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Direct searches for new particles at colliders have traditionally been factorized into model proposals by
theorists and model testing by experimentalists. With the recent advent of machine learning methods that
allow for the simultaneous unfolding of all observables in a given phase space region, there is a new
opportunity to blur these traditional boundaries by performing searches on unfolded data. This could
facilitate a research program where data are explored in their natural high dimensionality with as little
model bias as possible. We study how the information about physics beyond the Standard Model is
preserved by full phase space unfolding using an important physics target at the Large Hadron Collider
(LHC); exotic Higgs boson decays involving hadronic final states. We find that if the signal cross section is
high enough, information about the new physics is visible in the unfolded data. We will show that in some
cases, quantifiably all of the high-level information about the new physics is encoded in the unfolded data.
Finally, we show that there are still many cases when the unfolding does not work fully or precisely, such as
when the signal cross section is small. This study will serve as an important benchmark for enhancing
unfolding methods for the LHC and beyond.

DOI: 10.1103/PhysRevD.104.076027

I. INTRODUCTION

Analyses at the Large Hadron Collider (LHC) are
generally classified as measurements or searches if their
goal is to search for indirect or direct signs of physics
beyond the Standard Model (SM), respectively. An impor-
tant reason for this distinction is that measurements assume
that deviations to the SM are small. This is required so that
the removal of detector distortions (unfolding) can be based
on SM simulations. Traditional unfolding methods [1–7]
are based on low-dimensional and binned observables. The
detector response may depend on additional unmeasured
features and may vary strongly within a given bin. If these
properties are significantly different for new particles, then
an unfolding derived with SM simulations is likely to be
inaccurate.

This feature of current unfolding methods has been
studied in [8] and limits the applicability of recasting tools
such as CONTUR [9]. Recasting is the task of taking a
published result and reinterpreting it in the context of a signal
model that was not used in the original analysis. A variety of
complementary tools have been developed to fold model
predictions with a detector response, including MadAnalysis

[10–14], RECAST [15–17], Checkmate [18,19], SModelS [20,21],
FASTLIM [22], and XQCAT [23]. In addition to limitations
from recasting approximations, these approaches are limited
by the minimal (binned) search results that are usually highly
optimized for particular signal models.
One possibility is to perform model-agnostic approaches

at detector level using one of the growing number of
anomaly detection methods [24–65] (for reviews, see
Refs. [60,66]). These techniques can achieve broad and
deep sensitivity by learning directly from data. However,
methods that do not rely on any signal information
(unsupervised) are not particularly sensitive [47,65] and
methods that use noisy or partial signal information
(weakly and semisupervised, respectively) are not reca-
stable after the search is performed [44].
A new solution that has emerged is to perform an

unbinned unfolding using all of the available information.
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If the high frequency and high dimensional aspects of the
detector response are part of the unfolding procedure, then
differences between signal and background will not be a
source of bias. Unbinned and high-dimensional unfolding
are now possible with advances in machine learning [67–69]
(for other machine learning and unbinned proposals, see
Refs. [70–74]). Of these, only the OMNIFOLD [67] can
currently process the full phase space that includes all
observable particles and their properties. Unlike proposals
based on generative models, OMNIFOLD is built on neural
network (NN) classifiers that are used to iteratively reweight
simulations to match the data. Classifiers designed to process
variable-length, unordered sets of particles allow this tech-
nique to access the full phase space [75,76]. While
OMNIFOLD has yet to be applied to collider data in the full
phase space, it has recently been deployed in a low-dimen-
sional case with the H1 experiment [77].
In this paper, we investigate the ability of OMNIFOLD to

preserve information about new particles present in the data.
In particular, we will study the direct production of new
particles which have spectra that are not similar to the SM
background. Our benchmark example will be the exotic
decay of a Higgs bosonlike particle decaying into a Z boson
and a light color singlet that decays into hadrons. The
dominant background to this process is the SM production of
Z bosons and jets. Wewill see to what extent the information
about new particles are preserved in the unfolding. Recently,
the authors of Ref. [69] showed that generative model
approaches can preserve new physics with a relatively large
cross section. Our first example will be motivated by this
example and then we will explore how the sensitivity
depends on variations in the signal-model parameters and
the unfolding setup.
This paper is organized as follows. Section II briefly

reviews full phase space unfolding and introduces the
benefits and challenges of the existing approach in the
context of physics beyond the SM. The simulation samples
and machine learning setup are introduced in Sec. III.
Section IV explores a case where a model-independent
new physics search technique, such as bump hunting, could
be applied in unfolded data. Section V then studies an
example of exotic Higgs boson decays, where simple bump-
hunting would be less fruitful. Implications of model-
dependent search program in unfolded data are explored
in this section as well. The paper ends with conclusions and
outlook in Sec. VI.

II. REVIEW OF OMNIFOLD UNFOLDING

The OMNIFOLD method is represented visually in
Fig. 1. There are two inputs; natural data from experiment
and synthetic data from simulation. The goal is to remove
the detector distortions from the observations (“Data”) to
infer the underlying particle-level distribution (“Truth”).
Synthetic particle-level events (“Generation”) provide the

initial guess for the Truth and we have an event-by-event
match between the Generation and detector-level syn-
thetic data (“Simulation”). As in all unfolding algorithms,
we assume that the detector response is well modeled.
The Z þ jets final state is chosen because it can be
identified and reconstructed with high efficiency and
high purity. Minor backgrounds, and acceptance effects
are not considered in this analysis, although they can be
accounted for in the OMNIFOLD framework—see
Ref. [78] for details.
The first step in the OMNIFOLD method is to train a

classifier to distinguish the Data from the Simulation. An
optimally-trained classifier that minimizes one of the
standard loss functions (cross entropy or mean-squared
error) will predict the probability that an event xdet is
drawn from Data instead of Simulation: PrðDatajxdetÞ. By
applying the weight

ω1 ¼
PrðDatajxdetÞ

1 − PrðDatajxdetÞ
∝

pðxdetjDataÞ
pðxdetjSimulationÞ ; ð1Þ

to each simulated event, the Simulation will closely
resemble the Data. Note that in Eq. (1), “Data” and
“Simulation” denote class labels while xdet represents the
observable features that are the input to the training.
The detector-level weights, ω1 are then applied to the

corresponding particle-level events, resulting in a reweighted

FIG. 1. Visual representation of the OMNIFOLD method. This
method relies on experimental “Data”, which was caused by
some underlying “Truth” distribution, and synthetic datasets at
both particle level (“Generation”) and detector level (“Simula-
tion”). The Simulation is reweighted to match the Data using a
classifer, and these weights, ωi are applied to Generation. The
unweighted Generation is reweighted to match the Generation
with ωi applied, giving particle-level weights, νi. This process is
repeated iteratively, as the νi are applied to the Simulation, and
this reweighted Simulation is once again reweighted to Data.
Based on the corresponding figure from Ref. [67].
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distribution of particle-level events. A second classification
step is required because these pulled back weights are not a
proper function of the particle-level phase space; the same
phase-space point can be mapped to two different detector-
level points with different weights under the stochastic
mapping of the detector. The second classifier distinguishes
the nominal Generation from the one using the weights from
the first step. As with the first step, an optimally-trained
classifier will learn

ν1 ¼
Prðreweighted GenjxpartÞ

1 − Prðreweighted GenjxpartÞ
ð2Þ

∝
pðxpartjreweighted GenÞ
pðxpartjGenerationÞ

: ð3Þ

The matching between Generation and Simulation can be
used to push the weights to detector level and the entire
process can be repeated N times, with each complete pass
through being called an “iteration”. The final result is the
Generation dataset with a set of per-event weights, vN .
For a given unfolding problem, the optimal value of N
and the corresponding optimal weights vN can be chosen
by comparing the detector-level distributions after several
iterations. The iteration with the best agreement can be
selected. Agreement tends to plateau after fewer than
ten iterations, but it is possible to train for additional
iterations if the agreement is continuing to improve.
There is no true notion of “overtraining” here, as the
OMNIFOLD weights are not meant to be applied in any
context beyond the data and simulation present at the start
of the procedure. Within an individual iteration, part of
the Data and Simulation sets are held out as validation
sets to check for overtraining of the network designated to
distinguish between them and to check for overtraining in
second classification step. Statistical uncertainty on the
weights—and thereby the unfolded distribution—can be
determined with bootstrapping techniques.
We will parametrize the classifiers as neural networks.

When x is the full phase space, i.e., a complete list of
reconstructed or true particles with their observable proper-
ties, we need a neural-network architecture that can process
variable length, unordered sets. For this purpose, we use
Particle Flow Networks (PFN) [75,76]. A reduced alter-
native approach will use a fixed number of high-level
observables, which will use a standard fully connected
neural network. To distinguish between these two cases, we
will call the full phase-space version OMNIFOLD and the
reduced version MULTIFOLD.

A. OMNIFOLD in the presence of new physics

The main benefit of the OMNIFOLD method comes from its
use of low-level observables and the freedom from fixed bins.
By using information about each reconstructed particle in an
event or jet, the full phase space is exploited. Therefore, as

long as the interaction of individual particles with the detector
is modeled well, beyond the Standard Model (BSM) physics
should not negatively affect the ability to unfold. If there is
BSM physics present in the data, then the most BSM-like
events in the Simulation will be upweighted as appropriate.1

In traditional unfolding schemes that use regularized-matrix
inversion of binned histograms, the presence of BSM physics
could affect the detector response matrix in ways that are not
accounted for in a SM-only simulation. OMNIFOLD is less
affected by this, and is not affected by the possibility of
suboptimal binning choices for BSM sensitivity.
However, there is a key assumption in the OMNIFOLD

method; the initial Simulation and Data must have over-
lapping support. For example, if a heavy resonance existed
at a mass well beyond the last data point in the simulation,
then it would not be possible to upweight events to match
the resonance even in a binned histogram case. In the
OMNIFOLD case, the initial simulation should span the data
in all dimensions. Empirically, the simulations often used at
the LHC share the same support as the data. In practice, one
needs the ratios of probability densities to not be too far
from unity because even if the support is overlapping, a
very small likelihood ratio will have a large weight and thus
poor statistical uncertainty.

III. SIMULATION AND MACHINE
LEARNING SETUP

Many models of new physics predict new heavy
particles that decay to SM particles. If the invariant mass
of the decay particles is computed, a resonant enhance-
ment in the mass spectrum should occur, centered on the
new particle’s mass. As an initial exploration of the
efficacy of OMNIFOLD in the presence of BSM physics,
we consider the case of a new heavy scalar particle. Our
study is based on proton-proton collisions generated atffiffiffi
s

p ¼ 14 TeV with Tune 26 [79] of PYTHIA 8.243 [80–82].
Signal events are generated as h → Za, a → gg, where mh
has been set to 125 or 250 GeV, and various a masses
have been used. This final state (with low ma and
mh ¼ 125 GeV) was recently studied by the ATLAS
Collaboration in Ref. [83]. Detector effects are emulated
with DELPHES 3.4.2 [84], using the CMS detector card,
which uses particle-flow reconstruction. For this study,
the Data, Truth, Simulation, and Generation sets consist
of 200,000 events. Jets with radius parameter R ¼ 0.4 are
clustered using either all-particle flow objects (detector-
level) or stable non-neutrino truth particles (particle level)
with the anti-kT algorithm [85] implemented in FastJet 3.3.2

[86,87]. We consider leptonic decays of the Z boson,
which can be precisely reconstructed. The target final
state is then Z-boson production in association with one
jet that has nontrivial substructure. Events are selected if

1Events may be down weighted in the case of interference
effects.
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there is at least one truth-level and one detector-level
particle within the jet.2

For OMNIFOLD, we use all of the particles in the leading
jet. Each particle is specified with its pT, rapidity, y,
azimuthal angle, ϕ, and particle identification number.
Furthermore, the invariant mass of the Z þ jet system,
the jet mass, and the jet multiplicity are included as global
features. These data are processed using PFNs imple-
mented in the EnergyFlow Python package [88]. The PFN
architecture is composed of an encoder followed by a fully
connected network. The encoder has two hidden layers of
200 nodes each and outputs a 256-dimensional latent
vector. These vectors are summed over all particles and
then the subsequent fully connected network is composed
of three layers of 100 nodes each.
For MULTIFOLD, we use ten features from each event,

based on the Z boson properties and the leading jet. These
features include the invariant mass of the Z þ jet system,
the jet mass, the jet constituent multiplicity, the jet pT, the Z
pT, the jet Les Houches Angularity [89,90], the jet width
[90–93], the groomed jet mass with Soft Drop parameters
zcut ¼ 0.1 and β ¼ 0 [94], the groomed jet momentum
fraction (same Soft Drop parameters), and the jet image
activity, which is the minimum number of pixels in a jet
image that contain 95% of the total pT [95]. The
MULTIFOLD neural networks are composed of three hidden
layers of 100 nodes each.
For each iteration of OMNIFOLD and MULTIFOLD, the

neural network was trained with 120 and 20 epochs,
respectively, and included an early stopping condition
based on validation loss improvement. The validation
sample was constructed from a random 20% of the events.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. All neural networks are implemented
using KERAS [96] with the TensorFlow backend [97] and
optimized with ADAM [98].

IV. HEAVY SCALAR DECAY STUDY

First, we study the case ofmh ¼ 250 GeV where 10% of
the data is BSM physics. This composition and signal
model relative to the Z þ jets background are qualitatively
similar to the example presented in Ref. [69], which used
generative models.
Figure 2 shows the detector-level and truth-level distri-

butions of Z þ jet invariant mass before and after unfolding.
At detector level, which corresponds to the first step in an
iteration of the OMNIFOLD method, the distributions exhibit
good agreement after unfolding; the height and width of
the mass peak are reproduced accurately, especially in the
MULTIFOLD case. At truth level, the peaks are not reproduced

as sharply. In the MULTIFOLD case, the height and width of
the peak are similar to that seen at detector level, and in the
OMNIFOLD case, the peak is considerably broader.
Part of the broadening is an inherent challenge with

nontrivial resolutions and limited statistics. The truth-
level peak quality can be recovered by modifying the
Generation. In particular, the spectrum of synthetic events
at particle level before beginning the unfolding procedure
[pðxpartjGenerationÞ] can be viewed as a “prior” in the
sense of an initial guess on the unfolded distribution. We
are free to choose whatever Generation we want as
OMNIFOLD is a maximum-likelihood estimator that is
formally prior independent. However, the closer the prior
is to the data, the more accurate the unfolding will be
with finite statistics. To test this idea, the same Truth
sample was used as above, with 180,000 SM events and
20,000 h → Za, a → gg, where mh ¼ 250 GeV and
ma ¼ 16 GeV. However, now the Generation was taken
to include 200,000 SM events, 10,000 h → Za, a → gg
events with mh ¼ 125 GeV for each of ma ¼ 0.5, 1, 2, 4,
8, and 16 GeV, and 10,000 h → Za, a → gg events with
mh ¼ 250 GeV for each of the same ma values, for a total
of 320,000 events. The truth-level results of unfolding
with the same OMNIFOLD setup discussed above are

FIG. 2. Distributions of the Z þ jet invariant mass spectrum for
both MULTIFOLD (top row) and OMNIFOLD (bottom row).
Distributions are shown for both detector-level (Data and Sim-
ulation) and truth-level (Truth and Generation) values. The Truth
and Data distributions are a combination of 180,000 PYTHIA 8Z þ
jet events and 20,000 h → Za, a → gg, where mh ¼ 250 GeV
and ma ¼ 16 GeV. The Generation and Simulation are 200,000
SM-only events. The weights are taken after five iterations of the
respective unfolding procedure. The triangular discriminator [99–
101] Δðp; qÞ ¼ R

dλ ðpðλÞ−qðλÞÞ2
pðλÞþqðλÞ is used to quantify the difference

between distributions.

2We ignore acceptance effects from the jet selection, which can
be made arbitrarily small in this case by using only the Z to
choose events.
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shown in Fig. 3. Here, both the height and weight of the
truth-level peak are reproduced well by the reweighted
sample. The fact that this works well, when an application
of OMNIFOLD with SM-only events did not, shows the
importance of sufficiently covering the relevant regions
of phase space.
Adding BSM physics to the Generation sample begs the

question of what the invariant mass distribution would look
like after unfolding if the Data does not itself contain BSM

physics. To test this, the same Generation sample with
320,000 events from the preceding paragraph is used again,
but Data and Truth are taken to be 200,000 SM-only events.
The OMNIFOLD method is applied in the same way as
above, and the resulting Z þ jet invariant mass distributions
are shown in Fig. 4. The bump in the unfolded distribution
has been eliminated despite the fact that almost 40% of
events in the Generation sample were drawn from BSM
samples. To optimize the unfolding, care must be taken
when choosing the BSM models to include in the
Generation sample as well as when choosing the number
of BSM events to include—manipulating these parameters
effectively corresponds to choosing different priors for
what is expected in the Data. It may also be possible to
achieve a similar performance without inserting such a
localized signal. For this idea to be useful, it will be
important to establish a procedure that minimizes the model
dependence for picking non-SM contributions.
This section has demonstrated that MULTIFOLD, and to

some extent OMNIFOLD, can qualitatively preserve a
relatively large3 and prominent resonant signature from
the data. A sideband technique could then be used to
perform a search with these data. In the next section, we
will explore the ability of OMNIFOLD to precisely preserve
the phase space so that a multivariate classifier could be
used for a search with the unfolded data.

V. EXOTIC HIGGS DECAY

Given the visual prominence of the signal in the data plots
of Fig. 2, it is likely that a discovery would be made when
performing inclusive cross-section measurements of Z þ jets,
such as routinely performed by the ATLAS and CMS
Collaborations [102,103]. However, not all new physics
processes can be searched for with such a simple approach.
To explore such a scenario, we consider mh ¼ 125 GeV. In
this case, the signal bump is near the background peak and so
additional features beyond just the Z þ jet invariant mass are
required. We explore the possibility of performing a model-
dependent search that uses dedicated BSM vs SM discrimi-
nating variables. If OMNIFOLD effectively unfolds the full
phase space, it should be possible to use any combination of
variables in unfolded data.

A. Unfolding with MULTIFOLD

First, we can consider the case of MULTIFOLD with two
working points for BSM physics:

(a) 0.1% of Data and Truth events are BSM physics,
with ma ¼ 16 GeV.

(b) 10% of Data and Truth events are BSM physics,
with ma ¼ 16 GeV.

FIG. 3. Truth-level distribution of Z þ jet invariant mass for the
case that OMNIFOLD is performed with BSM events in Gener-
ation. The BSM event included in the Generation were drawn
from events with mh ¼ 125 GeV and mh ¼ 250 GeV. The
weights are taken after five OMNIFOLD iterations.

FIG. 4. Truth-level distribution of Z þ jet invariant mass for the
case that OMNIFOLD is performed with BSM events in Generation
despite a lack of BSM events in Truth. The BSM event included
in the Generation were drawn from events with mh ¼ 125 GeV
and mh ¼ 250 GeV. The weights are taken after 5 OMNIFOLD
iterations.

3In fact, the amount of signal is so large, that it would result in
a significant detection from the cross section alone, which is well
known for Z þ jets. We revisit this in Sec. VI.
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For each working point, the Data, Truth, Simulation, and
Generation sets will be once again be 200,000 events. In
each case, the Simulation and Generation sets are drawn
from the SM-only PYTHIA 8 sample. The SM events in Data
and Truth are also drawn from the PYTHIA 8 sample, but no
SM event can be used in both Data and Simulation.
The distributions of Z þ jet invariant mass, jet mass, and

jet multiplicity for Truth, Generation, and unfolded
Generation are shown in Fig. 5. The impact of a 0.1%
signal is difficult to detect in these one-dimensional histo-
grams and MULTIFOLD has correspondingly left the phase
space mostly untouched. For the 10% signal, MULTIFOLD
improves the agreement of every variable’s distribution
with that of the truth-level generation, based on the
triangular-discriminator metric. Similar trends hold for
alternative ma values as well (not shown).

The ratio panels in Fig. 5 show that the distributions
after MULTIFOLD are flatter with respect to truth than the
distributions prior to unfolding. To investigate the degree
to which BSM physics is encoded in the unfolded data,
we emulate a model-dependent search by training a fully
supervised classifier to distinguish Z þ jets events from
the ma ¼ 16 GeV signal. A sample of 90,000 SM and
90,000 BSM events was used for training, with 30%

FIG. 5. Truth, Generation, and unfolded Generation distribu-
tions for the MULTIFOLD case, where BSM h → Za, a → gg
events have been included in the Truth, but not the Generation.
SM events in these samples come from PYTHIA 8Z þ jets
simulation. In the left column, 200 out of 200,000 Truth events
come from the BSM sample, and in the right column, 20,000 out
of 200,000 Truth events are BSM physics. Distributions are given
for the invariant mass of the Z þ jet, the jet mass, and the jet
multiplicity. The ratios of the Generation distributions are given
to Truth for each plot. The weights are taken after five iterations
of MULTIFOLD.

FIG. 6. The number of Truth, Generation, and unfolded
Generation events passing a cut on the neural network score,
as a function of the cut value, in the case that 0.1% of the data
comes from BSM physics (top) and 10% of the data comes from
BSM physics (bottom). The unfolding was performed with
MULTIFOLD. The neural network was specifically trained to
distinguish SM from BSM physics. The middle segment of both
plots shows the ratio of the pre and postunfolding Generation
yields to the Truth yield. The yield from the preunfolding
Generation is not expected to agree well with the Truth, as there
are no BSM events. However, if the most BSM-like events get
upweighted by the unfolding, then the weighted sum of passing
events increases. In a fully accurate unfolding the unfolded yield
would match the yield from Truth. The bottom segment shows the
fraction of Truth events that are BSM events at truth level; as the
cut value approaches 1, the events passing the selection must be
more BSM-like, which is why the BSM-purity increases as a
function of cut value.
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randomly held out as a validation set. The neural network
has the same inputs and architecture as the one used
for MULTIFOLD.4 If MULTIFOLD preserves the complete
phase space—the event-by-event distribution of all var-
iables in the data sample including BSM physics, then
any threshold cut on this classifier should have the same
efficiency with the unfolded data as it does with the Truth.
The number of Truth, Generation, and unfolded

Generation events passing a cut on the neural network score,
as a function of the cut value, is shown in Fig. 6. In both
the 0.1% and 10% signal case, the number of events in the
reweighted samples more closely matches the Truth than

the raw Generation samples. The agreement between the
reweighted sample and Truth in the 10% case is an impressive
achievement, as the Truth and Unfolded yields after the
application of the NN score cut is stable at one. The NN score
is a specialized value that was not used in training, so it is
clear that in this case, the most BSM-like events are being
upweighted toanappropriatedegree. Incontrast, theunfolding
has not upweighted the BSM events enough in the 0.1% case,
highlighting the difficulty ofworkingwith such a small signal.

B. Unfolding with OMNIFOLD

An investigation similar to the MULTIFOLD case can be
performed with OMNIFOLD. The same ma and contamina-
tion values are investigated.

FIG. 7. Truth, Generation, and unfolded Generation distribu-
tions for the OMNIFOLD case, where BSM h → Za, a → gg
events have been included in the Truth, but not the Generation.
SM events in these samples come from PYTHIA 8Z þ jets
simulation. In the left column, 200 out of 200,000 Truth events
come from the BSM sample, and in the right column, 20,000 out
of 200,000 Truth events are BSM physics. Distributions are given
for the invariant mass of the Z þ jet, the jet mass, and the jet
multiplicity. The ratios of the Generation distributions are given
to Truth for each plot. The weights are taken after three iterations
of OMNIFOLD.

FIG. 8. The number of Truth, Generation, and unfolded
Generation events passing a cut on the PFN score, as a function
of the cut value, in the case that 0.1% of the data comes from
BSM physics (top) and 10% of the data comes from BSM physics
(bottom). The unfolding was performed with OMNIFOLD. The
PFN was specifically trained to distinguish SM from BSM
physics. The middle segment of both plots shows the ratio of
the pre- and post-unfolding Generation yields to the Truth yield.
The bottom segment shows the fraction of Truth events that are
BSM events at truth level.

4It is important to note that in the MULTIFOLD case, the neural
network is trained to distinguish between Data and Simulation,
whereas the discriminator neural network is trained to distinguish
truth-level SM events from BSM events.
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The distributions of Z þ jet invariant mass, jet mass,
and jet multiplicity for Truth, Generation, and unfolded
Generation are shown in Fig. 7. The performance in these
plots is similar to, but slightly worse than, that observed
in Fig. 5.
It is also possible to train a PFN to distinguish SM from

BSM events. This PFN is set up in the same way as the
PFN used for OMNIFOLD, but it is trained to discriminate
a sample of 90,000 SM from 90,000 BSM events. Here,
the area under the ROC curve is 0.94, achieving superior
discrimination to the neural network described in
Sec. VA (AUC of 0.73). Figure 8 shows the number of
Truth, Generation, and unfolded Generation events that pass
cuts on the PFNscore. If this figure is compared to Fig. 6, it is
evident that the post-cut yields in the OMNIFOLD case do not

agreewith truth aswell as in theMULTIFOLDcase. This is due
to the challenges discussed in Sec. II A: the phase space of
the OMNIFOLD case is significantly larger than that of the
MULTIFOLD case. Within the full particle-level phase space
used byOMNIFOLD, BSMand SMevents aremore separable
than they are in the ten-variable phase space used in our
MULTIFOLD example. Therefore, a PFN specifically trained
to discriminate SM fromBSMevents is highly accurate. The
Generation sample poorly populates the very BSM-like
region of this discriminator especially in the case of 0.1%
contamination, where there were only 200 BSM events in
the data sample; the unfolded dataset would not enable a
discovery of new physics, as the weights do not strongly
affect the postcut yields.

FIG. 9. Truth, Generation, and unfolded Generation distribu-
tions for OMNIFOLD, where BSM h → Za, a → gg events have
been included in the Truth and the Generation. SM events in these
samples come from PYTHIA 8 Z þ jets simulation. In the left
column, 200 out of 200,000 Truth events come from the BSM
sample, and in the right column, 20,000 out of 200,000 Truth
events are BSM physics. In all cases, 60,000 Generation events
out of 260,000 come from h → Za, a → gg events with different
ma values. Distributions are given for the invariant mass of the
Z þ jet, the jet mass, and the jet multiplicity. The ratios of the
Generation distributions are given to Truth for each plot. The
weights are taken after five iterations of OMNIFOLD.

FIG. 10. The number of Truth, Generation, and unfolded
Generation events passing a cut on the PFN score, as a function
of the cut value, in the case that 0.1% of the data comes from
BSM physics (top) and 10% of the data comes from BSM physics
(bottom). In both cases, 60,000 Generation events out of 260,000
come from h → Za, a → gg events with different ma values. The
unfolding was performed with OMNIFOLD. The PFN was
specifically trained to distinguish SM from BSM physics. The
middle segment of both plots shows the ratio of the pre and
postunfolding Generation yields to the Truth yield. The bottom
segment shows the fraction of Truth events that are BSM events at
truth level.
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C. Including BSM physics in Generation

Similar to the end of Sec. IV, we explore how the
performance in the previous section changes if we add in
BSM to the Generation. This can effectively populate the
regions of phase space that are under-populated by the
SM to enable a more precise postunfolding search. For
this purpose, we take the same 200,000 SM events in
Sec. V B and add 10,000 events each from h → Za,
a → gg samples with ma ¼ 0.5, 1, 2, 4, 8, and 16 GeV, for
a total of 260,000 events in Generation. The OMNIFOLD
method is carried out in exactly the sameway as in Sec. V B.
Distributions for the invariant Z þ jet mass, jet mass, and
jet multiplicity are shown in Fig. 9. By comparing the
triangular-discriminator metric between Figs. 9 and 7, it
can be seen that when BSM physics is included in the
Generation, the distributions generally agree slightly better
after unfolding, particularly in the case of 10% contamina-
tion, despite worse initial agreement.
The SM vs BSM discriminator PFN of Sec. V B can

applied to this new Generation sample. The results of this
application are shown in Fig. 10. The PFN is also able to
discriminate events with different ma values relatively
accurately,5 and it is clear here that the OMNIFOLD
reweighted sample does not predict postcut yields well.
The average weights found for the different ma components
of Generation are given in Table I. While the ma ¼ 16 GeV
events are upweighted relative to the lighter ma events, it is
clear that in the 0.1% contamination case, thema ¼ 16 GeV
events are not adequately downweighted, and in the 10%
contamination case, they are not adequately upweighted.
Together with Fig. 8, it can be seen that while OMNIFOLD

is performed using the full phase space, it has difficulty
properly weighting extreme regions of phase space that can
be particularly useful to model-dependent searches.

VI. CONCLUSIONS AND OUTLOOK

The OMNIFOLD and MULTIFOLD methods can be used
for unbinned, all-variable unfolding in the presence of
BSM physics, but there are inherent limitations on its
applicability for truth-level searches for new physics.
In general, the distributions of high-level observables

are unfolded well, as in Figs. 2, 5, and 7. This would
enable model-independent searches or searches that use
relatively high-level variables as discriminants, especially
if the new physics has a high cross section. However, it is
possible to devise strong BSM vs SM discriminating
variables that are not necessarily unfolded well, such as
the neural network scores shown in Figs. 6 and 8. These
discriminants, which probe relatively subtle regions of
phase space would most likely be applied in a model-
dependent search. While OMNIFOLD uses the full phase
space, it has difficulty unfolding such specialized vari-
ables. The best performance highlighted above is the
10% BSM contamination case with MULTIFOLD, where
the postcut yield in the unfolded sample closely matches
that found in Data. In the 0.1% contamination case with
MULTIFOLD, there is also an enhancement in the
reweighted sample relative to the Generation sample,
but the agreement with Truth is not as stable as the 10%
case. Together with the lack of agreement in the
OMNIFOLD case, this suggests that it would be difficult
to make a discovery of BSM physics unless the new
physics comprises > 1% of data events. Such high rates
of BSM contamination would likely be discovered
through conventional means by experimentalists prior
to the release of unfolded datasets.
A significant issue in any attempt to perform a search with

unfolded data is the inverse problem highlighted by Fig. 2.
Information is lost as particles pass through the detector, as
seen in the smearing of the truth-level peak. We have shown
how this can be partially recovered by adding BSM events
to the Generation. This also helps to populate the most
BSM-like regions of phase space. For example, Fig. 3 shows
that this can be a powerful means to accurately reproduce an
invariant mass peak even at truth level. However, this raises
the natural question of how to choose the correct events to
include in Generation. The study in Sec. V C highlights the
fact that even though high-level distributions can be unfolded
well when BSM events are included in Generation, special-
ized variables may not be unfolded well; in particular, the
reweighted distributions in Fig. 9 are significantly different
from both the Data and from what would be expected in a
SM-only case. Because of this, a model-dependent search
with the PFN discriminator would be ineffective in the 10%
case and return a false positive in the 0.1% case.

TABLE I. Average weights applied to events in Generation
based on the event type. Here Generation was 260,000 events,
with 200,000 SM Z þ jet events, and 10,000 events each from
h → Za, a → gg samples with differentma values, as given in the
table. Generation was used as an initial distribution for unfolding
to a Truth sample of 200,000 events that either had 0.1% or 10%
of its events drawn from the h → Za, a → gg sample with
ma ¼ 16 GeV. The average weight is 0.77 to match the nor-
malization of the Truth sample, which has 200,000 events total,
rather than 260,000.

Event type
Average weight
(0.1% case)

Average weight
(10% case)

ma ¼ 0.5 GeV 0.47 0.50
ma ¼ 1 GeV 0.51 0.54
ma ¼ 2 GeV 0.63 0.64
ma ¼ 4 GeV 0.76 0.78
ma ¼ 8 GeV 0.75 0.80
ma ¼ 16 GeV 0.75 0.81
SM 0.81 0.80

5Such that few events with ma ¼ 4 GeV will pass the NN cut,
for example.
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Full phase-space unfolding is a promising direction for
postmeasurement searches for resonant new physics; for
example, a bump, such as that shown in Fig. 2 can be
reproduced in unfolded data even if the prior distribution does
not have a bump. However, significant work is required to
increase the precision of the unfolding, to understand how to
quantify the statistical significance of such an anomaly, and
to cope with cases where there are phase space regions with
a large-likelihood ratio. It is likely that nonresonant new
physics, which may be modeled using effective field theory
methods, will be more successful because the likelihood ratio
is never too far from unity. This is closer to the previously
studied case that investigated the impact of different SM
simulations [67]. The resonant examples presented in this
paper will serve as an important benchmark for the com-
munity as existing methods are extended and new techniques
are developed to empower a new class of analyses at the LHC
and beyond.

VII. CODE AND DATA

The code for this paper can be found at https://github
.com/wpmccormack/OmniFoldBSM.
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