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REVIEW

Inter-Organ Communication in Homeostasis and Disease

Lactate as a myokine and exerkine: drivers and signals of physiology and
metabolism

George A. Brooks, Adam D. Osmond, Jose A. Arevalo, Justin J. Duong, Casey C. Curl,
Diana D. Moreno-Santillan, and Robert G. Leija
Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United
States

Abstract

No longer viewed as a metabolic waste product and cause of muscle fatigue, a contemporary view incorporates the roles of
lactate in metabolism, sensing and signaling in normal as well as pathophysiological conditions. Lactate exists in millimolar
concentrations in muscle, blood, and other tissues and can rise more than an order of magnitude as the result of increased
production and clearance limitations. Lactate exerts its powerful driver-like influence by mass action, redox change, allosteric
binding, and other mechanisms described in this article. Depending on the condition, such as during rest and exercise, fol-
lowing carbohydrate nutrition, injury, or pathology, lactate can serve as a myokine or exerkine with autocrine-, paracrine-,
and endocrine-like functions that have important basic and translational implications. For instance, lactate signaling is:
involved in reproductive biology, fueling the heart, muscle adaptation, and brain executive function, growth and develop-
ment, and a treatment for inflammatory conditions. Lactate also works with many other mechanisms and factors in controlling
cardiac output and pulmonary ventilation during exercise. Ironically, lactate can be disruptive of normal processes such as in-
sulin secretion when insertion of lactate transporters into pancreatic b-cell membranes is not suppressed, and in carcinogen-
esis when factors that suppress carcinogenesis are inhibited, whereas factors that promote carcinogenesis are upregulated.
Lactate signaling is important in areas of intermediary metabolism, redox biology, mitochondrial biogenesis, neurobiology,
gut physiology, appetite regulation, nutrition, and overall health and vigor. The various roles of lactate as a myokine and
exerkine are reviewed.

NEW & NOTEWORTHY Lactate sensing and signaling is a relatively new and rapidly changing field. As a physiological signal lac-
tate works both independently and in concert with other signals. Lactate operates via covalent binding and canonical signaling,
redox change, and lactylation of DNA. Lactate can also serve as an element of feedback loops in cardiopulmonary regulation.
From conception through aging lactate is not the only a myokine or exerkine, but it certainly deserves consideration as a physio-
logical signal.

cardiopulmonary regulation; glucose paradox; lactate shuttle; lactylation; metabolic signaling

INTRODUCTION

Although lactate has traditionally been viewed as a meta-
bolic waste product and cause of muscle fatigue, there has
been a revolution in understanding its role in normal and
pathophysiological conditions (1–9). Lactate is formed under
fully aerobic conditions during postprandial rest and exer-
cise (4, 10–12). The roles of lactate as a preferred energy sub-
strate and gluconeogenic precursor have previously been
reviewed (2, 10, 12–14). Hence, the many roles of lactate as a

signaling molecule and driver of biochemical and physiolog-
ical processes are presented here.

Lactate shuttles and signals within and among cells,
organs, and tissues. As indicated later, the roles of lactate in
metabolism and exercise performance have received much
attention.1 However, recognition of the regulatory attributes
of lactate is more recent (2). In contrast to more commonly
recognized myokine signaling moieties such as IL-6 that
exist in pico- or nano-molar concentrations (15), lactate
exists in millimolar concentrations in muscle, blood, and
other tissues. As well, the dynamic range of lactate concen-
tration is more than an order of magnitude under normal
physiological and pathological conditions.
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Myokines and exerkines are substances that have autocrine-,
paracrine-, and endocrine-like functions when released from
muscles. Lactate serves as amyokine when produced in resting
muscles, and as an exerkine when produced during exercise, in
the integument and working muscles. Aspects of lactate pro-
duction, removal, and signaling have important basic and
translational implications. For instance, lactate fuels sperm
motility, supports embryonic development (16, 17), is the most
rapidly assimilated and oxidized sports drink component (18),
and has potential to be a treatment for the brain following
trauma (19–22). Because its production is increased during
exercise, some regard lactate to be an exerkine (15). However,
lactate holds evenmore importance as amyokine that operates
continuously, during rest, after a meal, and during exercise
and recovery (3, 4). Based on our own independent research
and review of the literature, we assert that lactate signaling is
important in areas of intermediary metabolism, redox biology,
mitochondrial biogenesis, cardiovascular and pulmonary regu-
lation, genomics, neurobiology, gut physiology, appetite regu-
lation, pathways of carbohydrate nutrient metabolism, and
skeletal and overall body vigor and health. Indeed, while the
role of lactate can be described as a myokine or exerkine, there
is potential for the nomenclature to include a host of other, yet
unnamed “-kines” representing major tissue sites of lactate
turnover (e.g., integumentokine, enterokine, neurokine, hepa-
tokine, spermatokine, phagokine, erythrokine, mitokine, etc.)
(Table 1 and Fig. 1).

And finally, by way of introduction to this review, current
understanding of lactate signaling and sensing largely falls
within the realm of metabolism. This is because lactate sig-
naling and sensing are consequences of production with out-
comes and feedback control typical of physiological systems.
Hence, it is difficult to strip lactate metabolism from a dis-
cussion of signaling and sensing. More subtle aspects of lac-
tate signaling and sensing in the absence of large changes in
lactate production will likely be discovered in the future. For
instance, in reproduction biology, the timing of lactate sig-
naling is important (17).

HISTORIC BACKGROUND: LACTATE
SIGNALING AMONG PRODUCER (DRIVER)
AND CONSUMER (RECIPIENT) CELLS

To pioneer researchers (63, 64), lactate shuttling was not
obvious because the rate of production and appearance in
blood (Ra) equals disposal (Rd, rate of disposal from the blood)
in most circumstances. To the pioneers, only conditions when
blood lactate concentration rose or declined (i.e., Ra = Rd)
were observable. But, as required by chemistry, physics, and
physiology (Fick’s law), solutes flux fromhigh to lower concen-
trations, and back to a limited extent. Hence, in that context
the metabolism of metabolites, such as lactate, can be under-
stood. Thismeans lactate production and release from “driver”

Table 1. Lactate as a signaling molecule: drivers, targets, messengers, and actions

Driver Downstream Messenger/Action Target Cell/Tissue Biological Action References

Contracting skeletal muscle HCAR-1 Adipocytes tissue, neurons,
and skeletal muscle

Inhibits lipolysis, inflamma-
tion suppression, muscle
hypertrophy

(23–28)

Contracting skeletal muscle CPT-2 Mitochondria Inhibits fatty acid uptake and
oxidation

(29)

Contracting skeletal muscle Histone lactylation DNA/nucleus Post-transcription alterations (30, 31)
Contracting skeletal muscle PGC-1a Metabolically active tissue Stimulates mitochondrial

biogenesis
(32–34)

Contracting skeletal muscle IGF-1 Metabolically active tissue Stimulates skeletal muscle
hypertrophy

(25)

Contracting skeletal muscle Sirtuins 1 and 3 Metabolically active tissue Stimulates mitochondrial
biogenesis

(32, 35, 36)

Contracting skeletal muscle Allosteric binding? Lyding cells Increase testosterone (37, 38)
Contracting skeletal muscle BDNF Dentate gyrus of the

hippocampus
Stimulates neurogenesis (39–43)

Contracting skeletal muscle VEGF Endothelial cells Promotes angiogenesis (44–46)
Contracting skeletal muscle Olfr78 Carotid body Stimulates pulmonary

ventilation
(47)

Contracting skeletal muscle Allosteric binding Metaboreflex types III&IV
sensory fibers

Stimulates pulmonary
ventilation

(48)

Contracting skeletal muscle Allosteric binding Myoglobin Increases deoxygenation (49–51)
Gut GLP-1 Intestinal L-cells Stimulates insulin secretion (52)
Gut GPR132 Intestinal mucosa Incretin secretion (53)
Postprandial red muscle Ghrelin Hypothalamus Suppression of appetite (54, 55)
Contracting skeletal muscle TGF-b2 Adipose tissue Increased secretion of TGFb-2,

improved insulin sensitivity
(56)

Cancer cell p62 Tumor stroma cells Decreases autophagy/
increase cancer cell
proliferation

(57, 58)

Sodium lactate incubation Histone deacetylase CD8þ cells Inhibited tumor growth (59)
Contracting skeletal muscle/
postprandial skeletal
muscle

Allosteric binding, redox? Liver & kidneys Increased gluconeogenesis (4, 60, 61)

Bone Allosteric binding, redox? Skeletal remodeling Osteoclast activation (62)
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cellular compartments, cells, tissues, and organs is counterbal-
anced by uptake and metabolic disposal elsewhere at “recipi-
ent” sites (Fig. 1). Necessarily, cell type, metabolic and dietary
states, integument, cardiovascular, enterokine, lymphatic and
hepatorenal systems are involved. In fairness to the pioneers,
concepts of neuroendocrine, myokine or exerkine signaling
had not yet been developed.

Initial “lactate shuttle” theory was based on simultaneous
glucose and lactate flux measurements (65, 66), and lactate
concentration differences in tissues of resting and exercising
rats (67, 68). Hence the idea of lactate flux from fast, glyco-
lytic to oxidative (69) fiber types was deduced (1, 12, 70).
Subsequently, it became obvious that lactate released from
working muscle beds was taken up and oxidized by the heart
(71, 72). Moreover, implicit in the results was the understand-
ing that similar phenomena occurred at rest when concentra-
tion gradients and turnover rates were much less compared
with those during exercise (73, 74).

Understanding that tissue participation in lactate shuttling
could change over time was foreshadowed in work of Welch
and Stainsby (75) on dog muscles contracting in situ.

Gastrocnemius-plantaris muscles released lactate at the onset
of electrically induced contractions, but switched to net
uptake as contractions continued. Hence, it was not surpris-
ing that the same phenomenon (Stainsby Effect) was seen in
human muscles during continuous exercise (76, 77). In exer-
cising men, the switch in muscle from net lactate release to
uptake coincided with increases in blood flow and oxygen
delivery to match metabolic demand (76). Subsequently, and
perhaps more importantly, studies of human subjects led to
recognition that resting and working human muscles
simultaneously produced and consumed lactate, and that
elevated blood lactate concentration (lactatemia) and high
blood lactate turnover persisted during exercise when
muscles switched from net release to uptake (76). This latter
observation meant that some other tissue was the net pro-
ducer, and hence the “driver” of circulating lactate availability.
Although this facet of lactate shuttling is basically uninvesti-
gated, it has been observed that under sympathetic stimula-
tion, as occurs in exercise, glycogenolysis and glycolysis in the
integument results in net lactate release (78). Beyond the
integument, other organ sites of lactate production and net

Figure 1. Illustration of the roles of driver and recipient cells in lactate shuttle signaling. Lactate fluxes from sites of production and high concentration in
driver cell compartments and tissues to sites of lower concentration in recipient disposal sites. Depending on metabolic conditions some sites can
switch from driver to recipient cells. Examples of switching are several and include initial lactate release from muscle beds at the onset of exercise to
uptake by the same muscle bed as blood flow and oxygenation increase to meet metabolic demands. At that time, other tissues such as the integument
become lactate shuttle drivers. Another example occurs after carbohydrate nutrition when red skeletal muscle takes up glucose and releases lactate as
part of the “postprandial lactate shuttle.” Seen from the perspective of Fig. 1, lactate shuttling provides for fuel energy carbon exchange and metabolic
signaling. Figure modified from Ref. 4. Recreated with BioRender.com.
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release into the circulation remain to be identified; inactive
skeletal muscle (79), and the gluconeogenic liver and kidneys
are probably not good candidates for lactate release (80) in
exercising humans.

The initial “lactate shuttle” posited glycolytic to oxidative
tissue lactate exchange (1). However, while less obvious, lac-
tate shuttling is also apparent at rest when digestive, circula-
tory, musculoskeletal, hepatorenal, and probably lymphatic
systems are involved. For instance, studies of postprandial
glucose metabolism in animal models and humans show
what has been termed as the “Glucose Paradox,” or “Indirect
Pathway of Hepatic Glycogen Synthesis” (81). This concept
recognizes that dietary glucose released into the hepatic por-
tal vein initially bypasses the liver and goes to the periphery
where glycolysis converts glucose to lactate that is subse-
quently released into the venous circulation and taken up
from the arterial circulation by liver for glycogen synthesis.
This, paradoxical, “Indirect” pathway is to be contrasted
with the “Direct” pathway in which dietary glucose from the
gut is taken up from the hepatic portal vein and converted to
liver glycogen on first circulatory pass.

The initial concept of an Indirect Pathway of Hepatic
Glycogen Synthesis was developed from studies on laboratory
animals and has been replicated in human subjects showing
both indirect and direct liver glycogen synthesis in healthy,
postprandial humans. However, the balance of Indirect and
Direct glucose conversion to hepatic glycogen appears to be
species related. It has been confirmed in human subjects that
glycolysis was the main initial postprandial fate of glucose
that accounted for most of overall disposal while oxidation
and storage accounted for the remainder. However, the ma-
jority of hepatic glycogen synthesis in postprandial humans
(>73%) was formed via the Direct Pathway (82). In the near
future, it should be possible to better understand how diet
and other factors (e.g., hepatic glycogen content, sex, age,
physical activity level, insulin action) influence the balance of
direct versus indirect liver and muscle glycogen synthesis in
men and women using deuterium- and 13C-labeled glucose
and lactate tracers with magnetic resonance spectroscopy
(MRS) of liver and skeletal muscle (83).

Although considered to be a homogeneous “organ system,”
muscle is in fact a heterogeneous tissue containing different
types of muscle fibers, circulatory and connective cells and
tissues, motor nerve networks, and progenitor (satellite) cells
among others (84). Skeletal muscle fiber types have different
metabolic and contractile characteristics owing to differences
in myosin isoform expression and densities of capillary and
mitochondrial networks (69, 85, 86). Postural muscles (e.g.,
soleus, erector spinae) are alternatively termed Intermediate,
(red slow oxidative), or Type I fibers. In many species, deep
vastus and lateral gastrocnemius are bright red and termed
Red or Type IIA fibers. In contrast white, fast twitch fibers are
termed Type IIX (in humans) or IIB (in other mammals).
Results of the earlier-cited studies on the Indirect Pathway of
Hepatic Glycogen Synthesis are complemented by results of
studies on dogs postfeeding showing greater postprandial per-
fusion and glucose uptake in muscles containing predomi-
nantly oxidative Type I and IIA fibers (87, 88). Thus, Types I
and -IIA fibers are drivers of the “postprandial lactate shuttle,”
whereas Types IIB and IIX fibers are drivers of cell-cell (fiber
to fiber) lactate shuttling during moderate to hard intensity

exercise with all fiber types contributing organ-organ (muscle
to heart) during maximal lactate efforts (4). Lactate flux rates
and tissue exchanges during exercise recovery are little stud-
ied, but oxidative tissue sites with high mitochondrial reticu-
lum densities, liver, and kidneys likely playing major roles as
splanchnic vasoconstriction are relaxed. Seemingly, knowl-
edge that mild exercise during recovery from strenuous
efforts helps clear lactatemia (89), studies of inter-organ lac-
tate shuttling during exercise recovery might prove useful for
developing protocols to reduce lactate accumulation by mild
functional electrical stimulation (FES) in conditions such as
sepsis (90).

In closing this section on the history of lactate biology, it is
important to note that the ideas of lactate as the product of ox-
ygen-limited metabolism and metabolic waste came into
prominence because of the early history and preeminence of
researchers, including two Nobel Laureates (A.V. Hill, Otto
Meyerhof, and others of similar distinction (Rodolfo Margaria,
David B. Dill). In retrospect, it is regrettable that the findings
of another Nobel Laureate, Otto Warburg on tumor metabo-
lism (91) were not more broadly interpreted because glycolysis
leading to lactate production is now recognized to occur under
fully aerobic conditions (3, 14). However, limitations in classi-
cal theory had negative effects on advancing the fields of lac-
tate biology and its translation to clinical practice. Hopefully,
this article will have an effect of opening the doors leading to
a better understanding of the central role of lactate in physio-
logical and metabolic regulation, signaling, and sensing. More
expansive reviews of the history of lactate metabolism are
available and recommended (3, 10, 14, 92).

THE FORMS OF LACTATE SIGNALING

Peroxisome Proliferator-Activated Receptor Gamma
Coactivator-1 Alpha, Reactive Oxygen Species, and
Related Signaling

The effect of repeated exercise bouts (i.e., endurance train-
ing) on stimulating mitochondrial biogenesis is a classic find-
ing (93, 94). Among the multiple upstream regulators of
mitochondrial biogenesis is lactate, which activates peroxi-
some proliferator-activated receptor gamma coactivator-1
alpha (PGC-1a) and generates reactive oxygen species (ROS).
Incubation of C2C12myocytes with lactate results in upregula-
tion of hundreds of genes apparently mediated by PGC-1a and
ROS (32–34). The effect of intermittent lactate exposure simu-
lating exercise onmyogenesis in cultured C2C12 myoblasts via
ROS generation has been replicated (33). Moreover, in mice,
repeated intraperitoneal injection of dichloroacetate (DCA),
an inhibitor of lactate production, minimized increases in
mRNA levels of citrate synthase, cytochrome oxidase (COx),
and fatty acid translocase (FAT/CD36) induced by training
(95). More recently, it has been discovered that histone lactyla-
tion affects the expression of many genes (30, 31), including
those of skeletal muscle proteins (R.G. Leija, A.D. Osmond, J.
A. Arevalo, J.J. Duong, and G.A. Brooks GA, unpublished
observations.).

Intermediary Metabolism

Muscle contractions and carbohydrate (CHO) nutrition
influence numerousmetabolic pathways; some pathways (e.g.,
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muscle glycolysis and glycogenolysis) are activated, while
others (e.g., fatty acid mobilization and oxidation) are inhib-
ited (4). Lactate is often a major factor in determining out-
comes of those pathways. Whether an individual is resting or
exercising, fasted or postprandial, the inevitable products of
glycolysis in muscles under fully aerobic conditions are lactate
anions and hydrogen ions (3, 14). These downstream products
of metabolism are exported from sites of production and are
exchanged within the muscular interstitium, released into the
venous effluent, and distributed to organs and tissues via sys-
temic circulation. Lactate and proton releases are indirectly
linked (11, 96), not equivalent, and have individual effects.

Previously termed a “lactormone” (2), lactate exists in milli-
molar (mM), not nano- or pico-molar concentrations as are
othermyokines (15). For example, arterial lactate concentration
rises from �0.5 mM at rest to greater than 20 mM in arterial
blood during hard exercise (97). Furthermore, lactate concen-
tration in the venous effluent belies intramuscular production
whereas arterial levels are less due to dilution as well as cardiac
and pulmonary parenchymametabolism (4, 98, 99). Via vascu-
lar conductance during exercise, lactate is an energy substrate
for the heart, red skeletal muscle, brain, and liver (72) (Fig. 1).

Redox Biology

As determined from the venous effluent of workingmuscles
(100), or muscle biopsies (101), the lactate/pyruvate ratio (L/P)

in resting muscle (nominally 10) can rise an order of magni-
tude or more during exercise (100, 101). The change in L/P, a
surrogate for the NADH/NADþ , reflects massive cytosolic re-
dox changes in both producer and conversely, in consumer
cells and tissues (Fig. 2). Lactate accumulation results in ROS
production via enzymatic and spontaneous reactions (32, 103).
Furthermore, glycolytic flux to lactate activates Sirtuins 1
(SIRT-1) and 3 (SIRT-3) via its effect on NADþ levels. With few
exceptions, these effects of lactate production on redox status
at sites of production (i.e., driver cells) and disposal (i.e., recip-
ient cells) (13), have not beenwidely recognized, e.g., (15).

Allosteric Binding and Inhibition of Lipolysis

Initially identified as an orphan G protein-coupled recep-
tor, GPR-81 has been renamed hydroxycarboxylic acid recep-
tor 1 (HCAR-1) (23, 24). HCAR-1 is a lactate receptor that
inhibits lipolysis via cAMP response element binding protein
(CREB) activation in adipose and other diverse tissues (Fig. 3).
Plasma free fatty acid concentrations fall during hard exercise
in part because of the inhibition of lipolysis following the rise
in circulating lactate (3). The effect of lactate signaling via
HCAR-1 on lipolysis is little appreciated (15).

Mitochondrial Energy Substrate Utilization

When activated muscle glycolysis and glycogenolysis
result in the production of lactate and pyruvate with the L/P

Figure 2. Illustration of the cellular redox exchange caused by lactate shuttling. At driver sites, lactate production results for reduction of pyruvate to lac-
tate. However, at recipient sites oxidation of lactate to pyruvate occurs. Pyruvate reduction to lactate and subsequent oxidation of lactate to pyruvate
result in millimolar changes in cellular NADH/NADþ ratios. Among other forms of lactate signaling described in text or Fig. 3, changes in cell redox
caused by lactate shuttling are most profound. Figure is a pictorial representation of data in Ref. 102, created with BioRender.com.
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being 10 at rest, and rising more than an order of magnitude
during moderate and greater intensity exercise (98, 101).
Oxidation of the monocarboxylates yields acetyl-CoA and
subsequently, via acetyl-CoA carboxylase, malonyl-CoA, a
ligand that inhibits carnitine palmitoyltranferase 1 (CPT-1),
and hence the uptake and oxidation of activated long-chain
fatty acids (104). More recently, allosteric binding of lactate
to cardiolipin has been associated with downregulation of
CPT-2, further limiting mitochondrial uptake and oxidation
of activated fatty acids (29). Thus, lactate is involved in
downregulation of carbon flux at both initial and terminal
ends of the pathway from fatty acid mobilization to oxida-
tion. Rephrased, lactate markedly suppresses fat metabolism
during exercise. However, during exercise recovery, lactate

clearance has permissive effects on fatty acid mobilization
and oxidation (56, 105, 106). Hence, exercise recovery is a
time of lipidmobilization and oxidation.

Mitochondrial Biogenesis

The mitochondrial reticulum, now characterized as the
“energy grid of the cell” (107) provides the necessary fuels
needed to handle various metabolic perturbations (108, 109).
It is well documented that endurance exercise training and
increased lactate turnover promote mitochondrial biogene-
sis (93, 110, 111) by increasing transcription and synthesis of
mitochondrial proteins and their insertion into the mito-
chondrial reticulum (112). The metabolic stress of exercise
raises lactate and AMP levels. The latter activates AMPK, an

Figure 3. Illustration of diverse forms of intracellular lactate shuttling. Lactate producer (Driver) cells and tissues (broad solid lines and arrow heads) con-
tributing to circulating lactate include contributions from the integument, gut, fast-glycolytic skeletal muscle, postprandial red skeletal muscle, and mixed
skeletal muscle at the onset of exercise. Lactate consumer (Recipient) sites disposing of lactate (dashed lines and lesser arrow heads) include mitochon-
drial lactate oxidation in red and mixed skeletal muscle, the heart and brain during steady rate exercise. Also included are (dashed lines and lesser arrow
heads) for lactate disposal via gluconeogenesis in the liver and kidneys, and for brain neurons (as part of the ANLS). Lactate-stimulated IL-6 release from
monocytes and working muscle is an example of lactate-stimulated cytokine release. Whether drivers or recipients, all cells experience redox signaling
effects. Signaling sites not involving carbon exchange or transformation include white adipose where lactate inhibits lipolysis via HCAR and CREB signal-
ing, the heart when peripheral muscle lactate accumulation stimulates the metaboreflex with afferent signaling to the medullary cardiovascular center
via Types III- and -IV sensory fibers which increases cardiac output, pulmonary ventilation via the carotid body olfactory receptor (Olfr78), the skeletal
muscle where stimulates mitochondrial biogenesis via peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), reactive oxygen
species (ROS) and sirtuin activation. Further, lactate has the following actions: In working muscle lactate dissociates oxymyoglobin and blood oxyhemo-
globin; in the brain lactate from the arterial circulation of glycolysis in astrocytes fuels neurons and participates in glutamatergic signaling as well as stim-
ulates neurogenesis in the hippocampus and brain-derived neurotropic factor (BDNF) secretion. Moreover, lactatemia and tissue lactate accumulation
have an epigenetic effect via lactylation of histones, and lactate has anti-inflammatory effects. Tissues involved starting top left and looking clockwise:
skeletal muscle fibers, gluconeogenic organs the liver and kidneys, white adipose tissue, working red skeletal muscle, monocytes, the lungs, integu-
ment, skeleton, gut wall and microbiome, the brain, all nucleated cells containing DNA, the heart, ova, and sperm. Created with BioRender.com. Solid
and dashed lines indicate flux directions, but not rates because typically lactate Ra = Rd in a steady state.
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energy sensingmolecule that supports maintenance of cellu-
lar energy homeostasis by numerous mechanisms including
stimulation of mitochondrial biogenesis (113). Lactate acts as
a major upstream signal of peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (PGC-1a), the master
regulator of mitochondrial biogenesis (32, 114). Taken to-
gether, lactate, AMPK, ROS, PGC-1a, SIRT-1, and SIRT-3 play
important roles in promoting mitochondrial biogenesis
(32, 35, 36).

Although it is likely that lactate is involved in mitochon-
drial biogenesis as described earlier, it is also equally, or per-
haps more likely that lactate is involved in the muscle
hypertrophy of resistance training (25). As reviewed recently
by Lawson et al., lactate works to stimulate muscle hypertro-
phy independent of and, in some ways, in concert with mus-
cle tension. Powerful muscle contractions put the tissue
under tension and simultaneously activate the glycolytic
pathway leading to lactate production. One signaling pathway
leading to muscle hypertrophy is lactate activation of insulin
like growth factor 1 (IGF-1), downstream of which are protein
kinase B (PKB) and mammalian target of rapamycin (mTOR).
In synergy, lactate andmuscle tension join inmTOR signaling
of the ribosomal protein p7056K1, and subsequently ribo-
somal protein S6 (rpS6) that leads to increasedmuscle protein
synthesis (MPS). A second mechanism by which lactate stim-
ulates muscle hypertrophy is via HCAR binding and activa-
tion of the mitogen-activated protein kinase (MAPK) pathway
that simulates satellite cell proliferation and growth. A third
lactate effect is to inhibit myostatin and increase activity of
folistatin that, again, stimulates satellite cell proliferation and
growth. As well, lactate inhibits histone deacetylases (HDAC)
leading to histone acetyl-transferase (HAT) activity increasing
histone acetylation and lactylation and increasing gene
expression that increaseMPS (25).

Finally, on the subject of lactate-stimulated muscle hyper-
trophy, lactate may stimulate testosterone secretion. Not sur-
prisingly, the rise in blood lactate following hard exercise
accompanies increases in testosterone independent of changes
in luteinizing hormone (LH). The apparent correlation may be
explained by studies on isolated Leydig cells in which lactate
stimulates testosterone production (37). Furthermore, dose-de-
pendent increases of cAMP and testosterone production has
been observed (38). Those results were interpreted to mean
that lactate has a stimulatory effect on testosterone secretion
via cAMP level modulation. Testosterone is considered an ana-
bolic hormone, playing a primary role in activating mTOR, a
major affecter of MPS.

To summarize this section, it is fair to reiterate that the
roles for lactate in regulation of gene and protein synthesis
regulation are becoming recognized (115).

Vascular, Cardiac, and Pulmonary Regulation

It is well established that endurance exercise training pro-
motes angiogenesis, a process mediated by growth factors
such as vascular endothelial growth factor (VEGF) (44).
Notably also, in wound healing and repair, lactate stimulates
the release of VEGF and other growth factors to promote
angiogenesis (45, 46). Furthermore, with regard to the cardi-
ovascular system, it is recognized that lactate is the major
fuel for the heart during exercise (71, 72, 116). Moreover, lac-
tate increases mRNA levels of PGC-1a and COx expression in

the heart (117). Perhaps most importantly, lactate accumula-
tion in activemuscle increases cardiac output by stimulating
muscle metaboreceptors with afferent input to central cardi-
ovascular regulatory centers via Types III and IV sensory
fibers as part of the metaboreflex (48, 118). As well, it has
been shown that lactate increases pulmonary ventilation
during exercise via the carotid body olfactory receptor
(Olfr78) in mice (47). Supporting data on Olfr78 functioning
in humans is lacking.

In addition to working with many other mechanisms and
factors increasing oxygen delivery by raising cardiac output,
and maybe pulmonary ventilation, lactate participates in
deoxygenation of hemoglobin at the tissue level (i.e., the Bohr
effect) in which both hydrogen ions and lactate anions serve
as competitive inhibitors of oxygen association with hemoglo-
bin and myoglobin. Originally described by Hochachka et al.
(119) as part of a unifying theory of hypoxia tolerance, and
expanded upon by Clanton et al. (49, 50), the effect of lactate
in promoting oxygen release from oxymyoglobin independent
of hydrogen ion has recently been confirmed (51).

And finally, on the subject of the role of lactate in cardio-
pulmonary and cardiovascular medicine, we respectfully
acknowledge existence of a large body of work on the anaero-
bic threshold (AT) (120, 121). That subject has been recently
reviewed (92), but it is fair to state that while the inflection in
circulating lactate during graded exercise was misinter-
preted to signal the onset of tissue hypoxia, at no time did
proponents of the AT suggest alternative signaling roles of
lactate such as those enumerated here.

Lactate and the Inflammasome: Is Lactate an Assailant,
Defender, or Innocent Bystander?

A growing body of literature can be interpreted to mean
that lactate is an upstream, physiological signal that,
depending on the stress, and tissue, can act in an anti- or
proinflammatory capacity, often mediated by downstream
cytokines and other mechanisms.

Delayed onset muscle soreness.
Historically, muscle soreness following hard exercise has
been attributed to lactate accumulation. However, lactate dis-
posal is rapid, typically clearing in minutes after exercise
while delayed onset muscle soreness (DOMS) peaks 24–48 h
after hard exercise, long after lactate is cleared (122). Contrary
to long-standing ideas in the etiology of DOMS, it may well
be that lactate is anti-, not proinflammatory. For example,
Hoque et al. (26) showed that lactate binding to HCAR-1
downregulates Toll-like receptor induction of the pyrin do-
main-containing protein 3 (NLRP3) inflammasome and pro-
duction of IL1-b, via Arrestin b 2 (ARR-b2). Examples of
HCAR-1 binding by lactate outside of exercise also supports
the response in the inflammasome and is the mechanism by
which lactate suppresses inflammation in patients with acute
organ injury such as acute pancreatitis (26, 27), hepatitis (26),
and sepsis (28). In addition, Chu et al. (123) found elevated lev-
els of H3K17 lactylation in patients with sepsis compared with
healthy volunteers, exhibiting this epigenetic modifier as an
important biomarker. Overall, changes in lactate concentra-
tion sufficient to bind lactate to HCAR-1 and downregulate
NLRP3 inflammasome are important examples of lactate
functioning as amyokine and exerkine.
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Chronic inflammation and autoimmunity.
Lactate is high (10 mM) in joints of patients with rheumatoid
arthritis (124). In those spaces there occurs a positive feedback
loop in which CD4þ T cells produce high levels of proinflam-
matory cytokine, IL-17, while the anti-inflammatory capacity
of CD8þ T cells is reduced, thus aggravating the inflammation
(125). Similarly, in a mouse model of allergic asthma there
occurs a proliferation of T cells with production of proinflam-
matory cytokines IL-5, IL-17, and IFN-c in airwaymucosa (126).
The proinflammatory response was inhibited by use of DCA an
inhibitor of pyruvate dehydrogenase kinase (PDK), leading to
pyruvate dehyrdrogenase (PDH) activation and redirecting gly-
colytic flux to oxidative disposal. However, experiments with
the LDH blocker oxamate were not conducted. Hence, the
apparent correlative findings implicating a role of lactate in
proinflammatory responses illustrate the need for mechanistic
explanations of why lactate concentration was elevated; was
production elevated, or clearance is reduced, and what are the
sequela by which lactate activates or suppresses inflammatory
responses? Foreshadowing what the results might be, for the
present it looks that while endogenously produced lactate
might elicit proinflammatory responses, exogenously supplied
lactate may have anti-inflammatory effects. Hence, a redox
controlmechanismmay be implicated.

Lactate Signaling, the Microbiome, and the Splanchnic
Bed

Functional roles for the gut microbiome and its role in
health and disease are currently of significant interest (127),
particularly because of relationships between microbiota and
the prevalence of chronic conditions such as insulin resistance
and metabolic syndrome (128). Lactate appears in the gut by
several mechanisms, including the consumption of probiotics
(e.g., fermented foods) containing lactate and prebiotic, fiber-
containing foods that promote fermentation and lactate pro-
duction. In the colon, Lactobacillus, Bifidobacterium, and
Firmicutes ferment fiber-containing carbohydrate foods to py-
ruvate and lactate. How lactate and other products of gut fer-
mentation have systemic effects is a topic of investigation.
However, one mechanism may be related to the presence
of sodium-mediated monocarboxylate (lactate) transport-
ers (sMCT) in intestinal mucosa (129, 130). Depending on
concentration gradients, sMCT expression in the gut can
either export lactate after a meal rich in fructose (131), glu-
cose (4), or pre- or probiotics, or take up lactate after hard
exercise that results in lactatemia.

For completeness on this section it is worth noting that
some bacterial species produce racemic (L and D) lactate
enantiomers, the D isoform being neurotoxic (132–134).
Regrettably, D-lactatemia is often difficult to detect because
many current technologies only detect the presence of the L

isoform.
One mechanism by which gut lactate may affect systemic

metabolism is through enteral signaling after eating, specifi-
cally by lactate stimulating sensory nerves associated with
mesenteric lymphatic fluid (MLF) (Gregory W. Aponte, per-
sonal communication). Using a rodent model investigators
in the Aponte laboratory and their collaborators have
observed that after eating, glucagon-like peptide-1 (GLP-1)
and glucose-dependent insulinotropic polypeptide (GIP) are

secreted and induce the release of substance P (SP) that
enhances insulin secretion (52). Like the actions of GLP-1
and GIP in their roles as incretins (i.e., substances that lower
blood glucose levels by stimulation of insulin secretion), lac-
tate also stimulates SP-containing afferent nerves associated
with MLF, thus contributing to the control of blood glucose
concentration after eating. With regard to the role of the
secretion of incretins it would not be surprising that lactate
signaling involves GPR132, which, like GPR81 (HCAR-1), sig-
nals through cAMP and CREB (53). As suggested previously,
lactate release from the bowel into the systemic circulation
via sMCTs with disposal elsewhere in the body indicates the
presence of a “gut-soma lactate shuttle” (3). This area of lac-
tate kinetics and signaling in promoting gut and systemic
health begs for further investigation.

The Intestinal Mucosa, Liver, and Hepatic-Portal
Circulation

Classically, it has been understood that the liver and kid-
neys are the splanchnic sites of lactate disposal via gluconeo-
genesis for maintenance of glycemia (60), or hepatic glycogen
synthesis (61). However, with realization of the “indirect path-
way of hepatic glycogen synthesis” (81), and the “postprandial
lactate shuttle” (4), a question now arises as to whether the
liver, or splanchnic bed as a whole, can contribute lactate to
the systemic circulation. Evidence for splanchnic lactate pro-
duction is sparse, but is supportive.

In rats instrumented with indwelling portal vein catheters,
a porto-peripheral lactate gradient was present after glucose
ingestion, reflecting the production of lactate in or by the
intestine (135). With regard to hepatic lactate production, lac-
tate release from the liver under glucagon stimulation was
not seen in dogs (136). These cross-species comparisons im-
plicate the upper gastrointestinal (GI) tract as a site of lactate
production.

Despite a dearth of direct (arterial-venous difference, a-v)
information on splanchnic lactate production in humans, in-
formation from the sports nutrition field may be helpful.
Using combinations of glucose, fructose, and lactate tracers
to evaluate the use of oral carbohydrate energy sources in
sports drinks investigators have observed carbon atoms from
an orally ingested fructose tracer to appear in the systemic
circulation as labeled lactate (131, 137). Hence, there is evi-
dence for postprandial splanchnic lactate release in humans
following the ingestion of one carbohydrate energy source,
fructose. A similar phenomenon following ingestion of the
disaccharide, sucrose (glucose þ fructose) is likely (3).

Hunger, Appetite, and Nutrition

In the context of overall factors affecting human health
and nutrition that are released in response to changes in
physiological status, perhaps no less important is the influ-
ence exerkines have on aspects of nutrition such as hunger
and appetite.

The biochemistry behind hunger regulation is a compli-
cated and active area of research. However, it is clear that
the arcuate nucleus of the hypothalamus is the site of hunger
regulation (138, 139). The gut hormone ghrelin is one of the
hormones that informs the hypothalamic centers of body
energy status (140, 141). The suppressive effect of hard
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exercise on appetite (142–144) is consistent with results that
lactatemia acts via suppression of ghrelin secretion (54, 140).
The ghrelin receptor [growth hormone secretagogue receptor
(GHSR-1a)] is a G-protein coupled receptor expressed
throughout both the stomach and GI tract. Recently, it was
found that lactate, short chain fatty acids, and other bacte-
rial excretions in the GI tract are able to attenuate ghrelin-
mediated signaling through the GHSR-1a (55). Hence, in
combination with lactate produced by gut microbiota, the
heightened levels of blood lactate during exercise can enter
the bowel via sMCTs and attenuate ghrelin receptor signal-
ing, thus revealing how hard exercise attenuates hunger.

Another mechanism by which the lactatemia of exercise
and illness may have a suppressive effect on appetite and
hunger, and therefore obesity (3), is that lactate readily
crosses the blood-brain barrier via monocarboxylate trans-
porters (MCTs) and directly affects hypothalamic function
(145). Initial results on brain tissues ex vivo are supported by
results of studies using magnetic resonance spectroscopy
(MRS) on healthy individuals (146). Anecdotally, hunger dis-
appeared in studies on 12-h fasted men given exogenous lac-
tate infusion (147). Also of note, athletes competing in 400–
1,500 m runs that result in extraordinary lactatemia are sel-
dom hungry immediately after hard training or competition.

And finally on the apparent linkages between lactatemia,
appetite suppression, and resistance to obesity, based on stud-
ies on several mammalian species, including humans, it
appears that lactate complexed with phenylalanine (Lac-Phe)
downregulates appetite and prevents obesity (148). As recently
reported, the production of Lac-Phe is catalyzed by the enzyme
carnosine dipeptidase 2 (CNDP2) that is apparently substrate
concentration driven and is expressed in macrophages, mono-
cytes, and other immune and epithelial cells in diverse organs.
The arcuate nucleus or other site of Lac-Phe action is yet to be
determined. However, at this point it is probably appropriate
to note that while the authors described sprint exercise blood
lactate levels in excess of 25 mM, the corresponding Lac-Phe
level approximated 200 nM, a 125-fold difference between lac-
tate and Lac-Phe concentrations (their Fig. 5, E and F). In this
purported signaling pathway, the driver molecule is apparent.
Lactate in high physiological conditions likely complexes with
(lactylates) many other biologically important substances
including amino acids, proteins, and nucleic acids, vide infra.

Lactate and the Brain

The brain demonstrates the capacity to oxidize lactate as
an energy source (149–152). As part of glutamatergic signal-
ing, astrocytes take up glucose from the blood and produce
lactate to be shuttled to neurons that utilize lactate as the
primary energy source in what is known as the “astrocyte-
neuron lactate shuttle” (ANLS) (153, 154). In neurons, lactate
signals by virtue of HCAR-1 binding (24), as well as redox sig-
naling (3, 13). Importantly, in healthy humans, the lactate-
mia of exercise results in increased cerebral lactate uptake
and improved executive function (39, 155). As well, using iso-
topic tracers, brain lactate uptake was undiminished in
patients with traumatic brain injury (TBI) compared with
healthy controls with over 90% of lactate uptake being oxi-
dized in both groups (151, 152). Those results led to the idea
of supporting recovery of TBI patients by exogenous L-lactate
infusion (19).

Physical exercise leads to the release of brain-derived neu-
rotropic factor (BDNF) (156) in the dentate gyrus of the hip-
pocampus resulting in neurogenesis. More recently, studies
of arterial-venous differences and cerebral blood flow meas-
urements show that hard exercise leading to lactatemia
results in cerebral lactate uptake followed by BDNF release
(39). Furthermore, researchers have shown higher exercise
intensity, eliciting higher blood lactate concentrations,
increased cognitive function, independent of sex or BDNF
polymorphisms (40). Importantly, utilizing exogenous lac-
tate infusion into resting subjects, Schiffer et al. (41) showed
the effect of lactate on brain BDNF release, thus demonstrat-
ing a mechanism dependent on lactate signaling as opposed
to some other factor such as irisin (15). Several genes
involved with neuronal synaptic plasticity, such as Arc,
Zif268, c-Fos, SRF, and BDNF are upregulated in the pres-
ence of lactate in primary neurons of mice. The upregulation
of these genes favors the development of long-term memory
(LTM), via the activation of the N-methyl-D-aspartate recep-
tor (NMDAR) and the Erk1/2 cascade, through an intracellu-
lar redox state change (42, 43). For BDNF, the expression is
regulated by the silent information regulator 1 (STIR1) de-
pendent induction of the PGC1a/FNDC5 pathway (42).

In studies of NMDAR-dependent neuronal plasticity, a ge-
nome-wide transcriptional analysis detected a group of
genes that are upregulated by exposure to lactate. Included
are genes involved in the mitogen-activated protein kinase
(MAPK) signaling pathway that plays a crucial role on cell
proliferation (157). Lactate signaling and activation of the
MAPK pathway is discussed later.

Lactate Signaling of TGF-b2

An obvious contradiction in the literature involves the
short- and long-term effects of exercise on lipid mobilization
and oxidative disposal. As reviewed earlier, moderate to hard
exercise results in lactatemia, crossover to CHO dependence
(158), and inhibition of lipolysis during hard exercise in
humans regardless of training state when HCAR-1 signaling is
known to be activated (159, 160). In contrast are data on a
mouse model indicating that lactate released during exercise
caused transforming growth factor-b2 (TGF-b2) to be secreted
from adipose tissue, which resulted in improved glucose toler-
ance (56). On the basis of their elegant work, the authors pro-
posed a lactate-TGF-b2 signaling axis. Seemingly, these
conflicts would be resolved by studies on humans showing
that TGF-b signaling is responsible for increased lipidmetabo-
lism following exercise when crossover to lipid oxidation
occurs (106, 158). If so, an importantmechanism by which lac-
tate affects the regulation of energy substrate partitioning
during and after exercise would be revealed. Glycolysis and
glycogenolysis during exercise produce lactate. Through
HCAR-1, lactate first inhibits lipidmobilization and oxidation.
Then, via TGF-b2 signaling, lactate sets into motion events
giving rise to increased metabolic flexibility during exercise
recovery after lactate is cleared (161).

The aforementioned paradox involving HCAR-1 and TGF-
b2 antagonism appears to be one of several paradoxes sur-
rounding lactatemia, exercise, and exercise training. Another
noteworthy paradox is that the proinflammatory cytokine IL-
6 released from working muscle may be the long sought
“muscle factor” by which hepatic glucose release is matched
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to metabolic demand during exercise (162). Another para-
doxical effect of lactate signaling stems from the multiple
effects attributed to TGF-b2. Although TGF-b2 is involved
in the purported lactate-TGF-b2 signaling axis (56), TGF-b2
is potentially injurious. For instance, disruption of the
blood brain barrier (BBB) following injury results in TGF-b
activation and stimulation of the Smad2 complex, which
in turn leads to protein degradation via inhibition of AKT/
mTOR pathway (163). TGF-b activation following disrup-
tion of the BBB illustrates that TGF-b may not always be a
beneficial exerkine.

The Rose Has Thorns: Lactate in Maladies Including the
Emperor Cancer, and in Mimicking Glucose

Static measurements of lactate concentration indicate lac-
tatemia is associated with severity of disease and poor prog-
nosis (164). But is lactate accumulation the result of poor
clearance, or is it an appropriate strain response to a stres-
sor? In illnesses and injuries, the question is seldom asked
and typically unanswered (28, 90). Nevertheless, inappropri-
ate lactate signaling may be implicated in conditions as
diverse as tumorigenesis and the regulation of insulin secre-
tion during exercise.

Lactate in cancer.
Warburg and Minami (91) first described the metabolic phe-
notype characteristic of cancer cells. They noted high glu-
cose uptake and excessive lactate formation in cancer cells
even under fully oxygenated conditions; hence adoption of
the term “Warburg Effect” (165), sometimes also inappropri-
ately described as “aerobic glycolysis’ even though oxygen is
neither a substrate for, nor a product of glycolysis. Still,
while the high glucose uptake and lactate release phenotype
remains a hallmark of cancer, there is no consensus on the
meaning of the Warburg Effect. Initially, the excessive lac-
tate formation of cancer cells and tumors led Warburg to
propose that cancer was an injury to the cellular respiratory
apparatus. However, cancer cells have mitochondria that are
capable of respiring with lactate (166, 167). In contrast, many
similarities between cancer and healthy exercise phenotypes
have been described (168). Consequently, it was proposed
that augmented lactate production (lactagenesis) initiated
by gene mutations is the reason and purpose of the Warburg
Effect and that dysregulated lactate metabolism and signal-
ing are key elements in carcinogenesis (58). Support for the
hypothesis of dysregulated lactate metabolism in carcino-
genesis (3, 9, 168) is found in the results of recent experi-
ments showing that lactate secreted from cancer cells into
the stroma surrounding tumors downregulates p62 tran-
scription in stromal cells through a mechanism involving re-
dox change (i.e., the NADþ /NADH ratio, vide supra), which
impairs poly(ADP-ribose)-polymerase 1 (PARP-1) activity.
Subsequently, PARP-1 inhibition prevents the poly(ADP-
ribosyl)ation of AP-1 transcription factors, c-FOS and c-JUN,
which is an obligate step for p62 downregulation (57).
Furthermore, it was shown that PARP inhibitors mimic lac-
tate in the reduction of stromal p62 levels, as well as the sub-
sequent stromal activation both in vitro and in vivo. These

findings may give rise to a drug effective at inhibiting can-
cer-associated fibroblasts.

Lactate shuttling in tumors has led to serious attempts to
repress tumorigenesis by blocking the release of lactate from
highly glycolytic, glucose-consuming cells and those that
respire lactate (169–173). Monocarboxylate transporters (MCTs)
are bi-directional symporters facilitating movement of protons
and lactate anions down concentration gradients (174).
AlthoughMCTs are ubiquitous and scaffolded in plasmamem-
branes of most cells, including cancer cells, erythrocytes, and
cells in the heart, muscle, and brain (175–177), blocking MCTs
has been considered a possible pharmaceutical target in cancer
research. However, the lack of a drug to target cancer cells has
been a problem (178). As the quest to find cancer-specific
MCT blockers has been unsuccessful as of yet, others are
looking for alternative approaches to blocking lactate shut-
tling in tumors and cancer, such as by limiting the expression
of CD147, the scaffold for MCT insertion into cell membranes
(vide supra) (179–182), knocking down lactate dehydrogenase
(LDH) expression (183), by preventing the reduction of stromal
cell p62 levels (57), or by interfering with lactate signaling by
silencing HCAR-1 (9). Yet again, the ubiquitous presence of
proteins engendering lactate signaling requires that pharma-
cological blockers target tumors, not the host.

Lactate, lactate dehydrogenase and the glycolytic
phenotype in cancer.
Originally believed to reside exclusively in the cytoplasm,
LDH is now widely accepted as part of the mitochondrial
reticulum and is annotated in the MitoCarta (184) and
MitoMiner (185).2 Furthermore, using immunocoprecipita-
tion and colocalization technologies mitochondrial LDH can
be found in and visualized in muscle histological sections
(186) as well as in cultured myocytes (187). Most recently,
excised bands identifying LDH in isolated muscle mitochon-
drial preparations subjected to proteomic analysis confirm
that the bands are LDH. In the cytosol, the equilibrium con-
stant (Keq �1,000) pushes the conversion of pyruvate to lac-
tate. Necessarily then, for lactate to become the major fuel
for cell respiration, mitochondrial LDH is necessary for lac-
tate oxidation to pyruvate (188–191). Therefore, targeting cy-
tosolic LDH in cancer cells could potentially decrease several
classes of cancer proliferation rates, including pancreatic
tumors, renal cell carcinoma, bladder cancer, and nonsmall-
cell lung cancer (NSCLC) (192). LDH gene expression can be
upregulated epigenetically (methylation, acetylation, lacty-
lation), transcriptionally, and post-translationally. It was
recently demonstrated that incubating H1299 (nonsmall cell
lung cancer) cells with lactate resulted in downregulation of
enzymes supporting glycolytic flux (hexo- and pyruvate ki-
nases), while enzymes of oxidative metabolism (isocitrate and
succinate dehydrogenases) were upregulated (193). Because
the authors also observed increased levels of histone lactyla-
tion, there may be a connection between this epigenetic mod-
ification and changes in the entire metabolic pathway. The
myriad of modifications to LDH can promote a range of ma-
lignant phenotypes via cell proliferation, survival, metastasis,
oxidative stress protection, and angiogenesis induction,

2Readers are referred to https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/publications/mitocarta/
mitocarta-in-0 (MitoCarta) and http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do (MitoMiner).
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thereby supporting persistent growth (194). As a biomarker,
serum levels of LDH can serve as an index in cancer diagnosis
(192). Likewise, a noteworthy procedure revealed that surgical
removal of tumors resulted in decreased levels of serum LDH
(195). With such a diverse set of factors that can influence can-
cer cell survival, decreasing LDH activity via silencing may
serve as a therapeutic treatment. For example, the silencing
LDH in transgenic NSCLC mouse models has shown to
decrease tumorigenesis and disease curtailment after 6 wk of
gene knockout (196). Furthermore, the use of potassium oxa-
mate, an LDH inhibitor, has been shown to also decrease lac-
tate production and may be a promising anticancer agent in
human gastric cancer cells (197) and HeLa cells in tissue cul-
ture (198). Moreover, clinical trials using gossypol, a cotton
plant-derived phenol, is known to compete with NADH and
possesses anticancer effects in vivo. When administered
orally, adrenal tumor size was reduced (199) and in patients
with metastatic breast cancer, serum tumor markers were
decreased (200).

In closing this section, it is appropriate to comment on the
seemingly contrasting roles of lactate in encouraging a
healthy phenotype while also being involved in carcinogene-
sis. To reiterate, endurance training and cancer phenotypes
have a lot in common, including the presence of high glyco-
lytic rates, resulting in lactate production and accumulation
(9). Indeed, high rates of glucose consumption and lactate
production are hallmarks of cancer, the so called Warburg
Effect (201). Accordingly, it is a concern that lactatemia
resulting from high-intensity interval training (HIIT) could
induce transformation of cancer-prone cells. However,
results of epidemiological studies support the idea that regu-
lar physical activity reduces the risk of many common can-
cers, including cancer of the breast, colon, bladder, uterus,
esophagus, kidney, lung, and stomach. It is noteworthy that
the organs protected from cancer by physical exercise have
apparently little to do with exercise itself, suggesting the
presence of a protective cytokine, myokine, adipokine, or
metabolite during exercise (202). Given this observation, a
proposal is that intermittent lactate release and circulation
during physical activity improves lactate clearance and pre-
conditions cells, tissues, and organs by reducing the chance
that lactagenesis promotes carcinogenesis (9).

Recently, Feng et al. (59) may have provided amechanistic
explanation of the “exercise prevents/lactate promotes can-
cer” dichotomy. Using a mouse model with transplanted
MC38 tumors the investigators found that subcutaneous
administration of sodium lactate resulted in CD8þ T cell-
dependent tumor growth inhibition. Single cell transcrip-
tomics analysis revealed increased proportion of stem-like
TCF-1-expressing CD8þ T cells among intratumoral CD3þ
cells. Their results indicated that exogenous lactate inhibits
histone deacetylase activity, which resulted in increased
acetylation at H3K27 of the TCF7 super enhancer locus, ulti-
mately increasing TCF7 gene expression. As well, the investi-
gators showed that CD8þ T cells pretreated with lactate
efficiently inhibited tumor growth when transferred to tu-
mor-laden mice. Consequently, the investigators interpreted
their results to mean that sodium lactate could provide tu-
mor immunity. Interestingly, glucose did not have a similar
effect. This is important because in tumors the low pH envi-
ronment retards protective effects of CD8þ T cells.

As exciting as the results appear, it is clearly early-stages
in terms of proposing lactate infusion as cancer immune
therapy. One consideration is that physical exercise raises
both lactate anion and hydrogen ion concentrations. In con-
trast, sodium lactate administration results in a mild alkalo-
sis (203). Hence, it could be that the alkalosis of sodium or
other, nonacidic lactate compounds could mitigate the
effects of low-pH environments, thus facilitating the protec-
tive effects of CD8þ T cells. Using lactate anions to mitigate
the effects of acidosis and provide nutritional support in
exercise (18) and sepsis (204) is not new. Hopefully, in the
near future new technologies such as fluorescent indicators
of lactate (FiLa) (205) will advance our understanding of the
role of lactate in health and disease.

The role of lactate in cancer biology is a huge field worthy
of a volume of reviews. Suffice it to reassert that lactate upre-
gulates a glycolytic cell phenotype while also suppressing an
oxidative phenotype. Lactate also supports angiogenesis
(58), cell migration, metastasis, and self-sufficient metabo-
lism, all of which encourage progression to cancer (3, 9).

Lactate and other maladies.
Studies on cultured osteoclasts indicate that glycolysis leads
to lactate production and that lactate is the activemetabolite
mediating bone resorption (62). As such, investigators are
exploring ways to block glycolysis and lactate production in
osteoclasts as a therapeutic strategy in diseases character-
ized by osteoclast-mediated bone loss such as ovariectomy,
postmenopausal osteoporosis, and rheumatoid arthritis.

Lactate signaling and sensing in mimicking glucose
resulting in hyperinsulinemia and hypoglycemia.
Lactate-glucose interactions are complex, but usually glu-
cose, not lactate controls insulin secretion. However, prob-
lems can arise if lactate interferes with glucose-insulin
signaling. Classically, as recognized in Cori cycle (60) and
the lactate shuttle (1, 70), glucose and glycogen are the pre-
cursors to lactate formation (2, 206), and lactate is the major
gluconeogenic precursor (60, 207–210). However, whereas
blood glucose levels provide important feedback in the regu-
lation of insulin and counter-regulatory hormones, lactate
normally plays no direct role in the regulation of insulin
secretion and by that mechanism lactate is excluded from
the regulatory processes.

In the normal pancreatic islet, MCT gene expression is
silenced, and hence protein synthesis and insertion into b-cell
plasma membranes is prevented (211, 212). The silencing of
MCT expression in pancreatic b-cells keeps extracellular lac-
tate from affecting intracellular redox and thereby interfering
with glucose sensing and insulin secretion (213). Silencing of
MCT1 in pancreatic b-cells is evolutionary proof that lactate
overrides glucose in regulating energy substrate partitioning
in general, and insulin secretion in particular when the domi-
nant role of lactate must be suppressed. In this regard, it is
noteworthy that persons with failed silencing of MCT1 expres-
sion and resulting MCT insertion into plasma membranes of
pancreatic b-cells become hypoglycemic during hard exercise.
This is because the presence of plasma membrane MCT1
allows lactate to gain entry into pancreatic b-cells that affects
cell redox, just as if blood glucose was elevated. Thus, the sig-
nal is misinterpreted as indicating systemic hyperglycemia
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(that does not exist), thereby stimulating pancreatic insulin
secretion, and increased glucose disposal causing hypoglyce-
mia (214).

HIF and/or LIF?

The transcription factor hypoxia inducible factor-1 (HIF-1) is
recognized for being themaster regulator of oxygen homeosta-
sis (215). Knowledge of its role in exercise was inspired by
results from studies of cell biology, including cancer biology,
rodent and human studies (216). Literature on the subject HIF-
1 expression shows a tight relationship with glycolysis such
that one is tempted to consider thinking of the transcription
factor also as a “lactate induced factor” (LIF), particularly if
feedback control of HIF-1 is considered. This association has
been previously mentioned (3) and described more fully (217),
but remains unclear (218, 219). For the present, the hypoxia in-
ducible/lactate induced factor (HIF/LIF) appears to have both
direct signaling and indirect physiological effects resulting in
a more glycolytic, and less oxidative muscle phenotype.
Exceptions may include VEGF formation (46) and upregula-
tion of MCT expression (220). Consequently, from the stand-
point of using regular physical exercise tomaintain or improve
health over the lifespan (15, 218, 221), at present the role of HIF
in adaptation to exercise is not completely understood.

HIF-1 is a heterodimeric molecule with pairs of two subu-
nits: HIF-1a (regulatable subunits) and HIF-1b (constitutively
expressed), dimers with a purported evolutionary role in high
altitude adaptation (222). HIF-1b is also termed the aryl hydro-
carbon receptor nuclear translocator (ARNT). After synthesis,
HIF-1a is hydroxylated on proline residues by prolyl hydroxy-
lase 1–3 (PHD1-3). This allows for ubiquitination by the von
Hippel–Lindau ubiquitin ligase E3 (VHL E3), leading to degra-
dation of the protein complex by the 26s proteasome. During
hypoxia (low oxygen concentration), PHD1-3 is inhibited and
HIF-1a is not degraded and remains active (223). In cancer cells
a similar effect of lactate in activating HIF-1 was first observed
(224–226).

Consistent with the concept that HIF promotes a glyco-
lytic phenotype, constitutively in mice HIF-1 is higher in
fast than slow twitch muscles and is increased following
high-intensity exercise training (227). HIF-1 increases gene
and protein expression of pyruvate dehydrogenase kinase
(PDHK), thus phosphorylating and inactivating the PDH
complex which is responsible for catalyzing the decarboxyl-
ation of pyruvate to acetyl-coenzyme A, the first step in the
mitochondrial catabolism of pyruvate (228). As a conse-
quence, by increasing expression of PDHKHIF acts to down-
regulate oxidative metabolism, decrease lactate clearance,
and promote lactate accumulation, which are not desirable
effects for health, healthy aging, or exercise endurance.

Data on HIF expression and signaling by oxygen and high
lactate obtained on studies using cell culture techniques and
rodent models need to be understood by comparison with
results of studies on humans. Studies on normoxic humans
show that the intramuscular partial pressure of oxygen (PO2)
remains above the critical mitochondrial PO2 during exercise
eliciting maximal oxygen uptake (V_ O2max) (229). Moreover, in
a clever, one leg knee extensor training study Lundby et al.
demonstrated a short-term (6-h) effect of exercise in HIF-1a
and -2a expression that was attenuated by exercise training.

Because exercise testing and training studies were conducted
under normoxia and neither muscle PO2 or lactate levels were
measured, the authors concluded the changes in HIF expres-
sion were exercise, but not hypoxia-induced (230). More
recently to assess the effects of high-intensity interval training
(HIIT) on muscle gene expression, Norrbom et al. used cut-
ting-edge Transcription-Factor Motif-Enrichment Analyses
on leg muscle from 11 men before and after nine bouts of
HIIT, (3 times/wk) (3 wk) (219). They found that almost 2,000
genes across 84 pathways were differentially expressed in
response to a single HIIT session. Most prominent among
those was upregulation of HIF-1a expression. Overall, the
transcriptional response to acute exercise was strikingly simi-
lar at 3 wk, 83% (n = 1,650) of the genes regulated after the 1st
compared with the ninth bout. Again, neither muscle PO2 nor
lactate levels were measured (219). However, as seen previ-
ously (230), the responses post-training were 30% attenuated
compared with the first bout. The attenuation differed sub-
stantially between pathways and was especially pronounced
for glycolysis and cellular adhesion compared with MAPK
pathway genes such as that coding for VEGF.

At present, it is appropriate to suspect that the HIF low ox-
ygen/high lactate response is part of the transient response
to exercise training, particularly with regard to the glycolytic
aspects of muscle metabolism. However, HIF-related effects
observed in cell systems and inmammalian models are to be
considered along with results from a plethora of studies
showing that endurance training increases cardiovascular
capacity in women and men (231–233), increases muscle per-
fusion (234), stimulates mitochondrial biogenesis (32, 93,
94), increases the expression ofmonocarboxylate transporter
isoform 1 (MCT1) and subtly shifts the pattern of LDH A/B
expression (218, 220, 235), and increases lactate clearance
(76, 236). Hence, it appears that some, but not all of the out-
comes of HIF-1 signaling occur in humans during exercise or
as a consequence of exercise training (218, 219).

Does the Future Stem from the Beginning?

As articulated at the outset, to date literature on lactate
signaling and sensing fall largely within the domains of exer-
cise and nutrient delivery metabolism. However, as investi-
gators turn the page and delve into new areas of lactate
biology we will better understand how perturbations in lac-
tate turnover and accumulation, sensing and signaling could
have beneficial or other, sometimes detrimental, consequen-
ces. For instance, Rinaudo and coworkers (237) showed that
the hyperoxic environment of in vitro fertilization can result
in perturbations in the L/P and ROS generation that are asso-
ciated with insulin resistance and loss ofmetabolic flexibility
in offspring (238). In concert, it has been shown that pyru-
vate is indispensable for preimplantation development and
zygotic gene activation (ZGA) beyond 2-cell (2C) stage of de-
velopment, following which either pyruvate or lactate can
facilitate continued cell development and ZGA (239–241). In
contrast, neither glucose nor glutamine was able to advance
development and ZGA beyond 2C (17). Of particular interest
is histone lactylation, not only for the effects of gene expres-
sion in adults, but also in early stages of development (242).

Beyond the possibility that lactate could influence nuclear
gene expression by lactylation, another emerging possibility is
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that lactate could influence themitochondrial genome. Themi-
tochondrial reticulum contains multiple copies of a distinct cir-
cular genome containing 13 protein-encoding genes. However,
short open reading frames (sORFs) encoded in the mitochon-
drial genome have been recently identified. Importantly, such
sORFs produce bioactive peptides, collectively referred to as
mitochondrial-derived peptides (MDPs), which have broad
physiological functions (243, 244). MOTS-c (mitochondrial ORF
of the 12S rRNA type-c) is an MDP that is purported to promote
“metabolic homeostasis” in response to stress. Consequently,
MOTS-c has been referred to a “mitokine.” At present regula-
tion of MOTS-c expression appears to be under dual control, in
part, via AMPK (245), and in part by ROS (244) that determine
the adaptive nuclear gene expression following nuclear translo-
cation (246).

In a recent study examining the role of exercise on amelio-
rating the effects of aging on muscle metabolic homeostasis,
Reynolds et al. (247) gave MOTS-c to mice and cultured myo-
cytes and determined the MOTS-c response in exercise
humans. Balloon plots derived from RNA-seq data of MOTS-c
treated skeletal muscle from old mice showed activation of
AMPK. In addition, C2C12 myoblasts showed common tran-
scription factors, including those influencing the response to
oxidative stress, protein localization to the nucleus, and mito-
chondrial organization. Despite the operating hypothesis that
MOTS-c is involved in preservation of cellular metabolic ho-
meostasis in response to stress, the authors failed to measure
lactate in cultured myocytes, exercised mice or humans. The
myoblast response to lactate includes AMPK activation and
ROS generation (32). Hence, could it be that an exerkine (lac-
tate) gives rise to a mitokine (MOTS-c)? This potential role of
lactate signaling in promoting “metabolic homeostasis” war-
rants further investigation.

CONCLUSIONS

The role of lactate in normal and pathological conditions
has come a long way from its traditional view as a metabolic
waste product and cause of muscle fatigue (1–6). Lactate works
in diverse ways to affect physiology and metabolism; some-
times the action is direct such as in the lactate receptor HCAR-
1, or other times in concert with other signals such as via with
the carotid body olfactory receptor (Olfr78) in the control of
breathing. Certainly, lactate is not the only myokine of exer-
kine (15), but lactate has important signaling functions to be
considered. In terms of energy substrate partitioning lactate is
at the fulcrum of metabolic regulation, at low levels either per-
missive of lipolysis and mitochondrial fatty acid oxidation, or
at high levels inhibiting lipolysis and mitochondrial fatty acid
uptake and oxidation (13). Lactate is formed under fully aerobic
conditions during postprandial rest and exercise (4, 10, 14). As
revealed by the presence of the postprandial lactate shuttle (4),
lactate is the metabolic intermediate involved in dietary carbo-
hydrate distribution and disposal. Mechanisms by which lac-
tate operates to control energy substrate partitioning include
mass action (3), allosteric binding (23, 24, 248), ROS production
(32), canonical intracellular signaling (249), central nervous
system signaling via substrate supply (153) and protein lactyla-
tion (148), and gene expression via histone lactylation
(30, 250). With all due respect to classical and contemporary
discoveries in metabolic regulation, it is reasonable to assert

that “lactate is the major myokine and exerkine” because of its
abundance, dynamic range of concentration change, effect on
cell redox and multiple independent and coordinated regula-
tory effects on major metabolic pathways in diverse tissues
(115, 251). Lactate fuels the spiral mitochondrial reticulum at
the base of the sperm head. The event of conception is fol-
lowed by the influence of lactate on embryonic development
(17, 242), and subsequently over the lifespan (238).
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