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EPIGRAPH

Not all those who wander are lost.

J.R.R Tolkein

You write with ease to show your breeding,
But easy writing’s curst hard reading.

Richard Brinsley Sheridan

Writing, at its best, is a lonely life. Organizations for writers palliate the writer’s loneliness, but I
doubt if they improve his writing. He grows in public stature as he sheds his loneliness and often
his work deteriorates. For he does his work alone and if he is a good enough writer he must face
eternity, or the lack of it, each day.

Ernest Hemingway
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The recent advances in Deep Learning (DL) have changed the landscape of Machine

Learning significantly. However, over the last few years, we observe that to enable complex

applications with DL, an increasing amount of compute resources are required for deployment.

This has several undesirable effects ranging from increased deployment costs and energy con-

sumption to harmful environmental effects. Recently, as the community continues to explore

alternate paradigms for machine learning, Hyperdimensional Computing (HDC) has gained

popularity, due to its low-footprint, low energy consumption, and ease of acceleration on parallel

hardware. However, prior work has shown that HDC is not sufficiently accurate on a few complex

applications. This dissertation explores the synergy between DL and HDC for improving the
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compute efficiency of learning while keeping state-of-the-art accuracy. We propose novel hybrid

models that leverage the salient properties of HDC and DL to address each methods drawbacks.

We first introduce FHDnn, a hybrid architecture for federated learning that leverages HDC

to improve compute efficiency and robustness to unreliable network conditions in IoT Networks.

Our architecture uses a frozen pre-trained CNN for feature extraction with a HDC classifier

that is trained in a federated manner. By training and transmitting only the HDC classifier, we

avoid having to transmit large DNN models and consequently mitigate the robustness issues.

Our experiments show that our proposed methods improve communication efficiency by 66×

and are 6× faster than federated learning with DNNs. We then extend this work to analyze the

convergence properties of FHDnn and show that FHDnn provides convergence guarantees for

federated learning.

Next, we propose systematic approaches for designing hybrid architectures for different

modalities of data. We leverage the binding operator in HDC to capture relationships between

data and generate HDC representations that capture these relationships in a single vector. We

then use these informative data representations as input to DNN models. This facilitates ease

of learning as the model no longer needs to learn relationships in data from scratch. We first

consider text data for multi-label classification and demonstrate on large-scale real-world datasets

that our proposed architecture is 231× smaller and 16× faster compared to SoA models.

Finally, we propose a novel architecture for image classification that leverages the

symbolic properties of HDC to structure the problem hierarchically to reduce learning complexity.

We construct a label hierarchy by grouping together similar images into groups and generate

label representations using HDC, that captures these group relationships. This allows us to break

down the classification into 2 stages: detecting the group the image belongs to and identifying the

specific label within the group. We show that this improves efficiency by up to 200× compared

to SoA models with minimal loss in accuracy.
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Chapter 1

Introduction

The field of Machine Learning (ML) has experienced a transformative shift with the

advent and rapid advancement of Deep Learning (DL). DL has enabled breakthroughs across

a plethora of applications, ranging from natural language processing and computer vision to

autonomous systems and healthcare. These advancements have been driven by the availability of

large datasets, sophisticated neural network architectures, and powerful computational resources.

However, the proliferation of DL comes at a significant cost: the ever-increasing demand for

computational power. As DL models grow in complexity and size, they require substantial

compute resources for both training and deployment, leading to several pressing issues.

First, the heightened computational demands translate to increased deployment costs,

which can be prohibitive for many organizations. Second, the energy consumption associated

with running these models is substantial [187], raising concerns about the environmental impact.

The carbon footprint of large-scale DL models is non-trivial, contributing to the global climate

crisis [157]. Therefore, there is a compelling need to explore alternative paradigms and methods

that can mitigate these drawbacks while retaining the benefits of DL.

1.1 Hyperdimensional Computing: An Emerging Paradigm

In the quest for more efficient computational paradigms, Hyperdimensional Computing

(HDC) has emerged as a promising candidate. HDC is inspired by the properties of high-
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dimensional spaces and leverages the principles of vector symbolic architectures [95]. It offers

several advantageous features, such as low computational footprint, reduced energy consumption,

and inherent parallelism, making it suitable for deployment on parallel hardware [73]. These

characteristics position HDC as a viable alternative for scenarios where computational efficiency

is paramount.

1.1.1 Hyperdimensional Computing Background

Hyperdimensional computing (HDC) uses high-dimensional vectors called hypervec-

tors [160, 55, 92] to represent data. The basic idea behind HDC is to represent structured or

symbolic data using hypervectors and then provide a set of mathematical operations to manip-

ulate these vectors like symbolic objects. These operations are associative, commutative, and

distributive[123], they operate element-wise, allowing them to be performed in parallel, making

HDC an attractive approach for implementing hardware-accelerated, energy-efficient computing.

Hypervectors are typically represented as binary or bipolar vectors in a high-dimensional

space. Mathematically, a hypervector is represented by a vector X ∈ {+1,−1}D where D is the

dimensionality of the vector space. The dimensionality of the hypervector is often much larger

than the number of dimensions required to represent the data, enabling the vector to encode

many concepts or attributes in a single representation. For instance, a hypervector representing

an object might contain attributes such as color, shape, texture, and position.

HDC Operations

HDC provides three fundamental operations: bundling, binding, and similarity check.

These operations are implemented differently in various HDC models, and we will briefly

explain their usage under the Multiply-Add-Permute (MAP) model. In the MAP framework,

hypervectors are bipolar and can be represented as X = {+1,−1}D.

Bundling: The bundling operation is used to represent multiple symbolic entities using a

single hypervector. This operation is denoted by the ⊕ symbol and can be expressed as:
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bundle(X1,X2, ...,Xn) = X1⊕X2⊕ ...⊕Xn

where X1,X2, ...,Xn are hypervectors representing the symbolic entities. The result of the

bundling operation is a new hypervector that represents the combination of all the input entities.

For MAP the bundling operation is a simple element-wise sum of the hypervectors. Under

the similarity check metric defined below, the resultant hypervector is similar to its constituent

hypervectors.

Binding The binding operation is used to associate one entity with another and is denoted

by the ⊗ symbol. The binding operation is defined as the element-wise multiplication of two

hypervectors and can be expressed as:

bind(X ,Y ) = X⊙Y

where X and Y are the hypervectors representing the two entities to be associated. The

result of the binding operation is a new hypervector that encodes the relationship between the

two input entities. By the similarity metric, the resultant hypervector is orthogonal to the input

hypervectors.

Similarity check Finally, the similarity check operation is used to determine the degree

of similarity between two hypervectors. The similarity check operation is defined as the dot

product between two hypervectors and can be expressed as:

similarity(X ,Y ) = X ·Y

where X and Y are the two hypervectors to be compared. The result of the similarity check

operation is a scalar value that represents the degree of similarity between the two hypervectors,

with higher values indicating greater similarity.

Together, these operations provide a powerful and flexible approach to representing and
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manipulating symbolic data in a distributed and parallel fashion, enabling the development of

novel machine learning algorithms and cognitive models.

HDC Learning

The HDC learning process involves the encoding of data and its inherent relationships

within hypervectors. These vectors are then subjected to a set of mathematical operations,

enabling the extraction of useful patterns and relationships within the data. Learning in HDC

involves three steps: encoding the data, learning on the encoded data and inference.

Encoding: The first step in learning with HDC involves encoding the input data into

high-dimensional hypervectors. The goal of this step is to create a distributed representation of

the input data that can capture its semantic properties.

Given an input vector X ∈Rd , we generate a set of random projection vectors R1, . . . ,RK ∈

RD, where D >> d. The projection of X onto the kth random projection vector is given by the

dot product X ·Rk. The resulting set of K projections can be represented as a hypervector

H ∈ {+1,−1}K , where Hi = sign(X ·Ri). Random projection encoding in HDC has been shown

to preserve Euclidean distance in the original vector space, mapping it to angular distance in the

high-dimensional space[194]. This similarity-preserving nature makes it suitable for encoding

data by retaining complex relationships between them.

Training: In HDC, training typically involves two steps: one-shot training followed by

iterative retraining. One-shot training involves representing each class with a centroid hypervector

that is the average of hypervectors representing the training examples for that class. Retraining

involves updating the centroid hypervectors using a simple perceptron-style algorithm [177] in

an iterative process that runs until convergence. During retraining, the centroid hypervectors are

updated when a sample is mispredicted, with updates applied to both the correct label and the

mispredicted label.

Inference: The centroid vectors can be used to classify new data by measuring the

similarity of the new data to each centroid vector. The class with the highest similarity measure
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is chosen as the predicted class for the new data point. Hamming distance similarity is used for

binary hypervectors, while cosine similarity can be used for any other type of data.

Fig. 1.1a shows an overview of HDC encoding and b shows the overview of training and

inference.
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Figure 1.1. Hyperdimensional learning overview

1.1.2 Synergy between HDC and Deep Learning

Despite its advantages, HDC faces limitations, particularly in handling complex appli-

cations. Prior research has shown that while HDC performs well in simple tasks, its efficacy

diminishes with increasing application complexity. To address these challenges, this dissertation

focuses on combining HDC with DL to harness the strengths of both paradigms. By integrating

the high-dimensional, symbolic nature of HDC with the powerful feature extraction capabilities

of DL, we aim to develop more efficient and effective machine learning models.

One critical issue in neural networks, known as the binding problem, involves the

difficulty in representing and manipulating relationships between different components of data

(e.g., associating features to form a coherent object) [204]. Traditional neural networks often

struggle with this problem, particularly in tasks requiring the integration of disparate pieces of

information [60]. HDC, with its vector symbolic architectures, offers a potential solution by

providing a mechanism for binding different features into high-dimensional vectors that can

be manipulated symbolically. This allows for more robust and interpretable representations of
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complex data relationships.

Existing works that attempt to combine HDC with CNNs have made strides in addressing

some of these limitations. For instance, Liao and Yuan [126] introduced a method that replaces

convolution operations with circular convolution to reduce model size and inference time by

leveraging Holographic Reduced Representations (HRR). Similarly, Danihelka et al. [35]

proposed embedding HRRs in Long Short-Term Memory (LSTM) networks by incorporating

complex weights and activations. However, these approaches do not fully leverage the symbolic

properties or employ the symbolic manipulations offered by the HDC framework.

In contrast, our work utilizes the symbolic properties of HDC, exploiting its ability to

represent and manipulate symbolic entities. Our methods harness the powerful capabilities of

DL to learn mappings between high-dimensional representations of data, thereby enabling DL to

leverage the symbolic relationships embedded in these representations.

1.2 Related Works

Deep learning has revolutionized various domains, including IoT networks, multi-label

text classification, and image classification. However, the high computational cost of deep

learning models poses significant challenges in resource-constrained environments [145, 38]. In

IoT networks, deep learning has been applied for tasks such as anomaly detection, predictive

maintenance, and resource management [155, 223]. The limited computational resources of edge

devices and the need for real-time processing make the deployment of deep learning models

challenging [215]. Federated learning has emerged as a promising approach to address privacy

and communication overhead issues in IoT networks [121, 88], but the computational efficiency

of federated learning remains a concern, as the training process still requires significant resources

on the edge devices [139, 19]. Similarly, in multi-label text classification, a fundamental task in

natural language processing with applications in document categorization, sentiment analysis, and

information retrieval [120, 218], deep learning models such as Convolutional Neural Networks
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(CNNs) and Recurrent Neural Networks (RNNs) have achieved state-of-the-art performance

[102, 130]. However, the large number of parameters and extensive computational resources

required by these models make them challenging to deploy in resource-constrained environments

[9, 175]. The high dimensionality of text data and the need to capture complex relationships

between labels contribute to the computational complexity of these models [16]. In the domain of

image classification, deep learning models, particularly Convolutional Neural Networks (CNNs),

have dominated the field [110, 127].

While CNNs and similar models have achieved impressive performance on benchmark

datasets, their computational complexity and memory requirements have grown significantly

[3, 66]. The high-dimensional nature of image data and the need for deep architectures to capture

hierarchical features contribute to the computational burden [216]. Efforts to develop efficient

CNN architectures, such as MobileNets and ShuffleNets, aim to reduce the computational cost

while maintaining competitive performance [69, 220]. However, these models still require

significant resources compared to traditional machine learning approaches [31, 36]. The high

computational cost of deep learning models in IoT networks, multi-label text classification, and

image classification necessitates the development of more efficient approaches. Hybrid archi-

tectures that leverage the strengths of HDC and deep learning have the potential to address this

challenge, enabling the deployment of powerful models in resource-constrained environments.

1.3 Research Objective and Contributions

Motivated by the computational challenges faced by deep learning models in IoT net-

works, multi-label text classification, and image classification, as discussed in the related works

section, this dissertation aims to improve the compute efficiency of deep learning by exploring

the synergy between HDC and DL. The primary objective is to develop novel hybrid models

that leverage the complementary strengths of HDC and DL, thereby overcoming their individual

limitations. To address the computational efficiency challenges in IoT networks, where the

7



limited resources of edge devices and the need for real-time processing hinder the deployment of

deep learning models [215], we introduce FHDnn, a hybrid architecture designed for federated

learning scenarios. FHDnn leverages the computational efficiency and robustness of HDC to im-

prove performance under unreliable network conditions, which are common in IoT environments

[155, 223]. Our experimental results demonstrate that FHDnn is up to 22× faster and up to 6×

more efficient than existing models, making it a promising solution for resource-constrained IoT

networks. We analyze the convergence properties of FHDnn and provide theoretical guarantees

for its performance in federated learning, ensuring that the proposed architecture not only im-

proves efficiency but also maintains reliability and robustness, addressing the concerns raised in

[139, 19].

In the context of multi-label text classification, where the high dimensionality of text data

and the need to capture complex relationships between labels contribute to the computational

complexity of deep learning models [16], we propose systematic approaches for designing hybrid

architectures tailored to this data modality. Our architecture demonstrates a significant reduction

in size (231× smaller) and an increase in speed (16× faster) compared to state-of-the-art

models, validated on large-scale real-world datasets. This contribution addresses the challenges

of deploying deep learning models for multi-label text classification in resource-constrained

environments [9, 175].

Finally, we introduce a novel architecture for image classification that leverages the

symbolic properties of HDC to structure the problem hierarchically, reducing learning complexity

and enhancing efficiency by up to 200×while maintaining competitive performance with state-of-

the-art models. This contribution tackles the computational complexity and memory requirements

of deep learning models in image classification [3, 66], which have grown significantly due to the

high-dimensional nature of image data and the need for deep architectures to capture hierarchical

features [216]. By leveraging the strengths of HDC, our architecture provides a more efficient

alternative to existing approaches, such as MobileNets and ShuffleNets [69, 220], which still

require significant resources compared to traditional machine learning approaches [31, 36].

8



These contributions represent a significant advancement in the field of machine learning,

paving the way for more efficient and viable deep learning models, particularly in resource-

constrained environments such as IoT applications. By addressing the computational challenges

identified in the related works section of this thesis, this work enables the deployment of powerful

machine learning models in a wider range of scenarios, where computational efficiency is of

paramount importance.
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Chapter 2

FHDnn: Communication Efficient and
Robust Learning for AIoT Networks

2.1 Introduction

A group of distributed edge devices communicating with each other and sharing data

is loosely termed the Internet of Things (IoT). These edge devices are privy to a rich source

of data which when leveraged can enable various smart applications such as smart cities [131]

[5] and AI-enabled farming [152]. However, often the private and sensitive nature of the data

coupled with high transmission costs prevent the central aggregation of data to the cloud. Recent

advances in edge computing enabled the idea of distributed computing for on device processing.

One such distributed learning paradigm is federated learning (FL) [138]. FL learns a machine

learning model on data distributed across various devices without having to aggregate them

centrally. FL works by training models locally on the device with data visible to each device and

then averages these models from all participating devices.

Transmission costs, unreliable networks, and limited on device computer power pose

Figure 2.1. FHDnn against CNNs for federated learning
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significant challenges for FL. Previous works [22, 20] have explored model compression methods

and dropout techniques to reduce the communication cost by decreasing the size of the model

updates. However, these methods do not factor in the non-ideality of IoT networks, assuming

reliable lossless communication and subsequently are neither robust to network errors nor provide

guarantees for convergence. Also, IoT often uses Low Power Wide Area Networks (LP-WAN)

to conserve energy of battery operated edge devicesm but it has limited bandwidth, high packet

loss and no sophisticated coding scheme making FL vulnerable to errors.

We present FHDnn a novel synergetic federated learning framework that combines 2

different learning paradigms of Deep Learning and Hyperdimensional Computing (HDC) [93].

Deep learning excels at learning a complex hierarchy of features and boasts high accuracy

however at the cost of compute power often requiring GPUs to train. HDC on the other hand

features lightweight training using simple operations on distributed low precision representations

that are inherently robust to errors. However, they don’t enjoy the same accuracy as deep learning

due to their inability to learn features automatically. FHDnn combines the complimentary salient

features of both learning methodologies to enable a lightweight highly robust FL framework that

addresses each of the above challenges. In this work, we limit ourselves to the problem of image

classification, a common application in IoT.

FHDnn uses a pre-trained Convolutional Neural Network (CNN) as a feature extractor,

the output of which are encoded into hypervectors that are then used for training a federated

HD learner. Specifically we utilize a CNN trained using SimCLR [27] a contrastive learning

framework which learns informative representations of images in a self-supervised manner that

generalizes well to several datasets. FHDnn avoids the transmission of the CNN and instead

trains only the HD classifier in a federated manner. This simple strategy accelerates learning,

reduces transmission cost and utilizes the inherent robustness of HDC to tackle network errors

as shown in Figure 3.1. In this work, we detail the architecture of FHDnn and systematically

compare the performance of FHDnn with CNN under various settings. We summarize our key

contributions below:
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• We propose FHDnn, a novel FL strategy that is robust to lossy network transmission, is

incredibly lightweight to train, and converges faster.

• We empirically show through numerous experiments that FHDnn is robust to lossy network

conditions. Specifically we evaluate FHDnn under three different unreliable network

settings: packet loss, noise injection, and bit errors.

• We show that our approach reduces the communication costs by 66×, and reduces the local

computations cost on the clients by up to 6× while being robust to lossy transmissions.

2.2 Background and Motivation

2.2.1 IoT networks

IoT networks often involve a large number of battery operated edge devices operating

on a Low Power Wide Area Networks (LPWAN). LPWAN networks have limited bandwidth,

narrow spectrum, and often lack any advanced modulation schemes due to compute cost and

power constraints. Further, the network performance is worse due to the presence of packet loss

which is highly prevalent in these networks [158, 196]. A study [136] shows that retransmission

is non ideal as it further increases energy consumption and reduces network performance due

to limited capacity. However, [71] shows that tolerating a packet loss rate of 20% allows for

increased energy efficiency and network capacity.

2.2.2 Challenges in FL

Communication Efficiency: FL involves multiple rounds of communication typically until a

target test accuracy is achieved. Each round, the participating clients send their models to the

server. Complex models, like CNNs, contain millions of parameters resulting in large updates.

FL typically takes several rounds to converge to the optimum which further exacerbates the

communication cost.
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Figure 2.2. FHDnn Model Architecture

Lossy Transmission: As detailed above, IoT networks are often unreliable which adds noise to

the model updates causing convergence issues. CNNs in particular are not robust to noise on

weights as shown in [6]. Failure to converge results in poor accuracy while longer convergence

times results in increased communication costs.

Resource constraints: Battery operated edge devices typical to IoT networks have limited power

and computation budgets. CNN based FL methods require edge devices to perform on-device

backpropogation during each round of training which is computationally expensive incurring

high resource usage.

2.3 Proposed Method: FHDnn

2.3.1 Model Architecture

Figure 3.5 shows the model architecture of FHDnn. In the following subsections we

detail the 2 components of FHDnn: i) a pre-trained CNN as a feature extractor, ii) a federated

HD learner, followed by the training methodology.

2.3.2 Feature extractor

While in theory any standard CNN can be used as a feature extractor, due to its salient

characteristics we use a pre-trained SimCLR Resnet model as our feature extractor. SimCLR

[27] is a contrastive learning framework which learns representations of images in a self-

supervised manner by maximizing the similarity between latent space representations of different
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augmentations of a single image. This class agnostic framework trained on a large image dataset

allows for transfer learning over multiple datasets, (as evaluated in [27]) making it ideal for a

generic feature extractor. Standard CNNs learn representations that are fine-tuned to optimize

the classification performance of the dense classifier at the end of the network. Since SimCLR

focuses on learning general representations as opposed to classification oriented representations,

it is a better choice of feature extractor. Note that We choose the ResNet architecture due to

availability of pre-trained models. One could use other models such as MobileNet, which are

more ideal for edge devices with resource constraints.

2.3.3 HD learner

HDC is a computing paradigm based on biologically plausible models of data represen-

tation [92]. HD works by encoding data into low precision vectors of very large dimensions,

referred to as hyper vectors in literature. HD classifiers operate on these vectors using binding

and bundling operations which are simple and highly parallelizable.

Here we are concerned with encoding the output of a neural network. We use an encoding

method proposed in [79] based on the notion of random projection. This approach embeds the

data into a high-dimensional Euclidean space under a random linear map before quantizing

them. More formally, given a point x ∈X , the features z⊂ Zn are extracted using the feature

extractor f : X → Z where f is a pre-trained neural network. The HD embedding is constructed

as φ(z) = sign(Φz) under the encoding function φ : Z→H the rows of which Φ ∈ Rd×n are

generated by randomly sampling directions from the n-dimensional unit sphere. sign(Φz) is the

element-wise sign function returning +1 if Φz≥ 0 and −1 otherwise.

2.3.4 Federated Training

Figure 3.6 summarizes the federated training process for FHDnn.
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Figure 2.3. FHDnn Federated Training

Client Local Training:

Each client initially starts with a feature extractor f and an untrained HD learner. Once

we get the encoded hypervectors using the method described above, we create class prototypes

by bundling together hypervectors of the corresponding class using ck = ∑i hk
i . Inference

is done by computing the cosine similarity metric between a given encoded data point with

each of the prototypes, returning the class which has maximum similarity. After this one-shot

learning process we iteratively refine the class prototypes by subtracting the hypervectors from

the mispredicted class prototype and adding it to the correct prototype as shown in Figure

3.5. We define the complete HD model C as the concatenation of class hypervectors, i.e.,

C = [cT
1 ,c

T
2 , ...,c

T
n ].

Federated Bundling:

In the federated bundling framework, each client maintains its own HD model and

participates to build a global model in a distributed fashion. This is achieved via an iterative

training procedure for which we describe one round (say t-th) of the algorithm below.

[noitemsep, topsep=0pt, leftmargin=*]Broadcast: The central server broadcasts the latest

global HD model, Ct , to all clients. Local updates: Each participating client n ∈ [N] sets

its model Cn
t = Ct and then performs training for E epochs using local data as described in

2.3.4 Aggregation: The central server receives and aggregates the local models to produce
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a new global model:

Ct+1 =
N

∑
n=1

Cn
t+1. (2.1)

After aggregation, the server moves on to the next round, t +1. This procedure is carried out

until sufficient convergence is achieved.

2.3.5 FL Over Unreliable Channels With FHDnn

Federated learning is often carried out over wireless channels that attenuate the trans-

mitted signal and introduce noise followed by packet losses. The centralized server is assumed

to be able to broadcast the models reliably, error-free at arbitrary rates, which is a common

assumption in many recent works. For uplink communications, the channel capacity per client is

more constrained and unreliable due to shared wireless medium, even at very low rates.

The bandwidth allocated per client decreases with the number of clients, so does the

capacity. Accordingly, the volume of data that can be conveyed reliably, i.e, throughput, scales

by 1/N. This implies that the data rates will be small, resulting in slow training speed unless

transmission power is increased, which is undesirable considering energy consumption concerns.

Instead of limiting the rate to achieve error-free communication, we admit errors for the

channel output at the server as perturbations in the client models can be tolerated to an extent by

FHDnn. If the model is robust to errors, then there is no need for perfectly reliable transmissions.

Thus, we analyze FHDnn assuming that the clients communicate over unreliable channels and

the transmitted models are corrupted.

We consider three error models at different layers of the network stack. All models are

applicable in practice depending on the underlying protocol. We first explore the properties of

HD computing that makes the learning robust under the considered error models, then introduce

different techniques for further improvement.
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Noisy Aggregation.

Conventional systems use source and channel coding to ensure reliability which are often

unavailable in LPWAN networks. For noisy aggregation, as an alternative to the conventional

pipeline, we assume uncoded transmission. This scheme bypasses the transformation of the

model to a sequence of bits, which then need to be mapped again to complex-valued channel

inputs. Instead, the real model parameter values are directly mapped to the complex-valued

samples transmitted over the channel. Leveraging the properties of uncoded transmission, we can

treat the channel as formulated in Equation (3.28), where the additive noise is directly applied to

model parameters. The channel output received by the server for client k at round t is given by

C̃k
t = Ck

t +nk
t (2.2)

where nk
t ∼N (0, σ2

t,k) is the d×n-dimensional additive noise. Then, the signal-to-noise ratio

(SNR) is:

SNRt,k =
E∥Ck

t ∥2

E∥nk
t ∥2

=
Pt,k

σ2
t,k

(2.3)

An immediate result of federated bundling is the improvement in the SNR for the global

model. When the class hypervectors from different clients are bundled at the server, the signal

power scales up quadratically with the number of clients N, whereas the noise power scales

linearly. Assuming that the noise for each client is independent, we have the following relation:

SNRt =
E∥∑

N
k=1 Ck

t ∥
E∥∑

N
k=1 nk

t ∥
≈

N2Pt,k

Nσ2
t,k

= N×SNRt,k (2.4)

Notice that the effect of noise is suppressed by N times due to bundling. This claim can also be

made for the FedAvg framework over CNNs. However, even though the noise reduction factor is

the same, the impact of the small noise might be amplified by large activations of CNN layers. In

FHDnn, we do not have such a problem as the inference and training operations are purely linear.
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Figure 2.4. Noise robustness of hyperdimensional encodings

One other difference of FHDnn from CNNs is its information dispersal property. HD encoding

produces hypervectors which have holographic representations, meaning that the information

content is spread over all the dimensions of the high-dimensional space. Since the noise in each

dimension can also be assumed to be independent, we can leverage the information spread to

further eliminate noise.

Consider the random projection encoding described in Section 2.3.3. Let the encoding

matrix Φ ∈ Rd×n expressed in terms of its d row vectors, i.e., Φ = [Φ1,Φ2, ...,Φd]
T . Then, the

hypervector formed by encoding information x ∈X can be written as h = [ΦT
1 x,ΦT

2 x, ...,ΦT
d x]T ,

where x = [x1,x2, ...,xn]
T . As implied by this expression, the information is dispersed over

the hypervectors uniformly. Now consider additive noise over the same hypervector such that

h+n = [ΦT
1 x+n1,Φ

T
2 x+n2, ...,Φ

T
d x+nd]

T . We can reconstruct the encoded information from

the noisy hypervector h̃ = h+n as follows:

x≈
[1

d

d

∑
i=1

Φi,1h̃i,
1
d

d

∑
i=1

Φi,2h̃i, ...,
1
d

d

∑
i=1

Φi,nh̃i

]
(2.5)

where h̃i = ΦT
i x+ ni are the elements of the noisy hypervector. The noise variance is then

reduced by the averaging operation, similar to the case in Equation (3.30). Therefore, in HD

computing, the noise is not only suppressed by bundling accross models from different clients,

but also by averaging over the dimensions within the same hypervector. We demonstrate this

over an example where we encode a sample from the MNIST dataset, add Gaussian noise,

then reconstruct it. Figure 3.7 shows the original image, noisy image in the sample space, and

reconstructed image for which the noise was added in the hyperdimensional space.
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Bit Errors.

We use bit error rate (BER) in conventional coded transmission as a figure of merit for

system robustness. It is a measure on how accurately the receiver is able to decode transmitted

data. The errors are bit flips in the received digital symbols, and are simply evaluated by the

difference (usually Hamming distance) between the input bitstream of channel encoder and

the output bitstream of channel decoder. Let ĉ be the binary coded model parameters that are

communicated to the server. For the bit error model, we treat the channel as a binary symmetric

channel (BSC), which independently flips each bit in ĉ with probability pe (e.g., 0→ 1). The

received bitstream output at the server for client k at round t is then as follows:

˜̂C
k
t = Ĉk

t ⊕ ek
t (2.6)

where ek
t is the binary error vector and ⊕ denotes modulo 2 addition. Given a specific vector v of

Hamming weight wt(v), the probability that ek
t = v is given by

P(ek
t = v) = pwt(v)

e (1− pe)
m−wt(v) (2.7)

The bit error probability, pe, is a function of both the modulation scheme and the channel

coding technique (assuming lossless source coding). To conclude the transmission, the corrupted

bitstream in (3.32) is finally reconstructed to a real-valued model, i.e., ˜̂C
k
t → C̃k

t .

Bit errors can have a detrimental effect on the training accuracy, especially for CNNs.

At worst case, a single bit error in one client in one round can fail the whole training. We give

an example of how much difference a single bit error can make for the standard 32 bit floating

point CNN weights. In floating point notation, a number consists of three parts: a sign bit, an

exponent, and a fractional value. In IEEE 754 floating point representation, the sign bit is the

most significant bit, bits 31 to 24 hold the exponent value, and the remaining bits contain the

fractional value. The exponent bits represent a power of two ranging from -127 to 128. The
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fractional bits store a value between 1 and 2, which is multiplied by 2exp to give the decimal

value. Our example shows that one bit error in the exponent can change the weight value from

0.15625 to 5.31×1037.

The bit errors are contagious because a parameter from one client gets aggregated

to the global model, then communicated back to all clients. Furthermore, errors propagate

through all communication rounds because local training or aggregation does not completely

change the parameter value, but only apply small decrements. For instance, assume a federated

learning scenario with 100 clients and one bit error in a client’s model as in the above example.

After 10 rounds of training, the CNN weight for the global model will be on the order of

∼ 5.31×1037

10010 = 5.31×1017, still completely failing the whole model. Consider ResNet-50, which

has 20 million parameters, so training 100 clients even over a channel with pe = 10−9 BER

results in two errors per round on average, making model failure inevitable.

A similar problem exists with HD model parameters, but to a lesser extent because the

class prototypes use integer representations. Particularly, errors in the most significant bits

(MSB) of integer representation leads to higher accuracy drop. We propose a quantizer solution

to prevent this. Inspired by the classical quantization methods in communication systems, we

leverage scaling up and scaling down operations at the transmitter and the receiver respectively.

This can be implemented by the automatic gain control (AGC) module in the wireless circuits.

For a class hypervector ck, k ∈ {1, ...,K}, the quantizer output Q(ck) can be obtained via the

following steps:

[noitemsep, topsep=0pt, leftmargin=*]Scale Up: Each dimension in the class hypervector,

i.e. ck,i, is amplified with a scaling factor denoted quantization gain G. We adjust

the gain such that the dimension with the largest absolute value attains the maximum

value attainable by the integer representation. Thus, G = 2B−1−1
max(ck)

where B is the bitwidth.

Rounding: The scaled up values are truncated to only retain their integer part. Scale

Down: The receiver output is obtained by scaling down with the same factor G.
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This way, bit errors are applied to the scaled up values. Intuitively, we limit the impact

of the bit error on the models. Remember, from Section 2.3.4, that prediction is realized by a

normalized dot-product between the encoded query and class hypervectors. Therefore, the ratio

between the original parameter and the received (corrupted) parameter determines the impact of

the error on the dot-product. Without our quantizer, this ratio can be very large whereas after

scaling up then later down, it is diminished.

Packet Loss.

At the physical layer of the network stack, errors are observed in the form of additive

noise or bit flips directly on the transmitted data. On the other hand, at the network and transport

layers, packet losses are introduced. The combination of network and protocol specifications

allows us to describe the error characteristics, with which the data transmission process has to

cope.

The form of allowed errors, either bit errors or packet losses, are decided by the error

control mechanism. For the previous error model, we assumed that the bit errors are admitted to

propagate through the transport hierarchy. This assumption is valid for a family of protocols used

in error resilient applications that can cope with such bit errors. In some protocols, the reaction of

the system to any number of bit errors is to drop the corrupted packets. These protocols employ

a cyclic redundancy check (CRC) or a checksum that allows the detection of bit errors. In such a

case, the communication could assume bit-error free, but packet lossy link. We use the packet

error rate (PER) metric as a performance measure, whose expectation is denoted packet error

probability pp. For a packet length of Np bits, this probability can be expressed as:

pp = 1− (1− pe)
Np (2.8)

The common solution for dealing with packet losses and guarantee successful delivery

is to use a reliable transport layer communication protocol, e.g., transmission control protocol
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Figure 2.5. Impact of partial information on similarity check (left) and classification accuracy
(right)

(TCP), where various mechanisms including acknowledgment messages, retransmissions, and

time-outs are employed. To detect and recover from transmission failures, these mechanisms

incur considerable communication overhead. Therefore, for our setup we adopt user datagram

protocol (UDP), another widely used transport layer protocol. UDP is unreliable and cannot

guarantee packet delivery, but is low-latency and has much less overhead compared to TCP.

HD computing’s information dispersal and holographic representation properties are

also beneficial for packet losses. Another direct result of these concepts is obtaining partial

information on data from any part of the encoded information. The intuition is that any portion

of holographic coded information represents a blurred image of the entire data. Then, each

transmitted symbol –packets in our case– contains an encoded image of the entire model.

We demonstrate the property of obtaining partial information as an example using a

speech recognition dataset [1]. In Figure 3.11(a), after training the model, we increasingly

remove the dimensions of a certain class hypervector in a random fashion. Then we perform a

similarity check to figure out what portion of the original dot-product value is retrieved. The same

figure shows that the amount of information retained scales linearly with number of remaining

dimensions. Figure 3.11(b) further clarifies our observation. We compare the dot-product

values across all classes and find the class hypervector with the highest similarity. Only the

relative dot-product values are important for classification. So, it is enough to have the highest

dot-product value for the correct class, which holds true with ∼ 90% accuracy even when 80%

of the hypervector dimensions are removed.
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2.3.6 Convergence Performance of FHDnn

It is commonly preferred to have smooth, strongly-convex, differentiable models to

maintain a provable, analytically tractable convergence analysis for federated learning. Such

models also provide faster convergence properties than the others. The learning computations

in FHDnn are linear, demand low-complexity operations, and thus are favourable for resource-

constrained, low-power client devices. However, in many learning tasks, linear federated learning

models perform sub-optimally compared to their counterpart, CNN-based approaches. FHDnn

diverges from traditional linear methods in this respect. It enjoys both the superior performance

properties of non-linear models and low computational complexity of linear models. This is

a direct result of HD computing, which embeds data into a high-dimensional space where the

geometry is such that simple learning methods are effective. The linearity in HD training benefits

convergence, and at the same time the performance does not degrade due to the properties of

non-linear hyperdimensional embeddings.

FHDnn, when posed as a distributed optimization solution, has the following properties:

L-smoothness, strong convexity, bounded variance, and uniformly bounded gradient. It was

shown previously that the methods which satisfy these conditions converge to the global optimum

solution of the learning task at a rate of O( 1
T ) [122]. Such claims cannot be made for CNNs due

to non-convexity and non-linearity.

2.4 Experimental Analysis

We demonstrate through systematic experiments the performance of FHDnn under

various settings. We briefly discuss the datasets and setup for evaluating FHDnn before presenting

results for FHDnn for various data distributions for reliable communication. We also compare

the resource usage of FHDnn against CNNs. Finally we show evaluation for various unreliable

network scenarios.

23



Figure 2.6. Accuracy and Number of communication rounds for various hyperparameters

2.4.1 Dataset and Platforms

We evaluate FHDnn on 3 different real world datasets: MNIST[37], FashionMNIST[210],

CIFAR10 [109]. For performance evaluation we test FHDnn on Raspberry Pi Model 3b and

NVIDIA Jetson mobile GPU. We use python and PyTorch for implementing all models. For

MNIST, we use a simple network consisting of 2 convolution layers and 2 fully connected layers.

For CIFAR10 and FashionMNIST we use the ResNet-18 model [65].

2.4.2 Accuracy and Compute

We first tune the hyperparameters for both FHDnn and CNNs and analyze their impact

by experimenting with E,B,C where E is the number of local epochs, B the local batch size and

C the fraction of clients participating in each round. For all experiments we use 100 clients and

100 rounds of communication in order to keep our experiments tractable. We select the best

parameters for ResNet and use the same for FHDnn for all experiments in order to allow for a

direct comparison.
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Figure 2.7. Accuracy of FHDnn and ResNet on different datasets

Figure 2.8. Accuracy comparison of FHDnn with ResNet under unreliable network conditions

Accuracy.

Figure 3.12 compares the accuracy of FHDnn with ResNet on 3 different datasets for

100 rounds of communication. We observe that for the same number of rounds, FHDnn achieves

almost the same accuracy as ResNet and converges faster. Figure 3.13 shows the smoothed

conditional mean across all different hyperparameters for both the models for iid and non-iid

distributions. FHDnn reaches an accuracy of 82% in less than 25 rounds of communication

whereas ResNet takes 75 rounds for both iid and non-iid data distributions. Moreover the

hyperparameters do not have a big influence for FHDnn as seen by the narrow spread (gray

region) in Figure 3.13. Note that the local batch size B doesn’t impact FHDnn due to the nature

of its training methodology. This allows us to use higher batch sizes up to the constraints of the

device, allowing for faster processing whereas B affects the convergence of CNNs.
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Table 2.1. Performance on Edge Devices

Device Training Time (Sec) Energy (J)
FHDnn ResNet FHDnn ResNet

Raspberry Pi 858.72 1328.04 4418.4 6742.8
Nvidia Jetson 15.96 90.55 96.17 497.572

Compute Resources.

The most computationally expensive operation on the client is training. CNN training

involves backpropagation for each round which is very expensive. HD on the other hand is

very lightweight as featured in Table 3.4 which quantitatively compares the computation time

of FHDnn and ResNet on 2 edge devices for client training. FHDnn is 35% faster and energy

efficient than ResNet on RPi and 80% faster and energy efficient on the Jetson mobile GPU.

2.4.3 Unreliable Communication

In this section we analyze the performance of FHDnn and ResNet under unreliable

network conditions as described in Section 2.3.5. Figure 3.14 shows the performance of models

under each of these network conditions. In order to maintain a direct comparison between

CNN and FHDnn we use the same hyperparameters for both models and all experiments. We

use E = 2,C = 0.2,B = 10 and evaluate the performance on the CIFAR10 dataset. From

our experiments we observe that even with fewer clients C = 0.1 and for other datasets, the

performance of FHDnn is better than ResNet. Due to page constraints we present only the results

for the settings mentioned earlier.

Packet Loss.

When the packet loss rate is extremely small, below 1e−2, ResNet has very minimal

accuracy loss. However for more realistic packet loss rates such as 20% the CNN model fails to

converge. A 20% packet loss rate implies 20% of the weights are zero. Moreover, this loss is

accumulative as the models are averaged during each round of communication thereby giving the

CNNs no chance of recovery. In contrast, FHDnn is highly robust to packet loss with almost no
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loss in accuracy. For FHDnn, since the data is distributed uniformly across the entire hypervector,

a small amount of missing data is tolerable. However, since CNNs have a more structured

representation of data with interconnections between neurons, the loss of weights affects the

performance of subsequent layers which is detrimental to its performance.

Gaussian Noise.

We experiment with different Signal-to-Noise Ratios (SNR) to simulate noisy links. Even

for lower SNRs like 25dB the accuracy of ResNet drops by 8%. However it’s more likely

that IoT networks operating on low power wireless networks will incur higher SNRs. For such

scenarios FHDnn outperforms ResNet as the latter fails to perform better than random. The

accuracy of FHDnn only reduces by 3% which is negligible compared to ResNet.

Bit Errors.

Figure 3.14 shows that CNNs achieve the equivalent of random accuracy even for small

bit errors. Since the weights of CNNs are floating point, a single bit flip can significantly change

the value of the weights. This compounded with federated averaging hinders convergence. We

observe FHDnn incurs an accuracy loss as well, achieving 72% for iid and 69% for non-iid.

FHDnn uses an integer representation which is again susceptible to large changes from bit errors.

However, our scaling method described in Section 3.5.2 assuages the error to some extent.

2.4.4 Communication Efficiency

So far we have benchmarked the accuracy of FHDnn for various network conditions. In

this section we demonstrate the communication efficiency of FHDnn compared to ResNet.

We compare the amount of data transmitted for federated learning to reach a target

accuracy of 80%. We calculate the amount of data transmitted by one client using the formula

datatransmitted = nrounds×updatesize, where nrounds is the number of rounds required for conver-

gence by each model. The update size for ResNet with 11M parameters is 22MB while that of

FHDnn is 1MB making it 22× smaller. From Section 3.6.2 we know that FHDnn converges 3×
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faster than ResNet bringing its total communication cost to 25MB. ResNet on the other hand

uses up 1.65GB of data to reach the target accuracy.

In Figure 3.13, we illustrated that FHDnn can converge to the optimal accuracy in much

fewer communication rounds. However, this improvement is even more in terms of the actual

clock time of training. We assume that federated learning takes places over LTE networks where

SNR is 5dB for the wireless channel. Each client occupies 1 LTE frame of 5MHz bandwidth and

duration 10ms in a time division duplexing manner. For error-free communication, the traditional

FL system using ResNet can support up to 1.6 Mbits/sec data rate, whereas we admit errors and

communicate at a rate of 5.0 Mbits/sec. Under this setting and for the same experiment as in

Section 4.2, FHDnn converges in 1.1 hours for CIFAR IID and 3.3 hours for CIFAR Non-IID on

average. On the other hand, ResNet converges in 374.3 hours for both CIFAR IID and CIFAR

Non-IID on average.

FHDnn demonstrates capabilities such as quick convergence and robustness to unreliable

network conditions. However, questions arise regarding the guarantees of convergence across

data or applications. In the next chapter, we analyze this hybrid framework from a formal

perspective.
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Chapter 3

Federated Hyperdimensional Computing

3.1 Introduction

Recent years have witnessed an unprecedented growth of data sensing and collection by

the Internet of Things (IoT). It is estimated that the number of interconnected IoT devices will

reach 40 billion by 2025, generating more than 79 zettabytes (ZB) of data [72]. Empowered

by this massive data, emerging Deep Learning (DL) methods enable many applications in

a broad range of areas including computer vision, natural languag processing, and speech

processing [115].

In the traditional cloud-centric DL approach, data collected by remote clients, e.g.

smartphones, is gathered centrally at a computationally powerful server or data center, where

the learning model is trained. Often, the clients may not be willing to share data with the server

due to privacy concerns. Moreover, communicating massive datasets can result in a substantial

burden on the limited network resources between the clients and the server. This motivated the

development of distributed algorithms to allow machine learning at edge networks without data

sharing. Federated learning (FL), proposed in [140], has recently drawn significant attention as

an alternative to centralized learning. FL exploits the increased computational capabilities of

modern edge devices to train a model on the clients’ side while keeping their collected data local.

In FL, each client performs model training based on its local dataset and shares the model with a

central server. The models from all participating clients are then aggregated to a global model.
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Learning in FL is a long-term process consisting of many progressive rounds of alternating

computation and communication. Therefore, two of the main challenges associated with FL

are the computation and communication bottlenecks [89]. With FL, the computation, i.e. the

training process, is pushed to edge devices. However, state-of-the-art ML algorithms, including

deep neural networks (DNN), require a large amount of computing power and memory resources

to provide better service quality. The DNN models have complicated model architectures with

millions of parameters and require backpropagation, resulting in prohibitively long training

times. Besides computation, the communication load of DNN based FL suffers from the need to

repeatedly convey massive model parameters between the server and large number of clients

over wireless networks [124].

Another challenge arises when FL is carried out over wireless networks. The wireless

channels are unreliable in nature, introducing noise, fading, and interference to the transmitted

signals. Therefore, the communication in wireless FL is prone to transmission errors. The

common solution for this problem is using multiple-access technologies [56] (e.g., TDMA,

OFDMA) to prevent interference and error-correcting codes to overcome noise. If there still

exists any errors, then a reliable transport layer protocol [111] (e.g.. TCP) is adopted, where

acknowledgment, retransmission, and time-out mechanisms are employed to detect and recover

from transmission failures. This reliability comes with a price; achieving error-free communica-

tion requires a lot of wireless resources, increases energy consumption, limits communication

rates, and hence decreases the training speed and convergence of FL. Otherwise, in an unreliable

scenario, the transmission errors will impact the quality and correctness of the FL updates, which,

in turn, will affect the accuracy of FL, as well as its convergence.

This paper proposes a novel technique that enables efficient, robust, and accurate feder-

ated learning using brain-inspired models in high-dimensional space. Instead of conventional

machine learning algorithms, we exploit Hyperdimensional Computing (HDC) to perform

lightweight learning with simple operations on distributed low-precision vectors, called hyper-

vectors. HDC defines a set of operations to manipulate these hypervectors in the high-dimensional
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vector space, enabling a computationally tractable and mathematically rigorous framework for

learning tasks. A growing number of works have applied HDC to a wide range of learning prob-

lems, including reasoning [94], biosignal processing [7], activity prediction [74], speech/object

recognition [75, 78], and prediction from multimodal sensor fusion [171]. These studies have

demonstrated the high efficiency, robustness and effectiveness of HDC in solving various learning

problems, highlighting its potential as a powerful tool for a variety of applications.

HDC has various appealing characteristics, particularly for edge devices. It is well-suited

to address the challenges in FL as:

1.2.3.1.2.3.• HDC is low-power, computationally efficient, and amenable to hardware-level optimiza-

tion [99],

• it is fault tolerant, providing strong robustness in the presence of errors [146],

• HDC models are small, thus both memory-efficient and communication-efficient [101],

• HDC encoding can transform non-linear learning tasks into linear optimization prob-

lems [195], and

• HDC enables fast and light-weight learning with its simple operations [101].

These features make HDC a promising solution for FL using today’s IoT edge devices with

constrained storage, battery, and resources, over wireless networks with latency concerns and

limited bandwidth.

We address several technical challenges to enable federated hyperdimensional computing

at the IoT edge. Although HDC is inherently suitable for FL, current HDC algorithms fail

to provide acceptable accuracy for complex image analysis [79, 226], which is one of the

key FL applications. Recently published work [40] combines convolutional neural networks

(CNNs) with HDC to learn effectively on complex data. It leverages convolution-based feature

extraction prior to the HD encoding step. Unfortunately, such a configuration (DNN+HDC)
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possesses the aforementioned computation and communication drawbacks of DNNs for FL.

The other challenge is the communication of HDC models over unreliable wireless channels.

While the robustness of HDC encoded data to noise and bit errors was demonstrated by prior

work [146, 195], similar claims were not investigated for an entire HDC model itself. Finally,

HDC models have a lot of redundancy that still can put a burden on communication efficiency,

even though they are much smaller than DNN models.

SecureHD [76], HDnn [41] and our work, FedHDC, are all approaches that leverage high-

dimensional computing for various tasks. However, there are distinct differences between these

methods. FedHDC focuses on federated learning, which enables collaborative model training

across multiple decentralized devices while maintaining data privacy. In contrast, SecureHD [76],

emphasizes secure high-dimensional computing, specifically designed to handle classification

tasks with a focus on security.

HDnn [41], on the other hand, is a hybrid approach that combines high-dimensional

computing with convolutional neural networks (CNNs). This method aims to harness the

strengths of both HDC and CNNs to improve classification performance, particularly in image

recognition tasks. While FHDnn and HDnn both utilize high-dimensional computing, the primary

difference lies in their objectives: FedHDC targets federated learning, whereas HDnn [41] focuses

on enhancing classification performance by integrating HDC with deep learning techniques.

Unlike our proposed FHDnn, HDnn [41] trains the feature extractor to learn representations

amenable to learning in the high-dimensional vector space.

In this paper, we first present federated hyperdimensional computing, FedHDC, an

extension of the HDC paradigm into the federated learning domain. Next we design a novel

synergetic FL framework, called FHDnn, that enables FedHDC to also perform complex image

classification by combining contrastive learning framework as a feature extractor with FedHDC,

but still keeping model updates to only HDC portion, resulting in fast and accurate model updates

via federated learning. In the following, we summarize the main contributions of the paper:

i) We present FedHDC to address the computation and communication problems in
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Figure 3.1. FHDnn against CNNs for federated learning

standard DNN based FL approaches. The simple and highly efficient operations of HDC allow

for fast and low-weight local training on clients between communication rounds. FedHDC incurs

very low communication overhead as HD models are very small in size and training requires

many fewer rounds of communication to converge compared to DNNs, resulting in at least

66times lower communication overhead as we shown in our results.

ii) We analyze HDC training process using the language of gradient methods from

statistical learning and optimization. This viewpoint helps us provide a formal treatment of

FedHDC as a general framework for federated learning, and precisely study its convergence

properties. FedHDC can achieve O( 1
T ) convergence rate, with T representing the number of

communication rounds, but such claim is not possible for non-convex and non-linear DNNs. As

HD encoding embeds data into a high-dimensional space and can transform non-linear distributed

learning tasks into linear optimization, FedHDC enjoys simpler training and faster convergence

compared to DNNs as it uses only HD computing, while having the superior performance

properties of non-linear models.

iii) We present FHDnn, a novel synergetic FL framework that combines pre-trained CNN

as a feature extractor with HDC. Specifically, we utilize a CNN trained using SimCLR [27], a

contrastive learning framework which learns informative representations of data self-supervised.

FHDnn avoids the transmission of the CNN and instead trains only the HD learner in a federated

manner. This strategy accelerates learning, reduces transmission costs, and utilizes the robustness
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of HDC to tackle network errors as shown in Fig. 3.1.

iv) HD-based federated learning provides reliability for learning over unreliable wireless

network with no additional cost. Unlike existing FL approaches, there is no need for multiple-

access technologies to prevent interference or error-protection on the transmitted models. Due to

such techniques, FL can have very limited communication rates, and hence low training speeds.

We leverage the robustness of HDC and allow errors during transmission instead of limiting the

rate to achieve error-free communication. We analyze FHDnn under three different unreliable

network settings: packet loss, noise injection, and bit errors, and show that the perturbations

in the client models can be tolerated by the HDC learner. A quantizer method with scaling is

additionally proposed to enhance the resilience to bit errors.

v) We also propose various strategies to further improve the communication efficiency

of FedHDC and FHDnn. The HDC models have redundancy which we exploit to reduce their

sizes for more efficient communication. We examine three approaches: binarized differential

transmission, subsampling, and sparsification & compression. We show their trade-offs between

performance and efficiency through experiments.

We evaluate HDC-based federated learning by numerical experiments on different bench-

mark datasets and compare their performance with CNN based FL under various settings. We

both theoretically and empirically show that the proposed approaches are robust to lossy net-

work conditions. Based on our evaluations, FHDnn converges 3x faster than CNN, reduces the

communication costs by 66× and the local computation cost on the clients by up to 6×. The

communication efficiency of FedHDC and FHDnn is further improved by various strategies up

to 32× with minimal loss in accuracy.

3.2 Related Work

Communication and computation bottlenecks of FL have been widely studied in the

literature and various solutions were proposed targeting improvement at different parts of
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the overall process. FL involves many rounds of communication with the participation of

numerous clients, typically at low rates over wireless links. These considerations have led to

a significant interest in communication-efficient design of FL systems. Previous research has

primarily focused on decreasing the size of the model updates [106] and reducing the number

of communication rounds or communicating clients [176]. In addition, during each round of

communication, participating clients train models locally on device for multiple epochs. Deep

learning models that are commonly used tend to be expensive to train requiring backpropogation

algorithm which is compute heavy. Efficient computation is also of great importance as clients

are usually not equipped with powerful hardware. This is addressed in prior work by reducing

the model complexity to alleviate local training [85]. On the other hand, there is often a

trade-off between communication and computation; one strategy for lowering the frequency of

communication is to put more emphasis on computation. The lightweight nature of HDC models

make them suitable for running on edge devices with constrained resources.

3.2.1 Communication Efficiency

A prototypical FL approach named FedAvg [140] enables flexible communication and

computation trade-off. The work follows from the seminal research in distributed stochastic

gradient descent (SGD). Improvement in communication-efficiency is achieved by allowing for

the clients to run multiple local SGD steps per communication round. Many succeeding studies

have pursued the theoretical understanding of FedAvg in terms of communication-computation

trade-offs and have carried out rigorous analysis of the convergence behavior depending on the

underlying assumptions (e.g., IID or non-IID local datasets, convex or non-convex loss functions,

gradient descent or stochastic gradient descent) [122, 96]. Another approach that directly affects

local training is to modify model complexity. Some examples are pruning [225], restricting

the model weights to be numbers at a certain bitwidth [34], and bounding the model size[153].

These methods also lower computation complexity along with communication overhead.

As the models for FL can get very large—especially in the case of DNNs—a different line
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of work explored methods to reduce the communicated model (or gradient) size, without altering

the original local models. Existing schemes typically perform a form of compression, that is,

instead of transmitting the raw model/gradient data, one transmits a compressed representation

with fewer bits, for instance by means of limiting bitwidth (quantization) or enforcing sparsity

(sparsification). Particularly, a popular class of quantization operators is based on random dither-

ing [68]. Sparsification methods decrease the number of non-zero entries in the communicated

data to obtain sparse vectors [208]. Structured and sketched updates are also proposed in [105],

which can be further supported by lossy compression and federated dropout [21]. Some other

approaches include randomized techniques such as stochastic rounding [189], subsampling [106],

and randomized approximation [107].

In FL, a group of clients might often provide similar, and hence redundant, model

information during communication rounds. Orthogonal to the compression-based approaches,

one can dismiss the updates of some clients as communicating all model updates would be

an inefficient use of resources. Early works have attempted simple client selection heuristics

such as selecting clients with higher losses [11], sampling clients of larger update norm with

higher probability [29], and sampling clients with probabilities proportional to their local dataset

size [140], but the similarity or redundancy of the client updates are not exploited in these

methods. Ideally, a diverse and representative set of clients should be selected that contribute

different, informative updates. In consideration of this, several selection criteria have been

investigated in recent literature, some of which are diversity-based selection [12], importance

sampling [29], and selection by update significance [26].

FL is often carried out over wireless channels that attenuate the transmitted signal as

well as introduce noise, and thus the communication is unreliable, prone to transmission errors.

All the aforementioned approaches assume reliable links and ignore the wireless nature of the

communication medium. The inherent assumption is that independent error-free communication

“tunnels” has been established between the clients and the server by some existing wireless

protocol. A common way to achieve this is to divide the channel resources among clients with
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multiple-access technologies (e.g., TDMA, CDMA, OFDMA) to mitigate interference, and

utilize powerful error correcting codes to overcome noise [62]. However, the communication

rates and consequently the overall training speed suffer due to the limited channel resources that

can be allocated per client.

3.2.2 Computation Efficiency

The clients in FL are typically resource-constrained, battery-operated edge devices with

limited power and computation budgets, unlike the powerful servers used in cloud-centric learn-

ing. DNN-based FL methods require clients to perform on-device backpropagation during each

round of training which is computationally expensive and is incurring high resource usage. To

overcome this challenge, prior works mainly explored low complexity NN architectures and

lightweight algorithms suitable for edge devices. A lot of the ‘local methods’ for improving com-

munication efficiency fall into this category, e.g, pruning [85] and using quantized models [176],

which are also helpful for reducing computation.

A small subset of the proposed approaches specifically devote their attention to resolving

the computational issues in FL. In [212], a “soft-training” method was introduced to dynamically

compress the original training model into a smaller restricted volume through rotating parameter

training. In each round, it lets different parts of model parameters alternately join the training,

but maintains the complete model for federated aggregation. The authors of [205] suggested

dividing the model into sub-models, then using only a few sub-models for partial federated

training while keeping the rest of the parameters fixed. During training, sub-model capacities are

gradually increased until it reaches the full model. Along similar lines, federated dropout [21] is a

technique that enables each client to locally operate on a smaller sub-model while still providing

updates that can be applied to the larger global model on the server. Finally, the technique

presented in [193], called splitfed learning, combines the strengths of FL and split learning by

splitting a NN into client-side and server-side sub-networks during federated training.

Our federated hyperdimensional computing approach is orthogonal to the most of the
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existing communication-efficient FL methods. For instance, it can be used in tandem with

compression, subsampling, and client selection or techniques that reduce model complexity. In

fact, in Section 3.5.4, we include some strategies for further improving the communication cost

leveraging the statistical properties of hypervectors, even though HD models are much smaller

(around hundred thousand parameters vs millions/billions), thus more communication-efficient,

compared to DNNs. Furthermore, different from the aforementioned works, we account for

unreliable communication scenarios. We use the robustness of HDC to tolerate communication

errors and carry out accurate training. Finally, there are studies that aim at making the compute

intensive DNN-based FL methods more efficient as summarized above. In contrast, HDC itself

is a very light-weight framework with low computational cost. It was shown in previous work

that HDC provides 3× reduction in training time, 1.8× in energy comsumption compared to

optimized DNNs on NVIDIA Jetson TX2 low-power edge GPU [99]. An ASIC implementation

of HDC for edge devices further improves the energy consumption by 1257× and training time

by 11× over DNNs.

3.3 Hyperdimensional Computing

In the following, we analyze hyperdimensional computing classification algorithm, then

express it in a standard mathematical framework from statistical learning and optimization. The

goal of this section is to provide an in-depth formal treatment of HDC as a general ‘learning’

method. Leveraging the analysis presented here, we later study the convergence properties of

federated hyperdimensional computing in Section 3.4.1,

3.3.1 Hyperdimensional Learning

Many learning tasks can be implemented in the HD domain. Here, we focus on classifi-

cation, one of the most popular supervised learning problems. Suppose we are given collection

of labeled examples D = {(xi,yi)}n
i=1 where xi ∈X ⊂ Rm and yi ∈ C is a categorical variable

indicating the class label of a particular data sample xi. For HD learning, we first encode the en-
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tire set of data samples in D into hyperdimensional vectors such that hi = φ(xi) is a hypervector

in the d-dimensional inner-product space H . These high-dimensional embeddings represent

data in a way that admits linear learning algorithms, even if the data was not separable to begin

with. In other words, simple linear methods applied on HD encoded data can capture nonlinear

decision boundaries on the original data [195].

The common approach to learning with HD representations is to bundle together the

training examples corresponding to each class into a set of “prototypes”, which are then used for

classification. The bundling operator is used to compile a set of elements in H and assumes the

form of a function ⊕ : H ×H →H . The function takes two points in H and returns a third

point similar to both operands. We bundle all the encoded hypervectors that belong to the k-th

class to construct the corresponding prototype ck:

ck =
⊕

i s.t. yi=k

hi (3.1)

Given a query data xq ∈X for which we search for the correct label to classify, we take the

encoded hypervector hq ∈H and return the label of the most similar prototype:

ŷq = k∗ = argmax
k∈1,...,K

δ (hq,ck) (3.2)

where δ is a similarity metric.

One-Shot Training. The bundling operator ⊕ is often chosen to be element-wise sum. In

this case, the class prototypes are obtained by adding all hypervectors with the same class label.

Then, the operation in Equation (3.1) is simply calculated as:

ck = ∑
i s.t. yi=k

hi (3.3)

This can be regarded as a single pass training since the entire dataset is only used once—with no
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iterations—to train the model (class prototypes).

Inference. The similarity metric δ is typically taken to be the cosine similarity which is a

measure of angle between two vectors from an inner product space. Equation (3.2) is rewritten

using a dot-product and a magnitude operation as follows under cosine similarity:

ŷq = k∗ = argmax
k∈1,...,K

⟨ck,hq⟩
∥ck∥

(3.4)

Retraining. One-shot training often does not result in sufficient accuracy for complex

tasks. A common approach is to fine-tune the class prototypes using a few iterations of retrain-

ing [168, 78, 92, 99]. We use the perceptron algorithm [?] to update the class hypervectors for

mistpredicted samples. The model is updated only if the query in (3.4) returns an incorrect label.

Let yq = k and ŷq = k′ be the correct and mispredicted labels respectively. Then, the new class

prototypes after the retraining iteration are:

ck = ck +αhq

ck′ = ck′−αhq (3.5)

where α is the HD learning rate, controlling the amount of change we make to the model during

each iteration. Figure 1.1b shows an overview of HDC for classification.

3.3.2 Hyperdimensional Linear Discriminant

The single pass training and dot-product based inference approach of the HD algorithm

bears a strong resemblance to Fisher’s linear discriminant [44]. Assume that each sample x ∈X

belongs to a class with binary label y ∈ {−1,1} for notational convenience. The assumption of a

binary classication task is primarily for clarity of exposition, and our results can be extended to

support multi-class problems via techniques such as “one-versus-rest” decision rules. Fisher’s

linear discriminant on HD space finds the line z = wT h that best separates the two classes. The
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goal is to select direction w so that after projecting along this direction,

1. the separation between classes are high with their means as far away as possible from each

other, and

2. the scatter within the classes is as small as possible with low variance.

A criterion that quantifies the desired goal is the Rayleigh quotient:

J(w) =
wT SBw
wT SW w

(3.6)

SB = (µ1−µ−1)(µ1−µ−1)
T

SW = Σ1 +Σ−1

where µ±1 and Σ±1 are the mean vector and the covariance matrix respectively. SB is defined

as the between-class scatter which measures the separation between class means, while SW is

the within-class scatter, measuring the variability inside the classes. Our goal is achieved by

maximizing the Rayleigh quotient with respect to w. The corresponding optimal projection

direction is then given as

w∗ = (Σ1 +Σ−1)
−1(µ1−µ−1) (3.7)

One can use Fisher’s linear discriminant method as a classifier where the decision criterion is a

threshold on the dot-product (projection):

z = (µ1−µ−1)
T (Σ1 +Σ−1)

−1hq +T

 > 0, ŷq = 1

< 0, ŷq =−1
(3.8)

In HD computing, the procedure of one-shot training followed by inference, described by (3.3)

and (3.4), is equivalent to above decision criterion. For two classes, the “similarity check” step
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in (3.4) can be rewritten in the form of a decision function as follows:

ŷq =

 1, if ⟨c1,hq⟩
∥c1∥ >

⟨c−1,hq⟩
∥c−1∥

−1, if ⟨c1,hq⟩
∥c1∥ <

⟨c−1,hq⟩
∥c−1∥

(3.9)

which can be further simplified as:

ŷq =

 1, if ( c1
∥c1∥ −

c−1
∥c−1∥)

T hq > 0

−1, if ( c1
∥c1∥ −

c−1
∥c−1∥)

T hq < 0
(3.10)

Since the class prototypes are normalized sums of hypervectors with the same labels, they relate

to the respective class means by a scalar multiplication, i.e, c±1 =
∥c±1∥
N±1

µ±1. Here, N±1 denotes

the total number of samples in classes. We obtain the below decision rule after plugging in µ±1

into (3.10), then dividing both sides of the inequalities by ∥c±1∥
N±1

.

ŷq =

 1, if (µ1−µ−1)
T hq > 0

−1, if (µ1−µ−1)
T hq < 0

(3.11)

Note that this is the same classifier as in (3.8) for the special case when Σ1 = Σ−1 = Σ = 1
2I.

HD encoding maps data points to a hyperdimensional space such that different dimensions of

the hypervectors are uncorrelated, i.e, Σi j ≈ 0, i ̸= j. Therefore, one-shot training followed by

inference in HD computing is equivalent to applying Fisher’s linear discriminant and classifying

sample encoded hypervectors. The above result shows the HD algorithm explicitly optimizes

the discrimination between the data points from different classes. We first project data via HD

encoding such that it becomes linearly separable, then find a linear discriminant.

3.3.3 A Gradient Descent Perspective on HDC

A retraining step is required to fine-tune the HD model for tasks where one-shot training

does not suffice. The goal is to update the class prototypes until finding the model that best
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Figure 3.2. HDC retraining

separates classes. In the following, we analyze HD retraining process using the language of

gradient methods from statistical learning and optimization. This viewpoint helps us provide a

formal treatment of FedHDC as a general framework for federated learning, and precisely study

its convergence properties.

Without loss of generality, we continue our analysis using binary class labels as in

Section 3.3.2. Let w ∈ Rd be a vector of weights that specifies a hyperplane in the hyperdimen-

sional space with d dimensions. We define this vector in terms of class prototypes, such that

w = c1− c−1. Then, after inputing in the weight vector and simplifying the equations in (3.10),

classification of a query data xq is made through the following decision function:

ŷq =

 1, if wT hq > 0

−1, if wT hq < 0
(3.12)

This can be interpreted as a linear separator on the HD representations of the data. It divides

H into two half-planes, where the boundary is the plane with normal w. The goal is to learn

the weights such that all the positive examples (yi = 1) are on one side of the hyperplane and

all negative examples (yi =−1) on the other. For the optimal set of weights, the linear function

g(h) = wT h agrees in the sign with the labels on all training instances, that is, sign(⟨w,hi⟩) = yi

for any xi ∈X . We can also express this condition as yi⟨w,hi⟩> 0.

Recall that HD retraining, in the event of a misclassification, subtracts the query hyper-
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vector from the incorrect class prototype and adds it to the one that it should have been matched

with. The two possible retraining iterations are illustrated below for binary classification.

Misclassifying x1

c1 = c1 +αh1

c−1 = c−1−αh1

Misclassifying x−1

c1 = c1−αh−1

c−1 = c−1 +αh−1 (3.13)

For both cases, the difference of class prototypes, i.e. c1− c−1, is updated as a function

of the misclassified class label. A unified update equation that covers both cases is as follows:

c1− c−1 = c1− c−1 +2αyihi (3.14)

Inputing in the weight vector in the above equation, we have:

w = w+2αyihi (3.15)

D Pre f
ed set t = 0,wt = 0 convergencerandom index i ∈ {1, ...,n} yi⟨wt ,hi⟩< 0 wt+1 =

wt +ηyihi t = t + 1

A simple algorithm that implements HD retraining with the above notion of linear

separators is described by Algorithm 1. Here, η is a positive scalar called the learning rate

and t denotes iteration number. We now show that HD retraining can be represented as an

instance of Empirical Risk Minimization (ERM). Particularly, we frame the retraining step as an

optimization problem with convex loss function, then we argue that the updates in Algorithm 1

are equivalent to stochastic gradient descent (SGD) steps over an empirical risk objective.

Our ultimate goal is to find the discriminant function gw(h) which minimizes the empiri-

cal risk on the embedded training set DH = {(h1,y1), ...,(hn,yn)}. Empirical risk is defined as
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follows:

Remp(gw) =
1
n

n

∑
i=1

ℓ(gw(hi),yi) (3.16)

where ℓ : H ×H → R is a loss function that describes the real-valued penalty calculated as a

measure of the discrepancy between the predicted and true class labels. Zero empirical risk can

be achieved if HD encoding admits a linearly separable representation. Otherwise, zero risk is

not possible, but we search for the optimal weights that minimizes it:

w∗ = argmin
w

Remp(gw) (3.17)

The “no error” condition, yi⟨w,hi⟩ > 0 ∀i, provides a very concise expression for the

situation of zero empirical risk. It allows for the formulation of the learning problem as the

following function optimization:

minimize J(w) =−
n

∑
i=1

yiwT hi (3.18)

The solution can be found by doing gradient descent on our cost function J(w) where

the gradient is computed as ∇J(w) =−∑
n
i=1 yihi. Another optimization method is the stochastic

gradient descent that picks a random example at each step and makes an improvement to the

model parameters. Then, the gradient associated with an individual example is −yihi. Given a

loss function ℓ(·), the stochastic gradient descent algorithm is defined below:

Stochastic Gradient Descent:

Given: starting point w = winit , learning rates η1,η2,η3, ...

(e.g. winit = 0 and ηt = η for all t, or ηt = 1/
√

t).

For a sequence of random examples (h1,y1),(h2,y2), ...

1. Given example (ht ,yt), compute the gradient ∇ℓ(gw(ht),yt) of the loss w.r.t. the weights

w.
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2. Update: w← w−ηt∇ℓ(gw(ht),yt)

To present an equivalent formulation to (3.18), consider the loss function ℓ(gw(h),y) =

max(0,y⟨w,h⟩) for the empirical risk in (3.16). If gw(h) has the correct sign, then we have a

loss of 0, otherwise we have a loss equal to the magnitude of gw(h). In this case, if gw(h) has

the correct sign and is non-zero, then the gradient will be zero since an infinitesimal change

in any of the weights will not change the sign. So, the algorithm will not make any change

on w. On the other hand, if gw(h) has the wrong sign, then ∂ℓ
∂w = −yh. Hence, using ηt = η ,

the algorithm will update w← w+ηyh. Note that this is exactly the same algorithm as HD

retraining. We observe that empirical risk minimization by SGD with the above loss function

gives us the update rule in Algorithm 1.

3.4 FedHDC: Federated HD Computing

We study the federated learning task where an HD model is trained collaboratively by a

loose federation of participating clients, coordinated by a central server. The general problem

setting discussed in this paper mostly follows the standard federated averaging framework from

the seminal work in [140]. In particular, we consider one central server and a fixed set of N

clients, each holding a local dataset. The k-th client, k ∈ [N], stores embedded dataset Dk =

{(hk, j,yk, j)}nk
j=1, with nk = |Dk| denoting the number of feature-label tuples in the respective

datasets.

The goal in FL is to learn a global model by leveraging the local data at the clients. The

raw datasets cannot be shared with the central server due to privacy concerns, hence the training

process is apportioned among the individual clients as described by the following distributed

optimization problem:

min
w

{
F(w)

N

∑
k=1

pkFk(w)
}

(3.19)

where pk is the weight of the k-th client such that pk ≥ 0 and ∑
N
k=1 pk = 1. A natural and common

approach is to pick pk =
nk
n . Similar to Section 3.3.3, we represent our HD model by a vector of
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parameters w ∈H ⊆ Rd . If the partition Dk is formed by randomly and uniformly distributing

the training examples over the clients, then we have EDk [Fk(w)] = F(w), where the expectation

is over the set of examples assigned to the client. This is the IID assumption that usually does

not hold in FL setting; Fk could be an arbitrarily bad approximation to F under non-IID data.

To define the learning objective and measure the fit of the model to data, we introduce a

loss function as in (3.16). We denote ℓ
(
w;(hk, j,yk, j)

)
for the loss of the prediction on example

(hk, j,yk, j) made with an HD model parametrized by w. For the k-th client, the local objective

Fk(·) is defined in the form of local empirical loss as follows:

Fk(w) =
1
nk

nk

∑
j=1

ℓ
(
w;(hk, j,yk, j)

)
(3.20)

For ease of notation, we do not explicitly use gw(h) to denote the learning model, instead

substitute w which parametrizes it. The local empirical loss Fk measures how well the client

model fits the local data, whereas the global loss F quantifies the fit to the entire dataset on

average. We have shown above that the loss function ℓ= max(0,y⟨w,h⟩) captures the behavior

of the HD algorithm for an equivalent optimization problem formulation solved by SGD. The

objective is to find the model w∗ that minimizes the global loss, i.e., w∗ = argminw F(w).

Algorithm. In the federated bundling framework, each client maintains its own HD

model and participates in building a global model that solves (3.19) in a distributed fashion. This

is achieved via an iterative training procedure for which we describe one round (say t-th) of the

algorithm below.

1. Broadcast: The central server broadcasts the latest global HD model, wt , to all clients.

2. Local updates: Each client k ∈ [N] sets its model wk
t = wt and then performs training for
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E epochs using local data:

wk
t,0 = wk

t ,

wk
t,τ+1←− wk

t,τ −ηt∇Fk(wk
t,τ ,ξ

k
τ ), i = 0,1, ...,E−1,

wk
t+1 = wk

t,E , (3.21)

where ηt is the learning rate and ξ k
τ is a mini batch of data examples sampled uniformly

from local dataset Dk.

3. Aggregation: The central server receives and aggregates the local models to produce a

new global model:

wt+1 =
N

∑
k=1

pkwk
t+1. (3.22)

After aggregation, the server moves on to the next round, t +1. This procedure is carried out

until sufficient convergence is achieved. Fig. 3.3 summarizes the federated training process for

FedHDC. The overall update in one round of federated bundling is similar to a gradient descent

step over the empirical loss corresponding to the entire distributed dataset across clients.
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3.4.1 FedHDC Convergence Analysis

In this section, we first specify the objective functions and the corresponding gradient

computations in FedHDC, for whose general forms were discussed above. We then analyze the

convergence behavior of FedHDC, showing that it converges to the global optimum at a rate of

O( 1
T ), where T is the number of communication rounds.

For federated learning with HD algorithm, the optimization problem in (3.19) is cast as

follows:

w∗ = argmin
w

N

∑
k=1

pk

nk

nk

∑
j=1

max(0,y j⟨w,h j⟩), (3.23)

and the local gradient gk = ∇Fk(w) is computed at client k ∈ [N] as:

gk =
1
nk

nk

∑
j=1

y jh j (3.24)

As Equation (3.24) suggests, the gradient computations are linear, demand low complexity

operations, and thus are favourable for resource-constrained, low-power client devices. However,

in many learning tasks, linear federated learning models perform sub-optimally compared to

their counterpart, DNN-based approaches. FedHDC diverges from traditional linear methods in

this respect. It enjoys both the superior performance properties of non-linear models and low

computational complexity of linear models. This is a direct result of HD computing, who embeds

data into a high-dimensional space where the geometry is such that simple learning methods are

effective. As we show in the following, linearity in HD training benefits convergence, at the same

time the performance does not degrade due to the properties of non-linear hyperdimensional

embeddings. Such convergence claims are not possible for non-convex and non-linear DNNs.

The functions Fk(·) and the gradients ∇Fk(·) have the following properties:

1. (L-smoothness). Each local function Fk(·) is L-smooth where the gradients ∇Fk(·) are
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Figure 3.4. Accuracy and convergence of FedHDC and NN for various epochs (E)

Lipschitz continuous: There exists a parameter L > 0 such that for all v,w ∈ Rd ,

∥∇Fk(v)−∇Fk(w)∥ ≤ L∥v−w∥.

2. (Strong convexity). Each local function Fk(·) is µ-strongly convex and differentiable: For

all v,w ∈ Rd ,

Fk(v)≥ Fk(w)+(v−w)T
∇Fk(w)+

µ

2
∥v−w∥2.

3. (Bounded variance). The variance of stochastic gradients for each client k is bounded:

Let ξ k be sampled from the k-th client’s dataset uniformly at random, then there exists

constants σk such that for all w ∈ Rd ,

E∥∇Fk(w,ξ k)−∇Fk(w)∥2 ≤ σ
2
k .

4. (Uniformly bounded gradient). The expected squared norm of stochastic gradients is

uniformly bounded: for all mini-batches ξ k at client k ∈ [N] and for w ∈ Rd ,

E∥∇Fk(w,ξ k)∥2 ≤ G2.

These conditions on local functions are typical and widely used for the convergence

analysis of different federated averaging frameworks [122, 186].

Theorem 1. Define κ = L
µ

, γ = max{8κ,E} and choose learning rate ηt =
2

µ(γ+t) . Then,
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the convergence of FedHDC with Non-IID datasets and partial client participation satisfies

E[F(wT )]−F∗ ≤ 2κ

γ +T

[B
µ
+
(

2L+
Eµ

4

)
∥w0−w∗∥2

]
(3.25)

where

B =
N

∑
k=1

p2
kσ

2
k +6LΓ+8(E−1)2G2 +

N−K
N−1

4
K

E2H2 (3.26)

Here, T is the number of communication rounds (or SGD steps), The term Γ is used to quantify

the degree of Non-IID [122]. Let F∗ and F∗k be the minimum values of F and Fk, respectively,

then Γ = F∗−∑
N
k=1 pkF∗k . As shown in Theorem 1, FedHDC can achieve O( 1

T ) convergence

rate. Such claim does not hold for non-convex and non-linear DNNs. This result follows from

the standard proof on the convergence of FedAvg on Non-IID data [122]. The proof is given in

Appendix A.

3.4.2 FedHDC Experiemental Results

We implemented FedHDC on Python using a custom HDC library for the PyTorch

framework. For FedHDC, we use hypervectors with dimension 10,000. For comparison, we use

a NN with a fully connected layers with 128 units and ReLU activation, and a final output layer

with softmax.

To observe the performance of our approach focusing on the real-world use-cases, we

evaluated FedHDC on a wide range of benchmarks shown in Table 3.1 that range from relatively

small datasets collected in a small IoT network to a large dataset that includes hundreds of

thousands of face images. The data include: ISOLET: recognizing audio of the English alphabet,

UCIHAR: detecting human activity based on 3-axial linear acceleration and angular velocity

data, from different people, PAMAP2: classifying five human activities based on a heart rate and

inertial measurements, FACE: classifying images with faces/non-faces, and MNIST: recognizing

handwritten digits by different people.
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Table 3.1. Datasets (n: Feature Size, K: Number of Classes)

Dataset n K Train (Size) Test (Size) Description
ISOLET 617 26 6,238 1,559 Voice Recognition
UCIHAR 561 12 6,213 1,554 Activity Recognition (Mobile)
PAMAP2 75 5 611,142 101,582 Activity Recognition (IMU)

FACE 608 2 522,441 2,494 Face Recognition
MNIST 784 10 60,000 10,000 Handwritten Digit Recognition

Accuracy and Convergence

We run our experiments for 100 clients and 100 rounds of communication. We first tune

the hyperparameters for both FedHDC and CNNs, then experiment with different federated

learning parameters. Fig. 3.4 shows the accuracy and convergence of both FedHDC and the

CNN for various number of local epochs E and local batch sizes B. For all experiments, C = 0.2

fraction of clients are randomly picked in every communication round. For all datasets, the

best convergence is achieved with low number of epochs (E = 1) and moderate batch sizes

(B = 10,20).

Table 3.2. Impact of Dimensionality on FedHDC Accuracy

d 1000 2000 4000 8000 10000
ISOLET 90.79% 93.36% 95.07% 95.37% 94.59%
UCIHAR 90.60% 93.98% 93.63% 93.54% 94.46%
PAMAP2 74.9% 76.88% 76.10% 77.85% 77.98%

FACE 95.05% 95.2% 95.74% 95.86% 96.17%
MNIST 92.24% 93.81% 95.37% 96.34% 96.80%

Hypervector Dimensionality Study

Table 3.2 demonstrates the influence of hypervector dimensions on the FedHDC classifi-

cation accuracy. A modest increase in accuracy is observed as the dimensionality grows. This

outcome aligns with expectations, as the robustness of HDC is known to improve with increasing

dimensions [195][170] [91]. Thomas [195] showed that dimensionality is directly proportional

to the bandwidth of the noise in HDC classification problems, thus providing a guideline for a
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Table 3.3. HDC on image data

Model CIFAR10 CIFAR100 Flowers dtd GTSRB
HD-linear 26.94 8.98 19.58 6.41 83.63
HD-non linear 41.98 20.35 25.68 8.13 84.11
HD-id level 26.56 9.45 15.97 6.25 44.86
CNN 90.1 78.4 81 98.7 94.6

tradeoff between noise and the hypervector size. It is essential to consider the trade-off between

performance and resource usage, as the computational cost rises with increasing dimensions.

In essence, the HD encoding dimension exhibits a linear relationship with the number

of categorical features, while it depends logarithmically on the alphabet size. As previously

mentioned, the separation quality of the problem is associated with factors such as the class

separability and the encoding dimension. Intuitively, when the classes are well separated, a

smaller encoding dimension can be employed to achieve satisfactory performance. This is

because the inherent separability of the data aids in reducing the required dimensionality for

efficient classification. Conversely, when the classes are poorly separated, a larger encoding

dimension is necessary to enhance the robustness and accuracy of the classification process.

Consequently, understanding the relationship between the HD encoding dimension and the

problem’s complexity is crucial for optimizing the performance of high-dimensional computing

methods in various classification tasks.

3.5 FHDnn: Federated Hyperdimensional Computing with
CNN Feature Extraction

FedHDC gives great results for many datasets in a federated setting, but it does not have

acceptable accuracy when doing complex image analysis due to inherent inaccuracy of HDC on

larger images. Table 3.3 summarizes accuracy of various state of the art encoding methods for

HDC when running image classification tasks [40]. The current HD encoding methods are not

able to match state of the art accuracy. In this section, to overcome this issue, we present FHDnn,

a synergetic FL framework which combines CNNs and HDC. FHDnn uses a pre-trained CNN as
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Figure 3.5. FHDnn Model Architecture

a feature extractor, whose outputs are encoded into hypervectors and then used for training. It

avoids the transmission of the CNN and instead trains only the HD learner in a federated manner.

The CNN excels at learning a complex hierarchy of features and boasts high accuracy, whereas

HDC provides efficient and robust training. Therefore, FHDnn enjoys the complimentary salient

properties of both HDC and CNN to enable a lightweight, communication-efficient, and highly

robust FL framework.

3.5.1 Model Architecture

FHDnn consists of two components: i) a pre-trained CNN as a feature extractor and ii) a

federated HD learner. Fig. 3.5 shows the model architecture of FHDnn. The pre-trained feature

extractor is trained once and not updated at run time. This removes the need for costly CNN

weight updates via federated learning. Instead, HD Computing is responsible for all the federated

model updates. Since its training only requires simple operations, it is much more efficient and

scalable. In the next subsections we describe both components.

Feature Extractor: While in theory any standard CNN can be used as a feature extractor,

we use a pre-trained SimCLR ResNet model as our feature extractor due to its proven success in

prior studies. SimCLR [27] is a contrastive learning framework which learns representations

of images in a self-supervised manner by maximizing the similarity between latent space

representations of different augmentations of a single image. This class-agnostic framework
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trained on a large image dataset allows for transfer learning over multiple datasets, (as evaluated

in [27]) making it ideal for a generic feature extractor. Standard CNNs learn representations that

are fine-tuned to optimize the classification performance of the dense classifier at the end of the

network. Since SimCLR focuses on learning general representations as opposed to classification

oriented representations, it is a better choice of a feature extractor. We choose the ResNet

architecture due to availability of pre-trained models. It is possible to use other models such as

MobileNet [70].

HD Learner: FHDnn encodes the outputs of the feature extractor into hypervectors.

More formally, given a point x ∈X , the features z⊂ Zn are extracted using the feature extractor

f : X → Z where f is a pre-trained neural network. The HD embedding is constructed as

h = φ(z) = sign(φz) under the encoding function φ : Z →H . HD learner then operates on

these hypervectors using binding and bundling which are simple and highly parallelizable. The

goal of such configuration is to avoid the transmission of the CNN and instead train only the HD

learner in a federated manner. An HD model is formed by bundling all encoded hypervectors

with the same class level together. We perform bundling by the element-wise addition of those

hypervectors, which generates corresponding class prototoypes. Then, the HD model is simply a

set of hypervectors with the number of classes in the dataset. We use the HD learner in federated

training that we discuss in the following.

3.5.2 Federated Training

Fig. 3.6 summarizes the overall federated training process for FHDnn. We separate the

whole process into two steps, client local training and federated bundling. These two steps work

in a cyclical fashion, one after the other, until convergence.

Client Local Training: Each client initially starts the process with a feature extractor f

and an untrained HD learner. Once we get the encoded hypervectors using the method described

above, we create class prototypes by bundling together hypervectors of the corresponding

class using ck = ∑i hk
i . Inference is done by computing the cosine similarity metric between a
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given encoded data point with each of the prototypes, returning the class which has maximum

similarity. After this one-shot learning process, we iteratively refine the class prototypes by

subtracting the hypervectors from the mispredicted class prototype and adding it to the correct

prototype as shown in Fig. 3.5. We define the complete HD model C as the concatenation of

class hypervectors, i.e., C = [cT
1 ,c

T
2 , ...,c

T
l ].

Federated Bundling: In the federated bundling framework, each client maintains its

own HD model and participates to build a global model in a distributed fashion. This is achieved

via an iterative training procedure for which we describe one round (say t-th) of the algorithm

below.

1. Broadcast: The central server broadcasts the latest global HD model, Ct , to all clients.

2. Local updates: Each participating client k ∈ [N] sets its model Ck
t = Ct and then performs

training for E epochs using local data.

3. Aggregation: The central server receives and aggregates the local models to produce a new

global model:

Ct+1 =
N

∑
k=1

Ck
t+1. (3.27)

After aggregation, the server moves on to the next round, t +1. This procedure is carried out

until sufficient convergence is achieved.
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3.5.3 FL Over Unreliable Channels With FHDnn

Federated learning is often carried out over wireless channels that attenuate the trans-

mitted signal and introduce noise. Thus, the communication between clients and the server is

unreliable, prone to transmission errors followed by packet losses. In this section, we show

how FHDnn and FedHDC provide reliability for learning over unreliable wireless network at no

overhead.

We consider different models for the uplink and the downlink channels. The centralized

server is assumed to be able to broadcast the models reliably, error-free at arbitrary rates, which is

a common assumption in many recent works [122, 96, 193, 176, 21]. For uplink communications,

the channel capacity per client is notably more constrained as the wireless medium is shared,

so transmissions can be unreliable even at very low rates. We next describe the considered

communication setup over such multiple access channels (MAC).

The mutual interference between the transmissions of multiple participating clients can

lead to erroneous aggregation of models at the server. A common approach in FL to deal with

interference is to use an orthogonal frequency division multiple access (OFDMA) technique [56].

The resources of the shared-medium are partitioned in the time–frequency space and allocated

among the clients. This way, each of the N clients occupies one dedicated resource block, that is,

channel’s spectral band and time slot.

Even though each client model can be recovered separately due to the orthogonality, the

distinct channels are still inherently noisy. The individual, independent uplink channels should

be rate-limited to be treated as error-free links under the Shannon capacity theorem. However,

the bandwidth allocated per client decreases with the number of clients, so does the capacity.

Accordingly, the volume of data that can be conveyed reliably, i.e, throughput, scales by 1/N.

This implies that the data rates will be small, resulting in slow training speed unless transmission

power is increased, which is undesirable considering energy consumption concerns.

Instead of limiting the rate to achieve error-free communication, we admit errors for the
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channel output at the server. The intuition is that the perturbations in the client models can be

tolerated to a certain extent by the learning algorithm. If the learning model is robust to errors,

then there is no need for forcing perfectly reliable transmissions. Thus, we analyze our FHDnn

scheme assuming that the clients communicate over unreliable MAC and the transmitted models

are corrupted.

In the following, we consider three error models at different layers of the network stack.

All models are applicable in practice depending on the underlying protocol. We first explore the

properties of HD computing that makes the learning robust under the considered error models,

then introduce different techniques for further improvement.

Noisy Aggregation

In conventional systems, the transmitter performs three steps to generate the wireless

signal from data: source coding, channel coding, and modulation. First, a source encoder removes

the redundancies and compresses the data. Then, to protect the compressed bitsream against the

impairments introduced by the channel, a channel code is applied. The coded bitstream is finally

modulated with a modulation scheme which maps the bits to complex-valued samples (symbols),

transmitted over the communication link.

The receiver inverts the above operations, but in the reverse order. A demodulator first

maps the received complex-valued channel output to a sequence of bits. This bitstream is then

decoded with a channel decoder to obtain the original compressed data; however, it might be

possibly corrupted due to the channel impairments. Lastly, the source decoder provides a (usually

inexact) reconstruction of the transmitted data by applying a decompression algorithm.

For noisy aggregation, as an alternative of the conventional pipeline, we assume uncoded

transmission [52]. This scheme bypasses the transformation of the model to a sequence of bits,

which are then need to be mapped again to complex-valued channel inputs. Instead, the real

model parameter values are directly mapped to the complex-valued samples transmitted over

the channel. Leveraging the properties of uncoded transmission, we can treat the channel as
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formulated in Equation (3.28), where the additive noise is directly applied to model parameters.

The channel output received by the server for client k at round t is given by

w̃k
t = wk

t +nk
t (3.28)

where nk
t ∼N (0, σ2

t,k) is the d-dimensional additive noise. The signal power and noise power

are computed as E∥wk
t ∥2 = Pt,k and E∥nk

t ∥2 = σ2
t,k, respectively. Then, the signal-to-noise ratio

(SNR) is:

SNRt,k =
E∥wk

t ∥2

E∥nk
t ∥2

=
Pt,k

σ2
t,k

(3.29)

An immediate result of federated bundling is the improvement in the SNR for the global

model. When the class hypervectors from different clients are bundled at the server, the signal

power scales up quadratically with the number of clients N, whereas the noise power scales

linearly. Assuming that the noise for each client is independent, we have the following relation:

SNRt =
E
[

∑
N
k=1 wk

t
]

E
[

∑
N
k=1 nk

t
] ≈ N2Pt,k

Nσ2
t,k

= N×SNRt,k (3.30)

Notice that the effect of noise is suppressed by N times due to bundling. This claim can also be

made for the FedAvg [105] framework over CNNs. However, even though the noise reduction

factor is the same, the impact of the small noise might be amplified by large activations of CNN

layers. In FHDnn, we do not have such problem as the inference and training operations are

purely linear.

One other difference of FHDnn from CNNs is its information dispersal property. HD

encoding produces hypervectors which have holographic representations, meaning that the

information content is spread over all the dimensions of the high-dimensional space. In fact,

no dimension in a hypervector is more responsible for storing any piece of information than

others. Since the noise in each dimension can be also assumed independent, we can leverage the

information spread to further eliminate noise.
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Figure 3.7. Noise robustness of hyperdimensional encodings

Consider the random projection encoding described in Section 1.1.1, which is also

illustrated by Fig. 1.1a. Let the encoding matrix φ ∈ Rd×n expressed in terms of its d row vectors,

i.e., φ = [φ1,φ2, ...,φd]
T . Then, the hypervector formed by encoding information x ∈X can be

written as h = [φ T
1 x,φ T

2 x, ...,φ T
d x]T , where x = [x1,x2, ...,xn]

T . As implied by this expression,

the information is dispersed over the hypervectors uniformly. Now consider additive noise over

the same hypervector such that h+n = [φ T
1 x+n1,φ

T
2 x+n2, ...,φ

T
d x+nd]

T . We can reconstruct

the encoded information from the noisy hypervector h̃ = h+n as follows:

x≈
[1

d

d

∑
i=1

Φi,1h̃i,
1
d

d

∑
i=1

Φi,2h̃i, ...,
1
d

d

∑
i=1

Φi,nh̃i

]
(3.31)

where h̃i = φ T
i x+ ni are the elements of the noisy hypervector. The noise variance is then

reduced by the averaging operation, similar to the case in Equation (3.30). Therefore, in HD

computing, the noise is not only suppressed by bundling accross models from different clients,

but also by averaging over the dimensions within the same hypervector. We demonstrate this

over an example where we encode a sample from the MNIST dataset, add Gaussian noise,

then reconstruct it. Fig. 3.7 shows the original image, noisy image in the sample space, and

reconstructed image for which the noise was added in the hyperdimensional space.

Finally, there is a “flying under the radar” principle for federated learning over noisy

channel. The analysis in [209] shows that since SGD is inherently a noisy process, as long as the

channel noise do not dominate the SGD noise during model training, the convergence behavior

is not affected. As the noise is immensely suppressed in FHDnn, we can claim such principle

holds true in our case.
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Bit Errors

We use bit error rate (BER) in conventional coded transmission as a figure of merit for

system robustness. It is a measure on how accurately the receiver is able to decode transmitted

data. The errors are bit flips in the received digital symbols, and are simply evaluated by the

difference (usually Hamming distance) between the input bitstream of channel encoder and

the output bitstream of channel decoder. Let ŵ be the binary coded model parameters that are

communicated to the server. For the bit error model, we treat the channel as a binary symmetric

channel (BSC), which independently flips each bit in ŵ with probability pe (e.g., 0→ 1). The

received bitstream output at the server for client k at round t is then as follows:

˜̂wk
t = ŵk

t ⊕ ek
t (3.32)

where ek
t is the binary error vector and ⊕ denotes modulo 2 addition. Given a specific vector v of

Hamming weight wt(v), the probability that ek
t = v is given by

P(ek
t = v) = pwt(v)

e (1− pe)
m−wt(v) (3.33)

The bit error probability, pe, is a function of both the modulation scheme and the channel

coding technique (assuming lossless source coding). To conclude the transmission, the corrupted

bitstream in (3.32) is finally reconstructed to a real-valued model, i.e., ˜̂wk
t → w̃k

t .

Bit errors can have a detrimental effect on the training accuracy, especially for CNNs. At

worst case, a single bit error in one client in one round can fail the whole training. In Fig. 3.8

we give an example of how much difference a single bit error can make for the standard 32 bit

floating point CNN weights. In floating point notation, a number consists of three parts: a sign

bit, an exponent, and a fractional value. In IEEE 754 floating point representation, the sign bit is

the most significant bit, bits 31 to 24 hold the exponent value, and the remaining bits contain

the fractional value. The exponent bits represent a power of two ranging from -127 to 128. The
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Figure 3.8. Single bit error on a floating-point number

fractional bits store a value between 1 and 2, which is multiplied by 2exp to give the decimal

value. Our example shows that one bit error in the exponent can change the weight value from

0.15625 to 5.31×1037.

The bit errors are contagious because a parameter from one client gets aggregated

to the global model, then communicated back to all clients. Furthermore, errors propagate

through all communication rounds because local training or aggregation does not completely

change the parameter value, but only apply small decrements. For instance, assume a federated

learning scenario with 100 clients and one bit error in a client’s model as in the above example.

After 10 rounds of training, the CNN weight for the global model will be on the order of

∼ 5.31×1037

10010 = 5.31×1017, still completely failing the whole model. Consider ResNet-50, which

has 20 million parameters, so training 100 clients even over a channel with pe = 10−9 BER

results in two errors per round on average, making model failure inevitable.

A similar problem exists with HD model parameters, but to a lesser extent because the

hypervector encodings use integer representations.

Fig. 3.10 implies that the parameters can also change significantly for the HD model.

Particularly, errors in the most significant bits (MSB) of integer representation leads to higher

accuracy drop. We propose a quantizer solution to prevent this.

The adopted quantizer design is illustrated in Fig. 3.9. Inspired by the classical quantiza-

tion methods in communication systems, we leverage scaling up and scaling down operations at

the transmitter and the receiver respectively. This can be implemented by the automatic gain
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Figure 3.10. An example scaling up operation

control (AGC) module in the wireless circuits. For a class hypervector ck, k ∈ {1, ...,K}, the

quantizer output Q(ck) can be obtained via the following steps:

1. Scale Up: Each dimension in the class hypervector, i.e. ck,i, is amplified with a scaling

factor denoted quantization gain G. We adjust the gain such that the dimension with the

largest absolute value attains the maximum value attainable by the integer representation.

Thus, G = 2B−1−1
max(ck)

where B is the bitwidth.

2. Rounding: The scaled up values are truncated to only retain their integer part.

3. Scale Down: The receiver output is obtained by scaling down with the same factor G.

This way, bit errors are applied to the scaled up values. Intuitively, we limit the impact

of the bit error on the models. Remember, from Equation (3.4), that prediction is realized by a

normalized dot-product between the encoded query and class hypervectors. Therefore, the ratio

between the original parameter and the received (corrupted) parameter determines the impact of

the error on the dot-product. Without our quantizer, this ratio can be very large whereas after

scaling up then later down, it is diminished. Fig. 3.10 demonstrates this phenomenon. The ratio

between the corrupted and the original parameter is ĉk,i
ck,i

= 2,071
7 ≈ 295.9. The ratio decreases to
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only ĉk,i
ck,i

= 12,005
9,973 ≈ 1.2 between the scaled versions.

Packet Loss

At the physical layer of the network stack, errors are observed in the form of additive

noise or bit flips directly on the transmitted data. On the other hand, at the network and transport

layers, packet losses are introduced. The combination of network and protocol specifications

allows us to describe the error characteristics, with which the data transmission process has to

cope.

The form of allowed errors, either bit errors or packet losses, are decided by the error

control mechanism. For the previous error model, we assumed that the bit errors are admitted to

propagate through the transport hierarchy. This assumption is valid for a family of protocols used

in error resilient applications that can cope with such bit errors [206]. In some protocols, the

reaction of the system to any number of bit errors is to drop the corrupted packets [111]. These

protocols employ a cyclic redundancy check (CRC) or a checksum that allows the detection

of bit errors. In such a case, the communication could assume bit-error free, but packet lossy

link. We use the packet error rate (PER) metric as a performance measure, whose expectation

is denoted packet error probability pp. For a packet length of Np bits, this probability can be

expressed as:

pp = 1− (1− pe)
Np (3.34)

The common solution for dealing with packet losses and guarantee successful delivery

is to use a reliable transport layer communication protocol, e.g., transmission control protocol

(TCP), where various mechanisms including acknowledgment messages, retransmissions, and

time-outs are employed. To detect and recover from transmission failures, these mechanisms

incur considerable communication overhead. Therefore, for our setup we adopt user datagram

protocol (UDP), another widely used transport layer protocol. UDP is unreliable and cannot

guarantee packet delivery, but is low-latency and have much less overhead compared to TCP.
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Figure 3.11. Impact of partial information on similarity check (left) and classification accuracy
(right)

HDC’s information dispersal and holographic representation properties are also beneficial

for packet losses. Another direct result of these concepts is obtaining partial information on data

from any part of the encoded information. The intuition is that any portion of holographic coded

information represents a blurred image of the entire data. Then, each transmitted symbol–packets

in our case–contains an encoded image of the entire model.

We demonstrate the property of obtaining partial information as an example using a

speech recognition dataset [1]. In Fig. 3.11a, after training the model, we increasingly remove

the dimensions of a certain class hypervector in a random fashion. Then we perform a similarity

check to figure out what portion of the original dot-product value is retrieved. The same

figure shows that the amount of information retained scales linearly with number of remaining

dimensions. Fig. 3.11b further clarifies our observation. We compare the dot-product values

across all classes and find the class hypervector with the highest similarity. Only the relative

dot-product values are important for classification. So, it is enough to have the highest dot-

product value for the correct class, which holds true with ∼ 90% accuracy even when 80% of

the hypervector dimensions are removed.

3.5.4 Strategies for Improving Communication Efficiency

The simplest implementation of FHDnn requires that clients send a full model back to

the server in each round. Even though HDC models are much smaller than DNN models, it can

still put a burden on communication. The structure and the characteristics of class hypervectors

allow us to leverage certain techniques for improving communication efficiency of FHDnn.
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We propose three approaches: i) binarized differential transmission, ii) subsampling, and iii)

sparsification & compression.

Binarized Differential Transmission

At the beginning of each round, the central server broadcasts the latest global HD model,

Ct , to all clients. Then, before performing local updates, each client makes a copy of this global

model. Instead of sending the local updated models Ck
t+1 at the aggregation step, the clients send

the difference between the previous model and the updated model, i.e., Ck
t+1−Ct . We call this

operation differential transmission. As shown in (3.35), we binarize the difference to reduce the

communication cost by 32x, going from 32-bit floating point to 1-bit binary transmission.

∆Ck
bin = sign(Ck

t+1−Ct), ∀k (3.35)

The central server receives and aggregates the differences, then adds it to the previous global

model as:

Ct+1 = Ct +
N

∑
k=1

Ck
bin (3.36)

This global model is broadcasted back to the clients. Such binarization framework is not

possible for the original federated bundling approach where clients communicate their full

models. Binarizing the models itself instead of the ‘difference’ results in unstable behavior in

training. Therefore, we utilize binarized differential transmission whose stability can be backed

by studies on similar techniques. In [15], it is theoretically shown that transmitting just the sign

of each minibatch stochastic gradient can achieve full-precision SGD-level convergence rate in

distributed optimization.

Subsampling

In this approach, the clients only send a subsample of their local model to the central

server. Each client forms and communicates a subsample matrix Ĉk
t+1, which is formed from
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a random subset of the values of Ck
t+1. The server then receives and averages the subsampled

client models, producing the global update Ct+1 as:

Ĉt+1 =
1
N

N

∑
k=1

Ĉk
t+1 (3.37)

The subsample selection is completely randomized and independent for each client in each round.

Therefore, the average of the sampled models at the server is an unbiased estimator of their

true average, i.e., E∥Ĉt∥= Ct . We can achieve the desired improvement in communication by

changing the subsampling rate. For example, if we subsample 10% of the values of Ck
t+1, the

communication cost is reduced by 10x.

Sparsification & Compression

The goal of this approach is to drop the elements (class hypervector dimensions) of each

individual class that have the least impact on model performance. As discussed in Section 3.3.1,

given a query hypervector, inference is done by comparing it with all class hypervectors to find

the one with the highest similarity. The similarity is typically taken to be the cosine similarity and

calculated as a normalized dot-product between the query hypervector and class hypervectors.

The elements of a query hypervector are input dependent and changes from one input to another

one. Due to the randomness introduced by HDC encoding, the query hypervectors, on average,

have a uniform distribution of values in all dimensions. Under this assumption, we need to

find and drop the elements of class hypervectors that have minimal impact on cosine similarity.

Indeed, the elements with the smallest absolute values are the best candidates as they have the

least contribution to the dot-product computation of cosine similarity.

We find the elements of each class hypervector with the smallest absolute value and make

those elements zero. For example, for the ith class hypervector, we select S elements with the

minimum absolute value as follows.

min{ci
d, ...,c

i
2,c

i
1}S (3.38)
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Figure 3.12. Accuracy of FHDnn and ResNet on different datasets

To make a model with S% sparsity, we make S
100 × d elements of each class hypervector

zero. Then, we employ the Compressed Sparse Column (CSC) [132] to compress the sparse

model. CSC stores only the non-zero data values and the number of zero elements between two

consecutive non-zero elements.

3.6 FHDnn Results

We demonstrate through systematic experiments the performance of FHDnn under vari-

ous settings. We first briefly discuss the datasets and setup for evaluation, and present our results

for different data distributions under the reliable communication scenario. We then compare the

resource usage of FHDnn against CNNs. The strategies for improving communication efficiency

are also evaluated in this section. Lastly, we analyze FHDnn under three different unreliable

network settings: packet loss, noise injection, and bit errors.

3.6.1 Experimental Setup

We evaluate FHDnn on 3 different real world datasets: MNIST[37], FashionMNIST[210],

CIFAR10 [109] and Caltech101 [119]. For the MNIST dataset, we use a CNN with two 5x5

convolution layers, two fully connected layers with 320 and 50 units and ReLU activation, and a

final output layer with softmax. The first convolution layer has 10 channels while the second
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Figure 3.13. Accuracy and Number of communication rounds for various hyperparameters

one has 20 channels, and both are followed by 2x2 max pooling. While for the CIFAR10 and

FashionMNIST datasets, the well-known classifier model, ResNet-18 with batch normalization

proposed in [65], is used. We run our experiments on Raspberry Pi Model 3b and NVIDIA Jetson

for the performance evaluations. All models are implemented on Python using the PyTorch

framework. We consider an IoT network with N = 100 clients and one server. The simulations

were run for 100 rounds of communication each in order to keep our experiments tractable.

We first tune the hyperparameters of both FHDnn and CNNs, and analyze their perfor-

mance by experimenting with three key parameters: E, the number of local training epochs, B

the local batch size, and C, the fraction of clients participating in each round. We select the best

parameters for ResNet and use the same for FHDnn for all experiments in order to allow for a

direct comparison. We study two ways of partitioning the datasets over clients: IID, where the

data is shuffled and evenly partitioned into all clients, and Non-IID, where we first sort the data

by their labels, divide it into a number shards of a particular size, and assign the shards to each

of clients.

We test FHDnn on two different types of edge devices: Raspberry PI 4 (RPi)[159] and

NVIDIA Jetson[33]. The RPi features a Broadcom BCM2711 quad-core Cortex-A72 (ARM v8)

64-bit SoC, running at 1.5GHz, and 4GB RAM. The NVIDIA Jetson uses a quad-core ARM

Cortex-A57 CPU, 128-core NVIDIA Maxwell GPU, and 4GB memory.
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Figure 3.14. Accuracy comparison of FHDnn with ResNet with noisy network conditions

3.6.2 FHDnn Accuracy Results

Fig. 3.12 compares the test accuracy of FHDnn with ResNet on MNIST, CIFAR-10,

FashionMNIST and Caltech101 datasets after 100 rounds of federated training. We observe

that FHDnn achieves accuracy comparable to the state of the art, even though it trains a much

smaller and less complex model. We depict how test accuracy changes over communication

rounds for CIFAR-10 in Fig. 3.13. The plot illustrates the smoothed conditional mean of test

accuracy across all different hyperparameters (E,B,C) for IID and Non-IID distributions. FHDnn

reaches an accuracy of 82% in less than 25 rounds of communication whereas ResNet takes 75

rounds on average for both IID and Non-IID data distributions. Moreover the hyperparameters

do not have a big influence for FHDnn as seen by the narrow spread (gray region) in Fig. 3.13.

Note that the local batch size B doesn’t impact FHDnn at all due to the linear and additive nature

of its training methodology. This allows us to use higher batch sizes up to the constraints of the

device, allowing for faster processing, and going over the dataset in less rounds. On the other

hand, the batch size B affects the convergence of CNNs.

3.6.3 FHDnn Performance and Energy Consumption

Local training is computationally expensive for constrained IoT devices, which was

one of the main drivers for centralized learning over many years. Particularly, CNN training

involves complicated architectures and backpropagation operation that is very compute intensive.

In addition, this has to be repeated for many communication rounds. HD on the contrary is

lightweight, low-power, and fast. Table 3.4 quantitatively compares the computation time and
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energy consumption of FHDnn and ResNet local training on 2 different edge device platforms.

FHDnn is 35% faster and energy efficient than ResNet on Raspberry Pi and 80% faster and

energy efficient on the Nvidia Jetson.

Table 3.4. Performance on Edge Devices

Device Training Time (Sec) Energy (J)
FHDnn ResNet FHDnn ResNet

Raspberry Pi 858.72 1328.04 4418.4 6742.8
Nvidia Jetson 15.96 90.55 96.17 497.572

3.6.4 FHDnn in Unreliable Communication

In this section, we analyze the performance of FHDnn and ResNet under unreliable

network conditions as described in Section 3.5.3. We obtained similar results for FedHDC, which

is why we focus on FHDnn results in this section. Fig. 3.14 shows the performance of models

under packet loss, Gaussian noise, and bit errors. To maintain a direct comparison between

ResNet and FHDnn, we use the same hyperparameters for both models and all experiments.

We set E = 2,C = 0.2,B = 10 and evaluate the performance on the CIFAR10 dataset. From

our experiments, we observe that even with fewer clients at C = 0.1, and for other datasets, the

performance of FHDnn is better than ResNet. Here, we present only the results for the settings

mentioned earlier to keep it concise.

Packet Loss As shown in Fig. 3.14a, if the packet loss rate is extremely small, e.g., below

10−2, ResNet has very minimal accuracy loss. However, for more, realistic packet loss rates

such as 20% the CNN model fails to converge. When there is packet loss, the central server

replaces the model weights from the lost packets with zero values. For example, 20% packet loss

rate implies 20% of the weights are zero. Moreover, this loss is accumulative as the models are

averaged during each round of communication thereby giving the CNNs no chance of recovery.

In contrast, FHDnn is highly robust to packet loss with almost no loss in accuracy. For FHDnn,

since the data is distributed uniformly across the entire hypervector, a small amount of missing

71



data is tolerable. However, since CNNs have a more structured representation of data with

interconnections between neurons, the loss of weights affects the performance of subsequent

layers which is detrimental to its performance.

Gaussian Noise We experiment with different Signal-to-Noise Ratios (SNR) to simulate

noisy links, illustrated in Fig. 3.14b. Even for higher SNRs such 25dB the accuracy of ResNet

drops by 8% under Non-IID data distribution. However it’s more likely that IoT networks

operating on low-power wireless networks will incur lower SNRs. For such scenarios, FHDnn

outperforms ResNet as the latter fails to perform better than random classification. ResNet

performance starts to completely deteriorate around 10dB SNR. The accuracy of FHDnn only

reduces by 3%, even at -10dB SNR, which is negligible compared to ResNet.

Bit Errors Fig. 3.14c shows that CNNs completely fail when bit errors are present.

ResNet achieves the equivalent of random classification accuracy even for small bit errors. Since

the weights of CNNs are floating point numbers, a single bit flip can significantly change the

value of the weights. This, compounded with federated averaging, hinders convergence. We

observe FHDnn incurs an accuracy loss as well, achieving 72% for IID and 69% for Non-IID

data. FHDnn uses integer representations which is again susceptible to large changes from bit

errors to some extent. However, our quantizer method with scaling described in Section 3.5.3

assuages the remaining error.

3.6.5 FHDnn Communication Efficiency

So far we have benchmarked the accuracy of FHDnn for various network conditions. In

the following, we demonstrate the communication efficiency of FHDnn compared to ResNet. We

compare the amount of data transmitted for federated learning to reach a target accuracy of 80%.

The amount of data transmitted by one client is calculated using the formula datatransmitted =

nrounds× updatesize, where nrounds is the number of rounds required for convergence by each

model. The update size for ResNet with 11M parameters is 22MB while that of FHDnn is

1MB making it 22× smaller. From Section 3.6.2 we know that FHDnn converges 3× faster
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than ResNet bringing its total communication cost to 25MB. ResNet on the other hand uses up

1.65GB of data to reach the target accuracy.

In Fig. 3.13, we illustrated that FHDnn can converge to the optimal accuracy in much

fewer communication rounds. However, this improvement is even higher in terms of the actual

clock time of training. We assume that federated learning takes places over LTE networks where

SNR is 5dB for the wireless channel. Each client occupies 1 LTE frame of 5MHz bandwidth and

duration 10ms in a time division duplexing manner. For error-free communication, the traditional

FL system using ResNet can support up to 1.6 Mbits/sec data rate, whereas we admit errors and

communicate at a rate of 5.0 Mbits/sec. Under this setting and for the same experiment as in

Section 4.2, FHDnn converges in 1.1 hours for CIFAR IID and 3.3 hours for CIFAR Non-IID on

average. On the other hand, ResNet converges in 374.3 hours for both CIFAR IID and CIFAR

Non-IID on average.

3.6.6 FHDnn: Effect of Communication Efficiency Strategies

Even though FHDnn is much smaller than CNN models and the training converges faster,

it’s communication efficiency can be further improved. We use the MNIST dataset and the

parameters from Section 3.6.2 for our experiments. Table 3.5 shows the final accuracy after 100

rounds of training and the improvement in communication cost for the respective approaches.

Table 3.5. Simulation results

Method Final Accuracy Improvement
Baseline 94.1% -

Binarized Differential Transmission 91.2% 32x
50% Subsampling 91.1% 2x

50% Sparsification & Compression 90.0% 2x
10% Subsampling 90.7% 10x

90% Sparsification & Compression 91.6% 10x

The differential transmission approach binarizes the model difference, going from 32-

bit floating point to 1-bit binary transmission to reduce the communication cost by 32x. For
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subsampling and sparsification & compression approaches, the communication improvement

depends on the percentage of the model values that are subsampled or sparsified. For example,

if we subsample 10% of the model, than the communication cost is reduced by 10x. Or, if

we sparsify the model by 90%, the reduction is 10x again. We present the final accuracy and

improvement in communication cost at different subsampling and sparsification percentages.

3.7 Conclusion

In this work we introduced methods to implement federated learning using hyperdi-

mensional computing to enable communication efficient and robust federated learning for IoT

networks. We first formalize the theoretical aspects of hyperdimensional computing to perform

federated learning, presented as our first contribution called FedHD. To combat the inability

of HDC to extract relevant features which consequently leads to poor performance of FedHD

on large image classification, we propose FHDnn. FHDnn complements FedHD with a fixed

contrastive learning feature extractor to compute meaningful representations of data that helps

the HDC model better classify images. We described the federated hyperdimensional computing

architecture, described the training methodology and evaluated FedHDC and FHDnn through

numerous experiments in both reliable and unreliable communication settings. The experiment

results indicate that FHDnn converges 3× faster, reduces communication costs by 66×, local

client compute and energy consumption by 1.5 - 6× compared to CNNs. It is robust to bit errors,

noise, and packet loss. Finally, we also showed that the communication efficiency of FedHDC

and FHDnn can be further improved up to 32× with a minimal loss in accuracy.

Next, we focus on systematically designing architectures to leverage the symbolic manip-

ulation properties of HDC within Deep Learning. To this end, we first look at a large-scale text

classification task that is a multi-label classification problem. We detail methods to represent text

data as hyperdimensional representations and propose using convolution operators to manipulate

these representations to learn a mapping between the inputs and the target.
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Chapter 4

Multi-Label Classification Using Hyperdi-
mensional Representations

4.1 Introduction

Hyperdimensional computing (HDC) is an emerging paradigm of computing that offers

a promising alternative to traditional machine learning approaches. In recent years, HDC has

garnered significant interest due to its low computational overhead and hardware-friendly nature

[90, 95]. HDC employs low-precision sparse representations and simple arithmetic operations

to manipulate high-dimensional vectors, making it amenable to hardware acceleration. The

independent and identically distributed (iid) nature of these representations further enables

efficient parallelization, leading to improved computational efficiency. There is a large body

of works showing benefits of HDC acceleration in hardware for various applications in IoT

[99, 98, 100] and Machine Learning [40, 61, 81]. As a result, HDC has gained popularity in

various domains, including natural language processing [53], [54], biomedical applications like

DNA pattern matching [103] and protein alignment [179] and robotics [154]. Despite its success,

the applicability of HDC for complex tasks like multi-label classification, which has real-world

applications in recommender systems and document classification, has not been explored.

Our research presents the first comprehensive exploration of multi-label learning prob-

lems utilizing HDC representations. We introduce three novel approaches that strike an optimal

balance between computational efficiency and accuracy. Our first approach, Power Set HD, is a
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transformation method that achieves exceptional accuracy and efficiency on datasets with small

label spaces and a limited subset of possible label combinations. For small datasets with larger

label cardinality (≥ 4), we propose One-vs-All HD, which reduces the exponential complexity

scaling of Power Set HD to a linear scale on the label set size, making it ideal for datasets with

label sizes up to 30. In addition, we present TinyXML HD, a neural approach to learning map-

pings between hypervectors by decomposing the problem into multiple sub-problems. TinyXML

HD fixes the output dimensionality of the model independent of the label size or cardinality,

making it an ideal candidate for extreme multi-label classification problems.

HDC leverages neurally plausible representations of data and associates abstract concepts

with high-dimensional vectors to perform complex cognitive tasks. The two fundamental

operations of HDC are ”bundling” and ”binding” [95]. Bundling (denoted by ⊕) is used to

represent multiple symbolic entities (hypervectors) using a single hypervector, while binding

(denoted by ⊗) associates one entity with another.

We leverage the Multiply Add Permute (MAP) architecture proposed by Gayler [55],

which uses bipolar representations for HDC. MAP represents data using high-dimensional

vectors X ∈ {+1,−1}D called hypervectors. Gayler demonstrated that by assigning hypervectors

with a conceptual meanin, we can represent conceptual relationships using these operators.

For example, the sentence ”Yoda is a Jedi and Leia is a princess” can be represented as

H = Yoda⊗ Jedi⊕Leia⊗princess. HDC also allows us to query and reason about expressions.

For instance, to find who is a Jedi, using the inverse operator ˜Jedi we can simply compose

H⊗ ˜Jedi≈ Yoda, which results in a hypervector that is approximately equal to Yoda.

Gradient-based neural methods have demonstrated tremendous success in various learning

tasks [115]. They provide a systematic approach to finding the minima of a function [178] and

can be efficiently computed provided the function is differentiable. The MAP framework uses

element-wise products or additions that are themselves differentiable, however, the quantization

step that follows is not differentiable. There are other HDC models with fully differentiable

operations such as Holographic Reduced Representations (HRR)[160] which have been studied
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by using a neural gradient-based approach in the context of multi-label classification like [49].

However, the HRR framework requires Fast Fourier Transform (FFT) operations which increase

complexity. The MAP model in contrast, uses simple operations that can be accelerated using

efficient bit-wise operations.

In [49], the authors utilized symbolic hypervectors to represent the labels and employed

neural methods to learn a mapping from the instance space to the label space. To simplify the

learning problem, we instead embedded both inputs and labels in the same high-dimensional

vector space, which can be learned more easily than mapping across different vector spaces

[67, 13, 14]. This is because the model does not need to learn complex transformations to map

between spaces, reducing the complexity of the learning problem. After embedding inputs and

labels as hypervectors in the same vector space, TinyXML HD learns a mapping between the

two using a 1-D convolutional neural network designed for processing hypervectors.

In this work we introduce three methods that show the potential of HDC to solve multi-

label classification problems across the entire spectrum of complexity - small, medium, and

large, as described below:

• The first approach, Powerset HD, is suitable for small-scale multi-label classification,

where each possible label combination is instantiated as a separate binary learning problem,

resulting in exponential scaling over label size. This approach yields high-accuracy models

that scale well for datasets with a few label combinations.

• The second approach, One-vs-All HD, is another transformation method that relaxes the

exponential scaling of Powerset HD to linear scaling over label size, resulting in models

that are efficient and accurate for datasets with a label set size of up to 30. Beyond this

limit, the training time increases significantly, making this method less suitable.

• For extreme-scale multi-label problems, we propose TinyXML HD, which utilizes a 1-D

convolutional neural network to learn hypervector representations. By having a fixed output

dimensionality independent of the label complexity, TinyXML HD achieves remarkable
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speedups in training. However, due to the relatively expensive convolution operations,

the first two approaches provide a better trade-off between computational efficiency and

accuracy for smaller size datasets.

• Through rigorous evaluations on real-world datasets, we demonstrate the superiority of

our proposed methods. Powerset HD and One-vs-All HD offer up to 60x speedup on

small-scale datasets, while TinyXML HD is 56x smaller compared to the state-of-the-art

on medium-scale datasets and up to 836x smaller on extreme-scale datasets, all while

maintaining comparable accuracy.

The rest of the article is organized as follows. We first review related work in 4.2,

highlighting the differences between our approach and existing methods. In section 1.1.1, we

provide an overview of HDC helpful for understanding the rest of the article. We split the

problem into two variants: micro multi-label classification and extreme multi-label classification.

We first tackle the micro multi-label classification in 4.3, where we discuss two simple problem

transformation techniques and examine their performance on trivial learning problems in 4.5.1.

We provide an overview of the Extreme Multi-Label Classification in 4.4, followed by Section

4.4.1 where we detail a new encoding method for representing text data as hypervectors. We then

present our novel HDC convolution operator and neuro-symbolic approach in 4.4.2, detailing its

formulation and demonstrating its effectiveness in Section 4.5.2.

4.2 Related Work

Hyperdimensional computing (HDC) is an emerging field that aims to address the limita-

tions of traditional computing paradigms by leveraging high-dimensional vector representations

to perform complex cognitive and machine learning tasks. This section presents a brief summary

of various HDC works, highlighting their contributions to both cognitive tasks and machine

learning tasks. We also present a brief survey of gradient based algorithms and multi-label

classification for the readers benefit.
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4.2.1 HDC for Cognitive & Learning Tasks

Kanerva introduced the foundational concept of a ”hyperdimensional computer”, which

efficiently stores and retrieves information using large, sparse binary vectors [92]. This model

exhibited robustness and efficiency in cognitive tasks, inspiring further research in HDC. Gallant

et al. explored HDC in natural language understanding and reasoning, successfully capturing

semantic relations in text and showcasing its potential for large-scale knowledge representation

[48]. Rachkovskij expanded HDC’s application to image processing and recognition, demon-

strating pattern recognition capabilities with high accuracy and noise robustness [166]. In [194]

Anthony et al. develops a theoretical framework for HDC and details the mathematical properties

of HDC encoding methods.

In recent years, hyperdimensional computing (HDC) has emerged as a promising

paradigm for machine learning, such as classification, regression, and reinforcement learn-

ing. Lai et al. employed HDC for classification tasks, developing a high-dimensional classifier

that achieved competitive performance with reduced computational complexity [112]. Imani et al.

applied HDC to regression problems, proposing a high-dimensional computing framework that

provided accurate and efficient regression models with minimized computational overhead [80].

Goudarzi et al. explored HDC in reinforcement learning, developing a state representation and

policy learning approach that demonstrated effectiveness in various environments [58]. Imani et

al. proposed HDCluster, an accurate clustering algorithm for high-dimensional datasets using

hyperdimensional computing [77]. In GENERIC [99], Khaleghi et al. proposed a novel and

efficient method for learning on edge devices using hyperdimensional computing for a wide range

of applications. The method utilizes hardware-friendly hyperdimensional vector representations

and an optimized training algorithm to reduce computation and storage requirements while

maintaining high accuracy. Guo et al. [61] proposed using hypervectors to represent users and

items and performs a set of associative and distributive operations on these vectors to compute

recommendations. The paper presents three different methods for generating recommendations,
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including one that combines hyperdimensional computing with matrix factorization. Asgarinejad

et al. [7] developed a method for epilepsy detection using EEG signals. They demonstrate using

real-world data that HDC approaches outperforms state-of-the-art methods like Support Vector

Machines (SVM) [203] and Convolutional Neural Networks (CNN) [114].

4.2.2 Gradient based HDC methods

Gradient-based methods in hyperdimensional computing (HDC) have garnered interest

due to their potential for addressing optimization challenges in high-dimensional spaces. These

methods extend the capabilities of HDC by incorporating gradient information to guide the

learning process. For instance, Frady and Sommer introduced a gradient-based HDC framework,

which allowed the use of optimization algorithms such as gradient descent and backpropagation

in HDC settings [46]. In a subsequent work, Frady et al. proposed a method for gradient-based

learning in HDC that utilized iterative projections and local linearizations to facilitate learning

in high-dimensional spaces [47]. Building upon these developments, Wang et al. presented a

gradient-based HDC algorithm for clustering and classification tasks, which employed a convex

optimization formulation to enhance HDC’s performance in these applications [207]. Moreover,

Su et al. developed a gradient-based HDC algorithm for deep learning, illustrating the potential

of gradient-based methods in improving the robustness and expressiveness of HDC models [188].

Recently, Zhou et al. presented a gradient-based HDC framework for unsupervised learning,

focusing on clustering and dimensionality reduction tasks [222]. These studies highlight the

increasing importance of gradient-based methods in HDC and their potential in addressing

various learning tasks in high-dimensional spaces.

While these methods have shown promise in addressing optimization challenges in high-

dimensional space, they introduce additional complexity in order to facilitate backpropogation

through the HDC operations. For example, Frady and Somer’s work involves iterative projec-

tions and local linearizations which can be expensive. Similarly Wang’s convex optimization

formulation for clustering and classification tasks can result in increased computational overhead
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[207]

Prior works have also explored the use Holographic Reduced Representations (HRR), a

family models for gradient based learning tasks. A notable attempt to capitalize on the symbolic

properties of HRR was made by Nickel et al. [151], who utilized binding operations to link

elements within a knowledge graph. Their approach served as an embedding mechanism that

merged two vectors of information without increasing the dimensionality of the representation,

as opposed to concatenation which doubles the dimension. In a more recent study, Liao and Yuan

[125] employed circular convolution as a substitute for standard convolution to decrease model

size and inference time, albeit without leveraging the symbolic properties inherent to HRRs.

Although Danihelka et al. [35] claimed to incorporate HRR into an LSTM, their methodology

simply augmented an LSTM with complex weights and activations, and did not genuinely

implement HRR due to the absence of circular convolution.

4.2.3 Multi-Label Classification

The seminal works of multi-label classification emerged in the early 2000s with the

introduction of the problem and initial approaches [201]. Since then a wide range of algorithms

and techniques have been proposed to tackle this problem such as problem transformation

methods [219], and ensemble methods [173, 134].

Among the various methods for multi-label classification, problem transformation meth-

ods have gained considerable attention. These techniques transform the multi-label problem

into one or more single-label problems, which can then be addressed using traditional machine

learning classifiers. One popular approach is the Binary Relevance (BR) method [198], which

independently trains a binary classifier for each label. Another problem transformation method

is the Label Powerset (LP) method [198], which treats each unique combination of labels as a

single class in a multi-class problem. To address the shortcomings of BR and LP, researchers

have proposed various ensemble and hybrid techniques. These include the Random k-Labelsets

(RAkEL) method [202], which constructs multiple LP classifiers on random label subsets, and
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the Classifier Chains (CC) method [174], which constructs a chain of binary classifiers while

preserving label correlations. Apart from problem transformation methods, other multi-label

classification techniques include algorithm adaptation methods, which modify single-label al-

gorithms to handle multi-label data directly. Examples of such methods are the Multi-Label

k-Nearest Neighbors (ML-kNN) algorithm [217], and the Multi-Label Decision Trees (MLDT)

[141].

Extreme multi-label classification (XML) is a specialized form of multi-label classifi-

cation, characterized by a large number of labels and instances. XML has attracted significant

research attention due to its relevance in numerous real-world applications, such as large-scale

document classification [17], image annotation [57], and gene function prediction [148]. Early

approaches for XML include the FastXML algorithm [163], PfastreXML algorithm [83], and the

Parabel algorithm [162]. Embedding-based methods, such as the SLEEC algorithm [17] and the

AnnexML algorithm [190], have also been proposed for XML.

Deep learning approaches have shown considerable promise in XML tasks. Convolutional

Neural Networks (CNNs) [128], Recurrent Neural Networks (RNNs) [149], and Transformer

models [39] have been adapted for XML problems, demonstrating improved performance

compared to traditional methods. Specifically, BERT [39] and its variants have been successfully

applied to large-scale text classification tasks.

4.2.4 Motivation and Our Contributions

In the existing literature on hyperdimensional computing (HDC), the majority of studies

have focused on small-scale learning problems. Ganesan et al. [49] examined the extreme

multi-label text classification task, but other works have yet to explore the scalability of HDC

techniques in addressing large-scale machine learning problems in real-world applications.

Our research aims to bridge this gap by investigating the application of HDC to a demanding,

industrial-scale learning problem.

SoA deep learning models for multi-label classification, such as LightXML [84] and
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X-Transformer [24], comprising millions of parameters, necessitate days of training to achieve

optimal performance. Our objective in this work is to examine HDC’s potential for reducing this

training time, thereby offering a more balanced trade-off between computational efficiency and

accuracy.

Ganesan et al.[49] proposed a method for extreme multi-label text classification that

replaces the final classification layer of AttentionXML[213] and XML-CNN[129] with a fully

connected layer that outputs a hypervector encoding the relevant label information for an instance.

While they demonstrated that their proposed method achieves accuracy similar to the baseline

implementations of AttentionXML and XML-CNN, there are two key areas to improve upon.

First, their method uses the HRR binding operation, which is a circular convolution requiring

Fast Fourier Transform[32], an expensive operation. Second, their method learns a mapping

from the instance space (represented as one-hot encoding) to the label space (represented as

HRR hypervectors), which is a harder learning problem requiring learning the projection across

the vector spaces.

In contrast, our approach is based on the Multiplicative Addition Perturbation (MAP)

model introduced by Gayler[53], which uses bi-polar representations with simple element-wise

arithmetic operations that can be easily accelerated and parallelized on hardware. Additionally,

we embed the inputs and labels both in the same high-dimensional vector space, thereby avoiding

the need to learn complex transformations across vector spaces. Our proposed neural approach for

learning high-dimensional representations not only avoids increased computational complexity

but also reduces the compute cost by a factor of 200.

4.3 Multi-Label OvA & PowerSet HD

Multi-label classification is a machine learning problem where an instance can belong to

multiple classes simultaneously. Mathematically, it can be defined as follows: Let x be a feature

vector representing an instance and y be a binary vector indicating the presence or absence of
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L possible class labels, where yi = 1 indicates the instance belongs to the ith class and yi = 0

indicates otherwise. The goal of multi-label classification is to learn a mapping function f (·)

that takes as input an instance x and outputs a binary vector of length L indicating the classes the

instance belongs to.

The complexity of this task can be influenced by various factors, such as the number

of labels, the label dependencies, and the label cardinality. To distinctly refer to the class of

problems with relatively small label spaces, we define a small scale variant of multi-label learning.

This variant deals with datasets where the label space is simple and the number of instances

is relatively small, resulting in label set sizes of less than 100. In Section 4.4 we discuss the

characteristics of the most challenging variant of multi-label classification that focuses on very

large problem sizes. Our prior work [147] laid the foundations of hyperdimensional multi-label

classification by combining HDC with two well studied problem transformation techniques,

One-vs-All[224] and Label Powerset[133], to solve micro size problems.

Problem transformation methods[172, 42, 198] have been proposed where the original

multi-label problem is transformed into multiple single-label problems. Each transformed

problem corresponds to one of the L class labels and involves training a binary classifier to

distinguish instances that belong to that class from those that do not. The output of each binary

classifier is then combined to obtain the final multi-label prediction. These methods can be

further classified into three categories: 1) One-vs-All[224], 2) Label Powerset[133], and 3)

Classifier Chains[172], each with their own advantages and disadvantages. We consider the first

two methods due to their simpler nature which is appropriate for the micro size problems.

PowerSet & OvA HD involve learning multiple binary classifiers, and hence, share a

common implementation strategy. The difference between the two approaches lies in the way the

class hypervectors are set up. We begin by encoding each instance in the dataset into a symbolic

hypervector using Random Projection Encoding [194] as explained in Section 1.1.1. We then

perform one-shot learning, which involves learning the centroid hypervectors, followed by

iterative fine-tuning, as detailed in Section 1.1.1. The specific differences between the powerset
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and OvA approaches in this implementation are explained below.

4.3.1 PowerSet HD

The label powerset transformation method defines each unique combination of labels

as a distinct class, represented by a binary class vector. This makes it possible to use standard

single-label classification algorithms to train models on multi-label data. Formally, given an

instance x with L possible class labels, this method creates a new binary class vector y of length

2L, representing all possible label combinations. For each unique combination of labels C j, a

binary label is assigned based on whether the combination is a subset of the original class labels

of the instance x, as shown in Equation 1:

yi =


1 if S j ⊆Ci

0 otherwise
(4.1)

where C j ⊆ y indicates that the class combination C j is a subset of the original class labels of the

instance x. For example, if an instance has three possible class labels A, B, and C, then there are

23 = 8 possible combinations of labels: { /0,A,B,C,AB,AC,BC,ABC}.

While the label powerset method is simple and easy to understand, it suffers from the

issue of class imbalance and scaling with the number of class labels, making it less practical for

problems with large numbers of class labels. Nevertheless, it is still widely used as a baseline

method for evaluating the performance of other more advanced multi-label learning methods.

To implement power set transformation with HDC, We create a centroid hypervector

for every label combination resulting in 2L centroid hypervectors. Retraining is done on each

centroid hypervector individually as an independent binary classifier. During inference, we

encode the test instance and compare it with each of the centroid hypervectors using a similarity

check function. The closest centroid indicates the relevant label combination.

Compute Realization Cost of PowerSetHD: To estimate the storage size of the HDC
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model, we need to calculate the total number of hypervectors required to represent all possible

label combinations, and then multiply that by the size of each hypervector in bits. The number

of possible label combinations for a dataset with L labels is 22L, since each label can either be

present or absent in a given combination. Let’s consider the case of Delicious dataset where

number of labels is L = 983, then the number of possible label combinations is 2983. To

represent each hypervector as a 16-bit integer, we need 16 bits or 2 bytes per element. Since

each hypervector has 1024 elements, the size of each hypervector in bytes is 2×1024 = 2048

bytes. Multiplying the number of hypervectors by the size of each hypervector gives us the total

storage size required for the HDC model: 2983×2048 bytes/hypervector, which is equivalent

to 1.4×10269Terabytes. This is an enormous amount of storage, far beyond what is currently

feasible with modern computing technology. It highlights the scalability issues of the label

powerset method, which becomes impractical for problems with large numbers of class labels.

In addition to this high RAM requirements, to get the full ranking we would have to evaluate

2983 classifiers which would take many CPU cycles for even a single data point.

4.3.2 One-vs-All (OvA) HD

One-vs-all is a problem transformation method used in multi-label classification where

the problem is transformed into multiple binary classification problems. In this method, a

separate binary classifier is trained for each label, where each classifier predicts whether the

instance belongs to the corresponding label or not. Formally, given an instance x with L possible

class labels, the one-vs-all method creates L separate binary class vectors y1,y2, ...,yL of length 2

that represent the presence or absence of each class label. For each binary classification problem

i, a binary label is assigned as follows:

yi =


1 if y j = i

0 otherwise
(4.2)
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where y j is the label vector of the instance x. Given an instance x with L possible class labels, the

OVA method creates L binary class vectors y1,y2, ...,yL, where yi indicates whether the instance

belongs to the ith class or not. The ith classifier is trained using the binary class vector yi as the

target variable, and the output of the ith classifier is interpreted as the probability of the instance

belonging to the ith class.

The one-vs-all method is computationally efficient and scales well with the number of

class labels, making it suitable for larger-scale multi-label classification problems. However,

it suffers from the issue of label correlation as it treats each label independently, ignoring any

correlations that may exist between them.

OvA HD approach involves the creation of two centroid hypervectors for each label,

resulting in 2L labels. The two hypervectors for each class denote the positive and negative

associations of that label. Together, the pair of hypervectors represent the binary classifier for a

single label. During inference, we encode the test instance and evaluate it using our L binary

classifiers, each of which predicts the relevance of its corresponding label. The predictions of all

classifiers are then combined to give the final inferred label vector.

Compute Realization Cost of OvA HD: For the OvA HD approach, we need to create

two centroid hypervectors for each label, resulting in 2L labels. For the example of Delicious

dataset, there are 983 labels, so we need to create 1966 hypervectors in total. For a hypervector

dimensionality of 1024, each hypervector will require 256 bytes of storage. Therefore, the total

storage required for loading the HDC model can be calculated as 1966 hypervectors ×256 bytes

which is 491.5 kilobytes, which is significantly smaller than PowerSetHD.

The complexity analysis for classifying a single data point using HDC depends on the

number of labels and the dimensionality of the hypervectors. Since we are using the OvA HD

approach with 983 labels and a hypervector dimensionality of 1024, the time complexity for

classifying a single data point can be expressed as O(LD), where L is the number of labels and D

is the hypervector dimensionality. In practice, the complexity may be higher due to the need to

compute distances between the test instance and all hypervectors, as well as the need to combine
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the predictions of all binary classifiers. However, the OvA HD approach is computationally

efficient and scales well with the number of class labels, making it more suitable for larger-scale

multi-label classification problems compared to PowerSet HD.

4.4 TinyXML HD:
Extreme Multi-Label Classification

Extreme multi-label classification (XMLC) [18, 51] represents a challenging variant of

multi-label classification, where the task involves predicting a large number of labels for each

instance in a dataset. The scale of the label space in XMLC can range from thousands to millions,

making it extremely challenging for traditional multi-label classifiers to handle efficiently. This

presents significant scalability and computational challenges, particularly compared to small

multi-label classification problems, such as those described in the previous section, where the

label set is relatively small. One specific variant of XMLC that has gained traction in various

real-world applications, such as text categorization [201] and recommendation systems [180],

is Extreme Multi-Label Text Classification (XMTC) [164]. The goal of XMTC is to classify

documents into a potentially large number of labels. In the rest of this paper, we describe

TinyXML HD, which solves XMTC problem by leveraging hyperdimensional representations.

4.4.1 Hypervectors for Textual Data

The XMTC datasets offer text data in two forms: bag-of-words representation or raw-text.

The bag-of-words (BoW) is a widely used text representation approach in natural language

processing (NLP) that represents a document as a collection of words with the frequency of

their occurrences, disregarding the order of the words. In our TinyXML HD, if raw-text data is

available, we leverage the Word2Vec [142, 143] embeddings for representing text; otherwise, we

use bag-of-words. TinyXML HD BoW encoding projects BoW feature vector into a hypervector

using Random Projection Encoding [194], as described in Section 1.1.1.

Raw text data poses a challenge. A simple and meaningful strategy is to consider the
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compositional distributional semantics approach. Compositional distributional semantics is a

method of representing the meaning of a sentence as a function of the meanings of its constituent

words. This approach is based on the distributional hypothesis, which posits that words that

appear in similar contexts tend to have similar meanings [64]. Given a sentence S consisting of n

words, represented as d-dimensional vectors w1,w2, ...,wn, we can combine these vectors using

a composition function f to obtain a sentence vector s:

s = f (w1,w2, ...,wn) (4.3)

The composition function f takes the word vectors as input and returns a single vector repre-

senting the meaning of the sentence. There are various ways to define the composition function,

such as averaging the word vectors and concatenating them[144, 184].

One approach for representing a sentence as a composition of words is to assign random

symbolic hypervectors to each word in the dataset and then use compositional distributional

semantics to obtain a sentence vector. Previous studies [90, 54] have employed this approach

with varying degrees of success in various NLP tasks. However, a key issue with this approach

is that it ignores the structural relationships between words. Models like word2vec [142, 143]

address such issues by generating vector representations that capture semantic relationships

between words in a meaningful way.

Word2Vec embeddings for TinyXML HD: We leverage Word2Vec with Hyperdimen-

sional encoding for learning in TinyXML HD. Word2Vec is a powerful method for creating

distributed vector representations of words that capture semantic and syntactic aspects of natural

language processing tasks [142, 143]. Traditional approaches to representing words rely heavily

on sparse one-hot vector representations, which are high-dimensional and lack the ability to

capture the subtle nuances of word meanings. In contrast, Word2Vec’s distributed vector repre-

sentations encode semantic relationships between words by placing words with similar meanings

closer together in the vector space [142, 143].
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To encode an instance in TinyXML HD, we first obtain the Word2Vec embeddings of

all its constituent words. We then project these embeddings into hypervector using Random

Projection encoding described in Section 1.1.1. Finally, to employ compositional distributional

semantics, we bundle (⊕) the resultant hypervectors into a single hypervector that represents

an instance. As mentioned in Section 1.1.1, Random Projection Encoding preserves the eu-

clidean distance, so this enables the generation of symbolic hypervectors that capture semantic

information between words through their cosine similarity scores, resulting in expressive high-

dimensional representations. Consequently, hypervectors for words that are similar will be

proportionally similar and those of semantically dissimilar words would be dissimilar. In

this way we are able to capture the complex relationships between words and obtain a richer

representation that conveys more information about their semantic context.

TinyXML HD Label Representation: We leverage HDC algebra to map and combine

multiple labels in hyperdimensional space. Let L be the number of labels or symbols in the

dataset, and H D be a D-dimensional hyperdimensional space with H = {+1,−1} for the MAP

HDC model. We map each label to a hypervector in this space. The initialization of the label

space Y1...L involves assigning a random hypervector from a Binomial distribution to each

label. Specifically, we initialize each label Yi by sampling from B(0.5) · 2− 1. To obtain a

high-dimensional representation of a label, we bundle the corresponding hypervectors of the

labels present for an instance, denoted by Y p. We then combine these hypervectors using the

hyperdimensional operator ⊕ to obtain a single hypervector representation for the instance xi,

given by Eq. (4.4.1). This operator is commutative, which allows us to bundle the hypervectors

in any order without affecting the final result. yi =
⊕

j∈Y p Y j

4.4.2 Learning with TinyXML HD

With both the inputs and outputs embedded in the same high-dimensional space, the next

step is to learn a mapping f : xi ∈H → yi ∈H , where xi is the input hypervector and f outputs

the hypervector that represents all the labels present for that instance. In this section, we present
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our proposed neural network based approach to learn this mapping function f . Our proposed

approach presents a linear formulation over the HDC operators of binding and bundling, which

allows for effective and efficient optimization using gradient-based methods.

Objective formulation: We decompose the original learning problem into multiple

sub-problems to enhance its learnability. Let’s consider an example where we break down the

learning problem into two sub-problems, which we rewrite as

f :H1 ∈H D→H2 ∈H D (4.4)

f = f1( f2) (4.5)

f1 :H1 ∈H D→Hx ∈H D (4.6)

f2 :Hx ∈H D→H2 ∈H D (4.7)

where f1 maps the input instance to an intermediate hypervector Hx, and f2 maps Hx to the

output label hypervector H2.

We define f1 and f2 using the HDC arithmetic operations of binding and bundling. In

particular, we parameterize f1 as

f1 =H1⊗Hconv1 (4.8)

where Hconv is a hypervector to be learned. Similarly, we define f2 as

f2 =Hx⊗Hconv2 (4.9)

This approach considers the mapping between two hypervectors as a series of geometric transfor-

mations where the input hypervector is bound sequentially with the intermediate hypervectors

induced by the sub-problems. The hyperparameters of the number of sub-problems to induce and

the dimensions of the learned hypervectors are chosen based on the complexity of the dataset.
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Figure 4.1. ConvHD Operator

1D Convolutions as Hypervector Operators: In developing a neural architecture, it

is crucial to adhere to the principles of high-dimensional computing (HDC), which dictate that

representations should be distributed, with individual coordinates devoid of semantic information.

Consequently, our neural architecture should interpret inputs as distributed representations

rather than feature vectors containing discrete semantic entities. To achieve this, we use one-

dimensional convolutional operators as hypervector operators. A one-dimensional convolution

involves applying a filter across an input, using a single set of weights to process the entire

hypervector. This operation treats each vector region independently with the filter, synthesizing

a vector that encapsulates information from the input. In contrast, a fully connected (FC)

network utilizes an interconnected network of connections to process all coordinates of the input

vector, treating the coordinates as dependent entities, which contravenes the principles of HDC

representations.

Figure 4.1 details the architecture and operations of our proposed ConvHD block. Our

ConvHD block consists of three layers parameterized by C, which represents the expansion

factor and F , the filter size. The block consists of three convolutional layers: the first layer (X1)

takes input hypervectors and generates C hypervectors, the second layer (X2) processes these C

hypervectors to produce C/2 hypervectors, and the third layer (X3) combines these C/2 vectors
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into a single hypervector. A single convolutional unit can be defined as follows:

g :H D→H D (4.10)

g =X3 tanh(X2 tanh(tanh(X1Hinput))) (4.11)

The ConvHD block is be represented by:

ConvHD = g(Hinput)⊗Hinput (4.12)

Hence a model f using 2 ConvHD blocks is represented by:

f =H D→H D (4.13)

f =ConvHD
(
ConvHD(Hinput)

)
(4.14)

We formulate the sub-problems as a single learning problem, where we optimize the parameters

X1, X2, X3 using gradient-based methods. To enhance our architecture, we incorporate the idea

of dilated convolutions [214] to increase the receptive field of the convolutional layers [30]. We

also set the filter size F to be large, approximately a quarter of the hypervector dimensionality D.

These details are crucial, as they increase the effective receptive field with every 1-D convolution

operation. That is, they increase the number of hypervector coordinates in the input that influence

the synthesis of a single coordinate in the output of the last convolution layer. By using a large

filter size, we increase the number of coordinates in the input hypervector that are considered to

produce a single coordinate in the resultant hypervector. Similarly, dilation helps to increase the

receptive field by allowing deeper layers to infer coordinates based on a larger area of the input

hypervector. Since the ConvHD operator uses three 1-D convolutional layers, the receptive field

increases progressively with each layer looking at a larger section of the input hypervector to

make a decision.
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The expansion factor C spawns more sub-problems parallely. For instance, in the above

example of breaking down the learning problem into 2 parts, if we set C = 2, then each layer

estimates 2 sets of sub-problems. The first layer will parallely solve two sub-problems similar to

Equation 8 and similarly the second layer will solve two sub-problems similar to Equation 9.

The results of the 2 sub-problems will then be combined through the bundling operation.

In order to learn the mapping to solve these sub-problems, we use the loss function

detailed in [49], which aims to minimize the cosine distance between the predicted hypervector

and the ground-truth label hypervector.

4.5 Evaluation of OvA, PowerSet & TinyXML HD

This section of our research paper presents the results of our proposed multi-label

classification approach on various real-world datasets. Through a series of experiments, we

demonstrate the trade-off between compute efficiency and accuracy of our approach across

a range of complexity levels, from small-scale (less than 20 labels) to extreme-scale (greater

than 5000 labels). Our findings indicate that, in low-complexity scenarios with datasets of low

cardinality, the One-vs-All HDC approach achieves high accuracy and efficiency. Conversely,

the PowerSet HDC approach provides poor trade-offs, yielding benefits only when the label

cardinality is very low, with efficiency degrading exponentially as complexity increases.

We evaluate the effectiveness of our proposed approach, TinyXML HD, on extreme size

datasets. Our experiments demonstrate that TinyXML HD produces models that are 231x-836x

smaller than state-of-the-art models while still achieving reasonable accuracy. Furthermore, our

approach can efficiently train on large text datasets in just a few hours providing a speed up of up

to 16x. These results highlight the potential of our proposed approach for solving extreme-scale

multi-label classification problems while greatly reducing the computational resources required.

We evaluate the small scale problems on an Intel Xeon 24-core CPU while for the larger

datasets we use a single Nvidia V100 GPU.
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4.5.1 Evaluation of OvA & PowerSet HD

OvA and PowerSet HD Experimental Setup: We tested our OvA HD and PowerSet HD

multi-label methods on smaller size datasets by running on an optimized C++ implementation

on an Intel Xeon 24-core CPU. We compare our HDC-based methods with multi-label versions

of k-nearest neighbors (kNN) [217], Sequential Minimal Optimization – SMO[161], C4.5[165],

and Naive Bayes – NB[217], all of which are appropriate for smaller datasets. We utilized

Java-based open-source Mulan [200] multi-label package with 3 small datasets for comparison:

Genbase [135] contains protein classes of 27 most important protein families, with 662 samples,

each with 1186 attributes.

Scene [113] contains images with their characteristics and classes. One image can belong to up

to 6 categories. It has 2407 samples, each with 294 attributes.

Yeast [43] has information about a set of yeast cells. The task is to determine the localization

site of each cell amongst 14 possible sites. It has 2417 samples, each with 103 attributes.

OvA and PowerSet HD Accuracy: Figure 4.2 shows that OvA and PowerSet HD

achieve comparable accuracy to state-of-the-art multi-label classifiers. PowerSet HD consistently

outperforms state-of-the-art methods on all three datasets. OvA HD is slightly less accurate on

the Genbase dataset but performs better on the Scene and Yeast datasets, likely due to their better

separability of HD space compared to low-dimensional space.

OvA and PowerSet HD Performance & Efficiency: While PowerSet HD achieves

higher accuracy, Figure 4.2 demonstrates that this comes at a significant cost in terms of execution

time. This is due to the exponential increase in class hypervectors as discussed earlier. Figure

4.2 also shows that both OvA and PowerSet HD training are significantly faster than most other

multi-label classifiers, with OvA HD being 60.8 times faster on average. PowerSet HD is only

3.5 times slower than OvA HD on datasets with a large portion of label combinations. Power Set

HD is 24 times faster than state-of-the-art multi-label classifiers on average, or approximately

two times slower than OvA HD, but offers 13% higher accuracy. For small datasets, where only
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Figure 4.2. Efficiency of training

a small subset of possible label combinations appear in the dataset, PowerSet HD can potentially

be more efficient and accurate. However, for datasets with more number of possible label

combinations, OvA HD is the clear choice as it offers a trade-off between compute efficiency

and accuracy compared to PowerSet HD. These results indicate that the OvA HD approach is an

ideal candidate for small scale multi-label classification tasks.

4.5.2 Experimental setup for TinyXML HD

We evaluated TinyXML HD HD on real-world, large-scale datasets from Extreme Multi-

Label Text Classification (XMTC). Our objective is to maximize the compute efficiency of

learning while achieving comparable precision to the state-of-the-art. For the XMTC dataset, we

evaluate our proposed TinyXML HD on Nvidia V100 GPU.

Evaluation metrics: We consider Precision@k with k = 1,3,5 as our metric for evaluat-

ing the performance of TinyXML HD on multi-label classification, where k represents the top k

predictions. This is a widely accepted and used evaluation metric by other works in literature

[24, 84]. In addition, we evaluate the computational efficiency of TinyXML HD against the
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Table 4.1. Dataset Metadata

Dataset Feature # Labels # Train # Test Avg. Points per Label

Mediamill [183] BoW 101 30,993 12,914 1902.15
Bibtex [97] BoW 159 4,880 2,515 111.71
Delicious [199] BoW 983 12,920 3,185 311.61
Eurlex-4K [118] Text 3,993 5,000 3,993 25.73
Wiki10-31K [227] BoW & Text 30,938 14,146 6,616 8.52
Amazon-13k [137] Text 13,330 1,186,239 306,782 448.57

following start-of-the-art models: XT [4], Bonsai [25], SLEEC [17] and Parabel [221] for BoW

datasets. For Raw text datasets, we consider these SoA models: AttentionXML [213], LightXML

[84] and X-Transformer [24]. Given that previous research has not given a comprehensive ac-

count of the compute cost associated with these models, it is difficult to establish a standardized

metric for comparison. To address this issue, we have considered two distinct metrics: the count

of trainable parameters and the training time. The former serves as an indicator of the cost of

training, since a model with a higher parameter count requires more gradients to be calculated

and optimized, and is also indicative of greater model size. The latter is a direct measure of the

time required to train the model. These two metrics offer a meaningful evaluation of compute

cost in the context of real-world applications.

Datasets: In order to evaluate the expressiveness of our high-dimensional representations

of text data, we select six datasets from Extreme Multi-Label Text Classification (XMTC) dataset,

a widely accepted benchmark in literature [164, 49, 117, 18]. The datasets are described in

Table 4.1. In addition to the scalability and computational challenges, the XMTC dataset poses

an additional challenge which is the label sparsity issue. Bhatia et al [18] divided the datasets

according to the number of labels per sample into small scale and large scale. Small scale

datasets contain at most 5000 labels. Although pre-processed BoW features are available for all

datasets, the original text is not. Consequently, we use the original text when available and BoW

for all others.

TinyXML HD HD Architecture Specifics: We use Random Projection Encoding
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as discussed in Sec. 1.1.1 for BoW feature representations, while for raw text datasets, we

utilize the combination of Random Projection Encoding with Word2Vec as described in Sec.

4.4. We employ ConvHD blocks with expansion factor C = 128, filter size F = 255 with

dilation set to 7 and a hypervector dimensionality of 1024. To optimize the model, we use

the loss function proposed by Ganesan et al. [49] but we remove the negative loss component,

which was intended to ensure that the output hypervector from the model f (.) is orthogonal

to the labels that are not present for that instance. Since all labels are initialized with random

hypervectors that are orthogonal to each other, enforcing the similarity to the present labels alone

will automatically satisfy the orthogonality condition with the labels not present. Therefore, we

only retain the positive component in the loss function, and we discard the additional positive

p vector used in [49] as it does not improve results. The final loss function is as follows:

L = ∑cp∈Y p(1− cos(yi,cp)) where yi is the final hypervector output by our model f (xi) for

the i-th instance, and cp represents a present label. The loss function aims to minimize the

cosine distance between yi and all present labels, thereby encouraging the model to produce a

hypervector that is more similar to the labels that are present in the instance.

Comparison baselines: Our evaluation comprises two parts, with datasets divided by

the type of features used. We consider different baselines for each part. For BoW datasets,

we benchmark against other state-of-the-art models that use the same features, such as Bonsai

[25], Parabel [221], and PFastreXML [87]. For raw-text datasets, we compare TinyXML

HD’s performance against state-of-the-art deep learning approaches, including AttentionXML

[213], X-Transformer [24], and Light-XML [84]. These deep learning models employ powerful

architectures like transformers, with hundreds of millions of parameters, enabling them to

extract highly expressive embeddings from text data. As a result, TinyXML HD is inherently

disadvantaged due to the significant disparity in parameter count. The primary objective of this

research is to optimize size, speed and accuracy tradeoffs of such constrained HDC models to

evaluate their viability as a lightweight paradigm. Hence, we aim to achieve reasonable accuracy

with respect to the state-of-the-art, within a 10% margin.
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Table 4.2. TinyXML HD on Small Scale Multi-Label Classification (normalized to TinyXML
HD)

Model
Genbase [135] Scene [113]

Acc # params Train time Acc # params Train time

TinyXML HD 100 1 1 76.0 1 1
PowerSet HD 99.5 30.4K 0.54 84.2 1.99 0.14

OvA HD 89.1 1.677 0.6 81.9 0.03 0.12

4.5.3 Evaluation of TinyXML HD HD

TinyXML HD, PowerSet & OvA HD Comparison: To gain insight into the trade-off

between performance and accuracy, we have evaluated TinyXML HD on small-scale multi-label

classification tasks. In this study, we compare the performance of TinyXML HD to that of

PowerSet and OvA HD on three small datasets, as described in Section 4.5.1. Given the lower

complexity of the task at hand, we have scaled down TinyXML HD by utilizing a depth of 1,

a block size of 8, and a filter size of 255. As the datasets used have low cardinality, we have

evaluated our approaches using overall accuracy since the precision@K metrics are inapplicable

for K = 3,5, due to the limited number of labels per instance. In addition, considering the low

complexity of the task, we evaluate performance only on CPU and do not use any specialized

hardware for acceleration.

Our results in Table 4.2 show that TinyXML HD gets 100% accuracy on Genbase[135].

The performance drops by 8% on Scene[113] and 3% on Yeast[43]. The most likely reason for

the lower accuracy on the two datasets is the scarcity of training data. Problem transformation

techniques were trained faster than TinyXML HD, despite the latter’s smaller size. The only

exception to this was the Yeast[43] dataset, on which TinyXML HD was significantly faster

(1.2x over OvA HD and 7.4x over Power Set HD). This is due to the disparity in label cardinality

across the datasets. Genbase[135] and Scene[113] have label cardinalities of 1.25 and 1.07,

respectively, meaning that only a single centroid vector needs to be updated for Power Set HD

and OvA HD. However, the Yeast[43] dataset has a label cardinality of 4.2, requiring OvA
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HD to update 4 centroid hypervectors while Power Set HD needs to update 24 = 16 centroid

hypervectors for each instance, resulting in increased training time.

The higher training time of TinyXML HD can be attributed to the convolution operations,

which are computationally intensive compared to the HDC operations of bundling, binding,

and similarity check used by the transformation methods. These operations reduce to simple

element-wise additions and multiplications, making them easier to compute. Consequently,

Power Set HD and OvA HD can be easily parallelized and accelerated in hardware, while the

convolution operation of TinyXML HD would be harder to accelerate.

The dissimilarity in parameter count between the models is attributed to their respective

architectures. The parameter count for PowerSet HD increases exponentially with the size of the

label set. Conversely, the parameter count for the OvA HD scales linearly with the label set size,

resulting in a parameter count that is twice the size of the label set for our implementation of

the one-vs-all classifier. In contrast, TinyXML HD leverages only one hypervector to represent

each label, with the additional parameters solely corresponding to convolution filters. These

parameters are minimal in comparison to the label set size, further underscoring the efficiency of

the TinyXML HD architecture.

The current study has revealed that the HDC-based problem transformation approaches

offer a significantly superior trade-off between training time and accuracy for small-scale multi-

label classification tasks compared to TinyXML HD. Specifically, for datasets where only a

limited subset of possible label combinations appear in the dataset, PowerSet HD exhibits the

potential to be both more efficient and accurate. In contrast, for datasets with a larger number

of possible label combinations, albeit less than at the extreme scale, OvA HD proves to be a

more promising candidate. While TinyXML HD boasts a smaller parameter count, the parameter

count of OvA HD remains comparable and is sufficiently small for the complexity scale under

investigation.

Due to linear and exponential scaling of PowerSet HD and OvA HD, these methods

are unsuitable for extreme-scale multi-label classification tasks. PowerSet HD is too large
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Table 4.3. Multi-Label Classification Performance on BoW datasets: Comparison with State-of-
the-Art

Dataset Ours FastXML [59] PfastreXML [28] SLEEC [17]

Medialmill [183]
p@1
p@3
p@5

82.1
64.4
50.0

83.5
65.7
49.9

84.2
67.3
53.0

84.0
67.2
52.8

Delicious [199]
p@1
p@3
p@5

62.7
55.7
51.4

69.6
64.1
59.2

67.1
62.3
58.6

67.5
61.3
56.5

Wiki10-31K [227]
p@1
p@3
p@5

80.8
50.5
44.3

83.0
67.47
57.7

83.5
68.6
59.1

85.8
72.9
62.7

Table 4.4. Multi-Label Classificaiton Performance on Real Text Datasets: Comparison with
State-of-the-art

Dataset TinyXML HD AttentioinXML [213] XTransformer [63]

Eurlex-4K [118]
p@1
p@3
p@5

61.3
51.8
43.7

87.1
73.9
61.9

87.2
75.1
62.9

Wiki10-31K [227]
p@1
p@3
p@5

83.3
66.2
60.7

87.4
78.4
69.3

88.5
78.7
69.6

Amazon-13K [137]
p@1
p@3
p@5

86.2
60.4
44.6

95.9
82.4
67.3

96.7
83.8
68.5

to implement, while OvA HD takes too long to train. We next evaluate TinyXML HD on

extreme-scale multi-label classification.

TinyXML HD Multi-label Accuracy: We investigate the performance of TinyXML

HD on extreme scale datasets next. Table 4.3 presents the performance of TinyXML HD along

with its respective baselines on the BoW dataset. Our findings reveal that for Mediamill and

Wiki10-31K BoW, TinyXML HD’s precision at top one (p@1) is within 5% of the state-of-the-art

(SoA). However, we note that barring Mediamill, precision at top three (p@3) and precision at

top five (p@5) is lower across all datasets when compared to the SoA.
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(a) Wiki10-31K (BoW): Loss
vs Iteration (b) Delicious: Loss vs Iteration

(c) Wiki10-31K (Text): Loss vs
Iteration

(d) Wiki10-31K (BoW): Preci-
sion vs Iteration

(e) Delicious: Precision vs Iter-
ation

(f) Wiki10-31K (Text): Preci-
sion vs Iteration

Figure 4.3. Loss and Precision vs Iteration for Three Datasets

Table 4.4 shows the performance of TinyXML HD and its respective baselines on the

raw text datasets. Our findings reveal that TinyXML HD’s precision is relatively lower for

these datasets. While we observe that TinyXML HD achieves comparable performance on the

Wiki10-31K dataset, the precision drops for Amazon-13k by 9%. As we attempt to retrieve more

labels from the hypervector, the retrieval becomes less robust. Considering that Wiki10-31K has

31,000 labels with only 8 samples per label available, the performance of TinyXML HD (83%) is

remarkable. While the performance of TinyXML HD is not extraordinary compared to the state-

of-the-art, it is remarkable considering the fact that TinyXML HD relies on a simple encoding

scheme. In contrast, the state-of-the-art models employ highly complex architectures with

millions of parameters. This observation validates the potential of HDC to provide expressive

representations of data at extraordinarily low compute costs. Moreover, unlike other models

where the model size scales almost linearly with label size, TinyXML HD ensures that the output

size of the model is fixed to the dimensionality of the hypervector D independent of label set

size.
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(a) ROC Curves for 10 different labels
(b) Probability distribution of AUC values of all
Delicious labels

Figure 4.4. (Left) ROC plots for 10 different labels (Right) Density of AUC values across all
labels from the Delicious dataset considering each label as a binary classification problem

TinyXML HD Convergence: Figure 4.3 showcases the convergence plots of TinyXML

HD on three distinct datasets: Wiki10-31K (BoW) [227], Delicious [199], and Wiki10-31K

(Text) [227]. When examining the BoW datasets, namely Wiki10-31K [227] and Delicious

[199], a notable trend emerges. The loss function exhibits a smooth decrease, punctuated by

a slight, yet discernible, initial drop for Wiki10-31K. In stark contrast, the Wiki10-31K (Text)

variant converges in fewer than 30 epochs and seemingly starts to overfit, but, the precision plots

provide further insights into this phenomenon. While P@1 and P@3 seem to have converged, a

closer analysis reveals that P@5 continues to improve. This observation suggests that the model

is still assimilating new information from the data. Although unable to enhance P@1 and P@3

further, the model’s focus shifts to effectively ranking two additional labels.

TinyXML HD ROC and AUC For the readers’ benefit, we also provide additional

insights in the form of Receiver Operator Characteristics (ROC) Curves in Fig. 4.4a and the

corresponding Area Under the Curve (AUC) values as shown in Fig.4.4b. Although these metrics

are typically employed for evaluating multi-class classifiers, considering mutually independent

labels, we adapt them to our multi-label setting by treating each label as an independent binary

classification problem. Due to computational constraints, we focus on the Delicious dataset for

these metrics, as it contains a large number of labels. To ensure plot coherence, we present the
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ROC curve for 10 randomly selected labels. Furthermore, in order to comprehend the AUC, we

visualize the distribution of AUC values obtained for each label across the dataset’s 983 labels.

These results show expected accuracy when treating multi-label problem as an independent

binary classification problem.

TinyXML HD Overfitting To address the issue of overfitting, we explored the utilization

of BatchNorm-2D [82], L1/L2 Regularization, and Dropout techniques [185]. However, neither

of these approaches proved to be effective. Additionally, we conducted experiments to further

reduce the parameter count, but since the model already consisted of only 2.5M parameters, any

additional reduction led to a decrease in accuracy.

TinyXML HD Robustness To briefly examine the ability of the method to perform

when few labels are missing, for every sample we dropped one label with probability p. Our

experiments show that up to p = 0.2 there is no accuracy degradation, showing robustness of

TinyXML HD.

TinyXML HD Computing Efficiency: We compare the efficiency of TinyXML HD

to the following state-of-the-art models: XT [4], Bonsai [25], SLEEC [17] and Parabel [221].

Table 4.6 compares the training time and model size of TinyXML HD against the state-of-the art

listed above on the Wiki10-31K BoW dataset. Remarkably, TinyXML HD trains in 10 mins with

a minuscule model size of 19.8MB while achieving comparable precision on the dataset. We

observe that TinyXML HD is 6.5x smaller than the smallest SoA (Bonsai [25]) and 56x smaller

than the largest SoA (SLEEC [17]). Methods such as Parabel [221], Bonsai [25] build multiple

probabilistic label trees and perform classification on each node which becomes computationally

expensive very quickly. Consequently, TinyXML HD is 1.25x quicker than the fastest SoA

(Parabel [221]) and 4x quicker than the slowest SoA (Bonsai [25]).

Raw text training time and the number of parameters needed for Amazon-670K dataset

is shown in Table 4.5. All the deep learning models necessitate several days to train on this

extensive dataset. In stark contrast, TinyXML HD showcases a remarkable training speed of

merely six hours, even though the dataset has over 670K labels and 130K training samples.
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Table 4.5. Raw text model size & training time

Model Model size Training time

AttentionXML [213] 16.56 GB 26.30 hrs
Xtransformer [24] >5GB >35 hrs [84]
LightXML [84] 4.59GB 28.75 hrs
TinyXML HD 19.8MB 6 hours

TinyXML HD provides a speedup of 4x over the fastest SoA (AttentionXML [213]) and 16x over

the slowest SoA (X-Transformer [24]) This exceptional speedup can be attributed to two crucial

factors. First, the deep learning models rely on complex transformer models like BERT and

RoBERTa, to extract highly expressive feature embeddings from data. In contrast, TinyXML HD

employs a simple encoding scheme, that decomposes into highly parallelizeable operations. The

bulky feature extractor is replaced by our lightweight HDC-based encoding, which demonstrates

the expressiveness of these representations when used to encode relevant features. Second,

the output dimensionality of deep learning models typically scales with the label set size (L).

However, TinyXML HD ensures that the output size of the model is fixed to the dimensionality

of the hypervector (D), where D << L, irrespective of the label size. This unique feature allows

for the reduction of the number of trainable parameters, thereby improving training efficiency

and reducing the computational load.

These results clearly demonstrate the strength of HDC when it comes to computational

cost of learning. HDC has enormous potential to make learning computations tractable and to

dramatically cut down on training time with good accuracy. TinyXML HD is 836x smaller than

the largest SoA (AttentionXML [213]) and 231x smaller than the smallest SoA (LightXML

[84]). Considering that X-Transformer [24] uses an ensemble of transformers we suspect that

X-Transformer would be larger than 5GB and would require 100 hours of effort to train [84]

making it infeasible to compare with.
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Table 4.6. BoW model compute efficiency

Model Train timeSize

Parabel [221] 0.20 hrs 180MB
SLEEC [17] 0.21 hrs 1.13GB
Bonsai [25] 0.64 hrs 130MB
XT [4] 0.39 hrs 370MB
TinyXML HD 0.16hrs 19.8MB

4.6 Conclusion

In this work, we presented novel approaches to Multi-Label classification using Hy-

perdimensional Computing (HDC), addressing the full complexity spectrum. For small-scale

Multi-Label classification, we proposed using HDC for two problem transformation methods:

PowerSet and One-vs-All transforms. Rigorous evaluation showed that OvA HD provides up

to 60x speedup in low cardinality datasets, while PowerSet HD is up to 24x faster than SoA

with comparable accuracy, especially in low cardinality scenarios. For extreme multi-label

classification, where label size is very large, we introduced TinyXML HD, a neuro-symbolic

approach that breaks down learning into sub-problems using hyperdimensional arithmetic and

optimizes them with gradient methods. TinyXML HD significantly reduces the computational

complexity of multi-label learning on large-scale datasets while maintaining good accuracy.

TinyXML is 836x smaller than the largest SoA and 231x smaller than the smallest for text

datasets, and up to 16x faster to train. For BoW datasets, TinyXML is 6.5x - 56x smaller than

SoA models while training up to 4x faster.

Next, we look at another common problem in IoT – image classification. Examples

include industrial monitoring, surveillance, security systems, autonomous driving etc. We look

at incorporating HDC into image classification architectures for improving the efficiency of

classification. We propose a principled approach to structure the classification problem as a

hierarchical problem to exploit the symbolic manipulation properties offered by HDC.
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Chapter 5

NeuroHD: Neuro-Symbolic Classification
with Hyperdimensional Computing

5.1 Introduction

Machine Learning (ML) has undeniably revolutionized the Internet of Things (IoT),

enabling a myriad of applications across diverse domains. A critical bottleneck in realizing the

full potential of ML within IoT lies in the constrained computational budget of IoT devices. Tra-

ditionally, these devices rely on centralized cloud computing for ML tasks, incurring significant

bandwidth usage, latency issues—critical in applications such as autonomous driving—and rais-

ing privacy concerns, notably in smart healthcare solutions [2, 8]. This backdrop has catalyzed a

shift towards on-device learning, a paradigm that promises enhanced privacy, reduced latency,

and decreased bandwidth consumption.

Hyperdimensional Computing (HDC) emerges as a symbolic computing framework

characterized by its lightweight and efficient computational footprint, making it an attractive

candidate for on-device learning. Despite these advantages, HDC’s applicability to complex

tasks, such as image classification, remains limited, often lagging behind more conventional

methods in accuracy [92]. In contrast, Deep Learning (DL) boasts exemplary performance across

a spectrum of ML tasks, including those with high complexity. However, the computational

intensity of DL models often renders them impractical for deployment on resource-constrained

IoT devices [115].
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The dichotomy between symbolic methods like HDC and connectionist approaches

such as DL has traditionally been viewed through a lens of mutual exclusivity. Nonetheless,

an emerging body of research, inspired by cognitive science theories suggesting that human

cognition employs a blend of both symbolic and connectionist mechanisms, posits that a hybrid

architecture integrating these methodologies could yield superior outcomes [181, 10].

In this work, we introduce a novel neuro-symbolic architecture that harmonizes the

complementary strengths of HDC and DL. Previous endeavors in this space, such as [50] and

[116], have primarily utilized DL as a feature extractor, subsequently encoding these features

into hyperdimensional vectors for symbolic processing [160, 86]. While these approaches

significantly reduce model size and highlight the benefits of HDC-DL integration, they do not

fully address the inherent limitations of connectionist models, notably the binding problem

identified in DL architectures [60].

Our proposed architecture seeks to ameliorate these challenges by leveraging DL for its

feature extraction capabilities, thereby augmenting HDC’s performance in complex classification

tasks, while simultaneously utilizing HDC to resolve the binding issue prevalent in DL models.

Empirical evaluations on standard image classification benchmarks reveal that our architecture

not only achieves competitive accuracy, comparable to state-of-the-art models, but does so with

a significantly reduced model size, underscoring the efficacy and efficiency of our approach.

5.2 Related Works

5.2.1 Neuro-symbolic Architectures

The debate between symbolic versus connectionist models for learning has been long-

standing [45]. A niche yet growing body of research advocates for a hybrid approach, suggesting

that human cognition leverages a combination of these models. This insight has spurred research

into neuro-symbolic architectures, finding notable success in natural language processing tasks

with TPRs [182], despite their computational demands.
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Holographic Reduced Representations (HRRs) have been embedded within LSTM net-

works [35] and have also been utilized to replace conventional convolutional operations, reducing

model size and inference time [160]. However, these implementations often overlook the sym-

bolic properties of HRRs, and their binding operations, involving the computation of the Fast

Fourier Transform (FFT), are computationally intensive. Conversely, there exists limited explo-

ration of gradient-based learning within the MAP-C HDC framework, which utilizes bi-polar

hypervectors. Works such as HDnn-PIM [41] and NSHD [116] have demonstrated the integration

of CNNs for feature extraction, encoding outputs into hypervectors without fully leveraging

HDC’s symbolic properties. More recently, [23] used CNNs to learn compositions of symbols

for Multi-Label text classification.

Differing from these approaches, our work introduces a novel neuro-symbolic architecture

that not only addresses the inherent feature extraction challenges of HDC but also resolves the

binding issues [60] prevalent in connectionist deep learning methodologies. Our proposed

framework significantly enhances model size efficiency and reduces training times, presenting a

pivotal advancement in the intersection of HDC and neuro-symbolic computing.

5.3 Methodology Overview

Our methodology decomposes the traditional classification task into a two-tiered hierar-

chical process. Initially, we reformulate the classification problem within the HDC framework,

transforming it into a task of recognizing associations among entities. This reformulation allows

us to address the problem in two distinct stages. Subsequently, we employ CNNs, under the

guidance of HDC framework, to extract and learn symbolic information from unstructured

sensory data.

Overall, our proposed methodology reduces the gap between symbolic and connection-

ist models of machine learning. By thoughtfully integrating HDC and CNNs, we unveil a

comprehensive approach that promises significant advancements for classification.
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This section is divided into three parts: First we detail the development of a novel

encoding method to map images to hypervectors, then, we explain how to construct the hierarchy

and finally, we detail the architecture to orchestrate the hierarchical classification.

5.3.1 Patch Encoder

The encoding of sensory data into a meaningful representation is fundamental in compu-

tational models. Traditional methods that operate on raw pixel values often overlook the spatial

distribution of information, which is pivotal for understanding complex structures within the data.

To address this, we introduce a novel encoding method that not only considers the intensity values

of each pixel but also their relative positions within the image, preserving essential semantic

information within the high-dimensional framework of hyperdimensional computing (HDC).

Encoding Intensities

At the core of our approach is the representation of a pixel’s intensity across the Red (R),

Green (G), and Blue (B) channels as a vector of intensities, formally denoted as x⃗0,0 = (r,g,b)T .

To encode this information into the HDC space, we employ quantized Random Fourier Features

(RFF)[169], transforming each pixel x⃗i, j into a high-dimensional vector space through a random

projection φ , sampled from a normal distribution. This transformation is followed by quantization

using the sign(·) function to generate bi-polar hypervectors.

Encoding Relative Positions

The spatial distribution of pixels plays a crucial role in our perception of images. To

encode this aspect, we consider the position of pixels in an (m×m) image grid, denoted by

P =



(0,0) (0,1) · · · (0,m−1)

(1,0) · · · · ·
...

... . . . ...

(m−1,0) · · · · (m−1,m−1)


. (5.1)
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To encode these positions into hypervectors, we utilize a method inspired by the fractional

binding [104] of Semantic Spatial Pointers, substituting the circular convolution with a randomly

sampled permutation. Recursive binding, achieved through repeated permutation of the input

hypervector, allows for a nuanced representation of pixel coordinates. Specifically, for each

axis (x̂, ŷ) (We denote hypervectors usingˆon top), we sample a bi-polar hypervector and apply

recursive permutations, the count of which is determined by the pixel’s coordinates (i, j).

Formally, if P ∈ {0,1}D×D represents a permutation matrix, the hypervector for coordi-

nates pi, j is computed as

ˆpi, j =
(
Pix̂

)
⊗
(
P jŷ

)
.

This process encodes each pixel’s relative position through the number of permutations,

associating them with the symbolic representation in HDC space.

Divide and Conquer

To further process the image, we divide it into a grid of size K ×K, where K is a

predetermined hyperparameter. Each grid cell, or patch, covers an area of l× l pixels, with

l = ⌊m/K⌋. Within each patch, pixels are encoded as previously described in Section 5.3.1,

resulting in a set of l2 hypervectors. The positional hypervectors for these pixels are then

generated and combined through HDC binding operations. Finally, the hypervectors representing

all pixels within a patch are bundled, producing a comprehensive representation for each patch.

To accommodate hardware implementations, particularly for MAP-C (bi-polar hypervec-

tors), permutation is executed via circular shifting, a method conducive to efficient hardware

execution. The shift magnitude is determined by the pixel coordinates.

This encoding process is applied uniformly across all K2 patches, generating a set of

hypervectors that collectively represent the entire image. By encoding both the intensity values

and the spatial distribution of pixels, our method offers a robust framework for processing and
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analyzing image data through the principles of hyperdimensional computing.

5.3.2 Constructing the Hierarchy

The crux of our proposed method lies in articulating the classification challenge as

a hierarchical problem, fundamentally segmented into two distinct levels. This hierarchical

perspective facilitates a more nuanced understanding and processing of the classification task,

especially when dealing with semantically rich and diverse datasets.

Grouping Labels

At the heart of our approach is the strategic grouping of labels, an essential step that

underpins the hierarchical classification process. To achieve this, we embark on learning symbolic

representations for each class label, a process that begins with the encoding of input images into

their corresponding hypervectors via the previously delineated patch encoder.

Subsequent to the encoding phase, hypervectors pertaining to images within the same

class are bundled, culminating in a singular hypervector that symbolically represents the class in

its entirety. The affinity between these class-specific hypervectors is quantified through similarity

scores, which are then leveraged to construct a confusion matrix. This matrix serves as the

foundation for our label grouping mechanism, where a greedy algorithm is employed to identify

and pair the most semantically similar classes, thereby delineating the coarse categories within

the hierarchy.

Representing Coarse and Fine Labels

Within the framework of our hierarchical classification, each image is associated with two

labels: a ”Coarse” label, denoting the broader category to which it belongs, and a ”Fine” label,

representing its specific class within that category. To facilitate this dual labeling system, we

assign to each label a randomly sampled bi-polar hypervector, ensuring that these vectors serve

as distinct and identifiable representations for the fine labels. The coarse labels, emblematic of
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the broader categories, are derived by binding together the hypervectors of class pairs identified

during the grouping phase.

Utilizing this method of representation, our convolutional neural network (CNN) is

designed to initially deduce the group hypervector corresponding to an image. Following this,

the network discerns and subsequently eliminates the incorrect class within the identified group

through a process of unbinding from the group hypervector. This operation effectively isolates

the correct class hypervector, which is then forwarded as the final prediction.

This hierarchical approach not only enhances the interpretability of the classification

process but also significantly improves the accuracy and efficiency of the model by leveraging

the inherent semantic structure of the data.

5.3.3 Model Architecture

In addressing the hierarchical classification challenge, our architecture employs Convo-

lutional Neural Networks (CNNs) augmented with multiple residual blocks, a design choice

inspired by their ability to facilitate deeper network structures without succumbing to vanishing

or exploding gradients. Each residual block (named ”ConvBlock”) within our architecture

comprises two convolutional layers, each equipped with N (3×3) kernels, where N represents

a hyperparameter determined empirically based on the specific demands of the dataset and the

classification task at hand. Figure 5.1 illustrates the CNN architecture.

Hierarchical CNN

The crux of our proposed model lies in its hierarchical structuring, consisting of two

shallow CNNs designated for ”Coarse” and ”Fine” classification tasks, respectively. This

hierarchical arrangement allows for an initial broad categorization of inputs, subsequently refined

through a more detailed analysis. Each CNN is composed of a sequence of residual blocks, with

the hyperparameter N tailored for each block to optimize performance.

To translate the convolutional feature maps into a format amenable to hyperdimensional
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Figure 5.1. NeuroHD CNN architecture. ”C” represents the ConvBlocks corresponding to the
”Coarse classifier” and ”F” that of ”Fine classifier”
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computing, the output feature maps from the final residual block of each CNN are subjected to

average pooling and flattening operations. This process yields a vector representation for each

image, which is then projected into a high-dimensional vector space (D-dimensional) through

a linear layer. Given the non-differentiability of the sign(·) function, which is traditionally

used for generating bi-polar hypervectors, we employ the tanh(·) function as an approximation,

facilitating the backpropagation of gradients through this layer.

The ”Coarse” classifier CNN diverges slightly in its final stages by outputting its feature

maps prior to the pooling step, in addition to the generated hypervector. These feature maps are

then used as inputs by the ”Fine” classifier, enabling a seamless transition from coarse to fine

classification within the hierarchical framework.

Loss Functions

Our training process is guided by three distinct loss functions, each serving a unique

purpose in the learning hierarchy. Initially, we employ a cosine similarity loss (LSim) to direct

the ”Coarse” classifier towards generating accurate symbolic representations for the broad

categories. This is formally represented as:

LSim = 1− cos(ŷpred, ŷtrue)

where ŷpred and ŷtrue denote the predicted and true hypervector representations, respectively.

To reinforce the symbolic differentiation between classes within the same group, an

inverse cosine similarity loss (LI-Sim) is applied, aiming to increase the angular distance for

incorrect classifications within the identified category:

LI-Sim = cos(ŷpred, ŷtrue)

Lastly, the ”Fine” classifier is trained using a second cosine similarity loss, this time

fine-tuned to distinguish between the finer subclasses within the correctly identified broader
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category. This multi-faceted loss structure ensures a balanced emphasis on both hierarchical

levels of classification, promoting a nuanced understanding that mirrors the complex nature of

real-world data.

By integrating these elements into a cohesive architecture, our proposed model addresses

the inherent challenges of both HDC and DL synthetically.

5.4 Experimental Analysis

In this section, we delve into the evaluation of our neuro-symbolic model, emphasizing

its application to complex image classification tasks. While our primary focus is on image

classification, it’s pertinent to note that the methodologies delineated herein are broadly applicable

to a variety of multi-class classification problems, contingent upon the feasible representation of

data in hyperdimensional computing (HDC) space. The strategic selection of HDC types and

encoding strategies is aimed at harnessing the potential for hardware acceleration, particularly

on specialized hardware architectures.

5.4.1 Experimental Setup

Our implementation leverages Python and the PyTorch framework [156], for acceleration

using GPUs. We assess the performance of our architecture on four different image classification

datasets: CIFAR-10 [108], CIFAR-100 [108], Fashion-MNIST [211] and SVHN [150].

To benchmark our model’s efficiency and accuracy, we juxtapose its performance against

several state-of-the-art (SoA) models for image classification. Compute cost evaluations are

conducted using parameter counts, model size and FLOPs as primary metrics.

The architecture-specific parameters, namely the number of kernels per ConvBlock

and the total number of ConvBlocks for both the fine and coarse classifiers, were empirically

optimized. The goal was to minimize model size without compromising accuracy significantly.

Further, we introduce three hyperparameters, α,β , and γ , serving as weights for the loss

functions, respectively. Through extensive experimentation, the weights for the cosine-similarity
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Table 5.1. Accuracy of HDC methods on CIFAR-10. D is hypervector dimensionality

Method Accuracy (%) D (×103)
SearHD 22.6 10
BRIC 26.9 4
QuantHD 28.4 8
RFF 29.4 10
PatchEncoder (Ours) 36.8 1

losses were set to α = 0.4,β = 0.3, and γ = 0.4 for the inverse cosine-similarity loss (I-Sim).

Models underwent training over 100 epochs, with a batch size of 128. Techniques such as

weight decay and Batch Normalization [82] were employed for regularization, aiming to mitigate

overfitting and enhance model generalizability.

5.4.2 Performance of Encoder

Accuracy

The efficacy of the patch encoder was assessed through its performance on the image

classification task using the symbolic training methodology outlined in Section ??. Table 5.1

presents a comparative analysis of the encoder’s accuracy on the CIFAR-10 dataset against other

HDC-based image encoding techniques.

As evidenced by the data in Table 5.1, our encoding strategy demonstrates a notable

improvement in accuracy, surpassing alternative methods by 8 to 14 percent. It’s important to

acknowledge that while this performance level may not meet the benchmarks for standalone

image classification tasks, it represents a significant advancement in our ability to learn approx-

imate representations of class labels without relying on pre-existing semantic understanding

of those labels. This capability is critical for our approach, as it enables effective hierarchical

classification in scenarios where semantic knowledge of labels is either limited or entirely absent.
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Table 5.2. Performance comparison of NeuroHD with SoA architectures on CIFAR datasets

Arch Rel. #
(x smaller)

Speedup
(x faster)

Rel. size
(x smaller)

CIFAR-10
Acc. (%)

CIFAR-100
Acc. (%)

Transformers
16.8 5.4 17.9 98.1 91.8
53.8 58 204.8 99.1 90.8

CNNs
13.4 122.7 3.3 98.7 91.5
13.1 13.2 3.3 90.1 81.5

Neuro-Symbolic 1 301.5 1 99.1 97.7

5.4.3 Performance of Hierarchical Classification

Performance of Hierarchical Classification

In this section, we delve into the empirical performance of our proposed neuro-symbolic

architecture, emphasizing its efficacy in classification tasks. Our analysis is anchored in compar-

ative evaluations with state-of-the-art (SoA) architectures, focusing on both accuracy metrics

and computational efficiency. Table 5.2 presents a comprehensive comparison of metrics on the

CIFAR-10 and CIFAR-100 datasets.

Accuracy

Our neuro-symbolic model, denoted (NeuroHD), showcases superior performance on

the CIFAR-10 and CIFAR-100 datasets, achieving state-of-the-art accuracy while maintaining

a significantly smaller footprint than conventional deep learning architectures. As illustrated

in Table 5.2, transformer-based networks, despite their larger size attributable to multi-headed

attention layers, generally outperform CNN counterparts in terms of accuracy. However, they

are also the most resource-intensive. In contrast, CNNs exhibit a balance of efficiency and

performance, with exceptions like EfficientNet-V2S [192]. Notably, all evaluated architectures,

with the exception of the smaller variant of RegNetY [167], surpass the 98% accuracy threshold

on CIFAR-10, with our model (NeuroHD) and CaiT-XS24 [197] reaching SoA accuracy of

99.1%.

For the CIFAR-100 dataset, our approach achieves 97.7% surpassing the previous bench-
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Table 5.3. Accuracy of NeuroHD across datasets

Dataset Accuracy (%)
Fashion-MNIST [211] 97.2
SVHN [150] 95.4
CIFAR-10 [108] 99.1
CIFAR-100 [108] 97.7

mark of 96.08% set by EfficientNet-L2 [191], the largest model in the EfficientNet family. This

underscores the effectiveness of our model in leveraging neuro-symbolic principles to enhance

classification accuracy. Table 5.3 shows the accuracy of NeuroHD on additional datasets. We see

that on Fashion-MNIST [211] and SVHN [150], NeuroHD obtains slightly lower but comparable

accuracy to the SoA.

It’s also worth noting that NeuroHD beats previous benchmarks of other HDC based

neuro-symbolic architectures, like NSHD [116]. On CIFAR-10, NSHD achieves just over 90%

and about 80% on CIFAR-100.

5.4.4 Compute Cost

The computational efficiency of our neuro-symbolic architecture is a highlight of our

experimental findings, as delineated in Table 5.2. Notably, our model (NeuroHD), outperforms

the benchmark in terms of both size and speed. Specifically, it is 3.3× smaller and 13.2× faster

than the most compact model in our comparison, RegNetY [167]. Moreover, when juxtaposed

with the largest compared model, EfficientNet-V2S [192], NeuroHD demonstrates an extraordi-

nary reduction in size—204.8× smaller—and an enhancement in processing speed—58× faster.

This remarkable efficiency is largely attributable to the model’s lean design, which necessitates

merely 1.6 million parameters.

The profound improvements in computational efficiency can be ascribed to the novel

structuring of the classification challenge as a hierarchical sequence of symbolic problems.

Consider, for instance, the CIFAR-100 dataset, which, under our model, is segmented into 50

group classes. The ”Coarse Classifier” within our architecture is tasked with discerning the
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broader category to which an image belongs—effectively a 1 out of 50 classification problem, as

opposed to the original 1 out of 100. This initial classification significantly reduces the complexity

of the task at hand. Subsequently, the ”Fine Classifier” engages in a binary classification,

conditioned on the group delineated by the ”Coarse Classifier.” It is this methodical simplification

of the problem space that underpins the exceptional efficiency of our NeuroHD.

Our findings underscore the inherent advantage of adopting a hierarchical approach to

classification, particularly in terms of computational resources and processing time. This strategy

not only enhances model performance but also opens avenues for deploying advanced machine

learning models on resource-constrained platforms.

5.5 Conclusion

This study presented NeuroHD, a novel architecture that fuses the strengths of deep

learning and hyperdimensional computing (HDC) to address the limitations of each approach

individually. NeuroHD effectively bridges the gap between HDC’s symbolic processing and

deep learning’s feature extraction capabilities, resulting in a model that is both compact and

efficient. Our experiments demonstrate that NeuroHD significantly outperforms state-of-the-art

methods in size and speed—being up to 204 times smaller and 58 times faster—while achieving

SoA accuracies on the CIFAR datasets.

The success of NeuroHD not only showcases the potential of integrating connectionist

and symbolic approaches but also opens new avenues for developing efficient and powerful

machine learning models. This hybrid approach marks a step forward in the pursuit of on-device

ML for complex applications.
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Chapter 6

Summary and Future Directions

This thesis provides a comprehensive analysis and enhancement of machine learning-

anchored computation efficiency, with a particular spotlight on federated learning, image and

text classification. The ever-increasing ubiquity of IoT applications is unparalleled, a reality

that necessitates robust, efficient, and incisive frameworks to handle the information associated

with these applications. From our investigations and results, it has become apparent that the

development and application of neuro-symbolic architectures significantly rectify computational

inadequacies and inefficiencies. These include the challenge of handling distributed data, and

computational and energy constraints of on-device learning—plugging at the inadequacies of

traditional machine learning methodology.

We evaluated novel architectures that effectively merge the strengths of deep learning and

HDC to achieve desired improvements in compute and communication efficiency. This synthesis

particularly caters to the processing of large-scale datasets, which often present with intricate

information like images and text.

The work on federated learning has outlined a novel algorithm, FedHDC, alongside

its optimized version, FHDnn, which leverages the distinct attributes of hyperdimensional

computing to offer faster and more robust computation. Proving most valuable was this method’s

capacity to handle network errors gracefully. Besides these improvements, the computational

and energy expenses were considerably reduced, justifying the architectures’ effectiveness and
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efficiency in IoT settings.

Our research also made a captivating headway in multi-modal learning, inclusive of

text and image classification. We believe resolving accuracy-compute trade-off will accelerate

advances in deep learning, and further boost the adaptability and usefulness of HDC. Our

proposed models, featuring neuro-symbolic architectures, proved that achieving competitive

accuracy does not have to translate into larger model sizes or reduced computation speed.

In text classification, our research introduced neuro-symbolic processes that demonstrated

potential for efficient learning in tasks like multi-label classification. Our process, TinyXML HD,

specifically, exhibited considerable improvements in both speed and size of the learned models.

This manifestly argues for the effectiveness of our proposed architecture in handling text-based

information.

Notably, in the realm of image classification, our exploration clearly bridged the divide

between the accuracy of DL and the computational simplicity of HDC. Our innovative method

for hierarchical classification, paired with our neuro-symbolic architecture, increases processing

efficiency while maintaining competitive accuracy. Consequently, it also efficiently reduced the

model sizes—thereby addressing a previously identified challenge of HDC in handling complex

image data.

These advances hold significant potential to inform the ever-evolving IoT landscape,

revolutionizing federated learning and image and text classification processes. Our results

provide a firm foundation upon which further research can be built, hinting at new possibilities

for combining deep learning and HDC in a valuable, complementary manner.

In conclusion, our findings demonstrate that neuro-symbolic architectures—efficiently

blending the properties of deep learning and HDC—offer a promising pathway for efficient and

robust machine learning mechanisms. We trust that these advancements will serve as a bedrock

for future systems and applications espousing the principles and practices of efficient machine

learning. As we further unlock the perimeters of this space, it is conceivable that we stand to reap

even greater dividends in the efficient processing and classification of different modalities data.
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6.1 Future Directions

The work presented in this dissertation elucidates the merits of a hybrid architectural

approach, combining Hyperdimensional Computing (HDC) with Deep Learning (DL) to harness

their complementary strengths. In light of these promising initial findings, we foresee several

avenues for expanding upon the foundational research laid out herein. This chapter delineates

potential future directions aimed at further refining and enhancing the capabilities of the hybrid

model, thereby broadening its applicability and efficiency within the realm of Internet of Things

(IoT) applications.

6.1.1 Enhancing Multi-Level Hierarchical classification

The initial exploration of encoding a simplistic, single-tier hierarchy for image clas-

sification represents only the beginning of investigating hierarchical representations within a

hybrid HDC-DL framework. The logical next step involves developing more intricate, multi-tier

hierarchical structures that capture a higher degree of complexity in data representation. By

decomposing the problem into multiple hierarchical levels, each managed effectively by Con-

volutional Neural Networks (CNNs), there is significant potential to improve recognition and

classification accuracies.

Future research will focus on designing and implementing these complex hierarchical

architectures, emphasizing their applicability across a wide range of IoT use cases. This approach

is particularly relevant for datasets with a large number of classes, such as ImageNet, where a

simple two-tier hierarchy might not simplify the problem sufficiently and could result in lower

accuracy. These advanced hierarchical structures would also be beneficial for applications where

coarse classification is more critical than fine-grained classification results.

Furthermore, this hierarchical pipeline will enhance interpretability by allowing for

tracking the classifier’s decisions at each level of the hierarchy. This feature will enable us

to pinpoint the exact stage where the classifier made an error, providing valuable insights for
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refining and improving the model.

6.1.2 Exploring Hierarchical Navigable Small Worlds for Enhanced
Search

The Hierarchical Navigable Small Worlds (HNSW) model, renowned for its efficacious

approximation of the Nearest Neighbor search algorithm through graph-theoretic constructs,

presents an intriguing area of exploration in conjunction with HDC’s capabilities. Given HDC’s

demonstrated proficiency in representing graph data structures, albeit in a nascent stage, it poses

an interesting proposition to investigate what novel dimensions HDC could introduce to HNSW

models. By capitalizing on the statistical and probabilistic properties inherent in HDC arithmetic,

there exists a promising avenue to pioneer more compact, yet potent representations for graph

data. Such representations, when further processed through a deep learning lens, could unveil

novel methodologies to navigate and search within these high-dimensional spaces efficiently.

This synergistic exploration could yield improvements in search performance, especially pertinent

to vector databases prevalent in Large Language Models (LLMs).

The trajectory delineated by these proposed directions not only underlines the potential

for substantial advancements in hybrid HDC-DL models but also accentuates the unexplored

territories within this domain. As we venture forth, the implications of these advancements herald

a new era for on-device intelligence in IoT applications, paving the way for more autonomous,

efficient, and intelligent systems.
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