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Assessing probability of failure of urban landslides through rapid 
characterization of soil properties and vegetation distribution 

Sylvain Fiolleau *, Sebastian Uhlemann, Nicola Falco, Baptiste Dafflon 
Lawrence Berkeley National Laboratory, Earth and Environmental Sciences Area, Berkeley, CA, USA   
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A B S T R A C T   

Landslides are a major natural hazard, threatening communities and infrastructure worldwide. The mitigation of 
these hazards relies on the understanding of their causes and triggering processes, which depends directly on soil 
properties, land use, and their changes over time. In this study, we propose a novel framework to estimate the 
probability of failure in highly developed urban areas. The framework combines remote sensing and geophysical 
data to estimate soil properties and land covers. Such estimate properties are then integrated into a hydro- 
geomechanical model to provide a robust estimate of the probability of failure. To assess the importance and 
sensitivity of the input parameters to the probability of failure assessment, a sensitivity analysis was performed 
on the seven main parameters (density, friction angle, cohesion, soil thickness, slope, water recharge and 
saturated hydraulic conductivity) of the hydro-geomechanical model. Slope angle, soil thickness and cohesion 
are shown to be the most important parameters. While the slope angle can be derived from high-resolution 
digital elevation models, soil thickness and cohesion cannot be assessed. To incorporate the variability of 
these two parameters into the model, seismic noise measurements were performed to estimate soil thickness. 
Supervised classification of remote sensing data was used to map vegetation type and related root cohesion, 
which can impact the cohesion significantly. The results show that slopes with relatively thick soil layers (above 
2 m) have up to four times higher probability of failure. Slopes with tall vegetation cover, and hence comparably 
high root cohesion, reduce the probability of failure, particularly when the soil layer is relatively thin (< 3 m). 
The developed approach makes use of rapid to acquire geophysical and easily to obtain remote sensing data, and 
hence is transferable to other study sites. This approach may be of particular importance to areas of active 
vegetation management that may cause considerable changes in landslide hazard maps.   

1. Introduction 

Landslides are a major natural hazard endangering communities and 
infrastructures worldwide, causing a considerable number of casualties 
and economic losses in the last decade (Froude and Petley, 2018). Haque 
et al. (2019) show that in 20 years (1995–2014) landslides caused a total 
of 163,658 deaths worldwide. According to the USGS, in the United 
States, landslides cause an estimate of more than $1 billion in damages 
and about 25 to 50 deaths each year. Climate change is resulting in 
shifting precipitation pattern, with increasing frequency of extreme 
storm events, and is leading to an increasing number of shallow land-
slides (Patton et al., 2019; Coe, 2020; Lin et al., 2020). Hence, it is 
important to mitigate the risk posed by landslides, and a crucial part of 
that is a thorough assessment of the landslide hazard (Corominas et al., 
2013). Urban areas, which usually have high exposure and high 

vulnerability (the other factors defining the landslide risk), often show 
very high landslide risk in case of high landslide susceptibility. Hence, 
providing an accurate estimated of the landslide hazards, e.g. in terms of 
probability of failure (PoF), is critical to assessing the risk (Cheung, 
2021). 

The landslide susceptibility can be quantified through different ap-
proaches, depending on prior knowledge and the scale of the studied 
area. The three main approaches can be classified as heuristic, statistical, 
or deterministic (Guzzetti et al., 1999; Regmi et al., 2014). The heuristic 
method, frequently used during the 70's and 80's (Aleotti and Chowd-
hury, 1999), involves geomorphological mapping of type and degree of 
the hazard based on expert knowledge. A major drawback of this 
method is the subjectivity in selecting data and factors governing slope 
stability. Statistical methods are a commonly used approach applied to 
large or inaccessible areas, and are based on multivariate and bivariate 
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statistical techniques (Reichenbach et al., 2018; Kalantar et al., 2020), 
linking geological and geomorphological information with former 
landslide distributions. Among the most commonly used are logistic 
regression (Akgun, 2012; Devkota et al., 2013; Park et al., 2013; Chen 
et al., 2016), artificial neural networks (Yilmaz, 2010a; Nourani et al., 
2014; Tsangaratos and Benardos, 2014; Gorsevski et al., 2016; Tien Bui 
et al., 2016; Li et al., 2021), support vector machines (Yilmaz, 2010b; 
Marjanović et al., 2011; Tien Bui et al., 2016), and random forest 
methods (Youssef et al., 2016; Chen et al., 2017). These approaches 
commonly involve a sensitivity analyses on predisposing parameters in 
order to improve the predictive capability of models (Chen et al., 2018; 
Di Napoli et al., 2021). Deterministic methods are generally based on the 
calculation of the factor of safety (Regmi et al., 2014), which is the ratio 
of restraining to driving forces, and hence requires a numerical calcu-
lation of the forces acting onto a slope. These can be calculated using 
fixed, i.e. static, or temporally varying, i.e. dynamic, boundary condi-
tions. These methods require quantitative information such as hydro-
logical information (soil saturation, permeability, hydraulic 
conductivity, etc.) and geotechnical information (soil thickness, cohe-
sion, internal friction angle, density, etc.) (Montrasio et al., 2011; 
Jovančević et al., 2013; Palazzolo et al., 2021). Deterministic methods 
are considered more accurate than heuristic and statistical methods 
because physical processes are integrated and quantitative stability 
values are computed (Corominas et al., 2013). However, considering the 
large amount of a priori knowledge required, the application of those 
methods has been limited to local to regional scales (Cervi et al., 2010; 
Zizioli et al., 2013). 

Deterministic approaches use physical models to calculate the 
stresses in the slope based on various governing equations and dis-
cretization methods. Hence, understanding the sensitivity of the input 
parameters on the results of a certain model is crucial to understanding 
the uncertainty of the results. Studies have shown that among the pa-
rameters required for slope stability analysis, the slope angle and soil 
thickness are often the most sensitives (van Westen et al., 2006; Segoni 
et al., 2012; Choo et al., 2019; Min and Yoon, 2021). The sensitivity to 
other parameters can be more site-specific. For example, Choo et al. 
(2019) performed a sensitivity analysis on the slope stability calcula-
tions of Mt. Geohwa in South Korea and showed that while the slope 
angle and soil thickness strongly influence the factor of safety, also the 
friction angle had a strong impact on the slope stability estimation. The 
cohesion and density of the soil showed only minor impact. However, 
the type of model and the characteristics of the study area determine 
which parameters have the strongest control on the slope stability es-
timates. Hence, it is necessary to perform a sensitivity study to under-
stand the uncertainties of the landslide hazard assessment of an area, 
and to determine which parameters have to be known most accurately to 
obtain reliable results. 

Vegetation has been recognized to play an important role on the 
stability of slopes (Band et al., 2012; Hwang et al., 2015; Sidle and 
Bogaard, 2016; Cohen and Schwarz, 2017; Phillips et al., 2021). By 
adding weight to the slope, it can increase the load and thus reduce the 
stability, increasing the failure probability. However, in the case of a 
shallow landslide, this effect is largely compensated for by the increase 
in cohesion that is added by the root network and by the reduction in 
moisture content (and hence in pore water pressure), thus increasing the 
factor of safety (Forbes and Broadhead, 2013). Among these factors, 
decreasing cohesion is known to have the largest influence on slope 
instability (Sidle and Ochiai, 2006; Sidle and Bogaard, 2016). To ac-
count for this in slope stability modelling, a simple approach is to 
consider a total cohesion and to directly add the cohesion induced by the 
presence of the root network to the soil cohesion (Mattia et al., 2005; Ji 
et al., 2012; Kim et al., 2017; Emadi-Tafti et al., 2021). 

An important issue with the vegetation cover is that it varies over 
space and time (e.g. due to land management or wildfire). Wildfire 
constitutes one of the main cause of vegetation destruction and plays a 
major role in landslide triggering (De Graff, 2018; Rengers et al., 2020). 

Numerous studies have shown that root cohesion can be drastically 
reduced following fire, leading to slopes being more prone to failure 
(Jackson and Roering, 2009; Lanini et al., 2009; Gehring et al., 2019). 

The spatial and temporal uncertainty of the model parameters is one 
of the major challenges in assessing the landslide hazard (Sidle and 
Ochiai, 2006; van Westen et al., 2006; Anagnostopoulos et al., 2015). To 
address this uncertainty, probabilistic approaches are often used 
(Hammond et al., 1992; Nilsen, 2000; Strauch et al., 2018; Lee et al., 
2020). Strauch et al. (2018) developed a regional model of probabilistic 
slope failures and applied it to the North Cascades National Park Com-
plex in the state of Washington, USA. They used a Monte Carlo simu-
lation, facilitated by the python package Landlab (Hobley et al., 2017), 
allowing them to incorporate the uncertainty in model parameters. 
Their study highlighted the high influence of soil thickness on the 
landslide prediction, as well as the stabilizing effect of tall vegetation. 

The aim of this study is to investigate the value of including detailed 
spatial distributions of soil thickness and vegetation into slope stability 
estimates, as these spatially (and temporally) varying inputs strongly 
affect the landslide hazard assessment, particularly for shallow land-
slides, Recent development in geophysical and remote sensing methods 
have allowed for a relatively quick estimation of those parameters across 
large domains, and, in the case of the vegetation distribution, over time. 
Hence, we propose a novel approach, combining geophysical and 
remote sensing data to account for the spatial variability of the most 
important input parameters (slope angle, soil thickness and cohesion) 
for the PoF calculation. The soil thickness is estimated based on seismic 
ambient noise measurements and the computation of the H/V (Hori-
zontal to Vertical) ratios, which have been shown to provide reliable 
estimates of the thickness of unconsolidated material above bedrock 
(Guéguen et al., 2007; Méric et al., 2007; Bièvre et al., 2011; Yılmaz 
et al., 2021). To retrieve the vegetation cover and its changes over time 
across the study site, we used satellite images of two periods encom-
passing a tree removal for wildfire hazard mitigation and perform land 
cover classification. By comparing the resulting PoF maps, we evaluate 
the influence of the model input parameters on the slope stability 
assessment and the need to include detailed spatial estimates of soil 
thickness and vegetation distribution. 

2. Study site 

The study site is located in the densely populated San Francisco Bay 
Area on the western flank of the northwest-trending Berkeley Hills 
(Fig. 1), and comprises the Lawrence Berkeley National Laboratory, 
which houses many nation-critical research facilities. The seismically- 
active San Francisco Bay area includes a series of major northwest- 
trending active faults. The closest of these is the Hayward Fault, 
which lies near the base of the hills. The Hayward fault is among the 
fault systems with the highest probability of generating a large- 
magnitude earthquake within the next 30 years (Field, 2008). 

The site exhibits a significant landslide hazard due to its geologic and 
geomorphological history. The bedrock geology is complex in this part 
of the Berkeley Hills, comprising a variety of moderately to highly 
deformed sedimentary, volcanic, and metamorphic rock units. The 
oldest formation corresponds to the Great Valley Complex (Jurassic- 
Cretaceous, 159–99 Ma) originally deposited in a marine environment, 
which is locally overlain by sedimentary and volcanic rocks of Tertiary 
age. The Orinda Formation (13.5–10.5 Ma) is described as distinctly to 
indistinctly bedded siltstone, claystone, sandstone, and conglomerate. 
The conglomerates were deposited under alluvial fan conditions, while 
the sandstone, claystone and finer-grained conglomerates were depos-
ited as flood plain and channel materials (Jones and Curtis, 1991). The 
Miocene Moraga Formation (10.2–9 Ma) is of volcanic origin consisting 
of andesite and basalt flows (Wahrhaftig and Sloan, 1989). During the 
late Miocene and early Pliocene (11.2 to 3.6 Ma), an extended period of 
compression occurred, resulting in folding, faulting, and uplift of the 
Berkeley Hills. These processes weakened the formations in place at that 
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time (i.e., highly fracture and weathered siltstone and claystone with a 
silty to fine gravelly matrix), which are now subject to landsliding and 
erosion. These formations outcrop or are covered by a thin layer of 
colluvium or fill material, mainly composed of clayey soils with mod-
erate to high expansion potential. Near the base of the hills, Quaternary- 
age colluvium and landslide deposits (up to 30 m thick) locally overlie 
bedrock and alluvial deposits (Kropp Alan and Associates, 2006). 

The study site has a long history of landsliding with the presence of 
large paleolandslides (Fig. 1), and numerous recent and active failures. 
A network of five GNSS (Global navigation satellite system) stations has 
been installed in 2012 and is monitoring three of those (Cohen-Waeber, 
2018, Fig. 1). One of these landslide areas (LRA4), which is impacting a 
bridge critical for emergency response of the Berkeley Hills, is also being 
monitored using various geophysical and environmental sensors since 
2019 (Uhlemann et al., 2021). This landslide can be described as a slow- 
moving clay rotational slide (Hungr et al., 2014), which takes place in 
the clayey deposit corresponding to paleolandslide deposits overlying 
the Orinda Formation (Kropp Alan and Associates, 2006), which are 
only a few meters thick. Grasses cover most of the site, while the tall 
vegetation cover comprises mostly eucalyptus globulus, but also pinus 
radiata and occasional coast live oak. 

3. Model and data inputs 

3.1. Probability of failure (PoF) 

Hazard assessment of the study area was performed by computing 
the PoF over a year. We used the Landslide Probability component of 
Landlab (Strauch et al., 2018), which is based on the common infinite 
slope stability model to compute the factor of safety: 

FS =
(Cs + Cr)/hsρsg

sinθ
+

cosθtan∅(1 − Rwρw/ρs)

sinθ
, (1)  

where Cs correspond to the soil cohesion (Pa), Cr is the root induced 
cohesion (Pa), hs is the soil depth perpendicular to the slope (m), ρs and 
ρw correspond to the saturated bulk density and water density (kg.m− 3), 
respectively, g is the acceleration due to gravity (m.s− 2), θ is the slope 
angle (◦), and ∅ the soil internal friction angle (◦). The relative wetness 
Rw, which corresponds to the ratio of the subsurface flow depth and the 
soil thickness, is defined as: 

Rw = min
(

R a
Tsinsin θ

, 1
)

, (2)  

with R the uniform rate of recharge (md− 1) across the upslope specific 
contributing area a (m), and T the local soil transmissivity (m2d− 1). Eq. 
(1) was solved using a Monte Carlo method with 1000 iterations, based 
on a priori distributions of the ground water recharge varying over one 
year and the cohesion distribution. This allows us to consider the time 
variability and the uncertainty of these input parameters. 

Finally, the annual Probability of Failure, PoF at each model grid cell 
was calculated following 

PoF = PoF(FS ≤ 1) =
n(FS ≤ 1 )

N
(3)  

With n the number of iterations which met the failure criterion (FS ≤ 1) 
and N the number of iterations. 

This approach was preferred to others such as TRIGRS (Baum et al., 
2008), since it is developed to provide an annual PoF based on a dis-
tribution of hydro-meteorological events (rather than single rainstorm 
events) and is readily setup to account for uncertainty in the critical 
input parameters (such as friction angle, water recharge, soil cohesion, 
etc.). Previous studies have obtained promising results using this 
method (Strauch et al., 2019). 

3.2. Sensitivity analysis 

To estimate the importance of each input parameter, a sensitivity 
study was performed by calculating the Sobol indices using UQLab 
(Marelli and Sudret, 2014). The Sobol method, also called Analysis of 
Variance (ANOVA), describes the total variance of the model in terms of 
the sum of the variances of the inputs (Sobol′ ', 2001). This approach 
allows us to determine the influence of each input on the model 
outcome, by excluding the interaction with other parameters, and only 
considering the first order indices. 

3.3. Root cohesion calculation 

As shown in the FS calculation (Eq. (1)), the cohesion term is defined 
as the sum of soil and root cohesion. The root cohesion was calculated 

Fig. 1. Study site map showing GNSS station (LRA1 to 5) locations, and the footprint of paleo- and the active landslides.  
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following the simple perpendicular root model (Waldron, 1977; Wu 
et al., 1979) which defines the root induced cohesion (Cr) as: 

Cr = Tr (sinθ+ cosθ tan∅)

(
Ar
A

)

(4) 

Tr is the average tensile strength of roots per unit area, Ar
A (unit less) is 

the root area ratio (RAR), ∅is the angle of internal friction of the soil, 
and θ is the angle of deformed roots with respect to the shear surface. 
Based on an extensive sensitivity analysis, the value of (sinθ + cosθ tan 
∅) is often approximated to be 1.2 (Wu et al., 1979). However, it tends to 
overestimate the cohesion, hence, this value has been replaced by the 
factor k” = 0.48, which is an empirical correction factor introduced by 
Preti (2006) to reduce the overestimated cohesion values, giving: 

Cr = 0.48*Tr
(

Ar
A

)

(5) 

This corrected Crhas been applied to various type of sites (Ji et al., 
2012; Mao et al., 2014; Liu et al., 2021) and has been shown to provide 
results that are comparable to those obtained using more complex fiber 
bundle models (FBMs) (Mao et al., 2014). Although, more advances 
models such as energy-based FBM (Ji et al., 2020) may result in more 
accurate Cr, they require considerably more input parameters, such as 
the modulus of elasticity of roots and the root distribution, which are 
difficult to obtain. 

Root cohesion estimation was performed by considering the domi-
nant tress species at the study site: pinus radiata, coast live oak, and 
eucalyptus globulus. The RAR was calculated at 10 cm depth intervals for 
eucalyptus globulus and pinus radiata species based on (Sudmeyer et al., 
2004), and based on (Canadell et al., 1996) for coast live oak species. 
Root tensile strength information were taken from Kuriakose and van 
Beek (2011) for eucalyptus globulus and pinus radiata species, and from 
Norris (2005) for coast live oak species. This gave a root cohesion values 
at 10 cm depth intervals to the maximum root depth for each species 
(13, 2, and 10.7 m for eucalyptus globulus, pinus radiata, and coast live oak, 
respectively). For each depth, the minimum, modal and maximum root 
cohesion, were computed as a function of the dominant tree species. 

Finally, for each pixel classified as tall vegetation, the minimum, 
modal and maximum root cohesion (Cr) for the depth corresponding to 
the soil thickness, was added to the minimum, modal, and maximum soil 
cohesion (Cs), respectively. 

3.4. Model inputs 

The slope angle was computed from a digital elevation model with a 
1 m resolution derived from a 2018–2019 USGS LiDAR dataset, obtained 
through the NOAA. The data set has a reported vertical accuracy of 
0.087 m, with an average point density of the underlying LiDAR data of 
2.78 pts./m2 (Quantum Spatial, 2019). 

Soil parameters were derived from previous geotechnical campaigns 
(Kropp Alan and Associates, 2006). The soil transmissivity, density, and 
friction angle were set to 0.001 m2/day, 1885 kg/m3, and 24◦, respec-
tively. Soil cohesion was represented using a distribution with a mini-
mum, maximum, and modal cohesion of 5 kPa, 15 kPa, and 7.75 kPa, 
respectively. 

3.5. Soil thickness 

Soil thickness was mapped from previous geotechnical investigations 
and seismic ambient noise measurements (A3GEO, Inc., 2020). Previous 
active seismic campaigns showed that there is a high impedance contrast 
between the bedrock and the soil layer. While the bedrock shows an 
average S-wave velocity of 750 m/s ± 90 m/s, the soil layer is charac-
terized by an average of 250 m/s ± 50 m/s (A3GEO, Inc., 2020). In such 
cases, using the horizontal to vertical spectral ratio technique (H/V 
technique) applied to ambient seismic noise recordings, has been proven 

to be a robust and rapid exploration tool for mapping soil thickness 
(Guéguen et al., 2007; Le Roux et al., 2010). Measurements were per-
formed with a three-component 4.5 Hz sensor at 31 locations. Seismic 
noise was recorded during 3 h at a sampling frequency of 200 Hz. Data 
were processed with the Sesarray package (Wathelet et al., 2004). 
Microtremor records were cut into 10 s time windows, for which Fourier 
spectra were computed and smoothed using the technique proposed by 
(Konno and Ohmachi, 1998). For each location, the H/V spectral ratios 
were computed for all time windows, and the mean H/V curve and its 
standard deviation was determined. For each point, the resonance fre-
quency (F0, Hz) was extracted from the H/V peak exhibiting an ampli-
tude >3 (SESAME, 2004). The soil depth (h, m) was inferred from the 
resonance frequency and the mean S-wave velocity (Vs, 250 m/s) using 
h = Vs/4F0 (Kramer, 1996). 

3.6. Vegetation classification 

Vegetation is an important agent in stabilizing steep slopes notably 
by increasing the soil cohesion (Phillips et al., 2021). However, manual 
assessment of the distribution of vegetation cover can be time- 
consuming and difficult to perform on complex terrain. Furthermore, 
vegetation cover changes over time due to natural processes, but also 
land management practices, or disturbances, such as wildfire (Rengers 
et al., 2020). Considering those frequent changes and the time needed to 
manually map the vegetation distribution, we used satellite image 
classification to rapidly extract vegetation cover. To assess changes in 
the landslide hazard due to vegetation management purposes, here we 
focus on two periods, between which vegetation was cleared at a specific 
area of the study site. This clearance was done as part of a wildfire fuel 
clearance effort in April 2021. 

The vegetation land-cover analysis over the two periods (before and 
after tree removal) was assessed by performing image classification four 
PlanetScope ortho-images acquired on October 26, 2020 and January 9, 
2021 for the first period, and on April 18 and June 29, 2021 for the 
second one. Each image was composed of 4 spectral bands (red, green, 
blue, and near infrared) with a resolution of 3 m per pixel. Due to the 
relatively small size of the study area, the selection of training and 
testing samples and the classification were performed on 1647 × 1670 
pixel images (4941 × 5010 m) that extends beyond the study area. A 
common training and testing data set was used for both periods. Prior to 
classification, the two tiles of each periods were merged into a final 
raster composed of 8 bands (2 acquisitions of 4 bands for each period) 
using QGIS (2020). 

The objective of the land-cover analysis was to classify the image into 
4 distinct classes: Tall vegetation corresponding to tree coverage, low 
vegetation corresponding to shrubs, bare soil corresponding to grass or 
bare soil depending on the season, and others corresponding mainly to 
build environment. 

A supervised classification was conducted using the sklearn python 
toolbox (Pedregosa et al., 2011). 100-point samples were selected for 
each class. These samples were split into 80 for training and 20 for 
testing. Two of the most widely used supervised algorithms were tested, 
random forest (RF, Erinjery et al., 2018; Liu et al., 2018) and support 
vector machines (SVM, Falco et al., 2021, 2020; Mountrakis et al., 
2011). For the RF, hyper parameters including the maximum depth of 
the tree and the number of trees in the forest (n_estimators), were tuned 
by cross-validation in a search space with the following parameter 
ranges: max_depth = {1,2, …,20} and n_estimators = {1, 2, …, 300}. 
The cross-validation determined the best parameters for high classifi-
cation accuracy to be a maximum depth of 12 and 9 corresponding to a 
number of trees of 21 and 40 for the first and second period, respec-
tively. For the SVM, hyper parameters including the kernel (k), the 
regularization parameter (C), and the gamma parameter (γ), were tuned 
by cross-validation in a search space with the following settings: k =
{‘rbf’, ‘polynomial’}, C = {0.01, 0.1, …, 10,000} and γ = {1 × 10− 9, 1 ×
10− 8, 1 × 10− 7, …, 1000}. The C defines the tolerance of the model to 
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allow for misclassification of data points. The γ defines how far the in-
fluence of a single training example reaches. The cross-validation 
determined the best parameters for high classification accuracy to be a 
radial basis function (RBF) kernel with C = 100, γ = 1 × 10− 7 and C =
10, γ = 1 × 10− 6 for the first and second period, respectively. 

4. Results 

4.1. Sensitivity analysis 

Fig. 2 shows the first-order Sobol indices for each parameter and its 
confidence interval for the 0:025 and 0:975 quantiles. The results of this 
sensitivity study indicate that slope angle, soil thickness, and cohesion 
(Cr + Cs) have the strongest impact on the estimated PoF, while the 
influence of soil density, friction angle, transmissivity, and water 
recharge are at least on order of magnitude smaller. This confirms that 
slope angle, soil thickness, and the soil cohesion are the most critical 
parameters when evaluating the PoF using this probabilistic approach, 
and hence their distribution has to be known most precisely. 

4.2. Soil Thickness variations 

The soil thickness was mapped from geotechnical and H/V mea-
surements (42 boreholes, 31 ambient noise recordings, Fig. 3) using an 
inverse-distance-weighted (IDW) interpolation. Fig. 3b shows two H/V 
analyses, one representative for a deep and one for a shallow bedrock. 
HV-1 shows a peak with an amplitude of 3.5 at 4 Hz, which leads to 15.6 
m bedrock depth estimate. HV-2 shows a peak with an amplitude of 
about 7 at 35 Hz, estimating the bedrock to be at 1.8 m depth. 

The uncertainty of the thickness map is related to bedrock depths 
values (Boreholes and H/V), the point density and the interpolation. For 
the bedrock depth values, the uncertainty is estimated to be a few cen-
timeters for borehole records, and for H/V it is directly related to the 
uncertainty on Vs, which ranges from 200 to 300 m/s in our study case. 
This leads to an uncertainty of 0.15 m for very thin soils, up to 3 m for 
the thickest areas (18 m) and ± 0.65 m for the average thickness (3.25 
m). 

The soil layer is relatively thin over the study area with an average 
thickness of 3.25 m. The thickest soils can be found in the north-eastern 
part of the study area of about 18 m thickness, whereas bedrock outcrops 
(soil thickness of 0 m) are found in the eastern and central. The thick soil 
cover of the north-eastern part is related to comparably less excavations 
due the presence of fewer buildings. Fig. 3c shows the variation of soil 
thickness with slope angle, and shows that the mean thickness of about 

3.25 m is present across almost all slope angles, except for flat surfaces 
where the mean thickness decreases to 2 m. However, the standard 
deviation shows considerable variability, highlighting the presence of a 
larger range of soil thickness for slopes ranging from 10◦ to 25◦. 

4.3. Vegetation variation 

Two vegetation classification algorithms were tested to calculate the 
PoF incorporating the root cohesion The RF classification classified the 
5x5km area with an overall accuracy of 86 % and 89.25 % for the first 
and second period, respectively, while the SVM algorithm classified it 
with an overall accuracy of 93.6 % and 91.4 %, respectively. Consid-
ering those results, the SVM classification was used to extract the tall 
vegetation of the study area. 

Fig. 4 shows the result of the classification of the vegetation cover for 
the second period over the study area. Globally, all trees are classified as 
low or tall vegetation except for rare isolated trees, which seem mis-
classified as bare soil. The vegetation (low and tall) represents about one 
third of the study area (Fig. 4). 

4.4. PoFs 

The influence of integrating the spatial variability of soil thickness 
and root cohesion in the PoF calculation is assessed through estimating 
the PoF in three different ways, (1) accounting only for slope angle 
(PoF_S), (2) including soil thickness (PoF_ST) and (3) including root 
cohesion (PoF_STV) based on the vegetation cover classification of the 
second period (April–June 2021). 

To assess only the impact of the slope angle (PoF_S, Fig. 5a), the soil 
thickness was set to a constant value of hs = 3.25 m (corresponding to 
the mean soil thickness over the study area). No root cohesion was added 
to the soil cohesion distribution with a minimum, modal and maximum 
value of 5 kPa, 15 kPa, and 7.75 kPa, respectively. The other parameters 
were set as described in Section 2. Fig. 5b shows the distribution of 
slopes over the study area, highlighting numerous slopes >40◦, and up 
to 60◦ for some localized areas. The slope distribution and the PoF map 
are correlated, showing high probability (>0.75, red areas) for slopes 
above 40◦. The mean PoF_S over the whole study area is 0.26. Consid-
ering its spatial distribution, Fig. 5a shows a high PoF on unbuilt areas, 
while flat areas (mostly covered by buildings) show a negligible PoF. 

Including the soil thickness estimates in the PoF calculation, allows 
us to consider 2D variations of both the slope angle and soil thickness 
(PoF_ST, Fig. 5c). Fig. 5c shows that the high PoFs (close to 1) are located 
in areas of thick soil cover (above 4 m, particularly in the north-eastern 

Fig. 2. First Sobol indices of the 7 parameters (soil density ρS, soil thickness hS, cohesion (C = Cr + Cs), friction angle ∅, slope angle θ, transmissivity T and water 
recharge (amount and shape) R used to calculate the factor of safety and its confidence interval. 
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part), while lower PoF (< 0.5) are found in the central and south- 
western parts. The difference between PoF_ST and PoF (Fig. 5d) shows 
values increasing by up to 0.75 and values decreasing by as much as − 1. 
The change in the PoF was calculated from the average soil thickness of 

3.25 m, corresponding to the boundary between the positive and 
negative impact of soil thickness variation (gray, Fig. 5d). A decrease 
was observed for all areas exhibiting soil thickness below 3.25 m. 
Particularly in the central, eastern, and southern part of the study area, 

Fig. 3. a) Soil thickness map interpolation from geotechnical (boreholes, blue points) and seismic data (HV measurements, red points). Google satellite background 
map. b) Examples of H/V curves in the thickest part of the soil (HV-1) and in a thin soil layer (HV-2). c) Mean thickness distribution and its standard deviation as a 
function of slope angle. 

Fig. 4. Result of the SVM classification of the second period (April–June 2021): tall vegetation, low vegetation, bare soil, and others over the study area.  
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the PoF_ST decreases from 1 to 0 due to a soil thickness below 1 m. On 
the contrary, PoF_ST increases for areas with soils thicker than average 
soil layer, particularly in the northeastern part of the study area. On 
average, the PoF decreases from 0.26 to 0.22 when considering a vari-
able soil thickness across the study area. 

Fig. 5e shows the probability of failure considering all the important 
variables: slope angle, soil thickness, and varying root cohesion due to 
the distribution of tall vegetation (PoF_STV). Considering also the 
additional root cohesion leads to a further decrease in the average PoF to 
0.19. Analyzing the differences between the two probability maps 
(PoF_STV-PoF_ST, Fig. 5f) shows that the strongest decreases (up to 
− 0.9) in PoF are linked to tall vegetation cover on thin soils, corre-
sponding mostly to the southern and southwestern parts. 

Fig. 6a shows the mean PoFs (PoF_S, PoF_ST and PoF_STV) and 
associated standard deviations as function of slope angle. The PoF_S is 
zero for slope angles below 18◦ (Fig. 6a, black) and increases linearly 
until reaching 1 for slopes above 42◦. Areas with a high PoF (0.8 and 

above) are distributed across the entire study site (Fig. 5a) and corre-
spond to areas with slope angles >35◦ (Fig. 6a). Looking at the mean 
PoFs, considering variations of soil thickness and root cohesion across 
our study site lead to a considerable decrease in PoF for slopes between 
25 and 60◦ (Fig. 6a), with smaller values when considering the vari-
ability of all three parameters. A slight increase of the mean PoF_ST and 
PoF_STV are observed for slopes between 15 and 21◦, which can be 
associated with a larger occurrence of thicker soils in this range of slope 
angles (Fig. 3c). The PoF_ST shows a continuous increase for slopes of 
20◦ until reaching high values (PoF > 0.9) for slopes ranging from 45◦ to 
55◦. Then, as for the PoF, PoF_ST is equal to 1 for slopes of 60◦ and 
greater. PoF_STV shows only a continuous increase, with smaller prob-
abilities than PoF_ST, until reaching its highest value for slopes of 60◦

(Fig. 6a). 
Figs. 6b and c show the mean PoF_ST and PoF_STV, respectively, as 

function of soil thickness and slope angle. PoF_ST and PoF_STV show 
similar pattern with high values for slopes >30◦ and soil thickness > 5 

Fig. 5. a) PoF map considering only slope variations (PoF_S). b) Slope distribution c) PoF map considering slope and soil thickness variations (PoF_ST). d) PoF_ST – 
PoF_S. e) PoF map considering slope, soil thickness and root cohesion variations (PoF_STV). f) PoF_STV – PoF_ST. 
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m. PoF_ST and PoF_STV equal zero for slopes <15◦ and thickness < 0.5 
m. PoF_ST shows the highest values (> 0.8) for slopes >30◦, and reaches 
their maximum at soil thicknesses above 3 and 1 m for slopes angles 
above 30◦ and 60◦, respectively. PoF_STV shows the same behavior, but 
for larger soil thicknesses of 5 and 1 m (Fig. 6c). 

Fig. 6d shows the difference between the mean PoF_STV and PoF_ST 
as a function of slope and soil thickness. A general decrease of the 
probability is visible for slopes ranging from 17◦ to 60◦ and thicknesses 
between 0.5 and 10 m (Fig. 6d). However, the strongest decrease (more 
than − 0.15) is observed for slopes ranging from 30◦ to 60◦ and soil 
thicknesses ranging from 1 to 3 m (Fig. 6d). Including tall vegetation in 
the PoF calculation leads to a considerable decrease in PoF for slope 
angles and soil thicknesses ranging from 37 to 50◦ and 1.8 to 2.5 m, 
respectively. The presence of tall vegetation causes a maximum reduc-
tion of PoF of − 0.39 for slopes of 48◦ and soil thickness of 1.25 m, while 
it is negligible for soil thicknesses above 3 m on steep slopes (> 50◦) and 
for soil thicknesses above 10 m for gentle slopes (15◦ to 35◦). 

4.5. PoF monitoring 

During the monitoring period, eucalyptus trees were removed across 
a single slope of the study area to manage wildfire risk (Fig. 4, Appendix 
1). To highlight the importance of accounting for the vegetation distri-
bution, the impact of this management practice was analyzed. As out-
lined before, we classified the vegetation distribution for two periods, 
between which the tree removal took place. The first period comprised 
satellite images acquired on October 2020 and January 2021 during 
which the trees were present, while the second period included satellite 
images of spring/summer 2021 (April and June 2021), during which 
tree removal had happened already. Based on these images, vegetation 
was classified and PoF distributions calculated. 

Fig. 7 shows the difference in the PoF after the removal of eucalyptus 
trees (2nd period – 1st period), and highlights the importance of ac-
counting for the vegetation distribution, but also its time-varying nature. 
A considerable increase in the PoF of up to 0.8 is observed, caused by the 
removal of the eucalyptus trees. The PoF increased more in the western 
part of the area due to the thinner soils in this area (<2.5 m, Fig. 7). The 
eastern part, with a soil thickness of 5 m, is only slightly affected (+ 0.1). 
This information is very valuable in managing the changing landslide 
hazard, since particularly the western part of this area shows a consid-
erable impact by the tree removal, and hence further vegetation man-
agement such as planting native coast live oak will be targeted on this 
area. 

5. Discussion 

Here, we evaluate the PoF for shallow landslides of a highly 
landslide-prone urban area. Through a sensitivity analysis, we show that 
for our study site the PoF calculation is primarily sensitive to the slope 
angle, the soil thickness, and the cohesion. The sensitivity analysis 
showed that the slope angle has the greatest influence, while soil 
thickness and cohesion have a similar influence on the PoF calculation. 
While the slope angle can be readily extracted from a high-resolution 
DEM, the spatial distribution of soil thickness and cohesion is more 
challenging to estimate. In order to retrieve spatial variations in soil 
thickness and root cohesion, we applied two methods that are rapid and 
can be reproduced easily. Analysis of ambient seismic noise recordings 
provide estimates of the soil thickness, and classification of satellite 
images allowed for a rapid and repeatable mapping of vegetation cover, 
which is directly related to the root network. 

We analyzed the impact of the three different parameters on the PoF 
distribution. Only considering varying slope angles showed that slope 

Fig. 6. a) Mean PoF (black), PoF_ST (blue) and PoF_STV (green) as a function of slope angle and the associated variability across the site expressed as standard 
deviation b) Mean PoF_ST as a function of slope angle and soil thickness c) Mean PoF_STV as a function of slope angle and soil thickness d) Difference of mean 
PoF_STV and PoF_ST as a function of slope angle and soil thickness. 
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angles increasing from 20◦ to 50◦ drastically increases the PoF until 
reaching a plateau close to 1. Also considering the spatial variability of 
soil thickness reduced the global PoF over the area from 0.26 to 0.22. 
Slopes steeper than 30◦ and with a soil thickness above 5 m are char-
acterized by PoF of 0.9 and higher, highlighting a very high landslide 
hazard for these slopes. In addition, the increased amount of potential 
sliding mass (due to the thicker soil layers) could result in devastating 
impacts of landslides in these areas. 

The soil cohesion was evaluated from previous geotechnical cam-
paigns and a remote sensing approach was used to extract the vegetation 
cover, and hence root cohesion. We showed that root cohesion has a 
significant impact on slope stabilization, particularly under thin soil 
conditions, increasing cohesion by a factor of 12 in the first meter. Root 

cohesion has a beneficial impact, lowering the PoF drastically for soil 
thickness smaller than 3 m with slope angles between 30 and 60◦, with 
the largest impact for soil thickness of 2 m and below. This shows that 
the estimated root network is not dense enough to have a significant 
benefit for deeper soil. In most of the cases, the root network will not 
reach depths larger than 7 m, with a small fraction of them going deeper 
than 1 m (Canadell et al., 1996) and approximately 70 % of root biomass 
located above 50 cm depth for woody species (Kummerow and Mangan, 
1981; Jackson et al., 1996; Schulze et al., 1996). In case of larger soil 
thickness, vegetation could have a negative impact by adding weight to 
the soil, which could increase the PoF more than what can be 
compensated for by the increase in cohesion. However, this impact was 
not formally evaluated because: (i) the stem weight distribution cannot 

Fig. 7. PoF difference between the second and the first period, representing periods after and before removal of the eucalyptus trees. Red outlined areas highlight the 
managed area. Soil thickness is displayed in gray scale between 0 and 5 m. 

Fig. 8. Maps of active landslides and paleolandslides associated with PoF_STV and mean yearly displacement of GNSS stations.  

S. Fiolleau et al.                                                                                                                                                                                                                                 



Geomorphology 423 (2023) 108560

10

be estimated from the satellite imagery, and (ii) the surcharge effect is 
often negligible compared to the soil mass itself (Fan and Lai, 2014), 
even more so in the case of relatively deep landslides. After integrating 
the spatial distribution of vegetation, the estimated PoF decreased in the 
south-western and north-western parts of the study area, although these 
are known to have experienced landslides in the past (Fig. 8). This 
highlights that some paleolandslides may have been mitigated by the 
natural or man-made addition of vegetation. 

Considering the soil properties of the study area and the failure 
likelihood, we show that slope failure is unlikely for slopes with an angle 
below 20◦, and that the probability of failure is increasing considerably 
for slopes steeper than 30◦. A soil thickness of at least 1 m is required to 
trigger a landslide in steep slope areas (> 55◦), and of at least 3 m in 
gentler slope areas (about 20◦). 

To validate our results, we analyzed average annual displacement 
rates, recorded by five GNSS stations (Cohen-Waeber, 2018). Each sta-
tions velocity was calculated following an approach by (Murray and 
Svarc, 2017), and the velocity of GNSS station P224, which is located 
outside the study area, was subtracted to account for tectonic plate 
movement. The final PoF map considering the three parameters dis-
cussed here shows that the monitored locations exhibit displacements 
and are located in areas of a high PoF (Fig. 8c). Indeed, all five GNSS 
stations showed displacements ranging from 4.8 to 15.1 mm/yr. LRA5, 
located in an area listed as a paleolandslide shows a displacement rate of 
5 mm/yr, corresponding to a very slow-moving landslide, while LRA4, 
located in an active landslide domain, shows displacement rates of 15 
mm/yr. Additionally, walkover surveys highlighted current landslide 
activity mapped with high PoF in the northwestern and central parts of 
the study area. This confirms the validity of the estimated PoF 
distribution. 

The study showed that the soil thickness variability and vegetation 
distribution are of critical importance to the landslide risk evaluation. At 
the studied site, considering both distributions was necessary to assess 
the PoF and the risk associated with future slope failures. 

Additionally, it showed that geophysical measurements, and more 
precisely the computation of the H/V ratio is an efficient way to extract 
the soil thickness at local to regional scale without requiring time- 
consuming and cumbersome methods. Likewise, the use of remote 
sensing has facilitated the extraction of vegetation landcovers and their 
spatial distribution, which in turn allowed us to estimate the evolution 
of root cohesion for the purpose of PoF monitoring. Indeed, in our case, 
land use management in the study area, located in the Bay Area, has led 
to a large number of eucalyptus tree removals as a measure to reduce fire 
hazards. Studies already implementing a real time evaluation of the 
landslide hazard based on a physical based model (Krøgli et al., 2018), 
however only considering meteorological forecast. Tree removal dras-
tically increased the PoF in areas of thin soil (up to 3–4 m, Fig. 7). 
However, as shown by Schmidt et al. (2001), the added root cohesion 
last for few years after harvesting, depending on the tree species. The 
root cohesion decay after harvesting was not considered here, yet the 
results provide crucial information for additional vegetation manage-
ment in the affected area in order to mitigate the increased landslide 
hazard. The same approach could also be used to monitor vegetation 
dynamics, and hence landslide hazards, over longer periods, by, e.g., 
classifying the vegetation cover 3–4 times per year. This would allow to 
estimate future changes in root cohesion (considering the rate of root 
degradation), and could contribute to monitoring landslide hazard. This 
would also provide a feedback pathway to adapt land management plans 
to include landslide hazard concerns, as outlined in the example of the 
eucalyptus tree removal. 

The approach used in this study allowed us to consider the spatial 
variability of the slope angle, soil thickness, and cohesion. In addition, 
the sensitivity analysis showed that uncertainties in soil density, friction 
angle, and transmissivity have a small impact on the final PoF map. 
However, uncertainties in slope angle and soil thickness could have a 
major impact on the final PoF map. The slope angle uncertainty depends 

on the DEM used. In our case, the DEM used has a slope angle accuracy 
of about ±5◦. This study highlighted that soil thickness variations have a 
major impact in the 0 to 5 m range, with uncertainties ranging from 0 to 
1 m, respectively. The two accuracies (slope angle and soil thickness) 
can impact the final PoF map, however, they are small enough not to 
challenge the overall conclusions discussed above. 

As Corominas et al. (2013) stated, it is critical to properly analyse 
and calibrate the parameters that are of critical importance to the hazard 
assessment. Without such analysis and calibration, the hazard assess-
ment could either over- or underestimate the risk, thereby providing an 
unreliable estimate. Here, we addressed this issue by determining the 
most important parameters, and using a probabilistic approach to the 
hazard assessment, which accounts for variability of some of the model 
input parameters. 

6. Conclusion/perspectives 

This study shows that coupling geophysical and remote sensing data 
is useful to reduce uncertainty in the assessment of landslide hazards. 
The influence of slope angle, soil thickness, and root cohesion on esti-
mates of slope stability were evaluated. We highlighted that for this 
study area slope angles above 30◦ have a high PoF (>0.5). Additionally, 
we showed that the soil thickness variability has a strong impact on the 
PoF of the study area. Soil thicknesses >5 m significantly increase the 
PoF for slope angles of 30◦ and greater. For thinner soil cover (1 m - 5 
m), the PoF were generally low, but for very steep slopes, values of up to 
1 are still possible, with higher probability at smaller angles for 
increasing soil thickness (i.e. 35◦ for 5 m, and 55◦ for 2 m soil thickness). 
The study also shows that root cohesion is only effective in slope sta-
bilization for shallow soil thicknesses (< 3 m). The results demonstrated 
that the knowledge of the soil thickness distribution is essential to 
properly evaluate the PoF of a study area. While assuming a constant soil 
thickness across the area showed a high PoF throughout the study site, 
acknowledging variable thickness and vegetation distribution high-
lighted areas of an increased PoF. These areas characterized by a high 
PoF correlate with areas of known and currently monitored slope dis-
placements, but also highlighted other areas of concern. 

This study highlights that it is important to account for the spatial 
variability in soil thickness and cohesion, due to root cohesion from tall 
vegetation cover. To help with that, a new approach combining the use 
of ambient seismic noise analysis and remote sensing data was proposed, 
which allows for extracting these parameters easily. The analysis of 
ambient seismic noise records showed that we can easily extract the soil 
thickness in short time, while using readily available satellite imagery 
allows for a rapid and repeatable analysis of vegetation cover. Through 
assessing the impact of tree removal on the PoF, promising results for 
monitoring landslide hazard using remote sensing in such evolving areas 
have been shown. This approach could be complemented with tracking 
changes in soil parameters to update the PoF over time. Recent de-
velopments in wireless sensor networks and automated geophysical data 
acquisition allowed remote monitoring of parameters such as soil 
moisture and water table. Such data could be integrated into hydro- 
geomechanical models to provide no longer an average PoF, but a 
close to real-time PoF, which could provide crucial information for early 
warning systems. This study highlights the importance of a good un-
derstanding of the soil thickness and vegetation distribution for land-
slide hazard assessment, but also provides a novel and transferable 
methodology to account for those in the assessment of other areas at 
risk. 
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