THE DISSERTATION..........................................................................................xvi 

INTRODUCTION.............................................................................................................................1 

CHAPTER 1 - THE ROLE OF LSD1 IN CONNECTING TRANSIENT DEVELOPMENTAL 
SIGNALS AND CELL RESPONSE VIA CHROMATIN REMODELING...................3 

 
 ABSTRACT.........................................................................................................................3 

 INTRODUCTION................................................................................................................3 

 RESULTS...........................................................................................................................9 

Human Endocrine Cell Development Requires LSD1 Activity during a Narrow 

Time Window early in Pancreas Development......................................................9 

LSD1 Inhibition Prevents Enhancer Decommissioning........................................10 

LSD1 Represses Transiently Expressed, Retinoic Acid-Dependent Genes........12 

Prolonged Exposure of early Pancreatic Progenitors to Retinoic Acid 

Phenocopies LSD1 Inhibition...............................................................................15 

LSD1 Prevents Aberrant Reactivation of Transient early Retinoic Acid-dependent 

Genes..................................................................................................................16 

Requirement for Lsd1 in Endocrine Cell Formation during a Short Window in 

early Pancreatic Development in mice.................................................................17 

 DISCUSSION....................................................................................................................19 

v 



 METHODS........................................................................................................................22 

Chromatin immunoprecipitation followed by massively parallel multiplexed 

sequencing (ChIP-seq) .......................................................................................22 

Chromatin mapping and data quality control.......................................................23 

Peak calling and visualization of ChIP-seq data..................................................25 

RNA isolation and sequencing and qRT-PCR.....................................................26 

Assignment of enhancer target genes and Motif enrichment analysis.................27 

Immunofluorescence analysis..............................................................................28 

Human tissue.......................................................................................................28 

Mice.....................................................................................................................29 

 FIGURES..........................................................................................................................30 

 TABLES............................................................................................................................54 

 ACKNOWLEDGEMENTS.................................................................................................59 

CHAPTER 2 - DISSECTING THE ROLE OF NEUROGENIN-3 IN HUMAN ENDOCRINE 

DEVELOPMENT...................................................................................................60 

ABSTRACT.......................................................................................................................60 

INTRODUCTION..............................................................................................................61 

RESULTS.........................................................................................................................63 

Knockdown of NGN3 in hESCs results in a decrease of endocrine cells............63 

Overexpression of NGN3 in differentiating cells results in an increase of hormone 

expression…........................................................................................................64 

Overexpression of NGN3 in sorted hESC-derived progenitors induces the 

endocrine fate......................................................................................................66 

 DISCUSSION....................................................................................................................67 

 METHODS........................................................................................................................68 

Human embryonic stem cell (hESC) culture and expansion................................68 

Pancreatic differentiation of hESCs.....................................................................69 

v vi 



Design and construction of overexpression and knockdown lentiviruses............70 

Magnetic sorting of pancreatic progenitors..........................................................70 

Immunofluorescence analysis..............................................................................71 

Reverse Transcription and Quantitative PCR (RT-qPCR) analysis.....................72 

 FIGURES..........................................................................................................................73 

 ACKNOWLEDGEMENTS.................................................................................................77 

CONCLUSION...............................................................................................................................78 

REFERENCES..............................................................................................................................79 

APPENDIX.....................................................................................................................................89 

  

vii 



LIST OF ABBREVIATIONS 

AA   Activin A 

Cre   Cre-recombinase 

CreERTM  Cre-recombinase-Estrogen receptor fusion protein 

DE   Definitive endoderm 

DNA   Deoxyribonucleic acid 

LSD1iearly  Early LSD1 inhibition 

PP1   Early pancreatic progenitors 

EN   Endocrine cell stage 

EGF   Epidermal growth factor 

FSC-A   Forward scatter area 

GFP   Green fluorescent protein 

HOXA1   Homeobox A1 

HOXB1   Homeobox B1 

HOXC4   Homeobox C4 

hESC   Human embryonic stem cell 

hPSC   Human pluripotent stem cell 

ITS   Insulin-transferrin-selenium 

KGF   Keratinocyte growth factor 

LSD1ilate  Late LSD1 inhibition 

PP2   Late pancreatic progenitors 

LSD1   Lysine-specific demethylase 1 

NGN3   Neurogenin-3 

NKX6.1   NKX homeobox 1 

ncRNA   Non-coding RNA 

PDX1   Pancreatic and duodenal homeobox 1 

PGK   Phosphoglycerate kinase 

viii 



GT   Primitive gut tube 

RA   Retinoic acid 

RAR   Retinoic acid receptor 

RARB   Retinoic acid receptor β 

RXR   Retinoid X receptor 

RNA   Ribonucleic acid 

shRNA   Short-hairpin RNA 

SOX9   SRY-Box 9 

TGFBi   TGFβ R1 kinase inhibitor 

TTS   Transcription termination site 

UTR   Untranslated region 

  

ix 



LIST OF FIGURES 

Figure 1. Endocrine cell formation requires LSD1 activity during a short window in early pancreatic 
development..................................................................................................................30 

 
Figure 2. LSD1 inhibition prevents decommissioning of transiently active early pancreatic 

enhancers......................................................................................................................32 
 
Figure 3. LSD1 activity is necessary for down-regulation of transiently expressed retinoic acid-

dependent genes...........................................................................................................34 
 
Figure 4. Prolonged retinoic acid exposure of early pancreatic progenitor cells phenocopies LSD1 

inhibition.........................................................................................................................36 
 
Figure 5. LSD1 prevents aberrant reactivation of transient early retinoic acid-dependent 

genes.............................................................................................................................38 
 
Figure 6. Selective requirement for Lsd1 in endocrine cell formation during a short window in early 

pancreatic development of mice.....................................................................................40 
 
Figure S1. Related to Figure 1. Characterization of LSD1 expression and effects of LSD1 inhibition 

on pancreatic progenitor cells.......................................................................................42 
 
Figure S2. Related to Figure 2. Characterization of LSD1-bound genomics regions.......................44 
 
Figure S3. Related to Figure 3. G1 enhancers exhibit greater enrichment for RXR binding than G2 

and G3 enhancers........................................................................................................46 
 
Figure S4. Related to Figure 4. Effects of prolonged retinoic acid treatment on pancreatic progenitor 

and endocrine cell phenotypes.....................................................................................48 
 
Figure S5. Related to Figure 5. Effects of re-introducing retinoic acid during endocrine cell 

differentiation with and without prior LSD1 inhibition.....................................................50 
 
Figure S6. Related to Figure 6. Phenotypic characterization of Lsd1Δpan mice................................52 
 
Figure 7. Pancreatic Differentiation of hESCs.................................................................................73 
 
Figure 8. Knockdown of NGN3 Prevents Formation of hESC-derived Pancreatic Endocrine 

Cells...............................................................................................................................74 
 
Figure 9. Overexpression of NGN3 at Different Times During Pancreatic Differentiation of 

hESCs............................................................................................................................75 
 
Figure 10. Overexpression of NGN3 in Magnetically Sorted CD142+ Pancreatic Progenitors.........76 
  

x xi x 



LIST OF TABLES 

Table 1. Chromosomal coordinates of 612 RXR-bound G1 enhancers identified in the early 
pancreatic progenitor (PP1) stage of pancreatic differentiation of hESCs........................54 

 
Table 2. 634 genes associated with RXR-bound G1 enhancers.....................................................55 
 
Table 3. Subset of 74 genes from the 634 genes associated with RXR-bound G1 enhancers........57 
 
Table 4. Example commands and software packages used for ChIP- and RNA-seq data analysis 

workflow..........................................................................................................................58 
  

xi 



LIST OF SUPPLEMENTAL FILES 

vinckier_supplemental_tables.xlsx 

Table S1. 

Table S2. 

Table S3. 

Table S4. 

Table S5. 

Table S6. 

  

xii 



ACKNOWLEDGEMENTS 

I would first like to thank my doctoral advisor, Dr. Maike Sander, for her support and 

guidance during my dissertation studies. I am also extremely grateful for the encouragement I 

received from the rest of the Sander Lab. In particular, I want to thank Dr. Allen Wang for his superb 

mentorship, Fenfen Liu for her impressive lab management skills, we would all be lost without you, 

and Tommy Harper, M.S., for the scientific discussions during early morning surf sessions. I would 

also like to thank my advancement and dissertation committee: Dr. Sylvia Evans, Dr. Lawrence 

Goldstein, Dr. Karl Willert, Dr. Eugene Yeo. Thank you all for your time, suggestions and advice; I 

greatly appreciate all your help. I also thank the professors and administration of Biomedical 

Sciences Graduate Program. 

Chapter 1 includes material that is currently being prepared for submission for publication, 

Vinckier, Nicholas; Patel, Nisha; Wang, Allen; Wang, Jinzhao; Carrano, Andrea; Benner, 

Christopher and Sander, Maike. “LSD1-mediated Decommissioning of Developmental Enhancers 

is Required for Proper Pancreatic Endocrine Formation”. The dissertation author was the primary 

investigator and author of this material. This work was supported by funds granted to MS from the 

National Institutes of Health, Pediatrics Diabetes Research Consortium and the California Institute 

for Regenerative Medicine. 

Chapter 2 includes material of which the dissertation author was the primary investigator 

and author. This work was supported by funds granted to MS from the National Institutes of Health, 

Pediatrics Diabetes Research Consortium and the California Institute for Regenerative Medicine. 

In addition to these sources, NKV was also supported, in part, by the UCSD institutional Cancer 

Cell Biology training grant, from the National Institutes of Health. 

Appendix, in full, is a reprint of material as it appears in Vinckier, Nicholas; Jinzhao, Wang 

and Sander, Maike. "Pancreatic Differentiation from Human Pluripotent Stem Cells." Working with 

Stem Cells. Ed. Henning Ulrich, Ed. Priscilla Davidson Negraes. Switzerland: Springer International 

Publishing, 2016. 257-275. The dissertation author was the primary investigator and author of this 

material.  

xiii 



VITA 

EDUCATION 
 
2010 – 2017. University of California at San Diego 

 Doctor of Philosophy, Biomedical Sciences Graduate Program 
 
2003 – 2008. University of California at Santa Barbara 

 Bachelor of Science, Biochemistry with Honors 
 Spanish Minor 

 
WORK EXPERIENCE 
 
September 2010 – Present. Graduate Student Researcher, Dr. Maike Sander, UC San Diego 

 Dissecting the role of the chromatin modifying enzyme LSD1 during human pancreatic 
endocrine development using in vitro differentiation of human pluripotent stem cells to 
pancreatic lineages. 

 Investigation of the spatial and temporal role of neurogenin3 in proper pancreatic 
endocrine development. 

 Utilization of in vitro pancreatic differentiation protocols to manipulate gene expression 
and timing during pancreatic differentiation of hPSCs. 

August 2009 – September 2010. Research Assistant, Dr. Stanley M. Parsons, UC Santa Barbara 
 Characterization of γ-hydroxybutyrate dehydrogenase (GHB-DH) for development of 

simple test for presence of γ-hydroxybutyrate (GHB). 
 Isolation of enzyme from over-expressing E. coli cell cultures using affinity 

chromatography. 
 Perform initial velocity and enzyme kinetics studies via UV/Vis Spectroscopy and 

computer analysis of data including nonlinear regression. 
 Perform metal ion analysis of enzyme isolations via ICP spectroscopy. 
 Perform 3H based radiometric assays measuring acetylcholine uptake in vesicular 

acetylcholine transporter. 
June 2008 – July 2009. Laboratory Assistant, UC Santa Barbara 

 Maintained chemical and laboratory supplies and general cleanliness of the laboratory. 
 Assisted graduate students in research by maintaining stocks of necessary chemicals, 

solutions, and various growth media. 
 Performed monthly radiation tests and cleanings to ensure laboratory complied with 

University Radiation Safety requirements. 
June 2009 – August 2009. Summer Research Mentor, UC Santa Barbara 

 Taught high school students research techniques, data collection and analysis 
procedures. 

 Assisted students in the writing of research papers, and presentation of findings to an 
audience. 

 Engaged students in learning about chemistry and biochemistry. 
 
PUBLICATIONS 
 

 Vinckier, N. et al. "Pancreatic Differentiation from Human Pluripotent Stem Cells." 
Working with Stem Cells. Ed. Henning Ulrich, Ed. Priscilla Davidson Negraes. 
Switzerland: Springer International Publishing, 2016. 257-275. 

 Vinckier N. K., Chworos A., Parsons S. M. (2011). Improved isolation of proteins tagged 
with glutathione S-transferase. Protein Expr. Purif. 75 161–164 
10.1016/j.pep.2010.09.006. 

 

xiv 



LABORATORY SKILLS 
 Chromatin immunoprecipitation of DNA-associated proteins for deep sequencing (ChIP-

seq). 
 Computational analysis of next generation sequencing data generated from ChIP-seq 

and RNA-seq. 
 Human embryonic and induced pluripotent stem cell culture and differentiation, human 

cell genome editing using TALEN and CRISPR/Cas systems, DNA plasmid and siRNA 
transfection and electroporation 

 Generation of lentiviral vectors for gene misexpression and knockdown in human cells. 
 Isolation and analysis of specific cell types using FACS, immunofluorescent 

cytochemistry, qRT-PCR. 
 Bacterial cell culture, chromatographic enzyme isolation, Bradford assay, SDS-PAGE, 

UV/Vis, IR, 1H-NMR, and Inductively Coupled Plasma (ICP) spectroscopy. 
 DNA and Protein isolation and characterization using 1D and 2D gel electrophoresis, 

Western blot, DNA mutation and amplification using PCR and restriction digests. 
 

COMPUTER EXPERIENCE 
 Skilled in operating Microsoft Windows (Windows 98 through Windows 10) and UNIX 

based operating systems including Mac OS X, Ubuntu Linux and Cygwin for Windows. 
 Proficient in bash shell, R/R-studio, Excel, Word, PowerPoint and OneNote, Adobe 

Photoshop and Illustrator CS5.1. 
 Skilled in various bioinformatics software tools and modules including: HOMER, 

Bedtools, MACS, Bowtie2, STAR, diffReps and DESeq. 
 Basic understanding of Python programming language. 

 
AWARDS & HONORS 

 Awarded graduate student travel grant for the 2013 Beta Cell Biology Consortium 
Investigator Retreat. 

 Phi Lambda Upsilon National Honorary Chemical Society. UC Santa Barbara Department 
of Chemistry & Biochemistry (2008-2009). 

 Phi Beta Kappa 
 

REFERENCES (Contact information available upon request) 
 Sander, Maike M.D. – Thesis Advisor. Professor, Depts. of Pediatrics and Cellular & 

Molecular Medicine. UC San Diego 
 Wang, Allen Ph.D. – Graduate research mentor. Postdoctoral researcher, Dept of 

Pediatrics. UC San Diego 
 Lawrence S.B. Goldstein Ph.D. – Professor, Dept. of Cellular & Molecular Medicine. UC 

San Diego 
 Parsons, Stanley Ph.D. – Professor, Dept. of Chemistry and Biochemistry. UC Santa 

Barbara 
 

xv 



ABSTRACT OF THE DISSERTATION 

 

Histone demethylase LSD1: Connecting developmental signals, chromatin, and cell response 

 

by 

 

Nicholas Kyle Vinckier 

 

Doctor of Philosophy in Biomedical Sciences 

 

University of California, San Diego, 2017 

 

Professor Maike Sander, Chair 

 

 Over the course of development, regulation of gene transcription is the main mechanism 

by which pluripotent stem cells become restricted to the various distinct cell types found in the 

mature organism. Among the many different processes that regulate gene transcription, is the 

control of physical access to DNA and the genes for which it codes. DNA wound around histone 

proteins forms chromatin and the enzymes that modify the landscape of that chromatin control 

which regulatory elements, like promoters and enhancers, are active. This process confers different 

developmental competencies in cells, enabling them to respond uniquely to similar environmental 

and developmental signals, regulating gene transcription in turn. The study of these processes 

during in vitro differentiation of stem cells has enabled us and others to draw links between 

xvi 



chromatin remodelers, transcription factors and cellular response to inductive cues during human 

development. 

In Chapter 1, I explore the role of the lysine-specific demethylase (LSD1) during human 

pancreatic development using an in vitro system to differentiate human embryonic stem cells 

(hESCs) to the pancreatic endocrine lineage. Removal of LSD1 activity during a specific early time 

window of pancreatic development prevents endocrine formation. Investigation into enhancer 

regions occupied by LSD1 during this critical time window provided results that support a model in 

which LSD1-mediated decommissioning renders these enhancers insensitive to activation by 

external retinoic acid signaling. 

In Chapter 2, I report my previous work dissecting the role of the transcription factor 

neurogenin-3 (NGN3) during human pancreatic development. Using the aforementioned hESC-

based in vitro differentiation system, gain and loss-of-function studies showed that NGN3 is both 

necessary and sufficient to induce endocrine formation in human cells. 

A final supplemental chapter provides an example of a hESC-based pancreatic 

differentiation protocol similar to the one employed for the studies outlined in Chapters 1 and 2 and 

discusses the importance of such model systems in dissecting the myriad mechanisms of human 

disease and development.

xvii 



INTRODUCTION 

The human genome is vast, both in the seemingly infinite versions of various traits for which 

it codes, and its cumulative physical length. Each copy of the human genome contains over three 

billion base pairs coding for over 19,000 genes (Morton 1991, Kent, Sugnet et al. 2002, Annunziato 

2008). The sequences coding for these genes are interspersed throughout the genome, separated 

by non-coding intra- and intergenic regions. Many of the non-coding regions contain regulatory 

sequences that recruit various proteins and function to promote, inhibit, insulate and enhance 

transcription of protein coding genes (Wolffe and Pruss 1996). The highly complex string of DNA 

bases contained within a single cell, if arranged end-to-end, would cover a distance of 2 meters 

(Annunziato 2008). To accommodate this great length within the nucleus of a cell, chromosomal 

DNA is coiled around histone protein complexes forming units called nucleosomes. These 

repeating nucleosome units form a “beads on a string” structure that tightly condenses the DNA 

inside the cell nucleus. Nucleosome complexes of histones and DNA and other associated proteins 

are commonly referred to as chromatin (Wolffe and Pruss 1996, Wolffe 2000, Annunziato 2008). In 

addition to tightly packaging the genome into the cell nucleus, this chromatin plays an important 

role in regulating gene expression by controlling the physical accessibility of genes and their 

regulatory sequences to transcriptional machinery (Lee, Hayes et al. 1993, Garcia-Ramirez, 

Rocchini et al. 1995, Wolffe and Pruss 1996, Koch, Andrews et al. 2007, Rossetto, Avvakumov et 

al. 2012, Thurman, Rynes et al. 2012). Rearrangement of histones along a DNA strand can regulate 

transcription of genes by exposing or sequestering these regulatory regions and actual gene coding 

sequences as well (Rossetto, Avvakumov et al. 2012, Shen, Yue et al. 2012). These 

rearrangements are facilitated by covalent post-translation modifications on the tails of histones 

(Garcia-Ramirez, Rocchini et al. 1995, Wolffe and Pruss 1996, Ernst, Kheradpour et al. 2011, Tan, 

Luo et al. 2011). A classic example of this process is the acetylation of lysine 27 on histone H3 

(H3K27ac). The H3K27ac modification is associated with active regulatory elements such as 

promotors and gene-distal regulatory elements called enhancers (Wolffe and Pruss 1996, 

Creyghton, Cheng et al. 2010, Ernst, Kheradpour et al. 2011). At enhancers, the H3K27ac 
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modification aids in driving transcription of target genes by making DNA accessible to TFs and 

other DNA-binding protein complexes involved in gene transcription (Wolffe and Pruss 1996, 

Grunstein 1997, Koch, Andrews et al. 2007, Shlyueva, Stampfel et al. 2014). Increasingly, research 

demonstrates the importance of regulatory regions like enhancers and their chromatin state and 

the vital roles they play in proper cell differentiation and function (Rada-Iglesias, Bajpai et al. 2011, 

Whyte, Bilodeau et al. 2012, Xie, Everett et al. 2013, Wang, Yue et al. 2015). 
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CHAPTER 1 - THE ROLE OF LSD1 IN CONNECTING TRANSIENT 

DEVELOPMENTAL SIGNALS AND CELL RESPONSE VIA CHROMATIN REMODELING 

 

ABSTRACT 

 The question of how pluripotent stem cells with identical genomes can develop into the 

various different cell types within a mature organism remains largely unanswered. Many methods 

of gene regulation exist, which ensure proper differentiation of stem cells to their respective cell 

fates. The role of chromatin and the enzymes that remodel it have been increasingly implicated in 

controlling how cells respond to developmental signals and the downstream effect on gene 

transcription during development. The lysine-specific demethylase (LSD1) is one such chromatin 

remodeling enzyme that has been shown to play a vital role in stem cell maintenance and 

differentiation. Here, we investigate the role of LSD1 during human pancreatic development using 

an in vitro system to differentiate human embryonic stem cells (hESCs) to the pancreatic endocrine 

lineage. We find that removal of LSD1 activity during a specific early time window of pancreatic 

development prevents endocrine formation in both humans and mice. Exploration into the genomic 

regions where LSD1 acts during this time window provided evidence for a mechanism wherein 

LSD1 decommissions retinoic acid (RA)-induced enhancers, rendering them insensitive to further 

activation by RA signals, ensuring proper timing of down-regulation of target genes. Here, we show 

the utility of in vitro differentiation systems in studying human development and provide data 

supporting a model in which the chromatin remodeler LSD1 reshapes the chromatin landscape 

altering the developmental competence of differentiating cells. These results provide an example 

of the crucial link between chromatin state and cellular response to developmental signals. 

 

INTRODUCTION 

For multicellular organisms, such as humans, to develop properly, stem cells must 

differentiate into multiple specialized cells. Stem cells by definition are capable of becoming any 

one of the many cell types of the human body (Jaenisch and Young 2008, Hanna, Saha et al. 2010, 
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Rada-Iglesias and Wysocka 2011). Each of the unique and highly specialized cell types within an 

individual contain identical genomic DNA sequences within their respective nuclei (Ernst, 

Kheradpour et al. 2011). This raises the question of how stem cells, indistinguishable from one 

another, can go down such divergent paths to become distinct cell types with completely different 

functional roles. Lineage-determining transcription factors (TFs) play a major role in controlling the 

fates of these multipotent cells by binding to regulatory elements such as gene promoters and distal 

regulatory elements called enhancers to promote target gene transcription (Jaenisch and Young 

2008, Heinz, Benner et al. 2010, Ernst, Kheradpour et al. 2011, Shen, Yue et al. 2012). However, 

the presence of lineage-specific TFs alone cannot account for the various distinct cell types that 

emerge from a common multipotent progenitor pool. To give rise to the numerous types of 

terminally differentiated cells, stem cells, and the lineage intermediates stemming from them, must 

respond to a range of inductive cues throughout embryonic development (Schuldiner, Yanuka et 

al. 2000, Linker and Stern 2004, Heinz, Benner et al. 2010). The timing, duration and localization 

of TF activity and other inductive signals is crucial to proper differentiation, but is not enough to 

explain how and why cells can respond differently to those signals. Increasingly, research into this 

question implicates the chromatin landscape as a major gatekeeper capable of controlling cellular 

response to inductive cues (Shogren-Knaak, Ishii et al. 2006, Heintzman, Hon et al. 2009, Heinz 

and Glass 2012, Pham, Minderjahn et al. 2013, Xie, Everett et al. 2013, Heinz, Romanoski et al. 

2015, Wang, Yue et al. 2015). 

In addition to the aforementioned H3K27ac modification and its role in aiding transcription, 

another example of a histone modification that can modulate target gene expression is the mono-, 

di- and tri-methylation of lysine 4 on histone H3 (H3K4me1/me2/me3). Along with H3K27ac, the 

H3K4me3 modification is associated with active promoters (Bernstein, Mikkelsen et al. 2006, Kim 

and Shiekhattar 2015) whereas the H3K4me1 and H3K4me2 marks are more frequently associated 

with enhancers (Creyghton, Cheng et al. 2010, Heinz, Benner et al. 2010, Wang, Yue et al. 2015). 

Concurrent H3K27ac and H3K4me1/me2 marks are indicative of active enhancers (Heinz and 

Glass 2012, Whyte, Bilodeau et al. 2012, Wang, Yue et al. 2015), while enhancers presenting the 
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H3K4me1/me2 modifications alone, are said to be in a “poised” state, ready to be activated upon 

H3K27ac addition (Heinz, Benner et al. 2010, Whyte, Bilodeau et al. 2012, Wang, Yue et al. 2015). 

Histone modifications such as these are mediated by chromatin modifying enzymes that can add 

or remove acetyl groups, methyl groups, phosphates, and ubiquitin on histones (Ernst, Kheradpour 

et al. 2011, Tan, Luo et al. 2011, Thurman, Rynes et al. 2012). It is likely that these chromatin 

remodelers are critical to the cell’s acquisition of developmental competence, the ability of 

multipotent cells respond appropriately to inductive signals from their environment. One chromatin 

remodeling enzyme that has been shown to play an important role in embryonic development is 

the histone demethylase LSD1 (Wang, Hevi et al. 2009, Foster, Dovey et al. 2010, Nair, Ge et al. 

2012, Whyte, Bilodeau et al. 2012, Wang, Yue et al. 2015). LSD1 is a lysine-specific demethylase 

capable of removing mono- and di-methylation modifications from histone H3 (Shi, Lan et al. 2004, 

Wang, Lu et al. 2011, Laurent, Ruitu et al. 2015). Knockout of Lsd1 in mice results in embryonic 

lethality (Wang, Scully et al. 2007) and its activity has been shown to be vital for proper 

maintenance and differentiation of numerous pluripotent cells types from both mice and humans, 

including embryonic, neural, and hematopoietic stem cells (Forneris, Binda et al. 2006, Su, Ying et 

al. 2009, Sun, Alzayady et al. 2010, Zibetti, Adamo et al. 2010, Adamo, Sese et al. 2011, Nair, Ge 

et al. 2012, Whyte, Bilodeau et al. 2012, Kerenyi, Shao et al. 2013, Laurent, Ruitu et al. 2015). 

Research into possible mechanisms through which LSD1 controls cell differentiation has 

identified several roles, including removal of repressive H3K9 mono- and di-methylation marks 

(Metzger, Wissmann et al. 2005, Sun, Alzayady et al. 2010) as well as removal of H3K4 mono- and 

di-methylation at certain enhancers, a process referred to as “decommissioning” (Whyte, Bilodeau 

et al. 2012, Kerenyi, Shao et al. 2013). Whyte and colleagues posited that LSD1-mediated 

decommissioning of certain enhancers, is required to fully suppress genes associated with those 

enhancers. Indeed, when LSD1 was inhibited in stem cells a retention of H3K4 mono- and di-

methylation at LSD1-bound enhancers was observed, which coincided with a failure to fully 

downregulate expression of genes associated with those enhancers (Whyte, Bilodeau et al. 2012). 

The subsequent disruption of stem cell maintenance and differentiation was attributed to the failure 
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to decommission these enhancers as a result of LSD1 inhibition. These studies have demonstrated 

a clear link between LSD1-mediated modifications of the chromatin state within a variety of cell 

types, and the ability of those cells to properly function and differentiate. In addition, because LSD1 

activity has been implicated in the proper differentiation of multiple cell lineages, including neurons, 

muscle, blood and adipocytes (Peng, Yerle et al. 2009, Li, Sun et al. 2012, Nair, Ge et al. 2012, 

Xiong, Wang et al. 2016) it is likely that LSD1 plays critical roles in other developmental contexts, 

such as pancreas development. It has been shown that lineage-specific chromatin states confer 

developmental competence in lineage intermediates during pancreatic endocrine differentiation 

(Wang, Yue et al. 2015). This process is critical for proper differentiation and is precisely controlled 

by myriad chromatin modifying enzymes. Previous research has suggested that, in addition to the 

activation and deactivation (addition and removal of H3K27ac) of enhancers, the poising and 

decommissioning (addition and removal of H3K4me1 and H3K4me2) of enhancers plays a vital 

role in ensuring lineage intermediates acquire the developmental competence to become properly 

differentiated cells (Mercer, Lin et al. 2011, Rada-Iglesias and Wysocka 2011, Kaikkonen, Spann 

et al. 2013, Heinz, Romanoski et al. 2015, Wang, Yue et al. 2015). Because LSD1 is known to 

decommission enhancers (Whyte, Bilodeau et al. 2012), and is important for development of a wide 

variety of cell types and tissues, it seemed likely that LSD1 could be one of the chromatin modifiers 

responsible for proper differentiation to the pancreatic endocrine fate. Here, we investigate the 

chromatin remodeling enzyme LSD1 and its role in reshaping the chromatin landscape during 

human pancreatic endocrine development. 

In order to investigate the complexities of human development and disease, researchers 

have turned to the rapidly advancing field of in vitro differentiation of human pluripotent stem cells 

(hPSCs) (Avior, Sagi et al. 2016). With the ability to generate hPSCs from adult somatic cells, it is 

becoming commonplace to differentiate hPSCs derived from individuals with a particular disease 

and assess how those cells behave differently from hPSCs derived from unaffected individuals 

(Takahashi and Yamanaka 2006, Yamanaka 2007, Yamanaka and Blau 2010, Papp and Plath 

2013). With the use of increasingly sophisticated gene editing technologies, researchers can now 
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correct mutations in diseased hPSCs and observe the reversal of the disease state (Xie, Ye et al. 

2014, Hockemeyer and Jaenisch 2016, Zhang, Schmid et al. 2017). Moreover, mutations relevant 

to a disease can be introduced into healthy hESCs and those modified cells can then be 

differentiated to determine how a specific mutation contributes to a particular disease. Individuals 

afflicted by the disease diabetes mellitus stand to benefit greatly from such hPSC-based 

differentiation protocols. Diabetes is characterized by the inability to regulate blood glucose 

homeostasis and is caused by the loss or dysfunction of the insulin-secreting beta cell within the 

islets of Langerhans in the pancreas. Cadaveric islet transplantations have been shown to reverse 

diabetes (Shapiro, Ricordi et al. 2006), which, together with the fact that diabetes typically results 

from the dysfunction of a single cell type, makes the disease a prime candidate for cell-replacement 

therapies. clinical trials for which are currently ongoing (Motte, Szepessy et al. 2014, Schulz 2015). 

Although animal models of diabetes have proven invaluable resources for increasing our 

understanding of pancreas development and diabetes pathogenesis in vivo, hPSC-based in vitro 

pancreatic differentiation systems provide the unique ability to dissect the earliest stages of 

development and can provide virtually limitless material for analysis (Keller 2005). Moreover, the 

ability to generate functional beta cells from hESCs entirely in vitro (Russ, Sintov et al. 2011, 

Pagliuca, Millman et al. 2014, Rezania, Bruin et al. 2014), provides an ideal model system to study 

the proper differentiation and function of the human beta cell. In order to reap the many benefits 

promised by in vitro modeling of diseases like diabetes, it is necessary to first understand how 

healthy cells differentiate and function under normal conditions. The advent of robust hPSC-based 

in vitro differentiation systems has provided researchers with the tools necessary to study any 

number of human diseases and developmental processes entirely in vitro. These systems allow for 

extremely high-resolution spatiotemporal assays of the cell state, enabling the study of complex 

and intricate mechanisms of cellular differentiation on a scale not possible in any other model 

system. By employing one such system, capable of efficiently generating pancreatic endocrine cells 

from human embryonic stem cells (hESCs) (Schulz, Young et al. 2012, Xie, Everett et al. 2013, 

Wang, Yue et al. 2015), we investigated the role of LSD1 in the context of human pancreatic 
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endocrine development, and have begun to dissect the mechanisms by which LSD1 modulates 

developmental competence of cells through remodeling of the chromatin landscape. 
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RESULTS 

Human Endocrine Cell Development Requires LSD1 Activity during a Narrow Time Window early 

in Pancreas Development 

To investigate if LSD1 plays a role during human pancreatic endocrine development, we 

first determined whether LSD1 is expressed during normal human pancreas development. We 

observed high levels of LSD1 expression in human fetal donor (55 days post-conception; dpc) 

pancreatic progenitor cells identified by co-expression of SOX9 and PDX1 (Figure 1A). Additionally, 

co-expression of LSD1 and the endocrine cell marker chromogranin A (CHGA) was observed in 

both human fetal donor (94 dpc) endocrine progenitors and human adult donor (22 years old) islets 

of Langerhans (Figure 1A). LSD1 expression was also observed in multiple endocrine subtypes 

within human adult donor islets, including insulin (INS) expressing beta cells, glucagon (GCG) 

expressing alpha cells, and somatostatin (SST) expressing delta cells (Figure S1A). Using an in 

vitro system to differentiate human embryonic stem cells (hESCs) in a stepwise manner toward the 

pancreatic endocrine cell fate (Schulz, Young et al. 2012, Xie, Everett et al. 2013, Wang, Yue et al. 

2015), we also observed robust LSD1 expression throughout all stages of pancreatic differentiation 

(Figure S1B-S1C). 

Given our observation of LSD1 expression during pancreas development both in vivo and 

in vitro, and the known requirement for LSD1 in proper stem cell differentiation in other contexts 

(Sun, Alzayady et al. 2010, Zibetti, Adamo et al. 2010, Adamo, Sese et al. 2011, Wang, Lu et al. 

2011, Li, Sun et al. 2012, Nair, Ge et al. 2012, Whyte, Bilodeau et al. 2012, Laurent, Ruitu et al. 

2015, Duteil, Tosic et al. 2016), we hypothesized that LSD1 could play a critical role in human 

pancreatic endocrine formation. To assess this, we used the irreversible LSD1 inhibitor 

tranylcypromine (TCP) to block LSD1 activity during directed differentiation of hESCs to pancreatic 

endocrine cells (Figure 1B). Initial attempts to knockdown LSD1 at the ES stage prevented 

progression to the later stages and often resulted in cell death, precluding any study of the role(s) 

of LSD1 at later stages of endocrine differentiation (data not shown). Previous reports have similarly 

shown that LSD1 inhibition in stem cells prevents proper exit from the stem cell state (Sun, 
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Alzayady et al. 2010, Adamo, Sese et al. 2011, Nair, Ge et al. 2012, Whyte, Bilodeau et al. 2012). 

We were therefore prompted to disrupt LSD1 activity during the later stages of differentiation, 

particularly during the formation of pancreatic progenitor and endocrine cells. We first inhibited 

LSD1 during the transition from early (PP1) to late (PP2) pancreatic progenitor stages (LSD1iearly; 

Figure 1B) to determine whether LSD1 is required for proper formation of PP2. Expression of key 

progenitor marker proteins NKX6.1 and PDX1 were largely unaffected in LSD1iearly PP2 cells 

(Figure S1D-S1E). When LSD1iearly cells were further differentiated to the endocrine (EN) stage, 

NKX6.1 and PDX1 expression were again largely unaffected, however no hormone expression was 

observed (Figure 1C-1E), indicating that LSD1 inhibition at this early stage blocked formation of 

endocrine cells. Interestingly, later inhibition of LSD1 during the transition from PP2 to EN cells 

(LSD1ilate; Figure 1B) had no effect on EN cell formation, evidenced by the expression of the 

pancreatic hormones INS, GCG, and SST (Figure 1C-1E). The proteins NKX6.1 and PDX1, which 

continue to be expressed in cells past the progenitor stage and in mature beta cells, were also 

unaffected by the later LSD1 inhibition (LSD1ilate) (Figure 1C-1E). These data indicate that inhibition 

of LSD1 activity is required during the PP1 to PP2 transition to properly form endocrine cells, but 

its activity during the PP2 to EN transition is dispensable for endocrine formation. This suggests 

there is a critical time window in which LSD1 activity is required for generation of endocrine cells 

from hESCs.  

 

LSD1 Inhibition Prevents Enhancer Decommissioning 

To understand why endocrine cell formation requires LSD1 activity during the earlier PP1 

to PP2 transition, but not the later PP2 to EN transition, we performed chromatin 

immunoprecipitation sequencing (ChIP-seq) for LSD1 at the PP1 stage to identify regions in the 

genome where LSD1 could be acting during this stage of differentiation. We identified 15,084 

LSD1-bound peaks (Table S1) throughout the genome (Figure S2A). Of these, 3,285 were proximal 

(< 3 kb) to a transcription start site (TSS) and 11,799 were distal (> 3kb) to any TSS (Tables S2 

and S3, respectively). Because LSD1 is known to associate with and modify enhancers (Whyte, 
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Bilodeau et al. 2012, Kerenyi, Shao et al. 2013) and cell type-specific enhancers are known to 

determine cell lineages (Heintzman, Hon et al. 2009, Heinz and Glass 2012, Heinz, Romanoski et 

al. 2015, Romanoski, Link et al. 2015, Wang, Yue et al. 2015), we investigated the distal regions 

bound by LSD1, which comprise the majority (~78%) of LSD1 peaks at the PP1 stage.  

To begin to characterize the chromatin states during the PP1 to PP2 transition, we 

performed ChIP-seq for H3K27ac at the PP1 and PP2 stages. Because the H3K27ac modification 

has been widely shown to be a faithful indicator of active enhancers (Heintzman, Hon et al. 2009, 

Creyghton, Cheng et al. 2010, Zentner, Tesar et al. 2011, Zentner and Scacheri 2012), we used it 

here to categorize distal LSD1 peaks at PP1 into one of three enhancer groups (Figure 2A). The 

enhancer groups were defined as follows: Group 1 (G1) consists of LSD1-bound regions where 

H3K27ac decreases ≥ 2-fold from PP1 to PP2; Group 2 (G2) consists of LSD1-bound regions where 

H3K27ac does not change more than 2-fold (either increase or decrease) from PP1 to PP2; Group 

3 (G3) consists of LSD1-bound regions where H3K27ac increases ≥ 2-fold from PP1 to PP2 (Figure 

2A and Tables S4-S6). In essence, G1 enhancers deactivate from PP1 to PP2, G2 enhancers 

remain active from PP1 to PP2, and G3 enhancers become active from PP1 to PP2. LSD1 ChIP-

seq revealed that LSD1 binding remains unchanged from PP1 to PP2 at G2 and G3 enhancer 

regions, but is largely decreased at G1 enhancers during this transition (Figure 2B). To further 

characterize the groups of LSD1-bound enhancers we next performed ChIP-seq for H3K4me1 and 

H3K4me2 at the PP1 and PP2 stages. Along with the H3K27ac mark, H3K4me1 and H3K4me2 

are very often observed at active enhancers (Heinz and Glass 2012, Whyte, Bilodeau et al. 2012, 

Heinz, Romanoski et al. 2015, Wang, Yue et al. 2015). Enhancers that possess these marks, but 

lack H3K27ac are said to be in a “poised” state; ready to be activated following H3K27ac addition, 

or decommissioned through removal of methylation from H3K4 (Creyghton, Cheng et al. 2010, 

Rada-Iglesias, Bajpai et al. 2011, Whyte, Bilodeau et al. 2012, Wang, Yue et al. 2015). 

Furthermore, LSD1 is known to demethylate both H3K4me1 and H3K4me2, and although H3K9 

mono- and di-methylation are substrates of LSD1 (Metzger, Wissmann et al. 2005, Wissmann, Yin 

et al. 2007, Zibetti, Adamo et al. 2010, Laurent, Ruitu et al. 2015), we observed no expression of 
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the transcript encoding the H3K9 demethylating isoform of LSD1 (LSD1+8a) (data not shown). We 

therefore specifically assayed for mono- and di-methylation of H3K4 and not H3K9. Both H3K4me1 

and H3K4me2 levels are significantly decreased from PP1 to PP2 at G1 enhancers (Figure 2C), 

further evidence this group can be classified as “deactivating” during this transition. Similarly, 

changes in H3K4me1 and H3K4me2 from PP1 to PP2 at G2 and G3 enhancers support their 

classifications of “remaining active” and “activating”, respectively. To determine if the normal 

demethylation of H3K4 seen in G1 enhancers was dependent upon LSD1 activity, we next 

performed ChIP-seq for H3K4me1 and H3K4me2 in LSD1iearly PP2 cells. Indeed, when LSD1 was 

inhibited at PP1 there was a failure to remove both H3K4me1 and H3K4me2 marks in G1 (Figure 

2D; compare blue and red plot lines). These data suggest that, during the PP1 to PP2 transition, 

LSD1 acts to decommission G1 enhancers, but not G2 and G3 enhancers, through removal of 

H3K4 mono- and di-methylation before vacating those regions. Interestingly, H3K27ac ChIP-seq 

in LSD1iearly PP2 cells revealed that the deactivation of G1 enhancers (H3K27ac removal) was not 

disrupted by LSD1 inhibition (Figure 2D), suggesting that the deactivation of these enhancers can 

be decoupled from their decommissioning. This evidence supports models from previous reports 

that proposed enhancer deactivation and decommissioning as two separate events, each with an 

important role in enhancer regulation (Koch, Andrews et al. 2007, Whyte, Bilodeau et al. 2012). A 

similar decoupling of H3K27ac and H3K4 methylation states was also seen in G2 and G3 

enhancers (Figure S2B). All together these results suggest the existence of a set of LSD1-bound 

enhancers that are typically deactivated and decommissioned during the PP1 to PP2 transition 

under normal differentiation conditions (G1 enhancers). When LSD1 is inhibited during this 

transition the deactivation events still occur at G1 enhancers, but the subsequent decommissioning 

is blocked, leaving the enhancers in a poised state (Figure 2E). We therefore hypothesized that 

maintenance of G1 enhancers in a poised state at PP2 as a result of LSD1 inhibition at PP1 could 

affect the expression of genes associated with these enhancers. 

 

LSD1 Represses Transiently Expressed, Retinoic Acid-Dependent Genes 
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To better comprehend the nature of G1 enhancers and their role in controlling target gene 

expression, we first annotated transcription factor (TF) binding motifs at LSD1 bound enhancers. 

Motif enrichment analysis was performed with HOMER (Heinz, Benner et al. 2010) using the 

combined set of G2 and G3 enhancers as the background over which enrichment was calculated. 

We found that the motif for retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimer 

(RAR/RXR) was highly enriched in G1 enhancers (Figure 3A). When retinoic acid binds to RAR, 

the RAR/RXR heterodimer associates with coactivating proteins, which, in turn, effect RA-induced 

events within the nucleus, including transcription of target genes and enhancer activation (Mahony, 

Mazzoni et al. 2011, Rhinn and Dolle 2012, Cunningham and Duester 2015). Because there are 

multiple isoforms of RAR that can heterodimerize with multiple isoforms of RXR, we used a pan-

RXR binding antibody to perform ChIP-seq for RXR in PP1 cells to identify all regions where RA 

might be able to elicit a response by binding to one of the various isoforms of RAR within a 

RAR/RXR heterodimer. We found that 45.5% of G1 enhancers were co-occupied by RXR 

(612/1345; compared to an expected 5.6% by random chance), within ± 10kb of the center of the 

corresponding LSD1 peak, at the PP1 stage (Figure 3B and Table 1). We also found overlapping 

RXR binding with G2 and G3 enhancers to be higher than expected by random chance; however, 

the amount of overlap with G1 enhancers was significantly higher than that observed in G2 and G3 

enhancers (Figure S3A). We further analyzed the RXR-bound G1 enhancers and found that this 

subset of enhancers normally undergoes a sharp increase in H3K27ac during the gut tube (GT) to 

PP1 transition, followed by an equally abrupt decrease in H3K27ac from PP1 to PP2 (Figure 3C). 

This acute acetylation and deacetylation of RXR-bound G1 enhancers coincides precisely with the 

addition and removal of exogenous RA in the cell culture media, as part of the normal differentiation 

protocol (Figure 3C) (D'Amour, Bang et al. 2006, Kroon, Martinson et al. 2008, Schulz, Young et 

al. 2012). This suggests that these enhancers follow an RA-dependent activation pattern. Notably, 

the large decrease in H3K27ac from PP1 to PP2 also occurs when LSD1 is inhibited at PP1 

(LSD1iearly) (Figure 3C) indicating this specific subset of G1 enhancers is still being deactivated 

during this transition, as was seen for G1 as a whole (Figure 2D). Additionally, as occurred at all 
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G1 enhancers, LSD1 inhibition likewise prevented removal of H3K4me1 and H3K4me2 at RXR-

bound G1 enhancers (Figure S3B). 

Our analysis identified 612 RXR-bound G1 enhancers, which we used with the Genomic 

Regions Enrichment of Annotations Tool (GREAT) (McLean, Bristor et al. 2010) to identify 634 

potential target genes (Table 2). To better understand how these RXR-bound G1 enhancers might 

affect target gene expression we performed RNA-seq on GT, PP1, and PP2 control and LSD1iearly 

cells. The RNA-seq data was then analyzed to obtain normalized gene expression levels 

(fragments per kilobase per million mapped reads; FPKM) for each of the genes across the time 

course, from GT to PP1 to PP2 ± LSD1iearly. We next performed k-means cluster analysis on all 

634 genes, based on their expression changes across the GT, PP1, and PP2 differentiation stages, 

to isolate groups of genes that share common expression patterns over this time course. This 

revealed several categories of genes including one group consisting of 95 genes with increased 

expression from GT to PP1 followed by a sharp decrease in expression from PP1 to PP2 (Figure 

3D; yellow bounding box). This expression pattern showed a striking resemblance to the H3K27ac 

pattern observed for the 612 RXR-bound G1 enhancers, and included within it enhancers of several 

genes well-known to be induced by RA, such as HOXA1, HOXB1, RARB, and DHRS3 (Balmer and 

Blomhoff 2002, Balmer and Blomhoff 2005, Kam, Shi et al. 2013). We then queried the entire set 

of 634 genes to identify all genes that exhibited this same RA-dependent expression pattern. 

Specifically, we selected genes with FPKM ≥ 1 at PP1, ≥ 2-fold increase from GT to PP1, and ≥ 2-

fold decrease from PP1 to PP2. Of the 634 genes, 74 met all three criteria (Table 3) of which 74.3% 

(55 of 74) were also included in the group of 95 genes identified through cluster analysis. 

Interestingly, when LSD1 is inhibited at PP1 (LSD1iearly) there is a significant failure to down-

regulate many of the 74 genes (Figure 3F), including several known to be induced by RA (Figure 

S3C). During the PP1 to PP2 transition, LSD1 inhibition does not disrupt the removal of H3K27ac 

from the RXR-bound G1 enhancers associated with these genes, including known RA-induced 

genes like HOXA1, HOXC4, GATA4, and DHRS3 (Figures 3G and S3D), thus allowing deactivation 

of the enhancers. However, when LSD1 is inhibited removal of H3K4me2 is blocked, preventing 



15 

the decommissioning of these enhancers and leaving them in a poised state (Figures 3G and S3D). 

Taken together, these results suggest that LSD1-mediated decommissioning of RXR-bound G1 

enhancers is required to fully repress expression of their target genes. 

 

Prolonged Exposure of early Pancreatic Progenitors to Retinoic Acid Phenocopies LSD1 Inhibition 

Our data indicate that LSD1 is required to convert RXR-bound G1 enhancers from a poised 

to a decommissioned state and that LSD1 inhibition during this transition (LSD1iearly) disrupts that 

process, allowing for continued expression of target genes. Because LSD1 inhibition locks these 

enhancers in a poised state, it is possible they remain receptive activating RA signals, which, in 

turn, could prevent repression of genes that must be silenced after PP1 for proper endocrine 

formation to occur. With this in mind, we hypothesized that prolonged exposure of differentiating 

cells to RA signaling through the PP1 stage (Figure 4A) would be sufficient to prevent repression 

of these same genes and ultimately prevent downstream endocrine formation, mimicking the 

LSD1iearly phenotype. The extended treatment of PP1 cells with RA (RAextended) resulted in an overall 

failure to downregulate the 74 genes within the previously identified group associated with RXR-

bound G1 enhancers. The significantly higher expression of these genes as a whole in RAextended 

PP2 cells mimics the gene dysregulation observed in LSD1iearly PP2 cells. Of the 74 PP1-specific 

genes associated with RXR-bound G1 enhancers, 48 (~65%) failed to be repressed in PP2 cells 

when RA exposure was extended through the PP1 to PP2 transition (RAextended), including several 

of the previously identified genes known to be induced by RA (Figure 4B, 4C and 4SA). 

Remarkably, when RAextended cells were differentiated to the EN stage, almost no expression of 

pancreatic hormone proteins or mRNA was observed (Figures 4D, 4E and S4B). Protein expression 

of NKX6.1 and PDX1 at the EN stage were unaffected by extended RA treatment (Figure 4E and 

S4C). This phenotype was nearly identical to that observed when LSD1 was inhibited in early (PP1) 

pancreatic progenitors (LSD1iearly). The observed phenocopy of LSD1iearly as a result of extended 

RA treatment (RAextended) and the identification of RXR-bound enhancers that are remodeled by 

LSD1, provide evidence in support of the existence of a link between LSD1-mediated 
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decommissioning of RXR-bound G1 enhancers and the cells ability to respond to external RA 

signals. Together, these results suggest the possibility that the mechanism by which LSD1iearly 

prevents the formation of endocrine cells could be mediated by the failure to decommission RXR-

bound G1 enhancers, thus leaving them in a poised state in which they remain susceptible to RA 

signals. This, in turn, prevents the repression of target genes necessary for proper endocrine 

formation. However, there remains the possibility that aberrant RA signaling alone could disrupt 

endocrine formation, in a manner independent of the chromatin state at RXR-bound G1 enhancers. 

 

LSD1 Prevents Aberrant Reactivation of Transient early Retinoic Acid-dependent Genes 

To determine if cells in which G1 enhancers have already been decommissioned are still 

susceptible to RA-induced blockage of endocrine formation, we reintroduced RA into the 

differentiation media during the PP2 to EN transition (RAlate; Figure 5A). Unlike the phenotype 

observed in RAextended EN cells, formation of pancreatic endocrine cells was unperturbed in RAlate 

EN cells (Figure 5B). Expression of NKX6.1 and PDX1 was also unaffected (Figures 5C and S5A), 

and although mRNA levels for the pancreatic hormones INS, GCG and SST decreased as a result 

of RAlate (Figure S5B), respective protein expression appeared similar to controls (Figures 5B and 

5C). In contrast to the up-regulation of PP1-specific genes associated with RXR-bound G1 

enhancers observed in LSD1iearly and RAextended PP2 cells, no significant change was seen for these 

74 genes in RAlate EN cells (Figures 5D and S5C). Surprisingly, several of the previously identified 

genes shown to be induced by RA remained unchanged in RAlate EN cells (Figure 5E). Moreover, 

some of the genes that were increased in RAextended PP2 cells, including DHRS3 and SHH were 

actually decreased in RAlate EN cells (Figure 5E). This indicates that whereas extended RA 

treatment through the PP1 to PP2 transition, the late addition of RA (RAlate) was not sufficient to 

induce the same upregulation of these genes. These data suggest that at different stages of 

differentiation cells respond differently to the same RA signaling molecule, signifying shifts in the 

cellular contexts as cells transition from one lineage intermediate to the next. 



17 

This change in developmental competence was further demonstrated when RA was 

reintroduced to LSD1iearly cells during the PP2 to EN transition (LSD1iearly + RAlate). In this case, 

many of the PP1-specific genes associated with RXR-bound G1 enhancers were up-regulated 

compared to LSD1iearly EN cells (Figure 5H and S5E/I). Perhaps unsurprisingly, late addition of RA 

to LSD1iearly PP2 cells (LSD1iearly + RAlate) resulted in a lack of endocrine cells at the EN stage, 

similar to LSD1iearly alone (Figure 5G). Interestingly, however, while LSD1iearly alone tended to result 

in upregulation of many of 74 PP1-specific genes associated with RXR-bound G1 enhancers, the 

late addition of RA in LSD1iearly PP2 cells (LSD1iearly + RAlate) caused even further upregulation of 

several of these genes (Figure 5E). These results indicate that late addition of RA to PP2 cells 

(RAlate) causes increased expression of many of the PP1-specific genes associated with RXR-

bound G1 enhancers, if LSD1 has been previously inhibited during the transition from PP1 to PP2 

(LSD1iearly). Without prior LSD1 inhibition, this same up-regulation of genes was not observed in 

RAlate EN cells. Together, these data suggest that LSD1 activity during the PP1 to PP2 transition is 

required to prevent reactivation of RA-dependent genes at later stages of differentiation. 

 

Requirement for Lsd1 in Endocrine Cell Formation during a Short Window in early Pancreatic 

Development in mice 

To confirm the phenotype observed during pancreatic differentiation of hESCs in an in vivo 

setting, we mimicked the removal of LSD1 activity using a genetic knockout approach in mice. To 

determine if Lsd1 plays a role in mouse pancreas development, similar to that observed in human 

differentiation, we first analyzed its expression pattern in the developing and adult mouse pancreas. 

We found that, as in humans, Lsd1 is expressed in the early multipotent pancreatic progenitors 

(marked by Pdx1/Sox9 co-expression) in the developing mouse embryo, as well as in embryonic 

and adult endocrine cells. (Figure S6A). Robust Lsd1 expression was also observed in multiple 

endocrine subtypes in adult mouse islets (Figure S6B). To explore the function of Lsd1 during 

mouse pancreas development, we selectively inactivated Lsd1 in early pancreatic progenitor cells 

by generating Pdx1Cre;Lsd1flox/flox (Lsd1Δpan) mice (Figure 6A). In Lsd1Δpan embryos, key aspects of 
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early pancreatic development, such as the induction of early pancreatic markers and outgrowth of 

the tissue buds, were unperturbed (Figure 6B, 6C and S6C). Furthermore, expression of acinar 

and ductal markers, and cell survival were unaffected by Lsd1 deletion (Figure S6C and S6D). 

However, by embryonic day (e) 15.5, when widespread endocrine cell differentiation is evident in 

control mice, Lsd1Δpan embryos exhibited a complete lack of endocrine cells (Figure 6B), which 

remained apparent at birth (Figure 6D). These findings revealed that, as in humans, Lsd1 

inactivation during pancreas development in mice prevents endocrine formation. This suggests that 

Lsd1 is required for endocrine lineage specification in mice.  

To determine if a critical time window exists during which Lsd1 expression is critical for 

proper mouse pancreatic endocrine formation, as was observed during differentiation of hESCs, 

we crossed Lsd1flox/flox and Pdx1CreERTM mice, allowing for time-specific inactivation of Lsd1 in 

pancreatic progenitors via tamoxifen administration (Figure 6E). Tamoxifen injection at e12.5 

(Lsd1Δlate) targeted the multipotent pancreatic progenitor domain shortly before endocrine cell 

differentiation (Seymour and Sander 2011) and did not affect endocrine cell formation, as 

evidenced by the presence of LSD1-deficient hormone+ cell clusters in LSD1 (Figure 6F and S6E). 

By contrast, tamoxifen administration at e10.5 (Lsd1Δearly) resulted in almost complete loss of 

endocrine cells, phenocopying Lsd1Δpan mice (Figure 6F and S6E). Given the delay between 

tamoxifen administration and gene deletion (Nakamura, Nguyen et al. 2006), these results indicate 

a time window between e11 and e13 during which Lsd1 deletion prevents endocrine formation. 

This suggests that Lsd1 activity is required during a specific early time window of mouse pancreas 

development, after which it is dispensable, for proper endocrine cell differentiation. These data 

provide in vivo confirmation of the phenotype observed when LSD1 is inhibited during in vitro 

differentiation of hESCs to the pancreatic endocrine lineage.  

Of the 74 PP1-specific genes associated with RXR- bound enhancers identified in hESC-

based LSD1 inhibition studies, 51 were expressed in either control or Lsd1Δpan mutant mice at 

e13.5. Overall, expression of these genes was increased in Lsd1Δpan compared to controls (Figure 

6G and S6F). Among these 51 genes several showed significant up-regulation in Lsd1Δpan 
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compared to control, including Hoxa1 Hoxc4 and Cadm3 (Figure 6H). All of these were similarly 

found to be up-regulated during LSD1 inhibition and induced by RA treatment in pancreatic 

differentiation of hESCs (Figures S3C, 4C and 5E/I). This indicates that, in addition to blocking 

endocrine formation, Lsd1 knockout in early mouse embryos causes up-regulation of several genes 

previously shown to be induced by RA in during pancreatic differentiation of hESCs. This suggests 

that Lsd1 may act in a similar capacity during mouse pancreas development as it does during 

human pancreatic differentiation; wherein, Lsd1 deletion, prevents Lsd1-mediated 

decommissioning of associated RA-responsive enhancers. Without Lsd1 present to decommission 

these enhancers they remain susceptible to activation by circulating RA, which ultimately prevents 

the normal repression of target genes that is required for proper endocrine formation. 

These results not only confirm the phenotype observed in hESCs, but also lend credence 

to the utility of hPSC-based in vitro systems in studying and dissecting processes of human 

development. With an in vitro differentiation system however, signaling factors such as RA can 

simply be withdrawn from the differentiation media at specific times to prevent further influence on 

the differentiating cells. In contrast, during in vivo development, many of these signaling molecules 

persist constitutively and the cellular response to these signals must be altered in precise 

spatiotemporal manner in order for multipotent progenitors to respond appropriately and 

differentiate into the correct cell types, thus ensuring proper development of fully functional organs. 

Altogether, these results support a model wherein LSD1-mediated decommissioning of enhancers 

functions to render cells insensitive to external developmental cues, effectively altering the 

developmental competence of the cells by reshaping the chromatin landscape.  

 
DISCUSSION 

Here, we have identified a specific time window during early pancreatic development in 

both human and mouse, in which LSD1 activity is required for pancreatic endocrine formation. We 

found that during this time window, LSD1 is localized to different classes of enhancers (Figure 2A). 

One of those LSD1-bound enhancers groups (G1) normally undergoes deactivation and 

decommissioning. Upon inhibition of LSD1 those enhancers are still deactivated (H3K27ac 
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removal), but decommissioning (H3K4me1/H3K4me2 removal) is disrupted (Figure 2D). Genomic 

regions within the G1 enhancer group were enriched for RXR binding motif; and indeed, nearly half 

of G1 enhancers were co-bound by RXR during this time window (Figure 3A). The inclusion of RA 

in the differentiation media during the transition prior to this critical time window is coincident with 

the activation of these enhancers (Figure 3D). Together these results indicate these enhancers 

may be responsive to the RA in the differentiation media and suggest they are first activated by 

RA, and later decommissioned by LSD1 when the enhancer needs to be fully repressed and 

prevented from future reactivation. Previous models of LSD1 control of enhancers suggest that 

LSD1-mediated demethylation of H3K4 at enhancers is required to properly decommission the 

enhancers and repress target genes (Whyte, Bilodeau et al. 2012). Consistent with this model, our 

results indicates LSD1 is required to convert these enhancers from a poised to a decommissioned 

state. This, along with the observed concomitant failure to down-regulate many of the genes 

associated with RXR-bound G1 enhancers, suggest that LSD1 inhibition during this transition 

(LSD1iearly) disrupts decommissioning of RA-activated enhancers and allows for continued 

expression of target genes.  

Our findings provide evidence that suggests proper modulation of chromatin landscape is 

vital to ensuring cells respond appropriately to external inductive signals. The results presented 

here provide evidence in support of a model in which LSD1 occupies a group of RA-responsive 

enhancers that become active following exposure to RA during the GT to PP1 transition. During 

the transition to PP2 these enhancers are deactivated and LSD1 decommissions them, rendering 

them insensitive to external RA signals. This, in turn, allows for appropriate repression of target 

genes, even in the event the cells are re-exposed to RA. However, when LSD1-mediated 

decommissioning of these enhancers is blocked during the PP1 to PP2 transition these enhancers 

are left in a poised state. The poised enhancers remain susceptible to reactivation when exposed 

to RA signals, which, in turn, induces aberrant reactivation of target genes. A prime example of this 

was observed in the regulation of the gene DUSP9. During normal differentiation DUSP9 

expression increases from GT to PP1, where it peaks, before being downregulated in PP2. DUSP9 
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is known to be activated by RA (Simandi, Balint et al. 2010), but it was not up regulated in LSD1iearly 

PP2 cells. However, it is up-regulated at the EN stage when RA is added late (RAlate) to PP2 cells, 

but only if LSD1 was previously inhibited at the PP1 stage (LSD1iearly). This finding supports the 

model wherein the failure of LSD1 to decommission enhancers may not cause immediate up-

regulation of potential target genes, but rather leaves the enhancers in a poised state, providing a 

permissive environment for enhancer reactivation. In fact, although LSD1iearly does not cause an 

upregulation of DUSP9 at the PP2 stage, when measured at the later EN stage, DUSP9 expression 

is elevated in LSD1iearly cells compared to EN controls. It is therefore possible that this gene, and 

others like it, are normally down-regulated after LSD1-mediated decommissioning of their 

associated enhancers; and, when those enhancers are not properly decommissioned, as a result 

of removal of LSD1 activity, they remain poised and susceptible to future reactivation, given the 

right inductive cues. The data shown here highlight the role of LSD1 as an important chromatin 

remodeler during development, and suggest that its ability to reshape the chromatin landscape of 

differentiating cells can alter the developmental competence of those cells, influencing their 

responses to developmental signals. 

Developmental signals like RA are extremely important for development of a variety of 

tissues, including neurons, lung and pancreas (Durston, Timmermans et al. 1989, Avantaggiato, 

Acampora et al. 1996, Bibel, Richter et al. 2004, Plachta, Bibel et al. 2004, Mark, Ghyselinck et al. 

2009). The importance of RA in pancreas development has been well established (Chen, Pan et 

al. 2004, Martin, Gallego-Llamas et al. 2005, Molotkov, Molotkova et al. 2005). These and other 

studies have demonstrated that for proper development to occur, different lineage intermediates 

must be exposed to RA at different times and concentrations and for different durations; and that 

each of these aspects are vary between, and are specific to each individual cell type. During in vitro 

differentiation of cells it is trivial to supply signaling factors at specific times and concentrations and 

durations, as needed. This is, in fact, one of the great benefits to these systems that allows for 

precise control of the signaling environment and the generation of highly pure populations 

consisting of a single cell type. However, during in vivo development many cells remain exposed 
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to these signaling factors before and after they must respond to them, raises the question of how 

these cells can modulate their responses to these developmental cues. 

Using our in vitro model system, we gathered evidence that establishes a link between 

modification of the chromatin landscape by LSD1 during differentiation and the resulting changes 

in cellular response to external developmental signals. Here we have presented results that begin 

to explain one possible mechanism of how seemingly identical stem cells, with identical genomes, 

can respond to the same cues in very different ways and give rise to the wide variety of specialized 

cell types observed in the human body 

 

METHODS 

Chromatin immunoprecipitation followed by massively parallel multiplexed sequencing (ChIP-seq) 

ChIP-seq was performed using the ChIP-IT High-Sensitivity kit (Active Motif) according to 

the manufacturer’s instructions. Briefly, for each cell stage and condition analyzed, 5-10 x 106 cells 

were harvested and fixed for 15 min in an 11.1% formaldehyde solution. Cells were lysed and 

homogenized using a Dounce homogenizer and the lysate was sonicated in a Bioruptor® Plus 

(Diagenode), on high for 3 x 5 min (30 sec on, 30 sec off). Between 10 and 30 µg of the resulting 

sheared chromatin was used for each immunoprecipitation. Equal quantities of sheared chromatin 

from each sample were used for immunoprecipitations carried out at the same time. 4 µg of 

antibody against LSD1 (Abcam, ab17721), H3K4me1 (Abcam, ab8895), H3K4me2 (Millipore, 07-

030), H3K27ac (Active Motif, 39133) and RXR (Santa Cruz, sc-831) were used for each respective 

ChIP-seq assay. Chromatin was incubated with primary antibodies overnight at 4 °C on a rotator 

followed by incubation with Protein G agarose beads for 3 hours at 4 °C on a rotator. Reversal of 

crosslinks and DNA purification were performed according to the ChIP-IT High-Sensitivity 

instructions, with the modification of incubation at 65 °C for 2-3 hours, rather than at 80 °C for 2 

hours during crosslink reversal. Sequencing libraries were constructed using KAPA DNA Library 

Preparation Kits for Illumina® (Kapa Biosystems) and library sequencing was performed on a HiSeq 

4000 System (Illumina®). Both library construction and sequencing were performed by the Institute 
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for Genomic Medicine (IGM) core research facility at the University of California at San Diego 

(UCSD). 

 

Chromatin mapping and data quality control 

 Sequencing data was released from the UCSD IGM core facility after passing internal 

quality controls and certain benchmarks set forth by the FastQC analysis software (Andrews 2010), 

including total sequence reads, sequence quality and length distribution scores. Upon receipt of 

raw sequencing data (FASTA format), several downstream analyses were performed to ensure 

quality of sequencing data. First, all ChIP-seq data was mapped to the human genome utilizing the 

most recent consensus build (hg19/GRCh37) of the human genome available at the time of this 

study (Kent, Sugnet et al. 2002). Bowtie 2, v2.2.7 (Langmead and Salzberg 2012) was used to map 

data to the genome using the parameters defined in Table 4. Next, further quality control steps to 

confirm the sequence data was of acceptable quality were performed post-mapping using the 

Samtools v1.3.1 (Li, Handsaker et al. 2009) and HOMER v4.9 (Heinz, Benner et al. 2010) software 

suites (see Table 4). Various attributes of each sequence file were assessed to ensure the 

sequence reads met certain criteria. The number of reads not mapped to the genome build had to 

be within a reasonable range (1 - 2%) of the total mapped reads. Note: Because we mapped to a 

consensus reference genome, it is possible that unmapped reads represent real portions of the 

genome from the cells being analyzed, but that these sequences are for one reason or another not 

contained within the reference genome. However, for the purposes of this study, unmapped reads 

were discarded. A high percentage of unmapped reads could indicate an experimental problem 

with the immunoprecipitation itself, contaminating DNA from non-human sources or an issue with 

library preparation, such as the amplification of indexing primer dimers (O'Geen, Echipare et al. 

2011, Head, Komori et al. 2014). 

 Another important quality control metric is the number of exact duplicate reads within a 

sequence file. Due to the nature of ChIP-seq, it is somewhat unlikely that two reads will have exactly 

the same sequence and length (Storvall, Ramskold et al. 2013). A high number of exact duplicates 
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could indicate a problem arising from the library preparation and sequencing. However, it is not 

always the case that a duplicate is an artifact and visualization of the data on a genome browser 

might help to distinguish between artifacts and true data. One last key metric is that of the 

multimapping read. Those reads that map to > 1 genomic region cannot effectively be used as their 

true position cannot be determined via the ChIP-seq method. The methods used here to align 

sequence reads to the genome were not based on perfect 1:1 matches, but rather allowed for 

certain degrees of freedom each time a read was mapped to account for potential sequencing 

errors and/or DNA bases that are reported as low confidence by the sequencing platform. With this 

in mind, we relied on the mapping quotient (MAPQ) scores assigned to each read during alignment 

to the genome. A certain level of confidence that a read is correctly mapped and only maps to one 

location is provided by the MAPQ score. If the probability that a read is incorrectly matched is equal 

to P and P is a value between 0 and 1 (0 to 100% probability), then the MAPQ score is generated 

by -10 x log10(P). A MAPQ score of 0 means the fragment definitely maps to > 1 place. If the 

estimate that a read maps to > 1 region is 100% then P = 1 and MAPQ = -10 x log10(1) = 0. 

Conversely, if the probability that a fragment matches exactly one genomic region is 99.9% or 

0.999, then the probability of a mismatch is P = 1 - 0.999 = 0.001 and the MAPQ = -10 x log10(0.001) 

= 30. So, anything with a MAPQ score > 30 has an estimated chance of improper matching of less 

than 0.1%. For the purposes of this study, all reads with MAPQ > 0 were used. Ultimately, a 

sufficient amount of uniquely mapped reads from each ChIP-seq experiment are required and 

previous standards have been set by consortia like ENCODE (Encode Project Consortium 2012), 

which required >= 10 and 20 million uniquely mapped reads for TF and histone modification ChIP-

seq experiments, respectively. All ChIP-seq experiments in this study meet or exceed these 

requirements. 

 After confirming sufficient reads of acceptable quality were mapped to the genome, we 

next measured the overall GC content of the uniquely mapped sequences to ensure it fell within 

expected ranges. This value can vary widely across all samples, but should be closely reproduced 

in biological replicates of the same cell, condition and protein immunoprecipitated. Our major 



25 

concern was to ensure that, within a single ChIP-seq experiment, the distribution of GC content 

was somewhat normal (Gaussian), or skewed high or low. If the experiment exhibits a bimodal 

distribution of GC content, with high percentages of both high and low GC content sequences, this 

could indicate a problem with the experiment, such as contamination of the immunoprecipitated 

DNA or library preparation (Head, Komori et al. 2014). 

 

Peak calling and visualization of ChIP-seq data 

 Mapped ChIP-seq data served as inputs to generate tag directories using HOMER (Heinz, 

Benner et al. 2010). Tag directories take all mapped reads from the input and generates a "tag" 

spanning the appropriate chromosomal coordinates. The tags "stack" on one another to eventually 

generate piles of reads over certain locations which can then be called as peaks, as was done here 

using the findPeaks program within the HOMER software suite. Stage- and condition-matched input 

DNA controls were used as background when calling peaks. The Bedtools v2.17.0 (Quinlan and 

Hall 2010) suite of programs was used to quickly analyze whether certain peaks overlapped with 

other peaks or modified histone regions. For example, windowBed was used for initial in silico pilot 

experiments to classify enhancers based on H3K27ac states from PP1 to PP2. This was a simple 

binary call using the peak files generated in HOMER to determine whether a peak in PP1 was 

within ± 1000 bp of a peak in PP2. This was the initial method used to generate the different 

classifications of enhancers (i.e. active in PP1 and inactive in PP2). This served as a fast initial 

screen to identify interesting patterns in the ChIP-seq data. However, the binary nature of these 

methods were generally too restrictive to detect certain phenomena that could be biologically 

relevant, such as subtle changes in H3K4 methylation between two stages or conditions. For this 

reason, after our initial screenings we then used the getDifferentialPeaks program within HOMER, 

which probes for peak intensity changes between different conditions. This program allows the user 

to set the fold increase or decrease that must be observed to be considered a differential peak (see 

comments in Table 4). Differential peak analysis performed in this way allowed for the identification 

of things like enhancers that were in the process of being deactivated from PP1 to PP2, but not 
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necessarily completely devoid of H3K27ac at PP2. Table 4 lists the commands and parameters 

used to classify the different groups (G1, G2 and G3) of enhancers and how we identified PP1 

LSD1 peaks near each of the groups. 

 

RNA isolation and sequencing and qRT-PCR 

RNA was isolated from cell samples using the RNeasy® Micro Kit (Qiagen) according to 

the manufacturer instructions. For each cell stage and condition analyzed between 0.1 and 1 x 106 

cells were collected for RNA extraction. For qRT-PCR, cDNA synthesis was first performed using 

the iScript™ cDNA Synthesis Kit (Bio-Rad) and 500 ng of isolated RNA per reaction. qRT-PCR 

reactions were performed in triplicate with 10 ng of template cDNA per reaction using a CFX96™ 

Real-Time PCR Detection System and the iQ™ SYBR® Green Supermix (Bio-Rad). PCR of the 

TATA binding protein (TBP) coding sequence was used as an internal control and relative 

expression was quantified via double delta CT analysis. For RNA sequencing (RNA-seq), stranded, 

single-end sequencing libraries were constructed from isolated RNA using the TruSeq® Stranded 

mRNA Library Prep Kit (Illumina®) and library sequencing was performed on a HiSeq 4000 System 

(Illumina®). Both library construction and sequencing were performed by the IGM core research 

facility at UCSD. Sequence files were mapped to the human genome (hg19/GRCh37) using the 

Spliced Transcripts Alignment to a Reference (STAR) aligner (Dobin, Davis et al. 2013). Tag 

directories were constructed from STAR outputs and normalized gene expression (fragments per 

kilobase per million mapped reads; FPKM) for each sequence file were determined using HOMER 

(Heinz, Benner et al. 2010). HOMER was used to annotate all RefSeq genes with FPKM values 

and to invoke the R packages edgeR (Robinson, McCarthy et al. 2010, McCarthy, Chen et al. 2012) 

and DESeq2 (Love, Huber et al. 2014) for various differential expression analyses. At least two 

biological replicates (n = 2) were analyzed for every stage and condition unless noted otherwise. 

For k-means clustering, normalized FPKM values for each gene were normalized to the time point 

with maximum expression, which was set to 1. This generated a table of genes with values ranging 

from 0 to 1 across the GT to PP1 to PP2 time course. Data transformed in this manner was used 
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to generate heatmaps as well as for k-means clustering. K-means clustering was performed in R 

to identify groups of genes with similar expression patterns across the time course, regardless of 

absolute expression values. 8 clusters were requested and clustering was performed starting from 

random points in the data (100 iterations). This was repeated over 10 times to ensure the same 

genes were reproducibly clustered together. 

Primers used for RT-qPCR are as follows: 

INS-F: 5’-AAGAGGCCATCAAGCAGATCA  

INS-R: 5’-CAGGAGGCGCATCCACA  

GCG-F: 5’-AAGCATTTACTTTGTGGCTGGATT  

GCG-R: 5’-TGATCTGGATTTCTCCTCTGTGTCT  

HOXA1-F: 5’-CGGAACTGGAGAAGGAGTTC 

HOXA1-R: 5’-TTCACTTGGGTCTCGTTGAG 

SST-F: 5’-CCCCAGACTCCGTCAGTTTC 

SST-R: 5’-TCCGTCTGGTTGGGTTCAG 

TBP-F: 5’-ATTAAGGGAGGGAGTGGCAC 

TBP-R: 5’-GCTTTGCTTCCCTTTCCCAA 

 

Assignment of enhancer target genes and Motif enrichment analysis 

Target genes were assigned using the Genomic Regions Enrichment of Annotations Tool 

(GREAT) (http://bejerano.stanford.edu/great/public/html/; (McLean, Bristor et al. 2010), using the 

following parameters: basal plus extension, 5kb upstream, 1kb downstream and plus distal 200kb 

regions. HOMER (Heinz, Benner et al. 2010) was used to identify transcription factor (TF) binding 

motifs enriched in the G1 enhancer group over the G2 and G3 groups. G2 and G3 enhancer peak 

files were merged and set as the background using the appropriate option in the 

findMotifsGenome.pl program. G1 enhancers associated with one or more genes with FPKM ≥ 1 

at the PP1 stage were used for motif analysis. 
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Immunofluorescence analysis. 

Cell aggregates derived from hESCs were allowed to settle in microcentrifuge tubes and 

washed twice with PBS before fixation with 4% paraformaldehyde for 30 min at room temperature. 

Fixed cells were washed twice with PBS and incubated overnight at 4 °C in 30% (w/v) sucrose in 

PBS. Cell aggregates were then loaded into disposable embedding molds (VWR), covered in 

Tissue-Tek® O.C.T. Sakura® Finetek compound (VWR) and flash frozen on dry ice to prepare 

frozen blocks. The blocks were sectioned at 10 µm and sections were placed on Superfrost Plus® 

(Thermo Fisher) microscope slides and washed with PBS for 10 min. Slide-mounted cell sections 

were permeabilized and blocked with blocking buffer, consisting of 0.15% (v/v) Triton X-100 

(Sigma) and 1% (v/v) normal donkey serum (Jackson Immuno Research Laboratories) in PBS, for 

1 hour at room temperature. Slides were then incubated overnight at 4 °C with primary antibody 

solutions. The following day slides were washed five times with PBS and incubated for 1 hour at 

room temperature with secondary antibody solutions. Cells were washed five times with PBS before 

coverslips were applied. All antibodies were diluted in blocking buffer at the ratios indicated below. 

Primary antibodies used were: sheep anti-NGN3 (1:300, R&D Systems); rabbit anti-SOX9 (1:1000 

dilution, Millipore); goat anti-PDX1 (1:500 dilution, Abcam); mouse anti-NKX6.1 (1:300 dilution, 

Developmental Studies Hybridoma Bank); rabbit anti-CHGA (1:1000, DAKO); guinea pig anti-

INS(1:500, DAKO), mouse anti-GCG (1:500, Sigma), rabbit anti-SST (1:500, DAKO). Secondary 

antibodies against sheep, rabbit, goat, mouse and guinea pig were Alexa488-, Cy3- and Cy5-

conjugated donkey antibodies and were used at dilutions of 1:1000, 1:2000, and 1:250, respectively 

(Jackson Immuno Research Laboratories). Representative images were obtained with a Zeiss 

Axio-Observer-Z1 microscope equipped with a Zeiss ApoTome and AxioCam digital camera. 

Figures were prepared in Adobe Creative Suite 5. 

 

Human tissue 

 Human fetal pancreas donor tissue was obtained from the Birth Defects Research 

Laboratory of the University of Washington. Cadaveric adult pancreata used in this study were from 
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non-diabetic donors and were acquired through the Network for Pancreatic Organ Donors with 

Diabetes (nPOD) (Campbell-Thompson, Wasserfall et al. 2012). Protein expression was analyzed 

in nPOD donors: LSD1 and GCG in #6140 (38 year old male); LSD1 and CHGA in #6160 (22 year 

old male); LSD1 and SST in 6178 (25 year old female); and LSD1, INS and GCG in 6179 (21 year 

old female). 

 

Mice 

 Pdx1-Cre, Pdx1-CreERTM (Gu, Dubauskaite et al. 2002) and Lsd1flox (Wang, Scully et al. 

2007) mouse strains have been described previously. Lsd1Δpan knockouts were generated by 

crossing Pdx1-Cre and Lsd1flox mice. Conditional Lsd1 knockouts were generated by crossing 

Pdx1-CreERTM and Lsd1flox mice. Tamoxifen (Sigma) was dissolved in corn oil (Sigma) at 10 

mg/mL, and a single dose of 3.5 mg/40 g or 4.5 mg/40 g body weight was administered by 

intraperitoneal injection at embryonic day (e) 10.5 or e12.5, respectively. Control mice were LSD1+/+ 

littermates carrying Pdx1-Cre transgene. Midday on the day of vaginal plug appearance was 

considered e0.5. 
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FIGURES 
 
Figure 1. Endocrine cell formation requires LSD1 activity during a short window in early pancreatic 
development.  
 
(A) Immunofluorescent staining of pancreatic sections for LSD1 with the pancreatic progenitor 
markers PDX1 and SOX9 (55 days post-conception (dpc) fetal pancreas) or the pan-endocrine 
marker chromogranin A (CHGA) (94 dpc and adult pancreas). Scale bar, 50 µm. 
(B) Schematic of the human embryonic stem cell (hESC) differentiation protocol to the endocrine 
cell stage (EN) and experimental plan for LSD1 inhibition. 
(C) Immunofluorescent staining for pancreatic hormones insulin (INS), glucagon (GCG) and 
somatostatin (SST) or PDX1 and NKX6.1 in control EN cells compared to EN cells with early 
(LSD1iearly) and late (LSD1ilate) LSD1 inhibition. Scale bar, 50 µm. 
(D) qRT-PCR analysis for INS, GCG and SST in control, LSD1iearly and LSD1ilate EN cells. Data are 
shown as mean ± S.E.M (n = 2 biological replicates). *p < 0.001. 
(E) Flow cytometry analysis at EN stage for NKX6.1, PDX1 and INS comparing control, LSD1iearly 
and LSD1ilate cells. Isotype control for each antibody is shown in red and target protein staining in 
green. Percentage of cells expressing each protein is indicated. 
AA, activin A; ITS, insulin-transferrin-selenium; TGFBi, TGFβ R1 kinase inhibitor; KGF, 
keratinocyte growth factor; RA, retinoic acid; EGF, epidermal growth factor; ES, embryonic stem 
cell; DE, definitive endoderm; GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late 
pancreatic progenitors; EN, endocrine cell stage; FSC-A, forward scatter area. 
See also Figure S1. 
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Figure 2. LSD1 inhibition prevents decommissioning of transiently active early pancreatic 
enhancers. 
 
(A) Heatmap showing density of ChIP-seq reads for LSD1 and H3K27ac centered on LSD1 peaks, 
spanning 10 kb. G1, G2 and G3 groups of LSD1-bound enhancers are deactivated (G1), remain 
active (G2), or are deactivated (G3) from PP1 to PP2. 
(B) Tag density plots displaying LSD1 tag distribution at G1, G2 and G3 enhancers at PP1 and 
PP2 stages, centered on PP1 LSD1 peaks. 
(C) Box plots of H3K4me1 and H3K4me2 ChIP-seq counts at G1, G2 and G3 enhancers at PP1 
and PP2 stages. *p < 0.05; **p < 5e-12; *** < 2.2e-16. 
(D) Tag density plots for G1 enhancers displaying H3K27ac, H3K4me2 and H3K4me1 tag 
distribution at PP1 stage and PP2 stage with and without early LSD1 inhibition (LSD1iearly). Plots 
are centered on PP1 LSD1 peaks.  
(E) Model for LSD1-dependent enhancer decommissioning. Enhancer deactivation by removal of 
acetylation from H3K27 occurs independent of LSD1 activity. LSD1 subsequently mediates 
enhancer decommissioning by removal of H3K4me2 marks. 
PP1, early pancreatic progenitors; PP2, late pancreatic progenitors. 
See also Figure S2 and Tables S1-S6. 
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Figure 3. LSD1 activity is necessary for down-regulation of transiently expressed retinoic acid-
dependent genes.  
 
(A) Enriched transcription factor (TF) binding motifs with associated p-values for G1 enhancers 
compared to G2 and G3 enhancers.  
(B) Percentage of G1 enhancers versus random genomic regions bound by RXR within ± 10kb of 
LSD1 peak at the PP1 stage. **p < 2.5e-8, chi-square.  
(C) Schematic showing timing and duration of retinoic acid (RA) addition (top) and coincident 
changes in H3K27ac levels at RXR-bound G1 enhancers (bottom) during hESC differentiation 
toward endocrine (EN) cells with and without LSD1 inhibition from PP1 to PP2 (LSD1iearly). ***p < 
2.2e-16, Wilcoxon. 
(D) K-means clustering of genes associated with RXR-bound G1 enhancers (Table 2) based on 
mRNA expression (FPKM) (n=3). Genes were assigned to enhancers using the Genomic Regions 
Enrichment of Annotations Tool (GREAT) within a 200kb window. mRNA levels shown as relative 
to maximum per gene across time course. Yellow box highlights gene cluster exhibiting RA-
dependent (PP1-specific) expression pattern. 
(E) Heatmap of gene expression for PP1-specific genes associated with RXR-bound G1 enhancers 
across GT, PP1, and PP2 (n=74) with and without LSD1 inhibition (LSD1iearly). Gene set defined 
by FPKM at PP1 ≥ 1 and PP1 mRNA levels ≥ 2-fold compared to GT and PP2. mRNA levels 
(FPKM) shown as relative to maximum per gene across time course. 
(F) Box plots of mRNA levels for genes shown in E. *p < 0.005, Wilcoxon. 
(G) LSD1, RXR, H3K4me2, and H3K27ac ChIP-seq profiles at enhancers near HOXA1 and 
HOXC4. 
GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late pancreatic progenitors. 
See also Figure S3 and Tables 1-3. 
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Figure 4. Prolonged retinoic acid exposure of early pancreatic progenitor cells phenocopies LSD1 
inhibition. 
 
(A) Experimental plan to extend retinoic acid (RA) exposure through the PP1 to PP2 transition 
(RAextended) during hESC differentiation to the endocrine cell stage (EN). 
(B) Heatmap of gene expression for the 74 PP1-specific genes associated with RXR-bound G1 
enhancers (Table 3) at PP2 with and without extended RA treatment (RAextended). 
(C) Relative normalized expression of select genes from group in (B) at PP2 with and without 
extended RA treatment (RAextended). Data shown as mean ± S.E.M. relative to control values (blue 
bars), which were set to 1. *p < 0.05; **p < 0.0005, DESeq2 output. 
(D) Immunofluorescent staining for insulin (INS), glucagon (GCG) and somatostatin (SST) in control 
EN cells compared to EN cells with extended RA treatment (RAextended). Scale bar, 50 µm. 
(E) Flow cytometry analysis at EN stage for NKX6.1, PDX1 and INS comparing control and 
RAextended cultures. Isotype control for each antibody is shown in red and target protein staining 
in green. Percentage of cells expressing each protein is indicated. 
GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late pancreatic progenitors. 
See also Figure S4. 
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Figure 5. LSD1 prevents aberrant reactivation of transient early retinoic acid-dependent genes. 
 
(A) Experimental plan to re-introduce retinoic acid (RA) during the PP2 to endocrine (EN) transition 
(RAlate) of hESC differentiation. 
(B) Immunofluorescent staining for insulin (INS), glucagon (GCG) and somatostatin (SST) in control 
EN cells compared to EN cells with late RA treatment (RAlate). Scale bar, 50 µm. 
(C) Flow cytometry analysis at EN stage for NKX6.1, PDX1 and INS comparing control and RAlate 
cells. Isotype control for each antibody is shown in red and target protein staining in green. 
Percentage of cells expressing each protein is indicated. 
(D) Heatmap of gene expression for the 74 PP1-specific genes associated with RXR-bound G1 
enhancers (Table 3) at EN stage with and without late RA treatment (RAlate). 
(E) Relative normalized expression of select genes from group in (D) at EN stage with and without 
late RA treatment (RAlate). Data shown as mean ± S.E.M. relative to control values (blue bars), 
which were set to 1. n.s., not significant; DESeq2 output. 
(F) Experimental plan to re-introduce RA during the PP2 to EN transition (RAlate) after early 
inhibition of LSD1 (LSD1iearly). 
(G) Immunofluorescent staining for INS, GCG and SST in control EN cells compared to LSD1iearly 
EN cells with and without late RA treatment (RAlate). Scale bar, 50 µm. 
(H) Heatmap of gene expression for the 74 PP1-specific genes associated with RXR-bound G1 
enhancers (Table 3) at EN stage with LSD1iearly alone and LSD1iearly plus late RA treatment 
(RAlate). 
(I) Relative normalized expression of select genes from group in (H) at EN stage with LSD1iearly 
alone and LSD1iearly plus late RA treatment (RAlate). Data shown as mean ± S.E.M. relative to 
LSD1iearly values (blue bars), which were set to 1. *p < 0.05; **p <0.005, ***p < 1e-17. DESeq2 
output. 
GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late pancreatic progenitors. 
See also Figure S5. 
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Figure 6. Selective requirement for Lsd1 in endocrine cell formation during a short window in early 
pancreatic development of mice. 
 
(A) Strategy for conditional Lsd1 deletion in embryonic pancreatic progenitors of mice (Lsd1Δpan). 
Yellow boxes: exons; green triangles: loxP sites. 
(B) Immunofluorescent staining for Pdx1 at embryonic day (e) 12.5 and Lsd1, insulin (Ins) and 
glucagon (Gcg) at postnatal day (P) 0 in control and Lsd1Δpan mice. Boxed areas are shown in 
higher magnification. Scale bar, 50 µm. 
(C) Quantification of pancreatic epithelial area at e12.5 and e15.5. Data shown as means ± SEM 
(n = 3 biological replicates). n.s., not significant, Student t-test. 
(D) Immunofluorescent staining for Ins with somatostatin (Sst), pancreatic polypeptide (Ppy) and 
ghrelin (Ghrl) at P0 in control and Lsd1Δpan mice. Scale bar, 25 µm. 
(E) Strategy for tamoxifen-inducible Lsd1 deletion in embryonic pancreatic progenitors of mice at 
e10.5 (Lsd1Δearly) and e12.5 (Lsd1Δlate). Yellow boxes: exons; green triangles: loxP sites. 
(F) Immunofluorescent staining for Lsd1, Ins and Gcg at e18.5 in control, Lsd1Δearly and Lsd1Δlate 
mice. Boxed areas are shown in higher magnification. Scale bar, 50 µm. 
(G) Heatmap of gene expression in dissected pancreata from control and Lsd1Δpan mice at e13.5. 
Shown are PP1-specific genes associated with RXR-bound G1 enhancers (Table 3). 
(H) Relative normalized expression of select genes from group in (G) in Lsd1Δpan mice at e13.5. 
Data shown as mean ± S.E.M. relative to control values (blue bars), which were set to 1. *p < 0.05; 
**p < 0.01; **p < 5e-5; n.s., not significant, DESeq2 output. 
See also Figure S6. 
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Figure S1. Related to Figure 1. Characterization of LSD1 expression and effects of LSD1 inhibition 
on pancreatic progenitor cells.  
 
(A) Immunofluorescent staining for LSD1 with insulin (INS), glucagon (GCG) and somatostatin 
(SST) in adult human pancreas. Scale bar, 10 µm. 
(B) LSD1 mRNA expression at each stage of differentiation determined by RNA-seq, measured in 
fragments per kilobase per million fragments mapped (FPKM). Values shown as log2(FPKM). 
(C) Immunofluorescent staining for LSD1 at each stage of hESC differentiation. Scale bar, 25 µm. 
(D) Immunofluorescent staining for NKX6.1 and PDX1 in control and LSD1iearly PP2 cells. Scale 
bar, 50 µm. 
(E) Flow cytometry analysis for NKX6.1 and PDX1 comparing control and LSD1iearly PP2 cells. 
ES, embryonic stem cell; DE, definitive endoderm; GT, primitive gut tube; PP1, early pancreatic 
progenitors; PP2, late pancreatic progenitors; EN, endocrine cell stage; FSC-A, forward scatter 
area. 
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Figure S2. Related to Figure 2. Characterization of LSD1-bound genomics regions. 
 
(A) LSD1 peak localization across the genome relative to transcriptional start sites (TSSs). 15,084 
total LSD1 peaks identified in PP1. 3,285 peaks are proximal (within 3kb of a TSS) and 11,799 
distal (> 3kb from a TSS).  
(B) Tag density plots for G2 and G3 enhancers displaying H3K27ac, H3K4me2 and H3K4me1 tag 
distribution at P1 stage and PP2 stage with and without early LSD1 inhibition (LSD1iearly). Plots are 
centered on PP1 LSD1 peaks. 
UTR, untranslated region; TTS, transcription termination site; ncRNA, non-coding RNA; PP1, early 
pancreatic progenitors; PP2, late pancreatic progenitors. 
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Figure S3. Related to Figure 3. G1 enhancers exhibit greater enrichment for RXR binding than G2 
and G3 enhancers. 
 
(A) Percentage of G1, G2 and G3 enhancers versus random genomic regions bound by RXR within 
± 10kb of LSD1 peak at the PP1 stage. Significantly higher enrichment in G1 enhancers than in G2 
and G3 enhancers. **p < 5e-4, chi-square. 
(B) Changes in H3K4me1 and H3K4me2 levels at RXR-bound G1 enhancers during human 
embryonic stem cell differentiation with and without LSD1 inhibition (LSD1iearly). *p < 0.005; ***p < 
2.2e-16; n.s., not significant, Wilcoxon. 
(C) Relative normalized gene expression at the PP2 stage with and without early LSD1 inhibition 
(LSD1iearly). Genes were selected from group of 74 genes exhibiting RA-dependent expression (Fig. 
3E; Table 3). Data shown as mean ± S.E.M. relative to control values (blue bars), which were set 
to 1. *p < 0.005; **p < 5e-4, DESeq2 output. 
(D) LSD1, RXR, H3K4me2, and H3K27ac ChIP-seq profiles at enhancers near GATA4 and 
DHRS3.  
GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late pancreatic progenitors. 
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Figure S4. Related to Figure 4. Effects of prolonged retinoic acid treatment on pancreatic 
progenitor and endocrine cell phenotypes.  
 
(A) Box plot of mRNA levels for genes exhibiting retinoic acid (RA)-dependent pattern (Table 3) 
comparing control and RAextended PP2 cells. *p < 0.01, Wilcoxon. 
(B) qRT-PCR analysis for insulin (INS), glucagon (GCG) and somatostatin (SST) in control and 
RAextended EN cells. Data are shown as average ± S.E.M (n = 2 biological replicates). **p < 0.001, 
Student t-test. 
(C) Immunofluorescent staining for PDX1 and NKX6.1 in control endocrine stage cells (EN) 
compared to EN cells with extended RA treatment (RAextended). Scale bar, 50 µm. 
GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late pancreatic progenitors. 
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Figure S5. Related to Figure 5. Effects of re-introducing retinoic acid during endocrine cell 
differentiation with and without prior LSD1 inhibition.  
 
(A) Immunofluorescent staining for PDX1 and NKX6.1 in control endocrine stage cells (EN) 
compared to EN cells with late retinoic acid (RA) treatment (RAlate). Scale bar, 50 µm. 
(B) qRT-PCR analysis for INS, GCG and SST in control and RAlate EN cells. Data are shown as 
average ± S.E.M (n = 2 biological replicates). 
(C) Box plot of mRNA levels for genes exhibiting RA-dependent pattern (Table 3) comparing control 
and RAlate EN cells. n.s., not significant. 
(D) Flow cytometry analysis at EN stage for NKX6.1, PDX1 and INS comparing control EN cells to 
LSD1iearly EN cells with and without late RA treatment (RAlate). Isotype control for each antibody is 
shown in red and target protein staining in green. Percentage of cells expressing each protein is 
indicated. 
(E) Box plot of mRNA levels for genes exhibiting RA-dependent pattern (Table 3) comparing EN 
cells treated with LSD1iearly alone and LSD1iearly plus RAlate. *p < 0.005, Wilcoxon. 
(F) Tag density plots displaying RXR tag distribution at RXR-bound G1 enhancers at the PP1 stage 
and PP2 stage with and without LSD1 inhibition (LSD1iearly). Plots are centered on PP1 LSD1 
peaks. 
GT, primitive gut tube; PP1, early pancreatic progenitors; PP2, late pancreatic progenitors; EN, 
endocrine stage; FSC-A, forward scatter area. 
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Figure S6. Related to Figure 6. Phenotypic characterization of Lsd1Δpan mice. 
 
(A) Immunofluorescent staining of embryonic (e) and neonatal (P0) mouse pancreas for Lsd1 with 
the pancreatic progenitor markers Pdx1 and Sox9, the acinar marker carboxypeptidase 1 (Cpa1) 
or insulin (Ins) and glucagon (Gcg). Boxed areas are shown in higher magnification. Scale bar, 50 
µm. 
(B) Immunofluorescent staining for Lsd1 with Ins, Gcg and Sst in mice at P0. Scale bar, 10 µm. 
(C) Immunofluorescent staining of pancreas (Pan) from control and Lsd1Δpan embryos for Lsd1, 
Ptf1a, Nkx6.1, phospho histone H3 (pHH3), Pdx1, E-cadherin (Cdh1), osteopontin (Opn), amylase 
(Amy), and TUNEL. The nuclear counterstain, 4′,6-diamidino-2-phenylindole (DAPI) is shown 
together with TUNEL staining. Scale bar, 50 µm. 
(D) Quantification of pHH3+ cells at e12.5 and apoptotic cells (TUNEL+) at e15.5 relative to 
pancreatic epithelial area. Data are shown means ± SEM (n = 3 biological replicates). n.s, not 
significant, Student t-test. 
(E) Quantification of hormone+ cells staining positive for Lsd1 in control, Lsd1Δpan, Lsd1Δearly, and 
Lsd1Δlate mice at P0. A total of 189-1057 hormone+ cells (insulin+ or glucagon+) were analyzed per 
genotype and set as 100% (n = 3 per genotype). 
(F) Box plots of mRNA levels in mouse pancreas for PP1-specific genes associated with RXR-
bound G1 enhancers (Table 3). Relative gene expression determined by microarray analysis of 
sorted Sox9+ pancreatic progenitor cells at e10.5 and e15.5 (left). Gene expression determined by 
RNA-seq of dissected pancreata from control and Lsd1Δpan mice at e13.5 (right) ( n = 3 biological 
replicates). 
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TABLES 

Table 1. Chromosomal coordinates of 612 RXR-bound G1 enhancers identified in the early 
pancreatic progenitor (PP1) stage of pancreatic differentiation of hESCs. 

 
 



55 

Table 2. 634 genes associated with RXR-bound G1 enhancers. Associated PeakID(s) and their 
distances from the nearest TSS are provided. Genes were assigned using GREAT version 3.0.0 
(McLean, Bristor et al. 2010). Species assembly: hg19. Association rule: Basal+extension: 5000 
bp upstream, 1000 bp downstream, 200000 bp max extension, curated regulatory domains 
included. 
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Table 3. Subset of 74 genes from the 634 genes associated with RXR-bound G1 enhancers. That 
exhibited RA-dependent gene expression patterns across the gut tube (GT), early (PP1) and late 
(PP2) pancreatic progenitor stages of pancreatic differentiation of hESCs. 
 

 
  

ABCA8 DHRS3 GLT8D2 MKRN3 RNF182
ADM DNAH7 GPR37L1 MUC20 ROS1
AGO1 DUSP9 HMCN1 MYOF SHH
ANO1 EHF HOXA1 NEDD4L SLC6A12
ASTN1 ELF3 HOXB1 NR2F2 SMOC1
ATP10B EPHB3 HOXC4 PAQR7 STC2
B4GALNT3ETS2 HSD17B14PBX1 TMC6
C8orf49 FAM129A IQGAP2 PLTP TMEM110
CADM3 FANCE ITGA11 POPDC3 TMEM44
CDC42EP3FOXA1 ITGA6 PPARD TRABD2B
CDHR3 GADD45GITPR3 PRKAB2 TTC30A
CHST15 GADL1 KCNJ4 PRKCDBPVEGFA
CLIC6 GATA4 LNX1 PRR15 VILL
COLGALT2GFRA1 LYST PTGIS ZNF703
CSF3R GIP MECOM RARB

Gene Names
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Table 4. Example commands and software packages used for ChIP- and RNA-seq data analysis 
workflow. 

Command Comments Software 
package 

bowtie2 -t --very-sensitive -x 
<hg19> input.fastq > output.sam 

Map ChIP-seq data to the human genome. 
The option "--very-sensitive" sets multiple 
parameters. Specifically, it is equivalent to 
setting all the following options: 
-D 20 -R 3 -N 0 -L 20 -i S,1,0.50 

Bowtie 2 
v2.2.7 

samtools view -bhu output.sam > 
output.bam 

Convert SAM file format to BAM in order to 
sort. 

Samtools 
v1.3.1 

samtools sort output.bam > 
sorted_output.bam 

Sort BAM file in order to remove duplicates. 
Samtools 
v1.3.1 

samtools rmdup -s 
sorted_output.bam 
rmdup_output.bam 

Remove exact duplicate read sequences. 
Samtools 
v1.3.1 

makeTagDirectory 
rmdup_output_tagDir/ 
rmdup_output.bam -genome hg19 -
checkGC 

Generate tag directories for downstream 
analyses and analyze GC content of 
sequencing results. 

HOMER 
v4.9 

makeUCSCfile 
rmdup_output_tagDir/ -o auto -
bigWig ~/chrom.sizes -fsize 1e20 > 
rmdup_output.trackInfo.txt 

Generate a file for data visualization on a 
genome browser. 

HOMER 
v4.9 

getDifferentialPeaks 
PP1_H3K27ac_regions 
PP1_H3K27ac_tag_directory/ 
PP1_H3K27ac_tag_directory/ -F 2 

Uses tag directories to analyze for 
differential peak intensity between samples. 
The -F 2 option designates >= 2-fold 
difference in peak intensity is a considered 
differential peak. 

HOMER 
v4.9 

windowBed -a 
distal_PP1_LSD1_peaks -b 
deactivating_enhancers_PP1_to_P
P2 -w 1000 -u 

Identify peaks in file “-a” that are near 
peaks/regions from file “-b”. 
The -w 1000 option looks for overlap ± 1000 
bp of the peak. 

Bedtools 
v2.17.0 
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CHAPTER 2 - DISSECTING THE ROLE OF NEUROGENIN-3 IN HUMAN ENDOCRINE 

DEVELOPMENT 

 

ABSTRACT 

Diabetes mellitus is a widespread pancreatic disease that is characterized by the loss or 

dysfunction of insulin-producing beta-cells. One method of treating diabetes is the transplantation 

of beta cells from cadaver donors to diabetic patients. However, the lack of donor material and the 

need for lifelong immunosuppression has precluded widespread use of this therapy. Generation of 

functional beta-cells from human embryonic stem cells (hESCs) would not only provide an attractive 

and renewable cell-replacement therapy, but would also greatly increase our ability to understand 

human pancreas endocrine development and the pathogenesis of related diseases. Current in vitro 

pancreatic differentiation protocols exist that can generate properly specified hESC-derived 

pancreatic progenitors which are capable of becoming functional beta-cells in vivo after 

engraftment into mice. Recent advances in the field have progressed the state of the art such that 

functional, glucose-responsive, insulin-secreting cells can now be generated entirely in vitro. 

However, these hESC-derived beta cells often secrete low levels of insulin in a manner that is 

reminiscent of immature fetal beta cells (Russ, Sintov et al. 2011, Pagliuca, Millman et al. 2014, 

Rezania, Bruin et al. 2014). Moreover, the time required to reach this stage, beginning from the 

hESC state, can be a month or longer (Russ, Sintov et al. 2011, Pagliuca, Millman et al. 2014, 

Rezania, Bruin et al. 2014). Thus, as they exist now, these cells are not yet suitable as beta-cell 

replacements. While this shows it is possible to make beta-cells from hESCs, there remains a great 

desire to more rapidly produce fully functional and mature beta-cells entirely in vitro. Understanding 

the events that dictate cell fate decisions during pancreas development is critical to improving 

current protocols to rapidly generate functional beta cells in vitro. To achieve this goal, a greater 

understanding of the transcriptional events that specify proper human endocrine formation is 

required. 
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INTRODUCTION 

The pancreas is a vital organ composed of three main compartments: acinar, ductal and 

endocrine. The endocrine cells are localized together forming the islets of Langerhans. Within these 

islets are five endocrine cell subtypes: alpha, beta, delta, epsilon and PP cells, which produce the 

hormones glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide, respectively (Shih, 

Wang et al. 2013). The insulin-producing beta cells are responsible for maintaining blood glucose 

homeostasis and their dysfunction results in diabetes. The need for better treatments and 

understanding of this incredibly prevalent disease has instigated a massive effort to generate beta 

cells in vitro (Schulz 2015). The many advances that have been made in the development of in 

vitro pancreatic differentiation protocols have been inspired by lessons learned from the mouse. 

During early murine development, the pancreas emerges from the early embryonic structure called 

the posterior foregut (Seymour and Sander 2011, Shih, Wang et al. 2013). At this stage the nascent 

pancreatic buds consist entirely of multipotent progenitor cells (MPCs) marked by the transcription 

factors PDX1, SOX9, PTF1A and NKX6.1 (Seymour and Sander 2011, Arda, Benitez et al. 2013, 

Shih, Wang et al. 2013). These MPC’s subsequently undergo a series of morphogenetic changes 

and cell fate decisions which result in generation of the diverse cell types and complex structure of 

the mature pancreas. The first fate decision undergone by MPCs determines whether the cells will 

be restricted to the tip domain (acinar cells) or trunk domain (ductal and endocrine cells). The 

transcription factors PTF1A and NKX6.1 act as master regulators of this decision, where PTF1A 

specifies tip identity, while NKX6.1 specifies trunk identity. Although they are co-expressed in early 

MPCs, mutual repression between PTF1A and NKX6.1 ensures complete segregation of the two 

domains giving rise to PTF1A+ acinar cells and NKX6.1+ bipotent trunk progenitors (Schaffer, 

Freude et al. 2010, Shih, Wang et al. 2013). These trunk progenitors can become either ductal or 

endocrine cells. The basic helix-loop-helix transcription factor neurogenin-3 (NGN3) is the major 

driver of the endocrine cell fate. In mice, deletion of Ngn3 results in a total absence of endocrine 

cells, whereas ectopic expression in early MPCs induces premature differentiation to endocrine 

cells (Gradwohl, Dierich et al. 2000, Johansson, Dursun et al. 2007). Ngn3 is expressed for a short 
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time window in a subset of the bipotent trunk progenitors, during which it initiates cell-cycle exit and 

promotes terminal differentiation toward the endocrine fate (Schwitzgebel, Scheel et al. 2000, Gu, 

Dubauskaite et al. 2002, Gasa, Mrejen et al. 2004, Rukstalis and Habener 2009). Immunohistology 

of human embryonic tissue shows NGN3 follows a similar expression pattern to that observed in 

mice. Therefore, it is widely believed that NGN3 plays the same role in humans as it does in mice. 

However, studies of NGN3 mutations, identified in non-diabetic humans, have raised some 

controversy over whether NGN3 is strictly required for human endocrine development. 

In addition to the requirement of Ngn3 for endocrine development in mice, the timing of its 

expression is critical for proper development of endocrine subtypes. Genetic experiments in mice 

have shown that premature expression of Ngn3 in the developing embryo results in the production 

of polyhormonal endocrine cells (Apelqvist, Li et al. 1999, Schwitzgebel, Scheel et al. 2000, 

Johansson, Dursun et al. 2007). In addition, through slight alterations of the timing of Ngn3 

expression during development in a Ngn3-null background, it was shown that different endocrine 

subtypes were produced depending on when Ngn3 was expressed (Johansson, Dursun et al. 

2007). For example, when Ngn3 was reconstituted at a time prior to the onset of endogenous Ngn3 

expression the majority of cells formed were glucagon+ (Johansson, Dursun et al. 2007). While 

many of these cells appeared to be normal alpha cells, a large proportion (~30%) co-expressed 

hormones other than glucagon. Conversely, when Ngn3 was reconstituted at a time coincident with 

endogenous Ngn3 expression, the majority of cells formed were insulin+. In this case, the insulin+ 

cells obtained were fully functional beta cells, virtually indistinguishable from wild-type beta cells. 

Moreover, there was a complete absence of any polyhormonal cells in the resulting endocrine 

population. These studies indicate that the timing of Ngn3 expression is crucial not only for proper 

endocrine differentiation, but also in determining the subtype of endocrine cells produced. 

Our lab employed a step-wise hESC differentiation protocol that mimics early endodermal 

and pancreatic development as shown by the correct induction of specific pancreatic markers, such 

as PDX1. This protocol reliably and efficiently generates pancreatic progenitors and endocrine cells 

in vitro. The resulting pancreatic progenitors are functional, as they are capable of further 
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differentiating into functional beta cells in vivo, following implantation into mice for 3-4 months 

(D'Amour, Bang et al. 2006, Kroon, Martinson et al. 2008, Schulz, Young et al. 2012). At the time 

of this study, however, the in vitro-derived endocrine cells were non-functional, characterized by 

the expression of multiple hormones, lack of true beta cell markers (NKX6.1, PDX1, MAFA), and 

the inability to secrete insulin in response to glucose stimulation. These endocrine cells are 

strikingly similar to the polyhormonal cells that result from early expression of Ngn3 in the 

aforementioned mice studies (Johansson, Dursun et al. 2007). Perhaps unsurprisingly, NGN3 is 

expressed too early during in vitro differentiation, preceding the appearance of the trunk progenitor 

markers SOX9, PDX1 and NKX6.1d. Based on mouse studies as well as our own observations, 

we hypothesized that this premature expression of NGN3, during the in vitro differentiation, induces 

endocrine formation in cells that have not been properly restricted to one subtype, causing them to 

express multiple hormones. Furthermore, we speculated that suppression of NGN3 expression 

until after the emergence of pancreatic progenitors could provide the cells sufficient time to become 

restricted to a single potential subtype. In this study, we examined the results of forced 

misexpression of NGN3 during pancreatic differentiation of human embryonic stem cells. Using 

lentiviral overexpression and shRNA knockdown strategies, we studied the role of NGN3 

expression in pancreatic progenitors and demonstrated that NGN3 knockdown prevents endocrine 

formation while its overexpression induces differentiation to the endocrine stage. Our results 

provide direct evidence that, as in mice, NGN3 expression is necessary and sufficient for endocrine 

specification in human cells. 

 

RESULTS 

Knockdown of NGN3 in hESCs results in a decrease of endocrine cells. 

To study human pancreatic endocrine development, our lab uses a step-wise differentiation 

protocol in which hESCs are aggregated in non-adherent conditions and differentiated to pancreatic 

progenitors and polyhormonal endocrine cells. These non-functional endocrine cells typically 

emerge by D13, which marks the end of the differentiation (Figure 7A). To determine whether 
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NGN3 is necessary for endocrine specification in our hESC differentiation system, we performed 

specific knockdown of NGN3 in hESCs using lentiviral short hairpin RNAs (shRNAs). To do this, 

we used four lentiviral constructs, each containing a constitutively expressed shRNA sequence 

targeting a different region of the endogenous human NGN3 transcript. Lentiviruses were 

constructed using our 2nd generation lentiviral assembly protocol and hESCs were transduced with 

a mixture of the four viruses. A scrambled shRNA construct was used to generate cell lines to be 

used as a negative control. A puromycin resistance gene within the construct allowed for selection 

of cells that had efficiently integrated the viral payload. Following expansion under puromycin 

selection, cells were passaged into non-adherent culture conditions and prepared for pancreatic 

differentiation. During normal differentiation, endogenous NGN3 expression peaks at day 8 (D8) 

(Figure 7B). Quantitative PCR (qPCR) of both NGN3 knockdown (NGN3 KD) and control cells at 

D8 showed only about a 50% reduction in expression (Figure 8A). Although NGN3 was only 

reduced by half, expression of NEUROD1, a direct target of NGN3, was reduced by about 75%. 

Immunofluorescence and qPCR analysis of D13 NGN3 KD cells showed a drastic reduction of 

insulin and glucagon protein and mRNA levels, respectively (Figure 8B). This finding suggests that 

NGN3 is necessary for human endocrine development. Moreover, nearly all NGN3 KD cells 

expressed pancreatic progenitor markers, suggesting NGN3 is dispensable for progenitor 

formation in vitro (Figure 8C). These observations are in agreement with results from studies of 

Ngn3-/- mice (Gradwohl, Dierich et al. 2000), which showed a complete lack of endocrine cells 

without Ngn3. However, because RNA knockdown did not fully abolish NGN3 expression, and 

endocrine cells were still made, it became clear that a full knockout of NGN3 in hESCs would be 

necessary to conclusively determine its necessity for human endocrine formation. 

 

Overexpression of NGN3 in differentiating cells results in an increase of hormone expression. 

To determine whether NGN3 is sufficient to induce endocrine formation, we constructed a 

lentiviral transfer vector comprised of the human cDNA sequence for NGN3 preceded by the 

constitutive phosphoglycerate kinase (PGK) promoter. An identical construct expressing GFP was 
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used as a control. hESCs were differentiated in aggregate form to D7, dissociated and transduced 

with either the NGN3 overexpression (NGN3 OE) or GFP lentivirus. Cells were allowed to re-

aggregate and differentiation was continued normally to D13. 24 hours after transduction, samples 

were analyzed for expression of NGN3 by qPCR and immunofluorescence. While a robust increase 

in both endogenous and transgenic mRNA was observed, no significant change in NGN3 protein 

levels was detected (Figure 9A and data not shown). 3 days after transduction (D10) NGN3 protein 

expression appeared was slightly increased over controls, while qPCR analysis revealed NGN3 

transcript levels remained much higher than controls (Figure 9A and data not shown). By D13, 

NGN3 mRNA levels were still very high compared to controls, but only a few NGN3+ cells were 

observed by immunofluorescence (Figure 9A and 9B). Analysis of NGN3 OE cells at D10 and D13 

showed little to no increase in insulin and glucagon protein expression, while qPCR showed slightly 

elevated levels of hormone transcripts at D13 (Figure 9B). These results suggest that forced 

expression of NGN3 does not induce endocrine formation. This was most likely due to the lack of 

protein overexpression, despite clearly elevated levels of NGN3 mRNA. 

Due to the discrepancy between mRNA and protein expression, we suspected complex 

regulation of NGN3 was at play. Literature searches revealed abundant biochemical and in vivo 

evidence showing that NGN3, and the related NGN2, are heavily regulated at both the post-

transcriptional and post-translational levels (Vosper, Fiore-Heriche et al. 2007, Vosper, McDowell 

et al. 2009, McDowell, Kucerova et al. 2010, Ali, Hindley et al. 2011, Hindley, Ali et al. 2012). 

Reasoning that the negative regulation of NGN3 might be brought on by its own expression, we 

sought to overexpress NGN3 at a later time to escape this regulation. we therefore overexpressed 

NGN3 at D10, when endogenous NGN3 transcript has largely disappeared (Figure 7B). 3 days 

after transduction (D13) a significant increase in NGN3 protein expression was seen in NGN3 OE 

cells but not in controls (Figure 9C). Insulin and glucagon mRNA levels were drastically increased 

in D13 NGN3 OE cells compared to controls. In addition, immunofluorescence staining showed 

slightly more glucagon+ cells in NGN3 OE conditions compared to controls (Figure 9C). These 

results suggest NGN3 may be sufficient to induce endocrine specification in human cells. 
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 During normal differentiation, a large proportion of cells express pancreatic progenitor 

markers by D10. However, many hormone+ endocrine cells, as well as those destined to become 

endocrine cells, also exist at this stage. This is likely due to the endogenous wave of NGN3 

expression observed around D8. As this endogenous expression preceded the transgenic 

overexpression at D10, it is possible that NGN3 OE simply caused an increase in hormone 

expression in the endocrine/pre-endocrine cells rather than inducing pancreatic progenitors to 

become endocrine cells. In order to conclusively determine if NGN3 is sufficient to drive pancreatic 

progenitors to the endocrine fate, we induced NGN3 overexpression in sorted pancreatic 

progenitors prior to the premature wave of NGN3. 

 

Overexpression of NGN3 in sorted hESC-derived progenitors induces the endocrine fate. 

As previously stated, the in vitro protocol we use generates both pancreatic progenitors 

and polyhormonal endocrine cells. The heterogeneity of the differentiated cells has precluded our 

efforts to determine whether NGN3 can induce endocrine formation from hESC-derived pancreatic 

progenitors. In order to answer this question, we require a method to isolate the progenitors from 

the endocrine cells. Prior research by ViaCyte Inc. identified CD142 and CD200, as cell surface 

markers expressed on pancreatic progenitors or polyhormonal endocrine cells, respectively (Kelly, 

Chan et al. 2011). Fluorescence-activated cell sorting (FACS) using these markers allows for 

efficient separation of the two cell types (Kelly, Chan et al. 2011). Low cell viability following FACS 

precluded ViaCyte Inc.’s efforts to perform transplant experiments with purified progenitors. 

However, by employing a gentler method of magnetic-activated cell sorting (MACS), they showed 

that CD142+ progenitors are capable of becoming functional beta-cells following transplantation, 

while CD200+ endocrine cells are not (Kelly, Chan et al. 2011). We recently optimized a similar 

MACS method for use in our hESC differentiation system allowing for longer cell survival in culture. 

Using the optimized MACS protocol, we were able to isolate a highly pure population of 

CD142+ pancreatic progenitors at D13. To determine if NGN3 expression is sufficient to drive these 

progenitors to the endocrine fate, we transduced them with NGN3 OE lentivirus, re-aggregated the 
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cells and continued culturing them for 9 days (D22). Immunofluorescence analysis showed robust 

NGN3 protein expression that was sustained to D22 (Figure 10A). Additionally, more hormone+ 

cells, marked by the pan-endocrine protein chromogranin A (CHGA), were seen in NGN3 OE cells 

compared to controls (Figure 10A). This result suggests NGN3 expression is sufficient to drive 

endocrine differentiation from pancreatic progenitors. To assess whether forced NGN3 expression 

in D13 progenitors made more monohormonal cells than cells expressing NGN3 earlier, we 

analyzed expression of the individual hormones insulin and glucagon in the endocrine cells 

produced (Figure 10B). The clear segregation of insulin and glucagon expression in those 

endocrine cells suggests the later progenitors, upon NGN3 expression, are capable of becoming 

monohormonal cells in vitro (Figure 10B). However, further characterization of these cells is 

necessary to ensure other pancreatic hormones are not co-expressed. Many of the NGN3 OE cells 

that were insulin+ also expressed the beta-cell marker NKX6.1 (Figure 10C), a characteristic lacking 

in the polyhormonal cells generated during normal differentiation. In contrast, the single insulin+ cell 

identified in control cells did not co-express NKX6.1 (Figure 10C). Previous work from our lab has 

highlighted the extreme importance of NKX6.1 expression for both the differentiation to, and 

maintenance of, functional beta-cells in vivo (Sander, Sussel et al. 2000, Taylor, Liu et al. 2013). 

Up to this point, we had not observed robust NKX6.1 expression in any hormone+ cells generated 

in vitro. While these results are encouraging, more work is required to fully assess the whether 

these hormone+ cells generated via NGN3 overexpression in hESC-derived pancreatic progenitors 

can function as beta cells and secrete insulin in response to glucose stimulation. 

 

DISCUSSION 

The results presented here suggest that NGN3 is both necessary and sufficient to drive 

pancreatic endocrine formation in human cells, as it is in mice. In recent years, conclusive evidence 

in support of these conclusions has been published (McGrath, Watson et al. 2015). To continue to 

dissect the role of NGN3 in pancreatic endocrine specification and build upon this research, 

experiments in which NGN3 expression is rescued at different times during differentiation of NGN3-



68 

null hESCs could determine whether timing and duration of NGN3 expression dictates the 

pancreatic endocrine subtypes that are formed. Aside from filling a knowledge gap in how NGN3 

controls pancreatic endocrine formation, these experiments could ultimately pave the way for 

researchers to begin to generate whole human islets, complete with all endocrine subtypes, entirely 

in vitro. Although the topic of a cell replacement therapy for diabetes often solely focuses on the 

beta cell, there is evidence that other endocrine subtypes such as the glucagon-producing alpha 

cells may be vital for maintaining proper beta cell function (Rodriguez-Diaz, Dando et al. 2011). 

Therefore, generating whole pancreatic islets from hESCs may, someday become the gold 

standard of cell replacement therapies for diabetes. 

A comprehensive understanding of the importance of proper spatial and temporal 

expression of transcription factors, like NGN3, during differentiation is crucial to advancing the state 

of the art of in vitro generation of hESC-based cell and organ replacement therapies (Trounson and 

DeWitt 2016). As the knowledge of the scientific community grows, one can envision a future in 

which generation of various different cell types from hESCs can be achieved entirely through 

precise manipulation of external signals, without the need for viral transductions or transfections of 

exogenous DNA or RNA. These methods could eventually be applied to patient-derived induced 

pluripotent cells to generate patient-specific replacement cells that are safe and effective and do 

not require immunosuppression, providing a virtually limitless source of “self-donor” material for 

patients who suffer from any number of ailments. 

 

METHODS 

Human embryonic stem cell (hESC) culture and expansion. 

CyT49 human embryonic stem cells (NIH registration number: 0041) were maintained as 

previously described (Xie, Everett et al. 2013, Wang, Yue et al. 2015). Briefly, expansion of hESCs 

was achieved by passing cells every 3 days and culturing in sterile T-75 culture flasks (Corning®). 

Accutase™ (Innovative Cell Technologies) was used for cell dissociation and flasks were coated 

with a 10% (vol/vol) solution of human AB serum (Valley Biomedical). Flasks were seeded with 4 x 
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106 hESCs for 3 days of culture before passaging. Fresh maintenance media was supplied for 

hESCs each day and consisted of DMEM/F12 (Life Technologies) supplemented with 10% (vol/vol) 

KnockOut™ Serum Replacement XenoFree (Life Technologies), 0.1 mM MEM non-essential 

amino acids (Mediatech), 1X GlutaMAX™ (Life Technologies), 1% (vol/vol) penicillin/streptomycin 

(Life Technologies), 0.1 mM 2-mercaptoethanol (Life Technologies), 10 ng/mL Activin A (R&D 

Systems), and 10 ng/mL Heregulin-β1 (PeproTech). 

 

Pancreatic differentiation of hESCs. 

Pancreatic differentiation was performed as previously described (Schulz, Young et al. 

2012, Xie, Everett et al. 2013, Wang, Yue et al. 2015). Briefly, we used a suspension-based culture 

format to differentiate cells in aggregate form. Undifferentiated aggregates of hESCs were formed 

by re-suspending dissociated cells in hESC maintenance media at a concentration of 1 x 106 

cells/mL and plating 5.5 mL per well of the cell suspension in 6-well ultra-low attachment plates 

(Costar). The cells were cultured overnight on an orbital rotator (Innova2000, New Brunswick 

Scientific) at 95 rpm. After 24 hours the undifferentiated aggregates were washed once with RPMI 

media and supplied with 5.5 mL of Day 0 differentiation media. Thereafter, cells were supplied with 

the fresh media for the appropriate day of differentiation (see below). Cells were continually rotated 

at 95 rpm, or 105 rpm on days 4 through 8 and no media change was performed on Day10. Both 

RPMI (Mediatech) and DMEM High Glucose (HyClone) media were supplemented with 1X 

GlutaMAX™ and 1% penicillin/streptomycin. Human activin A, mouse Wnt3a, human KGF, human 

Noggin, and human EGF were purchased from R&D systems. Other added components included 

FBS (HyClone), B-27® supplement (Life Technologies), Insulin-Transferrin-Selenium (ITS; Life 

Technologies), TGFβ R1 kinase inhibitor IV (EMD Bioscience), KAAD-Cyclopamine (KC; Toronto 

Research Chemicals), and the retinoic receptor agonist TTNPB (RA; Sigma Aldrich). Day-specific 

media differentiation media formulations were as follows: Days 0 and 1: RPMI + 0.2% (v/v) FBS, 

100 ng/mL Activin, 50 ng/mL mouse Wnt3a, 1:5000 ITS. Days 1 and 2: RPMI + 0.2% (v/v) FBS, 

100ng/mL Activin, 1:5000 ITS. Days 2 and 3: RPMI + 0.2% (v/v) FBS, 2.5 mM TGFβ R1 kinase 
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inhibitor IV, 25 ng/mL KGF, 1:1000 ITS. Days 3 – 5: RPMI + 0.2% (v/v) FBS, 25 ng/mL KGF, 1:1000 

ITS. Days 5 – 8: DMEM + 0.5X B-27® Supplement, 3 nM TTNPB, 0.25 mM Cyclopamine, 50 ng/mL 

Noggin. Days 8 – 12: DMEM/B27, 50 ng/mL KGF, 50 ng/mL EGF. 

 

Design and construction of overexpression and knockdown lentiviruses. 

Overexpression lentivirus was constructed using the pRRLSIN.cPPT.PGK-GFP.WPRE 

payload vector backbone. The GFP cassette was replaced by human NGN3 cDNA through 

standard restriction digest and ligation cloning. NGN3 cDNA was generated from hESC genomic 

DNA using the following primers: NGN3-F 5’- ATGACGCCTCAACCCTCG-3’ and NGN3-R 5’-

TCACAGAAAATCTGAGAAAGCC-3’. Knockdown lentivirus was constructed using payload 

vectors containing shRNA sequences targeting NGN3 that have been previously described 

(McGrath, Watson et al. 2015). Lentiviruses were assembled via co-transfection of HEK293T cells 

with either overexpression or knockdown vectors, along with pCMV R8.74 and pMD.G helper 

plasmids. Viral supernatant was collected and concentrated by ultracentrifugation at 19,400 rpm 

for 2 hours using an Optima L-80 XP Ultracentrifuge (Beckman Coulter). To generate NGN3 

knockdown cell lines, undifferentiated hESCs were transduced with lentiviruses containing shRNAs 

targeting NGN3 and maintained as described above, with the addition of 2 µg/mL puromycin to 

select for cells expressing the shRNA. Cells were maintained under antibiotic selection throughout 

expansion prior to seeding for differentiation. In order to overexpress NGN3 during differentiation 

aggregated cells were first dissociated into single cells using Accutase™ and supplied with fresh 

differentiation media for the appropriate day, with 50 µL of viral concentrate added to the media. 

Plates were then placed back on the orbital rotator at 95 rpm at 37 °C overnight, to induce re-

aggregation. Either GFP overexpression or scrambled shRNA viruses served as controls. 

 

Magnetic sorting of pancreatic progenitors 

Magnetic-activated cell sorting (MACS) to isolate pancreatic progenitors from 

polyhormonal cells was performed using the MACS® Cell Separation kit (Miltenyi Biotec). At Day 
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10 of differentiation, hESC-derived cell aggregates were dissociated using the reagents included 

with the MACS® Cell Suspension kit. This and all subsequent steps were carried out according to 

the manufacturer instructions. Primary antibodies targeting the cell-surface proteins used to 

distinguish progenitors from endocrine cells were CD200-APC and CD142-PE (1:10, BD 

Biosciences). Separated cells were collected in wells of new 6-well Ultra-low attachment plates and 

supplied with fresh Day 10 media. For NGN3 overexpression experiments, sorted CD142+ cells 

were transduced with NGN3 overexpression virus prior to placing plates were back on the orbital 

rotator at 95 rpm at 37 °C overnight, to induce re-aggregation, and differentiation was continued 

normally. 

 

Immunofluorescence analysis. 

Cell aggregates derived from hESCs were allowed to settle in microcentrifuge tubes and 

washed twice with PBS before fixation with 4% paraformaldehyde for 30 min at room temperature. 

Fixed cells were washed twice with PBS and incubated overnight at 4 °C in 30% (w/v) sucrose in 

PBS. Cell aggregates were then loaded into disposable embedding molds (VWR), covered in 

Tissue-Tek® O.C.T. Sakura® Finetek compound (VWR) and flash frozen on dry ice to prepare 

frozen blocks. The blocks were sectioned at 10 µm and sections were placed on Superfrost Plus® 

(Thermo Fisher) microscope slides and washed with PBS for 10 min. Slide-mounted cell sections 

were permeabilized and blocked with blocking buffer, consisting of 0.15% (v/v) Triton X-100 

(Sigma) and 1% (v/v) normal donkey serum (Jackson Immuno Research Laboratories) in PBS, for 

1 hour at room temperature. Slides were then incubated overnight at 4 °C with primary antibody 

solutions. The following day slides were washed five times with PBS and incubated for 1 hour at 

room temperature with secondary antibody solutions. Cells were washed five times with PBS before 

coverslips were applied. All antibodies were diluted in blocking buffer at the ratios indicated below. 

Primary antibodies used were: sheep anti-NGN3 (1:300, R&D Systems); rabbit anti-SOX9 (1:1000 

dilution, Millipore); goat anti-PDX1 (1:500 dilution, Abcam); mouse anti-NKX6.1 (1:300 dilution, 

Developmental Studies Hybridoma Bank); rabbit anti-CHGA (1:1000, DAKO); guinea pig anti-INS 
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(1:500, DAKO), mouse anti-GCG (1:500, Sigma), rabbit anti-SST (1:500, DAKO). Secondary 

antibodies against sheep, rabbit, goat, mouse and guinea pig were Alexa488-, Cy3- and Cy5-

conjugated donkey antibodies and were used at dilutions of 1:1000, 1:2000, and 1:250, respectively 

(Jackson Immuno Research Laboratories). Representative images were obtained with a Zeiss 

Axio-Observer-Z1 microscope equipped with a Zeiss ApoTome and AxioCam digital camera. 

Figures were prepared in Adobe Creative Suite 5. 

 

Reverse Transcription and Quantitative PCR (RT-qPCR) analysis. 

Total RNA was isolated from hESC-derived cell aggregates using the RNeasy® Micro Kit 

(Qiagen). Synthesis of cDNA was performed using the iScript™ cDNA Synthesis Kit (Bio-Rad) and 

500 ng of isolated RNA per reaction. PCR reactions were performed in triplicate with 10 ng of 

template cDNA per reaction using a CFX96™ Real-Time PCR Detection System and the iQ™ 

SYBR® Green Supermix (Bio-Rad). PCR of the TATA binding protein (TBP) coding sequence was 

used as an internal control and relative expression was quantified via double delta CT analysis. 

Primers used for RT-qPCR are as follows: 

INS-F: 5’-AAGAGGCCATCAAGCAGATCA  

INS-R: 5’-CAGGAGGCGCATCCACA  

GCG-F: 5’-AAGCATTTACTTTGTGGCTGGATT  

GCG-R: 5’-TGATCTGGATTTCTCCTCTGTGTCT  

SST-F: 5’-CCCCAGACTCCGTCAGTTTC 

SST-R: 5’-TCCGTCTGGTTGGGTTCAG 

NGN3-F: 5’-ACTGTCCAAGTGACCCGTGA 

NGN3-R: 5’-TCAGTGCCAACTCGCTCTTAG 

TBP-F: 5’-ATTAAGGGAGGGAGTGGCAC 

TBP-R: 5’-GCTTTGCTTCCCTTTCCCAA 
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FIGURES 

 

 

 

Figure 7. Pancreatic Differentiation of hESCs. (A) Schematic of directed differentiation protocol 
from human embryonic stem cells (hESCs), through lineage intermediates, to hormone+ cells. 
Timing of expression for key stage-specific protein markers shown below stage names. Exogenous 
differentiation factors added to media are listed for the appropriate stages. (B) Relative mRNA 
levels during differentiation show peak activation of NGN3 before that of the trunk progenitor 
markers NKX6.1, PDX1 and SOX9. Relative expression values shown as percentages (0 – 100) of 
each gene’s maximum expression across the differentiation time course. 
  

KC 
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Figure 8. Knockdown of NGN3 Prevents Formation of hESC-derived Pancreatic Endocrine Cells. 
(A) Immunofluorescence analysis for NGN3 expression (top) and RT-qPCR analysis of mRNA 
levels for NGN3 and its downstream target, NEUROD1 at D8 of differentiation. (B) End-stage 
analysis for insulin and glucagon show diminished expression of both hormones in NGN3 KD cells. 
(C) NGN3 KD cells still express the pancreatic trunk progenitor markers NKX6.1 and PDX1. Scale 
bars, 50 µM. 
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Figure 9. Overexpression of NGN3 at Different Times During Pancreatic Differentiation of hESCs. 
(A) Immunofluorescence analysis for NGN3 and chromogranin A (CHGA) 1, 3 and 5 days after D7 
transduction of NGN3 OE. (B) Immunofluorescence (above) and RT-qPCR (below) analysis for 
insulin and glucagon 3 and 6 days after D7 transduction. End-stage RT-qPCR analysis for NGN3 
also shown (below). (C) Immunofluorescence (left) and RT-qPCR (right) analysis for NGN3, insulin 
and glucagon 3 days after D10 transduction. End-stage RT-qPCR analysis for NGN3 also shown 
(right). Scale bars, 50 µM. 
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Figure 10. Overexpression of NGN3 in Magnetically Sorted CD142+ Pancreatic Progenitors. (A) 
Immunofluorescence analysis for CHGA, NGN3, insulin and glucagon 5 and 9 days after 
transduction of NGN3 OE in CD142+ D13 progenitors isolated by MACS. (B) Immunofluorescence 
analysis for insulin and NKX6.1 9 days after transduction of NGN3 OE in CD142+ D13 progenitors. 
Individual insulin+ cells highlighted (white boxes) and magnified. Scale bars, 50 µM. 
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CONCLUSION 

From neurons and heart muscle to liver and pancreas and everything in between, each of 

these specialized cell types stems from pluripotent cells containing genomes identical to one 

another. How then can these highly distinct cell types arise from cells that all contain the exact 

same genes? This is one of the most important, unanswered questions of developmental biology . 

Research into this question has identified that modulation of the three-dimensional structure of DNA 

within the nucleus as a major component influencing gene expression (Shogren-Knaak, Ishii et al. 

2006, Martino, Kueng et al. 2009). The reshaping of chromatin in a cell type-specific manner instills 

different developmental competencies in different cells, allowing them to navigate through various 

lineage intermediates of their respective cell fates even while exposed to the same inductive cues 

(Xie, Everett et al. 2013, Wang, Yue et al. 2015). 

While in vivo animal studies have provided incredible insights into development and 

disease, and still serve as important models, hPSC-based in vitro differentiation systems provide 

the unique ability to dissect such developmental mechanisms, on a molecular level often not 

feasible in animal models. Indeed, the shear amount of cellular material required for certain assays 

like mapping the chromatin landscape throughout embryonic development would require a 

staggering number animal sacrifices and the associated costs quickly make these kinds of studies 

in animals impractical. Fortunately, in vitro models like the hESC-based in vitro pancreatic 

differentiation system employed here, have provided us and others with the tools required for 

systematic and meticulous examination of the various mechanisms involved in cell differentiation 

and development.  

  

78 



79 

REFERENCES 

Adamo, A., B. Sese, S. Boue, J. Castano, I. Paramonov, M. J. Barrero and J. C. Izpisua Belmonte 
(2011). "LSD1 regulates the balance between self-renewal and differentiation in human embryonic 
stem cells." Nat Cell Biol 13(6): 652-659. 

Ali, F., C. Hindley, G. McDowell, R. Deibler, A. Jones, M. Kirschner, F. Guillemot and A. Philpott 
(2011). "Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling 
with differentiation during neurogenesis." Development 138(19): 4267-4277. 

Andrews, S. (2010). "FastQC: a quality control tool for high throughput sequence data. Available 
online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc." 

Annunziato, A. T. (2008). "DNA Packaging: Nucleosomes and Chromatin." Nature Education 
1(1):26. 

Apelqvist, A., H. Li, L. Sommer, P. Beatus, D. J. Anderson, T. Honjo, M. Hrabe de Angelis, U. 
Lendahl and H. Edlund (1999). "Notch signalling controls pancreatic cell differentiation." Nature 
400(6747): 877-881. 

Arda, H. E., C. M. Benitez and S. K. Kim (2013). "Gene regulatory networks governing pancreas 
development." Dev Cell 25(1): 5-13. 

Avantaggiato, V., D. Acampora, F. Tuorto and A. Simeone (1996). "Retinoic acid induces stage-
specific repatterning of the rostral central nervous system." Dev Biol 175(2): 347-357. 

Avior, Y., I. Sagi and N. Benvenisty (2016). "Pluripotent stem cells in disease modelling and drug 
discovery." Nat Rev Mol Cell Biol 17(3): 170-182. 

Balmer, J. E. and R. Blomhoff (2002). "Gene expression regulation by retinoic acid." J Lipid Res 
43(11): 1773-1808. 

Balmer, J. E. and R. Blomhoff (2005). "A robust characterization of retinoic acid response elements 
based on a comparison of sites in three species." J Steroid Biochem Mol Biol 96(5): 347-354. 

Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. 
Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber and E. S. Lander (2006). "A 
bivalent chromatin structure marks key developmental genes in embryonic stem cells." Cell 125(2): 
315-326. 

Bibel, M., J. Richter, K. Schrenk, K. L. Tucker, V. Staiger, M. Korte, M. Goetz and Y. A. Barde 
(2004). "Differentiation of mouse embryonic stem cells into a defined neuronal lineage." Nat 
Neurosci 7(9): 1003-1009. 

Campbell-Thompson, M., C. Wasserfall, J. Kaddis, A. Albanese-O'Neill, T. Staeva, C. Nierras, J. 
Moraski, P. Rowe, R. Gianani, G. Eisenbarth, J. Crawford, D. Schatz, A. Pugliese and M. Atkinson 
(2012). "Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank 
for type 1 diabetes." Diabetes Metab Res Rev 28(7): 608-617. 

Chen, Y., F. C. Pan, N. Brandes, S. Afelik, M. Solter and T. Pieler (2004). "Retinoic acid signaling 
is essential for pancreas development and promotes endocrine at the expense of exocrine cell 
differentiation in Xenopus." Dev Biol 271(1): 144-160. 

 

79 



80 

Creyghton, M. P., A. W. Cheng, G. G. Welstead, T. Kooistra, B. W. Carey, E. J. Steine, J. Hanna, 
M. A. Lodato, G. M. Frampton, P. A. Sharp, L. A. Boyer, R. A. Young and R. Jaenisch (2010). 
"Histone H3K27ac separates active from poised enhancers and predicts developmental state." 
Proc Natl Acad Sci U S A 107(50): 21931-21936. 

Cunningham, T. J. and G. Duester (2015). "Mechanisms of retinoic acid signalling and its roles in 
organ and limb development." Nat Rev Mol Cell Biol 16(2): 110-123. 

D'Amour, K. A., A. G. Bang, S. Eliazer, O. G. Kelly, A. D. Agulnick, N. G. Smart, M. A. Moorman, 
E. Kroon, M. K. Carpenter and E. E. Baetge (2006). "Production of pancreatic hormone-expressing 
endocrine cells from human embryonic stem cells." Nat Biotechnol 24(11): 1392-1401. 

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and 
T. R. Gingeras (2013). "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29(1): 15-21. 

Durston, A. J., J. P. Timmermans, W. J. Hage, H. F. Hendriks, N. J. de Vries, M. Heideveld and P. 
D. Nieuwkoop (1989). "Retinoic acid causes an anteroposterior transformation in the developing 
central nervous system." Nature 340(6229): 140-144. 

Duteil, D., M. Tosic, F. Lausecker, H. Z. Nenseth, J. M. Muller, S. Urban, D. Willmann, K. Petroll, 
N. Messaddeq, L. Arrigoni, T. Manke, J. W. Kornfeld, J. C. Bruning, V. Zagoriy, M. Meret, J. Dengjel, 
T. Kanouni and R. Schule (2016). "Lsd1 Ablation Triggers Metabolic Reprogramming of Brown 
Adipose Tissue." Cell Rep 17(4): 1008-1021. 

Encode Project Consortium (2012). "An integrated encyclopedia of DNA elements in the human 
genome." Nature 489(7414): 57-74. 

Ernst, J., P. Kheradpour, T. S. Mikkelsen, N. Shoresh, L. D. Ward, C. B. Epstein, X. Zhang, L. 
Wang, R. Issner, M. Coyne, M. Ku, T. Durham, M. Kellis and B. E. Bernstein (2011). "Mapping and 
analysis of chromatin state dynamics in nine human cell types." Nature 473(7345): 43-49. 

Forneris, F., C. Binda, A. Dall'Aglio, M. W. Fraaije, E. Battaglioli and A. Mattevi (2006). "A highly 
specific mechanism of histone H3-K4 recognition by histone demethylase LSD1." J Biol Chem 
281(46): 35289-35295. 

Foster, C. T., O. M. Dovey, L. Lezina, J. L. Luo, T. W. Gant, N. Barlev, A. Bradley and S. M. Cowley 
(2010). "Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST 
stability." Mol Cell Biol 30(20): 4851-4863. 

Garcia-Ramirez, M., C. Rocchini and J. Ausio (1995). "Modulation of chromatin folding by histone 
acetylation." J Biol Chem 270(30): 17923-17928. 

Gasa, R., C. Mrejen, N. Leachman, M. Otten, M. Barnes, J. Wang, S. Chakrabarti, R. Mirmira and 
M. German (2004). "Proendocrine genes coordinate the pancreatic islet differentiation program in 
vitro." Proc Natl Acad Sci U S A 101(36): 13245-13250. 

Gradwohl, G., A. Dierich, M. LeMeur and F. Guillemot (2000). "neurogenin3 is required for the 
development of the four endocrine cell lineages of the pancreas." Proc Natl Acad Sci U S A 97(4): 
1607-1611. 

Grunstein, M. (1997). "Histone acetylation in chromatin structure and transcription." Nature 
389(6649): 349-352. 



81 

Gu, G., J. Dubauskaite and D. A. Melton (2002). "Direct evidence for the pancreatic lineage: NGN3+ 
cells are islet progenitors and are distinct from duct progenitors." Development 129(10): 2447-2457. 

Hanna, J. H., K. Saha and R. Jaenisch (2010). "Pluripotency and cellular reprogramming: facts, 
hypotheses, unresolved issues." Cell 143(4): 508-525. 

Head, S. R., H. K. Komori, S. A. LaMere, T. Whisenant, F. Van Nieuwerburgh, D. R. Salomon and 
P. Ordoukhanian (2014). "Library construction for next-generation sequencing: overviews and 
challenges." Biotechniques 56(2): 61-64, 66, 68, passim. 

Heintzman, N. D., G. C. Hon, R. D. Hawkins, P. Kheradpour, A. Stark, L. F. Harp, Z. Ye, L. K. Lee, 
R. K. Stuart, C. W. Ching, K. A. Ching, J. E. Antosiewicz-Bourget, H. Liu, X. Zhang, R. D. Green, 
V. V. Lobanenkov, R. Stewart, J. A. Thomson, G. E. Crawford, M. Kellis and B. Ren (2009). "Histone 
modifications at human enhancers reflect global cell-type-specific gene expression." Nature 
459(7243): 108-112. 

Heinz, S., C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre, H. Singh 
and C. K. Glass (2010). "Simple combinations of lineage-determining transcription factors prime 
cis-regulatory elements required for macrophage and B cell identities." Mol Cell 38(4): 576-589. 

Heinz, S. and C. K. Glass (2012). "Roles of lineage-determining transcription factors in establishing 
open chromatin: lessons from high-throughput studies." Curr Top Microbiol Immunol 356: 1-15. 

Heinz, S., C. E. Romanoski, C. Benner and C. K. Glass (2015). "The selection and function of cell 
type-specific enhancers." Nat Rev Mol Cell Biol 16(3): 144-154. 

Hindley, C., F. Ali, G. McDowell, K. Cheng, A. Jones, F. Guillemot and A. Philpott (2012). "Post-
translational modification of Ngn2 differentially affects transcription of distinct targets to regulate 
the balance between progenitor maintenance and differentiation." Development 139(10): 1718-
1723. 

Hockemeyer, D. and R. Jaenisch (2016). "Induced Pluripotent Stem Cells Meet Genome Editing." 
Cell Stem Cell 18(5): 573-586. 

Jaenisch, R. and R. Young (2008). "Stem cells, the molecular circuitry of pluripotency and nuclear 
reprogramming." Cell 132(4): 567-582. 

Johansson, K. A., U. Dursun, N. Jordan, G. Gu, F. Beermann, G. Gradwohl and A. Grapin-Botton 
(2007). "Temporal control of neurogenin3 activity in pancreas progenitors reveals competence 
windows for the generation of different endocrine cell types." Dev Cell 12(3): 457-465. 

Kaikkonen, M. U., N. J. Spann, S. Heinz, C. E. Romanoski, K. A. Allison, J. D. Stender, H. B. Chun, 
D. F. Tough, R. K. Prinjha, C. Benner and C. K. Glass (2013). "Remodeling of the enhancer 
landscape during macrophage activation is coupled to enhancer transcription." Mol Cell 51(3): 310-
325. 

Kam, R. K., W. Shi, S. O. Chan, Y. Chen, G. Xu, C. B. Lau, K. P. Fung, W. Y. Chan and H. Zhao 
(2013). "Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic 
patterning." J Biol Chem 288(44): 31477-31487. 

Keller, G. (2005). "Embryonic stem cell differentiation: emergence of a new era in biology and 
medicine." Genes Dev 19(10): 1129-1155. 



82 

Kelly, O. G., M. Y. Chan, L. A. Martinson, K. Kadoya, T. M. Ostertag, K. G. Ross, M. Richardson, 
M. K. Carpenter, K. A. D'Amour, E. Kroon, M. Moorman, E. E. Baetge and A. G. Bang (2011). "Cell-
surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells." 
Nat Biotechnol 29(8): 750-756. 

Kent, W. J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler and D. Haussler 
(2002). "The human genome browser at UCSC." Genome Res 12(6): 996-1006. 

Kerenyi, M. A., Z. Shao, Y. J. Hsu, G. Guo, S. Luc, K. O'Brien, Y. Fujiwara, C. Peng, M. Nguyen 
and S. H. Orkin (2013). "Histone demethylase Lsd1 represses hematopoietic stem and progenitor 
cell signatures during blood cell maturation." Elife 2: e00633. 

Kim, T. K. and R. Shiekhattar (2015). "Architectural and Functional Commonalities between 
Enhancers and Promoters." Cell 162(5): 948-959. 

Koch, C. M., R. M. Andrews, P. Flicek, S. C. Dillon, U. Karaoz, G. K. Clelland, S. Wilcox, D. M. 
Beare, J. C. Fowler, P. Couttet, K. D. James, G. C. Lefebvre, A. W. Bruce, O. M. Dovey, P. D. Ellis, 
P. Dhami, C. F. Langford, Z. Weng, E. Birney, N. P. Carter, D. Vetrie and I. Dunham (2007). "The 
landscape of histone modifications across 1% of the human genome in five human cell lines." 
Genome Res 17(6): 691-707. 

Kroon, E., L. A. Martinson, K. Kadoya, A. G. Bang, O. G. Kelly, S. Eliazer, H. Young, M. Richardson, 
N. G. Smart, J. Cunningham, A. D. Agulnick, K. A. D'Amour, M. K. Carpenter and E. E. Baetge 
(2008). "Pancreatic endoderm derived from human embryonic stem cells generates glucose-
responsive insulin-secreting cells in vivo." Nat Biotechnol 26(4): 443-452. 

Langmead, B. and S. L. Salzberg (2012). "Fast gapped-read alignment with Bowtie 2." Nat Methods 
9(4): 357-359. 

Laurent, B., L. Ruitu, J. Murn, K. Hempel, R. Ferrao, Y. Xiang, S. Liu, B. A. Garcia, H. Wu, F. Wu, 
H. Steen and Y. Shi (2015). "A specific LSD1/KDM1A isoform regulates neuronal differentiation 
through H3K9 demethylation." Mol Cell 57(6): 957-970. 

Lee, D. Y., J. J. Hayes, D. Pruss and A. P. Wolffe (1993). "A positive role for histone acetylation in 
transcription factor access to nucleosomal DNA." Cell 72(1): 73-84. 

Li, A., Y. Sun, C. Dou, J. Chen and J. Zhang (2012). "Lysine-specific demethylase 1 expression in 
zebrafish during the early stages of neuronal development." Neural Regen Res 7(34): 2719-2726. 

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin 
and S. Genome Project Data Processing (2009). "The Sequence Alignment/Map format and 
SAMtools." Bioinformatics 25(16): 2078-2079. 

Linker, C. and C. D. Stern (2004). "Neural induction requires BMP inhibition only as a late step, 
and involves signals other than FGF and Wnt antagonists." Development 131(22): 5671-5681. 

Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2." Genome Biol 15(12): 550. 

Mahony, S., E. O. Mazzoni, S. McCuine, R. A. Young, H. Wichterle and D. K. Gifford (2011). 
"Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis." Genome 
Biol 12(1): R2. 



83 

Mark, M., N. B. Ghyselinck and P. Chambon (2009). "Function of retinoic acid receptors during 
embryonic development." Nucl Recept Signal 7: e002. 

Martin, M., J. Gallego-Llamas, V. Ribes, M. Kedinger, K. Niederreither, P. Chambon, P. Dolle and 
G. Gradwohl (2005). "Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice." Dev 
Biol 284(2): 399-411. 

Martino, F., S. Kueng, P. Robinson, M. Tsai-Pflugfelder, F. van Leeuwen, M. Ziegler, F. Cubizolles, 
M. M. Cockell, D. Rhodes and S. M. Gasser (2009). "Reconstitution of yeast silent chromatin: 
multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro." Mol 
Cell 33(3): 323-334. 

McCarthy, D. J., Y. Chen and G. K. Smyth (2012). "Differential expression analysis of multifactor 
RNA-Seq experiments with respect to biological variation." Nucleic Acids Res 40(10): 4288-4297. 

McDowell, G. S., R. Kucerova and A. Philpott (2010). "Non-canonical ubiquitylation of the proneural 
protein Ngn2 occurs in both Xenopus embryos and mammalian cells." Biochem Biophys Res 
Commun 400(4): 655-660. 

McGrath, P. S., C. L. Watson, C. Ingram, M. A. Helmrath and J. M. Wells (2015). "The Basic Helix-
Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine 
Pancreas." Diabetes 64(7): 2497-2505. 

McLean, C. Y., D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar, C. B. Lowe, A. M. Wenger and G. 
Bejerano (2010). "GREAT improves functional interpretation of cis-regulatory regions." Nat 
Biotechnol 28(5): 495-501. 

Mercer, E. M., Y. C. Lin, C. Benner, S. Jhunjhunwala, J. Dutkowski, M. Flores, M. Sigvardsson, T. 
Ideker, C. K. Glass and C. Murre (2011). "Multilineage priming of enhancer repertoires precedes 
commitment to the B and myeloid cell lineages in hematopoietic progenitors." Immunity 35(3): 413-
425. 

Metzger, E., M. Wissmann, N. Yin, J. M. Muller, R. Schneider, A. H. Peters, T. Gunther, R. Buettner 
and R. Schule (2005). "LSD1 demethylates repressive histone marks to promote androgen-
receptor-dependent transcription." Nature 437(7057): 436-439. 

Molotkov, A., N. Molotkova and G. Duester (2005). "Retinoic acid generated by Raldh2 in 
mesoderm is required for mouse dorsal endodermal pancreas development." Dev Dyn 232(4): 950-
957. 

Morton, N. E. (1991). "Parameters of the human genome." Proc Natl Acad Sci U S A 88(17): 7474-
7476. 

Motte, E., E. Szepessy, K. Suenens, G. Stange, M. Bomans, D. Jacobs-Tulleneers-Thevissen, Z. 
Ling, E. Kroon, D. Pipeleers and E.-F. Beta Cell Therapy Consortium (2014). "Composition and 
function of macroencapsulated human embryonic stem cell-derived implants: comparison with 
clinical human islet cell grafts." Am J Physiol Endocrinol Metab 307(9): E838-846. 

Nair, V. D., Y. Ge, N. Balasubramaniyan, J. Kim, Y. Okawa, M. Chikina, O. Troyanskaya and S. C. 
Sealfon (2012). "Involvement of histone demethylase LSD1 in short-time-scale gene expression 
changes during cell cycle progression in embryonic stem cells." Mol Cell Biol 32(23): 4861-4876. 



84 

Nakamura, E., M. T. Nguyen and S. Mackem (2006). "Kinetics of tamoxifen-regulated Cre activity 
in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the 
proximodistal limb skeleton." Dev Dyn 235(9): 2603-2612. 

O'Geen, H., L. Echipare and P. J. Farnham (2011). "Using ChIP-seq technology to generate high-
resolution profiles of histone modifications." Methods Mol Biol 791: 265-286. 

Pagliuca, F. W., J. R. Millman, M. Gurtler, M. Segel, A. Van Dervort, J. H. Ryu, Q. P. Peterson, D. 
Greiner and D. A. Melton (2014). "Generation of functional human pancreatic beta cells in vitro." 
Cell 159(2): 428-439. 

Papp, B. and K. Plath (2013). "Epigenetics of reprogramming to induced pluripotency." Cell 152(6): 
1324-1343. 

Peng, Y. B., M. Yerle and B. Liu (2009). "Mapping and expression analyses during porcine foetal 
muscle development of 12 genes involved in histone modifications." Anim Genet 40(2): 242-246. 

Pham, T. H., J. Minderjahn, C. Schmidl, H. Hoffmeister, S. Schmidhofer, W. Chen, G. Langst, C. 
Benner and M. Rehli (2013). "Mechanisms of in vivo binding site selection of the hematopoietic 
master transcription factor PU.1." Nucleic Acids Res 41(13): 6391-6402. 

Plachta, N., M. Bibel, K. L. Tucker and Y. A. Barde (2004). "Developmental potential of defined 
neural progenitors derived from mouse embryonic stem cells." Development 131(21): 5449-5456. 

Quinlan, A. R. and I. M. Hall (2010). "BEDTools: a flexible suite of utilities for comparing genomic 
features." Bioinformatics 26(6): 841-842. 

Rada-Iglesias, A., R. Bajpai, T. Swigut, S. A. Brugmann, R. A. Flynn and J. Wysocka (2011). "A 
unique chromatin signature uncovers early developmental enhancers in humans." Nature 
470(7333): 279-283. 

Rada-Iglesias, A. and J. Wysocka (2011). "Epigenomics of human embryonic stem cells and 
induced pluripotent stem cells: insights into pluripotency and implications for disease." Genome 
Med 3(6): 36. 

Rezania, A., J. E. Bruin, P. Arora, A. Rubin, I. Batushansky, A. Asadi, S. O'Dwyer, N. Quiskamp, 
M. Mojibian, T. Albrecht, Y. H. Yang, J. D. Johnson and T. J. Kieffer (2014). "Reversal of diabetes 
with insulin-producing cells derived in vitro from human pluripotent stem cells." Nat Biotechnol 
32(11): 1121-1133. 

Rhinn, M. and P. Dolle (2012). "Retinoic acid signalling during development." Development 139(5): 
843-858. 

Robinson, M. D., D. J. McCarthy and G. K. Smyth (2010). "edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data." Bioinformatics 26(1): 139-140. 

Rodriguez-Diaz, R., R. Dando, M. C. Jacques-Silva, A. Fachado, J. Molina, M. H. Abdulreda, C. 
Ricordi, S. D. Roper, P. O. Berggren and A. Caicedo (2011). "Alpha cells secrete acetylcholine as 
a non-neuronal paracrine signal priming beta cell function in humans." Nat Med 17(7): 888-892. 

Romanoski, C. E., V. M. Link, S. Heinz and C. K. Glass (2015). "Exploiting genomics and natural 
genetic variation to decode macrophage enhancers." Trends Immunol 36(9): 507-518. 



85 

Rossetto, D., N. Avvakumov and J. Cote (2012). "Histone phosphorylation: a chromatin 
modification involved in diverse nuclear events." Epigenetics 7(10): 1098-1108. 

Rukstalis, J. M. and J. F. Habener (2009). "Neurogenin3 A master regulator of pancreatic islet 
differentiation and regeneration." Islets 1(3): 177-184. 

Russ, H. A., E. Sintov, L. Anker-Kitai, O. Friedman, A. Lenz, G. Toren, C. Farhy, M. Pasmanik-
Chor, V. Oron-Karni, P. Ravassard and S. Efrat (2011). "Insulin-producing cells generated from 
dedifferentiated human pancreatic beta cells expanded in vitro." PLoS One 6(9): e25566. 

Sander, M., L. Sussel, J. Conners, D. Scheel, J. Kalamaras, F. Dela Cruz, V. Schwitzgebel, A. 
Hayes-Jordan and M. German (2000). "Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the 
major pathway of beta-cell formation in the pancreas." Development 127(24): 5533-5540. 

Schaffer, A. E., K. K. Freude, S. B. Nelson and M. Sander (2010). "Nkx6 transcription factors and 
Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors." Dev Cell 
18(6): 1022-1029. 

Schuldiner, M., O. Yanuka, J. Itskovitz-Eldor, D. A. Melton and N. Benvenisty (2000). "Effects of 
eight growth factors on the differentiation of cells derived from human embryonic stem cells." Proc 
Natl Acad Sci U S A 97(21): 11307-11312. 

Schulz, T. C. (2015). "Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical 
Trials in Type 1 Diabetes." Stem Cells Transl Med 4(8): 927-931. 

Schulz, T. C., H. Y. Young, A. D. Agulnick, M. J. Babin, E. E. Baetge, A. G. Bang, A. Bhoumik, I. 
Cepa, R. M. Cesario, C. Haakmeester, K. Kadoya, J. R. Kelly, J. Kerr, L. A. Martinson, A. B. 
McLean, M. A. Moorman, J. K. Payne, M. Richardson, K. G. Ross, E. S. Sherrer, X. Song, A. Z. 
Wilson, E. P. Brandon, C. E. Green, E. J. Kroon, O. G. Kelly, K. A. D'Amour and A. J. Robins 
(2012). "A scalable system for production of functional pancreatic progenitors from human 
embryonic stem cells." PLoS One 7(5): e37004. 

Schwitzgebel, V. M., D. W. Scheel, J. R. Conners, J. Kalamaras, J. E. Lee, D. J. Anderson, L. 
Sussel, J. D. Johnson and M. S. German (2000). "Expression of neurogenin3 reveals an islet cell 
precursor population in the pancreas." Development 127(16): 3533-3542. 

Seymour, P. A. and M. Sander (2011). "Historical Perspective: Beginnings of the beta-Cell Current 
Perspectives in beta-Cell Development." Diabetes 60(2): 364-376. 

Seymour, P. A. and M. Sander (2011). "Historical perspective: beginnings of the beta-cell: current 
perspectives in beta-cell development." Diabetes 60(2): 364-376. 

Shapiro, A. M., C. Ricordi, B. J. Hering, H. Auchincloss, R. Lindblad, R. P. Robertson, A. Secchi, 
M. D. Brendel, T. Berney, D. C. Brennan, E. Cagliero, R. Alejandro, E. A. Ryan, B. DiMercurio, P. 
Morel, K. S. Polonsky, J. A. Reems, R. G. Bretzel, F. Bertuzzi, T. Froud, R. Kandaswamy, D. E. 
Sutherland, G. Eisenbarth, M. Segal, J. Preiksaitis, G. S. Korbutt, F. B. Barton, L. Viviano, V. 
Seyfert-Margolis, J. Bluestone and J. R. Lakey (2006). "International trial of the Edmonton protocol 
for islet transplantation." N Engl J Med 355(13): 1318-1330. 

Shen, Y., F. Yue, D. F. McCleary, Z. Ye, L. Edsall, S. Kuan, U. Wagner, J. Dixon, L. Lee, V. V. 
Lobanenkov and B. Ren (2012). "A map of the cis-regulatory sequences in the mouse genome." 
Nature 488(7409): 116-120. 



86 

Shi, Y., F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole, R. A. Casero and Y. Shi (2004). 
"Histone demethylation mediated by the nuclear amine oxidase homolog LSD1." Cell 119(7): 941-
953. 

Shih, H. P., A. Wang and M. Sander (2013). "Pancreas organogenesis: from lineage determination 
to morphogenesis." Annu Rev Cell Dev Biol 29: 81-105. 

Shlyueva, D., G. Stampfel and A. Stark (2014). "Transcriptional enhancers: from properties to 
genome-wide predictions." Nat Rev Genet 15(4): 272-286. 

Shogren-Knaak, M., H. Ishii, J. M. Sun, M. J. Pazin, J. R. Davie and C. L. Peterson (2006). "Histone 
H4-K16 acetylation controls chromatin structure and protein interactions." Science 311(5762): 844-
847. 

Simandi, Z., B. L. Balint, S. Poliska, R. Ruhl and L. Nagy (2010). "Activation of retinoic acid receptor 
signaling coordinates lineage commitment of spontaneously differentiating mouse embryonic stem 
cells in embryoid bodies." FEBS Lett 584(14): 3123-3130. 

Storvall, H., D. Ramskold and R. Sandberg (2013). "Efficient and comprehensive representation of 
uniqueness for next-generation sequencing by minimum unique length analyses." PLoS One 8(1): 
e53822. 

Su, S. T., H. Y. Ying, Y. K. Chiu, F. R. Lin, M. Y. Chen and K. I. Lin (2009). "Involvement of histone 
demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation." Mol 
Cell Biol 29(6): 1421-1431. 

Sun, G., K. Alzayady, R. Stewart, P. Ye, S. Yang, W. Li and Y. Shi (2010). "Histone demethylase 
LSD1 regulates neural stem cell proliferation." Mol Cell Biol 30(8): 1997-2005. 

Takahashi, K. and S. Yamanaka (2006). "Induction of pluripotent stem cells from mouse embryonic 
and adult fibroblast cultures by defined factors." Cell 126(4): 663-676. 

Tan, M., H. Luo, S. Lee, F. Jin, J. S. Yang, E. Montellier, T. Buchou, Z. Cheng, S. Rousseaux, N. 
Rajagopal, Z. Lu, Z. Ye, Q. Zhu, J. Wysocka, Y. Ye, S. Khochbin, B. Ren and Y. Zhao (2011). 
"Identification of 67 histone marks and histone lysine crotonylation as a new type of histone 
modification." Cell 146(6): 1016-1028. 

Taylor, B. L., F. F. Liu and M. Sander (2013). "Nkx6.1 is essential for maintaining the functional 
state of pancreatic beta cells." Cell Rep 4(6): 1262-1275. 

Thurman, R. E., E. Rynes, R. Humbert, J. Vierstra, M. T. Maurano, E. Haugen, N. C. Sheffield, A. 
B. Stergachis, H. Wang, B. Vernot, K. Garg, S. John, R. Sandstrom, D. Bates, L. Boatman, T. K. 
Canfield, M. Diegel, D. Dunn, A. K. Ebersol, T. Frum, E. Giste, A. K. Johnson, E. M. Johnson, T. 
Kutyavin, B. Lajoie, B. K. Lee, K. Lee, D. London, D. Lotakis, S. Neph, F. Neri, E. D. Nguyen, H. 
Qu, A. P. Reynolds, V. Roach, A. Safi, M. E. Sanchez, A. Sanyal, A. Shafer, J. M. Simon, L. Song, 
S. Vong, M. Weaver, Y. Yan, Z. Zhang, Z. Zhang, B. Lenhard, M. Tewari, M. O. Dorschner, R. S. 
Hansen, P. A. Navas, G. Stamatoyannopoulos, V. R. Iyer, J. D. Lieb, S. R. Sunyaev, J. M. Akey, 
P. J. Sabo, R. Kaul, T. S. Furey, J. Dekker, G. E. Crawford and J. A. Stamatoyannopoulos (2012). 
"The accessible chromatin landscape of the human genome." Nature 489(7414): 75-82. 

Trounson, A. and N. D. DeWitt (2016). "Pluripotent stem cells progressing to the clinic." Nat Rev 
Mol Cell Biol 17(3): 194-200. 



87 

Vosper, J. M., G. S. McDowell, C. J. Hindley, C. S. Fiore-Heriche, R. Kucerova, I. Horan and A. 
Philpott (2009). "Ubiquitylation on canonical and non-canonical sites targets the transcription factor 
neurogenin for ubiquitin-mediated proteolysis." J Biol Chem 284(23): 15458-15468. 

Vosper, J. M. D., C. S. Fiore-Heriche, I. Horan, K. Wilson, H. Wise and A. Philpott (2007). 
"Regulation of neurogenin stability by ubiquitin-mediated proteolysis." Biochemical Journal 407: 
277-284. 

Wang, A., F. Yue, Y. Li, R. Xie, T. Harper, N. A. Patel, K. Muth, J. Palmer, Y. Qiu, J. Wang, D. K. 
Lam, J. C. Raum, D. A. Stoffers, B. Ren and M. Sander (2015). "Epigenetic priming of enhancers 
predicts developmental competence of hESC-derived endodermal lineage intermediates." Cell 
Stem Cell 16(4): 386-399. 

Wang, J., S. Hevi, J. K. Kurash, H. Lei, F. Gay, J. Bajko, H. Su, W. Sun, H. Chang, G. Xu, F. 
Gaudet, E. Li and T. Chen (2009). "The lysine demethylase LSD1 (KDM1) is required for 
maintenance of global DNA methylation." Nat Genet 41(1): 125-129. 

Wang, J., F. Lu, Q. Ren, H. Sun, Z. Xu, R. Lan, Y. Liu, D. Ward, J. Quan, T. Ye and H. Zhang 
(2011). "Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent 
stem cell properties." Cancer Res 71(23): 7238-7249. 

Wang, J., K. Scully, X. Zhu, L. Cai, J. Zhang, G. G. Prefontaine, A. Krones, K. A. Ohgi, P. Zhu, I. 
Garcia-Bassets, F. Liu, H. Taylor, J. Lozach, F. L. Jayes, K. S. Korach, C. K. Glass, X. D. Fu and 
M. G. Rosenfeld (2007). "Opposing LSD1 complexes function in developmental gene activation 
and repression programmes." Nature 446(7138): 882-887. 

Whyte, W. A., S. Bilodeau, D. A. Orlando, H. A. Hoke, G. M. Frampton, C. T. Foster, S. M. Cowley 
and R. A. Young (2012). "Enhancer decommissioning by LSD1 during embryonic stem cell 
differentiation." Nature 482(7384): 221-225. 

Wissmann, M., N. Yin, J. M. Muller, H. Greschik, B. D. Fodor, T. Jenuwein, C. Vogler, R. Schneider, 
T. Gunther, R. Buettner, E. Metzger and R. Schule (2007). "Cooperative demethylation by JMJD2C 
and LSD1 promotes androgen receptor-dependent gene expression." Nat Cell Biol 9(3): 347-353. 

Wolffe, A. (2000). Chromatin (Third Edition). Chromatin (Third Edition). London, Academic Press. 

Wolffe, A. P. and D. Pruss (1996). "Targeting chromatin disruption: Transcription regulators that 
acetylate histones." Cell 84(6): 817-819. 

Xie, F., L. Ye, J. Chang, A. Beyer, J. Wang, M. Muench and Y. Kan (2014). "Seamless gene 
correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and 
piggyBac." Genome Research 24(9): 1526-1533. 

Xie, R., L. J. Everett, H. W. Lim, N. A. Patel, J. Schug, E. Kroon, O. G. Kelly, A. Wang, K. A. 
D'Amour, A. J. Robins, K. J. Won, K. H. Kaestner and M. Sander (2013). "Dynamic chromatin 
remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human 
embryonic stem cells." Cell Stem Cell 12(2): 224-237. 

Xiong, Y., E. Wang, Y. Huang, X. Guo, Y. Yu, Q. Du, X. Ding and Y. Sun (2016). "Inhibition of 
Lysine-Specific Demethylase-1 (LSD1/KDM1A) Promotes the Adipogenic Differentiation of hESCs 
Through H3K4 Methylation." Stem Cell Rev 12(3): 298-304. 

Yamanaka, S. (2007). "Strategies and new developments in the generation of patient-specific 
pluripotent stem cells." Cell Stem Cell 1(1): 39-49. 



88 

Yamanaka, S. and H. M. Blau (2010). "Nuclear reprogramming to a pluripotent state by three 
approaches." Nature 465(7299): 704-712. 

Zentner, G. E. and P. C. Scacheri (2012). "The chromatin fingerprint of gene enhancer elements." 
J Biol Chem 287(37): 30888-30896. 

Zentner, G. E., P. J. Tesar and P. C. Scacheri (2011). "Epigenetic signatures distinguish multiple 
classes of enhancers with distinct cellular functions." Genome Res 21(8): 1273-1283. 

Zhang, Y., B. Schmid, N. K. Nikolaisen, M. A. Rasmussen, B. I. Aldana, M. Agger, K. Calloe, T. C. 
Stummann, H. M. Larsen, T. T. Nielsen, J. Huang, F. Xu, X. Liu, L. Bolund, M. Meyer, L. K. Bak, H. 
S. Waagepetersen, Y. Luo, J. E. Nielsen, F. R. Consortium, B. Holst, C. Clausen, P. Hyttel and K. 
K. Freude (2017). "Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal 
Dementia with Mutation in CHMP2B." Stem Cell Reports. 

Zibetti, C., A. Adamo, C. Binda, F. Forneris, E. Toffolo, C. Verpelli, E. Ginelli, A. Mattevi, C. Sala 
and E. Battaglioli (2010). "Alternative splicing of the histone demethylase LSD1/KDM1 contributes 
to the modulation of neurite morphogenesis in the mammalian nervous system." J Neurosci 30(7): 
2521-2532. 
  



89 

APPENDIX 

Supplemental Chapter: Pancreatic Differentiation from Human Pluripotent Stem Cells 

 

89 

 



90 

 



91 



92 



93 



94 



95 



96 



97 



98 



99 



100 



101 



102 



103 



104 



105 



106 

\



107 

 

  



108 

ACKNOWLEDGEMENTS 

Appendix, in full, is a reprint of material as it appears in Vinckier, Nicholas; Jinzhao, 

Wang and Sander, Maike. "Pancreatic Differentiation from Human Pluripotent Stem Cells." 

Working with Stem Cells. Ed. Henning Ulrich, Ed. Priscilla Davidson Negraes. Switzerland: 

Springer International Publishing, 2016. 257-275. The dissertation author was the primary 

investigator and author of this material. 




