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Article

Mechanisms and Measurement of Changes
in Gene Expression

Komal P. Singh, RN, MS, PhD(c)1, Christine Miaskowski, RN, PhD1,
Anand A. Dhruva, MD2, Elena Flowers, RN, PhD1, and Kord M. Kober, PhD1

Abstract
Research on gene expression (GE) provides insights into the physiology of a cell or group of cells at a given point in time. Studies of
changes in GE can be used to identify patients at higher risk for various medical conditions, a higher symptom burden, and/or the
adverse consequences associated with various treatments. The aims of this article are as follows: (1) to describe the different
types of RNA transcripts, (2) to describe the processes involved in GE (i.e., RNA transcription, epigenetics, and
posttranscriptional modifications), (3) to describe common sources of variation in GE, (4) to describe the most common
methods used to measure GE, and (5) to discuss factors to consider when choosing tissue for a GE study. This article begins
with an overview of the mechanisms involved in GE. Then, the factors that can influence the findings from GE experiments (e.g.,
tissue specificity, host age, host gender, and time of sample collection) are described and potential solutions are presented. This
article concludes with a discussion of how the types of tissue used in GE studies can affect study findings. Given that the costs
associated with the measurement of changes in GE are decreasing and the methods to analyze GE data are becoming easier to use,
nurse scientists need to understand the basic principles that underlie any GE study.
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Gene expression (GE) is the synthesis of a functional gene

product using the information provided by deoxyribonucleic

acid (DNA; Perdew, Vanden-Heuvel, & Peters, 2006). Ribo-

nucleic acid (RNA) is synthesized from DNA through the pro-

cess of transcription, which is part of the process of GE. Asan

organism develops or responds to changes in its environment,

cells can adjust the type and amount of GE. Hence, studies of

GE provide insights into cellular responses at a given point in

time. Over 40 years ago, King and Wilson (1975) demonstrated

that major phenotypic differences between organisms could be

explained by small changes in the regulatory mechanisms asso-

ciated with alterations in GE. Clinical research has taken

advantage of this property by measuring differences in GE

between groups of individuals. These studies have advanced

our understanding of disease progression (Koleck & Conley,

2016), differences in symptom severity (Kober et al., 2016;

Wright et al., 2017), and the identification of drug targets to

treat breast cancer (Dowsett & Dunbier, 2008).

Research on changes in GE has increased for a number of

reasons. First, the number of clinical samples available from

tissue repositories and the availability of new methods to

measure GE from a variety of tissues are growing (Shabih-

khani et al., 2014). Second, the costs associated with the mea-

surement and analysis of GE data have decreased by more

than 50% (Kukurba & Montgomery, 2015). Third, large

databases of experimental GE data are publicly available

(e.g., the Gene Expression Omnibus). Fourth, the most current

technologies for measuring GE (e.g., RNA sequencing [RNA-

Seq]) are becoming more affordable and have broader applic-

ability (Hou et al., 2015). Finally, newer methods to analyze

GE data are more accessible and easier to use (Kukurba &

Montgomery, 2015).

As the biological materials, GE data, and analytic

approaches become more available and accessible, nurse scien-

tists need increased knowledge of the fundamental mechanisms

that underlie GE as well as factors that need to be considered

when one designs a GE study. Therefore, the purposes of this

article are as follows: (1) to describe the different types of RNA

transcripts, (2) to describe the processes involved in the regu-

lation of GE (i.e., RNA transcription, epigenetics, and posttran-

scriptional modifications), (3) to describe common sources of
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variation in GE, (4) to describe the most common methods used

to measure GE, and (5) to discuss factors to consider when

choosing tissue for a GE study.

Types of RNA

RNA is a polymeric linear molecule composed of a ribose

sugar, a phosphate group, and nitrogenous bases (i.e., adenine,

guanine, cytosine, and uracil). Researchers measure the differ-

ent types of RNA (i.e., coding and noncoding) in a cell to

determine GE. In general, RNA transcripts are classified as

protein coding or noncoding (Claverie, 2005). The human gen-

ome contains approximately 20,000 protein-coding genes and

at least the same number of noncoding RNA genes (Byron,

Keuren-Jensen, Engelthaler, Carpten, & Craig, 2016; Chen &

Weiss, 2015).

As the name suggests, protein-coding genes synthesize

messenger RNAs (mRNAs) that, through the processes of

translation, produce protein products (Gibson & Muse, 2009,

chapter 2). mRNA is distinguished from other types of RNA in

that most of it is polyadenylated (poly[A]) at the end of the

transcript. One exception is histone mRNA that, instead of a

poly(A) tail, has a conserved 30 stem loop (Dominski & Mar-

zluff, 1999). While mRNA is widely studied, it comprises only

1–5% of the total RNA (Gibson & Muse, 2009, chapter 2).

As shown in Table 1, noncoding RNAs make up the majority

of the RNA species present in a cell. There are two main types of

noncoding RNAs, namely, the small noncoding RNAs and the

long noncoding RNAs. The small noncoding RNAs include

microRNA (miRNA), transfer RNA (tRNA)-derived small frag-

ments, P-element Induced Wimpy (PIWI) protein-interacting

RNA, small nucleolar RNA, and small interfering RNA. The long

noncoding RNAs include promoter-associated long RNA, tran-

scribed ultraconserved regions, tRNA, circular RNA (circRNA),

small nuclear RNA (snRNA), pseudogenes, and antisense RNA

(Byron et al., 2016; Ng et al., 2016). Ribosomal RNA (rRNA) is

the most abundant type of RNA in the intracellular matrix and

comprises about 80% of the total RNA. It belongs to neither the

small nor the long noncoding RNA categories (Gibson & Muse,

2009, chapter 2). We describe the functions of and detection

methods for the noncoding RNAs in Table 1.

Table 1. Noncoding RNAs.

Type Subtype Function Detection Method

Small noncoding
RNA (20–35
nucleotides)

miRNA (18–20
nucleotides)

Posttranscriptional silencing of complementary mRNA RNA-Seq and microarray

tRF Controls viral replication, modulates cell proliferation, and inhibits
protein synthesis

RNA-Seq

piRNA (26–30
nucleotides)

Interacts with PIWI protein and maintains genome integrity by silencing
transposon element in the germ line at transcriptional and
posttranscriptional level

RNA-Seq

snoRNA (60–140
nucleotides)

Ribosome biogenesis and rRNA modification RNA-Seq

siRNA Binds to complementary sequences in mRNA and causes degradation of
mRNA. Binds to complementary DNA sequence and cause
methylation for short-term silencing

RNA-Seq

Long noncoding RNA
(>200 nucleotides)

PAR Binds to RNA-binding protein called translocated in liposarcoma and
represses transcription

RNA-Seq

T-UCR Plays a role in proper functioning of cell differentiation and proliferation.
Changes in level of T-UCR expression is associated with
carcinogenesis

Microarray and RNA-Seq

tRNA Carries an amino acid molecule and docks on the ribosome bound to an
mRNA molecule during protein synthesis. Each amino acid binds to a
specific tRNA and is required for translation

Northern blotting

circRNA Regulates splicing and transcription RNA-Seq
snRNA (100–300

nucleotides)
Plays a role in RNA splicing and processing. Localized in the nucleus RNA-Seq

Pseudogenes Regulates tumor suppressors and oncogenes RNA-Seq
asRNA Plays a role in gene silencing and regulation of gene expression RNA-Seq

rRNA 28S Combines with proteins to form the ribosomal structure. Binds to the
mRNA and tRNA molecules to enable translation

Northern blotting and
qPCR5.8S

5S
18S

Note. asRNAs ¼ antisense RNAs; bp ¼ base pair; circRNA ¼ circular RNA; mRNA ¼ messenger RNA; miRNA ¼ micro RNA; PAR ¼ promoter-associated long
RNA; piRNA¼ PIWI-interacting RNA; qPCR¼ quantitative polymerase chain reaction; RNA¼ ribonucleic acid; rRNA¼ ribosomal ribonucleic acid; RNA-Seq¼
ribonucleic acid sequencing; siRNA¼ small interfering RNA; snRNA¼ small nuclear RNA; snoRNA¼ small nucleolar RNA; tRF¼ tRNA-derived small fragment;
tRNA ¼ transfer RNA; T-UCR ¼ transcribed ultra-conserved regions.
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Both tRNA and circRNA play important roles in protein synth-

esis. As shown in Figure 1, tRNAs fold into cloverleaf structures

as a result of short stretches of base-pairing. Each tRNA carries

the specific amino acid that is needed to extend the protein during

translation of the mRNA. On a ribosome, tRNA binds to mRNA

through a three-nucleotide anticodon sequence. The circRNAs

have covalent bonds between the 50and the 30 ends (Byron

et al., 2016) and play a role in transcription, regulation of post-

transcriptional RNA splicing (Gibson & Muse, 2009, chapter 2),

and sequestration and suppression of miRNA activity (Hansen

et al., 2013). miRNA regulates the expression of several genes,

while regulation of miRNA function by circRNA highlights the

increased complexity of noncoding RNA-mediated regulatory

pathways (Hansen, Kjems, & Damgaard, 2013).

Regulation of GE

The processes involved in the regulation of GE include transcrip-

tion, a number of epigenetic processes, and posttranscriptional

modifications. Regulation of GE is cell-specific and involves a

number of complex biochemical processes that are essential for

the development of the organism as well as for the organism’s

ability to respond to changes in the environment (e.g., response

to injury; Perdew et al., 2006). In order to be able to interpret GE

data, it is important to understand the mechanisms that regulate GE.

Transcription

Transcription is the process by which a functional gene product

(i.e., RNA) is synthesized. This product, or transcript, may be a

precursor to a protein (through translation), a subunit for a

larger molecule (e.g., ribosome), or a functional molecule in

and of itself (e.g., miRNA). Measurement of GE is the quanti-

fication of the transcribed gene product. The transcriptome is

the complete set of RNA transcripts present in a cell at a spe-

cific developmental stage or physiological condition. Tran-

scription involves the unwinding of DNA, the attraction and

binding of transcription factors, and the action of the transcrip-

tional machinery to produce RNA from the DNA template

(Gibson & Muse, 2009, chapter 4; Perdew et al., 2006). Reg-

ulatory regions within DNA and transcription factors are the

fundamental units involved in the transcription process.

Regulatory Regions

The specific regions of DNA that are associated with transcrip-

tion and the regulation of GE in eukaryotes are the promoter,

enhancer, silencer, and insulator (Maston, Evans, & Green,

2006). As shown in Figure 2, regulatory regions of DNA such

as promoters and enhancers are called cis-regulatory elements

(Levine & Tjian, 2003). These cis-regulatory elements form the

cis-regulatory module (CRM) also called a transcription factor

binding site (TFBS). Transcription factors bind to a TFBS to

regulate GE (Liu, Yu, Zack, Zhu, & Qian, 2008).

The promoter region of a gene is located upstream from its

transcription initiation site. Typically, the promoter region has

a conserved sequence of 25–35 base pairs upstream from the

transcription initiation site that contains a motif of TATA

repeats (i.e., the “TATA box,” a conserved sequence in the

Figure 1. A two-dimensional and three-dimensional representation of transfer RNA (tRNA) cloverleaf structure. tRNA carries an amino acid
molecule at its 30 end, and its anticodonend binds to thecodonon the messenger RNAmolecule for that aminoacidduring protein synthesis. Source: This
figure was published in Pollard, Earnshaw, and Lippincott-Schwartz (2007, fig. 17-3, p. 300). Copyright 2008 by Elsevier. Reprinted with permission.
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promoter region where transcription begins). Transcription fac-

tors bind to the promoter region of a gene and facilitate the

binding of RNA polymerase, which initiates transcription. The

promoter sequence defines the direction of transcription. The

DNA strand that is transcribed is called the sense strand (Gib-

son & Muse, 2009, chapter 2).

The enhancer regions of DNA are required for precise reg-

ulation of tissue-specific GE. Enhancers activate transcription

independent of their location, distance from, or orientation to

the promoter. Enhancers contain multiple TFBSs and can be

transcribed into noncoding RNAs. These noncoding RNAs,

together with a protein complex called cohesin, stabilize

long-distance enhancer–promoter interactions and facilitate

transcription (Ong & Corces, 2011).

Silencers are regions of DNA that have the opposite effect of

enhancers. Transcriptional repression is achieved through two

kinds of silencers, namely, silencer elements and negative reg-

ulatory elements (NREs). Silencer elements are position inde-

pendent and direct active repression of transcription. NREs are

position-dependent and direct passive repression of transcrip-

tion. Silencers function in association with the promoter and

determine the mechanism of transcription repression. They can

be an intrinsic part of the promoter region. Interactions between

silencers and enhancers and other transcriptional elements are

important for the regulation of GE (Ogbourne & Antalis, 1998).

Insulators are DNA sequences that protect an expressing

gene from its surrounding environment. The two types of DNA

insulator sequences are the barrier element and the enhancer-

blocking element. The barrier element binds a protein complex

that prevents DNA methylation. In contrast, an enhancer-

blocking element interferes with interactions between the

enhancer and promoter regions of DNA. Enhancer blocking

occurs when an insulator is present between an enhancer and

a promoter. This insulator element prevents the enhancer from

activating GE of an adjacent gene (Ghirlando et al., 2012).

Transcription Factors

Transcription factors are proteins that initiate and regulate tran-

scription. Fewer than 2,000 transcription factors control GE

(Holdt et al., 2016). Transcription factors share common

structural motifs such as a zinc finger, a leucine zipper, and

helix-loop-helix structures. Inducible transcription factors are

activated by protein kinases to bind to target response elements.

For example, an increase in the levels of a serum hormone can

activate specific cell-surface receptors, which induces a cas-

cade of protein kinase activated cell-signaling pathways that

lead to the activation of specific transcription factors (Gibson

& Muse, 2009, chapter 2). Any changes in the expression of

transcription factors, hormone levels, or cell-surface receptors

can change the levels of GE.

Transcription factors control the levels of GE in a cell

through selective transcription of a subset of genes. For exam-

ple, in the case of an embryonic stem cell, while more than

1,200 genes encode for transcription factors, only a limited

number of genes need to be expressed to reprogram cells into

pluripotent stem cells (Messina, Glasscock, Gish, & Lovett,

2004). Overexpression of transcription factors can lead to mor-

phological changes. For example, overexpression of c-Myc can

cause cancer and is associated with increased aggressiveness

of certain cancers as well as with poorer clinical outcomes

(Hoffman & Liebermann, 2008).

Fundamental Mechanisms of GE in Mammals

Mammalian GE is regulated through complex interactions

among multiple processes and occurs primarily at the initiation

Figure 2. The cis-regulatory elements on the deoxyribonucleic acid that regulate gene expression in mammals. The cis-regulatory elements are
fundamental regions for transcription initiation and its regulation. DPE ¼ downstream promoter element; INR ¼ initiator sequence; RE ¼
response element; TATA box¼ promoter region where transcription begins. Source: Reprinted with permission from Macmillan (Levine & Tjian
2003). Copyright 2003 by Nature.
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of transcription (Beyersmann, 2000). The regulatory structure

of a mammalian gene consists of a coding sequence for RNA,

a proximal upstream promoter region that binds general tran-

scription factors, a distant enhancer sequence that binds indu-

cible transcription factors, as well as insulator and silencer

regions. Unlike the general eukaryotic transcription mechan-

ism, the mammalian transcription mechanism requires unique

transcriptional enhancers that control the expression of over

2,000 protein-coding genes to maintain cell-type-specific

functions. Gene regulatory elements and their target genes

occur in chromosomal loop structures formed by the interac-

tion between two DNA sites that are bound by a CCCTC-

binding factor (CTCF) protein and occupied by the cohesion

complex (Dixon et al., 2012). These interactions are essential

for normal gene activation and repression in humans (Zuin

et al., 2014). These chromosomal scaffolds are preserved

throughout development and can be perturbed in disease

states by genetic and epigenetic factors (Hnisz, Day, &

Young, 2016).

Epigenetic Regulation

Epigenetic regulation allows for changes in GE in response to

the environment. Epigenetic regulation of GE can occur as a

result of DNA methylation, histone modifications, or noncod-

ing RNA expression (Stephens, Miaskowski, Levine, Pullinger,

& Aouizerat, 2012).

DNA methylation occurs primarily at the cytosine base of

the molecule that is adjacent to guanine (i.e., CpG site). Cyto-

sine is converted to 5-methylcytosine by DNA methyltrans-

ferase. DNA methylation of a CpG island in the promoter

region of a gene can repress GE by blocking the binding of

transcription factors to the methylated promoter site (Phillips,

2008). For example, hypermethylation of DNA can lead to

silencing of tumor suppressor genes like BRCA1, which

results in tumorigenesis (Chakravarthi, Nepal, & Varambally,

2016). In certain cases, CpG islands activate transcription

(Spruijt & Vermeulen, 2014). For example, CpG-binding

transcription factors (e.g., Kruppel like factor 4) can activate

transcription and cause mature human cells to produce

induced pluripotent stem cells.

Histone modification is another vehicle for epigenetic reg-

ulation of GE, DNA is bound to histone proteins to form a

nucleosome. Nucleosomes are arranged in a compact chroma-

tin structure in the nucleus of the cell. Certain amino acids on

the histone protein can be modified by acetylation, phosphor-

ylation, or methylation. Histone modifications can affect GE

through two mechanisms. First, histone modifications can

result in a less compact DNA structure, which makes it more

accessible for transcription. Second, proteins can bind to the

modified amino acid on the histone protein and alter the tran-

scription of DNA (Bannister & Kouzarides, 2011).

Finally, epigenetic regulation of GE can be mediated by

noncoding RNA expression. Noncoding RNAs play important

roles in the regulation of transcriptional and posttranscriptional

processes (discussed below). For example, miRNAs regulate

GE by repressing the translation or promoting the degradation

of mRNA (Flowers, Froelicher, & Aouizerat, 2013). miRNAs

can bind to the mRNA molecule and inhibit protein synthesis.

The expression of these miRNAs varies over time depending

on changes in the intracellular and external environments

(Radom-Aizik, Zaldivar, Oliver, Galassetti, & Cooper, 2010).

Posttranscriptional Processes

Posttranscriptional processes convert noncoding RNA into a

functional gene product and prepare mRNA for translation.

Posttranscriptional processes involve 50 capping of pre-

mRNA, removal of intron sequences from RNA by splicing,

alternative splicing of pre-mRNA, addition of a poly(A) tail to

the pre-mRNA, gene fusion transcript processing, and modula-

tion of mRNA stability (Perdew et al., 2006). Among these

processes, removal of intron sequences from RNA by splicing,

alternative splicing, and gene fusion transcript processing

events can affect the regulation of GE.

Splicing of intron sequences from pre-mRNA is catalyzed

by RNA-protein complexes called small nuclear ribonucleo-

protein particles (snRNPs). The RNAs found in snRNPs are a

type of long noncoding RNA. There are five types of snRNAs:

U1, U2, U4, U5, and U6. The U1 RNA has a sequence com-

plimentary to the 50 end of the intron. U2 RNA recognizes

sequences close to the 30 end. The U4, U5, and U6 RNAs form

a complex called the splicesome, which removes the intron

region and joins the two exons together (Perdew et al., 2006).

Alternative splicing occurs when the same gene gives rise to

multiple different transcripts. Alternative splicing of a pre-

mRNA transcript can lead to changes in GE. The coding region

of a gene is called the exon. On average, a human gene contains

10–15 exons. Through alternative splicing, these exon

sequences can form different combinations that encode differ-

ent versions of a protein. Therefore, mRNA transcripts from the

same gene can differ as a result of the different combinations of

exon sequences that can get incorporated into the mature

mRNA transcript (Gibson & Muse, 2009, chapter 2; Lee &

Young, 2013).

As in the case of alternative splicing, gene fusion events

can occur when two noncontinuous genomic regions join to

form a single transcript. The resulting transcripts are called

fusion transcripts. In some cases, these gene fusion events

change transcript levels in cells and cause a disease state

(Gibson & Muse, 2009, chapter 2). For example, fusion of

the transmembrane protease serine 2 gene (TMPRSS2) with

the transcription factor gene v-ets avian erythroblastosis virus

E26 oncogene homologue (ERG) results in the TMPRSS2-

ERG fusion gene. This fusion gene transcribes a fusion

transcript that results in the synthesis of a chimeric protein

that causes an epithelial malignancy (Mertens, Johansson,

Fioretos, & Mitelman, 2015). Intron splicing, alternative spli-

cing, and gene fusion events can be measured and analyzed as

part of a GE study.
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Common Sources of Variation in GE

A number of factors can influence GE. Researchers can control

for some of these factors during the statistical analysis of GE

data, and they need to consider them in the design of a GE

study, so that they collect appropriate data for subsequent anal-

yses. Tissue specificity, host age, host gender, time of day or

season, environment, and heritable variations are all factors

that can influence GE and should be considered in the design

of GE studies.

Tissue Specificity

GE varies from cell to cell and tissue to tissue (Byron et al.,

2016; Font-Tello et al., 2015). For example, expression of

perilipin1 (PLIN1) occurs in adipocytes but not in fibroblasts,

peripheral nerves, or chondrocytes (Human Protein Atlas, n.d.).

Compared to GE in mature cells, GE in embryonic stem cells is

completely different. Because these cells are actively dividing,

about 60% of the coding genes are transcribed into mRNA, and

a minority of the genes are cell-specific (Lee & Young, 2013).

In most tissues, a subset of RNA transcripts are expressed

nonspecifically at a constant level and are termed housekeeping

genes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

for example, is a housekeeping gene expressed across most

human tissues (Barber, Harmer, Coleman, & Clark, 2005).

As discussed below, expression of housekeeping genes serves

as a check for cell function, and researchers use it for quality

control of GE data.

The Tissue-Specific Gene Expression and Regulation

(TIGER) online database provides information on the depth

and breadth of tissue-specific GE (Liu et al., 2008). The TIGER

database contains three types of data on unique levels of

regulation of GE: (1) tissue-specific GE profiles, (2) tissue-

specific combinatorial gene regulation with multiple transcrip-

tion factors, and (3) CRM detection. Across 30 tissues, 7,261

tissue-specific genes have been identified and approximately

9,060 tissue-specific transcription-factor interactions have

been predicted (n * 300 per tissue; Liu et al., 2008; Su

et al., 2004).

Prior knowledge of variations in background levels of GE

in resting cells is beneficial when investigators are undertak-

ing studies to determine associations between tissue-specific

changes in GE and a particular phenotype. A common exam-

ple of tissue-specific GE is the various cellular components of

peripheral blood. In blood, GE occurs in monocytes, dendritic

cells, natural killer cells, CD4þ T lymphocytes, CD8þ T

lymphocytes, and B lymphocytes (Cole, Hawkley, Arevalo,

& Cacioppo, 2011). Depending on the phenotype under inves-

tigation, relevant changes in GE can occur in a single or

multiple cell types.

For example, in a study that compared chronically lonely

individuals to a healthy control group, 98 genes were differen-

tially expressed between the two groups (Cole et al., 2011).

While upregulated GE was found predominantly in dendritic

cells, downregulated GE occurred in dendritic cells and

monocytes. Upregulated genes were involved in leukocyte acti-

vation and inflammation, and downregulated genes were

involved in Type I interferon antiviral responses. The identifi-

cation of these cellular-specific pathways provides insights into

the biological processes that may contribute to loneliness (Lee

& Young, 2013). For GE studies of peripheral blood, investi-

gators can use appropriate analytic procedures (e.g., tissue-of-

origin analysis; Cole et al., 2011) to evaluate the relative

contributions of various cell types to changes in GE and the

particular phenotype of interest.

Finally, heterogeneity in GE within a population of similar

cells (e.g., monocytes) can be a source of unexpected varia-

tion. Factors associated with variations in GE within a spe-

cific cell type include cell-cycle stage, the presence or

absence of microbes, and differences in the microenviron-

ment. Researchers should thus consider sources of variations

in GE among similar populations of cells in a tissue when

conducting GE analyses. Single-cell transcriptome profile

sequencing can be done to detect variability in GE within cells

and between cells of the same tissue sample. It allows for

expression-based clustering of cell types in a tissue, detection

of altered transcription in matched cell types, and discovery of

new cell types (Sandberg, 2014).

Host Age

GE varies with age. In a meta-analysis (de Magalhaes, Curado,

& Church, 2009), the authors found that as the age of humans

increased, 56 genes were consistently overexpressed and 17

genes were underexpressed. Changes in GE with age are likely

caused by DNA damage (Bahar et al., 2006; Lu et al., 2004).

Age-related changes in GE appear to be gradual (Peters, 2006).

In any GE study, researchers should record the participants’

age. If investigators are using tissue banked samples, they

should match the specimens on age. If a study reveals changes

in the expression of genes that are known to change their levels

of expression as humans age, researchers should control for

participants’ age in the statistical analyses.

Host Gender

Gender influences GE in whole blood. In one study that

enrolled 41 healthy males and 36 healthy females (Whitney

et al., 2003), 46 genes (i.e., 35 in females and 11 in males)

showed gender-associated differences in GE. In microarray

experiments, researchers found significant differences in GE

by gender for both autosomal and sex chromosome genes

(Whitney et al., 2003; Xu et al., 2013). For example, while

investigators found no gender-associated differences in neutro-

phil counts in one study (Whitney et al., 2003), they did find a

small number of genes that were highly expressed in the neu-

trophils of females. Depending on the phenotype under inves-

tigation, if a study reveals differences in expression in genes

whose expression is known to be influenced by gender, then

researchers may need to control for the participants’ gender in

the statistical analyses.
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Time of Sample Collection

Researchers have observed variations in GE in multiple tissues

over a 24-hr period (Storch et al., 2002) and across different

seasons (Dopico et al., 2015). For example, GE levels in whole

blood (Whitney et al., 2003), human parotid saliva (Hardt et al.,

2005), and in the liver and heart (Storch et al., 2002) exhibit

diurnal variations. If possible, researchers should collect blood,

saliva, and other tissues at the same time of day in all partici-

pants. If this approach is not possible, then they should record

the time the sample was collected.

In addition, seasonal variations in GE can occur. In one

study (Dopico et al., 2015), more than 4,000 protein-coding

mRNAs in white blood cells and adipose tissue exhibited sea-

sonal changes in GE. Again, when designing a GE experiment,

researchers should record the date and time of day at which

they collected the specimen. If investigators find that genes

with known temporal variations in GE are differentially

expressed, having the date and time of the collection may allow

for the control of this potential source of variability in subse-

quent analyses.

Environment

GE is influenced by environmental factors. For example, in one

study of changes in GE as a result of exposure to traffic-related

pollutants (Chu et al., 2016), a core set of 25 transcripts were

differentially expressed. These 25 genes were implicated in

pathways associated with cancer, heart disease, and chronic

lung disease. Particularly for disease susceptibility studies,

researchers may need to collect data on a number of environ-

mental factors (e.g., stress, air pollutants, diet) depending on

the phenotype under consideration (Armenise et al., 2017;

Bouchard-Mercier et al., 2013; Kundakovic & Jaric, 2017;

Mancini et al., 2017; Ruegsegger et al., 2017).

Inherited Variation

GE is influenced by inherited (i.e., genetic) variations. A large

body of research has explored how genetic variations influence

GE and risk for certain diseases (Gibson, Powell, & Marigorta,

2015). For example, in one seminal study of obesity traits in a

large population-based cohort (Emilsson et al., 2008), research-

ers evaluated differences in GE in adipose tissue and blood

associated with obesity-related traits. While the differences in

GE in adipose tissue were highly correlated with obesity-

related traits, the investigators did not find these associations

for blood. In addition, the investigators evaluated the genetic

component to GE and found a significant heritable contribution

to the observed variations in GE in both tissue types. Changes

in GE of inflammatory- and immune-response genes were cau-

sally associated with obesity. This example highlights the

genetic (i.e., heritable) contributions to variations in GE. When

designing a GE study, researchers may want to account for the

genetic component of GE during data analysis.

Transcript Level and Serum Protein Levels May
Not Correlate

Although protein-coding gene transcript levels may change, the

transcript levels for a specific mRNA may not correlate with

the serum protein product levels (Li & Xie, 2011). As a result,

knowledge of the level of GE does not provide a reliable esti-

mate of protein levels. Actual transcript and protein levels can

fluctuate in cells based on the characteristics of the extracel-

lular and intracellular environments. Transcription of mRNA

may not translate into a protein product because of rapid degra-

dation of mRNA, degradation of the protein product, a reser-

voir effect, or other factors (Li & Xie, 2011). If the purpose of a

research study is to evaluate the correlation between changes in

GE and serum protein levels, researchers should measure pro-

tein levels in addition to transcription.

Common Methods for Measurement of GE

The most common laboratory methods used to measure GE

levels are Northern blotting, quantitative polymerase chain

reaction (qPCR), DNA microarray, and RNA-Seq. In this sec-

tion, we describe these methods and compare the benefits and

challenges of each of these methods.

Northern Blotting

Northern blot analysis is a standard method used to determine

the size and quantity of a specific RNA in a sample. The RNA

is size fractionated by polyacrylamide or agarose gel electro-

phoresis and transferred to a nitrocellulose membrane. RNA

molecules form covalent bonds with the nitrocellulose mem-

brane. Probes that are complimentary to the transcript are

labeled prior to hybridization with a chemiluminescence dye.

The nitrocellulose membrane with the bound RNA is hybri-

dized with one or more specifically labeled probes. The hybri-

dized nitrocellulose membrane is exposed overnight to an

X-ray film, which is processed for detection of signal to deter-

mine the presence or the absence of the transcript (Josefsen &

Nielsen, 2011). Northern blotting is often used to measure

tRNA or a specific set of mRNAs (Janssen, Diner, & Hayes,

2012). As shown in Table 2, the advantages of Northern blot-

ting include the simplicity of the procedure and low cost. Lim-

itations of this technique are that it is time-consuming, only a

small number of samples can be analyzed at one time, and it

requires a large amount of starting material and stringent oli-

gonucleotide hybridization (Streit, Michalski, Erkan, Kleeff, &

Friess, 2008).

qPCR

qPCR is a method to quantify GE in real time (VanGuilder,

Vrana, & Freeman, 2008). The quantity is measured using a

spectrophotometer. mRNA is often used as the template for the

qPCR reaction. During qPCR, the mRNA template is converted

to complimentary DNA (cDNA) using reverse transcriptase.

Then, the single-stranded cDNA is synthesized into double-
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stranded DNA using DNA polymerase. The reaction proceeds

exponentially as the double-stranded DNA replicates. The

amount of DNA is measured after each round of amplification.

A fluorescent label is added to the reaction mixture so that, as

the amplified DNA molecules accumulate, the fluorescent val-

ues are recorded at the end of each cycle. The level of the

fluorescent signal is directly proportional to the amount of

amplified DNA that is present. As shown in Figure 3, the

threshold cycle (Ct) value for a particular DNA is the cycle

number when the fluorescence signal of the amplifying DNA

molecule is first detected above the baseline threshold. The Ct

value depends on the amount of mRNA present at the start of

qPCR and provides an estimate of the level of GE (VanGuilder

et al., 2008).

A serial dilution of a control DNA of a known concentration

is prepared to generate a standard curve for absolute quantifi-

cation. The standard curve measures the exact amount of tem-

plate in the sample. More than one transcript can be detected by

using a method called multiplex qPCR. Multiplex qPCR

includes probes for genes labeled with different reporter dyes

in the same reaction mix. This approach allows for the detec-

tion of the levels of RNA from multiple genes in the same

qPCR reaction (VanGuilder et al., 2008).

As shown in Table 2, the advantages of qPCR include ease

of use, the relatively short period of time for quantifying

mRNA transcripts (8–12 hr), and the ability to detect multiple

mRNA transcripts using a multiplex approach (Smith &

Osborn, 2009). However, several limitations warrant consider-

ation, namely, one needs a priori knowledge of the sequence of

the target transcript that is to be quantified and only a small

Figure 3. The end result of real-time polymerase chain reaction
(PCR) is the amplification plot. The x-axis is the PCR cycle, whereas
the y-axis is the fluorescence that increases throughout the reaction.
(a) Amplification plot on a logarithmic scale, demonstrating appropri-
ate threshold. (b) Amplification plot on a linear scale, demonstrating
the same threshold. Note that on a logarithmic scale, the linear phase
appears to be a straight line. CT ¼ crossing threshold. Source: Rep-
rinted with the permission of Springer from Peirson and Butler (2007,
fig. 3). Copyright 2007 by Humana Press.

Table 2. Techniques for RNA Measurement.

Method Technique Initial RNA Processing Step Strengths Limitations

Northern
blotting

Hybridization-based assay mRNA, tRNA labeled, and bound
to nitrocellulose paper

� Ease of use
� Inexpensive
� High specificity

� Risk of RNA degradation
during electrophoresis

� Low throughput
qPCR PCR quantification–based

assay
mRNA reverse transcribed to

cDNA
� Ease of use
� 8–12 hr total

assay time

� Not an exploratory
methodology

� Used for quantitation of
known genes

Microarray Multistep workflow for target
preparation hybridization-
based assay

mRNA reverse transcribed to
cDNA

� Used for explora-
tory analysis

� High throughput
� Useful for GWAS

� Total turnaround time is
about 72 hr

� Specialized software is
required for image
processing

RNA-Seq Adapter ligation-, PCR
amplification-, and
sequencing-based assay

mRNA reverse transcribed to
cDNA or labeling of miRNA,
tRNA, and rRNA

� Used for explora-
tory analysis

� Less background
noise and better
detection than
microarrays

� High throughput
� Useful for GWAS

� Very expensive
� Total turnaround time can

be up to 48 hr
� High computational and

data-storage burden

Note. cDNA ¼ complementary deoxyribonucleic acid; GWAS ¼ genome-wide association studies; miRNA ¼ microribonucleic acid; mRNA ¼ messenger
ribonucleic acid; PCR ¼ polymerase chain reaction; qPCR ¼ quantitative polymerase chain reaction; RNA ¼ ribonucleic acid; rRNA ¼ ribose ribonucleic acid;
RNA-Seq ¼ RNA sequencing; tRNA ¼ transfer ribonucleic acid.
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number of transcripts can be quantified in each reaction, which

limits the throughput of this method.

Microarray

Microarrays have been used to measure GE for over 15 years

(Schulze & Downward, 2001). Microarray technology employs

the principle of nucleic acid hybridization of cDNA strands to

quantify a large number of transcripts in a single experiment

(Sinicropi, Cronin, & Liu, 2006). Two types of microarrays can

be used for GE. The in situ synthesized oligonucleotide micro-

array uses oligonucleotides that are 25 bases in length and are

attached to a chip surface by a light-directed method (Fodor

et al., 1991). The cDNA microarray uses a single-stranded

cDNA that is reverse transcribed from a single strand of

mRNA. The single-stranded cDNA is converted into double-

stranded DNA through PCR amplification. Then, the PCR

product is immobilized on the array with each PCR product

spot about 80–200 μm in diameter. The double-stranded PCR

product is denatured to form a single strand before use. This

single-stranded DNA represents the mRNA template.

While microarray designs differ among vendors and labora-

tories (Petersen et al., 2005), a microarray experiment is always

a multistep process. First, RNA is extracted from the tissue and

reverse transcribed to cDNA. Then, cDNA is processed for

labeling. The labeled nucleic acids are transferred to a micro-

array chip for hybridization with immobilized probes. The

microarray chips are hybridized in a temperature-controlled

chamber. The microarray chips are washed after the hybridiza-

tion step in salt buffer, and the hybridized, tagged, fluorescent-

labeled nucleic acid sequences remain on the microarray chip.

Then, the hybridized microarray chip is scanned to read the

fluorescent excitation signals. The intensity of the fluorescent

signals detected is directly proportional to the amount of tran-

scribed RNA. Finally, various software packages and statistical

approaches are used to analyze the GE data (Trevino, Falciana,

& Barrera-Saldana, 2007).

As shown in Table 2, the advantages of microarray quanti-

tation are that a large number of transcripts can be quantified in

a single experiment, tens of thousands of transcripts can be

measured simultaneously, the costs are relatively low, and a

prior knowledge of transcript sequences is not required. The

limitations include the fact that multiple tissue samples cannot

be tested in one assay; a control and a test tissue sample need to

be prepared separately, which takes more time and may con-

tribute to increases in the variance of output data; and RNA

quantification is determined by image processing that requires

specialized equipment and software (Sinicropi et al., 2007).

RNA-Seq

RNA-Seq quantifies the levels of various types of RNA in a

sample by sequencing the RNA directly and counting the

number of sequences. This approach is different from North-

ern blotting, which quantifies RNA through gel electrophor-

esis; qPCR, which quantifies RNA through amplification and

dye intensity; and microarray, which quantifies RNA through

template hybridization and dye intensity. While several meth-

ods for sequencing RNA exist (Hrdlickova, Toloue, & Tian,

2017), they all share a similar overall process. First, the target

RNA is extracted and purified from the sample. The type of

RNA sequenced depends on the objective of the study. For

example, total RNA-Seq attempts to measure all of the

expressed RNA. Coding RNA can be enriched by poly(A)

capture techniques, and small RNAs can be enriched through

size selection and gel electrophoresis. In addition, input RNA

can be enriched for a particular RNA species of interest

through removal of unwanted species. For example, rRNA

and globin RNA account for a large proportion of total RNA

and are often removed through ribosomal and globin deple-

tion products prior to sequencing library preparation. Alter-

natively, if the RNA sequences are known, RNA capture

techniques can isolate specific types of RNA using comple-

mentary probes (Hrdlickova et al., 2017).

As shown in Figure 4, the RNA sample is prepared as a

library prior to sequencing. The RNA is typically fragmented,

and fragments of 100–500 bases are isolated. The input RNA is

ligated to specific sequence linkers called adapter molecules,

which may include primers for subsequent amplification steps.

The fragmented and adapter-ligated RNA molecules are typi-

cally 150–550 base pairs in length. The adapter-ligated RNA

fragments are amplified and sequenced in parallel multiple

times (Hrdlickova et al., 2016).

Several advantages of sequencing and quantitation using

RNA-Seq exist. Massive parallel sequencing of transcripts

allows for the detection of underlying genomic alterations at

Figure 4. RNA library preparation procedure for sequencing RNA.
The mRNA molecule is fragmented. Adapter molecules with known
sequences are ligated to the 30 and 50 end of the fragmented mRNA
molecules. Ligating adapters with unique barcode sequences to frag-
mented mRNA molecules mediates processing full-length mRNA
sequence. mRNA¼messenger RNA; RNA¼ ribonucleic acid. Source:
Reprinted with permission from Hrdlickova, Toloue, and Tian (2017).
Copyright 2016 by Wiley Periodicals.
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single-nucleotide resolution. RNA-Seq has a greater dynamic

range to quantify transcripts compared to microarray technol-

ogy. Thousands of differentially expressed genes, tens of thou-

sands of differentially expressed gene isoforms, mutations and

germ-line variations in thousands of expressed genetic variants,

and transcript isoforms and splice variants can be detected

(Wang, Gerstein, & Snyder, 2009). Compared to microarray,

RNA-Seq can detect 30% more differentially expressed genes.

However, the limitations of RNA-Seq include a higher cost per

sample relative to microarray and a higher computational and

data-storage burden for downstream analyses. Fortunately,

cheaper assays with increased sensitivity to detect different

types of RNA are evolving. In addition, data-storage proce-

dures and data-analysis tools are becoming easier to use (Byron

et al., 2016).

Factors to Consider When Choosing Tissue
to Measure GE

GE studies can be performed on a wide range of human tissues

(e.g., whole blood, breast biopsies, and gut microbiome; Agus

et al., 2016; Bondar et al., 2014; Chakravarthi et al., 2016).

However, a number of issues regarding tissue selection warrant

consideration.

Tissue Type

First, it is important to determine which tissue (e.g., blood vs. a

muscle biopsy) is the most appropriate one to use to answer the

research question. Given its widespread use, some considera-

tions regarding the use of blood versus other types of tissue for

GE studies warrant discussion. The advantages of using blood

are that it is relatively easy to collect and can be stored for long-

term use. However, as noted above, blood is a heterogeneous

tissue, and GE levels differ among cell types. Whole blood

includes red blood cells, white blood cells, and platelets sus-

pended in plasma. Peripheral blood mononuclear cells

(PBMCs) include monocytes and lymphocytes (e.g., T cells

and B cells) that can be isolated from whole blood. For some

studies, RNA transcript levels should be collected in more

homogenous cell populations, such as T or B lymphocytes, that

may have potential biomarkers for a specific phenotype. How-

ever, additional processing is required to isolate specific cell

types (Keating & Hartmann, 2017).

The level of RNA transcript detected in blood depends on

the cell type and the cell-isolation method used. The PAXgene

(Qiagen, Valencia, CA) method captures RNA transcripts from

all of the cell types in whole blood. No cell-isolation procedure

is done prior to RNA isolation. Alternatively, the Ficoll method

was developed to isolate a subset of white blood cells such as

PBMCs prior to RNA extraction. A downside of this method is

that 8 ml of blood are required to extract RNA in contrast to the

2.5 ml needed for the PAXgene method (Min et al., 2010).

Due to the susceptibility of RNA molecules to degradation,

researchers must take care when extracting RNA from tissue.

In particular, they should perform RNA extractions under

RNase-free laboratory conditions. Fortunately, commercial

RNA extraction packages are available, and in most situa-

tions only standard molecular laboratory equipment (e.g., a

microcentrifuge, micropipettes, and vacuum manifold) is

required. RNA extraction from peripheral blood takes

approximately 2 hr.

Tissue Availability

Depending on the research question and tissue availability,

researchers can collect the tissue from the patient directly or

obtain it from a biobank. Large repositories of tissue samples

are available for research use. Some examples include the fol-

lowing: the National Institutes of Health (NIH) NeuroBioBank

(https://neurobiobank. nih.gov/), the Mayo Clinic Biobank

(http://www.mayo.edu/research/centers-programs/mayo-

clinic-biobank/overview), and the Global Biobank Directory,

Tissue Bank, and Biorepositories (http://specimencentral.com/

biobank-directory/). Consent is obtained from the participant at

the time of tissue collection for research use.

For the purposes of a research study, advantages of obtain-

ing samples from a biobank include a streamlined process for

sample acquisition, no need for consent from the donor at the

time tissue is ordered, availability of these samples at low cost,

and easy accessibility. However, one disadvantage of using

samples from a biobank is that the quality of RNA may be

compromised. Research showed that RNA stored at �80 �C
degrades within 5 years (Shabihkhani et al., 2014). The toler-

ance of RNA for freeze–thaw events is low. Before requesting

samples from a biobank, researchers should examine the qual-

ity control and quality assurance procedures the biobank

employs.

Tissue Management

Care must be taken to properly preserve RNA during and after

sample collection. RNA is a single-stranded molecule and is

susceptible to fragmentation by ubiquitous RNase. For periph-

eral blood, special collection tubes (e.g., PAXgene tubes) are

used to stabilize the RNA (Takeda et al., 2015). RNA samples

can be stored at 4 �C for a day after collection and then must be

placed in a �80 �C freezer for long-term storage.

Fresh tissue samples that are to be stored long term for

pathology studies or RNA extraction for GE experiments are

treated with a formaldehyde solution diluted with water and

transferred to small containers called cassettes for processing.

After processing, the tissue is put in a mold with hot paraffin

wax. After the wax cools, the tissue becomes a block (i.e.,

formalin-fixed paraffin-embedded [FFPE]). The fixation of

these samples with formalin causes cross-linking of nucleic

acids with protein molecules, covalent modification of RNA,

and fragmentation of RNA transcripts. In the past, because of

the RNA degradation that occurred, researchers did not use

FFPE samples for GE studies. However, numerous methods

are now available to isolate RNA from FFPE samples (Zhou,

Sahin, & Myers, 2015).
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Alternatively, biopsies can be frozen without processing. A

fresh biopsy should be frozen soon after collection in liquid

nitrogen to preserve the RNA (i.e., fresh frozen [FF] sample).

In one study (Ripoli et al., 2016), levels of GE from FF and

FFPE samples showed only 63% concordance. Compared to FF

samples, FFPE samples showed lower levels of GE. Whether to

use FF or FFPE samples will depend on the availability of these

samples and the specific research question. While some studies

showed that the use of an RNA-stabilizing reagent called RNA-

later (Ambion, Foster City, CA) improved preservation of RNA

(Freidin et al., 2012; Martin et al., 2017) researchers in other

studies did not observe this effect (Micke et al., 2006; Mutter

et al., 2004).

Quality Control

Regardless of the source for extraction, researchers must per-

form quality-control procedures to determine the quality and

quantity of the RNA and to check for degradation before the

start of a GE experiment. Processing of degraded RNA in test

samples can lead to spurious results (Fleige & Pfaffl, 2006).

Some RNAs may be preferentially degraded in a sample while

others are stable (Mayne, Shepel, & Geiger, 1999). For exam-

ple, in blood samples, while miRNA remains stable, other RNA

species may be degraded (Eikmans, Rekers, Anholts, Heidt, &

Claas, 2013).

Quality control procedures used to determine the quality of

RNA in a sample are well described elsewhere (Zhou et al.,

2015). For example, one method to check the quality of RNA is

to determine the expression levels of housekeeping genes (e.g.,

GAPDH, actin, or 18S rRNA). For this method, a qPCR pro-

cedure is performed and fluorescent signal intensity values are

evaluated for housekeeping gene transcripts. mRNA stability

of housekeeping genes can be affected by cell treatment con-

ditions and cell types. Some housekeeping gene transcripts are

more stable than others in a specific cell type. It is important to

validate the expression level of different housekeeping genes

before use to normalize target GE. If degradation of house-

keeping gene transcripts is detected in a test sample compared

to a control sample, then researchers should eliminate that

sample from the study (Julian, de Oliveira, Perry, Tufik, &

Chagas, 2014).

Conclusions

GE is a complex, multifaceted process with intricate regulatory

mechanisms. An evaluation of changes in GE may help to

explain differences in various phenotypes. For example, GE

studies can be used for the following: to diagnose specific

diseases (Lapuk et al., 2010), evaluate differences in disease

prognoses (Koleck & Conley, 2016), evaluate the mechanisms

that underlie differences in symptom severity (Kober et al.,

2016), aid in treatment decisions, and identify patients at

increased risk for adverse events from specific treatments (Car-

doso et al., 2016; Koleck & Conley, 2016). GE studies provide

insights into the interplay among pathways that may explain

underlying biological mechanisms involved in the transition

from a healthy to a disease state, the occurrence and severity

of symptoms, and interindividual differences in responses to

pharmacologic and nonpharmacologic interventions. Increased

access to tissue specimens, technological advances in the mea-

surement of GE, reduced costs associated with acquisition and

measurement of GE, and the development of more robust anal-

ysis procedures have enabled more research groups to design

and conduct GE studies. GE data in combination with other

“omics” data (e.g., genome, proteome, and methylome) can

provide important information to predict, diagnose, and treat

common health conditions.
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