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Preface 

At the time of the author's death this book was in the form 
of an unpublished manuscript. The manuscript consists of seven 
loose-leaf notebooks, handwritten in pencil, on lined notebook 
paper. Each page is carefully numbered and dated. It appears that 
i t  is a first draft, yet the initial wording is precise, with almost no 
after-thoughts. 

The title Our Modern Idol: Mathematical Science belies its con- 
tent. Although the author was an eminent mathematical physicist 
the book is not mathematical in nature; there are no mathematical 
equations or derivations. The few mathematical expressions are 
simple and the book is clearly intended for the non-mathematical 
reader. It does not appear to have a definitive, coherent theme; 
rather it is a collection of eclectic essays connected historically or 
sociologically. In short, this book is about people, ancient and 
recent, as individuals and in society. 

I t  was the opinion of several commercial publishers to whom 
this manuscript was submitted that this would not be a commer- 
cially viable book without extensive editing. Their proposals 
required condensation of the whole and the addition and deletion of 
material so that the theme could be more clearly developed. Upon 
consultation with friends and colleagues of the author, i t  was 
decided to publish the manuscript privately as written, without sub- 
stantive editing. 

In this endeavor I was ably assisted by Maureen Perry and 
Laurie Nord who carefully read the manuscript and made necessary 
but minor editorial changes. In addition Ms. Perry set the entire 
manuscript in type using the University of California computing 
facilities. Their knowledgeable contributions and persistent efforts 
made private publication possible. 

Leonard Liebermann 
Professor of Physics 
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One hears it said that, for the first time, man now has the 
power to determine his own future, if only people will be sensible. 
This is a popular summary of a number of serious books, none of 
which are quite so incautious. Still, their authors are enthusiastic 
about the achievements of science and technology, and are con- 
vinced that others are coming; moreover that these achievements 
have improved the lives of people and will continue to do so. 
These achievements have been largely those of the physical and bio- 
logical sciences, and those in biology have come mainly after biolo- 
gists began to use the tools and methods of the physical scientists. 
Among these methods are the mathematical theories of physics and 
chemistry. 

Remarkably, those sciences that are specifically devoted to the 
study of people, sociology, psychology and political science, have 
made no corresponding achievements. This requires explanation. 
One facile explanation is widely accepted, especially by the scientific 
and technological communities. This is that these behavioral sci- 
ences do not use mathematical theories. Many behavioral scientists 
accept this explanation, and promise to do better in the future. In 
fact, they have been sincerely trying to do so for at least a genera- 
tion, but without striking success. It is therefore reasonable to 
investigate the validity of this explanation. 

There is another phenomenon that casts doubt on this expla- 
nation. Despite the demonstrable improvement in living conditions, 
many people are still dissatisfied with them. Some of these people 
are, for economic and other reasons, deprived of the advantages 
provided by the physical and life sciences, and live under antiquated 
conditions. Without being unsympathetic, or denying this 
phenomenon, their opinions need not be examined in detail at this 
point. But the phenomenon does cast its shadow on the proposed 
explanation. Moreover, there are people who are not denied the 
advantages of the technological changes, but still find their lives 
unsatisfactory. They say that these very changes have had 
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unsatisfactory consequences, that they have so changed the 
environment that the world is now a less pleasant place in which to 
live than in the past. They are tempted to ascribe this to the aban- 
donment of ancient wisdom and customs. Extremists advocate des- 
truction of the present Establishment and a return to even more 
antiquated ways of life than those now open to the underprivileged. 
Those who are less extreme, devote themselves to the study of 
ancient writings and attempt to shape their lives in accordance with 
the precepts contained in them, or rather, with their own view of 
the lives of these ancient writers. One cannot deny the phenomena 
of which these people complain, and this broadens the scope of the 
present investigation. 

The field to be investigated becomes so huge that it seems to 
require new methodology, a methodology that is neither based on 
admiration of the present, nor on admiration of the past. It also 
seems likely that the investigation cannot be systematic. One will 
start somewhere, in hope that other starting points will be suggested 
as one proceeds. Thus, it will be a collection of investigations, 
rather than a single one. At least, that is how I have written this 
book. 

The initial investigation should be general, yet simple enough 
to make progress possible. I chose to start with the question, "How 
does man differ from the other animals?" It is immediately found 
that man (called homo sapiens by zoologists) is the only surviving 
species of the genus homo. Today, most genera are represented by 
many species, or else by none. Those which have no living species 
became extinct in the distant past. This suggests that man may be 
well along the road to extinction, and may have no appreciable 
future. Yet the number of people, the number of members of the 
species homo sapiens that are alive today is many times the number 
that were alive a thousand years ago. This suggests the opposite 
conclusion. One has already arrived at a significant fact about the 
popular opinion with which this chapter opened: one should distin- 
guish between man and people. The popular opinion is verified, if 
only in this minor way. The question should be, "How do people 
differ from animals ?" 

Two anatomical differences come to mind. People have 
hands with opposable thumbs and can use them to make artifacts; 
they also have mouths that can make the sounds of speech. Birds 
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build nests, which are artifacts. Antelopes make no artifacts, but 
they make a cry that puts the whole herd into flight when one of 
them senses the approach of a lioness. People are not absolutely 
unique, but differ from other animals in at least two ways that are 
obvious. 

If one person acquires new knowledge by experience, this can 
be communicated to others by speech, and by them to their chil- 
dren. Because of speech, the acquisition of knowledge becomes a 
cumulative process. Other animals do not accumulate knowledge as 
the generations pass. This accumulation of knowledge by human 
beings has been enhanced by their invention of the artifacts of writ- 
ing and printing. One may, with some reason, hope that this accu- 
mulated knowledge will enable man to exercise more and more con- 
trol over his future. But this same process of the old teaching the 
young can also cause errors and false conclusions to accumulate 
with the passage of time. One should therefore study ancient writ- 
ings, not so much in the hope of finding lost wisdom as in the hope 
of locating the origin of errors that have been, and still are, 
accepted as truths. 

Thus, the consideration of these few almost obvious matters 
has led to the formulation of a methodology with which to continue 
the proposed investigation. 



The Failure of 
Universal Education 

It is very difficult, if not impossible to define knowledge, but 
all of us attach some meaning to the word. Today, most people will 
agree that the ability to read and write is knowledge, although this is 
an almost irreducible minimum of formal knowledge. Education is 
the systematic transmission of knowledge from one person to 
another. Most modern systems of education are complex organiza- 
tions whose origin is to be found, if at all, in the distant past. It is 
also generally agreed that everyone should receive some education. 
There were times when only children of wealthy parents received 
formal education. It is difficult to date the beginning of the doctrine 
of universal education, or to find the reason for its adoption. An 
important event in this history occurred toward the end of the 
French Revolution, when reconstruction began to replace its origi- 
nal destructive violence. Apparently, it was thought that education 
for all would make all cooperate in changing society for the better. 
People still express disappointment when an educated person does 
not cooperate in this way. 

The effort to increase the number of French elementary 
schools was made difficult by the lack of qualified teachers. On the 
initiative of Napoleon Bonaparte (who was not yet a dictatorial 
emperor), the Revolutionary Convention established the Ecole Nor- 
male to train the required corps of teachers and to certify their com- 
petence. Much the same system was adopted in the United States. 
Here, teachers' colleges were called normal schools until well into 
the twentieth century; this was long after the original Ecole Nor- 
male had ceased to exist. The normal schools of the U.S. not only 
continued to train and certify teachers for the increasing number of 
elementary schools, but they also standardized the curriculum of 
these schools, which in turn certified the competence of their gradu- 
ates. These certificates or diplomas were often accepted by colleges 
and universities for the admission of applicants, without further 
examination of the knowledge and aptitude of the applicant. This 
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practice has not yet been completely abandoned. 

Attendance at elementary schools was made compulsory. One 
reason for this was certainly the hope that education would produce 
better citizens. It also discouraged the exploitation of child labor, 
which had begun in the East. But the major industry of the United 
States was still farming, and many parents could not afford to do 
without the help of their children during the busy summer; hence 
the long summer vacation was a compromise. Moreover, the peo- 
ple of the U.S. were more inclined to move about than the people 
of Europe. The settlement of the West was beginning and even 
cities were growing. The standardization of school curricula was 
therefore a convenience: a child could move from one school to 
another without requiring much special attention from the teacher, 
or having to make up deficiencies. Standardized education was 
efficient, at least superficially, under the circumstances. 

Elementary education was free, paid for from public funds. 
Free higher education developed gradually, but was never compul- 
sory or universal. In 1900, one public high school sufficed for the 
entire city of St. Louis, then the fourth largest city in the United 
States with a population of a half million. Since then, the number 
of public high schools, colleges, and universities has increased 
rapidly, as has the number of their students. The educational sys- 
tem of the U.S. has increased in size and complexity, but it still 
bears the marks of its origin in the standardized elementary school. 

The early normal schools did not provide their graduates with 
a very good education; their knowledge was scarcely more than that 
which they were expected to pass on to their pupils. They were 
prepared to teach only the standard curriculum, not to improve it. 
There were, of course, exceptionally fine teachers among these gra- 
duates, but not enough of them to invalidate this generalization. 
Moreover, teachers were overworked; even in the smallest schools 
they could not give each student individual attention. The regimen- 
tation of pupils was inevitable, but not recognized as such, since it 
was "for their own good." If an exceptional pupil vaguely recog- 
nized some error in the teacher's exposition and questioned it, he 
was likely to receive an evasive answer and a poor grade. If a pupil 
with a strong personality refused to be regimented, he not only 
received poor grades, but was punished as well. Since the pupils 
were immature children, they came to believe that the purpose of 
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going to school was, not to obtain knowledge, but to "please 
teacher" and go one's own way after school. Of course there were 
exceptions to this generalization. There were also attempts to 
improve the system; the introduction of kindergarten is an example. 
Today, there is less regimentation and more permissiveness, even in 
the elementary schools, and most teachers do have a better educa- 
tion. The curriculum is less standardized, particularly in respect to 
current events. 

The weakest part of the curriculum was history. Pupils were 
required to memorize lists of dates and events. Perhaps this is 
essential, but history is not like a string of pearls. It is more like a 
tapestry, with many interwoven strands, some of them tattered and 
torn. Perhaps children are unable to understand this, and would be 
confused if history were presented as it happened. In any event, 
the standard history course was much like a modern movie scenario. 
There were the good guys (somewhat more than life size) and the 
bad guys. The memorization of dates and events was enlivened by 
bowdlerized stories of battles and wars. According to these stories, 
the good guys usually won; if not, the teacher became sentimental 
about them and bitter about the bad guys. This history confined 
itself mainly to events that had occurred in the United States, and 
was glossed over with complacency about the near perfection of 
contemporary American social and political institutions. 

The barren ineffectiveness of our early elementary educa- 
tional system can be documented by reference to old textbooks and 
autobiographies. The significant fact is that, while it has certainly 
been improved over the years, many remnants of the original edu- 
cational system can be found today, even in our colleges and 
universities. 



The Brandywine Valley 
and Similar Experiences 

Instead of continuing to discuss the complacencies and the 
discontents of the United States in general terms, it will be well to 
consider a specific case in detail. The Brandywine Valley is an area 
that had long supplied water and recreation for neighboring towns. 
Its population was increasing and changes were occurring that 
justified concern. This new population consisted largely of well- 
educated people who might be expected to cooperate with their 
neighbors for the general good. An intensive educational advertis- 
ing campaign was conducted, alerting them to the possible pollution 
of the water supply, and to the reduction of the recreational poten- 
tial of the park-like Valley. After this, a questionnaire was circu- 
lated among the inhabitants of the Valley. Those responding to the 
questionnaire were almost unanimous that the preservation of the 
natural environment is very important. This had been emphasized 
in the educational campaign. When asked why the environment 
was important in their lives, the Valley residents split 33:31:30 in 
stressing three different aspects that had been discussed during the 
pre-questioning period. Some were specific, very few (2%) were 
negative in their response. When asked what should be done about 
the possible pollution problem, the split was 53:15:32 (53% said the 
Valley must be preserved; 32% favored letting the owner of each 
property in the Valley to develop that property free of legal restric- 
tions). Those who favored control were a bare majority. Neverthe- 
less, a plan was prepared which, its proponents thought, might be 
put into effect with general public approval. An informal poll of the 
citizens, however, convinced the leaders of the community that it 
would be futile to place the plan on a formal ballot with a request 
for authority to put it into effect. 

This is an example where even specialized education failed to 
produce cooperation; it produced unanimity only at the trivial level 
of lip-service to words. The more general educational system had 
accustomed people to "please teacher" by making the expected 
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verbal response. When it came to action, the more fundamental 
"school's out, we can do as we please" took over. Their education 
had been irrelevant to their daily habits of life. 

Educational campaigns, such as that preceding the attempt to 
save the Brandywine Valley, brought new words into wide use: 
"environment", "ecology", "pollution". These had not been 
emphasized when the adult residents of the Valley were in grammar 
school, or even in college. The phenomena they describe had 
existed before, but the history courses had not mentioned them. 
Many thought they were new phenomena. The catchwords were 
taken up largely by younger people, who used them as arguments 
against technology and their elders who, they said, "supported the 
Establishment." They emphasized the "irrelevance" of the educa- 
tion they were receiving. All of these new words were evidence of 
confusion, and this confusion was shared by everyone, not only by 
young people. Even with the best intentions, their teachers were 
not prepared to help them resolve their problems. 

The environmental changes brought about by the automobile 
furnish a specific example of the complexity of these problems, as 
well as those of the educational system. The exhaust from gasoline 
engines combines with air to form smog. Smog is a form of smoke 
whose constituent particles are very small, and remain suspended in 
the atmosphere for a long time. Smog spreads over wide areas, and 
is therefore more noticeable than smoke from coal, fuel oil, or even 
diesel oil. The particles from these settle out much more rapidly as 
soot in the immediate neighborhood. Moreover, the use of leaded 
gasoline introduces some 250,000 tons of lead into the air over the 
United States each year. Lead is toxic to the human body; quite 
small amounts of lead can cause permanent damage, and the fatal 
dosage is not large. Thus, concern about smog is justified, although 
it is possible to exaggerate its dangers. Some action is now being 
taken to prevent or reduce the formation of smog, but only after 
years of special and expensive education via articles and speeches in 
all the news media. This action will be even more expensive than 
the specialized educational campaign. It will also require many peo- 
ple to change their habits. All of this might have been foreseen if 
our ordinary educational system had provided a more realistic his- 
tory of technology and society. 
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The general ignorance about such matters can be illustrated 
by a conversation between two college students, overheard at a 
cafeteria table. One of them was describing the beauties of a Cana- 
dian island where only horse-drawn vehicles and bicycles are per- 
mitted. Suddenly, the other exclaimed "Oh! No pollution!" He had 
not lived in the pre-automobile environment, and no one had pro- 
vided him with a realistic description of the pollution that followed 
horses everywhere. Flies bred in the horse dung in the streets and 
spread the filth into houses and food markets. Some fifty or sixty 
years ago, there was a vigorous "swat the fly" campaign. 
Unscreened food markets and open garbage pails were prohibited by 
law. In retrospect, it can be seen that this would all have been 
ineffective if the automobile had not displaced the horse. Many 
streets were unpaved. In wet weather, traffic churned the horse 
dung into a black muck, which people's shoes tracked into homes, 
offices, and everywhere else they went. In hot, dry weather, the 
muck turned into dust, which penetrated even into screened areas. 
The gray and brown sparrow, the chippy, provided another ecologi- 
cal complication. The chippy is a scavenger and an aggressive 
fighter. It was introduced into North America at about the same 
time as the horse, and it multiplied rapidly. Nature lovers feared 
that i t  would eventually displace the more colorful native birds. 
When the horse was displaced by the car, the chippies were 
deprived of their major source of food. Their numbers diminished, 
and native birds returned to aH except the most densely populated 
areas. 

This does not finish the account of the changes that accom- 
panied the automobile. Unpaved streets and highways became 
intolerable to motorists. Roads were paved, using revenues 
obtained from car licenses. This reduced both dust and mud. The 
income of boot-blacks was greatly reduced, and this occupation for 
poor boys and unskilled men has almost disappeared. The automo- 
bile increased the mobility of the individual and produced urban 
sprawl, of which the Brandywine Valley is an example. The favor- 
able aspects of these social changes were recognized very early, and 
people urged governmental intervention to accelerate them. The 
bad aspects might also have been recognized as they began to 
appear, and measures might have been taken to prevent them 
before they became intolerable and almost irreversible. This 
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imbalance in the control of social changes certainly requires study 
and correction, if man is to control his future. 

Opponents of the Establishment often describe corporations 
as heartless despoilers of the natural environment. The charge of 
recklessness is sometimes justified, and almost always so in the case 
of new industries. This, however, does not relieve people and their 
official representatives of all responsibility. The profits of an esta- 
blished corporation depend strongly upon the good opinion of a 
small fraction of its customers or potential customers. The officers 
of a corporation, therefore, can respond to opinions of a marginal 
segment of the public. They need not wait until that opinion 
spreads to the majority. They can even respond to intangible and 
aesthetic value judgments. They fear damage to their public image 
as much as violating a law. Thus, they cannot escape all responsi- 
bility for the undesirable effects of their activities. 

Overhead electric wires, strung on rough poles, are often cited 
as evidence for technology's contempt for the intangible values of 
the environment. They were first installed by Samuel Morse, 
financed by a Congressional appropriation. Morse had been an art 
teacher, and one of his sculptures had won an international prize. 
He was to become the first president of the National Academy of 
Design in New York. Today, Morse's overhead wires are being 
placed underground, or being replaced by less unsightly and isolated 
radio towers. (Some newspapers fulminate against overhead wires, 
and, unreasonably, against the obstruction of traffic during the con- 
struction and repair of underground electric utilities.) Builders have 
changed their plans to retain the good will of their neighbors. 
Power stations are relocating generating stations in response not to 
laws enacted by the voters and their elected representatives, but to 
less tangible expressions of community displeasure. Manufacturing 
plants are devising methods of waste disposal that neither exhaust 
nor contaminate the local water supply. Engineers who have never 
attended an art class are including aesthetic qualities among the 
desirable attributes of their projects. Present day designers of tract 
houses pay more attention to the environment and to aesthetics 
than did their nineteenth century predecessors in Baltimore and 
London. The early tracts have degenerated into twentieth century 
slums, and our new tracts will provide the twenty-first century with 
problems of urban renewal. Possibly these will be less serious than 
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ours, but they will surely not be the same. 

The history curricula of our schools contain no coherent 
account of these matters. Samuel F.B. Morse is presented 
abstractly, as the great inventor of the telegraph, which has been 
such a benefit to man. The negative aspects of overhead wires 
come to general attention largely through direct observation. The 
efforts of corporations to remedy them are publicized through 
advertising designed to protect or enhance the corporation's public 
image. Realists properly suspect that advertising is biased by self- 
interest. This is one reason why the advertising campaign in the 
Brandywine Valley did not obtain the cooperation of businessmen 
engaged in developing the Valley. It too was suspected of bias. The 
bias of our educational system rarely receives comment. When it 
does, the commenter is usually accused of antisocial radicalism. 

Historians of civilization often discuss the fact that people 
have modified the environment to their advantage. Instead of con- 
tinuing to live in caves, people built houses. Even earnest students 
of ecology rarely discuss the damage that primitive people have 
inflicted on their environment. Prehistoric men exterminated whole 
species of animals, not because they needed them all for food, but 
because they used very inefficient methods of hunting. They killed 
far more animals than they could eat. Large herds of animals were 
stampeded over the edge of cliffs, though a few carcasses would 
have fed the hunters and their families for days. Later, many cities 
were built on artificial mounds, composed of the garbage, rubbish 
and ruins left by previous generations. Tarsus, the birthplace of St. 
Paul the Apostle, is one of innumerable such cities. The dead were 
buried in these rubbish heaps, often under the floors of their own 
houses. Even the small communities of prehistory contaminated 
their surroundings with garbage and excrement. This unpleasant 
aspect of human history is not widely taught, even in universities, 
and this is responsible for the seeming novelty of such ideas as pol- 
lution and ecological damage. 

Perhaps it is the unpleasantness of these phenomena that 
keeps them out of the general curriculum. There may also be older 
reasons; a few centuries ago, plagues were considered to be punish- 
ments decreed by God. For one reason or another, the London 
plagues are discussed only very briefly in history classes, and their 
causes mentioned only with euphemistic circumlocution. Hans 
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Zinnser, a specialist in typhus, wrote a book entitled Rats, Lice, and 
History. He was one of the first in recent times to call attention to 
some of the revolting features of life in past times. He used the 
word "louse" freely, and did not hesitate to say that cleanliness has 
always lagged behind art and the social graces. He described in 
some detail the environmental conditions in the time of Rousseau 
and Voltaire. He quoted portions of a frank description of the toilet 
training of an eighteenth century princess. This, however, is left in 
the original French and is unintelligible to those who do not recog- 
nize the French words for "spit" and "snot". He confined himself 
to typhus, and did not describe the symbiosis of flies, horses and 
food shops that he must have witnessed as a boy. If one is very 
familiar with a phenomenon from an early age, it is difficult to real- 
ize that it merits a written record. 

T.R. Forbes is an authority on general matters of public 
health. His article Life and Cmth in Shakespeare's London is based 
on the surviving records of a single London parish, for the period 
1558 to 1625. The records are reasonably explicit, and it is easy to 
read between the lines. The appalling number of deaths in the 
plague years is illuminated by the artless comments of the parish 
clerks. In non-plague years individual deaths could be described in 
some detail, and this leaves no doubt that conditions were worse 
during the plagues. The pollution of that particular parish today is 
certainly far less revolting than it was in Shakespeare's time. 

Concern about the environment is not new. In 1661, the 
British essayist and Fellow of the Royal Society of London, John 
Evelyn, published a small book called Fumifugum. In it he speaks of 
the "hellish and dismal cloud of sea-coal" that had become so great 
as to make "the city of London resemble the suburbs of Hell." He 
says that travellers could smell the smoke at a distance of many 
miles, but he does not give the distance at which they could smell 
the city's open sewers and garbage heaps. He quotes Lucretius, 
who lived in the first century B.C., on the injurious influence of 
smoke. Lucretius' long hexameter poem, On the Nature of Things, 
is dismissed by one recent commentator with the remark that its 
subject is unpleasant. As will be seen later, this is scarcely an ade- 
quate summary. Evelyn's quotation also must be considered in the 
context of Lucretius' times and the rest of his work. At that time, 
Roman houses and temples had no chimneys and were heated by 
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braziers. They contained altars on which the meat, fat, entrails and 
bones of animals were burned as sacrifices to the gods. The smoke 
and stench must have been painful at times. Moreover, Lucretius 
was a religious reformer with no taste for martyrdom. His attack on 
the pretensions of Roman religion and ritual were indirect and 
inferential. An exaggeration of the bad effects of smoke was safe 
propaganda. 

Apparently, London's smoke was a relatively recent 
phenomenon in Evelyn's time. He had grown up with much worse 
kinds of pollution, but he does not mention them in his book. It is 
impossible to believe that between 1558 and 1625 the conditions 
described by Forbe's parish record could have vanished completely, 
or that they were entirely confined to that parish. This is not con- 
jecture, but certainty. The Great London Plague occurred four 
years after Evelyn's publication. The raw data are: 70,000 dead out 
of a population of less than half a million. This underestimates the 
lethality of the disease. Unpopular and ineffective laws caused 
many plague deaths to be reported otherwise. Moreover, it is 
estimated that two thirds of the half million inhabitants fled the 
London to escape death. This epidemic began in Holborn, and 
some months elapsed before it reached the parish studied by 
Forbes. The nature of these bubonic plagues is now well under- 
stood, and it is certain that coal smoke was not a major cause; its 
contribution to the death toll can safely be neglected. London's 
Great Fire, a few years later, produced great volumes of smoke, but 
was not followed by a plague. Fortunately, it killed more rats and 
lice than people. The reconstruction which followed the fire was 
planned with more attention to sanitation, and the new buildings 
were relatively rat-proof. Plagues were less severe thereafter. 

Of course these records are from the Old World. It may 
therefore be thought that conditions were better in the New World, 
and possibly this is true. However, in the mid-nineteenth century, 
towns in the Midwestern United States repeatedly suffered major 
epidemics of cholera, and no summer passed without some deaths 
from this disease. Epidemic cholera is always caused by a water 
supply that is contaminated with human excrement. Again, it may 
be thought that urbanization was responsible, and that conditions 
were necessarily better in the open country. Both Boccaccio and 
Newton testify to the relative safety of rural places in times of 
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plague. But cholera epidemics occurred among the people who were 
building the transcontinental railroads through sparsely populated 
areas. Almost certainly, they contaminated the water supplies of 
their own camps. 

In the twentieth century, epidemics of bubonic plague, typhus 
and cholera no longer occur in Europe and North America. This 
was brought about by the combined efforts of physicians, biologists, 
public officials, the building trades and the manufacturers of plumb- 
ing fixtures. It was the end result of work by a very few people who 
set the goal for themselves. They used knowledge obtained by 
research, by independent study. Some of that new knowledge has 
now been incorporated in public laws and in our educational system. 
In most homes, children are given better training in personal 
hygiene than were the royal princesses a few centuries ago. There 
is thus some justification for a defense of our educational system, 
but none for complacency about it. 



Town and Country 

The failure of the Brandywine Plan was a rejection of the 
countryside and an acceptance of urbanization. It was a great disap- 
pointment to advocates for the preservation of rural beauties and 
virtues. It was of more than local significance because this contro- 
versy is not only nationwide, but worldwide as well. In the United 
States, and probably in other countries too, the matters just dis- 
cussed are not taught in a coherent, or even complete fashion. 
Usually, the curriculum includes only the pleasanter, more optimis- 
tic parts of history. Often it is bowdlerized to conceal current hor- 
rors. But the cities are present for all to see, and it requires no 
instruction to notice that they are ugly and sadly in need of 
improvement. It is easy to reach the superficial conclusion that a 
return to rural life is the remedy. It then seems to follow that this 
remedy would eliminate the need for technology and the Establish- 
ment. The irrelevance of education seems to be another corollary. 
These superficialities are very reminiscent of Jean Jacques 
Rousseau, who lived in the mid-eighteenth century. In today's 
idiom, he would be described as a drifter with a talent for writing. 
Among other things, he revived the ancient doctrine that Natural 
Man was a paragon of virtue, living happily in an unspoiled Garden 
of Eden. He too proceeded to the conclusion that civilization and 
culture are the only sources of people's misery. This doctrine may 
properly be called romantic anarchism. It was certainly influential in 
bringing about the violent French Revolution. Rousseau's auto- 
biography does not confirm his conclusion. Less biased biographers 
conclude that much of Rousseau's misery and misfortune were the 
result of his own quarrelsome personality. Yet, his ideas are still in 
circulation. 

Anatole France was a more astute observer of human activi- 
ties. He published his conclusions in a series of gently ironic plays 

' 
and novels, and received the Nobel Prize for Literature in 1921. 
One of his most mature and carefully considered novels was pub- 
lished in 1909, and was soon translated into English under the title 
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Penguin Island. The story begins with a near-sighted missionary, 
who mistakes some penguins for human beings, and baptizes them. 
Then the penguins slowly become human beings. Continuing, the 
story describes the growth of Parisian society and the nineteenth- 
century French Establishment. This portion of the book 
emphasizes the greed for wealth, the ambition for power, and the 
superficiality of relations between people, even within the family. It 
does not put much emphasis on industrialization, or on the physical 
ugliness of the cities. The symbolism of the penguins and the 
near-sighted missionary is not clear; perhaps they symbolize the 
irrelevant education of children and young people. The last chapter 
is entitled "The Future." Unexpectedly, it describes the revival of 
romantic anarchism among university students, who destroy the 
cities with atomic bombs. This is related unemotionally, the 
violence and death being bowdlerized into a sort of sanitary slum- 
clearance project. Except for some sterile areas, Earth regains its 
original beauty and the cycle of urbanization begins again. 

It is surprising to find student alienation and violence in a 
book written in 1909, until one recalls that the abortive European 
revolutions of 1848 were led by university people. It is still more 
surprising to find a description of atomic bombs written at this early 
date. There is no doubt about this, however. The author quotes 
Sir William Ramsay on the highly concentrated energy released by 
radioactivity. Ramsay, who won a Nobel Prize in 1904, had demon- 
strated that radium emits helium nuclei which carry great amounts 
of energy. 

The foresight with which Anatole France described two major 
developments which were to occur within the next few generations 
had little influence on his contemporaries. According to the Index 
of Reviews for 1910, American critics were only concerned with 
France's technical style and the defects of the translation. This 
might have been because, at that time, the United States was iso- 
lated from European affairs. But Penguin Island is a work of fiction, 
and one might at least have expected some comments on its enter- 
tainment value. The introduction to a 1932 edition completely 
ignores the apocalyptic ending. Those who developed the atomic 
bomb in the 1940's had forgotten the book; perhaps they had never 
read it. Their security officers were horrified when, in 1941, a sci- 
ence fiction writer openly described a device which resembled the 
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atomic bomb much less closely than Anatole France's bomb. So far 
as I am aware, none of the authoritative accounts of the develop- 
ment of the atomic bomb, and none of the many analyses of stu- 
dent alienation and urban violence, make any mention of this early 
warning. Neither do any of the authoritative estimates of the cost 
(in dollars) of providing such early warnings when new technologies 
become possible because of new scientific experiments. 

The sum of all the Nobel Prize money awarded to Anatole 
France and Sir William Ramsay is less than any of the recent esti- 
mates of the cost of such an early warning, which is now called 
technology assessment. Moreover, if one takes the Nobel Prize as a 
fixed monetary standard, there has been an inflation of about a 
thousand percent over the last fifty years. The cost of this early 
warning about undesirable side effects of new technologies and the 
defects of social organization is negligible. The mere existence of 
an early warning, however, does not influence the course of events, 
even after its correctness has become inescapably obvious, and the 
underlying causes were evident years before. It is necessary that 
this be remembered. One will not only inquire why the France- 
Ramsay warning was ignored, but also whether France's apocalyptic 
catastrophe is now inevitable. One can console oneself with the 
thought that he did not foresee the arms race or the Cold War. He 
underestimated the mass of an atomic bomb, thinking that it would 
be the size of an egg. He supposed that the poisonous mushroom 
cloud might rise to the height of half a mile. These quantitative 
errors are all underestimates. Until the ultimate catastrophe has 
occurred, there is still time for preventive action. But the difficulty 
of prevention would have been much less, had Anatole France's 
warning been kept in mind during the years in which the danger 
was growing. 



The Aristocratic Fallacy 

The American and French Revolutions were caused, at least 
in part, by dissatisfaction with the monarchical form of government 
and its accompanying theory of society. Universal education was 
one of the reforms which accompanied these revolutions. Monar- 
chies are based on the aristocratic fallacy, which may be formulated 
as follows: "Society is stratified into mutually exclusive classes, and 
these classes can be ranked in order of their value to society." It is 
to be noted that one does not need to be an aristocrat to believe in 
this fallacy. Such widely different people as Marie Antoinette and 
Karl Marx have subscribed to it. "The militant proletariat," wrote 
Lenin, "is always conscious of its spirit of class distinctions." If the 
fallacy is made the basis for action, differences of opinion about the 
rank-ordering of the classes become, very often, deadly serious. 
Two arguments have been advanced to support the aristocratic fal- 
lacy. The most ancient one holds that some people are descended 
from gods; the doctrine of the divine right of kings grew out of this 
idea. The more recent argument holds that all people are descended 
from animals. Neither argument is convincing. 

Robert Ardrey has carefully assembled the evidence for the 
evolutionary argument in three very readable books, It has long 
been known that in a barnyard flock of hens, a peck-order is esta- 
blished. The Number 1 hen may peck any other without fear of 
reprisal. The Number 2 hen may peck all but Number 1, again 
without reprisal; Number 3 may peck all but Number 1 and 
Number 2; and so on. In herds of dairy cows, a similar order is 
established, except that cows butt each other, rather than peck. 
This ordered aggression is rather harmless: no blood is drawn. It is 
also completely useless when adequate food is available. In nature, 
similar peck-orders have been observed in many animals that live in 
herds or flocks. In only a few cases, notably among male baboons, 
are lethal injuries frequent; in most cases the physical injuries are 
minor. Sometimes the ordering seems to serve a purpose, to be 
based on superior physical strength. Returning to the case of the 
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hens: the observations are based on flocks of not more than a dozen 
or so; if the flock is much larger, the human observer has difficulty 
in recognizing the individual hens, in being sure that Number 3 is 
always the same hen. Unless one supposes that hens have a better 
ability to recognize each other, the existence of peck-order cannot 
be established in flocks of a hundred or more. The difficulties of 
recognizing individual animals become greater when they are not 
domesticated, but live in a state of nature. Obviously, these obser- 
vations cannot be relevant to' human communities that contain 
thousands of individuals. Then the aristocratic rank-ordering can be 
maintained only by resorting to distinctive dress, tattooing, or other 
status symbols. Such status symbols are not used by animal com- 
munities. The failure of one human being to recognize the superior 
status of a stranger is the time-worn plot of many humorous stories 
and plays. 

This is not intended to deny that all people wish to have 
themselves and their opinions respected by others, to have their 
decisions receive the cooperation of others. All people also have a 
sense of inadequacy, of their ability to foresee the future or to 
evaluate the present. Under the influence of the aristocratic fallacy, 
this has been misnamed the "inferiority complex." But whatever 
names are used, the wish to lead and the wish for the security of 
competent leadership produce a vicious circle; the higher one climbs 
the ladder of status, the further one may fall. The stress of main- 
taining the public image appropriate to one's status becomes 
greater, sometimes unbearable. It can lead to silly behavior, which 
provides the dramatist with plots, the psychiatrist with patients, the 
prison with inmates, and even the morgue with the corpses of sui- 
cides. Suicide is very rare among animals; the exceptional case of 
the lemmings has been widely publicized, but they do not seem to 
have a peck-order. 

The aristocratic fallacy seems to have arisen only after man 
had evolved as a recognizable species of animal, had acquired his 
present anatomical characteristics, including the ability to speak. 
The aristocratic fallacy can be traced from modern Europe and 
America back to Greece and Rome and eventually to Egypt, Meso- 
potamia, and India. These early societies were all strongly aristo- 
cratic, and included absolute rulers, priests, merchants, tradesmen, 
farmers, and slaves. In India, the caste system obscured the slave 
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status. In Greece, Rome, and even Mesopotamia, the authority of 
the ruler was often limited, but class distinctions, including slavery, 
persisted. This kind of social organization seems to have resulted 
from the many invasions and conquests that plagued these lands. 
The conquerors would kill the leaders of the defeated peoples. The 
leader of the conquerors would reward his followers with the land 
and other goods which had belonged to their defeated predecessors. 
The inhabitants of an conquered area were deprived of privileges, 
and were usually reduced to serfdom or slavery. The best they 
could expect was deportation to a less desirable region. 

The origin of the aristocratic fallacy therefore requires an 
explanation of invasions or wars. Three explanations have been 
advanced. Again, the most ancient is theological, the second is 
economic, and the third is evolutionary. It is certain that theologi- 
cal and economic factors contribute to invasion and war, as will be 
seen. The evidence for the evolutionary factor has again been care- 
fully assembled by Ardrey in his books. In recent years, evidence 
has accumulated to show that many animals, including fish and 
birds, establish territorial claims. Perhaps ownership of home and 
garden is too anthropomorphic a description, but monkeys, apes, 
lizards, cuckoos (that build no nests), doves, sparrows, seals, 
wolves, hippopotami, squirrels, and at least two species of fish all 
establish territorial claims and repel all intruders. Intruders, and 
especially intruders of the same species, are vigorously repelled. 
But this is not warfare within the species. Often it amounts to sin- 
gle combat, although in some cases whole troops of monkeys or 
packs of wolves are involved. But it is not mortal combat. Both the 
invading dove and the defender may lose a few feathers, but no 
lethal injuries are sustained. Almost always the invader retreats, 
leaving the defender victorious. The territorial conflict is more like 
that of the peck-order. Again, there is an exception: the Siamese 
fighting fish fights an invader of its own species until one or the 
other of them is dead. Consequently, this defense of territory is not 
like human warfare. There is no killing of members of the same 
species; there is no robbery; most particularly, there is no enslave- 
ment. 

Animal and insect societies show many features that can be 
made to correspond to human affairs. The stratification of bee and 
ant societies into queen, drone, and worker castes can, with enough 
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good will, be called aristocratic. But there are anatomical 
differences between the classes; there is no need for status symbols. 
The anatomical differences do seem to be brought about artificially 
by differences in the early diet. Presumably, the different diets con- 
tain different growth hormones. The dietary deficiencies of the 
most underprivileged human being do not bring about such drastic 
anatomical changes (they may, however, be lethal while the insect 
diet is not). Some species of ants may be called agricultural, for 
they plant the seeds of favorite plants in easily accessible places. 
Some ants domesticate other insect species, feeding and "milking" 
them. However, with the exception of man, no species of animal or 
insect enslaves its own kind. Goethe's Mephistopheles remarks 
that man "calls it Reason, but uses it only to be more bestial than 
the Beasts." Ardrey is not so optimistic as this. He is convinced 
that all of the evils of human society originated before man's brain 
had evolved to the stage that people could reason. If Goethe is 
right, there is a possibility that people can learn to be at least no 
more bestial than the beasts. 

Returning to the invasions that accompanied the beginning of 
Indo-European civilization, one notes that this kind of war is noth- 
ing other than murder and armed robbery. However, the warrior 
kings claimed to be demigods and to act by divine direction. This 
was believed by their followers, and perhaps by the kings them- 
selves. By this magic formula, the infamous crime was tranformed 
into a glorious mission. Even during periods of relative stability, 
when there were no mass migrations, there were wars. When a 
general had captured a town, his soldiers would destroy it and kill 
many of the inhabitants. The remnant of the population would be 
marched off to grace the general's triumphant return. After this, 
they would be put to work as slaves. The deportation of the Israel- 
ites was by no means unique, but their escape from captivity before 
they had lost their sense of unity was most unusual. In most cases, 
such captive remnants lost their cultural identity and became 
unrecognizable to later historians. Their pedigrees were irretriev- 
ably lost. 

This kind of stratification was therefore not based on the 
value of an individual to society. It was more like the peck-order, 
and to this extent, Ardrey is right. The pecked accepted their hurts 
as inevitable, and comforted themselves by pecking those below 
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them in the order. But in the case of humans, the injuries inflicted 
were often more serious than those in the peck-order of the beasts. 
This stratification of society was also not static, as the aristocratic 
fallacy implies. People did move from the stratum in which they 
were born to another. But in most cases the movement was down- 
ward. Only victorious military men and their families moved 
upward. Even in peacetime, a merchant or his family might be sold 
into slavery for bankruptcy. The most appalling aspect of all this is 
the human misery i t  caused. Scarcely less appalling is the moral and 
intellectual deterioration of the rulers. Even if the founder of a 
dynasty was an able man, his descendants were often merely callous 
tyrants obsessed by infantile megalomania and delusions of divinity. 
There was no respect for human life, and certainly none for intelli- 
gence and knowledge. The builder was valued primarily for his abil- 
ity 10 construct fortifications and royal tombs. The artist, of course, 
contributed to the latter. The metal worker was most often an 
armorer or a court jeweler. The farmers and other craftsmen were 
valued, not as productive people, but as taxpayers and possible con- 
scripts for the army. 

The general degradation of the non-military elements, of the 
skilled craftsmen and merchants, resulted in a phenomenon that 
may be called the sedimentation of knowledge. It is a very impor- 
tant phenomenon, and has had consequences that persist to the 
present day. To some extent, the priests were an exception to all of 
this. However, during an invasion, a priest might also be killed, 
especially if his temple contained valuables. If he survived, his fate 
was no different than that of others; he ended up in slavery. People 
could be enslaved at the whim of a king or other powerful noble- 
man. It is said that, on a visit to Syracuse, the Athenian philoso- 
pher Plato offended the king, who sold him into slavery. There are 
various versions of the story, but all agree that i t  happened. 
According to one version, an admiring acquaintance, Anniceris of 
Cyrene, heard of Plato's enslavement, bought him and immediately 
freed him. According to this version, Plato and the king, Dionysius 
I ,  had disagreed about the morality of Greek plays. It is not impor- 
tant whether this story is true or not. It is sufficient that those who 
passed it on considered i t  plausible, not so extraordinary as to be 
unbelievable. 
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Nothing exhibits the false value placed on a pedigree as does 
slavery. Enslavement cancels all pedigrees. There were always a 
few people who recognized this and deplored slavery. They were 
silenced by an exceedingly ancient proverb: "Slavery will continue 
until the loom weaves itself." 



Solon and the 
Aristocracy of Wealth 

We are taught that Greece, especially Athens, was the birth- 
place of democracy. It is true that the Greeks experimented with 
various forms of government. By the beginning of the seventh cen- 
tury B.C., Athens (capital city of the country Attica) had abolished 
the kingship. Sometimes a coalition of the pedigreed nobles (oli- 
garchs) attempted to run the country without a formally designated 
leader. In Attica, and in some other countries, a leader (archon) 
was chosen to serve for one year, but this term of office was often 
extended. The more responsible leaders resigned before they 
became senile. At other times, one man would seize dictatorial 
power; if he assumed the title of king he was called a tyrant. Other- 
wise he was respected, for very often he did not act in what we 
would call a tyrannical manner; he usually merely acted like a king, 
and sometimes like a good one. The word "dictator" had not yet 
been coined. 

At this time, Greece had just emerged from a Dark Age of 
illiteracy. History was not recorded, but transmitted orally in the 
form of myths, usually as ballads. The itinerant singers, or bards, 
provided such entertainment and gossip in return for meals and a 
night's lodging. The most famous of these was Homer, and when 
the ballads were written down, his name was attached. If a man 
chose to claim descent from one of the gods or demigods portrayed 
in these ballads, there was no way to dispute him. It would, after a 
generation or two, be generally accepted as fact. 

Solon, who lived in the sixth century B.C., was an impover- 
ished nobleman, a poet, and a trader. Among other reforms that he 
introduced was the abolition of the enslavement of bankrupts. 
More clearly than any other form of enslavement, this illustrated 
that people were regarded as commercial commodities. At this 
time, all Attica was in a serious economic depression and seemed to 
be on the point of losing an unpopular war. Most people, other than 
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the wealthier nobles, were bankrupt and had mortgaged their land. 
It would have been foolhardy to try to enslave so many people, 
most of them armed. But the threat was there, and it did not 
improve the morale of the people. By using his abilities as a poet 
and orator, Solon persuaded the people to continue the war. He 
personally organized and led an expedition that captured the nearby 
island of Salamis. The loot from this large island (including slaves) 
lifted Attica out of the depression. This success at armed robbery 
gave Solon great political power, amounting to dictatorship. He 
tried to use his power wisely, imposing new laws intended to 
prevent the recurrence of such an emergency. Many of his laws 
remained on the books but were never enforced, despite uncon- 
cealed violations. There was only one of his laws that the Atheni- 
ans never forgot, although they modified it several times. Solon 
established four classes of citizens, with the slaves making a fifth 
class. Thus, for the first time, the aristocratic fallacy was formalized 
and legalized. The first four classes were established on the basis of 
wealth. More precisely, the top four classes were based on the rela- 
tive worth to society of their members, as measured by the amount 
of taxes paid, and not by pedigree or military might. It was, both 
theoretically and in actual practice, possible for a citizen from the 
fourth class to enter the first class without doing physical violence to 
anyone. Peaceful business enterprise was thus encouraged since 
fear of enslavement was replaced by hope of advancement. The 
duties and privileges of each of the four classes were spelled out to 
provide further economic incentives. Later generations would 
modify or ignore many of the provisions of Solon's laws (e.g., the 
laws against homosexuality and libel), but the four classes of 
citizens plus the class of slaves remained. 

Only the slaves were left without economic incentives. Their 
only hope to improve their condition was to inspire affection in their 
owners. They might even inspire such affection that their owners 
would free them, at some cost to themselves. In this rather 
unlikely event, the freed slaves became fourth-class citizens. Even 
this remote possibility of obtaining citizenship was later denied by 
Pericles. 

At first, the two upper classes were composed almost entirely 
of the wealthier nobles, and the two lower classes were no political 
threat. They were ineligible for the higher political offices. 
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Moreover, the Ecclesias, or Town Meeting, was the legal ruler of 
Attica, and later the nominal ruler of the Athenian empire. Every 
free adult male was privileged to attend, and the vote of a fourth- 
class citizen counted as much as that of a first-class citizen. Since 
the Town Meeting was always held at Athens, this effectively disen- 
franchised all citizens of Attica who lived outside of Athens. Town 
Meetings were time consuming, so those residents of Athens whose 
business pursuits did not leave them sufficient time to attend the 
Town Meetings were also unable to exercise their franchise. At 
first, the practical result was that Attica was still ruled by the 
wealthy nobility, despite the apparently democratic nature of the 
Town Meeting. Some of the nobles cultivated Solon's art of per- 
suasive oratory, embellished with filibustering filigree. Conse- 
quently, the Town Meeting usually gave all important offices to the 
two or three most persuasive men, and sometimes gave dictatorial 
powers to a single man. Sometimes the dictator established himself 
by persuading the Town Meeting to exile or execute some of his 
rivals, and to provide him with a suitably large bodyguard. 

Solon voluntarily resigned his powers. He lived to see much 
of his work destroyed by Peisistratus. Peisistratus was as pic- 
turesque a scoundrel as ever capered across a wide screen. He so 
outraged the Athenians that they ran him out of town. While he 
was in exile, he raised a small private army, but he did not try to 
storm the fortifications of Athens with these inadequate forces. 
Instead, he tamed an owl and got a woman to dress up like the god- 
dess Athena. With the owl on her shoulder, the woman led Peisis- 
tratus and his army into Athens. The Athenians were so supersti- 
tious that they offered no resistance to the "goddess" and her train. 
Once inside, Peisistratus assumed dictatorial powers although he 
allowed the Town Meetings to continue. Any who opposed him, 
however, risked their lives. Solon, watching this ridiculous affair, 
remarked, "Individually you are foxes; collectively you are geese." 
He then ostentatiously left Athens. It is said that he nailed his 
weapons to the door of his empty house. The symbolism of this 
gesture is not clear; perhaps it was meant as a rejection of war and 
armed robbery. 

Solon did not, and probably could not, abolish the nobility of 
pedigree. Since his own pedigree was one of the best, it is unlikely 
that he gave the matter much thought. In time he became a 
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secondary standard of nobility. Anyone who could claim Solon as 
an ancestor could immediately claim descent from the gods. Attica 
was therefore divided into two rival factions: the aristocracy of pedi- 
gree, and the aristocracy of wealth. It was inevitable that this would 
result in serious internal conflict. 



The Silver of 
Mount Laurium 

About a century after Solon and Peisistratus, silver was 
discovered at Mount Laurium, some twenty-five miles from Athens. 
It was this discovery, and not Solon's laws, that staved off a 
recurrence of the economic difficulties which had brought him into 
power. The mines were owned by the government, which was still 
the Town Meeting. Their operation was entrusted to private indivi- 
duals who retained some of the silver as a reward for their services. 
Other public services in Athens were not financially rewarded, 
which further excluded the poorer classes from major public offices. 
At first, even soldiers on active duty received only their food from 
the government. They had to furnish their own weapons and 
armor. Obviously, the wealthier men would have better arms, and 
be more likely to survive a battle. This was legal; Solon's laws con- 
cerning the duties and privileges of the classes spelled it out. This 
division of public service into two kinds, paid and unpaid, was 
informal and not emphasized. It was soon ignored completely in 
contemporary political discussions, and consequently, by many 
uncritical historians. 

The actual work of mining and refining the silver was done by 
slaves. Some of these may have been owned by the mine opera- 
tors, but other Athenians invested their money in slaves, and hired 
them out to the mines. Again, this emphasizes the treatment of 
people as commercial commodities. At one time, Nicias was a 
major political leader and reputedly the wealthiest man in Athens. 
His largest property consisted of about a thousand of these mine 
slaves. The condition of the mine slaves was hopeless. Their lives 
were miserable and short. They could not hope to inspire affection 
or even pity in their owner, for he never saw them. He had insured 
himself against their early death by setting the price of their hire at 
such a rate that he could afford to replace them. Naturally, they 
were desperate men; they had nothing to lose except their agonized 
lives. At the peak of operations, there were at least twenty 
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thousand slaves at Mount Laurium. This must have required large 
numbers of armed overseers and guards. Picks, spades, and ladles 
of molten metal are almost as deadly as swords and spears. An 
archer at a distance cannot be an effective overseer. Slave labor 
imposes a large and continuing overhead unless the slaves are well 
treated, and these slaves were not. Although archaeologists are 
more interested in temples and statues than in mines, Mount Lau- 
rium has been investigated sufficiently to provide material for many 
gruesome horror stories; but these horror stories have not been 
written. 

It is estimated that in nearly two centuries of operation, the 
mines produced silver worth several billion dollars (based on the 
1945 price of silver). Its contemporary purchasing power was about 
a hundred times that much. Spread evenly over Attica, this would 
have amounted to an annual income of several thousand dollars per 
person (not per family). This wealth was enough to raise Attica 
from subsistence farming to a level of ostentatious splendor as 
could not fail to be recorded in history and legend. This prosperity 
was temporarily interrupted toward the end of the first Peloponne- 
sian War. Spartan armies occupied Attica and besieged Athens. 
With Spartan help, the mine slaves revolted and killed their 
overseers and guards. Although defeated, Athens recovered some 
of its prosperity after the mines were again made productive. 
Finally, however, all the silver was extracted from the mines. Then 
the glory that was Athens faded like a tropical sunset. 



Pericles and the 
Athenian Empire 

Of course, the silver was not distributed equally among the 
inhabitants of Attica. Much of it was used to equip fleets and 
armies. These conquered neighboring countries, and the tribute 
exacted from them increased the wealth of the Athenians. How- 
ever, tribute is not fair gain. It also involves an overhead for mili- 
tary force. However, the Athenian navy patrolled the Aegean and 
made it safe for peaceful commerce. Solon's incentives for com- 
mercial activity remained effective, and Athens became a mercantile 
and manufacturing center. Many of the merchants and manufactur- 
ers were plebian and not even natives of Attica. As Athens thus 
became more cosmopolitan, the power of the nobility diminished. 
Plebians became first class citizens, and the nobility could use only 
the weapon of social contempt for those who had earned their own 
wealth and come up from the lower classes. Solon's constitution 
had not foreseen the day when Athenian citizenship would be valu- 
able to foreigners. An empire needs different laws than a city-state. 
The man who guided the growth of the empire was Pericles, a des- 
cendant of Solon, and therefore a descendant of the gods. He is 
usually credited with making Solon's constitution more democratic. 
He was virtually an emperor, but he did not assume that title. He 
was more subtle, and relied on his ability as an orator to keep his 
power. Most Athenian orators appealed to the emotions of their 
listeners, rather than speak about the actuaI issues at hand. Pericles 
did not. His speeches were brief and to the point. The Town Meet- 
ing was so flattered by his apparent faith in its ability to reason that 
it elected him over and over, giving him more and more power for 
thirty years. 

Like his ancestor Solon, Pericles tried to use his power for the 
good of Athens. If Athenians were to rule an empire, citizenship 
must be restricted to them, and not be granted to other inhabitants 
of the empire. These others must be dependent on the Athenians. 
This is one experimental form of government tried out by the 
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the Town Meeting to restrict citizenship to the legitimate children of 
two native born Athenians. Henceforth, there would be no way to 
obtain Athenian citizenship, except by inheritance. Marriage of a 
citizen to a foreigner was made illegal; this last law served no pur- 
pose, and it is not clear why it was included. Eventually, it 
prevented Pericles from marrying his mistress, Aspasia. 

This change in the Athenian constitution was not accom- 
plished without compromise. Previously, only first and second class 
citizens were eligible for the higher public offices; third and fourth 
class citizens were now made eligible. Since they were not wealthy 
enough to donate their services, and since the workload of an 
imperial official is greater than a municipal functionary, small and 
inadequate salaries were provided for all officials, including jurors. 
Pericles is celebrated for these democratic innovations, but funda- 
mentally, his constitution was even more aristocratic than Solon's. 
Had it endured, it would have produced a new pedigreed nobility to 
rule the Athenian Empire which he was engineering. It contained 
no provisions to avert the conflict between the old nobility and the 
new rich, since some of the new rich had been born in Attica. The 
insulting marriage law may have aggravated this conflict. Because 
of his own tact, Pericles was able to keep this conflict between 
bounds, but during his last years, Cleon the Tanner was his major 
political rival, and finally succeeded him. 

Pericles left three legacies to Athens. One was a surplus of 
$75,000,000 in gold and silver (1945 prices); another was the Pelo- 
ponnesian War, which was occasioned by his imperialistic foreign 
policy; and the third was the internal conflict between the old nobil- 
ity and the new rich. At his death, all semblance of unity of pur- 
pose disappeared from Athens. It was divided four ways: by the 
conflict between the nobles and the merely wealthy, and by the 
conflict between those who favored the war and those who opposed 
it. When Cleon succeeded Pericles, the Athenian Empire was at its 
height of prosperity. Plato was born at about this time; before he 
was thirty, the Empire had dissolved, and Athens was bankrupt and 
defeated. It is estimated that nearly half of the men of Attica were 
killed or enslaved during the war. The internal conflicts brought on 
two reigns of terror that exceeded even the usual bloodiness of 
Athenian politics. These were led by Plato's close relatives, the 
nobles Critias and Charmides. Defeat escalated the internal 
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conflicts into a civil war. Both Critias and Charmides were killed in 
battle. The victors were remarkably lenient. They executed only a 
few of their captives, and freed the rest, even guaranteeing them 
freedom from future reprisals for their past deeds. This was the 
first general amnesty in history. Socrates had been the friend and 
teacher of Critias and Charmides, as well as of Plato. It was not 
until several years later that Socrates was executed and Plato began 
writing his dialogues. 



The Structure of 
Modem Western Society 

In western countries, the aristocratic fallacy has been formally 
rejected, although its vestiges continue to have more influence than 
is commonly recognized. Many of these will be examined in some 
detail, but it is profitable to begin by considering the changes that 
have already occurred. It is impossible to assign a specific date to 
the beginning of modern times. They had certainly begun when it 
was recognized that every white boy born in the United States had a 
chance of someday becoming President. They had certainly not 
begun in the time of Pericles, when any boy or girl, regardless of 
skin color, had a chance of becoming a slave. This time span is 
more than two thousand years in length, but it seems futile to 
attempt to assign a more definite date to the beginning of modern 
times. 

In order to arrive at a more realistic view of society, it must 
be recognized that there are individual differences that cannot be 
eradicated by the most rigid curriculum, and that various individuals 
will choose different educational curricula if allowed to do so. As a 
consequence of this, and of the speed of modern transportation and 
communication systems, non-geographic communities have come 
into being. They are composed of people with common interests, 
education, and abilities, regardless of their place of residence. 
Moreover, one person may have many interests, and thus belong to 
several of these communities. Since they are not mutually 
exclusive, the non-geographic communities do not fit into the 
scheme of social classes. It is very likely that such communities 
have existed from quite early times, but they have become more 
obvious recently. It may not be a coincidence that the inventor of 
the telegraph, Samuel Morse, belonged to the art community, to the 
scientific community, and to the engineering and business commun- 
ities as well. This seems to contradict those who deplore the 
increasing specialization of our times. Specialization, however, 
refers primarily to the occupation whereby a person earns his living, 
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and secondarily to the lack of some kinds of knowledge. This lack 
is occasioned more by the increasing complexity of our knowledge 
than by a narrowing of people's interests. Moreover, people may be 
interested in matters which do not directly affect their income. The 
emphasis on occupation as a measure of worth to society is a rem- 
nant of Solon's vision of society. A person's value to society is not 
measured by his income, or by his major occupation. There is even 
the possibility that it cannot be quantitatively measured at all. In 
any case, personal interests do not necessarily coincide with occupa- 
tion, and this is the reason for preferring to speak of communities 
rather than occupations. The rare book community includes both 
collectors and dealers. The golf community consists of those who 
play for recreation, the instructors who teach golf skills, the profes- 
sionals who play in exhibition matches, those who attend these 
matches as spectators, the managers of golf matches and country 
clubs, and the sportswriters and commentators who report on golf 
events. Golf is the occupation of only a few of these; most belong 
to other communities as well. The invidious distinction between 
amateur and professional is certainly a remnant of the aristocratic 
fallacy. Yet, it is instructive. 

In discussing the aristocratic fallacy, the needs of people for 
status, for the respect of others, and for self-respect have been 
mentioned. Membership in several communities multiplies the 
opportunities for satisfying these needs. The increased leisure time 
provided by technological progress adds to these possibilities. A 
person whose status in the business world is mediocre may find 
satisfaction as an amateur golf or tennis player. Thus the distinc- 
tion between professional and amateur is a useful one, It refutes 
Solon's doctrine that status is a matter of wealth. Wealth and pro- 
perty may be obvious status symbols, but they do not necessarily 
symbolize self-respect, and self-respect is an important component 
of status. Men like Van Gogh and Gauguin have given dramatic 
demonstrations of this, but the later inflation of the price of their 
paintings has obscured the significance of their work. Under the 
influence of Solon's fallacy, their paintings have been distorted into 
status symbols, whose worth is measurable in terms of money. 

One may therefore consider modern society as composed of 
overlapping communities, with membership in any of them being 
IargeIy the option of each individual. For simplicity, one may call 
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them optional communities. The differences between these com- 
munities are qualitative; they cannot be rank-ordered. In the 
United States, the term "scientific community" has come to include 
research scientists, engineers, and some physicians, sociologists, and 
economists. Its boundaries are not sharply drawn, and it might be 
better to speak of scientific communities, for it will often be neces- 
sary to speak of components such as the medical community. The 
scientific communities are essentially one of the two cultures to 
which C.P. Snow refers in his book, The Two Cultures and the 
ScientiJic Revolution. The other culture may be called the "humanis- 
tic communities." The humanistic communities are also not homo- 
geneous. There are individuals who belong to both cultures. C.P. 
Snow is one; others of the recent past include Hermann Weyl, 
D'Arcy Thompson, J. Robert Oppenheimer, and John Maynard 
Keynes. It is not possible to describe these two cultures without 
reference to communities that are not components of these two. To 
name only a few of the others: the business community, the 
advertising community, the trade unions, and sports organizations. 
As Snow says of his two cultures, each of these communities gen- 
erally has curious and distorted images of the others, and these 
images are not always flattering. This is inevitable, considering their 
diversity of interest and knowledge. Moreover, each community 
has a curious and distorted image of itself which is always flattering. 
The university community regards the advertising community with 
disfavor, often accusing it of dishonesty. On the other hand, the 
university community regards the arts community with favor. Yet, 
the two communities are two sides of the same coin. Advertising 
publicizes the desirable features of society; Dickens and Daumier 
publicized its undesirable aspects. Artists must eat; many have used 
their talent for the production of advertisements. Writers do not 
refuse to publish their stories in magazines that derive much of 
their income from advertising. The overlapping of the various com- 
munities provides a social cohesiveness that would otherwise not 
exist. Conflicts escalate when some of the communities exclude 
members of others. This has become so apparent that the exclusion 
of racial communities has been made illegal, and is frowned upon 
by a large section of the population of the United States. Of course, 
membership in a racial community is not optional, but the entire 
concept of race is itself a remnant of the fallacy of a pedigreed 
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aristocracy. 
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Intelligence Quotients 
and Career Counseling 

Schools and colleges are beginning to recognize the relations 
between the various communities. Many educational institutions 
have career counselors, whose job is to provide students with fac- 
tual information about various occupations so that the available 
options can be exercised intelligently, and before unnecessary obsta- 
cles develop. A specialized literature has been published, making 
such information more widely available. It is often attractively 
displayed in school libraries. The emphasis on careers is, of course, 
an emphasis on gainful occupations. Still the career planning litera- 
ture is a serious attempt to describe our society as it is. This is not 
always recognized. As yet, it is an ephemeral literature, since it 
rarely takes the possibility of social change into account. Until there 
is a corresponding and adequate socio-economic theory, career plan- 
ning literature will always have this ephemeral quality. 

There has been one attempt to provide such a theory. The 
model on which it is based has some similarities to modern Western 
society, but these similarities are not absolute. This theory resulted 
from dissatisfaction with the use of grade point averages for stu- 
dents, and the use of intelligence quotients for the rank-ordering of 
people of any age. Both are vestiges of the aristocratic notion that 
people can be rank-ordered. The intelligence quotient, which is 
supposed to remain unchanged throughout a person's lifetime, is 
not incompatible with our modem understanding of heredity. It is 
not supposed that the I.Q. of the children is the same as the I.Q. of 
either of the parents. It is, however, supposed to be innate, fixed at 
birth; it is supposed to be beyond the power of people to change it. 
It is suprahuman, at least in the original version of the theory. It 
occurred to the engineer and psychologist, L.L. Thurston, that there 
may be many intelligence quotients (he called them factors), one 
for each identifiable human ability. 
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As an introduction to Thurston's theory, one might consider 
Newton's theory of color, to which it is analogous. Newton sup- 
posed that the retina of the eye has three kinds of receptors: R, G ,  
and B, each sensitive to red, green and blue light, but not to the 
other two. Any color could then be represented by a point, C, in 
the interior of a triangle (as shown in Figure 1). 

B 

FIGURE 1 
Newton's Color Triangle 

Here, the lengths RC and CG are in inverse proportion to the 
amounts of red and green in the color C, and so forth. Since the 
points in the interior of the triangle are not rank-ordered, neither 
are the colors. Newton ascribed color blindness to the lack of one 
or another of these three kinds of receptors. More than a century 
ago, the physicist and psychologist, G.T. Fechner, coined the term 
"psychophysical parallelism" for the hypothesis that all sensations 
are related to physical phenomena in this way. 

Thurston supposed that there are many abilities, and that 
each person has all of them, but in various measurable proportions. 
The proportions of these abilities would characterize the person; the 
proportions could be considered as points on a multidimensional 
sphere. Each person would be represented by such a point, and 
since the points are not rank-ordered, neither would people be 
rank-ordered. As in the case of the intelligence quotient, the 
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abilities would be supposed to be innate, not changeable by instruc- 
tion or experience. The similarity of this theory to Newton's three- 
color theory of vision is complete, except for one aspect. There are 
no anatomical features that correspond to mental abilities as the 
receptors of the eye correspond to color vision. Thurston went on 
to suppose that the successful pursuit of a career (or a curriculum) 
would require each of several abilities in some measurable propor- 
tion. Careers and curricula would also be represented by a point on 
the same multidimensional sphere as human beings. A person 
would therefore be well advised to choose a career whose point was 
not too far away from his own point. Thurston proposed to imple- 
ment this theory by subjecting many people, or groups of people, to 
many tests that could be scored or graded numerically. Some of the 
tests were questionnaires, and some consisted of assigned tasks. 
Some of the people involved in the experiment would be selected 
because they were conspicuously successful in a certain career, oth- 
ers would be volunteers. The results of the experiment would be 
tabulated; the scores of each person on a line, the scores of various 
people on a specific test in a column. By analyzing these tables (or 
matrices), Thurston expected to measure the multiple abilities of 
each person, and the demand each test placed on his abilities. Vari- 
ous methods for analyzing the matrices mathematically have been 
proposed. Although none have been very successful, this work has 
continued over a period of forty years. One reviewer formulated 
the hypothesis that underlies this work as, "What is mathematically 
fundamental is psychologically fundamental." This hypothesis was 
not originated by Thurston; it antedates even Fechner by more than 
two thousand years. It has never been named, and it has never 
been formulated as simply as by the anonymous critic quoted above. 
Following Fechner, it may be called the hypothesis of 
psychomathematical parallelism. Thurston was not the originator of 
psychological tests. They had been used nearly fifty years earlier by 
the French physiologist and experimental psychologist, Alfred Binet. 
Binet did not subscribe to either of the doctrines of psychophysical 
or psychomathematical parallelism. However, Thurston founded the 
journal Psychometrika, and this has contributed to keeping his ideas, 
rather than Binet's, before the scientific public. 

One must pause here and inquire how such a fundamental 
hypothesis entered psychology with so little debate. The full history 
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is lengthy and must be postponed until later, but its latter 
nineteenth-century part is easily summarized here. Psychology had 
been taught and studied as a branch of philosophy. Its beginnings 
can be traced to Aristotle, whose doctrine that axioms are self- 
evident truths is a proposition about human psychology. The exam- 
ples most frequently cited are mathematical, "Equals added to 
equals gives equals." The physical sciences had separated them- 
selves from philosophy (then called "natural philosophy") in the 
seventeenth and eighteenth centuries, and had not only made much 
use of mathematics, but had elaborated it far beyond anything Aris- 
totle knew. When psychology finally achieved the status of a 
separate science, it was only natural that it should attempt to imitate 
the physical sciences. Fechner's psychophysical parallelism is an 
imitative generalization of Newton's color triangle. Thurston's 
efforts to construct a similar theory of intelligence are thus under- 
standable; it was not noticed that his theory is actually a vestige of 
the earlier domination of psychology by philosophy. 

While Thurston's theory has not achieved any noteworthy 
success, it does show that the aristocratic fallacy of rank-ordering 
people can be avoided without abandoning the ancient doctrine of 
psychomathematical parallelism. 



The Nature of a Plan 

If we are to control our own future, it will be necessary, not 
only to obtain the cooperation of people, but to prepare comprehen- 
sive plans for that future. The Brandywine plan is only one of 
many that are now being prepared. There are community plans, city 
plans, regional plans, national plans and plans for the exploration of 
space. Doubtlessly, this hierarchy of plans will be completed with a 
plan for the colonization of the other planets, and the utilization of 
their resources. 

In itself, planning is not a new activity; families often plan 
parties and excursions. Yet there is a consensus that this hierarchy 
of plans is somehow unprecedented, and would have been impossi- 
ble in any earlier era. Of course, space travel is unprecedented, 
although it was foreseen by the soldier, writer, and physics teacher 
Cyrano de Bergerac in the seventeenth century. He wrote satirical 
novels about the inhabitants of the Moon and Sun. He foresaw 
some of the problems of space travel, but not always with accuracy. 

The Ionian city of Miletus founded about eighty colonies on 
the shores of the Aegean, the Black Sea, and the Mediterranean 
during the long period that the city was in existence. Both Miletus 
and Athens were destroyed by the Persians about 490 B.C. Once 
the Persians were finally defeated, these cities regained their pros- 
perity. One of the famous architects of Greece, Hippodamus, was 
born in Miletus about that time. He based his city plans on rec- 
tangular grids, and is sometimes credited with the invention of this 
type of city plan. (Actually, it was used much earlier in the Indian 
city of Mohenjo-Daro. Much later, it was widely used in the 
Midwestern United States.) Hippodamus followed this plan in res- 
toring the Athenian port, Piraeus, and later in laying out the Egyp- 
tian town later called Alexandria. Miletus was expanding rapidly, 
and he  laid out a suburb on this plan, thereby becoming the first 
designer of tract housing. He had to fill a salt marsh to do this, 
thereby altering the ecology of the region. 
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During the 2,500 years since then, the natural processes of 
beach erosion and deposition have changed the ecology of the 
Mediterranean coast far more than did Hippodamus. His changes 
were more rapid than the natural ones, but less widespread. The 
new element, at the present time, is the ability of people to make 
changes that are almost more widespread than the slower natural 
changes. This is largely because there are more people, and only 
secondarily because of new technologies. If there were fewer people 
to travel the highways, bulldozers would slice through fewer hills. 
The people of Crete, 1,500 years before Hippodamus, built their 
towns on artificially terraced mountainsides. Since there were only 
a few towns, connected by a few roads, most hills remained in their 
natural state. 

It is therefore more profitable to examine the general nature 
of any plan, than to look for modern novelties. A plan will always 
have at least two parts: a goal, and a proposed course of action. If 
the plan involves more than one person, it will not be possible to 
put it into effect unless the persons involved agree that the goal is 
desirable and believe that the course of action is feasible, effective, 
and will have no undesirable side effects. All of this is no guarantee 
that the goal will be reached by the proposed course of action, or 
that there will be no undesirable consequences. The plan for a 
picnic may involve the transportation of a family by car over a fami- 
liar highway. When put into effect, it may fail because the highway 
has been blocked by a landslide. A good plan will therefore include 
alternative actions, the choice between them being left open until 
the passage of time indicates which is feasible and which is not. 
This is especially important when the project being planned is large. 
When the Egyptian king Zoser started the construction of his 
pyramid, its ultimate size was left undetermined. His Step Pyramid 
shows at least six major enlargements of the plan. It is commonly 
supposed that when Zoser found that he would outlive the comple- 
tion of his original plan, he enlarged it, ultimately including the 
large temple complex that surrounds the tempte itself. There may 
also have been other reasons for these changes in the plan. 

In contemporary language, a good plan must involve feedback 
during its execution. This is obviously not new, but a careful 
analysis of feedback operations is a recent accomplishment; it is part 
of the present state of technology. There are many kinds of 
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feedback. If the execution of a plan extends over a period of years, 
technology may change so that what was not initially feasible turns 
out to be feasible in the end. Recently, technology has been chang- 
ing very rapidly, so that planning for periods of even a few years 
requires a forecast of technological change. If the execution of a 
plan requires many years, the group of persons involved may 
change. The new group may or may not be in agreement with the 
goal, and may or may not share the belief of the original group as to 
the effectiveness of the proposed actions. Undesirable side effects 
of these actions may have become apparent, leading the planners to 
change both the goal and the course of action. Planners rarely 
make provisions for this kind of feedback. 

This analysis of an effective plan is surely incomplete; it will 
serve, however, for a comparison of the present planning effort with 
some past efforts that had some of the characteristics of an effective 
plan, though possibly not all. The current planning activity is 
characterized by a division of labor. The goal is usually established 
by some agency, often governmental. This agency then sponsors 
and supports a group of specialists, charging them with the formula- 
tion of an effective course of action. This group of planners con- 
tains not only technological professionals (in the narrow sense of 
the word), but, more and more frequently, economists and sociolo- 
gists. When the group is finished, they present their recommenda- 
tions to the sponsor in the form of a well-documented report. The 
documentation contains numerical data supporting their opinion that 
the chosen course of action is feasible. The report is written in 
non-technical language, so that it will be comprehensible to the 
sponsor and other non-specialists. The objective of the report is to 
persuade the sponsoring agency that the course of action selected by 
the planning committee is feasible. In establishing the goal, the 
sponsor will usually have made some effort to assure himself that 
the community he represents agrees that the goal is desirable. It is 
often thought that he has the responsibility to obtain a consensus 
within his community as to the course of action, as well as the 
authority to put the plan into effect. All of this is a recapitulation of 
the Brandywine experience. 

Apart from the division of labor, the inclusion of sociologists 
and economists into the planning group is new. Even the distinc- 
tion between sociology and economics is relatively recent. In the 
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past, they were considered to be identical, so that one speaks only 
of the classical economists. They would have not considered them- 
selves to be planners. They endeavored to explain the phenomena 
of business and industry, and published their theories in technical 
form, not addressed to the general public. They supposed that 
society and its operations were more or less static and unchangable. 
If they did consider the possibility of planned change, they usually 
thought of violent revolution, which would quickly eliminate all the 
undesirable features of the society of their time. In a modern plan- 
ning group, the function of the economists and sociologists should 
be much the same as that of the engineers and physical scientists. 
It should be to establish the feasibility of obtaining sufficiently 
widespread consent to the proposed course of action. 



The Revolutions of 
the Eighteenth Century 

By the seventeenth century, the social and political organiza- 
tion of Western Europe was considerably different from that of 
Greece in the time of Solon and Pericles. These differences, how- 
ever, were not the result of careful planning. Despite these 
differences, the influence of Grecian ideas on seventeenth-century 
society was greater than their influence on medieval society. The 
differences between classical Greece and early modern Europe were 
especially pronounced in England. This emphasized, by contrast, 
the continuing influence of Solon and Pericles. 

The Ecclesias, or Town Meeting, had been replaced by a Par- 
liament of elected representatives. The pedigreed nobility had not 
been abolished, but its political power had been much reduced. The 
House of Commons was already more powerful than the House of 
Lords; the Prime Minister and his Cabinet were more powerful than 
the King and his advisers. This trend would continue through the 
next three centuries. The optional communities were, in retrospect, 
already apparent. However, a person's freedom of choice was shar- 
ply limited by the continuing influence of the aristocratic fallacy. 
Only persons of some wealth had any freedom to choose, and if 
their choice involved religious opinions, even they were not able to 
exercise it. If Sir Isaac Newton had not kept his religious opinions a 
closely guarded secret, they would have ruined all four of his 
careers: in the university, in Parliament, in the stock market, and as 
a government official. It is now known that Newton was a private 
Unitarian. 

Solon's stratification of society in terms of wealth remained. 
It was actually becoming more pronounced. It was almost impossi- 
ble for a very poor person to accumulate enough wealth to rise to a 
higher status. That is not to say that there were no exceptions to 
this, but they were very few. The list would not be long and the 
reader would recognize most of the names. In general, poverty was 
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inherited as well as wealth. In retrospect, it is said that this social 
rigidity was due to the Industrial Revolution. The Industrial Revo- 
lution was sudden only in the perspective of time; armed uprisings 
and bloodshed were not its primary characteristics. People living 
through it were rarely aware of the gradual changes in society that 
accompanied the changes in manufacturing technology. The means 
of production, machines and factories, became too expensive for a 
craftsman and his family to own. In fact, they were too expensive 
for people of moderate means; these formed corporations, pooled 
their wealth, and borrowed from people who had more money than 
they could use in their day-to-day existence. The stock market was 
formed, and capital became a commercial commodity, paid for with 
interest and capital gains. People were, in general, no longer com- 
mercial commodities, but their labor was. Labor was sold by the 
individual laborer, and since there was a surplus of laborers, its 
price was very low. Distress often made a laborer accept whatever 
price was offered; there was very rarely any opportunity for the poor 
to bargain. In continental Europe, conditions were different from 
those in England, but they were no better. 

As Europeans emigrated to other parts of the globe, they had 
new experiences and, in particular, must have seen that a noble 
pedigree was of no use to a pioneer. This was clearly stated in the 
preamble to the Declaration of Independence, and when the 
Congress of the United States was finally organized, pedigree was 
given no place in either the House or the Senate. The pioneers 
encountered other civilizations, less industrialized, and with cultures 
which had developed independently of Greece and Rome. 
Unprepared to evaluate these other cultures, the pioneers adopted 
the fallacy of rank-ordering on the basis of race or nationality. In 
Europe, this expansion into distant lands gave rise to a number of 
Periclean empires. Again, this is most clearly spelled out in the bill 
of particulars of the Declaration of Independence. 

In France, the economic and political power of the nobility 
had not been gradually reduced as in England. Encouraged by the 
success of the American Revolution, the French proceeded to 
change their society suddenly and forcefully. This was not the only 
reason for the French Revolution; the French people also had many 
grievances against their king. For various reasons, including fam- 
ine, the Revolution occurred in the homeland, rather than in the 
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colonies. It was a civil war, and in its aftermath Napoleon 
Bonaparte emerged, first as a dictator and later as the leader of the 
attempt to establish a French empire on the continent of Europe. 



Fiction, Theory, 
and Social Change 

In urging the improvement of society, writers of fiction are 
often more successful than the proponents of social theories. Uncle 
Tom's Cabin is a well-known example. It was written by Harriet 
Elizabeth Beecher, daughter of a prominent New England family. 
For several generations, its men were ministers and theologians, 
though by no means reactionary. Harriet and her sister Catherine 
were active in what was then called "female education." In 1836, 
she married a professor of theology, the Reverend C.E. Stowe; in 
1851, she published Uncle Tom's Cabin in the antislavery journal 
New Era. It was soon republished and became a bestseller that 
mobilized wide support for the abolition of slavery in the United 
States. At the start of the Civil War, Harriet's brother, Henry Ward 
Beecher, was the pastor of a Brooklyn church that recruited and 
equipped a regiment of volunteers. 

In England, Charles Dickens had experienced the misery of 
poverty. When Charles was ten, his father was imprisoned for debt, 
and Charles was left to earn his own living in a factory. After his 
father's release, poverty continued but the boy received three years 
of education before he again went to work. After some more years 
of drudgery, he became a newspaper reporter. This gave him some 
spare time, which he spent in the library of the British Museum. By 
1833, he  was contributing stories to a magazine, and in 1836 they 
were collected and published under the title Sketches by Boz. From 
then on, he wrote prolifically, producing many novels, most of them 
colored with his early knowledge of the underside of London. Like 
Harriet Beecher Stowe, he made no specific suggestions for reform, 
but attracted widespread attention to man's inhumanity to man. 

Other thoughtful men were writing theoretical analyses of 
society, both of its structure and its dynamics. One of the most 
influential of these was Thomas Robert Malthus. He was a clergy- 
man, but also a puritanical misanthrope. Possibly this was a 
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reaction to the violence of the French Revolution and his father's 
enthusiasm for Rousseau. He coined the term "struggle for 
existence", and used it as an argument against humanitarian 
reforms. Paradoxically, his ideas were incorporated into the plat- 
form of the Whigs, Britain's liberal antislavery party. A generation 
later, when the Whigs were in power, Charles Darwin and Alfred 
Russell Wallace elevated the "struggle for existence" to the status 
of a law of nature. Darwin and Wallace were on opposite sides of 
the globe and arrived at the same conclusion independently; this is 
some indication of Malthus' great influence at the time. Even later 
Kipling wrote, "Life is strife, and strife means knife." Today, 
Malthus is best remembered for his ideas on population. As its 
population and industry grew, Britain was raising less food, and 
importing more. Should these trends continue, especially if they 
became worldwide, Malthus foresaw a catastrophic famine, which 
would escalate the struggle for existence into violence. Other 
economists shared his concern about the fate of British agriculture, 
but considered the problem to be more a matter of real estate than 
of people, of the interplay between factories and arable land as 
means of wealth. Some of these economists reached conclusions 
very different from those of Malthus. 

In 1848, there were unsuccessful revolutions in several con- 
tinental European countries. Their principal objective was to spread 
the reforms achieved by the American and French Revolutions. 
Armed rebellion as a means of social change had precedents, and 
was generally seen as the only effective means of changing society. 
In the aftermath of the uprisings, many of the people involved were 
forced to emigrate. One such person was Karl Marx. His principal 
part in the rebellions had been that of a writer of political editorials. 
With his associate, Friedrich Engels, Marx had also written the 
Communist Manifesto, in which the phrase, "Workers of the World, 
Unite", appeared for the first time. Marx went to England, where 
he lived in poverty. Each day, he secluded himself in the British 
Museum, and educated himself in economic theory and history. In 
1867, he published his own theory of economics, which was based 
on the fact that each laborer was creating more wealfh than he 
received from the sale of his labor. This created an unearned incre- 
ment to capital, and caused it to increase cumulatively. In turn, this 
increased the disparity between the proletariat or working class and 
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the capitalist class. Marx concluded that only public ownership of 
the means of production could prevent the disparity from becoming 
intolerable. This theory might have become a subject for Parlia- 
mentary debate and the enactment of measures to avert the catas- 
trophe. However, Marx was distressed by the miseries of the poor, 
as Malthus had not been. He also concluded that the expropriation 
of capital could only be achieved through violence, and that it was 
his duty to hasten the revolution which he considered to be inevit- 
able. In England, slavery had been abolished without violence, but 
it had not been a major economic factor. In the United States it 
was, and the long Civil War resulted. There was little reason to 
doubt the generally accepted view that major social change entailed 
violence. Marx did not fail to note the anti-humanitarian influence 
of Malthus in England. He emerged from his seclusion with his 
manuscript unfinished; he founded and was the first leader of the 
International Workingmen's League. Later, after the end of the 
Franco-Prussian War, the League sponsored the rebellion known as 
the Paris Commune. This was unsuccessful, partly because of 
armed intervention from outside Paris, partly from lack of 
widespread support, and partly from the lack of a planned course of 
action to be followed after public ownership of the means of pro- 
duction had been declared. 

The Marxian theory had assigned a minor, even negligible 
importance to technological change. Before the end of the 
nineteenth century, these changes had accelerated to a pace which 
could not be ignored. Some thought that this would make the 
Marxian catastrophe more terrible. Ignatius Donnelly was of that 
opinion. Born in 1831, he became a political leader in Minnesota. 
He was first Lieutenant Governor, then a congressman, and once 
the Populist candidate for Vice President. In addition, he was an 
editor and scholar of unconventional opinions. In 1890, he pub- 
lished Caesar's Column, a Story of the Twentieth Century, under the 
pen name of Edmund Boisgilbert, M.D. This novel contrasted the 
opulent lives of the owners of the means of production with the 
miseries of life in the mechanized factories and mills and their 
accompanying slums. Caesar's Column foresaw a world-wide police 
state with its internal espionage and counter-espionage; it foresaw 
organized underground resistance, poison gas, and the bombing of 
cities from the air. Donnelly imagined armored, but lighter-than-air 
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dirigibles, capable of a non-stop flight from New York to Uganda 
with a detour over Europe. Ultimately, there was open rebellion 
and treachery compounded upon treachery. This and the advanced 
military technology resulted in the destruction of civilization and 
most of mankind. 

Donnelly was not an able novelist. He slowed the action by 
long philosophical conversations and tables of numbers. The book 
was widely read, though not always with approval. Reviewers 
deplored its content more than its literary shortcomings. Some said 
that it should never have been published. Because of the activities 
of Marx and his followers, any discussion of Marxian revolution 
was confused with advocacy of violence. In 1894, Donnelly aban- 
doned his anonymity, republished the novel, and defended himself. 
It is a novelist's special function, he said, to expose what is 
dangerous in sentiment and pernicious in action by a vivid picture 
of its consequences. Like Harriet Beecher Stowe, he was devout, 
and believing that he read the future aright, considered it immoral 
to remain silent. Still, his effort did not prevent the use of poison 
gas and the bombing of London from dirigibles during World War I. 
This war was not the Marxian revolution. In the United States, at 
least, it was seen as an effort to extend the principles of the 
Declaration of Independence to Europe. In the aftermath of the 
war, however, the Russian Revolution was guided by Marxian ter- 
rorists. 

Edward Bellamy was born and lived most of his life in 
Chicopee Falls, Massachussetts. He was educated in law and admit- 
ted to the bar, but he  did not practice. Instead, he devoted his life 
to writing. He apparently accepted the inevitability of the Marxian 
revolution. Evidence for this seemed to be increasing toward the 
end of the nineteenth century. The courts denied the rights of 
workingmen to organize unions and bargain collectively. Police 
action escalated strikes into riots. It was in this turbulent atmo- 
sphere that Bellamy wrote his novel, Looking Backward: 2000-1887. 
The book passed lightly over the revolution, which was supposed to 
have occurred about 1887. Its calm and placid story provided a 
vivid picture of post-revolutionary life, as imagined by the author. 
Somehow, Bellamy realized, as Marx did not, that the detailed for- 
mulation of a goal was essential if social change was to be directed 
toward the better. Next, it would be necessary to convince a large 
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number of people that the goal was not only desirable but attain- 
able, and that technology would contribute to its attainment. 

Bellamy foresaw the broadcasting of music and the use of 
credit cards. The music was broadcast by telephone, which had 
been invented some years earlier. It must be supposed that he did 
not foresee wireless telephony, but even if he had, his readers 
would very likely not have believed in its feasibility, and this would 
have been to his disadvantage. He did foresee the selection of pro- 
grams by turning a knob. He did not foresee that the use of credit 
cards would be preceded by charge accounts. The universally 
acceptable card had to wait until machines had been invented to do 
the rapid and voluminous bookkeeping that is needed. He foresaw 
the formation of politically strong guilds (trade unions to us) and 
the intervention of government in business and industry. In both 
cases, his picture is more extreme than present reality. He sup- 
posed that all political power would be legally vested in the guilds, 
and that the election of public officials would be in accordance with 
this. The credit cards would not be issued as payment for either 
personal services or the use of capital, but would give everyone an 
equal share of the available goods. The means of production would 
be owned by the government. 

Looking Backward lacked any description of the course of 
action that would be required to attain this goal 6.e. socialism); thus 
it was not a complete plan in the sense previously discussed. Bel- 
lamy seems to recognize this incompleteness, for he devoted much 
time to a second book, Equality. This book was a socio-economic 
treatise that took its name from the famous phrase in the Declara- 
tion of Independence. While Looking Backward had been an 
immediate bestseller, one critic described Equality as completely 
unreadable. It certainly does not hold one's attention as a novel 
does. In attempting to assess Bellamy's influence on the course of 
events, one must not ignore the size of the audience he reached, or 
the gradual influence of public opinion in changing society. His 
audience was not confined to the intellectuals. Sylvester Baxter, in 
a preface to the 1898 edition of Looking Backward, describes 
Bellamy's move from Massachussetts to Denver for reasons of 
health: "The welcome accorded him in the West, where his work 
was met with widespread and profound attention, was one of his 
last and greatest pleasures. Letters came from mining camps, from 
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farms and villages, the writers all longing to do something for him 
to show their love." 

Those mentioned above were not the only nineteenth century 
novelists to deal with such themes. Donnelly's publisher listed 
"Serious Works for Students of Social, Economic, and Political 
Problems", which included four works of "Fiction: Social, 
Economic, and Reformative" in addition to Donnelly's. Marx's 
friend and collaborator, Friedrich Engels, wrote a polemic against 
such novels, entitling it "Socialism, Scientific and Utopian." While 
it is certain that no one of these novelists had a decisive influence 
on the United States, collectively they prepared the public for the 
reforms that came in the twentieth century. There was widespread 
interest in social problems, and this may have averted the Marxian 
catastrophe. These reforms began long before the economic stagna- 
tion of the 19301s, and even that disaster was not accompanied by 
civil war. These reforms have not affected the basic concept that 
labor and capital are commercial commodities. They have included 
anti-trust laws, and the recognition of the rights of trade unionists 
to organize and go on strike. The graduated income and capital 
gains taxes, on the one hand, and social security pensions and 
insurance on the other, tend to counteract the aggravation of 
economic differences by the unearned increment of capital. The 
trade unions have not, as Bellamy anticipated, been incorporated 
into the political system, but they have acquired political power. 
Intervention in public affairs by the trade unions is not frowned 
upon to the same extent as is the intervention by corporations that 
employ large numbers of people. All of this makes the present day 
United States very different than it was in the nineteenth century, 
although it is still far from perfect. 



Recent Planning by 
the Scientific Communities 

It is certain that the course of human events can be 
influenced, but that course has been erratic. It remains to examine 
the suggestion that modern science can make this course more 
direct. This is not an easy task. One may begin by examining some 
of the evidence for this in the United States. In other countries 
there is evidence of much the same kind, but comparisons tend to 
be more confusing than illuminating. 

During the Civil War, the National Academy of Science was 
created by an Act of Congress, and signed into law by President 
Lincoln. It was to be, in contemporary terms, a self-governing, 
non-profit corporation. The Act also imposed duties: "The 
Academy shall, whenever called upon by any department of the 
Government, investigate, examine, experiment, and report upon 
any subject of science or art, the actual expenses ... to be paid from 
(Government) appropriations ... but the Academy shall receive no 
compensation whatever for any services to the Government of the 
United States." There have since been amendments to the Act, but 
they have not altered the spirit of the original, and both Govern- 
ment and Academy have acted in that spirit for more than a cen- 
tury. The official actions leading to the formation of the Academy 
occupied only a few days. Their background need not be considered 
here, but can be found in the later chapters of Coulson's biography 
of Joseph Henry. 

At first, the Academy seems to have been called to perform 
its obligation to the Federal Government only on rare occasions. 
The Government had already established its own permanent 
scientific agencies; among these were the Coast and Geodetic Sur- 
vey, the Geological Survey, and the Hydrographic Office. Later, the 
Weather Bureau and the Pure Food and Drug Administration were 
added. The Academy elected its members for life, with past 
achievement as the criterion for election to the Academy. Many 
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Government scientists were elected. During World War I, the 
Academy mobilized all the scientists in the country. For this pur- 
pose, it organized the National Research Council. Appointment to 
the various components of the Council was temporary, and based 
on ability to contribute to the work in progress. At the end of the 
war, the Council remained active. At this time, it is still active, 
although the Academy is engaged in reorganization. 

During the 1920s, the Academy initiated a major program for 
improving scientific education and research in the United States, 
especially in the colleges and universities. For this purpose, it dev- 
ised the system of postdoctoral fellowships. The Government was 
not equipped to support the project, and its cost was borne by 
private individuals and foundations. The success of the project 
induced some of the latter to assume responsibility for it, and to 
extend it to fields outside the sciences. Consequently, when 
refugees from European universities came to the United States, 
they found the colleges and universities staffed with people they 
respected and with whom they could cooperate. As a consequence, 
the United States became preeminent in science and technology. 
After 1950, the Federal Government contributed to the support of 
the postdoctoral fellowships. 

During World War 11, the Academy and Council remained 
rather aloof from the war effort. The scientific and technological 
parts of the war effort were managed by the National Defense 
Research Council and the Manhattan Project. Government agencies 
were empowered to support university research directly on a non- 
profit basis, the university administrations being responsible only 
for fiscal supervision of staff expenditures. All of this is reminis- 
cent of the Academy's charter. At the end of the war, the Manhat- 
tan Project was converted into a new Government agency, and the 
National Defense Research Council was disbanded. Many of its 
projects were taken over by the Academy and its permanent 
National Research Council. Most of these were nonmilitary; exam- 
ples include the Committee on Meteorology in the Academy, and 
the Highway Research Board in the Council. Some military prob- 
lems also received attention from the Academy, as was inevitable. 

The United States emerged from World War I1 with 
undisputed preeminence in science and technology. The mainte- 
nance of this status became a national goal. This goal was not set 
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by any formal action, unless one considers the establishment of the 
President's Scientific Advisory Council (PSAC) as such an action. 
The PSAC was headed by a scientist rather than a Cabinet member, 
but it certainly had a very considerable influence within the Federal 
Government. During the period from 1950 to 1968, this goal was 
endorsed, more or less explicitly, by four Presidents, and President 
Nixon did not depart widely from it. 

Even before the establishment of the PSAC, there had been 
major and complex changes in the relation between the Govern- 
ment and the science communities. These changes may be 
simplified into economic terms. Before World War 11, the universi- 
ties and the research activities of their faculties and students had 
been supported almost entirely by private philanthropy. Very early, 
some of them had been endowed with Federal land grants, but 
these had ceased to be a major factor in the economics of education 
and research. Now Federal financial support increased and became 
the major economic factor. From 1956 to 1966, the Federal expen- 
ditures for scientific research increased at an average rate of 20010 
per year, compounded annually; which is an average rate of 
$400,000,000 per year. Some of these Federal expenditures were 
made directly to researchers by Government scientific agencies, and 
were thus not channeled through the universities. For practical pur- 
poses, one may suppose that 60% of Federal funds were channeled 
through the universities, and another 20% through industrial 
research and development laboratories. The large expenditures of 
the Department of Defense have not been included in these esti- 
mates; in any year they were about twice the amount that the 
Government awarded for nonmilitary research. In general, defense 
expenditures for research were not channeled through the universi- 
ties, but they did create occupational opportunities for scientists, 
and thus influenced the enrollment of students in scientific curri- 
cula. This large financial support of science and the universities was 
unprecedented in the history of any nation, and was accompanied 
by equally unprecedented phenomena of other kinds. 

The Academy appointed a Committee on Science and Public 
Policy (COSPP) to cooperate actively with PSAC. COSPP followed 
the precedent set by the National Research Council, and appointed 
panels to investigate and prepare reports on different aspects of this 
policy. Financial support for this work was provided by various 
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Governmental agencies, in accordance with the Academy's charter. 
Other branches of the Academy, and other professional organiza- 
tions, such as the Social Science Research Council, also followed 
this procedure for providing advice to the Government. It will be 
convenient to call these the academic reports. The PSAC and other 
Government agencies prepared additional reports, often using the 
same system of panels drawn from the scientific communities. The 
following is necessarily a very inadequate digest or critique of these 
many reports, but some common characteristics are apparent. 

The scientific community has never been a single organiza- 
tion. It consists of numerous smaller communities that may be con- 
veniently be called disciplines: mathematics, chemistry, physics, 
biology, etc. In the course of this work, one or more reports on 
each discipline were written and published. The panels that 
prepared these reports were composed largely of members of the 
disciplines concerned. Members of other disciplines were also 
included, and these made a valuable contribution. Except for their 
liaisons with COSPP and the PSAC, as well as other Government 
agencies, the panels worked independently. The end products could 
only be sets of plans for the disciplines, and not unified plans for 
the scientific community. However, all recommended courses of 
action that would contribute to the achievement of the goal of 
American preeminence in science. This gave them a unity that is 
not superficially obvious. The reports were addressed to different 
agencies, and published in different formats. 0 

A typical report consisted of four parts, the first containing 
the panels' recommendations. Strictly speaking, this first part was 
the report submitted to the Government; the other parts were sup- 
porting material designed to establish the feasibility of the recom- 
mended actions. The cost of these actions was obviously of interest 
to the agency sponsoring the study. The cost was usually not 
estimated. Instead, it was assumed that the funds available to each 
discipline in future years would continue to increase at the same 
rate as in the immediate past. Since the number of people involved 
in the discipline had also been increasing at the same rate, it was 
assumed that this growth would continue. Since the scientific dis- 
ciplines are optional communities, this was an assumption about the 
choices people would make. These choices had undoubtably been 
influenced in the past by the funds available for salaries and 
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fellowships in the sciences. The other university communities were 
not so liberally supported; this made the sciences more attractive as 
occupations. The assumption was, therefore, that financial 
renumeration was the only factor influencing people's preferences. 

Two other parts of the reports, the forecasts and the essays, 
were sometimes combined. The forecasts concerned the probable 
achievements of the discipline in the reasonably near future. Since 
these were made by people working in the discipline, it may be 
assumed that they were accurate. It has been seen that even non- 
scientists can have some success in forecasting scientific and techno- 
logical achievements. The essays were addressed to a wider audi- 
ence and were sometimes published and circulated separately from 
other parts of the report. All of them were written for an audience 
that is wider than the discipline, but still a part of the scientific- 
technological communities. It is impossible to say that these essays 
were widely read in the building-trades or business communities. 
However, they are still being read on university campuses and else- 
where. They are very useful to teachers, both as source material 
and as collateral reading. Many have been read by congressmen 
concerned about the place of science in our society. Invariably, they 
are permanently valuable additions to our literature, and will con- 
tinue to be influential for many years. This influence will be on the 
scientific-technological communities, and those closely allied with 
them. 

Either implicitly or explicitly, these reports support the view 
that man, aided by science, can now control his own future. In the 
same way, they support the hypothesis of Psychomathematical 
Parallelism. The most ambitious of these volumes of essays is enti- 
tled Biology and the Future of Man. 

By 1966, the unrealistic assumptions of the academic reports 
had become apparent to responsible Government officials. In par- 
ticular, it was clear to them that the yearly increase in Federal funds 
for scientific research could not increase indefinitely. When the 
Academy was informally asked to advise on this, its reponse was 
essentially to state that this rate of growth should continue, at least 
for several more years. Congress and the Bureau of the Budget 
ignored this unofficial advice and took abrupt action. The lack of an 
increase in Federal funds for research in 1967 was the first indica- 
tion of changes in the Government's attitude toward science to 
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reach most members of the scientific communities, those who had 
not been involved in the broader aspects of the planning effort. 
Some of them reacted with anger, all of them with great concern. 
Some found it very difficult to meet the commitments they had 
made for the future support of their staff of colleagues and assis- 
tants. As is usual in such cases, the hardship was greatest for the 
marginal members of the communities. These were young people 
who had not yet established themselves as scientists, or were study- 
ing to prepare themselves for a scientific career. 

Most Government agencies did not completely reject the 
recommendations of the academic reports. They did ask for advice 
on the order in which various projects should be supported. Reluc- 
tantly, COSPP transmitted this request to some of its panels. These 
found it impossible to reach agreement. The reluctance came from 
the fear that such disagreements would be disastrous for the unity 
of the scientific communities; this fear does not seem to have been 
justified. For other reasons, but with equal reluctance, the Govern- 
ment agencies assumed the responsibility for setting priorities. This 
was done neither abruptly nor thoughtlessly. Higher authority 
imposed restrictions on the purposes for which a given agency 
might spend its funds. But the people in the agency inevitably had 
to make the decisions themselves. The scientists had to "shop 
around" for financial support. Earlier, the senior members of the 
scientific community had welcomed the system of multiple sources 
of support. It was thought that this prevented any possibility that 
the Government would dictate scientific goals. Now the multiplicity 
of small and restricted sources has reduced the efficiency, and 
increased the difficulty of operating scientific laboratories with 
Government funds. Scientists are not accustomed to restricting the 
range of their activities, and perhaps should not be. Work in one 
field may unexpectedly reveal the way to solve a problem in some 
quite different field. 



The Changing Public Images 
of Science and Technology 

The unprecedented financial support for science and technol- 
ogy was closely related to the public image of science. This gave 
political sanction to the governmental actions just described. A 
brief review of the changes in that public image is therefore in 
order; it would be better to use the plural, for prior to World War 
11, science and technology were sharply distinguished in the United 
States, and probably elsewhere as well. In the early part of the 
twentieth century, the average American considered himself to be 
"practical," and admired Thomas Edison for his practicality. The 
industrialization of the United States was a matter of national pride, 
and was thought to be the result of this practicality. The scientist, 
on the other hand, was caricatured as an impractical recluse, slightly 
mad because of his interest in esoteric matters. Occasionally, in the 
fiction of the day, this madness was malevolent, but generally it was 
supposed to be harmless. In the period between the two World 
Wars, chemistry and the medical sciences received wide publicity for 
the benefits they bestowed on both humanity and industry. Astro- 
nomers and mathematicians were still the epitome of impracticality. 
Only the few people who had gone to college were personally 
acquainted with a scientist; "Doctor" meant either "physician" or 
"minister." Despite the publicity given to Albert Einstein's mysteri- 
ous achievements, most people did not know that he was a physi- 
cist; to them, "physics" meant "laxatives." Immediately after 
World War 11, the public images of science and technology fused 
into one: both were considered practical and beneficial. During the 
period 1900 to 1967, the number of Ph.D.'s awarded each year had 
increased by a factor of nearly one hundred. The number of people 
who were personally acquainted with a scientist or engineer 
increased by a much larger factor. The general public became aware 
that these specialists were friendly, well-intentioned people. 

Of course, there was the atomic bomb. Some people thought 
the scientists ought never to have invented it. They were answered, 
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truthfully, that the men who had built the bomb had tried (before 
its existence had been publicized) to prevent its use. There was a 
sincere doubt that the small scientific community had the political 
power to prevent the misuse of the achievements of science. There 
was even the doubt that refusal to work on weapons would be an 
effective deterrent to their development. Leonardo da Vinci wrote 
that he knew how to build submarines, but he refused to record his 
knowledge for fear that it would be used to commit murder on the 
sea floor. Despite his restraint, submarines were eventually 
invented. Scientists were also criticized in a rather thoughtless and 
ill-informed way. This can be illustrated by an anecdote concerning 
a general conversation shortly after television had become competi- 
tive with the movies. There was general agreement about the low 
literary and artistic standards of the TV programs and the flatulence 
of the commercials. I concurred, and this so startled a professor of 
romance languages that she turned to me and exclaimed "But 
you're a scientist!" It soon developed that she considered TV to be 
a great scientific achievement, and she assumed that I would there- 
fore defend it in all its aspects. Moreover, she held "Science" 
responsible for the quality of the programs. This discussion 
remained friendly, but became futile. I then tried to find out what 
she knew about TV; essentially she knew only that if one pushed a 
button and turned a dial, the tube lighted up, and (usually) one saw 
and heard the actors. During the course of this conversation, she 
had used the word "magic." 

Over the years I have followed up on this clue, and my con- 
clusion is that one perception of the scientific community is that of 
a group of magicians. They provide the public with an assortment 
of Aladdin's lamps, and teach it the proper way to rub them in 
order to evoke the desired djinn. This view is not confined to the 
literary-artistic community; it is shared by many businessmen, poli- 
ticians, school principals, etc. Of course, if questioned directly, they 
would deny it. After the fairy tale period of kindergarten, people 
rapidly become aware that it is embarrassing to admit a belief in 
magic. However, even today the astrological community is larger 
than the astronomical. It is not irrelevant to remark that Kepler 
earned his living as a court astrologer. Quite recently, some scien- 
tists and engineers have encouraged the view that science is magic. 
In a book addressed to adults, a distinguished professor at Columbia 
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University entitled the second chapter "Modern Magic" and 
opened it with the words "Aladdin's lamp"; the third chapter was 
entitled "The Magic Carpet." 

In the late 1940's and the 1950's, these djinns were most 
often considered friendly, but this view began to change, as has 
already been noted in connection with the Brandywine plan. How- 
ever, the unrealistic public estimate of the power of science, com- 
bined with equally unrealistic criticisms, produced a reaction in the 
scientific communities. They denied social responsibility for the 
uses to which their discoveries were put, and also denied the ability 
to foresee undesirable effects of these discoveries. The achieve- 
ments of Ignatius Donnelly and Anatole France were forgotten. 
But the undesirable aspects of industrialization, urbanization, and 
war are real. In the early 1960's, Rousseau's romantic anarchism 
was revived among university students. The educational system 
had failed to provide anyone, public officials and scientists included, 
with the historical background needed to deal with these problems. 
The students, therefore, declared education and even government 
to be irrelevant. Their alienation escalated into violence. 

This escalation from quiet alienation to violent confrontations 
with the police was certainly hastened by the Vietnam War and 
Selective Service. This system of conscription had been introduced 
during World War 11. Exemption from military service was granted 
to all men who had civilian skills that wele both essential to the war 
effort, and could not be quickly acquired by those exempted for 
other reasons. Almost all scientists were thus exempted from invo- 
luntary active military service. In the 1960's, this exemption was 
extended to all university and college students, but only for the 
period that they were in school. After graduation, the exemption 
was withdrawn. The inequity of this system soon became apparent. 
The underprivileged, including many blacks, were not prepared for 
college, and could not have afforded it in any case. Since the war in 
Vietnam was unpopular, much of the student dissidence focused on 
the draft, racial discrimination, and the defects of the educational 
system. The recognition that not all technological change was 
beneficial was more widespread among the general public than was 
romantic anarchism and violence. Disapproval of the latter merely 
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led to confusion. Public officials were necessarily more sensitive to 
these matters than were the scientific and technological communi- 
ties. 



The Planning Process in 
the Federal Government 

The annually increasing amount of federal funding of 
scientific research was not unplanned. If this planning process has a 
name, it is the Budgetary and Appropriations Procedure. The agen- 
cies that spend federal money are in the executive branch, which is 
headed by the president and his cabinet. Each year, each agency 
makes a budget request. The requests are reviewed and revised by 
the Bureau of the Budget, under the supervision of the president 
and in conference with the agency staffs. After this, they are 
assembled and the president sends them to the House of Represen- 
tatives. Here, the budget requests are referred to permanent com- 
mittees, whose memberships change only slowly; their members can 
therefore familiarize themselves with the problems which are their 
responsibility. Each committee holds public hearings at which many 
people are invited to testify. Anyone interested in a particular 
budgetary item may ask for an invitation, or submit a written state- 
ment which is incorporated in the proceedings for the committee. 
These committees prepare bills recommending their revised ver- 
sions of the budget requests. These bills are debated and amended 
on the floors of both the House and the Senate. After passage and 
approval by the president, the appropriated funds are made available 
to the agencies for expenditure. This entire process requires about 
twenty-four months. The actual expenditure of the funds, in which 
the agency has some discretionary authority, requires at least 
another year. The process is therefore one of continuous planning 
for the future. It has been developed over many years; the Bureau 
of the Budget is a comparatively recent addition. 

During the 1960s, most of the budgetary items for science 
research and education were referred to the Committee on Science 
and Astronautics and its Subcommittee on Science, Research, and 
Development. These committees not only followed the customary 
procedures, but went further. They established a Panel on Science 
and Technology, which met for several days each year with the 
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Committee. The membership of the Panel varied from year to year, 
but it always included guests from foreign countries. At these 
meetings, there was informal discussion and papers were prepared. 
The themes varied from meeting to meeting. In 1968, the ninth 
meeting had the theme "Applied Science and the World Economy"; 
the tenth meeting had as its theme "Science, Technology, and the 
Cities." In 1963, this Committee also became the first Congres- 
sional Committee to formally request the advice of the National 
Academy of Science. As a result of their activities, the Committee 
members became familiar with a number of theories about the rela- 
tion between science and society. 

By 1966, it had become apparent that none of these theories 
were adequate guides to the problems being actively discussed by 
the general public. Some of these problems were slums and urbani- 
zation, pollution of the environment by industry, and the waste of 
our natural resources. On the positive side, the Subcommittee had 
identified an area of study that seemed to have been neglected: 
Technology Assessment. Representative Daddario, Chairman of 
the Subcommittee defined it as "improved information and analyti- 
cal inputs to the legislative process so that our management deci- 
sions can ensure the realization of full benefits from our knowledge, 
and minimize the unwanted, unintended, and unanticipated conse- 
quences of applied science." He emphasized that the Committee 
was not seeking to establish a regulatory agency (like the Federal 
Communications Commission) to control technology or its uses. 
This was the theme of the eighth meeting of the Panel on Science 
and Technology in 1967. 



The Invention of 
the Steam Engine 

It has been seen that for the last twenty years science and 
technology have received unprecedented amounts of money from 
the U.S. Government. Moreover, this was planned, and is there- 
fore related to the idea that science can enable man to control his 
future. This raises several questions. To what extent were the 
planners influenced by (possibly erroneous) views inherited from 
the past? Have the relations between science, technology, and 
society always been as they are today? The second question is more 
easily answered than the first. In one word, the answer is "No." 
But a complete answer would require an examination of the entire 
history of society and its changing relation to science and technol- 
ogy. This would involve one in either complex detail or abstract 
and dubious generalizations. It is therefore advisable to select a few 
episodes for detailed analysis. The invention of the steam engine is 
a suitable beginning. 

After Galileo and Newton had developed the science of 
dynamics, some members of the scientific community were more 
interested in the properties of gases than in the motion of the 
planets (and similar matters). Among these were Boyle and 
Huygens; a comprehensive account even of the use of steam, would 
require the enumeration of many others. The invention of the 
steam engine is sometimes described as an Horatio Alger success 
story. In a sense this is true; certainly the scientific community was 
peripheral to the principal actions. These were practical rather than 
intellectual, and were mostly carried out by men who had little for- 
mal education. The history of the use of steam for practical pur- 
poses is complicated. The following account is simplified by 
emphasis on the cylinder-piston-condenser engine: the condenser 
was sometimes replaced by (less efficient) means for wasting the 
steam into the atmosphere. 
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Denis Papin was born in France, completed medical studies 
and, a few years later, entered Huygen's laboratory in Paris. The 
work in this laboratory centered on the production of vacua. Papin 
made improvements on vacuum pumps, and published on this topic 
with Huygens as joint author. In 1675, he moved to London, work- 
ing in Boyle's laboratory and continuing his improvement of 
vacuum pumps; these were mainly cylinder and piston, but Papin is 
also credited with the invention of a condensing pump. In 1679, he 
demonstrated a pressure cooker (an autoclave, complete with safety 
valve) to the Royal Society of London and was elected a member 
the following year. Shortly thereafter, he went to Venice and stayed 
until 1684. In 1687, he moved to Marburg, as professor, and then 
to the university in Cassel. During this stay in Germany, he 
engaged in correspondence with Huygens and Leibnitz. He pub- 
lished frequently, in the French language. In 1705, Leibnitz sent 
him a sketch of Savery's apparatus for ejecting water from mines. 
This did not involve the use of cylinder and piston, but did involve 
the condenser principle. Papin had earlier published a design for a 
cylinder and piston engine; it would have been inoperable since no 
condenser was provided. He now (1705) published, again in 
French, a design that provided means for manually venting the 
spent steam into the atmosphere. Papin did not return to London 
until 1707. 

Thomas Savery was a military engineer, but engaged also in 
mining operations. In 1702, he published Miner's Friend. Although 
his engineering applications of steam are of interest in themselves, 
it will be enough here to emphasize his familiarity with steam con- 
densers, devices for reconverting steam to water by cooling it. 

Thomas Newcomen was a blacksmith in Dartmouth, England; 
he was also actively involved in the construction of mining equip- 
ment, as is shown by his correspondence. Some of this was with 
the prominent scientist, Robert Hooke, and concerned Papin's 
work. Since Hooke died in 1702, Papin's work of 1705 is not men- 
tioned in that correspondence. There seems to be no evidence that 
Newcomen and Savery knew of it in that year. Yet in the same 
year, they and a man named Cawley constructed a cylinder and pis- 
ton steam engine. It differed from Papin's mainly in that the spent 
steam was condensed inside the piston cylinder, by dousing the 
cylinder with cold water. It also differed in external form. 
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Little seems to be known about Cawley, not even whether he 
was a grazier or a glazier; he may have spelled his name Cowley. 
According to all accounts, Newcomen was the leader of this success- 
ful project, and he was elected a member of the Royal Society. This 
engine attracted much attention, but was not greatly improved for 
some years. Papin could certainly have done so immediately, had 
he made the effort to understand the condensing principle. 

James Watt was the son of a hardware dealer. Going to Lon- 
don, James apprenticed himself to a "philosophical-instrument 
maker." Since the invention of the clock by Huygens, and the tele- 
scope by Galileo, the construction of experimental apparatus had 
increased, and this trade had become profitable, with university 
scientists as the principal customers. Apprenticeship had the force 
of a legal contract. It provided a source of cheap unskilled labor, 
and in return the apprentice received an initiation into the trade 
secrets. On completing the contract, he became a journeyman and a 
source of skilled labor. A few journeymen became masters; this 
required both literacy and some capital. Poor health made Watt 
leave his apprenticeship without becoming a journeyman. Both 
were handicaps to his early career, even though he seems to have 
mastered the trade in one year. Since he did not complete his 
apprenticeship, he was exduded from the Hammermen's Guild and 
the commercial practice of his trade. In 1757, he was employed by 
the University of Glasgow, and there made friends of some of the 
faculty. He must have profited especially from conversations with 
Joseph Black, who had discovered latent heat (i.e. the heat required 
to convert boiling water to steam). The University had a demons- 
tration model of Newcomen's steam engine, and Watt repaired it in 
1764. This is further evidence of the passivity of the academic 
community in the matter. Watt thus became aware of the 
inefficiency of Newcomen's engine, and must immediately have 
seen possibilities for improving it. He was led to perform his own 
experiments with steam, and to separate the condenser from the 
piston cylinder. He was very clear about the reason for doing this. 
To be efficient, the cylinder and piston must be as hot as possible 
and the condenser as cold as possible. These conflicting require- 
ments can only be met by separating the condenser from the hot 
components of the engine. 
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Watt left the University, presumably in order devote himself 
full time to the development of the steam engine. After some years 
of disappointment, the partnership of Bolton (or Boulton) and Watt 
was formed. The partnership was a commercial success, Boulton 
providing the capital and managing the business affairs. In the 
course of business, Watt invented the throttle valve, the centrifugal 
governor, the double-acting cylinder and piston, and the linkage for 
converting reciprocating to rotary motion. The reciprocating steam 
engine was thus given a quite definitive form, and became an indus- 
trial necessity. None of Watt's inventions required more than a 
rudimentary knowledge of mathematics and physics. They did 
require intelligence and mechanical ability. Two men, however 
could not do all the work of the firm; they must have had skilled 
assistants. The shaping of large metal parts to the required preci- 
sion must have required the invention of machine tools. Did Watt 
invent these too, or were some of his workmen also inventors? 
Certainly many of them must have understood Watt's ideas before 
they were converted into metal parts and mechanisms. It seems 
that these matters were not recorded in detail. Neither do the ency- 
clopedias record Boulton's biography or activities. 

The magnitude of this enterprise required financial resources 
not available to a university professor. This was certainly a factor 
contributing to the passivity of the scientific community. There 
were other reasons. Among these was the scientific community's 
preoccupation with more sophisticated mathematical theories and 
new experimental discoveries. The aristocratic fallacy also added a 
sense of elitism. Personal involvement in commercial and manufac- 
turing enterprises was of a lower order than detached impersonal 
speculation about them. This did not preclude some interest in 
practical affairs, as evidenced by the election of Newcomen to the 
Royal Society, and his correspondence with Hooke. 

Many must have noticed that even with its separate con- 
denser, Watt's engine was not completely efficient, but these obser- 
vations were not recorded in the scientific literature until the 
nineteenth century. This may have been due to the primitiveness 
of current ideas about heat and energy. The ancient Greek opinion 
that heat was an indestructible gas (phlogiston) had not yet been 
challenged. Energy was an abstraction, derived from Newton's 
mathematical theory. At first, only two kinds of energy were 
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recognized, kinetic energy and potential energy. Boyle and Hooke 
added elastic energy as a third. Moreover heat did not fit readily 
into Newton's theories. 

It was not until 1824 that Sadi Carnot, still working within the 
limits of the phlogiston theory, gave a mathematical formulation of 
Watt's ideas about the importance of cold, as well as heat, to the 
efficiency of heat engines. This bit of mathematics laid the founda- 
tion for the science of thermodynamics, but only after effective 
steam engines had been in use for more than fifty years. Even 
then, Carnot's work attracted little attention until, in the middle of 
the nineteenth century, heat was recognized as a form of energy. 
The theory of thermodynamics was not completed until the twen- 
tieth century, when the reciprocating steam engine was all but 
obsolete. 

This one example typifies the original relation between indus- 
try (or technology) and science. The industrial development pre- 
ceded the scientific. It provided the material facts about which 
scientists thought. Perhaps the one exception to this rule was in 
astronomy, but even in this case, one may identify astrology and 
oceanic navigation as the stimulating industries. Scientists did per- 
form experiments and make observations that were more crucial 
than the industrial operations. On the whole, science took more 
from industry and commerce than it returned. 



The Beginning of 
the Scientific Revolution 

The scientific revolution was as complex as was the industrial 
revolution. Neither can be described in one sentence, nor in purely 
economic or sociological terms. One of the phenomena associated 
with the scientific revolution has already been described: the fusion 
of the scientific and technological communities which occurred dur- 
ing and after World War 11. This could not have been foreseen in 
the years following the invention of the steam engine, and was not 
foreseen in the early nineteenth century. The nineteenth century 
did produce other phenomena that made the fusion of the two com- 
munities possible, if not inevitable. At the beginning of the 
nineteenth century there was no electrical industry. At its end, this 
industry was economically viable. The chemical industries changed 
in a similar, scarcely less dramatic fashion. By 1930, they bore little 
resemblance to their predecessors in 1830. The medical arts, espe- 
cially public health activities, underwent a similar change. Cameras 
and phonographs became commercial goods. These developments 
were accompanied, or perhaps caused, by a change in the self-image 
of the scientific community. 

Michael Faraday's father was a blacksmith. Self-educated, 
and with almost no knowledge of higher mathematics, he became 
Sir Humphrey Davy's laboratory assistant. Uniquely in the history 
of science, even to the present day, he succeeded Davy in the pres- 
tigious Professorship of Chemistry at the Royal Institution of Lon- 
don. Religious tests had just been abolished in England; otherwise 
this would have been impossible, as Faraday was a devout member 
of the Sandemanian sect of dissenters. He became a famous and 
popular lecturer. His Christmas Lectures were attended by children 
and royalty alike. At one of these, he demonstrated the heating 
effect of an electric current. Afterward, it is said, Queen Victoria 
asked him, "...But what good is it?"; to which he replied, 
"Madame, what good is a newborn babe?" 
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This anecdote contrasts strangely with one told about Euclid, 
who taught in Alexandria about 300 B.C. It is said that a student 
asked what it would profit him to study geometry. Instead of 
answering, Euclid told a slave to give the man a copper and then 
show him to the door. Of course, the authenticity of this is doubt- 
ful; but it tells much about the recent biographer who wrote that he 
wished he could believe it, and about those who were not shocked 
by the wish. The contrasting attitudes exemplified by these anec- 
dotes is the outstanding characteristic of the scientific revolution. 
The change came gradually, and some of Euclid's elitism remains 
evident today, even in our elementary schools. 

Not only was there no electrical industry in 1800, but most 
electrical and magnetic phenomena had not yet been discovered. 
Compact histories of these discoveries and the ideas generated by 
them are readily available. Is is both impossible and unnecessary to 
condense them further here. The significant fact is that almost all 
of these discoveries were made in universities; the reasons for this 
require consideration. 

These discoveries were made in the course of experiments 
performed by university professors who were usually assisted only 
by students and instrument makers. The experiments were 
"laboratory scale": they were so inexpensive that the universities 
could meet their costs out of current income. Occasional gifts from 
private individuals and philanthropic organizations were helpful, and 
sometimes the professors had the means to support their own work. 
The enterprise was given unity by correspondence and publication, 
as well as by some travel and changes of residence. This manner of 
paying for the cost of the enterprise was unavoidable. Queen Vic- 
toria spoke for almost the entire population. Even if a few far- 
sighted businessmen shared Faraday's vision, they could not risk 
much capital with any reasonable expectation of a profitable return. 
Such capital as they did contribute was written off as philanthropy. 
Philanthropy was traditional and required no economic justification; 
social approval was sufficient return. The monetary costs of gen- 
erating ideas from the basic discoveries was negligible; it amounted 
to a small fraction of a professor's salary. The essential ingredient 
was undisturbed time for concentrated thought, as has already been 
noted in the case of Archimedes, and the university campus was the 
only favorable milieu for this. Lectures to students and discussions 
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with colleagues were important; they made the thinker put his ideas 
in order and submit them to intelligent criticism. Albert Einstein 
called this interaction "resonance." Correspondence and publica- 
tion were also a part of resonance as well as being ways for com- 
municating ideas to a larger audience. 

No professor received additional compensation for this work; 
many professors did not take part in it. The doctrine of "publish or 
perish" had not yet been established. The work was done "for its 
own sake." This is not to say that it was without compensation. 
Part of this was quite personal and private, the euphoria that accom- 
panies a new discovery. Another part was the approval and admira- 
tion of one's colleagues. In the laissez faire academic community, 
competition for these returns is quite as keen as the competition of 
businessmen for monetary rewards. Erwin Schrodinger has noted 
that these returns, euphoria and admiration, are similar to those 
derived from skillful athletic competition. The custom of awarding 
trophies for athletic success has been translated into medals for 
scientific success. This perpetuated the elitism that distinguishes 
between amateur and professional athletics. It also reinforced the 
distinction between the university professor and the engineer. 

Not only the elite feel the need for non-monetary compensa- 
tion. It is felt by all people, and it is this that distinguishes human 
effort from an inanimate commercial good. The invention of the 
steam engine, and later the invention of electrical distribution sys- 
tems increased the number of people whose need for non-monetary 
reward is being (more or less) satisfied. The standard of living has 
risen. But fundamentally, human effort is still considered a com- 
mercial commodity, to be purchased in the same market as food, 
shelter, and automobiles. 

Perhaps the electrical industry has done more to raise the 
standard of living than any other industry. It was non-existent 
when Marx wrote Capital, and he did not foresee it. It is important 
to keep this in mind when reading that book. Prior to the industrial 
revolution, people, draft animals, water, and wind were the primary 
sources of energy. In most places, wind is fickle. Windmills and 
sailing ships must shut down in calm weather. Water power is geo- 
graphically localized, and, even with dams, mills must be located on 
the banks of streams. The steam engine freed the factories from 
this geographical constraint. Small steam engines are very 
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inefficient; but not much energy is needed to drive small machines. 
The mechanical distribution of the energy of a large steam engine 
required a complicated system of shafts, pulleys, belts, and gears. 
This system was quite inefficient and in constant need of repair. 
Power machines could only be used in large factories, or on large 
construction projects. People and draft animals were still the pri- 
mary sources of small amounts of energy. The development of 
electrical distribution systems changed all this. Energy could be 
delivered anywhere, in large and small amounts. Electric sewing 
machines, washing machines, portable power saws, and other wood- 
working tools; all these and many more became possible. Not only 
did the loom weave itself, the broom swept itself. By the mid- 
twentieth century, it was no longer necessary to use people as pri- 
mary sources of energy. It was not only unnecessary, it was 
economically unprofitable. People were released for activities which 
utilized their more specifically human abilities and rewarded them 
with non-monetary returns. Draft animals were displaced by oil and 
gasoline engines, but initially the social importance of this was less 
evident. 



The Optical Industry in 
the Nineteenth Century 

Since the electrical industry originated during the nineteenth 
century, and is otherwise unique and important, one might next 
consider its history. Its history has so many ramifications that this 
would be unwieldly and not very instructive. The essentials would 
be obscured by a mass of detail. Other smaller industries exhibit 
the same general feature, the changed relation between science, 
technology, education, and society. Of these, the optical industry is 
an ideal textbook example. The histories of other industries are 
often different in more than detail, but show the same general 
trends. 

By 1850, many optical devices were in use: spectacles, 
magnifiers, telescopes, and even compound microscopes. These 
were made by individual craftsmen, spectacle makers, and 
philosophical-instrument makers. Each master craftsman had a few 
assistants, apprentices, and journeymen. The use of spectacles was 
increasing and provided the major income. 

Ernst Abbe was born into a poor family, but his father had a 
steady job in a nearby factory, and the family seems to have lived 
rent-free in a haunted house. The family was spared the periods of 
extreme misery that afflicted many of their neighbors when business 
was bad and many factory workers were laid off. After the unsuc- 
cessful revolution of 1848, Abbe's father hid some of the refugees 
in the haunted house. The police were conducting random 
searches, and the eight-year-old Ernst did duty as a lookout. He 
obtained his early education through a form of apprenticeship, 
modified by the factory's need for clerical help. This contract was 
broken, but not without high words on both sides. Somehow, the 
boy retained the good will of one of his employers, and finished 
high school on a scholarship provided by Herr von Eichel, whose 
generosity is deserving of record. By tutoring wealthier boys, Abbe 
even managed to save a small sum. This, together with his father's 
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savings, enabled him to attend the University of Jena, though not 
without hardship. Two prizewinning essays brought him money and 
hometown fame. Some of its citizens combined to provide him 
with a stipend that alleviated the hardships of the first year at Jena. 

After having obtained all that he could from the meager 
faculty at Jena, Abbe moved to Gottingen in 1859. Again, he was 
saved from financial disaster by a prizewinning essay. Gottingen 
was then, as always, an active center for mathematical and physical 
research, and Abbe came into contact with some of the best minds 
in his chosen fields. In 1861, he obtained his doctorate. His disser- 
tation was an epistemological analysis of the experimental evidence 
for the equivalence of heat and mechanical work. Both Riemann 
and Weber were on his examining board. After two disappointing 
years in Frankfurt, Abbe returned to Jena in 1863. Beginning as an 
instructor in mathematics and physics, he became full professor in 
1878, remaining active in that capacity for twenty years. 

Carl Zeiss was born in 1816, the son of a tradesman, in 
Weimar. This is the town in which Goethe had spent many years, 
working simultaneously as prime minister, poet, and scientist. As 
prime minister he had established the position of Hofmechaniker 
(Mechanic to the Court). One of Goethe's scientific interests was 
visual phenomena, so that the first man who held this job 
developed skill in making optical instruments. Carl Zeiss learned 
the trade of instrument maker from this man's son. In 1846, Zeiss 
opened a shop in Jena, whose main business (at first) was repairing 
apparatus for the University. This was quite insufficient to support 
the shop, so Zeiss also made spectacles and magnifiers. He and 
Abbe became acquainted during the latter's student days. Abbe is 
said to have occasionally worked in the shop. Almost coincident 
with Abbe's departure, was the arrival of the biologist Hackel in 
Jena. Hackel and his colleagues were much interested in the 
discoveries which were then being made about the cell structure of 
living things. For this, they needed compound microscopes, and 
Zeiss began making them. The construction of these microscopes 
was a trade secret. Each instrument maker obtained one from each 
of his competitors and tried to steal their secrets. The image pro- 
duced by a microscope can be distorted by ten or twenty different 
kinds of defects. There was therefore little chance of making a 
good custom built microscope in this way. Glassmaking was also a 
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trade secret, and different batches of glass, even when they came 
from the same supplier, were not the same. Moreover, the preci- 
sion of current machine shop methods left much to be desired. 
Hence, it was impossible to make an exact copy of a good micro- 
scope. The instrument makers had a demand for goods they could 
not produce. 

Zeiss attempted to educate himself in the laws of optics, and 
to design microscopes by calculation. This was a difficult problem, 
not only for him, but for the mathematician to whom he first went 
for assistance. Finally, Abbe returned to Jena, and Zeiss asked for 
his help. Abbe's studies had not only interested him in such a pro- 
ject, but also made him capable of bringing it to a successful conclu- 
sion. He attacked it both theoretically and experimentally. At the 
beginning, he could scarcely have foreseen that it would be his life's 
work. He would not only make many discoveries and inventions, 
but he would have to construct a new optical theory of image for- 
mation. Abbe's theory was based on the wave properties of light, 
whereas previous theories had been based on the geometrical pro- 
perties of rays of light. This new theory, as well as the microscopes 
that he and Zeiss produced, made it necessary for biologists to 
reconsider everything they thought they had seen with the older 
instruments. At first they were not grateful, but ultimately the 
demand for Zeiss' microscopes increased. The business grew and 
prospered. 

Zeiss and his workmen invented new methods and machines 
for shaping metal and glass to very precise shapes and sizes. A 
demand for such things developed, as did demands for specialized 
optical instruments. The business grew at an ever increasing rate. 
Abbe was able to undertake experiments that the University could 
never have paid for. His scientific work benefitted accordingly. The 
business was able to employ other men with university educations, 
and the project was no longer a simple partnership. Both the mone- 
tary and scientific returns increased as new minds and hands were 
put to work. 

One major obstacle to the manufacture of good microscopes 
was the poor quality of glass. Each new batch had to be tested, 
using methods and instruments invented for the purpose. Only the 
best glass could be used, and the rest was thrown away. Goethe 
had experienced the same difficulties, and had endeavored to 



78 Our Modern Idol: Mathematical Science 

improve matters. He had even tried, unsuccessfully, to establish a 
glass works in Jena. Others had also tried and failed to get the glass 
makers to improve their product. Otto Schott was the son of a 
manufacturer of household glassware. He attended a university, 
and obtained a doctorate with a dissertation on "Mistakes in the 
Manufacture of Window Glass." After some practical experience 
elsewhere, he returned to his father's glass works and began labora- 
tory experiments with new kinds of glass. After some correspon- 
dence with Abbe, he came to Jena. Zeiss and Abbe provided capital 
for the construction of a laboratory in which somewhat more ambi- 
tious experiments could be performed. Later, the State of Prussia 
contributed a little to support this work. The firm of Schott and 
Company (the Company being Abbe, Zeiss, and Zeiss' son) was 
formed and a larger laboratory was built. Abbe's increasing part in 
business affairs led him to refuse to accept pay from the University. 
Still, he continued to perform his duties as professor and director of 
the Astronomical Observatory in addition to his scientific work with 
Zeiss and Schott. The commercial production of optical glasses 
began somewhat later. 

Much of the success of these enterprises must be ascribed to 
the high company morale that Zeiss and Abbe created. They 
pioneered not only the scientific and technological aspects of the 
optical industry, but also the field of employee welfare. Abbe wrote 
papers on the economics and sociology of this. His early experi- 
ences with poverty and social unrest certainly stimulated his interest 
in the matter, and his experience as a wealthy industrialist made his 
ideas practicable. They provided the firm's employees with the 
non-monetary rewards that people need. The employees were given 
paid vacations, an eight hour workday, good working conditions, a 
guarantee against arbitrary dismissal, and a share of the profits. 
Child labor was permitted only under humane conditions. Employ- 
ees could get unsecured loans, to be repaid by small deductions 
from their salaries. Various cooperative organizations run by the 
employees were encouraged by the management, and were probably 
subsidized with working capital. Contrary to the predictions of less 
farsighted economists and sociologists, Abbe and Zeiss became very 
wealthy men, and must have received non-monetary satisfactions as 
well. Unlike the misanthropic theories of Malthus, Abbe's actions 
were philanthropic, in the most all-inclusive use of the word. 
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Abbe held stern views about the unearned increment to capi- 
tal, and especially about its inheritance. An early will testifies to the 
sincerity of this belief. After the death of Carl Zeiss, Abbe and 
Roderick Zeiss transferred the ownership of the entire business to a 
non-profit corporation. Its trustees were charged with operating the 
business, and with maintaining the integrity not only of its assets, 
but also of its organization. Furthermore, they were charged with 
concern for the welfare of the employees and for the public interest. 
The latter included the city of Jena and its University, which had 
already been greatly affected by the optical industry and its increas- 
ing number of employees. All funds remaining after the discharge 
of these duties were to be used to support research in the natural 
and mathematical sciences. 

Not many of the new industrial corporations had all of the 
characteristics of the firm Zeiss-Jena, but these were the characteris- 
tics of the social changes which accompanied the scientific revolu- 
tion. They were at least as great as those that the revolutions of 
1848 hoped to bring about, and had much the same objectiues. 
Slowly, and with various modifications, they spread outward from 
Jena, and were incorporated into the society of Western Europe and 
the United States. This must of course be modified by saying that 
there are many relics of Malthusian misanthropy in modern society 



The Emergence of the 
Engineering Communities 

With the development of the new industries and the emer- 
gence of less misanthropic social theories, the nongeographic com- 
munities became more easily recognized, increased in number, and 
people could more easily choose among them. The engineering or 
technological communities were among these nongeographic com- 
munities. It is not known where the terms "architect" and 
"engineer" were first used, but there were architects and engineers 
in very early times. There is every indication that the engineers 
evolved out of the military, and the architects out of the civil 
administration. Both were involved in larger construction projects 
than the building of a home. Military requirements dictated both 
the construction and destruction of fortifications, including city walls 
and gates. The design and construction of fortifications was not 
much different from that of bridges, dikes, aqueducts, canals, roads, 
harbors, docks, and jetties. The distinction between the architect 
who designed and constructed palaces, temples, and granaries, and 
the military engineer would not be sharply defined. Some individu- 
als would be members of both communities. Vestiges of this 
arrangement remain in the present day United States. The Army 
Corps of Engineers not only has authority to approve or disapprove 
bridges over rivers, but it also has responsibility for flood control. 
Its Beach Erosion Board not only studies ways to keep harbors from 
silting up, but it has also become increasingly concerned with the 
recreational aspects of beaches and lakes. 

The destruction of fortifications required the design and con- 
struction of engines of war: battering rams, Trojan horses, catapults, 
and ultimately cannons. Rumford made the first measurement of 
the mechanical equivalent of heat while supervising the Bavarian 
arsenal; in that capacity he also invented canned food. A successful 
siege may also require the construction of a tunnel. It has already 
been noted that Thomas Savery was a military engineer who made 
notable contributions to civilian mining operations. Alexander the 
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Great captured the island city of Tyre by having a causeway built 
out from the mainland. The Romans took Masada by building a 
ramp from the plain to the top of the fortified cliff. 

The differentiation of the engineering communities into mili- 
tary and civil is well documented. The father of Gaspard Mongb 
was a peddler and scissors sharpener. At the age of twenty-two, 
Gaspard became professor of mathematics at the French officers' 
school in Mbzibres. There, he  had already devised his method of 
descriptive geometry, and used it in designing fortifications. It was 
promptly classified as a military secret. During the French Revolu- 
tion, MongC performed many services for the Republic. He was 
Minister of the Navy for a time, and a young artillery officer, 
Napoleon Bonaparte, visited him on some small business. Later 
this casual encounter ripened into a warm and enduring friendship. 
Mongb had a talent for such friendship. 

With Mongb's help, Napoleon gathered a brilliant circle of 
scientists and scholars about him. Earlier, in 1794, Napoleon had 
persuaded the Convention to expand the French elementary school 
system. To provide the teachers, the Ecole Normale had been esta- 
blished. This was now reorganized and renamed the Ecole 
Polytechnique. Mongb was essentially in charge of this institution, 
which was now given the additional task of educating scientists and 
engineers. At first the curriculum seems to have made no distinc- 
tion between civil and military engineering; the choice of a career 
was made later in life. Mathematics had a central place in the curri- 
culum. All of the members of Mongk's group were essentially 
members of the Polytechnique's faculty and it was soon a leading 
center for science. After Napoleon's downfall, Mongb was 
dismissed by Louis XVIII. Another of the original group, Pierre 
Laplace, was more politically adroit and succeeded Mongb as head 
of the school. 

The Ecole Polytechnique continued to provide an example for 
the developing educational systems of both Europe and the United 
States; the course of events on the two continents differed only in 
detail. In the United States the first engineering curriculum was 
established at West Point in 1802. In 1823, Norwich College, in 
Vermont, established a curriculum in civil engineering. In the fol- 
lowing year, Reusellaer Polytechnic Institute (apparently patterned 
after the French Ecole Polytechnique) was established. The British 
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Institute of Civil Engineers was established in 1818, the American 
Society of Civil Engineers not until 1852. During the latter half of 
the nineteenth century, the development of the new industries 
resulted in further differentiation of the engineering community. 
Curricula in architectural, mechanical, electrical, and ultimately 
chemical and sanitary engineering were established. 

These educational developments were somewhat different in 
Europe and in the United States. In the latter, the engineering 
schools were administratively distinct, even when they were located 
on a university campus. Members of the science departments often 
participated in the teaching of engineering students, however. Until 
well into the twentieth century, four years was considered adequate 
for an engineering education, and no research was conducted in the 
average engineering school. The objective of the engineering curri- 
culum was to provide enough knowledge of the relevant sciences to 
enable the graduate to plan and supervise the construction of fac- 
tories and new machines. Many of the older industries had never 
employed a college graduate, except perhaps as an administrator. 
The engineering graduated disseminated the new knowledge in 
these older industries as well as in the new industries. When the 
medical schools were incorporated into the universities, their rela- 
tion to the general campus was much the same as that of the 
engineering departments. While members of the science depart- 
ments taught in the engineering and medical departments, they 
were personally interested in those aspects of their science which 
were as yet well removed from utilitarian objectives. The distinc- 
tion between the scientific and engineering communities became 
greater (rather than less) as time went by. Naturally, however, 
there were individuals like Abbe and Schott who belonged to both 
communities. 

Thus, the scientific revolution caused great changes in the 
educational system as well as in industry. These changes occurred 
not only in the colleges and universities, but in the preparatory 
schools as well. In the United States, public high schools were esta- 
blished by the end of the nineteenth century. They not only 
replaced apprenticeship in training craftsmen, but also functioned as 
preparatory schools. Consequently, the high schools included alge- 
bra, geometry, and the sciences among their course offerings. 
While the elementary schools continued their single standard 
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curriculum, the high schools and universities had numerous curri- 
cula. Their students could exercise free choice in entering one or 
another. Not all high school graduates went on to college or univer- 
sity, however. The high schools thus served a dual purpose: 
preparation for higher education, and preparation for those crafts 
and businesses that needed more than the standard elementary edu- 
cation of the grammar schools. The old distinction between occupa- 
tion and avocation was continued, but supervised training in sports 
and fine arts was introduced at all levels. 



The Instrument Makers 
and Technicians 

The handicrafts developed in Paleolithic times, and presum- 
ably resulted in the first division of labor within social entities larger 
than the family. With the passage of time cities grew larger, and 
many of the crafts organized into guilds. This occurred in very 
early times. The primary purpose of the guild was the preservation 
of a monopoly through the protection of trade secrets, as well as 
through collective bargaining and political influence. A second pur- 
pose of the guilds was educational. The apprentice-journeyman- 
master system preserved the security of trade secrets while transmit- 
ting them to a new generation. Naturally, there were few written 
records of this technological knowledge. 

A number of factors rendered the guilds obsolete. One was 
the advent of power tools, machinery, and the assembly line. 
Another was the patent. The intent of this legal device was to make 
it profitable to disclose trade secrets, especially new inventions, by 
guaranteeing the inventor a royalty for a period of years. Then 
there was the spread of free, or at least inexpensive, education in 
public high schools and trade schools. Finally, there was the advent 
of the engineer, who often surprised the guild by knowing its most 
cherished secrets -- and more. In the Midwestern U.S., the 
manufacture of glass and ceramics continued to be family enter- 
prises until well into the twentieth century. The trade secrets had 
been brought from Europe by earlier generations, but sooner or 
later, changing conditions produced problems that the secrets could 
not overcome. Reluctantly, chemical engineers were called in to 
help. The proprieters were always astonished to find that their 
secrets were common knowledge among the engineers, as were the 
solutions to their problems. All this left the guild with only two 
functions: collective bargaining, and political influence. After a 
period of confusion and distress, the guild evolved into the modern 
trade union. 
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But there was one handicraft that appeared very late in his- 
tory, and whose evolution differed from this outline in specific 
ways. This was the trade of the instrument maker. Abbe's most 
mathematically perfect design for a microscope would have 
remained a fiction if there had been no Zeiss. It was first necessary 
for Zeiss to understand the design; then it was necessary for him to 
devise a feasible method of building the microscope. This required 
a knowledge of methods for fabricating metal and glass parts, plus 
an intelligence that could improve on the methods used on the past. 
New tools (both hand tools and power tools) had to be devised and 
constructed. At this point, the evolutionary tree of the instrument 
maker has two branches. The first branch is that taken by Zeiss. A 
small, specialized industry is developed, with its factory located in a 
university town. It may, however, be very large -- the computer 
industry is a recent example. The instrument maker becomes a 
businessman and employer unless there is someone to relieve him 
of that responsibility, as Boulton relieved Watt. In that case, the 
instrument maker becomes a specialized engineer. 

Not all instrument makers elect this option to join a new 
community. Many prefer to stay in the laboratory. It may be either 
a university laboratory or an industrial laboratory. In any case, it is 
headed by a scientist who evolves goals that have never been 
achieved in the past, and may have no clear utilitarian purpose. In 
the exact sciences, these goals are often formulated in mathematical 
terms, and it is the job of the instrument maker to understand them 
and use his skills to convert them into material objects. These 
objects may or may not have a utility outside of the laboratory; they 
may never be duplicated, much less mass-produced. The experi- 
ment may fail or be inconclusive; the scientist modifies the goal, 
and the feedback cycle of the planning process is completed. 

If the laboratory is biological or psychological, the scientist 
may formulate his goals in logical rather than mathematical terms. 
However, there is a current tendency to replace logic and common 
sense with mathematics. The construction of new and unique 
instruments is secondary to the use of purchased instruments (e.g. 
microscopes) of proven value. The experiments depend more on 
the processing of biological materials, or the recording of responses 
to psychological stimuli. Even in these laboratories, there are peo- 
ple who have a function very similar to that of the instrument 
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maker. They are usually called technicians. It is their job to under- 
stand the goals formulated by the scientist, and then to use their 
special skill and knowledge (either of instruments or processes) to 
achieve them. Again, the experiment may fail, the goal be 
modified, and the feedback cycle repeated many times. 

The instrument makers and the technicians are as essential to 
the scientific or technological enterprise as are the scientists and 
engineers. They earn their living through the exercise of manual 
skills, and a special kind of knowledge that has come to be known 
as "know-how." Above all, they use their skills and knowledge 
with an intelligence that is not to be deprecated, even though it is 
rarely recorded in learned journals. They are the evolutionary suc- 
cessors to the old craftsmen, and they obtain the same non- 
monetary satisfaction from their work as the craftsmen did when 
they finished tables, carpets, and jars. 

The handicrafts cannot be obliterated by the assembly line, 
the mass-produced spare part, or the automated rolling mill. If peo- 
ple cannot earn their living at handicrafts, they will take them up as 
recreational hobbies, or invent games of skill (e.g. tennis or golf) to 
replace them. The scientific laboratory is a refuge for the individu- 
alistic craftsmen and craftswomen who will not conform to the regi- 
mentation of the trade unions, but must still earn their living. This 
fact receives no publicity, but it is essential to the understanding of 
the scientific revolution. 

It is impossible to conclude this inadequate account of the 
community of instrument makers and technicians without calling 
attention to one of the most unjust vestiges of the aristocratic fal- 
lacy. These people never share in Nobel Prizes. There is of course 
an exception to this. The communities of Nobel Prize laureates and 
instrument makers are not mutually exclusive. Many able scientists 
are also able instrument makers and technicians. Some, like Abbe, 
have also been businessmen and sociologists. 



The Scientific Revolution in the 
Twentieth Century United States 

During the 1930's, Nazi activities made central Europe not 
only an unpleasant place for intellectuals, but a dangerous one. 
There was an exodus of thinkers; England and the United Stated 
benefitted from this immigration. It strengthened their universities 
and their industries, even though these exiles were unhappy and 
hoped to return to their native countries. By 1940, when World 
War I1 had escalated to a full-scale conflict, the exiles in the United 
States found themselves permanently allied with their new country. 
Their teaching had much enlarged the number of scientists in the 
country. 

In 1942, most university professors in the sciences left their 
posts to engage in the war effort. Only a small proportion of the 
professors of science and technology entered the armed forces, 
however. Instead, they worked on government projects. The 
Manhattan Project was merely the largest of many, and it has 
received the greatest publicity. The work on many of these projects 
was conducted on sites other than university campuses. The 
Federal Government found it expedient to ask universities to 
administer and manage these projects, and entered into contracts 
with them for this purpose. The Government provided funds, and 
the universities disbursed them for the purposes specified in the 
contracts. Collectively, these projects provided an impressive 
demonstration of the ability of scientists to create new technologies, 
and the scientific revolution entered upon its second phase. The 
technologies that cluster about the A-bomb are best known. How- 
ever, shipbuilding, and the electronic and aircraft industries were 
also revolutionized. Substitutes for unavailable materials were 
developed; nylon is an example. New pharmaceuticals, jeeps, 
bulldozers, and many other things were developed and later found 
their places in the civilian economy. This money also provided the 
university people with funds that enabled them to experiment on a 
scale that had previously been possible only in industry. They were 
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provided with assistants and technicians. Some of these later 
became university students and professional scientists and 
engineers. For the first time, professors had personal secretaries, 
and were relieved of the necessity of typing their own letters and 
manuscripts. They had telephones on their desks, not down the 
hall in the department office. 

Scientists, especially the younger ones, became fully aware of 
their ability to create new technologies. The old distinction between 
the aristocratic pure scientist and the plebian engineer began to be 
questioned, though some traces of this remain today. It is men- 
tioned because there is a division of labor in the scientific enter- 
prise. However, such terms as basic and applied research, develop- 
ment, and engineering are more often used without pejorative con- 
notations. This was an unforeseen consequence of the war projects. 
Not only scientists and engineers, but also business and government 
officials, became aware of the scientific revolution. This was to 
have a great economic influence during the post-war years. 

As the war drew to a close, it became apparent that the pro- 
jects had so disrupted the universities that it would be very difficult 
to restore them to their pre-war condition. In fact, this disruption 
was of the magnitude of a national disaster. The U.S. Navy had a 
long tradition of providing assistance to civilians in times of disaster. 
It was therefore suggested that the Navy assist the universities in 
their recovery. The wartime system of contracts provided a feasible 
method; it would merely be necessary to alter their wording, not 
their management and administration. This was the early thought 
concerning the Office of Naval Research. It was not foreseen that it 
would continue to exist for more than twenty-five years. 

At the same time, farsighted people discussed the feasibility 
of Federal support of the scientific community through the estab- 
lishment of a civilian agency. This was not the first time that such a 
suggestion had been made, or the first time that it had been rejected 
by the scientific community. Dedication to laissez faire caused its 
leaders to fear that such an agency would use financial support as a 
means of gaining dictatorial power. This rejection certainly 
influenced the planning for the Office of Naval Research, although I 
do not know the details. The younger scientists had become per- 
sonally acquainted with Navy and Army officers, and (quite 
correctly) did not discern any dictatorial ambitions in them. 
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Reciprocally, these officers had acquired an appreciation of the abili- 
ties of the scientists and engineers. This must have influenced the 
planning for the Office of Naval Research. Another influence was 
the existence within the Navy of an organization capable of chan- 
neling federal support to the universities. This combination of 
mutual trust and expediency contributed to the establishment of the 
Office of Naval Research as a stable agency of the Federal Govern- 
ment. 

It also led to the modification of the wartime contracts in a 
significant way. Legally, the contracting parties were the Navy and 
a university. However, the contracts designated one faculty 
member as Principal Investigator; no expenditures could be made 
without his authorization. Moreover, it was the Principal Investiga- 
tor, not the university administration, who negotiated the contract. 
It was he who "sold" the Office of Naval Research on the character 
of the work to be supported by the contract. The description of the 
work was in very general terms; it was recognized that the results of 
research could not be foreseen, and that the original plan might be 
modified during the term of the contract. The Principal Investigator 
was given very considerable discretion in such matters. 

More and more frequently, the contracts also specified that 
the Principal Investigator should be provided with paid assistants. 
These might be full-time technicians, or part-time graduate students 
whose education was thus subsidized. As time went on, other 
Federal agencies, civilian as well as military, established their own 
Offices of Research, and the universities' budgets for research grew 
from a minor part of their income to a major part. This caused a 
profound change in the universities. Two centuries earlier, the pri- 
mary function of an American college or university had been the 
education of ministers, teachers, and lawyers; the sons of a few 
wealthy families attended with no intention of following one of 
these professions. Most colleges were denominational, and sup- 
ported by a church. By the twentieth century, this had changed 
considerably. It has been seen that scientific and engineering curri- 
cula had been added, and an increasing number of students, 
uncommitted to any profession, came for a general education. 
However, science, engineering, and medicine did not dominate the 
campus. In many of the Land Grant Colleges, agriculture was 
prominent. Under this new system of Federal support, the scientific 
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and engineering faculties became a wealthy elite. Previously, the 
department chairman had been an important officer, sometimes dic- 
tatorial. Now he became the servant of his faculty. To some 
extent, the university president suffered the same change in status. 
University regulations and policies were modified to meet the needs 
of the federally supported projects. In some cases, the overhead 
fees collected by the university for the administration of research 
projects were indirectly used to provide more support for the rest of 
the campus. 

This could not have happened without equally major changes 
in the agencies of the Federal Government. It has been seen that 
during the nineteenth century, a number of technical and scientific 
agencies had been established within the various Departments. The 
armed forces necessarily had their engineering branches, and these 
had established research laboratories prior to World War 11. The 
civilian Departments had established numerous similar organiza- 
tions: the Weather Bureau, the Geological Survey, the Coast and 
Geodetic Survey, the Smithsonian Institution, the Naval Astronom- 
ical Observatory, the Bureau of Standards, the Public Health Ser- 
vice, the National Administration for Civil Aviation; this is only a 
partial list of federal activities in the field of science and technology. 
Like the military, all of these had benefited, during World War 11, 
by close working relations with university people. They also became 
aware of a need to keep abreast of scientific advances and new tech- 
nologies. Eminence in science and technology became a Depart- 
mental goal, even before preeminence became a national goal. The 
Research and Development budget of the Federal Government 
increased for this reason. 

All of these agencies recognized that eminence requires con- 
tinuing contact with the research going on in universities. The sup- 
port of that research by contracts proved to be effective, and many 
civilian agencies followed the precedent established by the Office of 
Naval Research. This has resulted in the formation of a typical- 
laissez-faire organization, a nightmare for the General Accounting 
Office and the Bureau of the Budget. But it is just what the 
scientific enterprise wants. If one agency cannot fund a particular 
research project, its proponents can seek support from other agen- 
cies. Dictatorship is impossible. This is not to say that the scientific 
enterprise needs unlimited amounts of money, and complete 
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autonomy in the expenditure of those funds. If man is to deter- 
mine his own future, the scientific and university communities must 
both recognize the preferences and needs of other communities. 
The future of mankind cannot be planned by one or two communi- 
ties. 

The present crisis in the scientific, tecnological, and university 
communities results, in large part, from general social disapproval 
of some of their recent activities. If these had remained academic, 
as in the late eighteenth and early nineteenth centuries, this disap- 
proval might be ineffective or unjustified. But by becoming active 
agents for social change, and by accepting financial support for their 
activities, these communities have also accepted responsibility for 
respecting the wishes of other communities. If man's future is to 
be planned and controlled, only the whole of mankind can set the 
goal. 



Our Numerical Society 

One aspect of the scientific revolution is often emphasized. 
This is the important part played by mathematical theories of physi- 
cal phenomena. It has been seen that other factors were also 
influential, but this one has received more recognition than the oth- 
ers. This would be sufficient reason to examine the foundations of 
mathematics, but there are other equally cogent reasons. The suc- 
cess of mathematics in the physical sciences has led to its use in the 
social and biological sciences. 

Sociologists have been conspicuously unsuccessful in this. 
They are urging the establishment of an agency to supplement the 
Bureau of the Census in collecting more numbers for them to use, 
hoping that this will bring success. Economists join them in this; 
they have also made mathematical models of the financial system. 
Perhaps it is too early to judge their success, but no one has yet 
made a fortune by using their models. This statement requires a 
minor modification: the services of professional economists are in 
demand and are quite well paid. This is the only new industry that 
has yet resulted from the application of mathematics to the social 
sciences, a marked contrast to the physical sciences. 

Insofar as biology is biochemistry and biophysics, mathemati- 
cal theories have been very useful. They have been taken over, 
with very little change, from physics and chemistry. The instru- 
ments of the physical sciences have also been adapted for biology; 
the microscope is only one example. This has been less successful 
in psychology. Sensation and perception are not easily measured. 
The anatomy of the inner ear stubbornly refuses to conform to the 
laws of mathematical acoustics. Many people are bothered by a 
continuous whistling in one ear; this is called an illusion and is not 
considered to need an explanation. There is no completely satisfac- 
tory theory of the retina; the luminous figures seen by sufferers 
from migraine, and the floating lights seen by users of digitalis are 
also dismissed as illusions. The list of such failures of the theory of 
psychomathematical parallelism could be multiplied almost 
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indefinitely, but has never been compiled by the advocates of that 
theory. 

It has been possible to develop mathematical theories of 
nerve conduction, but not of the brain. Again, its anatomy and 
functioning do not conform to the mathematical theory of the elec- 
tronic computer. There was, at one time, the hope that study of the 
computer would provide an understanding of the brain. John von 
Neumann, a leader in computer design, concluded that this was a 
false hope. The general public, however, continues to refer to com- 
puters as "electronic brains." It is sometimes said that the com- 
puter put men on the moon. This is not only false, but it is unjust 
to the astronauts, to all the men and women at Cape Kennedy and 
Houston, and also to the people who build computers. For while 
people can build computers, computers cannot yet build people. 

The preceding criticisms do not exhaust the reasons for exa- 
mining the foundations of mathematics in great detail. Not only the 
scientific community, but our entire society is deeply committed to 
numbers, whether as mathematics or as numerology. Society is 
highly arithmetized and is becoming more so. This is not because 
of the General Accounting Office and the Internal Revenue Service. 
It is not because of the Social Security and Selective Service 
Administrations. There is dissatisfaction with this trend. When the 
names of telephone exchanges were replaced by numbers, there was 
audible complaint. Zip codes met with passive resistance for some 
years, but are now accepted with passive resignation. The use of 
computers by university registrars at first led to student protests, 
but now students have become resigned to "being just an IBM 
card." There is anxiety lest data banks result in the invasion of 
privacy, and ultimately to a police state. This anxiety has not 
resulted in organized opposition to the social scientists who are urg- 
ing the establishment of such data banks. 

This dissatisfaction with numbers is relatively superficial. 
There is a much deeper faith in the magic of numbers. Proud 
parents make their children show off before guests by counting. 
The child's face is always eloquent of mixed feelings: fear of making 
a mistake, a wish to please, and bewilderment. "Why are the Big 
Folks so anxious about counting?" This is very different from the 
unselfconscious way the child learned to speak. If the child tries to 
resolve his bewilderment, he gets a lame answer: "Well-ah-you see 
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when you go to school-well-we want you to get good grades." Still 
fearful of making a mistake, the child does not ask "Mummy, what 
are grades?" 

Most of us are unaware of our deep-seated faith in numbers. 
It has been instilled by our parents, and reinforced by our entire 
educational system, from the elementary schools to the universities. 
We rarely think about it, or acknowledge it explicitly. Many people 
consider arithmetic to be just one of the unpleasant facts of life; 
others are fascinated by it. Few have a critical knowledge of the 
history of mathematics in its relation to society. Even the historians 
of mathematics are not inclined to question the "facts" that they 
learned while they were young and impressionable. 



The Anthropology of 
the Whole Numbers 

Many differing views as to the nature of mathematics have 
been expressed, without any apparent progress toward unanimity. 
These views range from "God is a mathematician" to "Mathemat- 
ics is a meaningless game." An ancient philosopher, living in a 
polytheistic society wrote, "Numbers exist, even if nothing else 
does." A late Roman writer said, "Take from all things their 
numbers, and all shall perish." The nineteenth-century mathemati- 
cian, Leopold Kronecker wrote, "God made the whole numbers, all 
the rest of mathematics is the work of man." This introduced a 
new idea: mathematics is an invention, an artifact, not a part of 
nature which has an existence independent of people. In other 
words, it is a tool, and Kronecker thought that the whole numbers 
were the "substance" of which the tool is made. 

I shall here present the view that numbers, even whole 
numbers, are words, parts of speech, and that mathematics is their 
grammar. Numbers were therefore invented by people in the same 
sense that language, both written and spoken, was invented. Gram- 
mar is also an invention. Words and numbers have no existence 
separate from the people who use them. Knowledge of mathemat- 
ics is transmitted from one generation to another, and it changes in 
the same slow way that language changes. Continuity is provided 
by the process of oral or written transmission. This is a quite recent 
view, but there are indications that it is gaining acceptance. Not 
surprisingly, computer scientists are especially receptive to this view, 
for the leaders in this field are actively engaged in the invention of 
new languages. More conservative linguists and philologists call 
these new languages "artificial" to distinguish them from the 
"natural" languages on which their attention is focused. There are 
more than a thousand natural languages, not including dialects, and 
less than a hundred artificial languages. Here, too, attention will be 
focused on the natural languages, unless specific mention is made 
of the others. 
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I shall also present the view that idealizations are fictions. 
Such fictions include very large numbers, very small numbers, lines 
without thickness, and some other mathematical concepts. I must 
take sole responsibility for this, without claiming originality. Those 
few readers who are familiar with the works of H. Vaihinger and J. 
Bentham will recognize both the similarity and difference between 
their views and mine, but I will not weary the reader with repeated 
attempts to distinguish my opinions from theirs. The discussion in 
the earlier parts of this book should make it clear that I do not hold 
fiction in contempt as a mere recreation, but I consider it an impor- 
tant component of literature, often providing a motive for social and 
technological change. Plato's Dialogues have exerted a great 
influence on the evolution of our western society, and they contain 
a large fictional component. His Republic is utopian fiction. Plans 
are fictions until they are made to become true through the actions 
of people. 

It is customary to distinguish between words and thoughts or 
ideas. However, thinking is merely inaudible speech. It is impossi- 
ble to think clearly about anything for which one's language con- 
tains no words. Writing is also an inaudible soliloquy. While 
speech and thought are temporary, writing has greater permanence; 
it permits the writer and others to review the ideas which have been 
written down, and to subject them to reflective analysis. When one 
says "thinking" rather than "soliloquizing," one invites confusion; 
thinking is commonly considered to be absolute, whereas soliloquiz- 
ing obviously depends on a language and a vocabulary. It is true 
that some people are said to be able to think better (or more 
clearly) than others, and this difference is supposed to be indepen- 
dent of their language. Emphasis on vocabulary makes it clear that 
a child whose vocabulary is small will not "think" in the same way 
as a well-educated adult. This does not mean that a child's solilo- 
quies are of no importance. In the same way, the vocabulary of 
ancient languages was surely different from that of modern; the 
ancient Egyptian or Chinese languages cannot have had a word for 
"automobile." It is a serious error to suppose that primitive people 
thought as we do; it is an equally serious error to suppose that they 
were therefore mentally inferior to us. This fallacy has persisted to 
the present time, and has been used to justify many actions which 
are unjustifiable. Neither should it be supposed that, because 
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ancient writings are difficult to understand, they are more profound 
than less difficult modern writings. However, there is no need to be 
pedantic in avoiding words like "thinking," "thoughts", and 
"ideas" when confusion is likely to arise. Also, it must be remem- 
bered that the primary use for speech is communication. Most 
words have been coined in the course of casual conversation, as a 
need (real or fancied) arose. Perhaps the most fundamental 
difference between natural and artifical languages is that the former 
have been invented in this casual way, and the latter have been 
invented deliberately, and for a definite purpose. It follows that the 
vocabulary of the artificial languages will be smaller, and their gram- 
mars more systematic than those of the natural languages. 

It is difficult to imagine a time when no one had counted a 
herd of animals, or a catch of fish. All natural languages contain 
words for use in counting, even though they make no provision for 
very large numbers. Anthropologists have found some isolated 
tribes that do not count beyond three. Perhaps all peoples passed 
through this stage, The Egyptians and ancient Chinese often 
repeated a written character three times simply to express "many." 
The Old Babylonian word for "three" was esh, which was also the 
suffix that converted a single noun to plural. This is remarkably 
like our "chair" and "chairs," but it is unlikely that an etymologi- 
cal connection can be established: since there are so many 
languages, some allowances must be made for coincidences. One 
South Sea language that is meager in number words has two very 
different words for one boat and for ten boats; for one coconut and 
ten coconuts. Moreover, there is no systematic similarity between 
the pairs of words. 

It is impossible to make a generalization which would apply to 
all languages. To avoid losing the way and becoming involved in 
irrelevancies, it will be well to begin with the English words for the 
cardinal (whole) numbers. Our words "one," "two," "three," 
"eleven," "twelve" are very old. They were derived from older 
Anglo-Saxon words, and etymologists can trace them to even older 
languages. Finally, the etymologists are led to construct (or recon- 
struct) a basic Indo-European language from which Greek, Latin, 
and Sanskrit were derived, though other languages (Sumerian, 
Egyptian, Old Babylonian, Hebrew, Arabic, etc.) were not. These 
other languages had other basic or proto-languages. Our "dozen" 
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was &rived from Cornish and Breton words, and these perhaps 
from the Latin duodecim. "Hundred" and "thousand" are also so 
are "score" and "gross" though their meanings may have changed 
over the centuries. "Quire" and "ream" were coined more 
recently to meet the needs of the paper trade; "million" and "bil- 
lion" were not coined until business and government had expanded 
into large, complex organizations. This happened much more 
recently in England, rather than in Egypt or Rome. This and simi- 
lar delays contribute to the widespread belief that these early people 
were wiser than we. Actually, the difference is only one of chronol- 
ogy. 

It is to be noted that these number-words show no systematic 
relation to one another; this is also the case in many other 
languages. When it comes to large numbers, we say "fourteen," 
"fifteen," "sixteen." Germans say, "four-ten," "five-ten," "six- 
ten," and so did the Romans. This shows signs of a deliberately 
invented system, similar to that of an artificial language. Continu- 
ing, we say, "twenty, thirty, forty, eighty, ninety"; the Germans do 
something similar; again there are signs of artifice. This is no less 
true for French, though there are some irregularities (eighty is 
"four score," ninety is "four score ten"). A few centuries ago, the 
phrase "three score and ten" was common in England, and we still 
understand it easily. We say, "four hundred and eighty-three," the 
Germans say, "four hundred three and eighty." 

These examples from a few languages are typical of many 
other languages, living and dead. The conclusion seems certain: the 
smaller number-words were invented spontaneously, in response to 
growing needs, while the larger number-words were later invented 
according to a deliberate system. The system varied from language 
to language, and sometimes it was changed as the language 
changed. Number-words are used in counting. Originally, this was 
probably their only use. It should be noted that counting is a solilo- 
quy about things that are being handled or looked at. It is a 
thoughtful activity. When a child is made to show off, he is not 
counting. It is mere recitation of a memorized sequence of words, a 
jingle which does not rhyme. This memorized succession of words 
will be used later, or possibly has already been used, as a soliloquy 
in counting apples, eggs, cows, men, and a great many other kinds 
of things. If one simply picks apples from a tree and puts them in a 
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basket, this is not counting either. Only if one accompanies the 
action with the soliloquy, "one, two, three," is one counting. With 
experience, one can count a small number of objects at a glance 
(without the soliloquy), but only if they appear simultaneously. 
Otherwise, one can easily lose count of a large number of things, as 
anyone knows who has tried to count a show of hands at a large 
meeting. Even with smaller numbers, one can lose count if the 
things to be counted (objects, days, or transactions) appear at irreg- 
ular intervals, or are separated by distractions; to avoid this, the 
counter must make a memorandum of each as it occurs. This is a 
very important conclusion: counting must be considered as the 
union of words and other human activities. The words are formed 
by the tongue and the lips, or if written, by the hand; usually they 
must be accompanied by other motions of the hands or the eyes. 

Proponents of theories which deny that numbers are linguistic 
inventions frequently cite the ability of certain animals to count, 
although they are unable to speak. In the case of birds, an exami- 
nation of the facts indicates that they have only the ability to distin- 
guish between one egg in the nest, and more than one. One exam- 
ple designed to demonstrate a greater ability can be explained if the 
bird used as subject had the ability to distinguish between one man 
and another. To many animals, people are not interchangable. 
Every dog fawns on some people, and growls at others. It is said 
that horses can be taught to count. At the Louisiana Purchase 
Exposition, one of the sideshows claimed to prove this. Numerals 
from one to ten were painted on boards and arranged before the 
horse. At the spoken command of its trainer, the horse would take 
the appropriate board between its teeth and display it to the audi- 
ence. This is not counting. A more accurate description would be 
that the horse interpreted the spoken word as the name of the 
board carrying the numeral. It was not demonstrated that the horse 
could distinguish between three cubes of sugar and four. And, 
even if a horse were trained to count, it would be the result of 
training and not an innate ability. The ability would not be inher- 
ited by its offspring. Nor do human beings inherit the ability to 
count; each generation must be taught by its elders. On the other 
hand, horses cannot teach their offspring to count as they cannot 
speak. The hypothesis that mathematics is a linguistic artifact, 
invented by people, may therefore be accepted, at least 
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provisionally. Further evidence favoring it will appear later in this 
investigation. 



Counting, Memoranda, 
and Arithmetic 

Even minor distractions can make one lose count and be 
unable to finish. One is rarely unable to finish a sentence unless 
there is a sudden and dramatic distraction. This is in itself evidence 
that counting is more than simple speech. When, for whatever rea- 
son, counting became important to primitive people, it brought with 
it a need for aids to memory, for memoranda. Counting on the 
fingers is such an aid, but it becomes tiresome if the counting pro- 
cess is long. There is ample evidence for a wide variety of other 
kinds of memoranda. 

One may conjecture that tally marks scratched in the dust 
were among the first to be used. They are still used (although writ- 
ten on paper) by score-keepers at tennis matches. Modern dic- 
tionaries list several definitions for the word "score," one of which 
is to "gash in lines." Correspondingly, it can be translated into 
other languages in a variety of ways; two ways to translate it into 
German are "reckoning" and "number of points made." Now 
reckoning and the corresponding German word are both derived 
from the name for a rake that makes parallel marks in the dirt. 
"Point" is again a word with many meanings, and there is evidence 
that early tally marks were simply dots or holes imprinted into the 
earth with a stick. 

Menniger describes many other ways of tallying and there is 
abundant anthropological and archaeological evidence for their use 
by primitive people. A few of them are: cutting notches in a stick, 
driving nails into a post, placing pegs in holes previously bored into 
wood, and moving pebbles from one heap to another. Many of 
these methods survived into quite recent times, even to the present 
day. Notched sticks were used by the British Exchequer in the thir- 
teenth and fourteenth centuries when few people were able to read 
and write. Our personal checks and banknotes developed from the 
complex uses made for these Exchequer sticks. The reader will 
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know of many less obscure examples. 

Experience with counting must have led to the use of sen- 
tences like, "Two and three make five, Two times three make six." 
This experience may have been gained by counting actual articles of 
barter or trade. The experience may have also been gained by the 
accidental or deliberate grouping of tally marks: I1 I11 or .. ... (two 
and three make five), or I11 and I11 or ... and ... (two times three 
make six). 

Much simple arithmetic can become soliloquies about such 
arrangements, as well as some not-so-simple arithmetic that we now 
call algebra. The Greek mathematicians of the Pythagorean cult 
classified numbers as triangular, square, oblong, or pentagonal 
according to the following diagrams: 

The squares have survived into modern algebra as n2.  The slightly 
different triangular arrangement: 

in modern notation is 

and generalizes to, "The sum of the first n odd numbers is n2  ." 
The Pythagorean triangular number shown in the first diagram 
shows that: 

which generalizes into: "The sum of the first n whole numbers is 
n (n+1)/2." The square numbers can also be subdivided by lines 
drawn in the dust. 



Counting, Memoranda, and Arithmetic 

A favorite with the Pythagoreans was: 

which also exhibits the sum of the first four odd numbers as 42. 
Another subdivision of a square is: 

* * a * .  

* * * . .  
which generalizes into our binomial 

The Pythagoreans were certainly not primitive people, but there is 
at least some evidence that special cases of these theorems were 
known in much earlier times. 

Games may also have provided such experiences. Cubical 
dice, marked with dots like ours, have been found in Egyptian 
tombs dating back four millenia. Knucklebones is a game played 
with the ankle bones of sheep, suitably marked with scratches or 
dots; presumably this game antedated the cubical die. In Greek and 
Roman times, boys were encouraged to play knucklebones in order 
to improve their proficiency in arithmetic. Dominoes, marked with 
dots in the same way as ours, are also very ancient, even though 
they were not introduced into England until quite recently. In 
Mesopotamia, games like backgammon, or some other complicated 
form of checkers, were played before 3000 B.C. All such games 
involve both actions and words, even if some of the following are 
silent soliloquies. 

Again, it is important to remember that each generation must 
be taught both the games and the arithmetic by its elders. Unfor- 
tunately, they are also taught superstitions, Such as a belief in luck 
and lucky and unlucky numbers, at the same time. Silliness as well 
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as wisdom can be handed on from one generation to the next, and 
thus survives for many centuries. 



Seals, Numerals, and Writing 

There is much evidence that, at some early time, simple 
person-to-person barter was replaced by barter that involved tran- 
sportation. Transportation usually involves one or more middle- 
men. Without venturing a precise date for this development, it cer- 
tainly antedated the invention of coins by thousands of years, a fact 
that has many implications. The nature of the evidence can be 
illustrated by amber. Amber almost never occurs in nature, except 
in the areas adjacent to the Baltic Sea. Yet, amber jewelry has been 
found in all the countries north of the Mediterranean, and as far 
south as Egypt. This jewelry has been found in archaeological strata 
that are very ancient and primitive. By analyzing these amber finds, 
it has been possible to map fairly well-defined trade routes. Prob- 
ably no one trader traveled the full length of any of these routes; 
the route into Egypt must have involved ships. One is thus led to 
the idea of very early transportation of goods, partly on foot and by 
relays. Heavier merchandise would have required pack animals, and 
perhaps caravans traveling in company for protection. 

For one reason or another (one can imagine many), this kind 
of trade separated goods from the immediate vigilance of their own- 
ers. An element of trust, perhaps what we now call credit, entered 
business affairs. The people of that time are unlikely to have had 
words for these ideas; at least etymologists have not found evidence 
for them. Still, some method for identifying the owner of the goods 
being transported was needed. The method which was adopted was 
the seal-stone, a stone belonging to the owner and carefully 
guarded. It was carved in a distinctive fashion. This was impressed 
on moist clay or warm wax, which then hardened and retained the 
impression. Narrow-necked jars of oil or wine, stoppered with blobs 
of clay and sealed in this way, have been found in many places. 
The seal-stones were usually elaborate works of art in order to make 
forgery difficult. Such seal-stones (or signets) have been found in 
great numbers at widely separated archaeological excavations, and at 
some that surely antedate the invention of writing. Specimens are 
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on exhibit in almost all of our museums. Seal-stones are still in use 
today in modified forms. The dies which mint our coins, the 
engraved plates that print our bonds, paper money and postage 
stamps, the punches with which notaries emboss documents to 
attest the deed of signature, all of these are decendants of the earli- 
est seal-stones Perhaps all printing can be included in this geneal- 
ogy. 

When the commodities being transported were packaged in 
jars, bags, or bales, there was also a need to identify the contents, 
and also their number. At first, this was accomplished by drawing a 
crude picture (pictograph) of the commodity or its source (a gra- 
pevine for wine, a tree for olive oil) on the same material as the 
seal. This was done with a pointed stylus; tally marks could be 
added. These are the earliest stages of writing; archaeologists have 
found relics of all stages of its development, from the pictograph 
and the tally mark to proper scripts. 

There is evidence that, at least in Egypt, the Near East, and 
the Eastern Mediterranean lands, systems of numerals replaced the 
tally marks while other forms of writing were in the seal-pictograph 
stage. This may be one reason for the sharp distinction between 
numerals and other kinds of script that persists to this day. Other, 
perhaps more cogent, reasons will be encountered later. In the 
present context, these early numeral systems are of more interest 
than the writing, but the two cannot be completely separated. Their 
significance for us can be more easily understood if prefaced by a 
brief account of the early civilizations of the Aegean islands and the 
Greek peninsula. The reader will understand that this is condensed 
and simplified by the omission of nonessential details; items that are 
still controversial will be identified as such. 

Shortly after the Egyptian and Mesopotamian civilizations had 
gotten under way, the sparse Stone Age inhabitants of the Aegean 
islands and the Greek mainland were replaced or absorbed by a 
more numerous people. We have come to call them Minoans. It is 
not known whence they came, or even what kind of language they 
spoke. They seem to have been a peaceable people; at least their 
cities, even their palaces, were unfortified. The most southerly of 
the Aegean islands is Crete, and there the city of Knossos became 
the capital of the Minoan dominions. The lands of the Minoans 
were fertile and produced grain, wool, and hides for export. This, 
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together with geography, required ships. 

To maintain a balance of trade, the Minoans imported metals 
and other raw materials and became manufacturers. Maritime ship- 
ping is subject to piracy, and the Minoans developed a powerful 
fleet of warships to protect their maritime fleet. One may conjec- 
ture that the warships were intended to reinforce the element of 
trust so essential to business. 

Such overseas business also needs trading posts or colonies. 
At least they have come to be called colonies, although they seem 
not to have been colonies in the later sense of Periclean imperial- 
ism. They were scattered along the shores of the Black Sea, the 
Aegean, and the Mediterranean. One of these colonies was on the 
eastern tip of Asia Minor, and it later became known as Miletus. It 
was near the large island of Samos, and has already been mentioned 
as the home of Hermondas, the architect and city planner. 

Another Minoan outpost was the island Thera, also known as 
Santorini. Thera is about seventy-five miles north of Knossos, and 
seems to have been of more religious than commercial importance. 
Thera was then a very large extinct volcanic cone. There may have 
been hot springs and other minor volcanism. Such places have 
always had a religious fascination for early people. About 1550 B.C. 
(this and the following dates are approximate), the volcano reawak- 
ened and violently exploded. The habitations on Thera were des- 
troyed in this blast; they have not yet been fully excavated because 
of the huge accumulation of pumice and ash at the site. 

Somewhat before this time, the Greek mainland was invaded 
from the north by people now called Mycenaeans. They spoke a 
form of the Greek language, but had no script; they brought with 
them horses, two-wheeled chariots, and more elaborate weapons 
and armor than those of the Minoans. The latter were therefore 
conquered or absorbed. The details are still not clear, but the 
Greek language prevailed. About 1500 B.C., the Myceneans con- 
quered Knossos and took control of Crete and the Minoan com- 
merce. The eruptions of Thera became more violent, ejecting lava 
and pumice. This left a hot cavity into which seawater ultimately 
poured. This caused a violent explosion. The explosion of Kraka- 
toa in the nineteenth century was of the same sort. However, the 
explosion of Thera was much more violent. By analogy to Krakatoa 
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and similar events, one may conclude that great tsunamis (seismic 
sea waves) destroyed all exposed beach installations in the southern 
Aegean, including the northern shore of Crete. The fall of ash may 
have destroyed all vegetation on Crete, and rendered the island 
infertile for a generation or more. The palaces at Knossos and the 
other Cretan cities were all destroyed about the same time. It is still 
being debated whether this destruction was caused by the Thera 
explosion, by a rebellion against the Mycenaeans, or by a combina- 
tion of the two. In any case, the mainland city of Mycenae, shel- 
tered high on the side of a gorge at the head of a long, narrow gulf, 
replaced Knossos as the center of Aegean commerce. The Minoan 
language appears to have died out, while the Mycenaean Greek sur- 
vived. The history of the Greek world does not end at this point, 
but this much provides the background for a first discussion of 
numerals and writing. It should be added that, while the general 
history of Egypt was very different than that of Greece, the 
development of numerals and writing was identical for both areas, 
and they developed a very similar system of numerals. 

It has been seen that language, numerals, and writing were 
developed in that chronological order. One would like to know the 
number-words used by these people, but since their languages are 
no longer spoken by anyone, only guesses are possible. The 
guesses are inferences from the numeral systems they developed. 
For exploratory purposes, it is easier to present the inferences first, 
and then the evidence. They had words for one, two, ... ten, hun- 
dred, thousand; later the Mycenaeans and Egyptians coined a single 
word for ten thousand, and still later the Egyptians continued with 
single words for hundred thousand and million. For 15, they said 
"ten five"; for 30, they said "three ten"; for 300, "three hundred" 
just as we do. For 2739, they said "two thousand seven hundred 
three ten nine." Of course, since they spoke natural languages, 
there may have been departures from this artificially systematic 
speech. Such deviation from strict rules of grammar are idioms, 
and it is in the nature of the evidence that no inferences can be 
made about idioms. The numeral system does not reflect the idiom 
any more than "12" reflects "twelve." Like our numeral system, 
theirs was deliberately systematic and artificial. 

Speaking systematically and not necessarily chronologically, 
the first step was the invention of graphic characters for the basic 
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FIGURE 2 
Comparison of Digits 

upper row of Figure 2. Thus twelve was t-0-0, except that the 
Egyptians wrote o-o-t. This seems backwards to us, but not to 
them; this right-to-left habit of the Egyptians can be ignored in the 
following. The numeral 2739 was then written: 

T h h h t o o o  
T h h  t o o 0  

h h  t o o 0  

It is seen that the digits appear in groups small enough to be 
counted at a glance; no digit ever appeared more than nine times in 
any numeral. The appearance of these numerals reminds us of a 
domino and one might call them domino-numerals. It is preferable 
to speak of the primary numeral system, for no other numeral sys- 
tem is quite so simple and easy to learn. The Egyptian hieroglyphs 
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were difficult to draw, but they were only used for monumental pur- 
poses. For everyday matters, there were two other Egyptian scripts, 
the hieratic and demotic, which could be written cursively, and 
which correspond to our handwriting. 

Before proceeding to a discussion of the way arithmetic was 
done with primary numerals, it will be well to describe the purposes 
for which the primary numerals were used. This will be both of 
general interest, and of significance for the foundations of 
mathematics. Both the Minoan and Mycenaean numerals and 
scripts were drawn on slabs of moist clay with a pointed stylus. The 
slabs were then simply allowed to dry in the sun. This does not 
produce a very durable record, for moisture will quickly reduce the 
dried slabs to unrecognizable lumps of clay. This is a sufficient rea- 
son why so few clay tablets have been preserved. Only about two 
thousand Mycenaean tablets, and fewer Minoan tablets are in muse- 
ums. Most of these were found in houses or palaces which had 
been destroyed by fire; the heat turned the clay into durable brick. 
This scarcity increases the difficulty of decipherment. The Minoan 
script (Linear A) has not yet been deciphered, and the Mycenaean 
(Linear B) only partially. This was a difficult task, not achieved 
until 1952, when the British architect and linguist, Michael Ventris, 
deciphered it. In the later stages of his work, he was assisted by 
John Chadwick, a specialist on ancient Greek dialects. It is now 
known that the Mycenaeans used their script and numerals only to 
keep business records. The vocabulary of the tablets is therefore 
small and specialized, which increased the difficulty of decipher- 
ment. It may never be possible to reconstruct the full Mycenaean 
language, or its grammar and idioms. The Mycenaean tablets are 
not dated. They refer to this year, last year, and next year; they 
often give the name of a month. It is known that the bookkeepers 
filed the tablets in simple wicker baskets, labeled with blobs of 
inscribed clay. It is thought that the tablets were discarded at the 
end of each year. At no site has a full year's set of accounts been 
found. Archaeologists are thus in a peculiar situation: from the 
latest of a set of tablets they can find the month in which a building 
was burned, but not the year. It has been conjectured that before 
discarding the tablets, a summary of the year's accounts would have 
been transcribed onto papyrus or parchment, but no such sum- 
maries have been found. Very likely, the Minoan tablets are also 
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business accounts, for they contain many numerals. The other writ- 
ten words have not been deciphered. 

It must be emphasized that the Minoans and Mycenaeans 
never used their scripts for monumental inscriptions. Perhaps this 
was also the case in earliest Egypt. While there is abundant evi- 
dence that the hieratic script and numerals were used for business 
accounting, the script was elaborated, and its vocabulary increased, 
so that it could also be used for monumental and literary purposes. 
The failure of the Minoans and Mycenaeans to do the same may be 
explained by the relatively brief duration of their civilizations. Both 
were destroyed by invaders, and it is useless to speculate about what 
might otherwise have occurred. 

One will next inquire into the way in which the primary 
numerals were added, multiplied, or divided. It was formerly 
thought that an abacus was employed, and this opinion is still 
widely quoted. The difficulty is that archaeologists have not found a 
single abacus that antedates 800 B.C., and very few from the time 
of Imperial Rome. This is in strong contrast to the large number of 
very ancient seal-stones found in this same geographic area. There 
are explanations for this contrast, but it is certain that the abacus 
hypothesis is not simple. One will first ask whether there was a 
simpler explanation. 

By way of introduction, consider: 
2739 
1325 - 

(1 1) 
4064 

This is a memorandum of the soliloquy "five and nine make four- 
teen; four and carry one; one and two and three make six; ..." Of 
course, an experienced calculator will omit "four and carry one" 
and remember the "one", carry it in his head. He will also omit 
the carries from the memorandum, and write it more simply as: 

2739 

There are Minoan, Mycenaean, and Egyptian records of the same 
sort. The foregoing addition would appear as: 
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T h h h t o o o  
T h h  t o o 0  

h h  t o o 0  

T h t o o  
h t o o  
h 0 

Total: 

T T t t o o  
T t t o  
T t t o  

It is certain that the calculator carried t, and most likely carried it in 
his memory. One also observes that the primary numeral system 
had no symbol for zero, and needed none. Assuming that these 
early calculators were familiar with the carry principle, addition in 
the primary numeral system would be no more difficult than in our 
own. Moreover, the carry principle follows very directly from the 
hypothesis concerning the spoken number-words. 

The primary method of addition is thus similar to ours, but 
there is a fundamental difference. Before our children can add large 
numbers, they must have memorized the entire addition table, from 
1+0=1 to 9+9==18. For young children, this is a difficult task, and 
requires much time and drill. With the primary numerals, it was 
only necessary to be able to count. The addition of two numerals 
required only the ability to count to twenty. The addition of long 
columns required the ability to count to larger numbers, and 
perhaps memoranda. Moist clay is an ideal medium for temporary 
memoranda. 

The Minoan and Mycenaean tablets give no information 
about the multiplication of large numbers. Surviving Egyptian texts 
on advanced arithmetic give examples (but no explanation) of their 
method of multiplication. It is one that was used in Classical 
Greece, Rome, and until quite recently in southeastern Europe. 
The Egyptian multiplication of 127 by 105 is shown below, in 
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modern notation: 
1 1 127 
0 2 254 
0 4 508 
1 8 1016 
0 16 2032 
1 32 4064 

The third column contains the successive doubles of 127; the 
second, the successive doubles of 1; the first contains only ones and 
zeroes. One ignores those lines with zeroes and adds, in the second 
and third columns, the remaining numbers. Those in the second 
column yield 64+32+8+1=105; while those in the third column 
yield 1 0 5 ~  127113,335. It is seen that everything hinges on the 
correct determination of the first column. The Egyptians and 
Greeks probably did this by trial and error. However, those readers 
familiar with modern computer technology will recognnize the first 
column, when written as 1101001, is the binary numeral for 105, 
and will know a systematic way of obtaining it. But, if they 
remember their early instruction in division by two, they will realize 
that even this modern method based on trial and error. Again, it is 
important to note the soliloquy that is part of this multiplication 
algorithm, and compare it with our own. Ours requires the memor- 
ization of the entire multiplication table, whereas the Egyptian 
requires only the ability to add and a bit of ingenuity. The increase 
in school-hours is considerable when our method is taught. 

Division could be carried out by the inverse process: the ones 
and zeroes were determined from the third column rather than the 
second. The Egyptians sometimes used this method; the division of 
19 by 8 was as follows: 

1 118 1 
1 114 2 
0 112 4 
0 1 8 
1 2  16 

- 1  1 ,, 2+-+- 
4 8 

We would write the result 1918 but the Egyptians were satisfied with 
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the result 19 as it stands. In this case, the first column, written as 
3 

10.011, is the binary numeral for 2- but this is only because .&23. 
8 

The Eqyptians did not say "divide 19 by 8"; instead they said "add 
8 until you get 19." The Egyptians seem to have used this algo- 
rithm only for division by small numbers. For larger numbers, they 
used a method that required more memorization, and will be dis- 
cussed later. 

It is therefore possible that no abacus was used with the pri- 
mary numerals. It is also surprising to find the beginnings of the 
binary numeral system in ancient Egypt. 



The Abacus: 
History and Conjecture 

The abacus is of interest as an early calculating machine, as 
well as for the archaeological problem it poses. In England, it 
remained in use until at least the seventeenth century. In much of 
Eastern Europe, it was in use even later. It is still used in the 
Orient and some countries, such as Finland, in Europe. A skilled 
operator of an abacus can compete in speed with a modern adding 
machine. The reader will have some familiarity with the Chinese 
and Japanese abaci. They are wooden frames holding rods on which 
rings (counters) are free to slide. The English language is no longer 
well adapted to a detailed description of the use of the abacus, so 
that some general familiarity will be presupposed in the following 
discussion. 

The Chinese and Japanese abaci are very similar in appear- 
ance. Except for material and structural detail, the Japanese abacus 
is essentially identical with those few early Roman abaci that sur- 
vived because they were made of bronze. Perhaps surprisingly, 
both Chinese and Japanese abaci can be used with Roman numerals 
as well as with our modern decimal numbers. The Roman digits M, 
V, X ,L, C, D, and I, happen also to be letters of our alphabet, and 
the rules for spelling numerals will also be familiar to the reader; 
except that, in earlier times, IV was written 1111, etc. The diagrams 
of Figure 3 show the two kinds of abaci, both set to show the 
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Chinese Japanese 

FIGURE 3 

Abaci 

number MDCCXXXXVI. In passing, it may be remarked that 
today we are familiar only with that form of the Roman numerals 
which is suitable for monumental inscriptions and printing. A cur- 
sive form, suitable for rapid handwriting, was also developed. 

At first glance, the Chinese and Japanese abaci seem to differ 
only on a minor way: the number of counters per rod. But this is 
not minor. The Chinese abacus requires only that the user be able 
to count to five; whenever beads are moved down on a lower rod, 
one bead must be moved up on the upper rod; that is, when both 
beads on the upper rod are raised, they are immediately to be 
moved down, and one bead on the next lower rod moved up. The 
verbal description of its use is cumbersome, but when a workable 
abacus is available for illustration, the rules are quickly memorized 
by the pupil. It will be noted that a modified count-and-carry sys- 
tem is involved. The Roman numerals also consist of digits in 
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small groups, countable at a glance. The system differs only from 
the primary numeral system in that some are five times others, 
some are twice others. 

The use of the Japanese abacus requires more than the ability 
to count-and-carry. It requires that the user have memorized an 
abbreviated addition table: 1+4=5, 2+4=5+1,  ... ,4+4=3+5, 
5+5=10. The memorization of this short table is less of a feat 
than memorizing our addition table, but still requires some instruc- 
tion and drill. One abacus, surviving from Imperial Roman times, 
is of the Japanese type; another is a modified Japanese type made of 
bronze. There are no other surviving examples. 

Most Roman abaci are said to have been grooved wooden 
boards or table tops; the counters were pebbles (calculi), or some- 
times ivory discs placed loosely in the grooves. A few later Euro- 
pean tables of this sort have been preserved in museums, more for 
their artistic than for their historic value. The one surviving abacus 
from Classical Greece is a heavy stone slab, with narrow incised 
straight lines. The counters have not survived. It was found on the 
island of Salamis, the island that Solon's expedition had ravaged. A 
drawing on a Greek vase (that commemorated the repulse of 
Xerxes' invasion of Greece, but found in Italy) shows an abacus in 
use. It was apparently a wooden table; only Greek numerals are 
visible on it. 

There is a great advantage to abaci that do not have a fixed 
number of counters per line or groove. By changing the number of 
counters deployed on the various lines, the abacus can be quickly 
adapted to calculations in any system of coinage (such as pounds, 
shillings, and pence), weights and measures (gallons, quarts, and 
pints) or fractions (112, 114, 118). No mechanical reconstruction is 
needed for this conversion. The bronze Roman abacus had the 
coinage system built into it, as well as the Roman numerals. In a 
general sense, every system of coinage, weights, or measures is a 
numeral system. 

Other late European abaci were cloths into which straight 
lines or checkered squares were woven; the counters were discs of 
base metal, sometimes minted like medals or tokens. The cloths 
have long since disappeared into rag bins, and the counters have 
either been melted down or become collector's items. It is 
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therefore entirely possible that most abaci were made of perishable 
material, and if there were durable parts, it would be impossible for 
archaeologists to now determine their use. 

This explanation of the rarity of Greek and Roman abaci 
loses some of its cogency from the fact that the Roman numerals 
can be, and were, added without the use of an abacus. The count- 
and-carry method was used instead; the memorandum of 
1778+834=2612, is as follows: 

M D C C L  X X V I 1 1  
D C C C X X X  I I I I 

M M D C X I I 

Such calculations were facilitated by ruling vertical lines on the 
paper before beginning the calculation. Our modern ruled ledgers 
and account books are developments of this practice. It is almost 
certain that an experienced bookkeeper using cursive Roman 
numerals would be no slower than one using modern decimal 
numerals, but the race has not been held. 

Before leaving this topic, it should be said that the Romans 
later extended their numeral system. By the time of Julius Caesar, 
digits for 5000, 10,000, 50,000, and up to 5,000,000 had been 
added. These were not letters of the alphabet, and were shaped in a 
more or less deliberate and systematic manner. At least one bronze 
Roman abacus was large enough to deal with numerals as great as 
9,999,999. It seems not to be known just when these greater digits 
went out of use. 



The Egyptian 
Mathematical Texts 

The classical Greeks started a tradition of very advanced 
mathematics and astronomy that the Egyptians had a knowledge of, 
even in very ancient times. This traditional belief is still widely 
held, although modern scholarship has found no evidence for it; in 
fact, it is scarcely an exaggeration to say that it has been disproven. 

Herodotus and Aristotle state that this knowledge was 
confined to the Egyptian priests, since these were the only people 
with the leisure to study such matters. However, this cannot have 
been true until very late in Egyptian history. Even the demi-god 
pharaohs had secular as well as religious duties, and there were no 
priests with exclusively religious functions. Instead, there was the 
class of scribes, literate and usually capable of making these 
mathematical calculations. They were most often public officials, 
with little leisure, and did not do mathematics for its own sake. For 
that matter, Egyptian artists had little opportunity to pursue art for 
its own sake. The scribes' interest in mathematics must have had a 
utilitarian motive. The social status of the scribes was puzzling 
even to the Egyptian artists, who indicated class by the size of the 
figure. This must have been even more puzzling to a Greek visitor. 
A scribe might be prime minister, or he might earn a precarious liv- 
ing sitting in the market place, doing accounts and writing letters for 
the farmers. In later times, some craftsmen were also literate; at 
least master masons could sign their names and use the Egyptian 
system of numerals and weights and measures. Egypt made its own 
papyrus. Since scribes were usually public officials, they would be 
adequately, though not lavishly, supplied with writing materials. 
This may have made it quite unnecessary for them to use an 
abacus. 

The Egyptian society was the most perverted of all the ancient 
societies. Its kings and nobles lived in sparsely furnished mud-brick 
houses, while monstrous stone structures were being built to 
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preserve their corpses. It is difficult to understand this funerary 
character of Egypt, but, taking it for granted, the ascetic character of 
the homes and palaces can be explained. The land of Egypt had no 
forests, and no metal ores. Wood was imported from the forests of 
Lebanon, which required transportation either by sea or over 
difficult terrain. Large timbers were therefore very expensive. 
Copper was obtained from the island of Cyprus; large deposits of tin 
were even more distant. Consequently, wood (other than palm 
trunks, which are too weak for building) was a rarity, and was used 
only lavishly in the tombs, and for the boats and sledges that tran- 
sported large stones for the tombs. The quarries were a state 
monopoly and the use of stone was restricted. Until very late in 
Egyptian history, iron and bronze were more rare than gold. 
Copper was the only metal used for tools. Wood was not used 
freely until quite late (XVIII Dynasty). The ordinary Nile mud is 
not suitable for making durable kiln-fired brick. The Nile valley 
does contain ceramic clays, but these were needed for pottery, 
either for domestic use or for export to keep a favorable balance of 
trade. 

It is customary to begin a discussion of Egyptian mathematics 
with a discussion of the pyramids. Certainly, these are impressive 
space-filling objects. The people who built them must have known 
much about practical geometry. The bureaucrats who administered 
the projects must have known much about business mathematics 
and accounting. The Egyptians did not usually record these matters. 
The aristocratic fallacy kept all early societies from doing so. Not 
much is recorded even about the architects and engineers. There 
has been much speculation about the geometry of the Pyramids. 
The resulting literature on the subject is confusing and unhelpful. 
Willy Ley has written an admirably brief and critical summary. 

Our definite knowledge of Egyptian arithmetic is derived from 
surviving mathematical texts. These fall into two very distinct 
groups. The most numerous group of texts dates from the Ptole- 
maic period. Ptolemy I had been a general in the army of Alex- 
ander the Great. When Alexander died in 323 B.C., his ephemeral 
empire disintegrated, and Ptolemy gained control of Egypt and 
made himself Pharaoh. Egypt had already been strongly influenced 
by the Greeks, and this late group of mathematical texts needs no 
further discussion. 



The Egyptian Mathematical Texts 

The early group of mathematical texts is very small, and they 
originated during the XI1 Dynasty (1900 to 1780 B.C.), about the 
time that the Minoan civilization was reaching its climax. This 
remarkable concentration of texts in one out of twenty-five dynas- 
ties deserves attention. There is also a question about the audience 
to which these texts were addressed. There are only seven of these 
mathematical texts. One consists of some tattered papyrus scraps 
found at Kahun. Kahun was neither a temple nor a city, but the 
construction camp for the pyramid of Sesostris 11, one of the later 
pharaohs of the XI1 Dynasty. A second text is a letter from one 
scribe to another, known as Papyrus Anastasi I. The recipient is the 
Chief Scribe of the Army, but was engaged in civil construction pro- 
jects. The writer must have been a very high official indeed, for he  
taunts the recipient about his lack of mathematical knowledge and 
the frequency with which he comes for help in solving his problems. 
The letter concludes with a challenge to solve a problem that arises 
when planning to build a ramp, and also contains a further set of 
examples that could be studied by his friend. 

A third mathematical text is in the British Museum. It is not 
written on papyrus but on leather. The fourth is written on two 
wooden tablets, now in the Cairo museum. Both wood and leather 
would stand up in the field much better than the fragile papyrus. 
The use of valuable wood, however, indicates the importance given 
to the preservation of the text. It is known that Egyptian architects 
were in the habit of sketching plans and numerals on scraps of 
smoothed stone, but there seems to be no other case in which large 
boards were used as writing material until much later than the XXII 
Dynasty. 

The most famous of these mathematical texts is known as the 
Rhind Papyrus. It is a later copy of a XI1 Dynasty original. It was 
bought in two parts from two dealers, so that its discovery site is 
not known exactly. It is thought to be have been near the impor- 
tant city of Thebes, possibly in the large nearby necropolis, the area 
of tombs and temples. Since it is a copy of an original written a 
century or more earlier, one may guess that the original may have 
been kept in a supposedly safe place, and that the copies were 
expendable. The sixth text is the Moscow Papyrus, and the seventh 
is the Berlin Papyrus. It seems that the last two contain much of 
the same kind of mathematics as the others, and nothing more 
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significant has been reported about them. 

It therefore seems that these texts were intended for scribes 
in charge of construction projects, and they were intended for use at 
construction sites, not in the peace and quiet of the temples. The 
texts were handbooks, not research publications. They may also 
have been used for instruction, but the taunting scribe tells that this 
had not gone very far. Responsible positions were being filled with 
people whose knowledge of mathematics was deficient. Their 
subordinates were also deficient in this knowledge; the calculations 
could not be delegated to others. 

There are thus reasons for thinking that these texts were 
handbooks, or reference works. If so, this should be borne out by 
their subject matter. This can be described as being intermediate 
between our advanced arithmetic and our elementary algebra and 
geometry. The Egyptians had not phrases corresponding to "Let x 
be the unknown number," or "Let n be any whole number." Con- 
sequently, the texts are not concerned with generalities, but are col- 
lections of numerical examples and exercises. If the user encoun- 
tred a problem that was not analogous to any worked-out example, 
he would have to use ingenuity in combining the examples provided 
him. Neither could the texts be used by anyone who had not 
received oral instruction in their use. This is just like our hand- 
books of engineering, physics, and chemistry. These also contain 
few explanatory notes, and no proofs that the formulae are correct. 
In the field, one is not concerned with proofs, only with getting the 
right answer. It seems that the Egyptians never wrote out the rea- 
soning by which the solutions had been obtained. Instruction was 
very likely by rote; the reasoning had been forgotten. However, 
this is conjecture. Little is known about the educational system that 
produced the scribes; it may have been a form of apprenticeship. 
Some murals and funerary models show many more scribes than 
would seem necessary for the task being performed (counting and 
recording sacks of grain); some of those present might have been 
apprentices. 

The examples contained in the mathematical texts are of 
many kinds. Some are merely concerned with the equitable distri- 
bution of loaves of bread among different numbers of men. Others 
require a change of units: how much wheat is needed to make a cer- 
tain number of loaves? How many "bushels" of wheat will a 
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granary of a given size and shape contain? What is the area of a 
triangle? This particular example made difficulties for the transla- 
tors; the result is correct only if a word that usually meant "dock" 
or "quay" also meant "altitude" (of the triangle). The texts con- 
tain no definitions. It also seems that Egyptian geometry developed 
quite independently of arithmetic. Other examples calculate the 
number of bricks needed to build structures of a given size and 
shape, such as a ramp with retaining walls and paving. Some of the 
granaries were cylindrical pits, lined with brick. The calculation of 
the number of bricks needed to build such granaries required the 
use of the number T .  The approximation used is quite good. The 
high point of the examples is the calculation of the volume of an 
unfinished pyramid. 

A few of the examples are quite strange. While one problem 
is formulated in terms of loaves and men, it seems very unrealistic. 
The most careful scholarly study implies that the properties of 
square and triangular numbers were known a thousand years before 
Pythagoras was born. This study has not yielded any suggestion as 
to the method of solution, other than trial and error. If it was sys- 
tematic (the text gives no indication that it was), the XI1 Dynasty 
scribes must have known how to solve some special quadratic equa- 
tions. These unrealistic examples do suggest leisure for studying 
mathematics for its own sake, but this is quite rare. 

We shall now turn our attention to the problem of the why 
the texts are all concentrated in the XI1 Dynasty. This dynasty is 
unique in many other respects. Most writers consider that the Mid- 
dle Kingdom consisted of the XI and the XI1 Dynasties, but there is 
a recent tendency to include only the XI1 Dynasty in the Middle 
Kingdom period. The Middle Kingdom was preceded by a dark age 
--  The First Intermediate Period -- and followed by the Hyksos 
invasion, or Second Intermediate Period. The XI1 Dynasty was a 
period of economic, social, and physical recovery from the preceed- 
ing dark age, a renaissance. It can properly be viewed only against 
the dark background of the First Intermediate period. 

By the end of the VI Dynasty, so much of the national pro- 
duct had been squandered on pyramid building that the Old King- 
dom was impoverished. Even the nobles were dissatisfied. The last 
pharaoh of the VI Dynasty is said to have reigned for ninety four 
years. He must in any case have been senile at the end, and this 
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may have contributed to the disintegration of the government. 
There followed more than a century and a half of civil wars; there 
may also have been rebellions of slaves and artisans; conditions 
often approached savagery. Many of the older tombs were vandal- 
ized, not merely robbed secretly. The quality of all craftsmanship 
seriously degenerated. Literacy did not entirely disappear, and a 
kind of Homeric escapist literature developed. It exaggerated past 
glories, and bowdlerized bloody crimes into heroic deeds. This has 
led some historians to describe that dynasty as the "golden age of 
Egypt"; perhaps they were ignorant of the misery and chaos. This 
gloomy period in the history of Egypt coincided with the increasing 
prosperity of the Minoans and a rapid development of Cretan civili- 
zation. 

The pharaohs of the XI Dynasty restored some semblance of 
order, and revised the ancient funerary doctrine. People could now 
hope for immortality even if they could not afford to have a 
pyramid or temple-tomb built for themselves. The morale of the 
middle classes, the successful traders and artisans, must have been 
much improved. However, the work of economic and physical 
reconstruction and expansion did not begin until the XI1 Dynasty. 
The Fayum oasis and its lake were enlarged by great irrigation pro- 
jects until it became a great market garden, capable of supporting an 
increasingly large number of people. The need for planning and 
constructing novel kinds of projects can scarcely be doubted. This 
need would extend to reference works of precisely the kind that 
have been found. 

While this provides a motive for the writing of the mathemat- 
ical texts, it is not a complete explanation. The surviving texts did 
not write themselves. What was the earlier history of Egyptian 
mathematics? When and where did it originate? How was it passed 
on to later generations? No records of the Hyksos or Second Inter- 
mediate Period have survived, but it seems not to have been so 
violently anarchic as the First Intermediate Period. Even so, why 
are there no mathematical texts from the New Kingdom that fol- 
lowed? There is good evidence that mathematical knowledge sur- 
vived the Hyksos invasion. 



The Mesopotamian 
Numeral Systems 

Simultaneously with the Egyptian civilization, another great 
but very different civilization developed in Mesopotamia (modern 
Iraq). It had a very long and complicated military and political his- 
tory. Carleton S. Coon and Geoffrey Bibby have attempted to pro- 
vide an integrated account of this history, but for the last two cen- 
turies, the rate of archaeological discoveries has been accelerating, 
and has always exceeded the rate at which scholars can interpret and 
organize this new knowledge. C.W. Ceram has given an account of 
this archaeological aspect of the problem. The labor of interpreta- 
tion is especially great for those discoveries that are relevant to the 
history of Mesopotamian mathematics, even though this history is 
closely related to the economic and social history of that civilization. 
Fairly recently, Wooley, Albright, and Bibby have found much 
information about Mesopotamian foreign trade, and have produced 
a chronology that is consistent with that of Egypt, Crete, and other 
countries. For the present purposes, the military history of the 
region is almost irrelevant. The economic and commercial history is 
more important. Like Egypt, Mesopotamia was almost without 
forests or mines. Yet it had an advanced technology from very 
early times. This necessitated foreign trade. Clay, however, was 
plentiful and houses, palaces, and even some fortifications were 
constructed of durable kiln-fired brick. The foothills of the Taurus 
mountains (in modern Turkey) were forested, and were relatively 
close to the Euphrates River. After a short overland haul, the logs 
were rafted to the southern cities. Copper was obtained from 
Cyprus, thus bringing Mesopotamia into contact (and conflict) with 
Egypt. There was also trade with India, and possibly China. Much 
of this trade was by donkey caravan; the climate was much moister 
than it is now, and camels were not needed. The inhabitants of the 
country east of Mesopotamia (modern Iran) were not friendly to the 
Mesopotamians. Hence, the early trade with India was by ship 
through the Persian Gulf. Manufacturers of such goods as rugs, 
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cloth, and metalwork were needed to keep a favorable balance of 
trade. All of this required commercial organization, including book- 
keeping, contracts, and later insurance. Thus, rather elaborate 
arithmetic developed very early and was disseminated along the 
trade routes. Military conquests were sometimes also effective in 
this dissemination of knowledge, but seem to have been over-rated 
by many historians. This network of communication was slow, but 
by no means negligable. It often makes it difficult to locate the ori- 
gin of early cultural elements, either geographically or chronologi- 
cally. 

In very ancient times, say before 4000 B.C., both Mesopo- 
tamia and the Arabian Peninsula seem to have been inhabited by 
people who spoke various Semitic languages. Arabia was then a 
grassland, and the area at the head of the Persian Gulf was a 
swampy delta formed by the Tigris and Euphrates Rivers. Some- 
time about 3500 B.C., a people that spoke an entirely different 
language, Sumerian, settled on hillocks at the head of the Persian 
Gulf. They had a technology that was much more advanced than 
that of the original inhabitants. It included metallurgy, and four- 
wheeled carts drawn by oxen or donkeys. It is not known where the 
Sumerians came from, or how they came to have such an advanced 
culture. One of the Sumerian cities was Ur; the King James Bible 
calls it "Ur of the Chaldees" for a reason that is not very easily 
explained. The migration of the Sumerians appears to have been 
relatively peaceful. It is believed that the citizens of Ur and its sur- 
roundings remained bilingual, speaking Sumerian and a Semitic 
dialect, for more than two thousand years. There was intermar- 
riage, and the Semitic element was increased by continuous immi- 
gration from northern Arabia. It is becoming customary to call 
these immigrants Amorites. Abraham, his father Terah, and their 
families were Amorites, and spent some time, perhaps a generation, 
at Ur. The Amorites were nomadic, and found the operation of 
caravans congenial; those of them who adopted a sedentary life 
became metalworkers or farmers. 

The development of seal-stones, numerals, and writing paral- 
leled that which has already been described. It was more or less 
simultaneous with the corresponding developments in Egypt, but it 
seems to have occurred independently of Egypt. The Egyptians 
seem never to have made much use of clay as a writing material, 
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but the Sumerians, like the Minoans, used it almost exclusively. 
The numerals were imprinted in the clay with a stylus. The stylus, 
both ends of which were circular, had one end larger than the other. 
If held slantwise, it made a D-shaped impression; held vertically, a 
circular depression resulted. The digits of this system are shown in 

D O D O  

FIGURE 4 

Sumarian Digits 

Figure 4. For simplicity, the letters D and 0 ,  with accents, will be 
used in the following explanation: 

D=1, Dt=6O, ~ " = 6 0 ~ 3 6 0 0 ,  O=lO, Ot=600. 
There has been much inconclusive speculation about the prom- 
inence given the number 60 in this system, but no convincing 
answer has been found. The number twelve was written 
0-D-D;  no D could appear more than nine times in a numeral, 
and no 0 more than five times. 1972 was written as: 

as the reader may verify. It seems not to be known how these 
numerals were spoken. Since there were few digits, arranged in 
easily countable sets, one may guess that the spoken number- 
phrases had a grammatical structure not much different from ours. 
It was a modification of the primary numeral system, but in the 
opposite direction from the Roman. There is no evidence that the 
abacus was ever used by the Sumerians; anyone who could count to 
ten could easily be taught the count-and-carry method for addition. 
The early methods for multiplication and division seem to have 
been unknown. 



128 Our Modern Idol: Mathematical Science 

Later, when words for greater numbers were needed, the 
round stylus was abandoned, and the wedge-shaped (cuneiform) 
was adopted. The greater variety of marks made possible the addi- 
tion of many written characters. To understand the problem, it 
must be known that Amorite city-states were developing to the 
north of the Sumerians. One of these was Akkad, and the 
cuneiform script was used to write both Sumerian and Akkadian, 
just as one alphabet suffices for the Western European languages 
today. But the difficulty was much greater: the Semitic, or Akka- 
dian, and the Sumerian languages differed as much as, say, Chinese 
and Italian. To complicate matters further, a third people, the 
Elamites who spoke an early form of Persian, also settled in Meso- 
potamia. Ultimately, at least five languages were written in 
cuneiform script. This is notably different from the Egyptian case. 
In Egypt, there were three scripts, but essentially only one language; 
at least only one written language for the whole country. For the 
present, this is of minor importance, though there will be occasion 
to recall it. 

It is becoming customary to call the cuneiform script "Akka- 
dian," for it came into use at about the time when the Semitic city 
of Akkad displaced Ur as the dominant power in southern Mesopo- 
tamia. The Akkadian numerals were based on the older Sumerian 
numerals, though they had a quite different character. Most stages 
of the change-over are represented by archaeological finds. The 
Akkadian numerals are more usually called sexagesimal; our sixty- 
minute hour and 360-degree circle are evidence that the influence 
of the sexagesimal system is still present. 

Our decimal system has ten digits, so one would expect that 
the sexagesimal system had sixty digits. Actually, it had only two. 
For typographical convenience, they will be designated by Y and C ,  
though this does injustice to the beauty and flexibility of the 
cuneiform script. The value of the digits depended on their position 
in the numeral, just as "2" represents different values in 23, 234, 
and 342. Thus, Y and C might have any of the values 

Y= 60" ,  C= lox 60" 
where n might be 0, 1, 2, etc. The number 1972 was then written: 
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C Y Y C C Y Y  
C C C 

That is, 
1972=3~600+2x 6W5x 1W2x 1. 

But this expression could also mean 1972x60, 1972x3600, etc. 
There was no decimal point, and the system was therefore ambigu- 
ous. This seems not to have troubled the Mesopotamians any more 
than we are troubled by the ambiguity of words such as "bear," 
"still," "will," "bluff," etc. The context must have made the 
meaning clear. However, the lack of a digit for zero created trou- 
blesome cases: 9068 was written somewhat like 

Y C Y Y Y Y  
C Y Y 

to distinguish it from 159, which was written 

Y C Y Y Y  
Y C Y Y Y  

C Y Y Y 

The two contain the same number of Y's and C's.  It should be 
noticed that the Y's appear in groups of not more than nine, and 
the C ' s  in groups of not more than five. Again, there is the prin- 
ciple of repeating a digit in groups that are small enough to be 
counted at a glance. Addition could therefore have been performed 
by the same count-and-carry method used by the Egyptians and 
Romans. 

That is it could be, once the ambiguity of the numerals was 
resolved; for C Y + C  might mean 11+ 1 6 2 1 ,  or 66Ot 16670,  or 
11+600=611, or any one of the other possibilities. Historians of 
mathematics are interested in more advanced matters, and it is usu- 
ally said that the ambiguity was resolved by the context. But there 
must have been some system that made the interpretation unique. 
Leonard Wooley found that the clerks in the temple at Ur were 
meticulous in demanding requisitions and receipts for even the 
smallest items that they issued from the stores. It cannot be sup- 
posed that their supervisors, who were concerned with larger 
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amounts, would be content with any possible ambiguity in their 
records. The lawyers who drew up contracts for the delivery of 
goods, and for risk insurance (similar to Lloyd's of London), would 
be even less tolerant of any ambiguity. 

Perhaps it is unnecessary to say that archaeologists have 
found no evidence that the Mesopotamians used an abacus. While 
it is easy to imagine one for the purpose, it would not have solved 
the problem of ambiguity. Whatever method was used, it must 
have been simple, otherwise the traders could not have spread the 
sexagesimal system as widely as they did. The count-and-carry 
method is simple; moist clay is ideal for temporary memoranda, for 
it can be used over and over again. It is also, in contrast to ink-on- 
papyrus, ideal for corrections and erasures; evidence of this has 
been found in surviving cuneiform tablets. 

What has been said about the early method of addition 
applies equally to subtraction, multiplication, and division. There is 
more information about it in later times. In order to understand 
the evidence, some historical background is needed. As the 
Sumerian-Akkadian civilization spread northward, the numeral sys- 
tem did not change for several thousand years. The Sumerian 
language also spread northward without much change, but its use 
was gradually restricted to religious and legal matters. The Akka- 
dian Semitic, however, divided into two major languages: 
Babylonian in the south, and Assyrian in the north. These 
languages both changed with time, and are classified into Old, Mid- 
dle, and New. The Old period is dated from about 2000 to 1500 
B.C. Education in reading and writing seems to have been bilingual 
in both north and south. There were bilingual dictionaries for use 
in the elementary schools; one was even illustrated. At Ur, Wooley 
has found evidence that literacy was widespread in the commercial 
or middle class; moreover, instruction may have been available to 
both boys and girls. This literacy resulted in a large number of clay 
tablets inscribed in cuneiform script; about a half million have 
found their way into our museums. Mesopotamian clay was suit- 
able for making brick, whereas Egyptian mud was not. Egypt did 
have fine clay, but it was reserved for pottery. Some Mesopotamian 
tablets were kiln-fired to the durability of brick, but many were sim- 
ply dried in an oven. These last are fragile, often found broken, 
and in our moist climate they deteriorate rapidly unless their 
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curators fire them. That they survived at all was probably due to 
the dryness of the earth and rubble in which they were buried. 

Otto Neugebauer is a mathematician who became interested 
in the history of Mesopotamian mathematics, and learned to deci- 
pher the cuneiform writings. As of 1945, he and his colleagues had 
selected about 400 of the 50,000 tablets as being mathematically 
oriented; neither religious, legal, nor commercial. Since then, this 
number has increased somewhat. Like the Egyptian mathematical 
texts, these texts are separated into two distinct groups. The later 
group was produced during the Selucid Dynasty, although a few 
may be a bit older. Like Ptolemy I, Seleucus I was a Greek general 
in the army of Alexander the Great. After the death of Alexander, 
Seleucus gained control of northern Mesopotamia and Asia Minor, 
and also of Syria and northern Palestine. These tablets are thus 
contemporary with the Ptolemaic papyri. Still more remarkable, the 
older texts are almost all written in Old Babylonian. They are dated 
between 1900 and 1600 B.C., and are therefore contemporary with 
the XI1 Dynasty Egyptian texts. This can scarcely be an accident. 
The question is, which were the originals? And, in any case, how 
was this knowledge communicated from one country to the other? 
It is impossible to answer either without considering the evidence in 
detail. 

The Old Babylonian group of texts is again clearly divided 
into mathematical tables and problem texts. The problem texts 
make the similarity with the Egyptian texts even more striking. 
Most of the problems are very similar in the two countries, 
although the Babylonians were more careful using more words in 
stating them. Neither Egypt or Babylon had devised anything 
corresponding to our algebra, and the Babylonian problem texts may 
again be classified as between advanced arithmetic and elementary 
algebra. There are no demonstrations of correctness in the texts. 
The Babylonian texts do contain one type of problem that the Egyp- 
tian texts do not. This type of problem concerns the calculation of 
the number of days a given number of men would need to dig a 
canal of given dimensions. During the period in which these texts 
were written, the Mesopotamian civilization was expanding north- 
ward, and the construction of new canals and irrigation ditches was 
characteristic. The level of these texts is rather more advanced than 
the Egyptian. It is certain that the Babylonians knew how to solve 
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some kinds of quadratic and even cubic equations, although like the 
Egyptians, they had no notation for expressing general rules. 

Because of a false but widespread tradition, it is well to say at 
once that none of these older texts or tables have an astrological or 
astronomical character. There are old astrological texts, but they 
are few and not numerical. Systematic records of eclipses and of 
the planet Venus were not kept until much later times, and even 
then were scarcely numerical astronomical observations. 

The table texts are more numerous than the problem texts 
and of quite a variety. There are tables of weights and measures, 
including the standard sizes of bricks. There are multiplication 
tables, tables of reciprocals, of squares (or, by courtesy, of square 
roots). There are tables for the solution of some kinds of equa- 
tions, already mentioned above. It is significant that not one of 
these is an addition table; this supports the conjecture that addition 
was performed by the count-and-carry algorithm, and was supposed 
to be known to the reader. Perhaps it was taught in the elementary 
schools. 

The Babylonian multiplication tables were all variants of the 
following: 

The first number in the last column is the principal number, in this 
case 7, in general it is c .  The last number is usually 50xc but 
sometimes c2. The format suggests that the table was prepared by 
successive additions of the principal number c until 20xc was 
reached; then l o x c  was added successively until 50xc was 
reached. There was no need for 6 0 ~  c ,  because of the ambiguity of 
the sexagesimal system. This closely resembles the method of 
teaching simple multiplication in the U.S. elementary schools; it 
was known as "counting by 7's," or more generally, "counting by 
c 's"; except that our counting by c's stopped at l o x  c ,  or c2. and 
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c was usually not greater than twelve. In playing games like hide- 
and-seek, the child who was "It" might count by fives or tens to a 
specified upper number (100 or 200) before uncovering his eyes 
and beginning to seek. 

There is ample evidence that these Old Babylonian multiplica- 
tion tables were often school exercises. Very often, one side of the 
tablet would be written by an experienced person, the teacher, and 
often consisted of several such tables. The other side would be 
written by the pupil, who supposedly had memorized the teacher's 
version while the clay was still moist. Often this side contained 
mistakes, and the tables were repeated; they were copybook exer- 
cises. The teacher's version sometimes also had a mistake, showing 
that the teacher wrote out the table over and over, for each indivi- 
dual pupil. Moreover, these tables had rarely (or never) been kiln- 
fired when found; they were not intended to be permanent records. 

At least one of these tablets gives the impression of having 
been intended as a temporary memorandum. One side was blank, 
and the other had space for much more than a single multiplication 
table. Of course, it may also have been an unfinished copybook. 
There are other examples for which the interpretation of an 
unfinished copybook does not seem tenable. 

Much of what has been said also applies to the tables of 
reciprocals, and the detailed discussion of them can be postponed 
until more general matters concerning fractions have been investi- 
gated. 

All of this tells us something about the Babylonian educa- 
tional system of that time. The schools in which these matters were 
taught were not elementary schools, teaching reading, writing, and 
simple arithmetic. Perhaps one could call them trade schools, 
whose graduates would become engineers and architects, planners, 
the administrators of projects too large for craftsmen and artisans to 
manage. The students were required to memorize a multiplication 
table that was larger than that which our children memorize. It was 
an expensive education. If it was borrowed from the Egyptian sys- 
tem, it would seem likely that they would have used simpler multi- 
plication by doubling. This is not certain, but it may indicate that 
the Babylonians were the originators, the Egyptians the borrowers, 
of this advanced arithmetic. While the Egyptian engineers took 
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their texts into the field with them, the Babylonian engineers were 
required to memorize the material. 

Turning now to the spoken Akkadian numerals, or rather to 
the spelled-out number-words: Neugebauer and Sachs published a 
list of words gleaned from their study of the mathematical texts. 
Since there is no exact equivalence between the cuneiform charac- 
ters and our modern letters, scholars use many diacritical marks to 
supplement our letters; these have been omitted here. The list of 
spelled-out number words is surprising, not only because of omis- 
sions, but also because of inclusions. Of the cardinal numbers, the 
following were included.: 

one: isten; 
two: sina, sittan; 

four: erbitu; 
sixty: su-si; 

hundred: me'atu, me; 
six hundred: gis'us; 

thousand: lim. 

It is unfortunate that words for intermediate numerals like 73, were 
not found; they might have shown the same sort of construction as 
our word seventy-three. It is not surprising to find sixty in this list, 
for it is one of the meanings of Y, and six hundred is one possibil- 
ity for C .  But the words for one hundred and one thousand 
correspond to 

and 

C Y Y Y C C C  
Y Y Y C  

respectively. They are clearly foreign, probably included because of 
Egyptian contracts. These numbers appear frequently in the numer- 
ical work so that they must have been important to the Old 
Babylonians despite the emphasis their number system placed on 
sixty. They are further evidence of a more than casual relation 
between the Babylonian and Egyptian mathematical texts. 
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The Egyptian and Babylonian mathematical texts are 
sufficiently similar to suggest that their writers were in communica- 
tion, though not in direct personal contact. None of the texts can 
be dated exactly, but there is general agreement that the Babylonian 
texts are later than the Egyptian. Neugebauer believes that none of 
his texts were written earlier than 1800 B.C. Possibly the Kahun 
fragments were contemporary with the oldest Babylonian tablets. 
The Kahun text was in use during the reign of Sesostris 11, in the 
middle of the XI1 Dynasty, about 1800 B.C. Consequently, there is 
the possibility that some overlap of the periods during which the 
Babylonian and Egyptian texts were written. Leonard Wooley found 
one set of mathematical tablets at Ur, and was able to show that 
they were in existence in the year 1674 B.C. This is definitely later 
than the XI1 Dynasty of Egypt. All this suggests that the Babyloni- 
ans may have borrowed their mathematics from the Egyptians. The 
frequent appearance of the number 100 in sexagesimal numerals 
indicates that there was some interchange of mathematical tech- 
niques between the two cultures. Some of the Babylonian texts are 
definitely more advanced than any of the Egyptian texts, which may 
be taken to indicate that the Babylonians elaborated on what they 
borrowed and were not simple copyists. It is remarkable that the 
knowledge should have been transmitted in this direction. 
Babylonian, not Egyptian, was the international language of com- 
merce and diplomacy. Moreover, the Mesopotamians were much 
less hampered by tradition and more innovative than the Egyptians. 
However, the chronology seems conclusive. 

Granting this hypothesis, one will inquire where the transla- 
tion and personal contact necessary for the transmission of 
mathematical ideas actually took place. One may surmise that it was 
in the neighborhood of Cyprus, the source of copper for both civili- 
zations. But more than simple contact is needed; one also needs to 
find people competent to translate Egyptian into Babylonian (and 
vice versa) and to convert weights and measures from one system 
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to the other. 

Both conditions existed at the ancient seaport of Ugarit. 
Ugarit was the mainland city nearest to Cyprus. It was excavated in 
1929, by Claude F.A. Schaeffer. The site is also called Ras Shamra, 
about ten kilometers north of Latakia in northernmost Syria. It is 
separated from Cyprus by less than a dawn-to-dusk sail, and copper 
from Cyprus was there transferred to caravans bound for Mesopo- 
tamia and elsewhere. The later Greeks called this entire coastal 
strip Phoenicia; the Canaanites of the English Bible were the north- 
ern Phoenicians, inhabitants of modern Syria. The government of 
Phoenicia fluctuated between three types: domination by Egypt, 
domination by Mesopotamia, and intermittent periods of organiza- 
tion into small independent kingdoms. Beginning with the VI 
Dynasty, the Egyptians stopped importing wood and resin from the 
forests of Lebanon, and probably copper from Cyprus as well. Dur- 
ing the XI1 Dynasty of Egypt, Ugarit was the capital of an indepen- 
dent kingdom, but the king and his courtiers were very Egyptian- 
ized. One might imagine that there were refugees, including crafts- 
men, from Egypt in Ugarit, and that many of the port's inhabitants 
could speak both Egyptian and Babylonian. During the XI1 
Dynasty, the kings of Ugarit received presents from the pharaohs, 
including Sesostris 11. It has been suggested that there may have 
been marriage ties between the royal families of Egypt and Ugarit. 
Egypt was again importing copper and Asian goods. All of the con- 
ditions necessary for the communication of ideas between Egypt and 
Mesopotamia were met at Ugarit. Not much more can be said; 
before the end of the XI1 Dynasty, Egypt had conquered not only 
Ugarit, but all of Phoenicia. Egyptian armies invaded Mesopotamia, 
and got as far as the Euphrates. This expansion was short-lived. 
Egypt itself was then invaded and dominated by the Hyksos, who 
may have been Asian, but they are unlikely to have been Babyloni- 
ans. 

The later history of Ugarit is of interest for other reasons. 
The period of its greatest prosperity coincided with that of the 
Mycenean domination of the Aegean trade. At the end of the 
Mycenean period, about 1200 B.C., the city was suddenly deserted, 
and was never reoccupied. It was soon buried in sand. There has 
been much speculation as to why it was deserted. It was a time of 
restless migration throughout the Eastern Mediterranean region. 
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For whatever reason, the city was preserved practically intact. The 
excavators found large palaces and temples, both associated with 
archives or libraries. The secular archives were separate from the 
religious records; both consisted mainly of clay tablets. Most 
significantly, a school for scribes was discovered; the students' 
unfinished exercises were found on the benches. The curriculum 
could easily be inferred. The students were taught to write many 
languages: Egyptian, Akkadian, Sumerian, the local Cypriote and 
Ugartic, and probably Mycenean. They were taught many scripts: 
Egyptian and Hittite hieroglyphics, Mesopotamian cuneiform, 
Mycenean Linear B, and Cypriote. The inhabitants of Cyprus had 
developed their own script, which has not yet been deciphered. It 
has similarities to the Minoan and Mycenean scripts. Perhaps not 
every student learned all of this, but this was the curriculum. The 
archaeologists say nothing about evidence for instruction in arith- 
metic and accounting, but it is difficult to believe that none of the 
students at this school would enter the city's principal industry: the 
transfer of goods. Ugarit was certainly cosmopolitan and polyglot; it 
must have been so since very ancient times, and so must have been 
the other coastal cities of Phoenicia and Asia Minor. 

The script used for the local Ugartic (or Canaanite) language 
was unique and quite different from any older script. Those scripts 
that developed directly from pictographs are syllabic. Each character 
represented a syllable, the accented syllable of an earlier pictograph. 
There were many characters, but very few characters per word. The 
modern Chinese script is of this kind. The Ugartic script was quite 
different. There were only twenty-nine characters, each much 
simpler than the average Akkadian character. There were often 
many such characters per word. In short, Ugartic was an alphabeti- 
cal script, using the first alphabet of which there is any record. It 
was imprinted on moist clay with a wedge-shaped stylus. One may 
surmise that it was invented deliberately for the Amorites who inha- 
bited the hinterland, and whose produce was exported through 
Ugarit. 

The relative advantages of alphabetic and syllabic scripts may 
be debated. We are appalled by the large number of characters that 
Chinese children must memorize. The Chinese are equally apalled 
by the need to memorize so many spellings. Our alphabet does not 
permit phonetic spelling. To make phonetic spelling possible, an 
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alphabet of more than twenty-six letters would be needed. Elec- 
tronic devices demonstrate this even more conclusively. Especially 
revealing is the difference between a child's and an adult's pronun- 
ciation. However, very likely, syllabic scripts are not fully phonetic 
either. Whether or not the invention of the alphabet was progress, 
it was a change, and a change that continues to influence us today. 

About a hundred miles south of Ugarit was the equally prom- 
inent city of Byblos. In the 19201s, a landslide uncovered the tomb 
of King Ahiram, who might have been an ancestor of Hiram, the 
Caananite ally of Solomon. In the tomb were found many tablets 
inscribed in a second alphabetic script. Its characters were inscribed 
with a pointed stylus, just as were the Minoan and Mycenean 
scripts. The development of most other alphabets can be traced to 
this Ahiram alphabet: they include the Hebrew, Arabic, Persian, 
Ethiopian, Greek, Roman, and therefore our own alphabet. 

While Phoenicia and all of Palestine has long been considered 
subsidiary to Mesopotamia and Egypt, it is rapidly becoming certain 
that it was an independent contributor, not only to religious 
thought, but also to other intellectual aspects of civilization. 



The Greek Alphabet 
and Numerals 

This investigation need concern itself only with the transmis- 
sion of the Phoenician alphabet to Greece. At the time Ugarit was 
abandoned, Greece was invaded for a second time. These invaders 
are known to us as Dorians and came from the north. They spoke 
various Greek dialects and had iron weapons. They were excellent 
horsemen, though horseshoes had not yet been invented. The 
invasion was not sudden, and many Mycenaean cities fortified 
themselves. Ultimately, the Mycenaean cities were captured by the 
Dorians, with the single exception of Athens. Athens became over- 
crowded with refugees and some of these emigrated to Asia Minor. 
There they captured the coastal towns and some of the nearby 
islands. Among these were Miletus and Samos. They renamed the 
area Ionia, and ultimately the Ionian League consisted of twelve 
quarrelsome cities. While the rulers of these cities spoke a Greek 
dialect, they must have intermarried with non-Greeks. Their cities, 
like those of Canaan, were ports of transshipment for the Mesopo- 
tamian caravans, and there is evidence that they also had cosmopol- 
itan, polyglot populations. 

Having conquered the earlier inhabitants of the Greek main- 
land and nearby islands, the Dorians became robber barons ashore 
and pirates at sea. The expedition of the Argonauts under Jason 
was a piratical raid into the Black Sea; it cannot have been the only 
one. Robbery and piracy do not require accounts and inventories. 
Greece entered into a dark, illiterate age; the Mycenaean script was 
forgotten. There is not even any evidence that it was used in Ionia; 
there the merchants presumably used Babylonian for their records. 
Eventually, the Greek pirates drove Phoenician ships out of the 
Black and Aegean Seas, leaving them however, the rest of the 
Mediterranean. 

There are nine or ten Greek legends that mention Cadmus 
the Phoenician. If it be supposed that each of them hides a kernel 
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of historic fact, Cadmus can only be the personification of various 
groups of Phoenicians. Some of them seem to have joined the 
Argonauts. Only two of these legends are of interest here. One 
tells that Ares, god of war, gave Cadmus a magic clod of earth. 
Theras, a Dorian, joined Cadmus and they sailed south. When 
Cadmus cast the clod into the sea, it became the island of Thera. 
The other legend is that Cadmus taught the Greeks their alphabet. 

Archaeological investigations show that after the vulcanism of 
the explosion subsided, Thera was again inhabited. It cannot have 
been of much mercantile importance. It does enclose a sheltered 
body of water, but there is little beach. The water is enclosed by 
almost vertical cliffs that rise to about a thousand feet. The water is 
too deep for even modern ships to anchor. There are no large piers 
or warehouses. The principal town is located at the edge of the 
thousand foot cliff. In the tenth century B.C., it can have been 
important only as a religious center, as it was in Minoan times. 
Remarkably, in view of the legend, the oldest Greek inscriptions in 
an alphabet (as distinct from the syllabic Mycenaean script) have 
been found on Thera. Archaeologists have debated their date, but 
they now seem agreed that it is about 850 B.C. The Greek language 
contains many more vowels and fewer consonants than any Semitic 
language, so that many of the Canaanite consonants are converted 
into vowels. All of this becomes understandable if one supposes an 
original mixed population on Thera, as a result of intermarriage. 
Only the Greek language survived, or at least it became official. 
The Phoenicians, with their knowledge of writing and alphabet- 
making contributed the official script. The other Greeks of that 
period were illiterate, and the Theran alphabet was later adopted by 
them as they became literate. 

The newly acquired alphabet seems to have been used princi- 
pally to record the Greek legends and songs. These had previously 
been transmitted orally, often by itinerant bards of ballad singers, 
which were later personified as Homer. Since these myths have a 
strongly religious character, this supports the conjecture that Thera 
was a religious center. This alphabet was not accompanied by a sys- 
tem of numerals; none would be needed for mythology. What 
domestic trade there was in Greece at that time, seems to have 
been simple barter. Taxes were collected in kind, and rather hapha- 
zardly. If there was any foreign trade, it was probably in the hands 
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of foreigners who spoke Babylonian or Egyptian, and used the 
corresponding numerals for their accounts. All of Greece lapsed 
into the economic apathy that preceeded Solon's reforms. 

The classical Greeks did invent two numeral systems, nearly 
simultaneously, at the beginning of the fifth century B.C. These 
have become known as the Attic and Herodianic numerals. The 
earliest inscription bearing Attic numerals was found near Athens, 
and has been dated 454 B.C. The earliest Herodianic inscription 
was found in Halicarnassus, on the coast of Asia Minor, at about 
the same time. By then, Greece was becoming the dominant mari- 
time power, and Greek the dominant language throughout the 
Mediterranean world. These dates are sufficient to show that the 
Greek numeral systems are much more recent than the others dis- 
cussed above; probably our own decimal system is even more 
recent. Very likely, the Greek systems had been invented a few 
generations earlier, and were coming into widespread use at the 
time of the inscriptions. 

It will be useful to fit the date 454 B.C. into the pattern of 
events and people that are more familiar to us. Solon had died a 
century earlier. Ten years before, Pericles had established himself 
firmly as the ruler of Athens, and had begun to make Athens the 
imperial power that dominated the Aegean. Socrates was a lad of 
fifteen, very likely playing knucklebones in the streets. It is said 
that Socrates' father was a sculptor, and that the boy wanted to be 
one too. Finding himself without talent, he learned to be a stone- 
mason. If so, he may have known the man who carved those first 
Attic numerals, but they would not likely have talked about it. 
Plato, who made Socrates famous to all suceeding generations, 
would not be born until twenty-seven years later. 

Halicarnassus is not mentioned in most history books, and 
thus requires explanation. Asklepios, the god of healing, was a 
Doric deity, and his cult prospered on mainland Greece until Sparta 
declared sickness a crime against the state. The Asklepian priests 
then moved their center first to Halicarnassus, and then to the 
island of Cos, some twenty-five miles offshore. Here, Hippocrates, 
the "Father of Medicine," was a boy of four or five when the first 
Herodianic numerals were carved. He was said to have been the 
nineteenth lineal descendent of the god; in modern terms, it is 
likely that he became the nineteenth leader of the cult. It is only 
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reasonable to suppose that, after so long a time, the art of healing 
had become encumbered with many useless traditions. At any rate, 
Hippocrates resigned his leadership while still vigorous, and moved 
to Abdera, where he became a friend of Democritus. 

Abdera was an Ionian colony in Thrace, founded much earlier 
to exploit the gold mines in the country just north of the Aegean. 
Democritus had inherited a large fortune and spent it on travel and 
foreign study. In a surviving book, he says that he had traveled in 
more countries and climates, and visited more thinkers, than any of 
his contemporaries. Our curiosity is disappointed, for he does not 
give his itinerary, nor name the people he  visited; but it is generally 
agreed that he was the most learned man of the time. He is some- 
times known as the Laughing Philosopher, for the foibles of his fel- 
low men amused him, apparently without arousing any impulse to 
reform them. He seems to have had no students, yet his influence 
was widespread and long-lasting. Although it is not true, he is 
often credited with inventing the atomic theory. He does seem to 
have synthesized the knowledge acquired during his travels. He did 
give the atomic theory a distinctly modern form. It is not surprising 
that the combination of Hippocrates and Democritus should have 
an enduring influence on the intellectual development of society, 
even though neither seems to have been aggressive in attempting to 
control it. 

This is the environment in which the two Greek numeral sys- 
tems evolved, and they will now be considered more specifically. In 
its original and simplest form, the Attic numeral system is identical 
with the later Roman numeral system, except that capital letters 
were used, and some of them were written in a peculiar way to indi- 
cate that they were digits rather than letters. This resemblance is no 
accident. When the Romans adapted the Greek alphabet to the 
Latin language, they also adopted the Attic numerals. Since the use 
of Roman numerals has already been considered, little need be said 
about the Attic numeral system. The most important thing is that 
there is almost no evidence about the way they were actually read at 
the time. The meager evidence for the use of the abacus has already 
been discussed. 

By 500 B.C., the Greek alphabet had twenty-four letters, but 
earlier it had twenty-seven or more. The details of this scheme are 
unessential here; its extreme complication, in contrast to the 



The Greek Alphabet and Numerals 143 

simplicity of the Attic and all earlier numeral systems, is the impor- 
tant fact. Remarkably, none of the mathematicians of classical 
Greece mentions the earlier systems, although Democritus must 
have known of them, and did write about geometry. The cuneiform 
script is mentioned only by one writer of the period: this is Hero- 
dotus, who lived after Athens had already begun to decline. 

In Attica, the Attic numeral system continued in use until 95 
B.C., when the Herodianic system was legally adopted. By then, the 
Romans had already adapted the Attic numeral system to their 
needs. Both systems were originally used outside of Attica, but by 
200 B.C., the Herodianic had completely displaced it. There is a 
clear reason for the Roman adoption of the Attic numeral system. 
No one has ventured to speculate why the Herodianic numerals dis- 
placed the Attic in most of the Greek-speaking world, but they did. 



Human Language 
and Inhuman Logic 

A digression on the general characteristics of all languages 
will be needed as a background for the following. It used to be con- 
sidered that most of these characteristics were too obvious for 
words. The result was that they were ignored, and this caused 
much confusion, especially in philosophical discussions. It is only 
recently that this has been realized. It was first recognized, less 
than fifty years ago, by people who were trying to reconcile and syn- 
thesize the many philosophical doctrines. Surprisingly, it has 
already become a technological necessity in the computer industry. 
To an electronic computer, nothing is too obvious for words. It is 
this moronic stupidity of the machines that has caused such ridicu- 
lous incidents as the delivery of a truckload of the same issue of a 
magazine to a single subscriber. Grammatically, "two plus three" is 
not the same as "five." "Two plus three" is a number phrase. In 
any sentence containing "five," one may replace "five" by "two 
plus three" and the sentence remains grammatically correct. More- 
over, if the sentence was true, the substitution leads to a true sen- 
tence; and if it was false, the substitution leaves it false. However, 
"five" can also be replaced by the number phrase "four plus six" 
without making it grammatically incorrect; but this substitution may 
well change the sentence from true to false, or conversely. 

It is therefore necessary to distinguish between correctness 
and truth. In a well-written novel, the sentences will be correct, but 
not true. They will also not be false; they will be fictional. It is 
possible to write science fiction deliberately; it is also possible to do 
so unwittingly. It is this second possibility that leads to confusion. 

In technical terms, grammatically correct or incorrect are the 
possible syntactic values of a sentence. Whether a sentence is true, 
fictional, or false can be determined (though only partially) from its 
meaning; its meaning must also somehow be compared with reality 
before its semantic value can be determined. True, fictional, and 
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false are the semantic values of a sentence. In retrospect, it can be 
seen that history abounds with cases in which correctness has been 
confused with truth. The history of mathematics is no exception. 

It seems that a clear distinction between grammar and mean- 
ing, between syntax and semantics, was first made in India, when 
Sanskrit was already becoming a dead language used only by scho- 
lars. At that time, these scholars wrote a grammar of Sanskrit that 
made no reference to the meaning of its words. In a way, the dis- 
tinction between semantic and syntax is the same as that between a 
dictionary and a grammar textbook. This achievement of the San- 
skrit scholars did not become known to Europeans until about 1800 
A.D., and did not begin to influence logicians and mathematicians 
until the first half of this century. The distinction is now an essen- 
tial one in computer science and technology. In retrospect, it is pos- 
sible to see that the problems involving this distinction were con- 
sidered by earlier Europeans, including the classical Greeks. For 
lack of the words, these discussions are obscure and ambiguous. 
The classical Greeks wrote neither dictionaries nor grammar text- 
books. In another sense, logic and mathematics have not yet 
experienced the full impact of the distinction. 

Logic and mathematics are concerned with those correct sub- 
stitutions that do  not alter the semantic value of a sentence. 
Semantics is not so easily reduced to rules as is syntax. For exam- 
ple, 

Bucephalus galloped 
is a true sentence, "Bucephalus " being the name of a famous 
horse. But 

Pegasus galloped. 
is fictional, "Pegasus" being the name of a mythical winged horse. 

Pegasus flew 
is fictional, but 

Bucephalus flew. 
is false, unless interpreted metaphorically. Whether the sentence is 
to be interpreted literally or metaphorically can be determined only 
by examining its context. It cannot be determined by examining 
the sentence by itself. 

When one notes that the writing, publication, and broadcast- 
ing of fiction is a major activity in our society, it seems strange that 
few professional logicians have taken it into account. The usual 
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explanation is that logicians are not concerned with sentences, but 
with the propositions that sentences express. There are many rea- 
sons for doubting that there is a difference. Not every language has 
different words for "sentence" and "proposition." In modern Ger- 
man, Satz means both. It is doubtful whether Classical Greek had 
words for either. The Greeks of the time of Plato and Aristotle 
compiled no standard dictionaries; many different dialects were in 
use, and there was such linguistic confusion that it provides many 
problems for modern scholars. In Latin, propositio meant only a 
tentative plan or a proposal for action until late Roman times; its 
use to distinguish propositions from sentences did not become 
widespread among scholars until after the sack of Rome by the bar- 
barians and the beginning of the Dark Ages in Europe. It is no 
exaggeration to say that the supposed distinction between a sentence 
and a proposition is a legacy from the Dark Ages. In later times, 
there have been a bewildering number of explanations of the 
difference between sentences and propositions. These all seem to 
be based on untenable theories of either language or psychology. 
Their only common element is Bertrand Russell's definition: a pro- 
position is something that is either true or false. Formally, this is 
an adequate definition, and independent of all theories of language 
or psychology. But it does not demonstrate that propositions are 
true, any more than the definition "centaurs are half man, half 
horse" demonstrates that there really are centaurs. 

To understand more clearly how theories of language and 
psychology enter into this matter, one must consider the "meaning 
of meaning," to use a fashionable phrase. For this, one can do no 
better than elaborate on Aristotle's discussion. Suppose three peo- 
ple are together; G speaks only Greek, P only Persian, while B 
speaks both. First B says something in Greek; G and P hear the 
same sounds, but their perception of them is different. This 
difference is called meaning. Then B says something in Persian; 
now it is G's face that remains blank, while P's shows animation. 
Almost everyone has experienced this phenomenon and there is no 
doubt about its reality. It requires a theory of language and 
psychology to go further and demonstrate that there is a difference 
between a sentence and a proposition, and that the latter can only 
be true or false. When written sentences come into consideration, 
it is seen that the assumption of a difference implies that a language 
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is at least as unchanging as handwriting. This is an assumption that 
people, especially young people, are inclined to make. Yet it is 
false. William Taft's face would have remained blank, or become 
bewildered, had someone told him "We tuned in on the broadcast 
of President Wilson's inaguration." This sentence would not only 
have been false; it would have been meaningless. 

The changes that occur in all languages are important, not 
only because they provide evidence for distinctions without 
differences, but also for differences without distinctions. A simple 
but important example from an unfamiliar language will show this. 
The Old Babylonian word auatu is translated into English as Name, 
word, or thing, depending on the context. It seems that the 
Babylonians had only one word for our three, and that these three 
have quite different meanings for us. All three are nouns, and a 
correct English sentence will remain correct if one word is substi- 
tuted for another, but its semantic value will very likely be altered. 
This is exactly the same as the interchange of Bucephalus and 
Pegasus. These two examples are not unrelated. Today, we do not 
believe that winged horses exist, or ever did exist; the ancient 
Greeks did believe in them. There is a strong tendency to believe 
that, if a thing has been named, if there is a word or phrase for it, it 
exists. The ancients can be excused because it was almost impossi- 
ble for them to search the Earth sufficiently to be sure that there 
are no winged horses. Today, we believe that there were dinosaurs 
long ago; most of us have seen the fossil bones of dinosaurs. We 
have also seen reconstructions of their external shape; the recon- 
stuctions are conjectural. They have been made by careful students 
of comparative anatomy, who are familiar with the relations 
between bone, muscle, and skin in contemporary animals. But if 
someone writes about a blue and red dinosaur, there is no way to 
compare this with reality. Blue and red dinosaurs are in the same 
catagory as winged horses: fictional. If "blue and red bird" in a 
correct sentence is replaced by "blue and red dinosaur," the sen- 
tence will remain correct; but even if the first sentence is true, the 
second will be fictional. 

All of this is simple enough, but it raises an important ques- 
tion. Are there distinctions for which there are no distinct words in 
the English language? If so, we must not be too proud when com- 
paring English with Old Babylonian. The question has already been 
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answered in the affirmative. Spoken English has no easy way to dis- 
tinguish between a word and the name of that word. Consequently, 
it has not even occurred to most people that words ought to have 
names as well as pronunciations, spellings, and meanings. It is only 
very recently that grammarians, philosophers, and logicians have 
recognized this distinction and traced some famous and inconclusive 
arguments to the failure to notice it. When we speak or write about 
apples, we do not produce pieces of the fruit; when we eat apples 
we do not eat words. When we speak or write about words, we do 
use words. What was simple and straightforward has suddenly 
become complicated and confusing. Grammarians have invented a 
way of writing the names of words: apple is the name of the fruit, 
and "apple" is the name of the word. This is a simple way to avoid 
the confusion: "apple" is a noun while apple is a food. But no one 
has yet invented a simple way of saying "apple" differently than 
apple; in speech the same sound does for both, and the distinction 
depends on the context. Both "apple" and "orchid" are nouns, 
but an apple and an orchid are very different indeed. This is one 
reason for the difficulty in teaching young children the rules of 
grammar. 

It has been maintained that questions and instructions do not 
express propositions, and therefore have no semantic value, and are 
not a part of logic. It is possible to support this view with examples. 
Questions like "Can smog be eliminated?" and instructions like 
"Speak French in thirty days," are often used as titles for books 
and lecture courses. It would be quite possible to replace these two 
with "Methods for the elimination of smog," and "A thirty day 
course of instruction that will enable you to speak French." Neither 
of these is a sentence: they are phrases used as names for the books 
or courses of instruction. It is also possible to use sentences like 
"Spring came early that year" as titles of novels. It might be possi- 
ble to use these examples for the development of a theory about 
the difference between a sentence and a proposition, but it would 
not be any of the traditional theories. Numerals are used to name 
the pages in books, but it would not be possible to use this example 
as the basis for a fundamental theory of arithmetic. 

It can also be maintained that questions and instructions are 
superfluous, at least in theory. Thus, the question "Where is my 
necktie?" is equivalent to the sentence "I desire to know the 
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present location of my necktie." The instruction "Put on your 
necktie!" is equivalent to "I want you to put on your necktie." The 
question "Are you going to put on your necktie?" is ambiguous. If 
the word "are" is not stressed, it is "I desire to know whether you 
intend to put on your necktie," while if "are" is stressed, it may be 
the threat "If you do not put on your necktie at once, I shall spank 
you." However, emphasis can alter the meaning of declaratory sen- 
tences also, so that this ambiguity is not peculiar to questions. 

"How shall I put on my necktie?" is "I desire instruction in 
the way to knot my necktie." Since this is a request instruction in a 
procedure, a manipulation, it may be best to answer it by a demons- 
tration, accompanied by words that direct attention to the salient 
actions. On the other hand , "Why should I put on my necktie?" 
is "What satisfaction (or pleasure, or benefit) will accrue to me (or 
anyone) if I put on my necktie?" It is generally agreed that the 
natural sciences attempt only to answer questions beginning with 
"How," not those beginning with "Why." Despite the general 
agreement, it has not been subjected to careful analysis. One might 
expect that there would be equally general agreement that the social 
sciences should attempt to answer questions beginning with "Why," 
but this is not the case. 

Further ramifications appear when one considers the instruc- 
tion "You must put on your necktie." This is "You will inevitably 
put on your necktie" or "You lack the ability (or freedom) to avoid 
putting on your necktie." Depending on the intonation, it may be a 
threat of punishment if you do not put on your necktie; the tradi- 
tional association of the birch cane with the schoolmaster or instruc- 
tor contributes to this sinister connotation of the word "must." 
There have been almost endless and inconclusive philosophical dis- 
cussions about the word "must"; it is a word to beware of. An 
innocuous example is the adage "What goes up must come down"; 
The successful launching of space-craft has demonstrated that this is 
false. Less innocuous is its association with the tyranny of social 
conventions and laws that infringe upon civil liberty. Ultimately, 
the debate over "must" becomes the theological debate over free 
will. 

Sometimes the failure to analyze questions can lead to serious 
ambiguity. Consider "What is the capital of' Wyoming?" If the 
senior Senator from Florida asks it of his secretary, it means "I 
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wish to know the city in which the government of the state of 
Wyoming has its headquarters." If the secretary then answers "I 
don't know; I will look it up," the Senator will be content. If pupils 
are asked the same question by a teacher and make the same reply, 
they will be reprimanded and be given low grades. The teacher 
means "I wish to know if you remember the name of the capital of 
Wyoming." This has serious consequences. It wastes the time of 
teachers and students with useless memory drill, for the pupils 
(unless they live in Wyoming) will still soon forget the name of the 
capital, and be none the worse for it. The time could be used to 
better advantage in teaching the pupils the proper use of maps and 
other reference materials; even better in teaching them to look for 
ambiguities and analyze the meaning (not the grammar) of a 
suspected sentence. 

These examples show that questions and instructions can be 
converted into declarative sentences, although the conversion is 
sometimes ambiguous. When the conversion has been made, ques- 
tions and instructions are seen to be very personal, very human. 
Perhaps it would be better to say that they refer to interpersonal 
transactions, not to inanimate objects or machines. It is also seen 
that truth and falsehood are closely related to honesty and 
dishonesty. The latter are ethical and human; the former are deper- 
sonalized and logical, and seem to have nothing to do with people. 
Some sentences, such as "Broadcasting stations emit electromag- 
netic waves," do have little reference to people, and communicate 
knowledge about impersonal matters. Others are deceptively imper- 
sonal. The sentence "The Indus River has flooded the Punjab" 
deflects ones attention from the human disaster of flooded fields 
and homes to the inanimate river and its valley. 

By excluding questions and instructions from logic, it has 
been possible to make it seem impersonal, inhuman. An imper- 
sonal discussion of electromagnetic waves is not only possible, but 
advantageous. An impersonal discussion of broadcasting stations 
may be irrelevant to the matter under consideration. Since our edu- 
cators have ignored such matters, some students denounce our 
whole educational system as irrelevant and drop out. 



Archimedes, Buddha, 
and the Uncountable 

Archimedes lived from 287 to 212 B.C., during the Hellenistic 
period. He was the son of an astronomer and a close friend (possi- 
bly a relative) of the kings of Syracuse, the Sicilian city in which he 
spent most of his life. The legends concerning him are contradic- 
tory. According to some, he was a solitary, absent-minded eccen- 
tric, who only communicated with mathematicians in other cities by 
letter. Some of his letters have survived, at least in translation. 
Certainly, those of his books and letters that have survived could 
not have been written without long periods of undisturbed concen- 
tration. Another legend relates that, during a siege of Syracuse, the 
Roman fleet was destroyed by devices invented and constructed by 
Archimedes. No single man, much less a recluse, could have per- 
formed such a feat. Cicero tells that he saw a planetarium that 
Archimedes had constructed, which was so accurate that it could be 
used to predict eclipses. Such accuracy is incredible, but it is known 
that one of Archimedes' books (lost to us) did describe a mechani- 
cal model of the heavens. The invention of various other devices is 
ascribed to him but he seems to have left no written account of 
them. Two books on floating objects have survived, and suggest 
not only abstract thought about the subject, but a firsthand acquain- 
tance with real floating objects and their behavior. 

All of this suggests that Archimedes was a man of varied 
interests, on easy personal terms with both the rulers and the arti- 
sans of Syracuse; that he understood the devices used by artisans 
sufficiently well to make suggestions for their improvement, In 
Archimedes' time, Syracuse was a small town, and it would be pos- 
sible for him to know everyone who lived there. It is likely that 
many of the artisans were illiterate, so that his suggestions had to 
be made verbally, by means of diagrams probably drawn in the dust. 
This, and the narrowly intellectual interests of his distant friends, 
would account for the absence of written descriptions of these 
inventions. Long personal acquaintance with the artisans would 
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make the large defense project more credible. The later destruction 
of Syracuse by another Roman invasion would account for the 
failure of his devices to survive in identifiable form. Clearly, his 
Roman contemporaries considered him to be a sorcerer. The 
defeated commander of the first Roman fleet, in trying to excuse 
himself, said nothing to dispel the notion that Archimedes had 
superhuman powers. Archimedes does seem to have been an 
unusual person. Nothing is known about his religious beliefs, but 
his writings show that he did not consider himself to have been 
favored by any revelation of divine knowledge. 

Eleven of his books and letters have survived in translation, 
but they make reference to others. They were usually of such a 
length that they fitted conveniently on one or two rolls of papyrus. 
For the present purpose, only one of the surviving books is of 
interest, for it introduces not only a new system of numerals, but 
also a new view of numbers. This view may also have arisen in 
India, as will be seen. It has dominated much, if not all, of later 
mathematics. Archimedes wrote two books or letters about very 
large numbers. One was addressed to a fellow mathematician and is 
usually called "The Principles." It has not survived. The other is 
addressed to a young man whom he had tutored, and who later 
became Gelon 11, King of Syracuse. It is apparent that Gelon and 
Archimedes continued their conversations, and that the letter is an 
amplification of one of these. It is usually called "The Sand 
Reckoner," and falls naturally into three parts: 

1. Astronomy and the formulation of a problem 
2. The new numeral system 
3. Solution of the problem 

Heath's translation of the first part will be given verbatim. It is of 
double interest, for it contains an authoritative, though incomplete, 
account of astronomy, as it was some centuries before the time of 
the astronomer, Ptolemy. Historically, it is very significant that the 
geocentric and heliocentric descriptions of the solar system were 
both considered at thie early date. It is apparent that Aristarchus of 
Samos originated the heliocentric hypothesis. Since he was younger 
than Aristotle, the latter considered only the geocentric description; 
this would become of importance much later, during the 
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Reformation in Europe. The remainder of the text will be given in 
a summary form, and in modern notation. Archimedes writes: 

There are some, king Gelon, who think that the number of the 
sand is infinite in multitude; and I mean by the sand not only 
that which exists about Syracuse and the rest of Sicily but also 
that which is found in every region whether inhabited or 
uninhabited. Again there are some who, without regarding it 
as infinite, yet think that no number has been named which is 
great enough to exceed its multitude. And it is clear that they 
who hold this view, if they imagined a mass made up of sand 
in other respects as large as the mass of the earth, including in 
it all the seas and the hollows of the earth filled up to a height 
equal to that of the highest of the mountains, would be many 
times further still from recognizing that any number could be 
expressed which exceeded the multitude of the sand so taken. 
But I will try to show you by means of geometrical proofs, 
which you will be able to follow, that, of the numbers named 
by me and given in the work which I sent to Zeuxippus, some 
exceed not only the number of the mass of sand equal in mag- 
nitude to the earth filled up in the way described, but also of a 
mass equal in magnitude to the universe. Now you are aware 
that "universe" is the name given by most astronomers to the 
sphere whose centre is the centre of the earth and whose 
radius is equal to the straight line between the centre of the 
sun and the centre of the earth. This is the common account, 
as you have heard from astronomers. But Aristarchus of 
Samos brought out a book consisting of some hypotheses, in 
which the premises lead to the result that the universe is many 
times greater than that now so called. His hypotheses are that 
the fixed stars and the sun remain unmoved, that the earth 
revolves around the sun in the circumference of a circle, the 
sun lying in the middle of the orbit, and that the sphere of 
fixed stars, situated about the same center as the sun, is so 
great that the circle in which he supposes the earth to revolve 
bears such a proportion to the distance of the fixed stars as the 
center of the sphere bears to its surface. Now it is easy to see 
that this is impossible; for, since the center of the sphere has 
no magnitude, we cannot conceive it to bear any ratio what- 
ever to the surface of the sphere. We must however take 
Aristarchus to mean this: since we conceive the earth to be, as 
it were, the center of the universe, the ratio which the earth 
bears to what we describe as the "universe" is the same as the 
ratio which the sphere containing the circle in which he sup- 
poses the earth to revolve bears to the sphere of fixed stars. 
For he adapts the proofs of his results to a hypothesis of this 
kind, and in particular he appears to suppose the magnitude of 
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the sphere in which he represents the earth as moving to be 
equal to what we call the "universe." 

I say then that, even if a sphere were made up of the sand, as 
great as Aristarchus supposes the sphere of the fixed stars to 
be, I shall prove that, of the numbers named in the Principles, 
some exceed in multitude the number of the sand which is 
equal in magnitude to the sphere referred to, provided that the 
following assumptions be made. 

1. The perimeter of the earth is about 3,000,000 stadia and not 
greater. 

It is true that some have tried, as you are of course aware, to 
prove that the said perimeter is about 300,000 stadia. But I go 
further and, putting the magnitude of the earth at ten times 
the size that my predecessors thought it, I suppose its perime- 
ter to be about 3,000,000 stadia and not greater. 

2. The diameter of the earth is greater than the diameter of the 
moon, and the diameter of the sun is greater than the diameter of 
the earth. 

In this assumption I follow most of the earlier astronomers 

3. The diameter of the sun is about 30 times the diameter of the 
moon and not greater. 

It is true that, of the earlier astronomers, Eudoxus declared it 
to be about nine times as great, and Pheidias, my father twelve 
times, while Aristarchus tried to prove that the diameter of the 
sun is greater than 18 times but less than 20 times the diame- 
ter of the moon. But I go even further than Aristarchus, in 
order that the truth of my proposition may be established 
beyond dispute, and I suppose the diameter of the sun to be 
about 30 times that of the moon and not greater. 

4. The diameter of the sun is greater than the side of the chiliagon 
inscribed in the greatest circle in the (sphere of the) universe. 

I make this assumption because Aristarchus discovered that 
the sun appeared to be about 1/720 part of the circle of the 
zodiac, and I myself tried, by a method which I will now 
describe, to find experimentally the angle subtended by the sun 
and having its vertex at the eye. 

This means  that t h e  diameter of t h e  s u n  is greater t han  111000 t h e  
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diameter of the earth's orbit, and that the diameter of the sphere of 
the fixed stars is less than 10,000 times the diameter of the earth's 
orbit. Somewhat farther along, Archimedes makes a fifth assump- 
tion: 

5 .  Suppose a quantity of sand taken, not greater than a poppy-seed, 
and suppose it contains not more than 10,000 grains. Next suppose 
the diameter of the poppy-seed to be not less than 1/40 of a finger- 
breadth. 

Archimedes wrote in his local Greek dialect, and neither his 
manuscript nor his dialect have been preserved. It is obvious that 
the translation is faulty and that "sand" is not the right word for 
the stuff he describes; we would call it "dust." The diameter of 
each grain is less than one thousandth of an inch, and a single grain 
would be scarcely perceptible to the unaided eye. However, the 
phrases to be remembered are : "No number has yet been named" 
and "Of the numbers named by me and sent to Zeuxippus." 

Archimedes constructed his number system with the Herodi- 
anic numerals as the starting point. It will be recalled that, while 
these were complicated, they only made it possible to write numbers 
less than H= 100,000,000. Let h be any one of these; he  called 
them numbers of the first order: 

First Order: 
1,2,3 ,..., h ,..,, H 

The second order consisted of the next H numbers: 

Second Order: 
H+ 1, H + 2  ,..., H + h  ,...,Hz 

Continuing, he reached the H t h  order: 

H t h  Order: 
H ~ -  '+ 1 , H ~ -  '+ 2,. . . , H ~ -  '+ h , . . . , H ~  

All of the numbers named thus far, Archimedes called numbers of 
the first Period. Let P = H ~ ;  it is a very large number: a one fol- 
lowed by eight hundred million zeroes. Next came the numbers of 
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the second Period and first Order, etc.: 

Second Period first Order: 
P + 1 ,  P + 2 ,  ..., HP 

Second Period second Order: 
HP+ 1, H P + 2 ,  ..., H ~ P  

Second Period H t h  Order: 
H ~ - ~ P + I , . . . , H ~ P = P ~  

He continued in this manner until he reached the H t h  Period H t h  
Order, whose largest number is p H .  Here he stopped, but he had 
named all numbers by Period, Order, and Herodianic numeral up to 
p H .  The numeral pH is, in our decimal system, a one followed 
eighty thousand million million zeroes. 

The solution of the problem (or rather problems) proposed by 
Archimedes is now possible. He interpreted them simply as the cal- 
culation of the volume of two spheres, the "universe" (or the 
"sphere of fixed stars") being one, and the dust grain being the 
other; then the ratio of the two volumes is to be calculated. There 
were two difficulties in Archimedes' way that are not in ours. The 
first was the difficulty of calculating with the Herodianic numerals, 
the second was that the numbers required in the calculation 
exceeded those named in the Herodianic system. This second obs- 
tacle was overcome by his invention of the new system of numerals, 
and the first had previously been mastered both by Archimedes and 
Gelon. Only the results need be given here: he shows that the 
number of dust grains required to fill the "universe" is less than 
10~'=1,00OH6 and for the "sphere of fixed stars", less than 

1 0 , 0 0 0 , 0 0 0 ~ ~  His numeral system was more than adequate 
for the problems proposed. 

Before discussing this further, one may consider a story from 
the life of Buddha, which shows that similar matters were being dis- 
cussed in India. Buddha lived about three centuries before 
Archimedes; it is not known when the legend was first written 
down, but it can scarcely have been during Buddha's lifetime. 
Before renouncing the ways of the world, Buddha was the hand- 
some Prince Gautama. As a young man, he was one of the many 
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suitors for the hand of a beautiful princess. Her father agreed to 
bestow her on the man who most successfully passed a long series 
of tests. Needless to say, Gautama passed them all perfectly. One 
of the tests was a quiz by the mathematician Arjuna. The first 
question was "Can you name the numbers by hundreds?" Gau- 
tama replied by writing: 

A hundred koti make one ayuta; 
A hundred ayuta make one niguta; 
A hundred niguta make one karikari; 

and so on for twenty more lines. Authorities differ as to the 
number koti, but it is thought to have been lo7. In this way, Gau- 
tama therefore reached the number tallakshana, which is equal to 
los3. But he did not stop there: he  recited eight more stanzas of 
the same length, thereby reaching which is large, but still 
much less than Archimedes' largest number. This is the same 
method that we use: 

Ten tens make one hundred; 
Ten hundreds make one thousand; 
A thousand thousands make one million; 
A thousand millions make one billion; 
A thousand billions make one trillion 

and so forth. We proceed somewhat more systematically than Bud- 
dha, less so than Archimedes. 

But Arjuna's quiz was not yet ended. "How many primary 
atoms make one mile?" Buddha recited: 

Seven atoms make a very small particle; 
Seven very small particles make a small particle; 
Seven small particles make a large particle; 

and so on, until he found a number that we would write 
108,470,495,616,000. Arjuna accepts this as correct; we would be 
inclined to doubt whether the question was properly formulated, 
and whether the calculation was correct. These doubts arise 
because we think of a mile as a unit of length. It is known that in 
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early India and classical Greece, the same word was used for the 
unit of area and the unit of length. In Mesopotamia, the same 
word was used to name a unit of area and a unit of volume. It is 
possible that Arjuna was thinking of a cubic mile. There are other 
versions of this story, some of which may have been modified to 
eliminate this doubt. 

The obvious similarities between Archimedes' letter to Gelon 
and Buddha's recitation lead one to inquire about possible commun- 
ication between India and Sicily. One immediately thinks of trav- 
elers that may have carried the story along the caravan and shipping 
routes. However, there is no evidence for it. Archaeologists have 
found no city, like Ugarit, that could have served as an intermedi- 
ary. It is known that Alexander took Greek philosophers with him 
as advisors, and that they reached the Indus River. However, they 
stayed there only a very short time. Obvious linguistic and military 
barriers make it  unlikely that the Greek philosophers could have 
established communication with their Indian counterparts. If there 
was communication between India and Sicily, it would seem to have 
been very indirect, as indirect as that which produced the similari- 
ties of the modern Indo-European languages. 

If there is doubt about the influence of the Indian mathemati- 
cians on Archimedes, there is none about the latter's influence on 
more recent writers. The Dutch warehouse clerk, lens maker, and 
microscopist, Anton van Leeuwenhoek, observed spermatazoa for 
the first time, and made a calculation of their number. Extracts 
from his letter to Dr. Graaf follow: 

Sir: 
Since my last of the 21st February, viewing the Melt of a live 
Codfish, I found the Succus thereof, which ran from it, full of 
exceedingly small live Animals incessantly moving to and fro: 
these Trials I thrice repeated with the same success, till I was 
weary with seeing them. I have also viewed the Melt of Pikes 
or Jacks, and therein also found an incredible number of small 
Animals. And I judge that there were at least ten thousand of 
these Creatures in the bigness of a small Sand. These were 
smaller than those I observed in Beasts, but their Tails were 
longer and thinner. I viewed also the Testicles of a Dog taken 
out of its second skin. Viewing the matter taken presently 
after excision, I discovered a vast number of small Creatures. 
After three hours cutting the Vessel at (another place) I found 
multitudes of Animals there also, but most dead. The semes of 
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a Cock about a year old, I found exceedingly full of these 
Animals, at least 50,000 in the bigness of a Sand. 

How vast and almost incredible the number of these Creatures 
are, you may somewhat the better conceive by the Calculation 
that I have hereunto annexed, depending fundamentally on 
accurate observation. In the quantity of the juice of the Melt 
of a male Codfish, of the bigness of a small Sand, there are 
contained more than 10,000 small living Creatures with long 
Tails. And considering how many such quantities (viz. of the 
bigness of a Sand) might be contained in the whole Melt, I was 
of the opinion that the Melt of one single Codfish contained 
more living Animals than there were living Men at one time 
upon the face of the Earth. That which induced me to be of 
this belief, was this following Calculation. 

I conceive that 100 Sands in length will make an inch, there- 
fore in a cubic inch there will be a Million of such Sands. The 
Melt of a Codfish must therefore contain one hundred and 
fifty thousand Millions. 

I will now reckon the number of Men upon the face of the 
Earth at once by Guess. There are in a great Circle of the 
Earth 5400 Dutch Miles, thence I collect there must be 
9,276,218 square Dutch Miles for the earthly superfices. 'Tis 
said two thirds of the superfices of the Earth are Water, and 
one third is Land; a third therefore of the last number is 
3,092,072. I suppose a third of this is uninhabitable, and the 
other two thirds only inhabited, which contain 2,061,382 
square Miles. 

I further suppose Holland and West-Friesland to be 22 Miles 
long and seven Miles broad, which makes 154 square Miles: 
the habitable part of the World therefore exceeds Holland and 
West-Friesland 13,385 times. 

According to the Computation of N.N., the number of People 
in Holland and West-Friesland may be about a Million. And if 
all the rest of the habitable World be a populous as these 
(which is very unlikely), there would be 13,385 Millions of 
Men at once on the face of the whole Earth; but in the Melt of 
a Codfish, there are one hundred fifty thousand Millions of 
Animals; the number of these therefore will exceed the 
number of Men more than ten times. 

Leeuwenhoek made several other calculations of this kind. 
This is selected as an example because there are so many similari- 
ties between this and Archimedes' calculation that they cannot all 
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be ascribed to coincidence: the repeated reference to a grain of 
sand, the reference to the circumference rather than the diameter of 
the Earth; the geographic element, the general scheme of the calcu- 
lation, the use of estimates and the method of inequalities. It is not 
necessary to suppose that Leeuwenhoek had a copy of the "Sand 
Reckoner" before him as he calculated. It is sufficient if he had 
read i t  at some earlier time, or if a teacher had explained it to him. 

All of this requires further comments. They can best be 
introduced by another bit of arithmetic. A cubic yard of coarse 
beach sand contains about a billion particles. Supposing that a per- 
son can count the grains at a rate of slightly more than one per 
second, then three people in working in eight hour shifts can count 
about a hundred thousand grains per day. Allowing for holidays, 
one hundred people could complete the task of counting all the par- 
ticles in a year. But each grain of coarse sand would be much larger 
than one of Archimedes' dust particles. A cubic yard of his dust 
would contain about 100,000 billion particles. Disregarding the 
difficulty of seeing a single dust particle, it would therefore require 
ten million people to complete the count in one year; this is about 
the present population of New York City. To say that even one 
cubic yard of dust can be counted exactly (that is, not one particle 
more, not one less) is therefore fictional, if not false. Very large 
numbers are therefore fictions at best. 

It is not known whether or not Archimedes believed that 
there were winged horses. But he tells us that he was "naming 
numbers." He seems to have believed that even very large 
numbers have an existence independent of people who can count. 
There are alternatives of course: the translation may be wrong, or 
he may not have given the matter a second thought. Most nouns, 
like "apple" denote things that can be seen, touched, and tasted; in 
short things that exist. "Number" is a noun; therefore, numbers 
exist. This is typical of much ancient reasoning, not only Greek. 
However, examples of this type of reasoning recur very frequently 
in Greek writings, especially in the writings of Plato. 

The matter is worth more than a second thought, and should 
be examined from still other points of view. Every ten years, the 
U.S. Bureau of the Census attempts to count all the people living in 
the United States. Formerly, this was done by employing large 
numbers of census-takers, who visited each home and inquired 
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about the residents. But people are dying and being born every 
minute of the day; even if there were no erroneous answers, the 
numbers reported would depend on the time the census-taker 
visited the various homes. The number reported by the Bureau of 
the Census is thus inexact; it is not an accurate count, in the sense 
of "not one more, not one less." The larger the number of things 
to be counted, the more likely it becomes that there has been an 
error. This is often recognized by estimating the probable error and 
it has become customary to replace the supposedly uncertain digits 
with zeroes. Leeuwenhoek sometimes did this, sometimes not. 

The example of the census raises another question: What is 
the exact moment of birth or death? This is not a philosophical 
quibble; it has already become an important problem in medical law, 
and the solutions proposed change with advances in medical science. 
Buddha's teachers were in a better position; they believed that the 
primary atoms were indestructable, as did many others. They could 
therefore maintain that the number of atoms in a piece of matter, 
though large, was at any instant certain, even though unknown to 
any human being. The whole numbers were therefore inherent in 
nature, and not invented by people. The belief in the indestructa- 
bility of the primary atoms (or fundamental particles) persisted well 
into the present century, and with it, the belief that numbers exist, 
independent of people who can count. Physicists no longer believe 
that the fundamental particles are indestructable. Some are always 
disappearing (disintegrating spontaneously), while new ones are 
appearing spontaneously (creating themselves with equal spon- 
taneity). These process cannot yet be explained in time and space, 
perhaps they never will be. Thus, the census of large numbers of 
fundamental particles encounters the same problem as the census of 
human beings. The implication is that the whole numbers are not a 
part of nature, but this implication is never emphasized. The 
matter is of sufficient importance to be investigated further in later 
chapters. 

For the present, there is still another viewpoint from which 
large numbers can be considered: it may be called the technological 
viewpoint, although it separates into two different technologies and 
both become involved with human psychology. First, consider one 
of Archimedes' largest numbers, a number that in our numeral sys- 
tem would require eighty thousand million million decimal digits, 
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most of them not zeroes. One may imagine that it has been printed 
and therefore the numeral would have acquired at least a material 
existence. It would occupy about a billion volumes, each the size of 
Webster's Unabridged Dictionary. It would require a thousand 
buildings, each the size of the Library of Congress, to provide shelf 
space for these volumes. Who would read even one of them? 
Consider a much smaller numeral, one that would require only a 
single volume the size of the Bible. Many people have read the 
entire Bible, so that it would certainly be possible for this numeral 
to be read; but would the reader be able to understand it? It is cer- 
tain that it would not be understood at all. The reader of this 
present book has presumably read Buddha's large numeral, a few 
pages back. Is 108,470,383,526,000 a repetition of that number? It 
is certain that people cannot comprehend very large numbers. 
Leeuwenhoek expressed amazement at those he came upon. Men- 
niger remarks that very large numbers are superhuman. One begins 
to understand why Kronecker, who was more skeptical than most 
nineteenth century mathematicians, said that God created the whole 
numbers. But, remembering the Old Babylonian word auatu, one 
can also understand why Archimedes may not have given the 
matter a second thought. 

There is another technological way of looking at large 
numbers. It is possible to construct mechanical or electronic dev- 
ices that can count much more rapidly, and are much less likely to 
lose count than people. Paradoxically, these devices are most 
effective in counting insubstantial events. The old-fashioned 
grandfather's clock will count hundreds of thousands of swings of 
its pendulum with a single winding. An ordinary electric clock 
counts more than five million oscillations of an electric current 
every day. The older definition of a second was related to the time 
required for the Earth to make one rotation. Then astronomers 
found that the Earth's rotation is not quite constant. The variations 
are slight, but can be measured, The present definition of a second 
is 9,162,631,770 oscillations of the light emitted by cesium atoms. 
Clocks do not accompany their counting with a soliloquy; they are 
not human. They are also not superhuman, since they are con- 
structed by people. Neither do they announce their count in 
incomprehensibly large numerals. Chimes were formerly more 
common than now. A child that has learned to count must still be 
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able to tell time from the position of the hands of a clock; this is a 
different kind of counting. The fact that clocks are under the domi- 
nation of human beings, are subhuman, is emphasized by the 
modifier in "present definition of the second"; about once a gen- 
eration, an international congress changes the definition in order to 
take advantage of new inventions and technologies. One sees that 
people can sometimes even make incomprehensible fictions come 
true. But it should not be forgotten that most people have no need 
to know the time all that accurately. Few people have any reason to 
encumber their memories with the niceties of the current definition 
of the second. 

Much of this has already been summarized. Archimedes, 
Buddha, and their predecessors introduced fictionally large numbers 
into mathematics. This is rarely recognized. All numbers are usu- 
ally considered to have an existence quite independent of people 
who can count and can make mechanisms that can count. This 
belief has been held by scientists and philosophers who, as will be 
seen, formulated it explicitly. It has been implicitly accepted by 
most people, even by those who do not give much thought to such 
matters, but have absorbed it from our educational system. There 
are two forms of this belief, and their proponents have indulged in 
lengthy debates. The first may be called the Doctrine of Natural 
Mathematics, and its simplest form has just been discussed. 
According to it, numbers exist in all of nature, both animate and 
inanimate. It is closely related to the atomic theory and to the 
theory of space. The other form of this belief asserts that numbers, 
ideal straight lines, and mathematics in general, exist in the soul. 
Since souls are immortal, and in all people, this also ascribes an 
existence to numbers which transcends any single person or group 
of people. This may be identified with the Doctrine of 
Psychomathematical Parallelism. The two doctrines are not neces- 
sarily incompatible, but the attempt to reconcile them has resulted 
in much ingenious and inconclusive argument. The view that 
numbers are parts of speech, grammatical inventions, eliminates the 
need for such debates. Yet, these debates are historical fact, and 
cannot be ignored in the present investigation. Since they have 
included geometry as well as arithmetic, the consideration of this 
controversial part of the history of mathematics will be postponed. 
Meanwhile. it will be convenient to write as if the outcome will be 
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favorable to the linguistic view of mathematics. 

It remains to mention one historical fact. Archimedes 
stopped his numeral system at the third Period, but it is clear that 
he could have extended his system and named even larger whole 
numbers. This was explicitly recognized by later writers, who con- 
cluded that there is no largest whole number. This is known as 
Archimedes' Axiom; it has played a somewhat dramatic part in the 
recent history of mathematics. 



How the Decimal Numbers 
Came to Europe 

Thus far, our decimal numerals have been taken for granted, 
but they also have a history. We call them Arabic; the Arabs call 
them Persian, and the Persians call them Hindu. They were 
invented in India, probably before the time of Archimedes, certainly 
before 200 B.C. They were widely used by Persian and Arabian 
scholars well before 1000 A.D., during the Dark Age of Europe. 
These scholars had also developed algebra, much as we now know 
it. Decimal arithmetic and algebra were taught in the Moorish 
universities of Spain and North Africa. A few French scholars stu- 
died at the Spanish universities and brought this knowledge to their 
colleagues, but it had little impact. More significally, the Moors of 
North Africa established business schools and taught this arithmetic 
to young people. One of these was Leonardo Fibonacci, son of an 
Italian merchant who, with his family, spent some years in North 
Africa. The son also became a merchant and settled in Pisa. In 
1202 A.D., he wrote an Italian version of the arithmetic he had 
learned from the Moors. It is not clear why he was so enthusiastic; 
perhaps only because the decimal numerals were different from the 
Roman numerals then used in Italy. It is also possible that he had 
not learned to keep books in Roman numerals, and therefore could 
not judge the relative advantages of the two systems. His 
manuscript was circulated and copied. His enthusiasm was conta- 
gious, and others wrote their own versions. Although the Italian 
Renaissance of learning and prosperity is usually dated from the 
fourteenth through the sixteenth centuries, the early work of 
Fibonacci is properly included in the Renaissance literature. It gave 
impetus to the mathematical and scientific studies which culminated 
in the work of Galileo and Newton. Fibonacci himself did original 
mathematical work, on the theory of population growth, but it was 
not of good quality. 

Despite the enthusiasm of Fibonacci's followers, the new 
numerals met with resistance. The sober-minded recognized their 
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disadvantages, and the advantages of the Roman numerals, which 
have already been mentioned in connection with the abacus. In 
some European countries, the decimal system was declared illegal 
because "0" could be changed to "6" or "9" by a single stroke. 
This objection could, of course, have been eliminated by changing 
the shape of the digits. It was, however, a simpler argument than 
the more fundamental one: the use of decimal numerals was more 
troublesome, and required more education, than the use of the 
Roman numerals. 

Still, the enthusiasm for the novelty spread. After the intro- 
duction of moveable type in the fifteenth century, textbooks of 
arithmetic were bestsellers and gave needed support to the new 
industry. This is reminiscent of the unexpected popularity of 
Newman's four volumes, The World of Mathematics, in recent times. 
It is difficult to explain this wide interest in mathematics, and espe- 
cially in mathematical innovations, but it is a social phenomenon 
that cannot be ignored. In view of the ineffective protests against 
the arithmetization of people's lives, it takes on a paradoxical 
aspect. 

The author and publisher of the first of these mathematical 
bestsellers are not known by name. It is dated at Treviso (near 
Venice), December 10, 1478. The opening paragraphs, as 
translated by D.E. Smith follow. 

Here beginneth a Practice, very helpful to all who have to do 
with that commercial art commonly known as the abacus. 

I have often been asked by certain youths in whom I 
have much interest, and who look forward to mercantile pur- 
suits, to put into writing the fundamental principles of arith- 
metic, commonly called the abacus. Therefore, being impelled 
by my affection for them, and by the value of the subject, I 
have to the best of my ability undertaken to satisfy them in 
some slight degree, to the end that their laudable desires may 
bear useful fruit. Therefore in the name of God I take for my 
subject this work in algorism, and proceed as follows: 

All things which have existed since the beginning of 
time have owed their origin to their number. Furthermore, 
such as now exist are subject to its laws, and therefore in all 
domains of knowledge is this Practica necessary .... 

To the professional mathematician this introduction seems confused 
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(e.g. the equation of the material abacus with the intellectual discip- 
line of arithmetic). To others, it may seem naive. But the frank 
intermingling of the practical and the religious, of creation and 
number, stirs the imagination. Is it also a clue to the sociological 
problem just mentioned? Whoever wrote it was more alert to the 
feelings of people than were the later scholars. The enthusiasm for 
the decimal numerals did not reach England until the time of Shak- 
espeare, during the reign of Elizabeth I. Then the physician, Robert 
Recorde, wrote several books on arithmetic, one of which, The 
Ground of Arts went through eighteen editions, and was still popular 
at the time of Newton's birth (1642). It opened with an introduc- 
tion entitled "The Declaration of the Profit of Arithmeticke" and 
treated a wide range of topics, from the use of the abacus with the 
new numerals to the extraction of square roots. All of this is indi- 
cative of an increase in the number of people who could read and 
write their native language. The invention of paper, which is 
cheaper than parchment or papyrus, may have contributed to this. 
Printing is also cheaper than handwritten manuscripts; it was intro- 
duced into England before the reign of Elizabeth's grandfather, 
Henry VII, about a year before the Treviso Arithmetic was written. 
The acceptance of the decimal system in England may also have 
been connected with inflation and the larger sums of money 
involved in commercial transactions. But this does not explain the 
introduction of square roots into the general curriculum of elemen- 
tary schools, where it remains to this day. 

This section should not be concluded without noting a recent 
trend away from the decimal system. Very few, if any, large elec- 
tronic computers are built to operate with the decimal system. They 
use systems with fewer than ten digits, usually with two or eight. 
These are analogous to the decimal system; they do contain a digit 
for zero. But they all have an upper bound, usually ten or a hun- 
dred billion. This bound is usually raised by the device of multipli- 
cation by powers of two or eight, but this results in a numeral sys- 
tem which is still bounded and has gaps: not all numbers less than 
the bound can be used. It cannot be expected that any but profes- 
sional users (programmers) of such machines will submit to the 
tedium of learning the machine's numerical system. Therefore, the 
machine is provided with an auxiliary device that translates the 
result of its calculation into the conventional decimal numerals 
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before they are automatically typed onto the paper. This abandon- 
ment of the decimal system was deliberate; some fifteen years ago, 
the pros and cons of the matter were debated at length. The use of 
the octal (base eight) system is a compromise between the binary 
and the decimal. The upper bound is imposed by the nature of all 
artifacts, whether they be abaci, books, or electrical devices. The 
choice of the upper bound is to some extent free, but any increase 
adds to the cost of the machine. 

It is not easy to foresee whether the decimal system will also 
be abandoned by our elementary schools. The pros and cons have 
not even been debated. Certainly, any proposal to abandon the 
decimal system will meet with as much resistance as did its original 
introduction. Certainly the fact that we have ten fingers will be 
used by opponents of such a proposal. Electronic computers have 
no fingers, and automated tools can be given as many fingers as 
needed. More importantly, it will be necessary to consider the 
effect of such a change on spoken language; new number-words 
would be needed. This might lead to even more drastic changes. 
Electronic computers operate with words and sentences as well as 
with numbers. Their rules of spelling and grammar are much 
simpler than those of English, but also much stricter. Errors in 
spelling are not tolerated, nor are metaphorical sentences. It will be 
well to let this sleeping dog lie. 



Fractions, Equity, 
and Higher Education 

In addition to words for whole numbers, most languages have 
words or phrases for "three-fifths" and "two-thirds"; these are the 
proper fractions. We now include the improper fractions like 
"eleven-thirds." The classical Greeks called them lepta or logoi, 
interchangeably. The Romans called them "ratios." In German, 
they are "broken numbers." Modern mathematicians follow the 
Romans and call them rational numbers. It must be emphasized 
that this is the original meaning of "rational"; it is now more com- 
monly used in the sense of a sound mind. This linguistic change is 
closely related to the doctrine of psychomathematical parallelism. 
The word was originally derived from the Latin ratus, which meant 
to reckon, to keep an account. The evolution of the later meaning 
will be more understandable after the origin of the doctrine of 
psychomathematical parallelism has been found. 

Terms like "two-thirds" must have been coined for use in 
discussing quite ordinary actions. Six melons can be shared equit- 
ably among three people by giving each two melons, provided the 
melons are of the same size. Five melons can be shared equitably 
among three people only by cutting the melons into pieces. Our 
children still find fractions more palatable when they are introduced 
while an imaginary pie is being cut. 

There are no records of the origin of fractions; one can only 
conjecture about it, using this simple example as a guide. It 
involves the notion of equity, but this is abstract, and unlikely to 
have been recognized in any but a quarrelsome way by very early 
people. Quarrels are not conducive to calm soliloquies, even after 
they are over. The other notion is the five melons and the three 
people, two sets of things to be counted. Trade by barter and bar- 
gaining is known to have preceded more elaborate commerce. Bar- 
gaining is a sort of shrewd quarrel. "I will give you two coconuts for 
those five melons." "No, you must give me four coconuts." This 
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might be followed by a period of aimless gossip, during which each 
of the traders does some reckoning, imagining what advantages 
would accrue from the possession of the other's goods, and the deal 
might be closed with a compromise: "Oh well, I'll give you three 
coconuts." L L D ~ n e ! "  In some such way, two numbers, and the 
idea of balanced advantages, equity, must have entered into conver- 
sation, and required new words to be coined. Some of these new 
words are: "fraction," "numerator," and "denominator." 

But oil and wine cannot be counted, and must be carried in 
jars, consumed in cups. Kernels of wheat can be counted, but in 
quantity they must be carried in sacks or jars and stored in even 
larger containers. Counting a useful quantity of wheat is time- 
consuming. Trade in such commodities would involve a new ele- 
ment: the purchaser would have to estimate the number of times 
his cup could be filled from the seller's jar. Bad bargains, discon- 
tent, and'quarrels would inevitably occur. Sellers might deliberately 
cheat, using containers whose size was misleading. Other commodi- 
ties would lend themselves more readily to weighing, to balancing in 
the pans of a pair of scales. Such speculations about the origin of 
fractions, weights, and measures can only be checked by evidence 
from much later times. 

Even these later times are now ancient, and the societies of 
those times were much different than ours. Today, we make a 
sharp distinction between religious rituals and secular routines. 
This was not always so. Agricultural routines were inseparable from 
the rituals of the goddess of agriculture. If the spring was unrea- 
sonably cold, both the planting of corn and its accompanying reli- 
gious rituals would be postponed. The appropriate days for such 
rituals and routines were not determined by counting days or watch- 
ing the heavens. The budding of trees, the blossoming or fading of 
wildflowers, the ripening of fruit were the phenomena to be 
observed, and such observation was much more effective than any 
commercial calendar. In republican Rome, an annual popular elec- 
tion sanctified two respected and successful farmers, who then 
became the Aediles of the year. They had charge, not only of the 
Temple of Ceres, but also of announcing the day for each of her 
rituals, that is, the day for each important farming operation. In 
Latin, the word for announcement is "calend"' hence our "calen- 
dar." The Aediles also supervised the food markets, and served as 
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magistrates to settle complaints and impose fines for cheating. It 
was an admirable arrangement, and served well so long as Rome 
was a small town, adequately supplied by nearby farms. 

In pre-dynastic Egypt, before 3000 B.C., Memphis was a small 
village with a temple and a market place. The priests of this temple 
also supervised the market. We have no good word for such func- 
tionaries as the Aediles, and so "priest" must do, even though this 
word has given rise to a false conception of ancient history. The 
priests of ancient Memphis not only knew the balance (our symbol 
for justice) but had an established system of weights and measures. 
Undoubtedly, they standardized privately owned jars, cups, and 
weights. These would be certified by imprinting the symbol of the 
temple and its god, and perhaps some numerals as well. The dis- 
tinction between standardization and sanctification cannot have been 
clear. The authority of the god would be invoked to punish cheat- 
ing. The statue of a later Egyptian surveyor ("rope stretcher") has 
survived; his coil of measuring line is fastened by a clasp that bears 
the insignia of a goddess. Very likely, he had vowed to perform his 
duties faithfully, and the clasp was a constant reminder as well as a 
badge of authority. 

The actual process of standardization would be a sacred trust, 
rather than a legal or scientific trust as it is now. One can conjec- 
ture, with fair assurance, as to the process of standardization. A 
large jar would be filled (or emptied) by a counted number of small 
cups. A set of equal weights would be prepared, equality being 
determined by balancing each against another; perhaps filing or 
grinding would be needed to bring about the balance. Thus, frac- 
tions with a unit numerator would be recognized; we call them 
reciprocals. Both the Egyptian and Babylonian mathematical texts 
give reciprocals an importance that can be taken as evidence of their 
antiquity. Just as very large numbers are fictions, so are their 
reciprocals. 

However, containers and weights of intermediate sizes would 
also be needed. Their standardization would require two countings, 
and so more general fractions would be introduced. These stand- 
ardized containers would be given names, and could readily be 
recognized. This would correspond to our gallon, quart, and pint. 
But since different containers would be used for wine and wheat, 
there would also be dry measures: our bushel and peck. These 
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objects, the containers and weights, were thus substantial, material 
embodiments of fractions. Moreover, they and their proper uses 
would be sacred. Here one recognizes another reason for the asso- 
ciation of divinity with mathematics, and of divinity with equity, 
justice. Several writers, notably A. Seidenberg, have emphasized 
this phenomenon. They seek the origin of counting and mathemat- 
ics solely in religious ritual, ignoring the utilitarian, secular nature 
of much of early religion. This view of the matter is not inconsis- 
tant with that outlined above; it differs only in emphasis. 

The Egyptian and Old Babylonian mathematical texts contain 
no explicit reference to the abstract idea of equity or justice; in fact, 
they are not abstract in any sense. They do, however, exhibit the 
solution of the problem of sharing a certain number of loaves of 
bread equitably among a given number of people. They solve the 
even more complicated problem of issuing a certain number of 
loaves equitably to the leaders of groups of people, each group con- 
sisting of a different number of people. . Problems of the inheritance 
of land are also discussed, again without abstract reference to ethics. 
Yet this is a matter of concern to society. It places brothers into 
competition with each other, and injustice in the legacy of a father 
can cause dissention among his descendants. Moreover, a given 
piece of land can be made more productive if it is farmed as a 
whole, rather than as a number of small independent plots. Of 
course, it cannot be maintained that this is the only cause of inter- 
nal dissention and inefficient production, but it is not a negligible 
one. It was one of the matters that Solon considered in framing his 
constitution. The Greeks were noted more for shrewdness than for 
honesty and justice. Homer warned against trusting them even 
when they came bearing gifts. Solon, the lawgiver, had the same 
experience as the Trojans. It should therefore not occasion surprise 
to find that they obscured the ethical component of fractions. Plato 
even objected to the use of fractions at all, as is shown by the fol- 
lowing extracts from his Republic. 

For you are doubtless aware that experts in this study, if any- 
one  attempts to  cut up the one in argument, laugh at him and 
refuse to allow it, but if you mince it up, they multiply, always 
on  guard lest the one should appear not as one but as  a multi- 
plicity of parts. 
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This does not exhibit his ethical attitude toward mathematics, and is 
obscure besides. It must be read in the context of another passage 
from the Republic: 

We should induce those who are to share the highest functions 
of state to enter upon that study of mathematics and take hold 
of it, not as amateurs, but to follow it until they attain to the 
contemplation of number by pure thought, not for the purpose 
of buying and selling, as if they were preparing to be mer- 
chants or hucksters, but for the uses of war and facilitating the 
conversion of the soul itself from the world of generation to 
essence and truth. 

Merchants and hucksters used fractions and were vulgar, con- 
sequently fractions should not be used by the elite. But the use of 
mathematics in war was as noble as its use for freeing the soul from 
the transitory phenomena of the world. Plato himself fought in at 
least three campaigns and was decorated for bravery. During the 
whole of his long life, Athens was almost constantly at war. He 
could not free himself from the ancient notion that victory proved a 
general to be a hero, a demigod under the protection of greater 
gods. This is the theme of Homer's epic poems, and these were the 
textbooks of the Athenian nobility. This blind spot of Plato's is evi- 
dent in much of his writing, and especially in his many ineffectual 
attempts to understand virtue. For the present, it is sufficient to 
note that he stripped mathematics of its ethical development, but 
not of its divinity. 

Plato's views about fractions and mathematics in general 
became official with his contemporaries, and later with us. In 
American and British schools, the phrase "vulgar fraction" was 
used to distinguish 315 from its decimal equivalent 0.6. This cus- 
tom had not disappeared in the early years of the twentieth century 
and the phrase can still be found in today's dictionaries. Bertrand 
Russell relates that as a child he calculated that he was growing four 
and one-seventh inches a year. He told this to his maternal grand- 
mother, and she told him that one must not mention any fractions 
but halves and quarters. Yet she was certainly not overly conserva- 
tive for a Victorian: she advocated votes for women years before 
the suffragettes were organized, and founded Girton College for 
Women in Oxford. 
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Incidentally, since the Republic is a work of fiction, this is a 
detailed illustration of the importance of fiction in shaping society. 
It is also a significant remnant of the aristocratic fallacy; it fails to 
take the actual structure of our society into account. 

Plato's inability to write clearly about war and virtue can be 
documented with many passages from his writings. Its origin must 
be sought in the time and place where he lived, and it must not be 
supposed that he was amoral by the standards of his contem- 
poraries. One more quotation from his writings will suffice for the 
present. It is the opening passage from his dialogue Menon; it 
should be prefaced by the remark that Plato's dialogues are not 
always reports of actual conversations. Plato put his own thoughts 
into the mouth of a more or less fictional character, Socrates. 
Menon opens as follows. 

MENON: Can you tell me Socrates - can virtue be taught? 
Or if not, does it come by practice? Or does i t  come neither 
by practice nor by teaching, but do people get it by nature, or 
in some other way? 

SOCRATES: My dear Menon, the Thessalians have always had 
a good name in our nation - they were always admired as 
good horsemen and men with full purses. Now it seems to 
me, we must add brains to the list. Your friend Aristoppos is 
a very good example, and his townsmen from Larissa. Gorgias 
is the man who set it all going. As soon as he got there, all 
the Aleuadai were at his feet - your own bosom friend Aris- 
toppus was one - not to mention the rest of Thessaly. Here's 
a custom he taught you, at least - to answer generously and 
without fear if anyone asked you a question; quite natural, of 
course, when one knows the answer. Just what he did himself; 
he was a willing victim of the civilised world of Hellas - any 
Hellene might ask him anything he liked, and every mortal 
soul got his answer! 

But here, my dear Menon, it is just the opposite. There 
is a regular famine of brains here, and your part of the world 
seems to hold a monopoly on that article. At least, if you want 
to ask anyone here what you are asking me, all you will get is a 
laugh and - "My good man, you must think I am inspired! 
Virtue? Can it be taught? Or how does it come? Do I know 
that? So far from knowing whether it can be taught or can't 
be taught, I don't know even the least little thing about virtue, 
I don't even know what virtue is!" 
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I'm in the same fix myself, Menon. I am as poor of the 
article as the rest of us, and I have to blame myself that I 
don't know the least little thing about virtue, and when I don't 
know what a thing is, how can I know its quality? Take 
Menon, for example: if someone doesn't know in the least 
who Menon is, how can he know whether Menon is handsome 
or rich or even a gentleman, or perhaps just the opposite? Do 
you think he can? 

MENON: Not I. But look here, Socrates, don't you really 
know what virtue is? Are we to give that report of you in 
Larissa? 

SOCRATES: Just so, my friend, and more - I never met any- 
one who did, so far as I know. 

MENON: What! Did you not meet Gorgias when he was here? 

SOCRATES: Oh, yes. 

MENON: Didn't you think he knew? 

SOCRATES: I have a rather poor memory, Menon, so I can't 
say at the moment whether I did think so. But perhaps he did 
know, or perhaps you know what he said; kindly remind me, 
then, what he did say. You say it yourself, if you like; for I 
suppose you think as he thought. 

MENON: Oh, yes. 

SOCRATES: Then let us leave him out of it, since he is not 
here; tell me yourself, in heaven's name, Menon, what do you 
say virtue is? Tell me, and don't grudge it; it will be the lucki- 
est lie I ever told if it turns out that you know and Gorgias 
knew, and I went and said I never met anyone who did know. 

Socrates' crude and irrelevant response to Menon's modest 
and serious question is disconcerting to the modern reader. It is a 
gratuitous attack on a man named Gorgias. One must first ask who 
Gorgias was, and what he had done to gain Plato's (or Socrates') ill 
will. Gorgias was a native of Leontini, a city near Syracuse, but 
then independent of that city's rulers. In his younger days, Gorgias 
took an active part in his city's affairs, and was repeatedly elected to 
high offices. In the year of Plato's birth, 428 B.C., he was sent to 
Athens as an ambassador from Leontini. Years later, when Plato 
was a young man and Athens was deeply involved in its disastrous 
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war with Sparta, Gorgias attended the Olympic Festival. This was 
always the occasion for a sacred truce, and all of Greece was 
represented. Gorgias entered the oratorical contest and was 
awarded the prize. In his oration he urged that Athens and Sparta 
make peace, and predicted disaster for all Greece if they did not. 
Since Plato and his family were in the pro-war faction at Athens, 
this would have been sufficient reason for Plato's enmity. 

Gorgias lived to be a very old man, and on retiring from 
active participation in public affairs, became a sophist. The sophists 
were, more or less, the successors to the Homeric bards. Many of 
them were itinerant, giving lectures and instruction for a price. 
Sometimes this price was a day's room and boatd. Sometimes they 
settled down as tutors to the sons of some wealthy family, or even 
opened a school where they charged tuition. Some of them, very 
likely, were charlatans, but others, like Gorgias, were responsible, 
honest teachers. Gorgias' well-deserved fame enabled him to 
charge high fees for his services. This was another point against 
him in Plato's view: Gorgias was reducing knowledge to the level of 
a commercial commodity. Paradoxically, many winners in Olympic 
athletic contests retired to become coaches and charged fees; Plato 
was a famous wrestler, and was most likely paid for coaching in that 
art. If so, he considered that a different matter; perhaps he was 
paid with presents rather than with money. Plato's family, leaders 
of the nobility and the pro-war party, traced all of Athen's misfor- 
tunes to Pericles' establishment of salaries for public service. 
Money and commerce were vulgar, and associated with their 
opponents. 

Furthermore, Gorgias and many other sophists taught rhe- 
toric. Then, as now, rhetoric included both grammar and the art of 
persuading people to cooperate in achieving a common goal. It is 
better to settle political differences with words rather than swords. 
Gorgias, had he been an Athenian citizen, would have been in the 
anti-war party, and so would many of his colleagues. Thus Plato 
could not accept Gorgias without disowning his own family and the 
glory of war. 

Toward the end of his long life (some say he lived to be a 
hundred), Gorgias retired to Thessaly and calmly spent his savings 
enjoying life. He may have chosen Thessaly not only for its cli- 
mate, but because it was peaceful compared to Athens or even 
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Sicily. In Thessaly, he was welcomed by the Aleuadai, the nobility, 
of whom Menon was one. Socrates' diatribe was therefore a per- 
sonal affront to Menon. In eighteenth-century France or England, 
it would have provoked a duel. This is one reason for believing 
that the dialogue is fictional. Menon was a proud man, a general in 
the cavalry; according to Xenophon, who knew him well, he was 
even haughty and overbearing. He would most likely have ter- 
minated the conversation before Socrates had finished the first para- 
graph. Against the hypothesis that Plato's dialogues are mostly 
fiction, one may cite the fact that many of their characters are, like 
Menon, demonstrably real people, whose lives are known to histori- 
ans. But this is also true of the Athenian dramas of that time, and 
especially of Aristophanes' comedies. It must be remembered that 
Solon's law against libel was not being enforced, though it had 
never been repealed. When Aristophanes lampooned Socrates in a 
most savage manner, it is said that the latter could only defend 
himself by standing up in the theater, smiling and applauding. 
There was thus sufficient reason for Plato's animosity toward Gor- 
gias and the Thessalians, and no reason why he should not express 
it in writing. 



The Decimal Point 
and Long Division 

The Akkadian numeral system was ambiguous for two rea- 
sons: the lack of a zero, and the lack of a decimal point. The 
decimal system, as originally introduced into Europe, was not ambi- 
guous because it had the digit "zero," But it had no decimal point; 
fractions were treated in the vulgar form of numerator and denomi- 
nator. This seems to have displeased some people. In 1585, Simon 
Stevin. a Dutch public official, engineer, and mathematician, 
invented the decimal fractions. His book taught how all "Computa- 
tions met in Business may be performed by Whole Numbers alone 
without Fractions." This is reminiscent of Plato's rejection of frac- 
tions as vulgar, but the dedication is not consistant with this. It 
reads: "To Astrologers. Surveyors, Measurers of Tapestry, Gaugers, 
Stereometers in General, Mint-Masters, and to all Merchants, 
Simon Stevin sends Greeting." Stevin did not actually use the 
decimal point, but that is immaterial. More importantly, he over- 
looked something that even the Old Babylonians might have 
noticed, had they invented a systematic method of long division 
rather than relying so much on reciprocals. 

One has 3 1 S 0 . 6 ,  but Y3=0.66666 ..., where the dots indi- 
cate an endless succession of 6's. It is impossible to speak or write 
an endless succession, but the more 6's one does write, the closer 
the approximation to Y3. It did make it possible to add fractions 
without reducing them to a common denominator: 
3/5+2/3=1.26666 ... One can invent a notation that avoids the 
endless succession: 2/3=0.(6) the parentheses indicating that the 
approximation will be better, the more 6's one writes. Another 
example is 105/37=2. (837) and the approximation will be better, 
the more times one repeats the three digits, 837, without changing 

1 
their order. In the same way, one finds that -=0.(09) and 

1 
11 

-=0. (0099). 
101 
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It is seen that the vulgar fractions are of two kinds. Fractions 
like 315, whose denominator goes into some power of 10 without a 
remainder, are equal to decimal fractions that terminate. Fractions 
whose denominators do not go into any power of ten without a 
remainder are equal to repeating or periodic decimals. The system 
of decimal fractions obscures the fact that a fraction involves two 
whole numbers. Instead it brings with it the fiction of an endless 
succession, infinity. 

Consider our method of division with the following exam- 
ple: 201848/511=395 remainder 3. Let n stand for one of the 
digits 0 through 9. Then the complete form of the soliloquy begins: 
"If ru: 51 1 is less than 2018, and (n+ 11x51 1 is greater than 2018, 
then the first digit in the quotient is n." A decision is therefore 
involved. It can be made by trying the integers 0 through 9 in suc- 
cession until the one satisfying the condition is found. Egyptian 
multiplication involved similar decisions. 

These are real decisions, but of a special kind. They are very 
different from the decision confronting a manufacturer, whose busi- 
ness seems to be outgrowing his plant. If he  borrows money to 
expand his plant, it will be some years before he can repay the loan. 
In that time, business may decrease and he may be left with a debt 
that he cannot repay. If he does not expand his plant, and his busi- 
ness continues to grow, he will have a constantly increasing backlog 
of unfilled orders; there will be delays, and he will lose customers 
and the profit he could make by supplying them. 

Nevertheless, it has become customary to use the same word 
"decision" for both kinds, even though the soliloquies involved are 
very different. This is a consequence of the fallacy that the solilo- 
quy of arithmetic is childish, not worth considering. To avoid it, let 
the decisions involved in division be called "no-risk decisions." 
For no risk is involved, other than that of making a mistake. The 
proper decision can always be found; it is determined by knowledge 
already present. This is not the case in the manufacturer's decision. 
He must make it before those events have occurred which will show 
it to be right or wrong. 

It is possible to build mechanisms that will do long division, 
including all of the necessary no-risk decisions. These need not be 
expensive electronic computers; the much cheaper calculator will 



180 Our Modern Idol: Mathematical Science 

do. Moreover, it will do long division (as well as addition, subtrac- 
tion, and multiplication) much faster than most people, and make 
fewer mistakes. 

The hope that it may be possible to convert the risky deci- 
sions into no-risk decisions is a very ancient one. It has led to the 
various systems of omens, auguries, horoscopes, and more recently 
to mathematical models of economics and sociology. With the 
advent of electronic computers, it was hoped that these mechanisms 
would make this ancient wish come true. This hope has not been 
realized. One corporation that manufactures computers advertises 
explicitly that its machines do not have this capability. It is better to 
advertise this fact, than to have its public image damaged by allow- 
ing its customers to discover this at their own expense. Computers 
do not soliloquize it in the same way as businessmen, statesmen, or 
politicians. 

Computers can be made to analyze public opinion polls, 
sometimes with some success. However, there is a modern fable 
about the two ways to determine the President's waist measure- 
ment: the one is to hold a public opinion poll, and the other is to 
inquire of his tailor. 



Epidemics, Square Roots, 
and Elementary Education 

Having arrived at the notion of a decimal number whose 
digits repeat in endless periods, it is said to be easy to imagine 
numbers with an endless but non-repetitious succession of digits to 
the right of the decimal point. Such numbers are called "irra- 
tional"; it might have been better to call them "aperiodic" or 
"non-repititious"; they are fictions, of course. And without 
methods for calculating at least the early members of the disorderly 
succession of digits, they would be completely useless fictions. 
Since about the seventeenth century, much of the work of profes- 
sional mathematicians has been the invention of such methods. 
What motivated all of this work? A complete answer would require 
a detailed and technical history of mathematics, extending back in 
time far before Stevin, and even requiring conjectures as to events 
of which there are no traditions, much less records. 

There are reasons (which will be discussed later) for believing 
that this history began with the following geometic problem: Given 
a square whose side has the length a ,  find another whose area is 
twice that of the first. In other words, find b  of this doubled 
square, so that b L 2 a 2  Seidenberg and others have shown that this 
problem was most likely proposed by ancient theologians rather 
than mathematicians. Doubling the area of an altar was supposed 
to be a public health measure, causing the gods to end an epidemic. 
In modern notation, b / a = a ,  so that the problem reduces to the 
calculation of  TO this point the historical evidence is quite con- 
vincing; but at some completely unknown time and place, someone 
found that a  and b  cannot both be whole numbers: b l a  is not a 
vulgar fraction. Naturally, it is also not known how this discovery 
was made. Initially it was formulated by saying that the sides a  and 
b  are incommensurable, for the general notion of irrational 
numbers was still far in the future. After this gap in the history, we 
can assign names and dates, provided that Plato's dialogue Theae- 
tetus is factual history. F.M. Cornford, who has carefully studied 
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this dialogue, believes it to be pure fiction. Nevertheless, the fol- 
lowing discussion will proceed as if i t  were factual. The 
Pythagorean distinction between square and oblong numbers has 
been described. According to Plato, the geometer, Theodorus of 
Cyrene, in the year 399 B.C., was able to demonstrate that the 
square roots of the oblong numbers 3,5, ..., 15,17 are irrational. He 
taught this to the young Athenian, Theaetetus, who matured into a 
very able geometer. Recent studies by Eva Sachs suggest that 
Theaetetus then worked out a complete geometric treatment of 
incommensurable lengths. Since Plato fails to mention 2 in this list 
of oblong numbers, it is thought that the irrationality of a was 
well known in 399 B.C., and that Theodorus used this fact in his 
demonstration. 

Lacking information about the ancient method of showing 
that 3 is not a rational fraction, the modern algebraic method will 
be presented; it consists of showing that the assumption that 3 is 
rational leads to a contradiction. Suppose that n and d are whole 
numbers, and that a = n / d ,  or, which is the same, that 2 d L n 2 ;  
d  is not 1 ,  otherwise 2 would be a square number, not oblong. It 
may also be supposed that n and d are not both even, otherwise a 
factor of 2 could be canceled, reducing the fraction n l d  to lower 
terms. The second form of the equation then shows that n must be 
even, d odd. Therefore let n = 2 m ,  m being a whole number, so 
that the equation becomes d2=2rn2 after canceling a factor of 2 on 
both sides. But then, d is shown to be even as well as odd, a con- 
tradiction. The supposition that a is rational is therefore false. 
This method can be used to show the non-rationality of any oblong 
number, provided that one has learned to cancel common factor 
from numerator and denominator. 

Having learned that 3 is not a rational number, we may 
guess that it is irrational. To demonstrate this, i t  is sufficient to find 
a method that enables one to calculate as many of its early digits as 
one has patience. This cannot lead to a repeating decimal, other- 
wise 4 would be a rational number. The simplest method for this 
purpose is based on the observation that, if a is any rational 
number such that a2> 2 ,  and if b=2/a ,  then b2< 2. One may say 
that a and b bracket f i  and that a-b  is a measure of the close- 
ness of the bracket. Consequently, the average of a and b ,  or 
(a+b)/2=a ' will be closer to d? than it is to a ; a ' will also be 



grcatcr than fi SO that i t  and b1=?/a' will bracket a more closely 
than a and b .  

Bracketing contains material of historical interest. The Indian 
mathematicians, who wrote in Sanskrit sometime during the first 
niilleniuni B.C.. knew that 5771408 was an approximation to a. 
I t  is disappointing to find that they do not say how they found this, 
or whether they knew that was irrational. An apparently much 
earlier cuneiform text suggests to D. Neugebauer that the Old 
Babylonians attempted to approximate the fraction 5771408 as a 
sexagesimal numeral, but did not quite succeed. The later 
cuneiform texts of the Seleucid period show that the approximation 
171 12 was well known; but again, they contain no explanation of 
the way in which it was calculated. One regrets the taciturnity of 
the writers, but most early mathematicians were more interested in 
the result than in the method by which it was obtained. This is 
almost the exact opposite of the attitude of modern mathematicians, 
who therefore tend to disparage their ancient predecessors. 

Even if this method of extracting square roots was known and 
used in early times, i t  gives no clue as to the reason for t r e a t i n g a  
differently from other square roots. The method can easily be 
modified to obtain any other roots. For 8, one need only replace 
b = y a  by b = 3 / a .  Again, bracketing is of interest because 
Archimedes published 1 3 5 1 / 7 8 0  as an approximation to a, but he 
also published the approximation J h 2 6 5 / 1 5 3 .  It  can be shown 
that this second fraction cannot have been obtained using this 
method, no matter what initial value of n is used. 

There are several methods of calculating square roots, of 
which this is the simplest, not only to use but to explain as well. In 
the United Slates, elementary schools teach their pupils a different 
method, one that is much more difficult to understand and use. 
They do not teach the history of the problem, especially not its ori- 
gin in a superstition. The difference between rational and irrational 
numbers is not expli~ined, only the difference between vulgar and 
decimal fractions. This educational policy is not easily understood. 
No adult (orher than elementary school teachers) remembers this 
method of finding a square root. Most adults never have a need to 
find a square root, and those engineers and scientists who do have 
this need use logarithms. This instruction does not provide the 
pupils with any useful knowlcdge,nordoes i t  give them an example 
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of good reasoning. It is another example of the burden which the 
dead hand of the past places on our education, a burden that could 
easily be lifted by an understanding of its history. 



The Perception of Space 

When we ask "How far is it?," we expect an answer like 
"three blocks" or "ten miles." It is true that city blocks can be 
counted, but originally there were no cities. We ask "How large is 
this room?" and receive the reply "23 by 31 feet"; after some 
arithmetic we remark "That's 713 square feet; it will need about 80 
square yards of carpet." But originally there were no rooms and no 
carpet; caves are not rectangular. In our society, space and arith- 
metic have become so intimately fused that it is difficult to separate 
them. It cannot always have been so. There must have been a 
time when the question "How far did you go?" could receive only 
some answer like "To the other side of the forest." It cannot be 
hoped that the people of those times will have left records for 
archaeologists to find. The earliest Mesopotamian and Egyptian 
mathematical texts are quite late, and show that their authors 
already had made calculations like the one described above. They 
already knew that the area of a rectangle was the product of the 
lengths of its sides, and the area of a triangle was the product of 
base times altitude divided by two. In the Punjab, the cities whose 
ruins are now called Moenjo-daro and Harrapa were large, and built 
of kiln-fired brick about 2000 B.C. Their houses were arranged in 
rectangular blocks, seperated by streets as wide and straight as ours. 
Their inhabitants may therefore also have associated numbers and 
arithmetic with space. Incidentally, these cities conformed to stan- 
dards of sanitation that have only recently been equalled. Such 
cities of geometric design, and constructed of good bricks, were pre- 
ceded by others of less regular form, and numerical geometry must 
have developed slowly. The perception of space is not intrinsically 
numerical, is not a matter of counting. 

One opportunity for obtaining information about primitive 
ideas of space has been missed. Quite recently, there were still 
societies whose people did not build cities, and did not build houses 
of brick or cut stone, or even of sawn wood. But the Europeans 
who first encountered these people were more interested in 
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inculcating them with European ways of thinking, than in finding 
out how others thought. Even modern anthropologists are not 
properly educated to understand primitive ideas about space. There 
is only one possibility of understanding the evolution of modern 
geometric thinking, and that is to reconstruct it imaginatively, after 
understanding the psychology and physiology of space perception, 
and using whatever evidence archaeology can provide. It is reason- 
able to suppose that human physiology and psychology have not 
changed greatly during the last ten thousand years. 

One may begin with the physiology of space perception, 
although our knowledge of it is far from complete. The eyes are 
the sense organs that furnish much of our information about 
space-filling objects, but touch and bodily motion also contribute 
essentially. Sensations arising in the muscles that move the eyeballs 
certainly contribute. The physics of the eyes is well understood. 
The transparent parts of the eye, (its cornea, lens, and fluids) cast a 
two-dimensional image onto the retina. This occurs according to 
the same physical laws by which the lens of a camera produces a 
photographic image, the same laws that Abbe worked so long to 
elucidate. Even a photo is a distorted image, a perspective view, 
but the image on the retina is even more distorted. The image of a 
straight line is a curve, not a straight line. Moreover, the eyes of 
most people are not identical, and even if they were, the curves on 
the two retinas would not be the same. Few people have eyes that 
are identical to each other: their retinal images are often of different 
sizes. The image produced by the most perfect eye has worse errors 
than Zeiss' first microscope. We are not aware of all this, nor even 
that the images are upside-down. Somehow, the two curved images 
of a straight line are interpreted as a single straight line, and this 
interpretation is made without awareness. There is no soliloquy as 
in the case of counting. While physiologists and anatomists can 
give no detailed explanation of this unconscious interpretation, it is 
certain that it occurs partly in the optic nerves which connect the 
retinas to the brain, and partly in that part of the brain where these 
nerves terminate. After the interpretation has been made, i t  is 
transmitted to another part of the brain, probably the cortex. I t  is 
this interpreted image of which we are aware, and about which we 
can speak and soliloquize. 



The Perception of Space 

During birth, the eyelids of a human infant are tightly closed, 
sometimes even overlapping. Despite this, the eyes (as well as 
other parts of the body) are often injured. Normally, after a few 
days, the infant's eyes, though small, are as perfect as they ever will 
be. At this early stage, the infant can use its eyes to some extent. 
They will follow a large white ball, moved slowly against a contrast- 
ing background, but if the ball is bounced, or if the background 
does not contrast greatly, the child's eyes do not follow the ball. 
Despite this, the infant does not have the "ability to see." This is 
learned before the ability to speak, and seems to be connected with 
motions of the eyes, arms, hands, legs, and feet. Very likely, 
memories of simultaneous visual, tactile, and muscular sensations 
contribute to this learning process, but they are not memories that 
the child will be able to recall in later years. Despite all the study 
that has been devoted to these problems, and despite the technol- 
ogy of making spectacles for correcting "vision defects," this learn- 
ing process is not well understood and is usually ignored. People 
who have had an eye injury or operation are conscious of having to 
"learn to see again"; even the adjustment to the use of bifocal 
spectacles provides one with some notion of the problems that a 
baby must solve. 

They are not much different than learning to walk, although 
the infant's behavior while learning to see attracts less attention 
from adults. In later years, the child will not be able to recall 
memories of any of these experiences, whether of learning to walk, 
speak, or see. These unrecallable, unverbalizable memories of very 
early events in a child's life do, however, influence its later life and 
abilities. Other aspects of what we call sight are learned much later, 
after the child has learned to speak. A child must have picture 
books explained to him. Some people can remember their childish 
bewilderment when first shown a photograph of an unfamiliar 
object, and their frustration while trying to communicate their 
bewilderment to adults. In 1915, Roy Chapman Andrews visited an 
isolated tribe living on the steep and narrow watershed between the 
upper Yangtze and Mekong Rivers. They were unable to recognize 
themselves on photographs until after instruction. Animals seem 
quite unable to understand pictures. A dog does not react to a pic- 
ture of itself, or even to its image when a large mirror is placed 
before it. Some aspects of vision are thus uniquely human, and 
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depend on the location of the eyes in the front, rather than the 
sides, of the head. 

There are also unrecallable, unverbalizable aspects to learning 
to walk. We say "1'11 walk to  the store." We d o  not say "I will 
periodically contract and elongate my right ----  and ---- muscles, 
synchronously elongating my left ---- and ----  muscles, thus moving 
my ---- and ----  bones so that my body will be propelled forward 
until it reaches the store." The blanks in this sentence stand for 
Latin names that anatomists have conferred on parts of the human 
body. Only an orthopedic surgeon could fill the blanks in properly, 
and he would probably wish to amplify the sentence into several 
pages. All of this is recorded somewhere in our brain and body, but 
not so  that we can recall and speak about it. Moreover, if we 
repeatedly walk to the store over the same route, we will not make 
exactly the same motions each time. This has been demonstrated 
by slow-motion movies. This is also true of animals. The human 
ability to speak and soliliquize is of n o  help in walking, but the vari- 
ability in the motions is significant. It is their variability of behavior 
that distinguishes people and animals from machines. 

Knowing all this, one should not be surprised to  find that the 
Greek philosophers, who were apparently the first to  think about 
the matter, sometimes reached the conclusion that vision and other 
sensory perceptions are all deceptive, illusory. Even today, writers 
find it difficult to give a precise definition of a visual illusion as dis- 
tinct from a true perception. Many books have been written on the 
subject. The scientific study of the psychology of space perception, 
of that interpretive process that does involve speech and soliloquy, 
was initiated by George Berkeley. He was remarkable for the 
variety of his achievements and is remembered as a mathematician, 
psychologist, educator, philosopher, humanitarian, and clergyman. 
His criticism of Newton's calculus has been accepted as valid by 
mathematicians. As an educator he is remembered at Yale and 
Harvard; Berkley, California, honors him by misspelling his name. 
As a clergyman, he  became the Bishop of Cloyne, in Ireland. He 
spent some time with the Indians of Rhode Island, and seems to 
have learned enough from them so that he abandoned an ambitious 
missionary project. His philosophy and psychology are closely 
related; this is illustrated by two of his epigrams: "To be is to be 
perceived"; "The corporeal is the sensory." The fundamental 
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importance he assigned to the perceiver, the observer, caused his 
philosophy to be rejected by both idealists and materialists. 
Remarkably, it has strongly influenced modern theories of atomic 
physics. He published An Essay Towards A New Theory of Vision in 
1709, and elaborated it in several later books. His Alciphron, orThe 
Minute Philosopher (1732) is a series of dialogues in which he 
presents his considered views on nature and religion. The following 
extract formulates the problem of space perception as he considered 
it. 

Euphranor: Tell me, Alciphron, can you discern the doors, win- 
dows, and battlements of that castle? 

Alciphron: I cannot. At this distance i t  seems only a small 
round tower. 

Euphranor: But I,  who have been at it, know that it is no small 
round tower, but a large square building with battlements and 
turrets, which it seems you do not see. 

The first two sentences refer to the geometric problem of per- 
spective, with which we are all familiar. It is said that Anaxagoras 
and Democritus solved this problem of graphic representation about 
450 B.C. The painters of murals in the buried city of Pompeii 
understood it. The paintings of the Italian Renaissance, and more 
recently, photographs, have made it commonplace. It is to be noted 
that the laws of perspective are actually rules for the production of 
two-dimensional artifacts that give some impression of three- 
dimensionality. Historically, it is a rather late invention. Berkeley's 
important addition to this mathematical theory is contained in the 
third sentence. 

The first time Euphranor walked through the woods and up 
the hill to the castle, he did not know that it was large and square. 
He gained this knowledge by walking around it, and perhaps by 
entering it. Our knowledge of a space-filling object does not consist 
of a single perspective. It is the memory of an orderly succession of 
perspectives, seen as we moved about it, or moved it about in our 
hands. Euphanor's words "large square building" are a concise and 
abbreviated description of such a memory. Such phrases are not 
much different from the phrase "a dozen apples"; this also 
describes a memory of counting apples, of a succession of visual 
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perspectives and other bodily sensations 

A slightly different situation is encountered when one sees a 
ladle in a bowl of clear liquid. Its handle is apparently bent sharply 
at the liquid's surface. By "apparently" it is meant that the succes- 
sion of perspectives, as one walks around the bowl, is not the same 
succession that would occur if the handle were really bent. More- 
over, in order to straighten the apparently bent handle, one need 
only lift it out of the liquid; if the handle were really bent, the prob- 
lem would be more difficult. Here are perspectives of another kind, 
memories of muscular rather than visual sensations. This theory, 
that shape is an orderly successions of perspectives, was used by 
Edgar Allan Poe to infer that a conjurer's trick was accomplished 
with mirrors. It was used by many painters and draftsmen, from 
earliest times to Picasso. The Egyptians habitually showed the face 
and feet in profile, with a front view of the torso. Some very early 
and some very recent painters show both right and left profiles of 
the head. A papyrus from the XVIII Dynasty (about 1600 to 1300 
B.C.) shows that an Egyptian architect drew the front and side views 
of a shrine to guide his workmen; he anticipated MongC's descrip- 
tive geometry, which has already been mentioned. This is nothing 
else than the representation of an object by three or more views. 
And these views are stylized perspective drawings. This method is 
still in use today. For use in designing complicated shapes, like 
automobile bodies, it has been computerized. The computer is 
given three or four views of the proposed design. From these, it 
generates a "Walt Disney" movie, which simulates the succession 
of views that would be seen by a person walking around it or look- 
ing down from a balcony. In this way, the designer can judge the 
aesthetic qualities of his proposed object. If the object has become 
familiar, or has a familiar shape, a single perspective view will 
evoke a memory of the whole succession. The shape is recognized 
at a glance. In fact, a simple word may evoke the memory. A sin- 
gle photograph is even more successful; Dr. Stanley Milgram has 
recently conducted an extensive program establishing these psycho- 
logical facts beyond doubt. 

Space-words, like number-words, serve to  summarize 
thoughtful action and succession. And, as cannot be overem- 
phasized, thinking is a soliloquy in which words play an important, 
but too often overlooked, part. Euphranor's space-phrase "large 
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square building" does not designate a single visual sensation, a sin- 
gle perspective. It summarizes his memory of a thoughtful walk, to 
and around the castle and back home. He will have seen and solilo- 
quized about the windows, doors, battlements, stonework, etc. He 
will have experienced the pleasure of walking; if he did not go 
alone, he will have spoken with others, the soliliquy would be 
replaced by conversation. In Alciphron, the space-phrase "square 
building" will evoke other, but similar memories; possibly he went 
to school in a small square building. This difference is not relevant 
to the communication he receives from Euphanor: it is the common 
element in their memories that is communicated. 

If knowledge of a space-filling object is so closely connected 
with language, i t  must depend on the language one speaks. We are 
not aware of this, because all modern European languages have a 
common heritage from Greek and Latin. It is only when we come 
into contact with people who do not have this heritage, that we 
become aware of it. And even then, our awareness is not one of 
understanding but of bewilderment. Of course, this also applies to 
other kinds of knowledge. This confusion has been experienced by 
many Europeans who have been engaged in teaching non- 
Europeans. Berkeley must have been aware of it from his experi- 
ence with the Indians of Rhode Island. Silvia Townsend Warner 
has illustrated this mutual bewilderment by an amusing story of the 
well-intentioned efforts of an Englishman trying to teach geometry 
to a friend who had lived all his life on an isolated island in the 
South Seas. 

It is also important to notice that Euphranor did not open his 
conversation with a question about the natural landscape, but with 
one about an artifact --  the castle. Artifacts and languages change 
with time. Shakespeare allows us to hear not only the conversa- 
tions, but the soliloquies of his characters. None of them speak of 
cameras or airplanes. Most words are coined during conversations, 
and one does not usually speak about objects that do not exist and 
whose construction is not even planned. One may write fiction 
about them, or tell tall tales about them, but even the exercises of 
the imagination are usually kept within bounds imposed by the 
credulity of the audience. If Shakespeare had conceived a spy story 
that involved a camera and an airplane, it could not have been 
presented to an Elizabethan audience. He would have had to 
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convert the plane and camera into a talking eagle. As has been 
noted, the phrase "tune in on a broadcast" was meaningless sixty 
or seventy years ago. 

Two cavemen could not have carried on a conversation like 
that between Alciphron and Euphanor; they had never seen a build- 
ing. It must be concluded that space-words, like number-words, 
were coined as society and technology became more complex. We 
can only speculate about the first time the most common words of 
our languages were used, and it may be that they evolved slowly 
and gradually. The invention of new artifacts was not as sudden 
then as now. There are some limitations on the exercise of the 
imagination. The most important is our knowledge of the way in 
which relatively new words like bus and phone were coined in con- 
nection with hitherto unknown artifacts. Some ancient artifacts 
have survived, and sometimes their chronology can be fixed with 
more or less certainty. It can scarcely be doubted that their inven- 
tion was paralleled by the invention of new words, not only for the 
artifacts themselves, but for their components and methods of con- 
struction. These new words would not be coined according to deli- 
berate systematic rules, as are those of recent artificial languages, 
invented for computers, or for other scientific purposes. But the 
vocabulary of even the natural languages grew according to the 
same principle: n o  word is coined until it is needed. 



The Rules of the Cord 

The primeval landscape has few examples of straight objects; 
reeds and the stalks of some grasses are about the only ones. Pud- 
dles in sheltered locations have flat surfaces. These would not 
immediately be conversation pieces, leading to the coining of words 
like "straight" and "flat." It is possible that they were not even 
seen as much different from the leaves and branches of trees, or 
the surface of a stone. We provide our infants with blocks that 
have flat surfaces and straight edges; we raise them in nurseries 
with flat floors and walls that intersect in straight corners. Ancient 
infants had none of these, and presumably heard no words to direct 
their attention to straightness and flatness. Writers like James Feni- 
more Cooper, who knew the American Indians, do not tell us of 
their ability to draw straight lines. Instead, we read of their ability 
to track an animal by interpreting phenomena (bruised leaves, dis- 
placed pebbles) that the European eye does not see. Presumably, 
their languages had words for these phenomena. It is known that 
the Eskimos have many words for snow that we can translate only 
as phrases: "soft snow falling through the air"; "freshly fallen fine 
hard snow"; "snow with a hard crust"; and so on. 

Hunters would find that spears with straight hafts are more 
effective than those with crooked hafts. The invention of the bow 
and arrow would place more value on straightness, and the taut 
cord of the bow would provide a standard of straightness. The 
loom would also require taut parallel strings, and produce more or 
less rectangular mats and pieces of cloth. The necessary words 
would evolve simultaneously with the inventions, and most likely, 
the ability to see such shapes as well. There is ample evidence for 
the importance of the taut cord in the construction of more ela- 
borate geometrical objects, as well as in weaving and similar techno- 
logies. 

A taut cord can serve as a standard of length. By marking the 
position of both ends and repeating the process, lengths equal to 
whole numbers of units can be measured. By folding the cord, 
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fractions of a unit are obtained. The subdivisions can be marked 
either with knots or with spots of dye. Throughout the long history 
of Egypt, inscriptions and murals indicate that land was surveyed by 
"rope stretchers," but there are few details. Subdivisions of the 
rope are rarely indicated. Straight wooden rods with clearly marked 
subdivisions were used for associating numbers with smaller 
lengths. This raises a question: how were the straight rods con- 
structed? The branches of trees are not straight; the rods as well as 
the cords were artifacts. When the Egyptians wished, they could 
work to remarkable precision. The base of the Great Pyramid was a 
square to better than one part in a thousand, but many later pyram- 
ids are far from square, or even rectangular. Egyptian masons (and 
presumably woodworkers as well) are also known to have used 
cords. Apart from a simple cord, they used an ingenious device 
that has come to be known as "boning rods." This consisted of 
three rods of equal length (about six inches), two of which were 
provided with diagonal holes through which a cord was passed. 
When an irregular block of stone was to be given a flat face, three 
holes, a, b, and c, were drilled, as shown by A ,  whose bottoms 
determined the final plane. A fourth hole was then started between 
b and c,  and deepened until the stretched cord just touched the top 
of the third boning rod as shown by B. Its bottom, and those of a, 
b, and c would then be in the same plane. A fifth hole, with its bot- 
tom in the desired plane, could then be drilled, and s o  on. When a 
sufficient number of such holes had been drilled, the intervening 
material was broken away, leaving a more nearly flat surface. The 
final dressing was done by hand grinding and polishing until the 
whole length of a stretched string would touch the surface at all its 
points, n o  matter in what direction it was laid on the surface. 

Once a plane surface had been fashioned, the cords had other 
uses. Coated with clay or ochre, stretched between two points on 
the surface and then plucked, a good straight line would be marked, 
which could be used to guide further work. According to V.G. 
Childe, lines drawn in this way have been preserved on a bitumen 
floor at Erech in Mesopotamia, dated about 3500 B.C. Looped 
around a fixed peg, the free end of the cord would describe a circle. 
There is abundant evidence that geometry developed in this way. 
Although the potter's wheel also produced circular artifacts, i t  did 
not produce planes of straight lines. 



The Rules of the Cord 

FIGURE 5 

Boning Rods 

Egyptian methods of stone-cutting were laborious, time- 
consuming, and required much skill. This was partly because of the 
innate conservatism of the society, and partly because all metals had 
to be imported. Copper was most plentiful but it is soft. It is 
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known that soft metals, when used with abrasives, can be used to 
drill the hardest stone. Much of the rest of the mason's work was 
done with stone and wood implements. Consequently, everything 
was sacrificed to reduce the amount of stonecutting to a minimum. 
This accounts for the large, often huge, and odd-shaped blocks that 
they used. Their architectural styles are much admired but their 
craftsmanship deserves at least as much admiration and study. The 
unfinished blocks were transported from the quarry to the building 
site. There the masons selected them so as to minimize the 
stonecutting, making rectangular faces only when the architectural 
design required it. The masons thus had discretionary authority 
that contrasts strongly with the static rules which governed most 
Egyptian activities, including other forms of art. It seems to have 
prevented the recording of a systematic geometry. Yet, when occa- 
sion demanded, quite complicated geometric problems were solved. 
The accurate fit of the slanting faces shows that the masons knew 
how to construct parallel planes; a minimum of mortar was used. 
The exposed faces of the walls were not finished until all the blocks 
were in place, and then they were plastered if they were to have 
painted murals. It is known that murals and bas-reliefs were 
transferred from sketches to the walls by the still-used used method 
of coordinate squares. It is also known that on at least one occa- 
sion, an architect specified a curve by giving the numerical Carte- 
sian coordinates of some of its points. This survived because the 
sketch, with its numerical coordinates, was drawn on the flat face of 
a stone chip. As was mentioned earlier, a tattered papyrus from the 
XVIII Dynasty shows front and side elevations of a shrine, superim- 
posed on an accurately drawn coordinate grid. 

This account of the geometric knowledge of the Egyptian 
craftsmen is based entirely on the book written by Clarke and 
Engelbach, which acknowledges earlier work by Flinders Petrie. In 
the jargon of the 1960s laboratories: this research was bootlegged. 
Our society is liberal in its support of the excavation of royal tombs 
and the restoration of temples. These activities provide golden 
trinkets for display in museums, and art photos that can be repro- 
duced in four colors by historians of architecture. Colorless but 
careful studies of Egyptian technology do not lend themselves to 
such exploitation; the worn-out tools of masons and slaves are 
stored in the museum cellars, awaiting someone to study them. 
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There seem to be no studies of the masonry of other societies, but 
extenuating circumstances can be found. The Egyptians were very 
conservative; changes in method were not great, and occurred only 
slowly. In other societies, changes were more rapid and sometimes 
abrupt. This increases the difficulty of studies like those of Clarke 
and Englebach. It must also be said that archaeologists have made 
similar and much more extensive studies of pottery, and used the 
results in many ingenious and informative ways. One is disap- 
pointed, but not too surprised, to find that the possibilities of 
masonry (stone or brick) have not been exploited in the same way 
as have those of pottery. Petrie, Clarke, and Englebach have thus 
provided us with good evidence that the Egyptian craftsmen pos- 
sessed quite advanced geometrical knowledge, and there must have 
been words to express it. Unfortunately, they were not recorded in 
any systematic form. The mathematical texts of the XI1 Dynasty 
are of little help in this respect. They contain only the memoranda 
of specific calculations, and technical terms are not clearly defined. 
It seems that their writers tacitly supposed that the reader would 
understand them without words. These must have been in current 
use, or else were explained orally. Many were probably like our 
word, "pig." Shakespeare would never have expected this to come 
to mean a chunk of cast iron. This leads many to follow Plato and 
say that the mathematics of the Egyptians was not a science. Yet, 
long before Plato, they knew how to calculate the areas of triangles 
and rectangles, the volume of granaries of various shapes, including 
cylindrical. For this last, they used the value 

which is not a bad approximation. The volume of the frustum of a 
pyramid was important for Egyptian planning, and they made the 
calculation correctly. The derivation of the general formula is not 
given; if the texts are handbooks, used for reference, this would not 
be expected. Yet, if and when they were used for teaching, all the 
necessary explanatory language must have evolved. The absence of 
later texts leads one to suppose that the knowledge was transmitted 
orally, and in words that could be easily understood and memorized. 
in the present unsatisfactory state of Egyptology, it is useless to 
speculate about this in any detail. 
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There are several generalities that do emerge, however. Nei- 
ther the texts, nor the material evidence indicate a close connection 
between Egyptian theology on the one hand, and this arithmetic and 
geometry on the other. If there had been, the masons would not 
have been allowed to exercise so much discretion. It is true that 
there are murals showing pharaohs "stretching rope" to lay out the 
foundations of a temple. The accompanying inscription indicates 
that, while doing this, the pharaoh kept a goddess informed of his 
actions, assuring her of his strict adherence to procedural rules. But 
it is very likely that these were ceremonies similar to our modern 
cornerstone layings. The pharaoh probably had little real knowledge 
or skill, and the actual work was most likely done by craftsmen. 
Today the masons, who make sure that the cornerstone has the 
proper shape and is properly laid, do not appear in the news photos, 
nor do they participate in the ceremonies. 

There is evidence that the cord was also used by the Mesopo- 
tamian builders. At Ur, three bas-reliefs were found on the walls of 
the Ziggurat (temple-pyramid), one showing the king receiving the 
coiled rope and measuring rod from the god, symbolizing a divine 
command to build the temple. A second shows the king before the 
god, carrying trowel and mortar-basket. A third is fragmentary but 
more realistic: it shows the bricklayers climbing ladders and doing 
the actual work. This kind of connection between religion, architec- 
ture, and mathematics is very tenuous. 

The early use of elementary Mongil geometry is striking. For 
one thing, this indicates its fundamental character. For another, it 
shows that written records cannot be trusted to indicate the full 
extent of a society's knowledge. The phrase, "a society's 
knowledge" must not be taken to mean that every person in that 
society had the same knowledge but only that those whose business 
it was to know, had that knowledge. The aristocratic fallacy pro- 
duced a sedimentation of knowledge into the "lower classes"; writ- 
ing materials were valued so highly that little technological 
knowledge was recorded. Presumably most of the lower classes 
were illiterate. Yet the master masons were able to sign their 
names and use the Egyptian systems of numerals, weights, and 
measures, as is shown by graffiti found in their stone quarries. This 
fact was also not recorded on papyrus, or formally inscribed on tem- 
ple walls. 
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The Cartesian coordinates invite more extensive speculation. 
The sketch of a mural superimposed on a coordinate grid suggests 
tile construction. While Egypt has no extensive deposits of clay 
suitable for the mass production of ceramic bricks, it was famous 
for its glazed pottery. This industry began in Neolithic times, but 
tile was never used extensively in architecture. It may be a coin- 
cidence, but Petrie found evidence of square tile, glazed and 
embossed, during the same XVIII Dynasty that preceded the evi- 
dence of the Cartesian coordinates. By the XX Dynasty, it is certain 
that tile was in limited use for wall covering. Brick and tile are 
countable objects, and, as was suggested earlier, this may have led 
to the association of numbers with areas and lengths. Carefully 
molded, kiln-fired brick and tile were used in Mesopotamia and 
India much earlier than in Egypt. There is also evidence that 
numerical calculations were more integrally related to Mesopo- 
tamian geometry than to Egyptian, but this is an inference from a 
very few texts. It has already been noted that the Mesopotamians 
used the same name for units of area and volume. This may have 
been because of the early use of bricks and tile of standard sizes, 
and rectangular shapes. The numerical measure of areas and 
volumes would then be found by counting the same objects: the 
bricks. This is a hypothesis, but it accounts for some of the 
differences between Mespotamian and Egyptian geometry. 

While the geometrical literature from India is of a much later 
date than that of Egypt and Mesopotamia, it is more detailed. It 
also shows that a much closer connection had been established 
between theology, bricks, and geometry. Three authors, Baudhay- 
ana, Apastamba, and Katyayana, each wrote books entitled Sulva 
Sutra. The title is usually translated "The Rules of the Cord," and 
they give additional evidence that the cord and tile masonry were 
fundamental in the evolution of geometry. The complete texts of 
two of these three books have been translated into European 
languages; both Heath and Seidenberg give extracts and summaries, 
as well as references to other discussions of this material. There is 
general agreement that the Sulva Sutras were given their present 
form in the third and fourth centuries B.C., but there is also evi- 
dence that these were not the first editions. Moreover, the Egyptian 
evidence strongly suggests that they are based on knowledge 
acquired by the Indian bricklayers of a very much earlier period and 
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presumably transmitted orally from generation to generation. There 
is also internal evidence that the Sulva Sutras are based on geometri- 
cal knowledge that must have taken centuries to accumulate - cen- 
turies that included the illiterate dark ages of both India and Greece. 
There is also the possibility that this knowledge evolved elsewhere 
(say in Mesopotamia) and was an importation, but if so, there is no 
evidence for the source or the date of the importation. 

The Sulva Sutras are concerned mainly with the construction 
of brick and tile altars that conform to certain theological 
specifications. However, houses and temples in India were con- 
structed of brick and tile before the end of its dark age. The theol- 
ogy also arose much earlier. The books were apparently written 
about the time India was developing its script, complete with the 
numerals that later evolved into our "Arabic" system. These writ- 
ings therefore record only the end of a long history. The fact that 
the cord is still important at this late stage is quite significant in 
itself. For that matter, tape measures are still used in modern 
Europe and America, and carpenters used the chalk line until the 
advent of machine tools for producing straight edges. The Indian 
theology required the construction of altars of various shapes and 
sizes. The shapes included squares, circles, combinations of rectan- 
gles and squares, and stylized falcons and hawks. Depending upon 
circumstances, these were to have various sizes, but the shapes 
were always to be similar. The cord was used to lay out these 
shapes on flat level ground by driving pegs. The altars were then 
constructed of tile having specified shapes and sizes. The authors 
of the Sulva Sutras were mediating between the theologians and the 
master builders and bricklayers. 

Before proceeding to other matters, one linguistic peculiarity 
deserves mention. The diameter of the cord does not seem to have 
been specified. Either it had been standardized by long custom, or 
it was assumed that the reader's common sense would keep him 
from using a hawser. The wording is such that, with our Greek 
heritage, it is easy to reach the conclusion that it was an ideal cord 
of zero diameter. It is more likely that the failure to specify its 
diameter was a linguistic device to simplify the wording of an other- 
wise cumbersome sentence. It was not expected that microscopic 
precision would be achieved; the gods were not all that superhu- 
man, or at least did not expect superhuman efforts by their 
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worshippers. Frequently there are instructions to mark the cord at 
some point, or to fasten its end to a peg. No details of these pro- 
cedures are described; this again suggests reference to long esta- 
blished procedures, rather than to idealizations. Otherwise, why 
were the words "cord" and "peg" used instead of "straight line" 
and "point?" There is a psychological difficulty to be overcome 
when making this fictional abstraction, from a peg (or the imprint 
left by a peg in the ground) to the insubstantial point. This is 
recognized by Sylvia Townsend Warner in the story mentioned 
above. The early history of these fictions is very obscure. They 
appear suddenly in the writings of classical Greece, but with little 
explanation and with no indication of their earlier history. It seems 
that they arose only once in the history of mankind, and diffused 
slowly from a single source. Until quite recently, there were parts 
of the Earth that they had not reached; possibly there still are. 

A single example will suffice to show how the cord and pegs 
were used in India. Let it be required to lay out a square whose 
side has a given length. A cord of this length is cut, as indicated by 
the line AB in Figure 6-1; its midpoint, and the midpoints of its 
halves are marked - indicated by C, D, and E. It is then stretched 
straight upon the flat ground, and pegs (indicated by circles) are 
driven to mark the current positions of A, B, C, D, and E. The 
ends, A and B, are then fastened to the second and fourth pegs, as 
shown in Figure 6-2; the cord is grasped at C and stretched; a sixth 
peg is driven to mark the current location of C. The end, A, is then 
fastened to the third peg, as shown in Figure 6-3; it is stretched to 
pass over the sixth peg, and a seventh peg is driven to mark the 
new location of C. This description of the procedures becomes tedi- 
ous, and the reader will presumably find Figure 6-4 self-explanatory. 
The eighth peg, again at C, is one corner of the required square; the 
other three corners are pegged in the same way. It is easy for us to 
imagine simpler ways for accomplishing this construction, but that is 
because many people have worked on it, and have isolated the 
essentials and removed the nonessentials. 

Numerous other peg-and-cord constructions are described in 
the Sulva Sutras, some of them showing the same (to us) excessive 
complication. But it is more interesting to describe their authors' 
knowledge then their failings. They knew that a rectangle whose 
sides were a and b units long, had an area of ab square units; that 
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A C D E B  - 

FIGURE 6 

Creating a Square 

the diagonal of the rectangle divided it into equal triangles; and 
much more. Since every straight line was associated with its numer- 
ical length, every cord-and-peg construction acquired a correspond- 
ing arithmetic or algebraic interpretation. For example, construction 
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FIGURE 7 

corresponding to the diagrams of Figure 7 are described, the lengths 
a and b being prescribed. The diagrams correspond to the algebraic 
formulas 

(a+b)La%2ab+b2 

(a-b)La2-2ab+b2 

These equations were not expressed in words, and the lengths were 
not assigned letters, as we do in algebra. Even today we say that 
one diagram is worth a thousand words. It has been noted above 
that similar arithmetic propositions could also be obtained from the 
study of dot-diagrams representing whole numbers. But the length 
of the cord need not have been a whole number of units. This is 
therefore an important step from the arithmetic of whole numbers 
toward algebra as we know it today. Again, earlier Greek mathema- 
ticians had taken this same step. 

The relation of theology to Indian geometry is important, not 
only for its own sake, but because Plato's theology bears a some- 
what different relation to Greek geometry. Only the specifications 
of the theologians were recorded in the Sulva Sutras. The theology 
itself was recorded in a series of associated works: the Kalpa Sutras, 
and the Brahmanas. It has already been noted that, in order to stop 
an epidemic, it was considered necessary to 

1) Construct a square altar whose area was twice that of 
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another. 
For reasons that remain obscure, under other conditions it was 
necessary 

2) to construct a square altar whose area was equal to 
the sum of the areas of the other two altars, and 
3) to construct a circular altar whose area was equal to 
that of a square altar (or conversely). 

These do not exhaust the assignments that are solved in the Sulva 
Sutras, but these are fundamental. The first two were solved by the 
propositions: 

1) The diagonal of a square produces the double of that 
which one of its sides produces. 
2) The diagonal of a rectangle produces the sum of 
what the longer and shorter sides separately produce. 

The context makes it clear that a line produces a square, and that 
areas are to be added. The second proposition is essentially what 
we know as the Pythagorean Theorem. With the passage of time, it 
has become more and more important for the study of geometry. 
We consider the first proposition as a special case of the second. 
But this separation of the two propositions also occurs in Babylonian 
mathematical texts, and in the writings of Plato. It seems to indi- 
cate that the second proposition was discovered before the first, and 
that tradition preserved the separation. This may be the reason why 
Theodorus of Cyrene treated fi differently than 8, d, etc. It 
has already been noted that the authors of the Sulva Sutras knew 
the very accurate approximation 5771408 for fi. The less accurate 
Old Babylonian approximation, 17/12, was also found only on a 
tablet devoted to the calculation of the diagonal of a square. But 
there is no evidence that either of the authors of the Sulva Sutras or 
the authors of the Old Babylonian texts knew that fi is not a 
rational number. The origin of this knowledge remains unknown 
despite the new discoveries of twentieth century scholars. 

The historical relations between the Indian and Greek geome- 
ters is unknown. It is known that Alexander the Great had Greek 
philosophers among his advisors, and that they reached the Indus 
River. It has been suggested that the Indian geometers were 
indebted to this brief contract with Greeks. This seems unlikely, 
for there were obvious linguistic and military barriers that would 
have prevented communication between scholars. 



Plato and 
Eucleides of Megara 

There is a general tradition that Plato had a great interest in 
mathematics and sponsored, or even required, its study. Yet writers 
on the history of mathematics treat Plato's own writings on 
mathematics very briefly, and only in paraphrase. This is justified 
because his contributions to technical mathematics are, to say the 
least, meager. Paraphrasing, however, involves a danger: the 
danger that the historian will use Plato's prestige to justify his own 
opinions, or those current in his own time. This has happened 
often. If one is investigating the foundations of mathematics, and 
its influence on present day society, Plato's writings must be con- 
sidered as historical documents, not as textbooks of mathematics. 
The writer's opinions should be separated from the document itself, 
leaving the reader free to form an independent judgement. 

Plato was an Athenian nobleman and is considered to have 
been a disciple of Socrates. Socrates was executed for reasons that 
remain somewhat obscure despite Plato's account of the cir- 
cumstances. After the execution, Plato and other friends of 
Socrates left Athens and stayed for a time with Eucleides of 
Megara. Plato was then twenty-eight, Eucleides fifty-seven. 
Eucleides had often traveled the twenty miles from Megara to 
Athens in order to visit Socrates, and did so at the time of the exe- 
cution (399 B.C.). It is now impossible to distinguish the influences 
of the two men on Plato, or to say how much they may have 
influenced each other. Plato was also influenced by the Pythagore- 
ans. In particular, he adopted their custom of ascribing his own 
(and other people's) ideas to the Master; in Plato's case, the Master 
was Socrates, as has been noted above. Socrates seems never to 
have put his own opinions in writing. 

So far as is known, all of Plato's writings have survived. This 
survival, however, is not the same as the survival of a clay tablet 
bearing cuneiform writing; these tablets are holographs: they bear 



206 Our Modern Idol: Mathematical Science 

the writing of the author. All that is needed to understand what an 
author meant is a knowledge of the language in which he wrote. In 
the case of the cuneiform texts, this knowledge is still incomplete, 
but it is increasing. Even if Plato's holographs had survived, this 
same problem would exist, for he wrote in a language that is similar 
to, but not identical with the Greek spoken in modern Athens, or 
the classical version taught in our universities. Only copies, edited 
versions, and translations have come down to the present time. 
During the period in which he wrote, the various Greek dialects 
were in a state of rapid change, but were scarcely fused into a single 
language. It is therefore more accurate to say that various interpre- 
tations of Plato's writings have survived; one need only compare 
three or four English versions of the same Platonic dialogue to con- 
vince oneself of this. The continuing controversies among scholars 
of Plato are additional evidence of this. 

The order in which the dialogues were written can be deter- 
mined only from their content, and there are differences of opinion. 
It is generally agreed that, Phaedo and Menon, are among the ear- 
lier, while Phaedrus and the Republic are later. Timaeus and Critias 
may be the latest. Only one, Theaetatus, seems to be datable on 
internal evidence, but even in this case, there are differences of 
opinion concerning the reliability of the date. 

Returning to Eucleides, he seems to have originated the 
Megaran system of philosophy. Its central tenet was that experience 
and sensory perception are not essential to knowledge. What we 
call learning (by instruction or experience) is really the recollection 
of things the soul has known all along. One's soul knows every- 
thing that can be known and it is only a matter of calling it to mind. 
At first, Plato seems to have accepted this doctrine without 
modification, and his later modifications are not complete repudia- 
tions of the original. His original version (or Socrates') is given in 
both Phaedo and Menon. Moreover, Menon contains a more exten- 
sive discussion of geometry than any of the other twenty-six dialo- 
gues. It is almost the only one for which modern translators con- 
sider it necessary to supply diagrams and editorial comment in order 
to make it easier for the reader to understand the text. Perhaps it 
was meant to be acted, but there seem to have been no stage direc- 
tions. Not even all of Menon is devoted to geometry: it is generally 
said that its principal topic is Virtue, and this aspect of the dialogue 
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has already been mentioned above. The geometric portion is 
quoted in full below. The text is that of W.H.D. Rouse's transla- 
tion; the present writer has substituted his own diagrams and edi- 
torial comments for Rouse's. The geometry is introduced almost 
parenthetically as an illustration of Plato's (or Socrates' or 
Eucleides') theory of knowledge. Menon has just objected to some- 
thing Socrates has said, and the conversation then continues as fol- 
lows. 

SOCRATES: I understand what you wish to say, Menon. You 
look on this as a piece of chop-logic, don't you see, as if a man 
cannot try to find either what he knows or what he does not 
know. Of course he would never try to find what he knows, 
because he knows it, and in that case he needs no trying to 
find; or what he does not know, because he does not know 
what he will try to find. 

MENON: Then you don't think that is a good argument, 
Socrates? 

SOCRATES: Not I. 

MENON: Can you tell me why? 

SOCRATES: Oh yes. I have heard wise men and women on 
the subject of things divine. 

MENON: And what did they say? 

SOCRATES: True things and fine things, to my thinking. 

MENON: What things, and who were the speakers? 

SOCRATES: The speakers were some priests and priestesses 
who have paid careful attention to the things of their ministry, 
so as to be able to give a reasoned explanation of them; also 
inspired poets have something to say, Pindar and many others. 
What they say I will tell you; pray consider, if they seem to 
you to be speaking truth. They say that the soul of man is 
immortal, and sometimes it comes to an end, which they call 
death, and sometimes it is born again, but it is never des- 
troyed; therefore we must live our lives as much as we can in 
holiness: for from whomsoever 

Persephone shall accept payment for ancient wrong, 
She gives up again their souls to the upper sun in the ninth 
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year; 
From these grow lordly kings, and men of power and might, 
And those who are chief in wisdom; these for time to come 
Are known among men as for holy heroes. Then, since the 

soul is immortal and often born, having seen what is on earth 
and what is in the house of Hades, and everything, there is 
nothing it has not learnt; so there is no wonder it can 
remember about virtue and other things, because it knew 
about these before. For since all nature is akin, and the soul 
has learnt everything, there is nothing to hinder a man, 
remembering one thing only, which men call learning, from 
himself finding out all else, if he is brave and does not weary 
in seeking; for seeking and learning is all rememberance. 

MENON: Yes, Socrates. But what do you mean by saying that 
we do not learn, but what we call learning is remembering? 
Can you teach me how this is? 

SOCRATES: You are a young rogue, as I said a moment ago, 
Menon, and now you ask me if I can teach you, when I tell 
you there is no such thing as teaching, only remembering. 1 
see you want to show me up at once as contradicting myself. 

MENON: I swear that isn't true, my dear Socrates; I never 
thought of that, it was just habit. But if you know of any way 
to show me how this can be as you say, show away! 

SOCRATES: That is not easy, but still I want to do my best 
for your sake. Here, just call up one of your own men from all 
this crowd of servants, any one you like, and I'll prove my 
case in him. 

MENON: All right. (to a boy) Come here. 

SOCRATES: Is he Greek, can he speak our language? 

MENON: Rather! Born in my house 

SOCRATES: Now, kindly attend and see whether he seems to 
be learning from me, or remembering. 

MENON: All right. I will attend. 

SOCRATES: Now my boy, tell me: Do you know that a four- 
cornered space is like this? 

(Socrates begins drawing Diagram 1) 
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DIAGRAM 1 

BOY: I do. 

SOCRATES: Is this a four-cornered space having all these lines 
equal, all four? 

BOY: Surely. 

SOCRATES: Such a space might be larger or smaller? 

BOY: Oh yes. 

SOCRATES: Then if this side is two feet long and this two, 
how many feet would the whole be? Or look at it this way: if 
it were two feet this way, and only one the other, would not 
the space be once two feet? 

BOY: Yes. 

SOCRATES: But as it is two feet this way also, isn't it twice 
two feet? 

BOY: Yes, so it is. 

SOCRATES: So the space is twice two feet? 

BOY: Yes 

SOCRATES: Then how many are twice two feet? Count and 
tell me. 

BOY: Four, Socrates. 

SOCRATES: Well, could there be another such space, twice as 
big, but of the same shape, with all the lines equal like this 



210 Our Modern Idol: Mathematical Science 

one? 

BOY: Yes. 

SOCRATES: How many feet will be in that, then? 

BOY: Eight. 

SOCRATES: (aside to MENON): You see Menon, that I am 
not teaching this boy anything: I ask him everything; and now 
he thinks he knows what the line is from which the eight-foot 
space is to be made. Don't you agree? 

MENON: Yes, I agree. 

SOCRATES: Does he know then? 

MENON: Not at all. 

SOCRATES: He thinks he knows, from the double size which 
is wanted? 

MENON: Yes. 

SOCRATES: Well, observe him as he remembers bit by bit, as 
he ought to remember. 

Now boy, answer me. You say the double space is 
made from the double line. You know what I mean; not long 
this way and short this way, it must be equal every way like 
this, but double this eight feet. Just look and see if you think 
it will be made from the double line. 

BOY: Yes, I do. 

SOCRATES: Then this line is double this, if we add as much 
to it on this side. 

(Socrates elaborates Diagram 1 into Diagram 2) 
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DIAGRAM 2 

BOY: Of course! 

SOCRATES: Then if we put four like this you say we shall get 
the eight-foot space. 

BOY: Yes. 

SOCRATES: Then let us draw these four equal lines. Is that 
the space which you say will be eight feet? 

(Socrates now elaborates Diagram 2 into Diagram 3) 
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DIAGRAM 3 
BOY: Of course. 

SOCRATES: Can't you see in it these four spaces here, each 
of them equal to the one we began with, the four-foot space? 

BOY: Yes. 

SOCRATES: Well, how big is the new one? Is it not four 
times the old one? 

BOY: Surely it is! 

SOCRATES: Is four times the old one. double? 

BOY: Why no, upon my word! 

SOCRATES: How big, then? 

BOY: Four times as big! 

SOCRATES: Then, my boy, from a double line we get a space 
four times as big, not double. 

BOY: That's true. 
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SOCRATES: Four times four is sixteen, isn't it? 

BOY: Yes. 

SOCRATES: Good. The eight-foot space will be double this, 
and half this. 

BOY: Yes. 

SOCRATES: Then its line must be longer than this, and 
shorter than this. What do you think? 

BOY: That's what I think. 

SOCRATES: That's right, just answer what you think. Tell me 
also: was this line not two feet. and this four? 

BOY: Yes. 

SOCRATES: Then the line of the eight-foot space must be 
longer than this line of two feet, and shorter than the line of 
four feet. 

BOY: Yes, it must. 

SOCRATES: Try to tell me, then, how long you say it must 
be. 

BOY: Three feet. 

(Diagram 3 is now modified into Diagram 4) 
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DIAGRAM 4 

SOCRATES: Three feet, very well: If we take half this bit and 
add it on, that makes three feet, doesn't it? For here we have 
two, and here one, the added bit; and on the other side, in the 
same way, here are two, here one; and that makes the space 
you say. 

BOY: Yes. 

SOCRATES: Then if the space is three feet this way and three 
feet that way, the whole space will be three times three feet? 

BOY: It looks like it 

SOCRATES: How much is three times three feet? 

BOY: Nine. 

SOCRATES: How many feet was the double to be? 

BOY: Eight 

SOCRATES: So we have not got the eight-foot space from the 
three-foot line after all. 
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BOY: No, we haven't. 

SOCRATES: Then how long ought the line to be? Try to tell 
us exactly, or don't want to give it in numbers, show it if you 
can. 

BOY: Indeed, Socrates, on my word I don't know. 

SOCRATES: Now Menon, do you notice how this boy is get- 
ting on in his remembering? At first he did not know what 
line made the eight-foot space, and he does not know yet; but 
he thought he knew then, and boldly answered as if he did 
know, and did not think there was any doubt; now he thinks 
there is a doubt, and as he does not know, so he does not 
think he does know. 

MENON: Quite true. 

SOCRATES: Then he is better off as regards the matter he did 
not know? 

MENON: Yes, I think so too. 

SOCRATES: So now we have put him into a difficulty, and like 
the stingray we have made him numb, have we done him any 
harm? 

MENON: I don't think so 

SOCRATES: At least we have brought him a step onwards, as 
it seems, to find out how he stands. For now he would go on 
contentedly seeking, since he does not know; but then he 
could easily have thought he would be talking well about the 
double space, even before any number of people, again and 
again, saying how it must have a line of double length. 

MENON: It seems so. 

SOCRATES: Then do you think he would have tried to find 
out or to learn what he thought he knew, not knowing, until 
he tumbled into a difficulty by thinking he did not know, and 
longed to know? 

MENON: I do not think he would, Socrates. 

SOCRATES: So he gained by being numbed? 
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MENON: I think so. 

SOCRATES: Just notice now after this difficulty he will find 
out by seeking along with me, while I do nothing but ask ques- 
tions and give no instruction. Look out if you find me teach- 
ing and explaining to him, instead of asking for his opinions. 

Now boy, answer me. Is not this our four-foot space? 
Do you understand? (Here Socrates erases Diagram 4 and 
begins drawing Diagram 5).  

DIAGRAM 5 

BOY: I do. 

SOCRATES: Shall we add another equal to it? 

BOY: Yes. 

SOCRATES: And a third equal to either of them? 

BOY: Yes. 

SOCRATES: Now shall we not also fill in this space in the 
corner? 

BOY: Certainly. 
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SOCRATES: Won't these be four equal spaces? 

BOY: Yes. 

SOCRATES: Very well. How many times the small one is this 
whole space? 

BOY: Four times. 

SOCRATES: But we wanted a double space, don't you 
remember? 

BOY: Oh yes, I remember. 

SOCRATES: Then here are lines running from corner to 
corner, cutting each of these spaces in two parts. 

BOY: Yes. 

SOCRATES: Are not these four lines equal, and don't they 
contain this space within them? 

BOY: Yes, that is right. 

SOCRATES: Just consider: how big is the space? 

BOY: I don't understand. 

SOCRATES: Does not each of these lines cut each of the 
spaces, four spaces, in half? Is that right? 

BOY: Yes. 

SOCRATES: How many spaces as big as that are in this middle 
space? 

BOY: Four. 

SOCRATES: How many in this one? 

BOY: Two. 

SOCRATES: How many times two is four? 

BOY: Twice. 

SOCRATES: Then how many feet big is this middle space? 
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BOY: Eight feet 

SOCRATES: Made from what line? 

BOY: This one. 

SOCRATES: From the line drawn corner to corner of the 
four-foot space? 

BOY: Yes. 

SOCRATES: The professors call this a diagonal: so if this is a 
diagonal, the double space would be made from the diagonal, 
as you say, Menon's boy! 

BOY: Certainly, Socrates. 

SOCRATES: Now then, Menon, what do you think? Was 
there one single opinion which the boy did not give as his 
own? 

MENON: No, they were all his own opinions. 

SOCRATES: Yet he did not know, as we agreed shortly 
before. 

MENON: Quite true, indeed. 

SOCRATES: Were these opinions in him, or not? 

MENON: They were. 

SOCRATES: Then in one who does not know, about things he 
does not know, there are true opinions about the things which 
he does not know? 

MENON: So it appears. 

SOCRATES: And now these opinions have been stirred up in 
him as in a dream; and if someone will keep asking him these 
same questions often and in various forms, you can be sure 
that in the end he will know about them as accurately as any- 
body. 

MENON: It seems so. 

SOCRATES: And no one having taught him, only asked 
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questions, yet he will know, having got the knowledge out of 
himself? 

MENON: Yes. 

SOCRATES: But to get knowledge out of yourself is to 
remember. isn't it? 

MENON: Certainly it is. 

SOCRATES: Well then: This knowledge which he now has, he 
either got it sometime, or he had it always? 

MENON: Yes. 

SOCRATES: Then if he had it always, he was also always one 
who knew; but if he got it sometime, he could not have got it 
in this present life. Or has someone taught him geometry? 
For he will do just these same things in geometry, and so with 
all other sciences. Then there is anyone who has taught him 
everything? You are sure to know that, I suppose, especially 
since he was born and brought up in your house. 

MENON: Well, I indeed know that no one has ever taught 
him. 

SOCRATES: Has he all these opinions, or not? 

MENON: He has, Socrates, it must be so. 

SOCRATES: Then if he did not get them in this life, is it not 
clear now that he had them and had learnt at some other 
time? 

MENON: So it seems. 

SOCRATES: Is that not the time when he was not a man? 

MENON: Yes. 

SOCRATES: Then if both in the time when he is a man and 
when he isn't there are to be true opinions in him, which are 
awakened by questioning and become knowledge, will not his 
soul have understood them for all time? For it is clear that 
through all time he either is or is not a man. 

MENON: That's clear. 
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SOCRATES: Then if the truth of things is always in our soul, 
the soul must be immortal; so that what you d o  not know now 
by any chance, that is, what you d o  not remember, you must 
boldly try and find out and remember? 

MENON: You seem to argue well, Socrates. I don't know how 
you d o  it. 

SOCRATES: Yes, I think that I argue well, Menon. 

There are many things that need to be said about this extract, 
including many that seem not to have been put in writing before. 
To begin with, it is much longer than most earlier mathematical 
texts that have survived. The format of a dialogue enables us to 
understand the motivation of the speakers (or writer) in much more 
detail than we understand the motivation of the Babylonian 
mathematicians. It begins and ends with theology. The Sulva Sutras 
also link geometry and religion, but here the connection is much 
closer. The Sulva Sutras are concerned only with the implementa- 
tion of theological specifications. The theology expounded by 
Socrates seems almost deliberately devised to explain Eucleides' 
theory of knowledge. Menon's reception of it suggests that i t  was 
novel, by no means commonly accepted. Or, it may have been the 
other way: in Plato's time, many small religious cults had been 
formed, which believed in reincarnation. It is generally considered 
that they were the result of contact with the Orient. Eucleides may 
have derived his theory of knowledge from one of these cults. In 
the quotation, the geometrical episode is described, not as an imple- 
mentation of the theology, but as a demonstration of its truth. The 
Sulva Sutras tacitly assume the truth of their theology. Neither 
Socrates nor his theology gives any reason for the selection of the 
specific geometric example chosen. Plato also expounds this theol- 
ogy (without reference to geometry) in another of his Dialogues, 
Phaedo. There Socrates uses it to comfort those of his friends who 
were present at his execution. Plato was absent, but Eucleides was 
present. Plato also expounds a much more specific form of the 
same theology, again without geometry, in his later dialogue 
Phaedrus: 

Hear now the ordinance of Necesssity. Whatsoever soul has 
followed in the train of a god. and discerned something of 
truth, shall be kept from sorrow until a new revolution shall 
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begin, but if she can do this always, she shall remain always 
free from hurt. But when she is not able so to follow, and 
sees none of it, but meeting with some mischance comes to be 
burdened with a load of forgetfulness and wrongdoing, and 
because of that burden sheds her wings and falls to the earth, 
then thus runs the law. In her first birth she shall not be 
planted in any brute beast, but the soul that has seen the most 
of being shall enter into the human babe that shall grow into a 
seeker after wisdom or beauty, a follower of the Muses and a 
lover; the next, having seen less, shall dwell in a king that 
abides by law, or a warrior and ruler; the third in a statesman, 
a man of business, or a trader; the fourth in an athlete, or phy- 
sical trainer, or physician; the fifth shall have the life of a pro- 
phet or a Mystery priest; to the sixth that of a poet or other 
imitative artist shall be fittingly given; the seventh shall live in 
an artisan or farmer; the eighth Sophist or demagogue; the 
ninth in a tyrant. 

Here Plato gives us his aristocratic ordering of the social 
classes, and the sophists are ranked even lower than artisans or 
farmers. The passage is dogmatic: he has given up the attempt to 
demonstrate its truth. But in Menon, the boy is made the subject of 
a psychological experiment intended to demenstrate the validity of 
the theology: "I'll prove my case in him." The geometry and the 
diagrams are the apparatus of this experiment. One must therefore 
consider if the experiment does prove the case, and will immedi- 
ately conclude that it does not. Almost all of Socrates' questions 
are loaded. They are really instructions, instructions to watch him 
drawing diagrams, to perceive, to experience them as they are being 
drawn. Sometimes he even forgets the "chop-logic" of putting 
them in the form of questions: "Just look and see if you think it 
will be made from the double line." But this is not very important. 
When Socrates' questions are reworded as statements or instruc- 
tions, it is seen that they convey knowledge or opinions from 
Socrates to the boy. Very few elicit knowledge or opinions from the 
boy that Socrates did not provide him, either via his loaded ques- 
tions or his diagrams. There is nothing to suggest that the boy is 
remembering anything that his soul has known all along. In real 
life, Menon would have noticed this, and would not have hesitated 
to comment on it. In fact, he had been asked to do just this: 
"Kindly attend and see whether he seems to be learning from me, 
or remembering." There is every evidence that the boy is learning, 
in the ordinary sense of the word, both by instruction and by guided 
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experience. 

Our Modern Idol: Mathematical Science 

The experiment has not proven Socrates' case. This is the 
more remarkable, for it is most unlikely that we are reading the 
report of an actual experiment. Socrates, Menon, the boy, the stick 
with which Socrates draws the diagrams, all these are figments of 
Plalo's imagination. Not only the actions of the experimenter, 
Socrates, but the responses of Menon and his slave, all are part of 
Plato's fantasy. It is an imaginary experiment, the prototype of all 
the thought experiments (Gedanken Experimente) that have been 
discussed by modern theoretical physicists. It proves nothing about 
the real world except Plato and his fantasies. The manuscript of 
Menon must have been circulated among Plato's immediate friends; 
perhaps it was read aloud to them. They would not have failed to 
point out that the questions were loaded, and also that the experi- 
ment described is contrary to the spirit of Greek geometry, as it was 
then being developed. In any event, Plato never again ventured to 
write so explicitly about geometry or mathematics. 

Since Plato abandoned the attempt to use psychomathematical 
experiments to establish Eucleides' theory of knowledge and learn- 
ing, one must ask whether he also abandoned the theory itself. His 
other dialogues show no evidence that he did, although it is 
nowhere again stated as explicitly as in Menon and Phaedrus. His 
ideas about knowledge and mathematics changed as he grew older, 
but he did not explicitly repudiate Menon. The dialogue Theaetarus 
and others show the development of his modified theory of 
knowledge. 

In addition to the dialogues, some letters of Plato's have sur- 
vived. Their authenticity has been disputed, largely because they 
are stylistically different from most of the dialogues. However, this 
argument is not convincing. The dialogues are not stylistically uni- 
form; there are variations in style, even within a single dialogue. 
The character of Socrates appears in most of them, but Plato's por- 
trayal of his personality is neither uniform, nor does it show what 
modern literary critics call "character development." According to 
the Encyclopedia Britannica, Letter VII is very likely authentic. It 
contains a clear summary of what one gleans from the dialogues 
concerning Plato's considered theory of knowledge. 

Such writers can in my opinion have no  real acquaintance with 
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the subject. I certainly have composed no work in regard to it, 
nor shall I ever do so in future, for there is no way of putting 
it in words like other studies. Acquaintance with it must come 
rather after a long period of attendence on instruction in the 
subject itself and of close companionship, when, suddenly, like 
a blaze kindled by a leaping spark, it is generated in the soul 
and at once becomes self-sustaining. 

Besides, this at any rate I know, that if there were to be 
a treatise or a lecture on this subject, I could do it best. I am 
also sure for that matter that I should be very sorry to see such 
a treatise poorly written. If I thought it possible to deal ade- 
quately with the subject in a treatise or a lecture to the general 
public, what finer achievement would there have been in my 
life than to write a work of great benefit to mankind and to 
bring the nature of things to light for all men? I do not, how- 
ever, think the attempt to tell mankind of these matters a good 
thing, except in the case of some few who are capable of dis- 
covering the truth for themselves with a little guidance. In the 
case of the rest to do so would excite in some an unjustified 
contempt in a thoroughly offensive fashion, in others certain 
lofty and vain hopes, as if they had acquired some awesome 
lore. 

It has occurred to me to speak on the subject at greater 
length, for possibly the matter I am discussing would be clearer 
if I were to do so. There is a true doctrine, which I have often 
stated before, that stands in the way of the man would dare to 
write even the least thing on such matters, and which it seems 
I am now called upon to repeat. 

For everything that exists there are three classes of 
objects through knowledge about it must come; the knowledge 
itself is a fourth, and we must put as a fifth entity the actual 
object of knowledge which is the true reality. We have then, 
first, a name, second, a description, third, an image, and 
fourth, a knowledge of the object. Take a particular case if you 
want to understand the meaning of what I have just said; then 
apply the theory to every object in the same way. There is 
something for instance called a circle, the name of which is the 
very word I just now uttered. In the second place there is a 
description of it which is composed of nouns and verbal 
expressions. For example the description of that is named 
round and circumference and circle would run as follows: the 
thing that has everywhere equal distances between its extremi- 
ties and its center. In the third place there is the class of object 
which is drawn and erased and turned on the lathe and des- 
troyed, processes which do not affect the real circle to which 
these other circles are all related. because it is different from 
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them. In the fourth place there are knowledge and under- 
standing and correct opinion concerning them, all of which we 
must set down as one thing more that is found not in sounds 
nor in shapes of bodies, but in minds, whereby it evidently 
differs in its nature from the real circle and from the 
aforementioned three. Of all these four, understanding 
approaches nearest in affinity and likeness to the fifth entity, 
while the others are more remote from it. 

In the dialogue Timaeus, Plato gives an even more concise 
summary of his views, saying that truth is an eternal now, 
unchangeable, forever inexpressible. This inexpressibility of truth, 
the impossibility of reducing it to words, appears to have been his 
mature and final conclusion. This doctrine is variously called Pla- 
tonic idealism and Socratic agnosticism. In the earlier Menon, one 
finds recollection of truth described as easy, possible for everyone, 
even for an uneducated slave boy. Here recollection is replaced by 
something like revelation, which is so difficult to obtain that very 
few do so, and only after a long period of instruction and medita- 
tion. But geometry is again called upon to illustrate revealed reality. 
It is a more sophisticated geometry. The real circle is not any of the 
transient round objects, or even the understanding of such material 
objects. The true reality of the circle is eterqal, not transient, not to 
be confused with the understanding of round objects. This is an 
elaboration of Menon, but something of the original is left. The 
inaccessibility of true knowledge to all but an elite few seems to 
have been challenged by Aristotle. It will be seen that he ela- 
borated Menon in a different way, of which Plato cannot have 
approved. 



Plato and the Academy 

If this were simply a history of mathematics, there would be 
very little more to be said about Plato. However, popular history 
tells us that Plato founded a college called the Academy. This belief 
is one reason for his profound effect on modern educational sys- 
tems in Europe, the United States, and elsewhere. Nothing could 
be less factual. H.T. Cherniss has assembled the evidence against 
this legend; part of it is very simple. It is certain that the Academy 
was an actual entity and that Plato was its founder and first leader, 
but no early writers have described it in detail. In recent centuries, 
many writers have described it in many different ways. Each 
description is that of the writer's own Alma Mater, seen through a 
nostalgic haze and embellished with improvements. There are also 
stories about the way in which the Academy was founded. The 
most common one (although Cherniss considers this also to be 
legendary) asserts that when Plato was about forty, he and his 
friends incorporated, under the laws of Athens, as a religious cult 
devoted to the worship of the Muses. This is usually supposed to 
have been a technicality. Certainly there is nothing in Plato's writ- 
ings to indicate any interest in Terpsichore, the Muse of the Dance. 
In his Republic, he proposes to exclude all poets and musicians from 
his utopia, with the exception of those who submit to a strict cen- 
sorship. His argument with Dionysus of Syracuse, which according 
to legend resulted in his enslavement, is said to have been about 
this issue. Yet, it has been seen that Plato's writings have an 
undeniably theological element, which is not unlike that of many 
other Greek cults. One may suppose that the story contains a grain 
of truth. Under Athenian law, such an incorporated cult would be 
empowered to accept gifts and endowments, and be exempt from 
taxation. To a considerable extent, incorporation would protect its 
members from persecution; such cults were not required to disclose 
their beliefs or rituals. As long as they did not make a public nui- 
sance of themselves by proselytizing the unwilling or by creating 
disturbances during public ceremonies, they were exempt from 
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public inspection. They were free to teach their doctrines to any 
who wished such instruction. Plato and his friends purchased pro- 
perty, presumably including a building, adjacent to a public park in 
the suburbs of Athens. The tutelary god of this park was 
Academus -- hence the name "Academy." The park was used by 
the public as an athletic field, for practicing racing and wrestling. In 
Greece, wrestling was a brutal sport. There were only two rules: 
not to gouge out an opponent's eye, and not to kill him; violation 
of either rule disqualified one for the prize. A kick in the groin was 
considered a clever trick, not subject to reproof. In his youth, Plato 
had been a famous wrestler, and had won at least one major con- 
test. 

There are various legends as to the source of the Academy's 
original endowment, but the cult seems to have existed almost con- 
tinuously for a thousand years, and seems rarely to have lacked 
money. It was essentially an organization of wealthy people. In 529 
A.D., the Emperor Justinian abolished all such pagan cults in the 
Roman Empire, and confiscated their assets. It is said that the 
Academy was one of these outlawed cults. 

The leader of the Academy was elected by its members. 
When Plato died, he was succeeded by his nephew, Speusippus. His 
election has surprised many historians, for Plato's most famous 
younger contemporary was Aristotle, and it has been supposed that 
he was therefore the favorite disciple. This does not follow, for 
there are many points on which the writings of Plato and Aristotle 
differ. These diferences may have caused their personal friendship 
to be less than ardent. Speusippus was succeeded by Xenocrates, a 
historian. His history of mathematics failed to survive, but it is 
referenced in other writings. The other of Plato's successors whose 
writings are relevant here, is Proclus Diaidochus. He lived from 
about 412 to 485 A.D., some eight hundred years after Plato. He 
was convinced that he had achieved direct communication with the 
Greek gods. He apparently offended the Athenians by attempting 
to convert Christians to his own beliefs, and had to leave Athens to 
avoid persecution. Returning as a reformed character, he seems not 
to have been molested further. He wrote a commentary on the 
geometry of Euclid of Alexandria which contains many historical 
footnotes, and even a historical introduction. The commentary 
itself contains much that is mystical, so that it is often supposed 
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that the strictly factual history was added by some later editor. Be 
that as i t  may, it is customary to reference it as if Proclus was the 
author of this history. It is one of our few sources of information 
about earlier Greek mathematicians. Although he wrote about 
matters that occurred centuries earlier, his comments show a proper 
skepticism of legend. He must also have had historical sources that 
have not survived to the present. In any event, Proclus is often the 
only source of biographical and historical information available to 
us, and will frequently be quoted below. 



The Dialogue Timaeus 
and Greek Cosmology 

Before leaving Plato and his dialogues, it will be well to con- 
sider two others in more detail. These are Timaeus and Critias. The 
former has had a great influence on later European writers. From 
internal evidence, including style and content, their authenticity 
might well be doubted, but they have always been accepted as 
genuine. It seems that they were intended as the first two members 
of a trilogy, but Critias was never finished and the third dialogue 
was never even started. They contain two, rather different versions 
of the story of the Lost Continent of Atlantis. This one item has 
given rise to a great mass of speculative literature, and has contri- 
buted its name to the Atlantic Ocean. This is sufficient to establish 
the great influence of these two dialogues, but it need not detain 
one here. Concerning the difference between the two versions of 
the Atlantis story, Aristotle remarks drily "He who created it also 
destroyed it." Other early writers were similarly skeptical, but this 
has not deterred people from speculating about it, and even today 
some are still searching for its remnants. 

Timaeus of Locri is the chief narrator of the dialogue, which 
is largely devoted to cosmology. It was formerly thought that he 
was a historical person and one of Plato's teachers. It now seems 
certain that he is a purely fictional character, invented by Plato for 
his own purposes. The quotation of a few passages from Timaeus, 
as translated by B. Jowett, will suffice to explain its great influence. 

When the Father and Creator saw the image that he had made 
of the eternal gods moving and living, he was delighted, and in 
his joy determined to make his work still more like the pattern; 
and as the pattern was an eternal creature, he sought to make 
the universe the same as far as might be. Time, then, was 
created with the heaven, in order that being produced together 
they might be dissolved together, if ever there was to be any 
dissolution of them; and was framed after the pattern of the 
eternal nature, that it might, as far as possible, resemble it, for 
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that pattern exists throughout all ages, and the created heaven 
has been, and is, and will be in all time. Such was the mind 
and thought of God in the creation of time. And in order to 
accomplish this creation, he made the sun and moon and five 
other stars, which are called the planets, to distinguish and 
preserve the numbers of time, and when God made the bodies 
of these several stars he gave them orbits in the circle of the 
other. There were seven orbits, as the stars were seven; first, 
there was the moon in the orbit nearest the earth, and then 
the sun in the next nearest orbit beyond the earth, and the 
morning star and the star sacred to Hermes, which revolve in 
their orbits as swiftly as the sun, but with an opposite principle 
of motion, which is the reason why the sun and Hermes and 
Lucifer meet or overtake, and are met or overtaken by each 
other. To ennumerate the places which He assigned to the 
other stars, and the reasons of them, if they were all to be 
counted, though a secondary matter, would give more trouble 
than the primary ones. These things at some future time, 
when we are at leisure, may have the consideration which they 
deserve, but not at present. Until the creation of time, all 
things had been made in the likeness of that which was their 
pattern, but in so far as the universe did not as yet include 
within itself all animals, there was a difference. This defect the 
Creator supplied by fashioning them after the nature of the 
pattern. And as the mind perceives ideas or species of a cer- 
tain nature and number in the ideal animal, He thought that 
this created world ought to have them of a like nature and 
number. There are four such; one of them is the heavenly 
race of the gods; another, the race of birds moving in the air; 
the third, the watery species; and the fourth, the pedestrian 
and land animals. Of the divine, he made the greater part out 
of fire, that they might be the brightest and fairest to the sight, 
and he made them after the likeness of the universe in the 
form of a circle, and gave them to know and follow the best, 
distributing them over the whole circumference of the heaven, 
which was to be a true cosmos or glory spangled with them. 
And he bestowed on each of them two motions; first, the 
motion in the same, because they ever continue thinking about 
the same things, and also a forward motion in that they are 
controlled by the revolution of the same and the like; but the 
other five motions are wanting in them and thus each of them 
was the best possible. And for this reason also the fixed stars 
were created, being divine and eternal animals, ever-abiding 
and revolving after the same manner and on the same spot; 
and the other stars which revolve and also wander, as has 
already been described, were created after their likeness. The 
earth, which is our nurse, compacted (or circling) around the 
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pole which is extended through the universe, He made to be 
the guardian and artificer of night and day, first and eldest of 
gods that are in the interior of heaven. Vain would be the 
labor of telling about all the figures of them moving as in a 
dance, and their meetings with one another, and the return of 
their orbits on themselves, and their approximations, and to 
say which of them in their conjunctions meet, and which of 
them are in opposition, and how they get behind and before 
one another, and at what times they are severally eclipsed to 
our sight and again reappear, sending terrors and intimations 
of things about to happen to those who can calculate them -- to 
attempt to tell of all this without looking at the models of them 
would be labor in vain. Let what we have said about the 
nature of the created and visible gods be deemed sufficient and 
have an end. 

Much of this is reminiscent of the Book of Genesis and of 
Judaic monotheism. As in the cases of Archimedes and the Bud- 
dha, it is not known how this similarity came about. In any event, 
much of Timaeus was incorporated into medieval Christian theology. 
In commenting on this, Jowett has the following to say: 

The influence which the Timaeus has exercised upon posterity 
is partly due to a misunderstanding. In the supposed depths of 
this dialogue, the Neo-Platonists found hidden meanings and 
connections with the Jewish and Christian Scriptures, and out 
of them they elicited doctrines quite at variance with the spirit 
of Plato. Believing that he was inspired by the Holy Ghost, or 
had received his wisdom from Moses, they seemed to find in 
his writings the Christian Trinity, the Word, the Church, the 
creation of the world in a Jewish sense, as they really found 
the personality of God or Mind, and the immortality of the 
soul. All religions and philosophies met and mingled in the 
schools of Alexandria, and the Neo-Platonists had a method of 
interpretation that would elicit any meaning out of any words. 
They were really incapable of distinguishing between the opin- 
ions of one philosopher and another, or between the serious 
thoughts of Plato and his passing fancies. They were absorbed 
in his theology, and under the dominion of his name, while 
that which was truly great and truly characteristic of him, his 
effort to realize and connect abstractions, was not understood 
by them at all. And yet the genius of Plato and Greek philoso- 
phy reacted upon the East, and a Greek element of thought 
and language overlaid the deeper and more pervading spirit of 
Orientalism. 
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There is no danger of the modern commentators on the 
Timaeus falling into the absurdities of the Neo-Platonists. In 
the present day we are well aware that an ancient philosopher 
is to be interpreted by himself, and by the contemporary his- 
tory of thought. We know that mysticism is not criticism. The 
fancies of the Neo-Platonists are only interesting to us because 
they exhibit a phase of the human mind which prevailed widely 
in the first centuries of the Christian era, and is not wholly 
extinct in our own day. 

Someone seems to have been more successful than Proclus in 
persuading medieval Christians that Plato was a divinely inspired 
writer. In turn, this gave the impetus to those late,r studies of the 
Greek classics that have shaped the entire education of Western 
Europe. Their influence was not confined either to science or to 
religion. The German Platonist, Erich Frank, remarks that one 
idiosyncracy of Plato's, one phantasm, influenced the development 
of our music for millenia. Possibly this particular influence is now 
ended. The misunderstanding of which Jowett speaks still dominates 
most of us today; worse yet, the misunderstanding has received no 
publicity outside scholarly circles. Even Jowett's optimism concern- 
ing modern commentators has not always been justified, as the con- 
tinuing search for the Lost Continent of Atlantis illustrates. 

Of course, not all of Plato, or even all of the Timaeus was 
incorporated into Christian theology. An example that will be 
investigated later is the astrological passage: "sending terrors and 
intimations of things about to happen to those who can calculate 
them." There are other cosmological and theological passages in 
the dialogues. Again some of them have been incorporated into 
Christian theology, some not. A striking example is provided by 
the closing passages from the Phaedo, which purports to tell of 
Socrates' last hours before execution. As background, one should 
know that sometime before Plato, someone whose name is not 
recorded evolved the idea that the Earth was round and revolved 
about an axis. W.H.D. Rouse's translation of the relevant passages 
of Phaedo follows; Socrates is the narrator. 

"I believe, then," said he, "that first, if it is round and in the 
middle of the heavens, it needs nothing to keep it from falling, 
neither air nor any other such necessity, but the uniformity of 
the heavens, themselves alike all through, is enough to keep it 
there, and the equilibrium of the earth itself; for a thing in 
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equilibrium and placed in the middle of something which is 
everywhere alike will not incline in any direction, but will 
remain steady and in like condition. First I believe that," he 
said. 

"Quite right too," said Simmias. 

"Next, I believe it is very large indeed, and we live in a 
little bit of i t  between the Pillars of Heracles and the river 
Phasis, like ants or frogs in a marsh, lodging round the sea, 
and that many other people live in many other such regions. 
For there are everywhere about the earth many hollows of all 
sorts in shape and size, into which have collected water and 
mist and air; but the earth itself is pure and lies in the pure 
heavens where the stars are, which is called ether by most of 
those who are accustomed to explain such things; of which all 
this is a sediment, which is always collecting into hollows of 
the earth. We then, who lodge in its hollows, know nothing 
about it, and think we are living upon the earth; as if one liv- 
ing deep on the bottom of the sea should think he was at the 
top, and, seeing through the water sun and stars, should think 
the sea was heaven, but from sluggishness and weakness 
should never come to the surface and never get out and peep 
up out of the sea into this place, or observe how much more 
pure and beautiful it is than his own place, and should never 
have heard from anyone who saw it. This very thing has hap- 
pened to us; for we live in a hollow of the earth and think we 
live on the surface, and call the air heaven, thinking that the 
stars move through that and that is heaven; but the fact is the 
same, from weakness and sluggishness we cannot get through 
to the surface of the air, since if a man could come to the top 
of it, and get wings and fly up, he could peep over and look, 
just as fishes here peep up out of the sea and look round at 
what is here, so he could look at what is there, and if his 
nature allowed him to endure the sight, he could learn and 
know that that is the true heaven and the true light and the 
true earth. For this earth and the stones and all the place here 
are corrupted and corroded, as things in the sea are by the 
brine so that nothing worth mention grows in the sea, and 
there is nothing perfect there, one might say, but caves and 
sand and infinite mud and slime wherever there is any earth, 
things worth nothing at a!! as compared with the beauties we 
have; but again those above as compared with ours would 
seem to be much superior. But if I must tell you a story, Sim- 
mias, i t  is worth hearing what things really are like on the 
earth under the heavens." 

"Indeed, Socrates," said Simmias, "we should be glad 
to hear this story." 
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"It is said then, my comrade," he went on, "that first 
of all the earth itself looks from above, if you could see it, like 
those twelve-patch leathern balls, variegated, with strips of 
colour of which the colours here, such as are used by painters, 
are a sort of specimens; but there the whole earth is made of 
such as these, and much brighter and purer than these; one is 
sea purple wonderfully beautiful, one is like gold, the white is 
whiter than chalk or snow, and the earth is made of these and 
other colours, more in number and more beautiful than any 
we have seen. For indeed the very hollows full of water and 
mist present a colour of their own as they shine in the variety 
of other colours, so that the one whole looks like a continuous 
coloured pattern. Such is the earth, and all that grows in it is 
in accord, trees and flowers and fruits; and again mountains 
and rocks in like manner have their smoothness and tran- 
sparency and colours more beautiful, and the precious stones 
which are so much valued here are just chips of the those, sard 
and jaspers and emerald and so forth, ... 

"This, then, is the nature of the whole earth and all 
that is about it; but there are many regions in it and hollows of 
it all round, some deeper and spreading wider than the one we 
live in, some deeper but having their gap smaller than ours, 
some again shallower in depth than ours and wider; but these 
are all connected together by tunnels in many places narrower 
or wider, and they have many passages where floods of water 
run through from one to another as into a mixing-bowl, and 
huge rivers ever flowing underground both of hot waters and 
cold, where also are masses of fire and great rivers of fire, and 
many rivers of liquid mud, some clearer, some muddier, like 
the rivers of mud which run in Sicily before the lava, and the 
lava itself. And each of these regions is filled with this, accord- 
ing as the overflow comes in each case. All these things are 
moved up and down by a sort of seesaw which there is in the 
earth, and the nature of this seesaw movement is this. One of 
the chasms in the earth is largest of all, and, besides, it has a 
tunnel which goes right through the earth, the same which 
Homer speaks of when he says, 

Far, far away, where is the lowest pit 
Beneath the earth, 

and which elsewhere he and many other poets have called Tar- 
taros. For into this chasm all the rivers flow together, and 
from this again they flow out, and they are each like the earth 
through which they flow. The cause which makes all streams 
run out from there and run in is that this fluid has no bottom 
or foundation to rest on. So it seesaws and swells up and 
down, and the air and wind about it do the same; for they fol- 
low with it, both when the rivers move towards that side of the 
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earth, and when they move towards this side, and just as the 
breath always goes in and out when men breathe, so there, 
too, the wind is lifted up and down with the liquid and makes 
terrible tempests both coming in and going out. Therefore 
whenever the water goes back into the place which called 
'down,' it rushes in along those rivers and fills them up like 
water pumped in; but when, again, it leaves that part and 
moves this way, it fills up our region once more, and when the 
rivers are filled they flow through the channels and through the 
earth, and, coming each to those places where their several 
paths lead, they make seas and lakes and rivers and fountains. 
After that they sink into the earth again, some passing round 
larger regions and more numerous, some round fewer and 
smaller, and plunge again into Tartaros, some far below their 
source, some but little, but all below the place where they 
came out. Some flow in opposite where they tumbled out, 
some in the same place; and there are others which go right 
round the earth in a circle, curling about it like serpents once 
or many times, and then fall and discharge as low down as pos- 
sible. It is possible from each side to go down as far as the 
centre, but no farther, for beyond that the opposite part is 
uphill from both sides. 

"All these rivers are large, and they are of many kinds; 
but among these many are four in especial. The greatest of 
these, and the outermost, running right round, is that called 
Ocean; opposite this and flowing in the contrary direction is 
Acheron, the River of Pain, which flows through a number of 
desert places, and also flowing under the earth comes to the 
Acherusian Lake, to which come the souls of most of the 
dead, and when they have remained there certain ordained 
times, some longer and some shorter, they are sent out again 
to birth in living creatures. The third of these rivers issues 
forth in the middle, and near its issue it falls into a large region 
blazing with much fire, and makes a lake larger than our sea, 
boiling with water and mud; from there it moves round turbid 
and muddy, and rolls winding about the earth as far as another 
place at the extreme end of the Acherusian Lake, without min- 
gling with the water; when it has rolled many times round it 
falls into a lower depth than Tartaros. This is what they call 
Pyriphlegethon, the River of Burning Fire, and its lava streams 
blow up bits of it wherever they are found on the earth. Oppo- 
site this again the fourth river discharges at first into a region 
terrible and wild, it is said, all having the colour of dark blue; 
this they call the Stygian, the River of Hate, and the lake 
which the river makes they call Styx. But the river, falling into 
this and receiving terrible powers in the water, plunges beneath 
the earth and, rolling round, moves contrary to Pyriphlegethon 
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and meets it in the Acherusian Lake on the opposite side. The 
water of this, too, mixes with none, but this also goes round 
and falls into Tartaros opposite to Pyriphegethon. The name 
of this, as the poets say, is Cocytos, River of the Wailing. 

"Such is the nature of the world. So when the dead 
come to the place whither the spirt conveys each, first the 
judges divide them into those who have lived well and piously, 
and those who have not. And those who are thought to have 
been between the two travel to the Acheron, then embark in 
the vessels which are said to be there for them, and in these 
come to the lake, and there they dwell, being purified from 
their wrongdoings; and after punishment for any wrong they 
have done they are released, and receive rewards for their 
good deeds each according to his merit. But those who are 
thought to be incurable because of the greatness of their sins, 
those who have done many great acts of sacrilege or many 
unrighteous and lawless murders or other such crimes, these 
the proper fate throws into Tartaros whence they never come 
out. Those who are thought to have committed crimes curable 
although great, if they have done some violence to father or 
mother, say, from anger, and have lived the rest of their lives 
in repentance, or if they have become manslaughterers in 
some other such way, these must of necessity be cast Tartaros; 
but when they have been cast in and been there a year the 
wave throws them out, the manslaughterers by way of 
Cocytos, the patricides and matricides by way of Pyri- 
phlegethon; and when they have been carried down to the 
Acherusian Lake, there they shriek and call to those whom 
slew or treated violently, and, calling on them, they beg and 
beseech them to accept them and let them go out into the lake; 
if they win consent, they come out and cease from their 
sufferings; if not, they are carried back into Tartaros and from 
there into the rivers again, and they never cease from this 
treatment until they win the consent of those whom they 
wronged; for this was the sentence passed on them by the 
judges. But those who are thought to have lived in especial 
holiness, they are those who are set free and released from 
these places here in the earth as from a prison house, and 
come up into the pure dwelling place and are settled upon 
earth. Of these same, again, those who have purified them- 
selves enough by philosophy live without bodies altogether for- 
ever after, and come into dwellings even more beautiful than 
the others, which is not easy to describe nor is there time 
enough at this present. But for the reasons which we have 
given, Simmias, we must do everything so as to have our 
share of wisdom and virtue in life; for the prize is noble and 
hope great. 
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"No sensible man would think it proper to rely on 
things of this kind being just as I have described; but that, 
since the soul is clearly immortal, this or something like this at 
any rate is what happens in regard to our souls and their habi- 
tations - that this is so seems to me proper and worthy of the 
risk of believing; for the risk is noble. 

It seems impossible to read this without being reminded of 
posthumous judgement, punishment and reward, purgatory, eternal 
damnation, fiery hell and shrieking souls, and of heaven and the 
eternal bliss of souls not encumbered by bodies. But Socratic 
agnosticism reasserts itself at the end, in a form that modern theo- 
logians call Pascal's Wager, naming it after the seventeenth-century 
ascetic mathematician and theologian who revived it. In 1923, the 
German Platonist, Erich Frank, summarized this cosmology in a 
diagram that contains details gleaned from other Dialogues. It 
shows the inhabited world, including the seas and oceans, as the flat 
bottom of a shallow crater. The otherwise spherical Earth is sur- 
rounded by the concentric circle of the fixed stars, with the planets 
in between. Most noteworthy, however, is that exterior to the 
sphere of fixed stars is the region of ideas. It is said, though whose 
authority I do not know, that Plato's vocabulary included no words 
for the distinction we now make between matter and concept. 
Whether this was a general characteristic of the Attic dialect, or one 
of Plato's idiosyncracies is also unknown to me. At any rate, Plato 
held that ideas have an existence which is independent of people 
who can speak, soliloquize, or write. This doctrine is still 
widespread today. Platonic idealism maintains that these ideas are 
more real than people and material objects. This, like astrology, 
reincarnation, and Socratic agnosticism, was not incorporated into 
Christianity. 

Plato was not the only classical Greek to write about cosmol- 
ogy. Much of Greek cosmology was, like Plato's, fanciful specula- 
tion, but there was also a substratum of systematic observational 
astronomy. The discussion of cosmology will be interrupted at this 
point, and resumed later at a more appropriate place. 



Pythagoras and the 
Pythagorean Theorem 

Pythagoras is a legendary figure, although there is no doubt 
that he was a real person and contributed to the advancement of 
both physics and mathematics. Apparently he left no writings of his 
own, and few of the writings of his immediate followers have sur- 
vived. Two discoveries have been attributed to him. The first is 
the mathematical law of musical strings: a single string can be made 
to sound its octave, fifth, and fourth by stopping it at points that 
divide its length into one half, two thirds, and three quarters. 
There is no evidence that casts doubt on his discovery of this law. 

The other discovery is the theorem about rectangles or right 
triangles that has already been encountered in the Sulva Sutras. 
They were written long after Pythagoras' time and cannot be cited 
as evidence against his priority. Concerning this, Proclus remarks: 

If we listen to those who wish to recount ancient history, we 
may find some referring to the Pythagorean theorem, saying 
that he sacrificed an ox in honor of his discovery. 

This has a very skeptical tone. As will be seen, there is evidence 
that Pythagoras opposed the killing of animals, which should 
encourage even more caution. Nevertheless, this passage (and the 
writings of others less cautious than Proclus) has caused 
Pythagoras' name to be attached to the theorem. It is now certain 
that Proclus' skepticism was entirely justified, and that one must 
treat Pythagoras and the Pythagorean Theorem as two distinct his- 
torical problems. 

Pythagoras was born about 580 B.C. on the Ionian island 
Samos. Everything else about the first fifty years of his life is pure 
conjecture. However, Samos is separated from Miletus by less than 
twenty five miles of water, and Miletus was then the center of 
Greek science, as well as being the terminus of Mesopotamian cara- 
vans. Samos itself had a cosmopolitan culture. It is said that the 
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young Pythagoras traveled widely. This has a certain plausibility. It 
is inherently likely that young men of Ionia would join caravans or 
board ships, thus becoming familiar with foreign lands before set- 
tling down to the family business of trading with them. 

Miletus was also the center of the first, or Ionian, school of 
Greek philosophy. It was started by Thales of Miletus, about a gen- 
eration before Pythagoras was born. Thales' major doctrine claimed 
that the sun, moon, and planets were all composed of the same 
kind of matter as the earth. While his disciples continued to hold 
this doctrine, it did not gain wide acceptance until Galileo had 
improved the telescope and used it for astronomical observation in 
the seventeenth century A.D. Almost certainly, Pythagoras must 
have known of Thales as well as much about Mesopotamia and 
Egypt. His followers rejected Thales' views, so it is likely that 
Pythagoras was not convinced by them. Some say that the 
Pythagoreans held that everything, including the Earth, was made 
of whole numbers. Others say that they only claimed that the 
whole numbers and their arithmetic were the great Principle of 
Order that pervaded the universe. Aristotle and many other later 
writers have ridiculed them for these views; Pythagoras' own views 
are even less certain. Yet, this second view re-emerged in the writ- 
ings of Kronecker and other nineteenth century mathematicians; 
this has not stopped the ridicule of "the so-called Pythagoreans," as 
Aristotle dubbed them. 

It seems certain that, at about the age of fifty, Pythagoras was 
the leader of a politically powerful religious cult in Crotona. Cro- 
tona was an Achaean (Greek) colony in the heel of the Italian boot. 
By then, it was the intellectual and commercial center of that part of 
the Mediterranean world. The doctrines of this cult, as recon- 
structed by scholars, included a belief in the transmigration of souls 
between human beings and animals. Consequently, its members 
were vegetarians and refused to kill animals. According to Aristo- 
tle, they also refused to eat beans. They held that the greatest good 
in life was "conversing with the divine." This was a silent soliloquy 
accompanied by the fantasy of a divine audience. It differed from a 
prayer in that the soliloquy was not a request for divine intervention 
in the affairs of the world, not a wish or hope for a miracle, merely 
a wish for knowledge of the divine laws. This is a definite intellec- 
tual advance beyond the primitive prayer for help from the gods in 
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reaching commercial and military goals. Pythagoras must be 
included among the intellectual innovators of ancient Greece. 

His political power in Crotona was ended by a violent rebel- 
lion, and it is thought that he fled to Sicily, dying about 500 B.C. 
Within a few generations there was a schism among the Pythagore- 
ans, one faction calling itself the Akousmatikoi, the other the 
Mathematikoi. At that time, mathemata meant teachings in general, 
or doctrines. However, the Akousmatikoi devoted themselves more 
and more to the theory of music, while the Mathematikoi 
emphasized the theory of arithmetic and geometry. By the time of 
Plato, mathemata was just beginning to take on its present connota- 
tion. Some scholars think that Plato sometimes used the word with 
its original meaning, and sometimes with its modern meaning. This 
hypothesis explains a controversy that has arisen among other scho- 
lars. This controversy centers about what are now called "non- 
mathematical numbers," "inaudible numbers," or "idea-numbers." 
These terms are of modern origin, devised to discuss obscure pas- 
sages in the writings of Plato and Aristotle. The hypothesis also 
explains the emphasis that non-mathematicians have placed on 
Plato's "love of mathematics." 

At about the same time as the schism, Pythagoreanism was 
proscribed and persecuted everywhere in Italy and Sicily, and some 
of its adherents found refuge in Ionia and Athens. There, they 
influenced Plato and others, especially the mathematicians. Some 
of the latter seem to have been converted to Pythagoreanism. 
Those Greek cults that emphasized reincarnation and transmigration 
of souls may have been stimulated by the Pythagoreans, or they 
may have been more directly influenced by Oriental theology. This 
is another historical problem that remains to be solved. As has 
been seen, it would be of great interest to know more about early 
communication between Greece and Asia. It seems that, at some 
time before Plato, some of the intellectual descendents of 
Pythagoras were able to return to Italy. 

Turning now to the Pythagorean Theorem, one will first 
inquire how it might have been discovered by early geometers, 
using peg-and-cord methods. Since there is no written record, one 
may begin by analogy to Socrates' discussion. Figure 8 is a generali- 
zation of his last diagram. The sides of the inner square have the 
length c ;  of the outer a+b. The four right triangles have the sides 
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FIGURE 8 

a and b ,  and the diagonal (or hypotenuse), c .  It has been seen 
that the calculation of the areas of rectangles and triangles was 
known in quite ancient times. Inspection of Figure 8 shows that 

FIGURE 9 

Then, rearranging the triangles, one obtains Figure 9. This shows 
that 

(a+b)La2+2ab+b2 

Combining these two equations, one obtains 

a2+b2=c2 
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Present-day high schools still teach their students to demonstrate 
this theorem, but in a much more complicated way. If one inquires 
why this simpler way is not used, the usual answer is "the students 
should learn to think logically and exactly." There is nothing illogi- 
cal or inexact about the above, and any high-school student could 
understand and remember it very quickly. Heath implies that the 
only objection to this simpler demonstration is that it is not in the 
anti-empirical spirit of Greek mathematics (or, for that matter, of 
modern mathematics). But, neither is the mathematical passage 
from Menon in this spirit. These more complicated demonstrations 
are all variants of one recorded by Euclid of Alexandria; the Ger- 
man philosopher, Schopenhauer, said that this is "a proof walking 
on stilts, a deceitful proof." Inverting his metaphor: it is a shallow 
complexity masquerading as a profundity. As though someone had 
advocated this view to him, Proclus comments: 

But for my part, while I admire those who first observed the 
truth of this [Pythagorean] theorem, I marvel more at the 
writer of the Elements [Euclid] not only because he made it fast 
by a most lucid demonstration, but because he compelled 
assent to a still more general theorem by the irrefutable argu- 
ments of science. 

Few high school students would agree that Euclid's demonstration 
is lucid; most adults have forgotten it. 

The equation, a2+bLc2  has many solutions for which a ,  b  , 
and c are integers, whole numbers. If any unit of length is chosen, 
a triangle whose sides are a ,  b and c  units in length will be a right 
triangle. These are the integral right triangles. Let n be a fourth 
whole number; then A=a/n , B=b/n , C=c/n will be rational 
numbers, and A ~ + B L c ~ .  A ,  B ,  and C then lead to the rational 
right triangles. Before the invention of irrational numbers, it would 
be supposed that all right triangles were rational. Naturally, no 
writer who was ignorant of irrational numbers would say this expli- 
citly; he would have no words with which to say it. Conversely, if a 
writer discusses rational right triangles without saying that there are 
others, we may suppose that he did not know of irrational numbers. 
This hypothesis will be implicit in the following. 

It seems certain that integral right triangles were known 
before 1500 B.C. It also seems certain that irrational right triangles 
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were recognized about 400 B.C. The evidence for this last is in 
Plato's dialogue, Theaetetus. Unfortunately, there is a gap in the 
historical record that lasts from about 1500 B.C. until about 500 
B.C. Consequently, nothing is known about the way in which the 
idea of irrational right triangles evolved. This is another problem in 
the history of mathematics whose solution would be most welcome. 
It is very difficult even to speculate about the way in which the idea 
might have evolved. Alfred North Whitehead has explained how a 
modern mathematician would develop the idea that a point has no 
parts. It is certain that early Greek philosophers would not have 
appreciated the fine points of Whitehead's explanation. Zeno of 
Elea was a contemporary of Pythagoras, and held much the same 
views as Eucleides. His writings show that he would not have 
understood Whitehead's reasoning, much less have accepted it as 
valid. 

Surviving editions of Euclid's work on geometry show that he 
knew a way to calculate all integral right triangles. As background, 
one must know that either a ,  b or both must be even integers; the 
algebraic demonstration of this will be omitted. If a is even, 
Euclid's formulae are 

where p and q are any two whole numbers, subject only to the con- 
dition that p be greater q .  If b and not a is even, the formula can 
obviously be revised by interchanging the right sides of the equa- 
tions for a and b .  The "Pythagoras" formula is obtained from 
p=n+l, q=n  (with a and b interchanged), while the "Plato" for- 
mula i s p = 2 n ,  q = l .  

The writers of the Sulva Sutras knew some integral right trian- 
gles; they are listed in the following table. 
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Sulva Sutras 

a b c  
3 4 5  

The first three were known by Pythagoras, the last two were known 
by Plato. The 3-4-5 right triangle appears in all three tables; it has a 
special history. There has long been a tradition that the early Egyp- 
tians knew it and used it to construct right angles. When Petrie 
discovered the Kahun Fragments, this was confirmed, for they were 
found to contain the following equations 

12+ (3/412= (5/412 

tI2+6L1@ 

22+ (31 2) 2= (51 2) 

1 62+ 1 2&2O2 

any one of which is equivalent to 

3+4L52  

Quite properly, skeptics have raised the question: Did the writer of 
the papyrus know the relation between this arithmetic and right tri- 
angles? There is, as yet, no certain answer. It is certain that the 
XI1 Dynasty texts display no interest in abstract arithmetic, only in 
arithmetic that was useful for some practical purpose. The question 
thus reduces to: Is there any use for this arithmetic other than the 
construction of right triangles? 

At about this same time, the writings of the Chinese 
mathematician, Chou Pei, came to the attention of Europeans. He 
lived about 1100 B.C., and demonstrated that the 3-4-5 triangle is a 
right triangle. It seems that he did not know of any other integral 
right triangles, or of the general Pythagorean Theorem. 
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This brings one to the discovery, by Neugebauer and Sachs, 
of an Old Babylonian table of integral right triangles. It is in the 
Plimpton Library of Columbia University, and was originally catalo- 
gued as a commercial text. It is broken, and only four columns of 
numerals remain. The first column on the right is headed "Its 
Name," and the fifteen entries in this column are translated as 
"First, Second, Third, ..., Fifteenth." The second and third 
columns are headed "Calculated Diagonal" and "Calculated 
Width," respectively. The reference is clearly to a triangle or rec- 
tangle. The heading of the first column on the left is too badly 
damaged to be read, and another column to the left of this has been 
broken off and lost. It is a reasonable hypothesis that the triangles 
are integral right triangles. If the entries in the second and third 
columns are b  and c ,  then those in the surviving left hand column 
are ( c / a  1 2 ,  then, in 1 1  of the 15 lines, 

a 2 + b L c 2  

This makes the hypothesis practically certain; the four exceptions 
are undoubtedly mistakes on the part of the calculator. Three of 
the four mistakes (the second, ninth, and thirteenth lines) admit of 
a unique correction; the fifteenth line can be corrected in either of 
two ways. 

When the table is rearranged into a format comparable to the 
previous table, it becomes the table below. The two columns on the 
extreme right give the values of p and q associated with the trian- 
gles by Euclid's formulae. Neugebauer gives convincing reasons for 
believing that these formulae were used to calculate the table. His 
argument is based, not only on the table itself, but on the way it 
relates to all the other Babylonian mathematical texts. 

This discovery of this one tablet (out of a half million) 
proves, beyond reasonable doubt, that one man knew how to calcu- 
late integral right triangles more than a thousand years before 
Pythagoras. It is therefore a major discovery, but it leaves some 
questions still unanswered. How widespread was this knowledge? 
Did the calculator have an understanding audience, or was he an 
isolated worker like Leonardo da Vinci? Did his work influence his 
contemporaries, or did it lie forgotten like Leonardo's notebooks? 
Was his knowledge preserved and somehow transmitted to the clas- 
sical Greeks? Neugebauer believes that the Pythagorean Theorem 
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Plimpton 322 

nth a b c a/b P q 
1st 119 120 169 .991(6) 12 5 

(* indicates author's correction) 

was widely known, but on this point his evidence is not strong. 
There is one other tablet that shows the diagonal of a square, whose 
length is calculated with the approximate value 3054701 (6013 for 
fi which is good to six parts in ten million. Proclus is of no help 
in answering these questions. His remark about "those who first 
observed the truth of this theorem" has already been quoted above, 
and he does not elaborate on it. 

By 1600 B.C., the geometry of the Old Babylonians had 
become highly arithmetized, much more so than the Egyptian and 
Indian geometries. But there is no evidence that they had evolved 
the ideal of points without parts, lines without thickness, or irra- 
tional numbers. There is then the gap in the recorded history of 
geometry until about 400 B.C., when Plato's Theaetetus gives a 
glimpse of classical Greek geometry, with its ideal straight lines 
already commonplace knowledge, and the irrational numbers begin- 
ning to be developed. At the present time, it is not even possible to 
guess at the intervening history. Since the Academy was not started 
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until after 400 B.C., it certainly had no influence on these events; 
they had already been forgotten, along with the Mycenaean script. 
Not knowing of them, Eucleides and Plato did not seek to find the 
history of irrational numbers and ideal straight lines; instead they 
sought these fictions as immortal components of the human soul or 
psyche. This is the earliest and most extreme form of the doctrine 
of psychomathematical parallelism. 



Ideals and the 
Technology of Triangles 

In order not to lose the way among speculations about 
unrecorded history, it is well to begin with the impact of the 
Pythagorean Theorem and ideal straight lines on the present time. 
A simple example will provide a start: if there is a right triangle 
havin side a =  1 unit and the diagonal c=2  units the side b will be 

L a 2 ) = a  We know that 8 is an irrational number, and the Jicg 
table below provides successive approximations for a. 

The first is a = 9 / 5 ,  and Figure 10 shows a triangle drawn with 
this approximation. It is apparent to the unaided eye that the angle 
at A is not a right angle: the difference is nearly four degrees. The 
next approximation is 261 15,  and Figure 10 also shows such a 
triangle. The reader may be able to see that the angle B is not 
ninety degrees: the difference is slightly more than two-thirds of a 
degree. Even though it is difficult to see, the young Zeiss, in his 
first workshop, could have measured this difference. The next 
approximation to 8 is 13511780. This triangle could not be 
drawn on paper; paper is too flexible, and even printed straight lines 
are too coarse. Such a triangle differs from a right triangle by less 
than one tenth of a second of arc. Later, Zeiss and his men 
developed instruments for measuring such small angles, and means 
for producing such triangles out of glass, brass, or steel. They did 
this with the ideal of Abbe's calculations of irrational numbers as a 
goal. 

The last approximation in the table is the rational approxima- 
tion 8=3650401 /2107560  Such a triangle would differ from a 
right triangle by about one hundred millionth of a second of arc. 
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FIGURE 10 

Approximations of Right Triangles 

No one has yet succeeded in constructing a triangle to these 
specifications or measuring so small an angle. To do so would 
require a material that is more rigid and less granular than the finest 
glass. Enough is known about the nature of matter so that it can be 
said that no one will ever produce such a material. The ideal of the 
irrational number is unattainable. From an extreme practical point 
of view, there is no need for irrational numbers. Yet ideals, even 
unattainable ideals, are extremely useful, not only to society, but to 
individual people. Therefore the invention of fictional straight lines 
and irrational numbers must not be held in contempt, even if it was 
stimulated by a superstition. 

Abbe and Zeiss did not work only with such mathematical 
ideals. It has been seen that they conducted their business in such 
a way that their people were somewhat protected from misery. 
Complete protection from misery is most likely another unattainable 
ideal. It is not a mathematical ideal, however. Zeiss and Abbe did 
not postpone their sociological innovations until they were able to 
measure human misery and construct a mathematical theory of it. 
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In fact, it is unlikely that they spent a moment thinking about such 
numerical procedures, and this was not because Abbe was 
mathematically inept and unimaginative. It is much more likely that 
they recognized that mathematics, like logic, is inhuman, and that 
mathematical theories of people are impossible. 



Euclid of Alexandria 
and the Elements 

Most of our knowledge of the technical aspects of classical 
Greek mathematics is derived from the writings of Euclid of Alex- 
andria. Even though he was prolific, not all of his writings have 
survived. Some earlier writings, by other authors, have also sur- 
vived, but none are as complete or as detailed as those of Euclid. 
There were histories of the development of arithmetic, geometry, 
and astronomy during this period; one was written by Eudemus, 
who studied with Aristotle. Aristotle and Speusippus wrote about 
the Pythagoreans; it is most unfortunate that their writings on this 
subject have not survived, for they might have altered the present 
low opinion of Pythagorean ideas. Xenocrates wrote histories of sci- 
ence that have already been mentioned. None of these histories 
have survived, except in fragmentary form. Very likely, most of 
these writings were available to Euclid, possibly in Alexandria, 
where the great Library was being assembled during his lifetime. 
There is some evidence that he studied with Aristotle, and this 
would most likely have been in Athens. By the time of Proclus, the 
Library of Alexandria had been destroyed, but many of the early 
writings may very well have survived elsewhere and have been 
available to him. Almost nothing is known about the building that 
housed Plato's Academy, or of its history. Presumably, it housed a 
library and archives, but whether they were intact in Proclus' day is 
unknown. 

Proclus lists various mathematicians, and then goes on: 

Those who compiled histories bring the development up to this 
point. Not much younger than these is Euclid, who put 
together the Elements, collecting many of Eudoxus' theorems, 
perfecting many of Theaetetus', and also bringing to irrefrangi- 
ble demonstration the things which were only somewhat 
loosely proved by his predecessors. This man lived in the time 
of the first Ptolemy. For Archimedes, who came immediately 
after the first Ptolemy, makes mention of Euclid: and, further, 
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they say that Ptolemy once asked him if there was in geometry 
any shorter way than that of the elements, and he answered 
that there was no royal road to geometry. He is then younger 
than the pupils of Plato but older than Eratosthenes and 
Archimedes; for the latter were contemporary with one 
another, as Eratosthenes somewhere says. 

From this, it is inferred that Euclid lived about 300 B.C., and 
that he was primarily a compiler and editor. Eudoxus and Theae- 
tetus were contemporaries of Plato, as has already been mentioned. 
The popularity of Euclid's compilation may account for the failure 
of the earlier writings to survive. Proclus greatly admired Plato and 
Euclid, and it is now believed that this led him to underestimate 
Theaetetus. Euclid's writings underwent many changes and altera- 
tions at the hands of many editors and translators. The effort to 
restore them to their original form was a major project for 
nineteenth- century historians and philologists, and is probably not 
yet completed. The standard English references to this project are 
the works of T.L. Heath. More recently, the philologist Arpad 
Szabo has continued this investigation. He has shown that there 
was great confusion in the terminology used by the mathematicians 
of the period preceding Euclid; it has already been noted that 
"mathematics" acquired its present meaning only during Plato's 
lifetime, and there was no standard dictionary of the Greek 
language. This makes it easy to understand the problems that con- 
fronted later interpreters, and does not simplify the task of restora- 
tion. 

Euclid wrote very tersely and impersonally, and gave no hint 
of his motives or personal beliefs. This has invited imaginative 
interpretations and legends. He wrote about optics and other topics 
outside mathematics, but these other writings have received rela- 
tively little attention. His mathematical writings have enjoyed a 
popularity that overshadows all his other work. They were soon 
translated into Latin and Arabic; versions of them are now avail- 
able in every major language. They have recently been drastically 
revised, both by eminent mathematicians and by high school teach- 
ers writing textbooks for their students. This enduring influence of 
Euclid's writings is shared with only a few others. In Western 
Europe, only the Scriptures, and the writings of Plato and Aristotle 
are comparable. The way in which Plato's writings came to be asso- 
ciated with the Scriptures has already been described; Euclid came 
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to be associated with Plato by reason of another misunderstanding. 
The conflicting legends about Euclid show that his influence began 
very early. There is an Arabic legend that his writings were the 
work of a carpenter named Apollonius. This can only be mythical. 
It has been seen that all mathematics grew out of the crafts and 
trades, and that its roots were not severed until about the time of 
Plato. The significant misunderstanding arose in Rome during the 
first century A.D., when the influence of Plato on Christianity was 
just beginning. It was thought that Euclid of Alexandria and 
Eucleides of Megara were one and the same person. "Euclid" and 
"Eucleides" are two transliterations of the same Greek name, and 
it has become conventional to use the different spellings precisely to 
avoid this confusion. However, this confusion and Euclid's failure 
to give a clear account of his personal beliefs, led to the conclusion 
that he held the same beliefs as Eucleides and Plato. This may or 
may not have been the case. This confusion continued in Europe 
throughout the Middle Ages. It was not until the time of Columbus 
that Commandius, a translator of Euclid, was emphatic in distin- 
guishing the two. But the tradition as to Euclid's beliefs had been 
firmly established, and continues to this day; traces of it are to be 
found in our dictionaries and elementary textbooks. It is an exam- 
ple of correcting a mistake, once it has been widely accepted. 

Proclus' recognition that Euclid was primarily a compiler and 
systematizer came much earlier. It should focus the attention of 
scholars on Euclid's predecessors, and their relation to each other. 
One may hope that such studies will provide a clearer understanding 
of the Greek contribution to mathematics, but, as yet, much is only 
conjecture and legend. One general clue to the nature of the Greek 
contribution is to be found in the original title of Euclid's major 
work; it did not contain either of the words "mathematics" or 
"geometry"; it did contain the Greek word stoicheiota. When his 
early admirers wished to express their appreciation of his unique- 
ness, they did not call him "THE geometer" they called him "THE 
sroicheiotist." In English, the word "letters" may mean either the 
alphabet or pieces of correspondence; stoicheiota had a similar dou- 
ble meaning: the alphabet or a certain literary form (not correspon- 
dence). It is therefore conventional to translate the word as "ele- 
ment," even though this also invites confusion (for example, with 
the chemical elements). In this sense, an element consists of two 
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parts. The first is the theorem or proposition. These words are the 
modern, conventional translations of the Greek word protasis; it 
seems that it would be more literal to translate it as "enunciation" 
or "statement." The second essential part of an element is the 
proof or demonstration of the theorem, the chain of reasons for 
believing the theorem to be true. The Greek word was apodeixis 
and modern philosophers often use the adjective "apodictic" in 
place of "demonstrative" or "demonstrable." In what follows, 
"demonstration" will be preferred to "proof," primarily because it 
became customary to end an element with the triumphant "Q.E.D." 
(quod erat demonstrandurn). Many translators of Aristotle also use 
"demonstration" rather than "proof." Sometimes "proposition" is 
used to designate the entire element, not only the theorem. This 
ambiguity would be sufficient reason for preferring "element," but 
there is another. Since the Dark Ages, a proposition has been 
something that may be either true or false, but the demonstration 
of an element is supposed to make certain that the theorem is not 
false. While an element is not addressed to a single person, there is 
every reason to suppose that its writer often submitted it to his 
friends for criticism. Having written out his arguments, they could 
be carefully reviewed, and perhaps refuted, by his colleagues. 

The replacement of simple dogmatic enunciation by the publi- 
cation of a complete element is one of the most important intellec- 
tual achievements of the classical Greeks. Unfortunately, they were 
not consistent, and often lapsed into dogmatic assertion. Still, this 
achievement ranks with Plato's invention of the written dialogue, 
and the two cannot be considered separately. They were not the 
only intellectual or literary achievements of the classical Greeks. 
Thucydides and Xenophon, both contemporaries of Plato, wrote 
factual accounts, histories, of events in which they had participated, 
had observed, or of which they had received reliable accounts. The 
traditional songs of the bards were written out, and Euripides and 
Aristophanes produced new versions, and even wrote secular plays 
that were evolved out of earlier religious rituals. One does not 
detract from these achievements by noting that they rested on solid 
foundations laid by people who lived thousands of years earlier, 
who were known to the classical Greeks only by fragments of tradi- 
tion and legend. 
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All of these new writers used writing materials more lavishly 
than ever before, which usually implies that they had wealth as well 
as leisure. Plato, Thucydides, and Xenophon were involuntarily 
prevented from continuing to participate in the political and military 
affairs of their time. Other writers may have stood aside volun- 
tarily, which is a departure from the aristocratic disdain for anything 
that does not involve the forcible domination of other people. It 
was the beginning of the intellectual aristocracy, of the intelli- 
gentsia. 

Plato's dialogues and Euclid's Elements have this in common: 
their writers recorded their soliloquies at some length. In another 
respect, they are antithetical. In Plato's dialogues, one of the parti- 
cipants is induced to express a personal opinion, whereupon 
Socrates presents the reasons why this opinion is wrong: this is the 
essence of Socratic agnosticism. In the Elements, the opinion is 
expressed impersonally, and the reasons for its correctness are given 
with the same impersonality. Much of Plato's work thus has a 
negative, skeptical character, while Euclid's is positive and 
affirmative. Proclus does not list Plato as a writer of elements, and 
there is no evidence that he was. It is more surprising to find that 
no geometric theorem is subjected to Socrates' destructive criticism 
in any of the dialogues. Few people today would dream of provok- 
ing an argument about mathematics, much less of emerging victori- 
ous. This suggests that mathematics had already acquired its awe- 
some sanctity in those early days, but this may only have been 
Plato's personal idiosyncracy, which later became widespread as his 
dialogues and Euclid's Elements became central to the European 
educational system. 

Prior to Euclid, and even during Plato's lifetime, there seem 
to have been lively arguments about geometry and arithmetic. They 
seem to have been illustrated with diagrams, but these were later 
considered to be memoranda, concessions to the fallibility of human 
memory, rather than as an essential part of the reason for believing 
the theorem. Most of Plato's Dialogues are devoted to non- 
mathematical subjects; the reasoning is less complex than in the 
Elements, and the arguments are more easily remembered. Their 
mathematical parts are, as has been seen, parenthetical and illustra- 
tive. They invite the audience to adopt a more abstract, impersonal 
view of the matter under discussion, and to search their souls for 
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ideal concepts similar to the straight line without thickness. Since 
the evolution of these geometric ideals had required an age-long 
study of actual cases, it should not be surprising to find that this 
sudden invitation resulted in surprise and confusion rather than 
success. Plato's negative conclusion, as summarized in Letter VII, 
becomes understandable. It is an extreme version of the 
Pythagorean doctrine of conversation with the divine. It seems to 
foreshadow the later doctrine of meditation followed by the revela- 
tion of truth. Nothing of the much earlier history of the cord and 
peg, of the origin of arithmetic among the merchants and crafts- 
men, is recalled. Even the ethical doctrines, such as they were, that 
made ancient trade possible, are excluded from Plato's aristocratic 
writings. 

This places the Elements in perspective against the background 
of the more general intellectual activity of classical Greece, and has 
prepared the ground for their more detailed consideration. The 
theorem of one element can be cited as one of the reasons for 
believing the theorem of another. This is a convenient 
simplification: one might also repeat the whole demonstration of the 
original element. The avoidance of such repetitions is clearly 
justifiable and efficient. It does involve the danger of circular rea- 
soning; it is therefore necessary to arrange the elements in a serial 
order, such that no theorem is cited in the demonstration of an ear- 
lier one, but only in later elements of the series. This results in a 
very formal kind of literary work. Unfortunately, this literary genre 
has received no general name, unless one interprets Heath's phrase, 
"book of elements" as such; "series of elements" might be better. 
For the philologist, or even for the nineteenth-century scientist who 
had some knowledge of Greek, the emphasis on serial order was 
unnecessary. The letters of the alphabet are arranged in a standard 
sequence, and the stoicheion was derived from an earlier Greek word 
meaning "to go in a row." It will be simplest to use "element" 
when a single theorem and its demonstration is meant, and "Ele- 
ments" for a series of them in a suitable order. 

The recognition that Euclid's "Thirteen Books" are a syn- 
thesis of earlier Elements makes it certain that these earlier ones 
were less complete than Euclid's. They may also have contained 
evidence of the motivations of their writers, if only by the nature of 
the problems that they considered. Lacking this evidence, one must 
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resort to less direct inference, which may amount only to conjec- 
ture. One may begin by considering what is known about the men 
whose writings Euclid collected and edited. They lived and worked 
during the period when biographical data concerning others besides 
kings and generals were just beginning to be preserved, though not 
with great accuracy. There are usually several versions of every 
biography, and one must either choose one, or else become 
involved in tedious controversies. In general, I have adopted a ver- 
sion that is to be found in one of our standard encyclopedias; I have 
departed from this only when there seemed to be compelling rea- 
sons. 

According to Proclus, the first writer of elements was Hippo- 
crates of Chios. Like Cos, Chios is an island near the coast of Asia 
Minor, but farther north, about sixty miles northwest of Samos, 
and a part of Ionia. Unlike the famous Hippocrates of Cos, Hippo- 
crates of Chios was not a physician; he seems to have been a 
teacher of mathematics. He lived after Pythagoras and before Plato, 
about the time that the two Greek systems of numerals were com- 
ing into use, and the Greek language was displacing Akkadian in 
commerce. It appears that, besides writing a series of elements, 
Hippocrates solved the problem of finding the areas of certain cres- 
cents, bounded by arcs of two circles. This involves the solution of 
quadratic equations, presumably by geometric algebra. The Old 
Babylonians had previously prepared tables for the numerical solu- 
tion of some quadratic equations. Whether this is coincidence or 
whether it implies that Hippocrates knew of the Old Babylonian 
mathematics, is an unsolved problem. One other legend about Hip- 
pocrates has come down to us: he taught mathematics for pay. This 
seems trivial to us, but the aristocratic Pythagoreans and Platonists 
considered it deplorable; perhaps this makes the legend certain. 

Proclus also mentions Leon and Eudoxus (who have been 
mentioned above and will become increasingly important later) as 
early writers of series of elements. Nothing is known of Leon 
except that he was older than Eudoxus (408-355 B.C.) and younger 
than Plato (427-346 B.C.). Durant gives the following version of 
Eudoxus' career, and Dreyer, an abbreviated account that is not 
incompatible with Durant's. Eudoxus was born on Cnidus, a very 
small island just south of Cos. It may very well have been the 
home of a dissident branch of the medical cult on Cos. Eudoxus is 
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said to have left the island at the age of twenty-three, to study 
medicine at Locri, in Italy; then to study geometry and mechanics 
with Archytas; and finally to have come to Athens on Archytas' 
advice. He was very poor and lived at the waterfront, five or six 
miles from the Grove of Academe, but studied there with Plato for 
some months. Some say that Plato expelled him from the 
Academy. Then he returned to Cnidus, and went on to Egypt, 
where he stayed more than a year. Later he  settled for some time 
at Cyzious, where he established a school. Cyzious was a great port 
on the southern shore of the Sea of Marmora, near modern Galli- 
poli. At the age of forty, he moved his school to Athens, teaching 
(for money) not only mathematics, but ethics, mechanics, astron- 
omy, geography, and meteorology. Like his teacher Archytas, he  
cited experiment and observation as sources of knowledge. He and 
Archytas were therefore interested in the obvious changes occurring 
around them, which Plato considered misleading illusions, distract- 
ing one from the search for the eternal, immutable realities beyond 
the stars. Eudoxus' book on astronomy is said to have been the 
"greatest in antiquity," and to have stimulated the study of that 
subject; much of it was preserved by Aristotle. Although its ideas 
are far from modern, they are not despised by modern astronomers 
for reasons that will be discussed later. Eudoxus was one of Plato's 
most formidable intellectual rivals, and certainly did not subscribe 
to the Eucleidean belief that knowledge is independent of percep- 
tion. Ultimately he returned to Cnidus and had an astronomical 
observatory built for himself; perhaps this depleted the savings from 
his years of teaching. It was not a very good observatory; of course 
it had no telescope, but neither did Tycho Brahe's. Even so, its 
instruments must have been primitive, though ingenious; it scarcely 
rose above the roofs of surrounding houses. But Archimedes would 
cite his observations, and one of his own pupils is said to have used 
them to predict a solar eclipse. His series of elements is said to 
have furnished Euclid with the material for his Book V; if so, they 
were largely concerned with the geometric theory of ratios. 

Theudius of Magnesia is said, by Proclus, "to have put 
together the elements admirably, making many limited theorems 
more general." There were two Magnesias: the one a city in Asia 
Minor about twenty-five miles inland from Miletus, the other was 
the coastal region of Thessaly. It is not known which was 
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Theudius' birthplace, or who taught him. He is said to have 
become a member of Plato's Academy, and his series of elements 
to have been its mathematics textbook. There were other 
mathematicians who were said to have worked with Plato and Theu- 
dius during these years. Because of the general admiration excited 
by Plato, it is difficult to be certain that this relation has not been 
overemphasized. Menaechimus and his brother Dinostratus were 
presumably Athenians, and are said to have been closely associated 
with the Academy. Yet Menaechimus is also said to have been a 
pupil of Eudoxus; one may surmise that Athenaeus of Cyzius was 
another. It is thus reasonable to suppose that these men were 
closer to Eudoxus than to Plato. Amyclas of Heracleia is said to 
have worked with Theudius; there were several cities named Hera- 
cleia, and nothing more seems to be known about his birth or early 
teachers. Theaetetus was an Athenian, but Plato himself states that 
his teachers were Theodorus of Cyrene and that Theaetetus was 
already becoming an independent worker at the time of Socrates' 
execution, long before the Academy was started. Theodorus was 
older than Plato, but is said to have spent many years in Athens 
before being forced to return to Cyrene because, according to 
nineteenth- century historians, "he was an atheist." Cyrene was a 
city on the North African coast, settled some two centuries earlier 
by colonists from, of all places, the island of Thera. Within another 
generation, it would develop its own school of philosophy, about 
which more will be said later. Plato is said to have visited Theo- 
dorus in Cyrene after leaving Megara and to have studied geometry 
with him, but this is part of a legend that is internally inconsistent. 

Heracleides of Pontus is said to have been trained in 
mathematics at the Academy; Pontus was a province north of 
Mesopotamia proper, and extended to the southern shore of the 
Black Sea. Proclus also mentions Hermotimus of Colophon as the 
"discover of many of the elements"; Colophon was in Asia Minor, 
an island city of Ionia not far from Miletus. There is no suggestion 
that Hermotimus was ever with Plato. 

Although this list of pre-Euclid mathematicians has been 
known for a very long time, no historian seems to have commented 
on its most obvious characteristic. Very few of these men were 
Athenians, and even fewer are mentioned in Plato's dialogues. It 
seems certain that not all of them studied at the Academy, or 
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shared Plato's opinions. Yet there is still a general belief that 
Euclidean geometry originated in Athens, and that Plato's "great 
love for mathematics" nourished its development. There is no evi- 
dence to support this belief. A glance at the map suggests, rather, 
that there was great interest in mathematics throughout all the 
Greek-speaking lands of the Mediterranean area, and most likely 
many cities in which one could obtain good instruction in geometry. 
The frequent recurrence of Miletus and Samos in the above sug- 
gests that this interest may have originated there, and then diffused 
to the rest of classical Greece. According to legend, when Plato left 
Eucleides in Megara, he first went to Taras (the modern Taranto in 
Italy) and there learned the Pythagorean doctrines from Archytas, 
with whom he maintained a lifelong friendship and correspondence. 
From there, he went to Locri (also in Italy) and studied astronomy 
with Timaeus; then he visited Egypt, Syracuse, and Cyrene, though 
in which order is not made clear. At Cyrene, he  studied mathemat- 
ics with Theodorus. This whole legend has been thoroughly 
discredited, for reasons that have already been mentioned. Yet it 
can still be found in recent and respected histories. Perhaps the 
visit to Archytas is authentic, and may have contributed to the 
influence of Pythagoreanism that is evident in the dialogues. 
Archytas may also have been the prototype of Plato's ideal 
philosopher-statesman. Plato's letters indicate a long friendship 
with Archytas, and they may have exchanged visits on several occa- 
sions. Concerning Plato's own stay in Syracuse and his subsequent 
enslavement, it has been noted that there are various versions of 
this part of his biography. However, they agree that this visit to 
Syracuse was just prior to the incorporation of the Academy. He is 
said to have visited Syracuse three times, the third time being 
shortly after Theaetetus' death, and the death of the king, 
Dionysius I, who had enslaved him. One must strongly discount 
the supposition that Plato himself made any great contribution, 
directly or indirectly, to the materials with which Euclid worked. 
The legend that he inscribed the door of the Academy's building 
with the warning "Let no one enter here without geometry," seems 
to have arisen in Roman times, some centuries after Plato lived. It 
is also difficult to reconcile with the generally accepted belief that 
Theudius taught geometry at the Academy. 
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From this biographical material, it is clear that not all of 
Euclid's predecessors were Athenians, and that it is improbable that 
even all contemporaries were ever assembled there. They must 
often have communicated primarily by writing. This is confirmed 
by the writings of Archimedes, though he lived somewhat later than 
Euclid, and quotes both him and Eudoxus. Of Archimedes' surviv- 
ing works, most are Elements. Some of them are preceded by what 
may be described as a letter of transmittal, a personal and explana- 
tory communication to the recipient. There were no publishing 
houses, and interested individuals made a copy of a manuscript for 
their own use, or paid a scribe to make a copy. 
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Keeping these facts in mind, one can form reasonable opin- 
ions about the materials that Euclid synthesized into his "Thirteen 
Books." They were primarily Elements of geometry, but he also 
used other material. Some of this was obtained from Aristotle; he  
may also have been somewhat influenced by Plato. Even though 
there were Elements on astronomy, optics, and mechanics, they 
were not included in the "Thirteen Books," but Euclid may have 
included them in his other writings. Since these other writings have 
not been as influential as the "Thirteen Books," there is a tendency 
to restrict the term Elements to geometry; this was certainly the way 
in which Proclus used the term. However, the literary form of the 
Elements does not impose any restriction on their subject matter. 
This was much later recognized by Newton. Elements are not even 
restricted to the exact sciences, any more than a written dialogue is 
necessarily skeptical and negative. This last was recognized by 
Galileo and Berkeley. These are all matters that call for investiga- 
tion, and are not unrelated. 

The geometrical Elements available to Euclid must have been 
incomplete, from both his point of view and from ours. One could 
combine and unify them, and one could enlarge them in two direc- 
tions. One might find more complex and detailed theorems, and 
demonstrate them by citing the elements already written. One 
might also become doubtful of the reasons cited in the demonstra- 
tion of existing elements; then one would devise demonstrations for 
simpler and more general theorems, and cite these in new versions 
of the dubious elements. If the theorem seemed sensible and only 
the reasoning was dubious, there would be a tendency to bias the 
new, simpler elements so that they supported the original theorem 
more effectively. In recent times, mathematicians have admitted 
this frankly; most of them consider it a legitimate way of generating 
new ideal concepts. Many of the more recent editorial corrections 
of Euclid's Elements have been of this kind. This is the reverse of 
negative, skeptical criticism; there is a tendency to call it 



"positivism." 

One may therefore say that the series could be extended both 
in the direction of simpler elements, and in the direction of more 
complex elements. This was recognized by Aristotle and his con- 
temporaries, but they did not name the two directions. Today, we 
call the direction of more detail "deductive" or "demonstrative," 
and the other direction is called "inductive" or "inferential." We 
also speak of "deductive logic" and "inductive logic." Deductive 
logic is usually considered to be more conclusive and certain than 
inductive logic. It has been noted that extension in the inductive 
direction is likely to be biased by theorems that one believes to be 
true and wishes to support. In this respect, inductive logic resem- 
bles rhetoric: the objective of rhetoric is to persuade others to accept 
one's own belief. In Aristotle's time, no word had been coined for 
logic as we think of it today; this must not be forgotten when 
modern words are used in discussing ancient writings. 

According to Szabo, there was a long debate about the exten- 
sion of the series in the inductive direction. Some maintained that 
it could be extended indefinitely, others that it could not. If there 
were theorems so simple and general that they could not be demon- 
strated, but yet were known to be true, these would be a sort of 
absolute knowledge that could be put into words. One may surmise 
that Plato rejected this view, since he believed that absolute 
knowledge could be obtained only by rare individuals, by a process 
resembling revelation. It seems to have been Aristotle who, in his 
attempt to systematize science, gained acceptance for the idea that 
there are sentences so simple that everyone knows they are true, 
that they are self-evident. This difference between the views of 
Plato and Aristotle is fundamental, although the exact words used 
above are modern. It is not known how this difference influenced 
their personal relations. 

Since there was this debate about the extension of Elements 
in the inductive direction, it is remarkable that no one seems to 
have raised the issue of their extension in the deductive direction. 
Such an attempt might lead one to theorems as complicated and ela- 
borate that they too cannot be demonstrated. This does not seem 
to have occurred to anyone until the present century. When it was 
shown, by Kurt Godel and Alonzo Church, that there are such 
undemonstrably elaborate theorems, both mathematicians and 
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philosophers were startled. One might expect that psychologists 
would consider the implications for the doctrine of 
psychomathematical parallelism, but this has not yet happened. 
These elaborate theorems are certainly not self-evident. 

Turning now to Aristotle's biography: he was born in 384 
B.C., in Stagyra, a city just east of Macedonia, which had been set- 
tled by colonists from Ionia in Asia Minor. His father was, at some 
time, physician to King Amyntas I1 of Macedonia, the grandfather 
of Alexander the Great. Aristotle's early education may have been 
directed toward medicine. At the age of eighteen, he went to 
Athens, but it was not until later that he began to study with Plato 
at the Academy. It does not seem to be known how long this 
period lasted. He remained in Athens for twenty years, until Plato's 
death. Some of his more recent biographers believe that during 
these years he conducted a school whose curriculum included rhe- 
toric, the subject that Plato despised and which is related to logic. 
This may have been another reason why he was not elected Plato's 
successor as head of the Academy. It is usually said that this turn 
of events disappointed him, and caused him to leave Athens. In 
any case, he left Athens at about the time of Plato's death, and five 
years later he became the tutor of the young Alexander of 
Macedon. Falling out of Alexander's favor, he returned to Athens. 
It is certain that he then established a school, known as the 
Lyceum. Its curriculum again included rhetoric. After Alexander's 
death, Aristotle was accused of impiety, and hastily escaped from 
Athens to Euboea, where he died soon after. 

Aristotle wrote on a great variety of subjects. Some of his 
writings were in the form of dialogues, others were scarcely more 
than notes intended for his own use. Some were certainly carelessly 
worded, and others seem to have recorded changes in his opinions. 
His writings were edited and compiled, possibly by his students. 
These versions were later translated into Arabic, and thence into 
Latin. One of these derivative versions became available to scholars 
in Italy at about the same time that Fibonacci introduced the Arabic 
numerals from North Africa. This Arabic edition had been 
prepared shortly before by the scholar, Averroes, in Spain. 

It is generally conceded that Aristotle was the founder or 
inventor of logic. The writing of elements naturally posed a prob- 
lem: Is this demonstration valid or invalid? Aristotle attempted to 
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solve this problem by examining the form (syntax or grammar) of 
the sentence, as well as the meaning of the words or phrases in the 
sentence. He restricted himself to sentences having the form of a 
syllogism. He wrote, "A syllogism is an argument in which, certain 
things being posited the premises, something other than the prem- 
ises necessarily follows from their being true." This contains no 
reference to sentences, but it must be remembered that the distinc- 
tion between a sentence and a proposition had not yet been intro- 
duced. In practice, he often used a considerably narrower 
definition; most of his syllogisms had a form similar to "A is B and 
B is C; therefore A is C," where all three "A is B," "B is C," and 
"A is C" are correct sentences; all three are subject-predicate sen- 
tences. He recognized only a few variants of this form as valid. 
According to Averroes, the Greek physician Galen (130-201 A.D.), 
recognized that other variants were equally valid, and these were 
added to Aristotle's list. These were usually known as the deduc- 
tive syllogisms. Aristotle also recognized another, which became 
known as the inductive syllogism. It has the form 

A,B,C ,... are all of M, and each of A,B,C ,... is an N; 
therefore every M is an N. 

Note that all the constituents of M are enunciated, and that these 
may only be some of the constituents of N. Again, one is dealing 
with three subject-predicate sentences. Somewhat after the time of 
Galen, the distinction between a sentence and a proposition was 
introduced into logic. Until the nineteenth century, no other 
modification of this formal scheme was made; however, Aristotle 
and his successors considered that logic was more than a formal 
scheme, and differences of opinion developed in this area. For the 
present, only Aristotle's views will be examined. 

Passages from his writings, (taken from the Introduction to 
Heath's "Thirteen Books of Euclid's Elements"), mention a great 
variety of topics, expressing opinions concerning them, but all very 
briefly. It is not a finished literary production, especially when the 
editorial inserts are deleted. It is the sort of thing a teacher might 
jot down at the end of a vacation, in anticipation of the start of a 
new class. It contrasts from the extract from Plato's Letter VII, not 
only in its lack of polish, but in its general matter-of-factness; only 
the reference to the "reason dwelling in the soul" has a mystical 
content. Plato and Aristotle are irreconcilable, "unless indeed it be 
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asserted that any audible speech is an hypothesis." 

In the extract referred to above, there is only a passing refer- 
ence to "the common axioms, so called." In a later passage from 
the same work he distinguishes between axioms, hypotheses, and 
definitions. It has been seen that, both before and after Aristotle, 
there was a tendency to suppose that when a thing has been named 
or defined, it existed. This tendency is still apparent today; the 
insistence that existence requires a demonstration, or else an 
assumption is one of Aristotle's most important achievements. 

Historically, equally important is his view that an axiom is 
"that which it is necessary for anyone to hold who is to learn any- 
thing." It is unfortunate that he does not give his reasons for 
believing that there are axioms. The passage has been interpreted 
in various ways, usually in the context of "reason dwelling in the 
soul." It has been held to imply that anyone who doubts an axiom 
is of unsound mind. It has also been held that there are axioms of 
religion, and that the soul of anyone who doubts them will be eter- 
nally damned. Divested of theology, the assertion that there are 
axioms in the Aristotelean sense is an assertion about the psychol- 
ogy of learning: there are some things that everyone knows and that 
do not need to be taught. In this form, the assertion has survived 
in our dictionaries and our educational system. It may be the rea- 
son why many people find it difficult to learn science. 

The question of Aristotle's influence on Euclid is complicated 
by the terminological confusion mentioned above. It is apparent 
that Aristotle sometimes used the phrase, "common opinion" 
rather than "axiom." Some of his editors used "common opinion" 
in the same way. "Common opinion" must mean an opinion that 
is widespread among people, or even universal. "Common princi- 
ple" may mean a principle that is common to all demonstrative sci- 
ences. There were also other terminological variations in the writ- 
ings of the time. 

According to tradition, Euclid opens his treatment of 
geometry with seven axioms. This may have been the case with 
some early edition, but according to the accepted restoration of 
Euclid's text, he nowhere used the word. The first book opens with 
a long list of definitions, five postulates, and five common notions. 
The last are: 
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Common Notions 
1. Things which are equal to the same thing are also 

equal to one another. 
2. If equals be added to equals, the wholes are equal. 
3. If equals be subtracted from equals, the remainders 

are equal. 
4. Things which coincide with one another are equal to 

one another. 
5. The whole is greater than the part. 

It seems clear that Aristotle would have called all of these 
"axioms," "common opinions," "common principles," or "syl- 
logistic principles." The postulates are: 

Postulates 
1. To draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a 

straight line. 
3. To describe a circle with any center and distance. 
4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines 

make the interior angles on the same side less than two 
right angles, the two straight lines, if produced 
indefinitely, meet on that side on which are the angles 
less than the two right angles. 

One need not quibble because the sentences are incomplete; they 
are intended to assert the possibility of geometric constructions. It 
seems reasonably certain that Euclid used "postulate" in Aristotle's 
sense: something "which is rather contrary than otherwise to the 
opinion of the learner, or whatever is assumed and used without 
being proved, although matter for demonstration." However, this 
has not been the generally accepted opinion, and many have con- 
sidered them to be axioms. In particular, the fifth postulate is 
equivalent to the Axiom of Parallels that would later become the 
center of a controversy. It has, however, been noted by many that 
Euclid never invokes the fifth postulate in a demonstration if he can 
avoid it. The controversy might have been avoided if the postulate 
had not become generally accepted as an axiom. 

The first few definitions are: 

Definitions 
1. A point is that which has no part. 
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2. A line is breadthless length. 
3. The extremities of a line are points. 
4. A straight line is a line which lies evenly 

with the points on itself. 

Perhaps it is not certain that Euclid's definitions are to be inter- 
preted in Aristotle's sense. If they are, then they do not assert the 
existence of the things defined. Euclid's points are definitely not 
pegs, and his lines are not cords. If he does not assert their 
existence, they may be interpreted as fictional ideals. However, this 
is not the view that would be adopted by later writers. These 
definitions would be considered as asserting the existence of points 
without parts and breadthless lines. This raises Plato's problem: 
How can people know of the existence of such things? His answer 
was that they cannot. Later writers seem to have wanted a less 
negative answer, and supposed that this knowledge was axiomatic, 
self-evident. It required no teaching or learning. The existence of 
these ideals was certain, and required no demonstration. This 
appears to be a remnant of the early confusion of Euclid of Alexan- 
dria with Eucleides of Megara. Perhaps Proclus also contributed to 
this view of the matter. In any event, this view was held until quite 
recently, and perhaps still has adherents. 



Aristotelianism 
and Christianity 

There is a theory that theology and science are incompatible, 
that they involve different theories of knowledge. Theology is sup- 
pose to rely on revelation and faith, science on sense-perception and 
self-evident common sense. It is also traditional that this conflict 
became acute at the time of Galileo and Newton. Galilee's persecu- 
tion is often cited as evidence that theology is authoritarian; simi- 
larly, Newton's freedom to publish his opinions in England is con- 
sidered as evidence that science is democratic and individualistic. 
As is often the case, an examination of the historical settings in 
which Galileo and Newton lived shows that this tradition is an 
oversimplification. 

Early Christianity was based on the testimony of the Apostles, 
on their personal acquaintance with Jesus. They told the story of 
his sayings and actions, and of the sayings and actions of others. 
Whether one believes the story or not, it is a simple one, based on 
the Apostles' reports of their sense-perceptions. Since Jesus and 
the Apostles were Jews, the Old Testament was incorporated into 
Christianity as a matter of course. The Apostles and their early 
converts were neither scholars, scientists, nor theologians. First- 
hand accounts of the early Christian community that formed after 
the time of the Apostles are rare. Accounts by non-Christians all 
express amazement at the Christians' love for one another, at the 
concern of each for the welfare of all the others. The Christian 
Church was organized quite early, but the authority of its bishops 
was limited to excommunication, to depriving a person, temporarily 
or permanently, of membership in the Christian community. 

Alexandria was an early center of Christianity, and its scho- 
lars seem to have added some of Plato's doctrines to Christian 
theology, as has already been noted. During the early Middle Ages, 
Christianity spread over all of Western Europe. Most people were 
illiterate and learned about the faith from their local missionary 
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priests; most of whom were also illiterate and learned Christian doc- 
trines by oral instruction. For one reason or another, other local 
pagan beliefs and rituals were often mingled with Christianity. 
Among educated persons, some knowledge of Plato was preserved; 
Aristotle seems to have been remembered only as the originator of 
formal logic, which was of no interest to ordinary people. Plato's 
skeptical negativism was converted into a positive belief in divine 
revelation following prolonged ascetic meditation. 

Revelations were often in the form of visions, which were 
reported as if they were simple sense-perceptions, Thus Plato's 
doubts concerning the senses as a source of knowledge was con- 
verted to, or at least replaced by, that uncritical acceptance of direct 
sense-perception and hearsay which we call superstition. Under 
these conditions, it was inevitable that many versions of the Chris- 
tian doctrine would evolve. By the end of the medieval period, 
there was a need for an authoritative manual or reference book. 
Various men attempted to supply this need. 

By the thirteenth century, literacy had increased; Fibonacci 
was writing about the Arabic numerals. Latin translations of Arabic 
(Moorish) writings became available. These became popular, 
though only with those whose education included Latin. These 
scholars might be laymen or churchmen; as yet, not all churchmen 
were scholars. Aristotle's writings on topics other than formal logic 
became available. The Dominican brother, Thomas of Aquinas, 
devoted himself to constructing the system of Christian theology 
and philosophy, which is now known as Thomism. It ultimately 
became very influential and a modified version is still influential 
with Catholic intellectuals. It was not without rivals; the Franciscan 
brother, Duns Scotus of Oxford, wrote a critique of Thomism that 
was equally influential at the time. When Thomas of Aquinas 
encountered a problem for which the Scriptures gave no ready solu- 
tion, he relied on Aristotle, or rather on Averroes' edition of 
Aristotle's writings. Ultimately Thomism gave the Aristotelian phi- 
losophy a prestige that it might not have otherwise acquired. It 
seems that Scotus was especially critical of those aspects of Thom- 
ism that were derived from Aristotle. 

For the present purposes, only two aspects of Thomism are of 
importance. Firstly, it emphasized, and perhaps exaggerated, 
Aristotle's doctrine that there are axioms that no right-thinking 
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person will deny. This now reinforced the earlier doctrine of heresy 
(wrong thinking on the part of a Christian), and made it seem per- 
verse, rather than merely wrong. Secondly, since neither the Scrip- 
tures nor Aristotle mention the heliocentric theory of the solar sys- 
tem, Thomism tacitly assumed the geocentric theory. 

But Thomism was an intellectual invention, and did not claim 
to be revealed truth. It was therefore entirely possible for devout 
Christians to doubt both it and Aristotle. It is only remarkable that 
these doubts did not become widespread earlier than the sixteenth 
and seventeenth centuries. During this interval, the secular power 
of the Roman Church increased greatly, at least in Western Europe. 
Theoretically, it was centered in the Pope and the Vatican, but it 
was exercised either by local ecclesiastics or by the local kings. 
After Charlemange, one king was elected the Holy Roman Emperor 
and became the Pope's secular and military defender. Theoretically, 
the objective of this secular power was the elimination of pagan ele- 
ments from Christianity. This, together with the revival of Roman 
law and its use of torture as a judicial procedure, resulted in the tor- 
ture and burning of witches in great numbers. All local pagan gods 
were identified as the Devil or his minions. 

However, in scholarly circles, knowledge of the classical 
Greek and Latin writings increased. Doubts about Thomism or 
Aristotelianism persisted or increased. Interest in other aspects of 
Greek thought (e.g., science, medicine, and mathematics) also 
increased, and the Vatican did not frown upon it, but often actively 
participated in furthering this interest. The original writings of 
Aquinas could be regarded as the "old theology." 



Pythagoreanism Becomes 
Rationalism 

While they were not the first to express such doubts, Galileo 
and Newton are often considered as the leaders of this skepticism, 
and Galileo certainly expressed it explicitly, though respectfully. He 
wrote: 

Such is the greatness and authority of Aristotle that it is 
difficult and dangerous to write against his teachings, and to 
me in particular since I have always held his wisdom a matter 
for admiration. Nevertheless, impelled by a zeal for truth, by 
the love for which, if he were living now, he would be 
activated, I have not hesitated in the interests of all to state 
wherein the unshakable foundations of mathematical philoso- 
phy force me to dissociate myself from him. 

Galileo's attitude toward Aristotle and mathematics was similar to 
Proclus' attitude toward Euclid and geometry, but most of Galileo's 
writings are more closely related to those of Pythagoras and 
Archimedes than to the writings of Aristotle. 

Both Newton and Galileo were devout and believed that they 
were discovering the laws imposed on the universe by God. They 
did not use this Pythagorean phrase, but they believed they were 
"conversing with the divine" and learning that there is mathemati- 
cal order in the world. Galileo wrote: "Truth is written in the Great 
Book of Nature, but only he can read it who can decipher the letters 
in which it is written." This is a concise statement of the philo- 
sophical doctrine of empiricism. It is very different than the doc- 
trine that truth is written only in the Scriptures; but while this doc- 
trine is still held by some fundamentalist sects, it was not 
widespread among the scholars of Galileo's time. Neither does 
Galileo say that truth is written only in the Book of Nature. His 
formulation of empiricism does raise an important question, how- 
ever. Leaving personal egotism aside, what people can decipher the 
Book of Nature? At least two books, Herbert Wendt's In  Search of 
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Adam and J .  Allen Hynek's The UFO Experience, provide adequate 
documentation for the part that personal bias has played in two 
different fields of empirical science. The question can also be for- 
mulated as: How can truth be distinguished from superstition? 

The question is therefore not an idle one. When it is 
answered that, "The Book of Nature is written in the letters of logic 
and mathematics," then Galileo's doctrine becomes rationalism. 
The monk, Roger Bacon, a contemporary and colleague of Duns 
Scotus at Oxford, seems to have been the first to advance the doc- 
trine of rationalism. He held that mathematics applied to observa- 
tion is the only way to arrive at knowledge. For this and other 
"novelties," including gunpowder, he earned the enmity of his fel- 
low Franciscans and suffered a lengthy imprisonment. In those 
days, long imprisonment resulted in malnutrition and general ill- 
health, if not in specific disease. Bacon died shortly after being 
released. 

Rationalism is even more closely related to Pythagoreanism 
than is empiricism. Newton seems never to have made explicit 
reference to rationalism, but there is evidence that he shared 
Galileo's philosophy. Statements of his friends confirm his belief in 
a divine Creator, who has established a relation between Himself 
and human beings. Newton compared himself to a boy on the 
shore of the sea of knowledge, who had been fortunate and found a 
pebble with unusually bright colors. He also said that he made no 
hypotheses. It is generally considered that he was one of the three 
or four greatest mathematicians who ever lived, and this seems to 
have contributed to the spread of rationalism as defined above. 
However, it is difficult, if not impossible to identify philosophical 
doctrines; it is only possible to identify individual philosophers. The 
English philosophers, Locke, Hume, and Berkeley are said to have 
been empiricists; the Continental philosophers, Leibniz, Kant, and 
Descartes are said to have been rationalists. Each philosopher 
seems to have borrowed from all others, and to differ or quarrel 
with a few others. Both Newton and Galileo, and many of their 
successors, believed that the laws of nature are fixed and immut- 
able, independent of the people who put them into words. Even 
though these laws govern the changes that are so obvious in nature, 
they thus acquire some of the characteristics of Plato's realities. 
This belief will require further investigation. 
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Returning to Galileo, tradition places more emphasis on his 
persecution by the Roman Inquisition than on his achievements. 
He was a man of attractive personality and an excellent teacher. 
His lectures brought students from all over Europe to Padua. They 
returned home and spread the knowledge of his achievements. In 
short, he became an internationally respected figure. He was not 
infallible, and was often irascible. He proposed a theory of the tides 
which is now admitted to be untenable. When a contemporary 
scholar pointed this out, and proposed a somewhat better theory, 
Galileo would not admit his error. Instead, he  used his literary abil- 
ity to ridicule his opponent, and refused him the courtesy of debate. 
This and other tactless discourtesies soon made powerful enemies. 
It is not unusual for a man to have both friends and enemies, and 
to be caught in the no-man's land of their conflict. The theory of 
the tides was a comparatively minor episode. Galileo also thought 
that the heliocentric description of the solar system could also be 
read in the Book of Nature. In his enthusiasm, he endeavored to 
convince others of this. Even his well-educated friends must have 
been confused; they had never heard of rationalism as Galilee's for- 
mulation of this doctrine was not published until later. Some of 
them were familiar with Pythagoreanism, but Galileo seems to have 
made no explicit reference to it, so that it is possible that even this 
connection with familiar ideas escaped them. Neither the Scriptures 
nor Aristotle, nor even Thomas of Aquinas mention the heliocen- 
tric solar system. Knowing that he was a devout Catholic, his 
friends could only be confused. His enemies could doubt the sin- 
cerity of his professed devoutness. 

On February 25, 1616, the Roman Inquisition declared that 
belief in the heliocentric description of the solar system was hereti- 
cal. We call the heliocentric system "Copernican" because it was 
Copernicus' book about it that was placed on the Index of Prohi- 
bited Books. Yet it has been seen that Archimedes and others had 
considered the heliocentric theory as an alternative to the geocentric 
some two thousand years previously. Copernicus had obtained the 
suggestion by reading various Greek authors. His book had been 
published more than seventy years earlier, at the end of his life. At 
that time, Martin Luther had tried to prevent its publication, but 
Pope Clement VII had sanctioned it. It had circulated freely during 
the years since then. It was no accident that Galileo was in Rome 
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when the Inquisition reversed Pope Clement's decision; his mission- 
ary zeal for the heliocentric theory was well known and he presum- 
ably renewed his efforts on its behalf during this visit. On the next 
day, February 26, he was informed of the Inquisition's action by 
Cardinal Bellarnini. Bellarnini was a Jesuit, noted for his intellec- 
tual interests and moderate views. He and Galileo had had many 
friendly conversations in the past. However, this was no ordinary 
conversation: Bellarnini was acting on written instructions from the 
Inquisition. On March 3 ,  Bellarnini submitted a written report to 
the Inquisition, stating that Galileo had abjured his belief without 
protest. This left Galileo, like all others, free to continue the two- 
thousand-year-old discussion of the heliocentric hypothesis; it was 
only forbidden to assert it as true: it must be repudiated as false. 

Galileo seems to have obeyed this injunction literally, 
although it is more than likely that he hoped that the decree of 
heresy would be revoked. His attempts at refutation were certainly 
not vigorous. His enemies may well have doubted his sincerity, but 
they were unable to find legal grounds for proceeding against him. 
Seventeen years passed, and by 1633, Galilee's tactlessness had 
earned him additional enemies, probably including his former 
friend, Pope Urban VIII; Bellarnini was no longer alive. Someone 
added to Bellarnini's report, without bothering to conceal his 
handwriting, and without bothering to alter Bellarnini's written 
instructions. According to this blatant forgery, Galileo had been 
forbidden to discuss the heliocentric system, even in order to refute 
it. Since he had discussed it openly for years, the forged evidence 
made it possible to bring him to trial. He was not accused of 
heresy; the charge was the technical one of having violated 
Bellarnini's injunction. However, while it was a technicality, this 
charge was no means trivial as it placed him in danger of torture 
and execution. 

The trial of Galileo immediately became an international 
incident that no one, perhaps not even its instigators, wished to 
escalate. Galileo was tried before twelve cardinals, who were both 
judges and jury. Ten days elapsed between the end of the trial and 
the reading of the verdict and sentence. Although there are no 
records of events during these ten days, it seems likely that the 
French and Florentine ambassadors to the Vatican were active in 
negotiating a compromise. The fact of the forgery was not made 
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public, although many of the participants in the affair must have 
been aware of it. Galileo himself cannot have seen the forged 
document, but his testimony at the trial is consistent with the origi- 
nal version, and with Bellarnini's written instructions. It is incon- 
sistent with the forged addition. He seems to have been confused 
by the evidence, but unaware of the forgery. Only seven of the 
twelve cardinals signed the verdict, but this was not made public 
either. The sentence of imprisonment imposed on Galileo was 
remarkably light, considering the temper of the time. It was soon 
commuted to house-arrest in Florence where he was under the pro- 
tection of the Duke. He continued to work, and his writings 
defended the heliocentric theory more openly than ever. This is the 
foundation for the legend that he muttered, "But still, it moves," 
as he  was being led from the courtroom. These later writings were 
published in Protestant Holland, but the Inquisition took no action 
against Galileo. He was certainly no nominalist, and believed in the 
literal truth of the heliocentric theory. 

At his home in Arcetri, across the river from Florence, he 
was allowed to receive unannounced visitors and speak with them in 
private. Very likely, one of these visitors took his manuscript to 
Holland for publication. Another visitor was the young English 
poet, John Milton, to whom we owe our knowledge of the condi- 
tions under which Galileo lived. While the compromise prevented 
an irrevocable break between France.and the Vatican, the trial pro- 
vided Protestants with material for propaganda. Luther's original 
objection to the heliocentric theory had been forgotten. In England, 
Milton was an especially active propagandist. He was certainly 
ignorant of the forgery. His personal sympathy for Galileo was 
enlisted, and he was sincerely opposed to the Papacy. 

The records of the case were preserved in the Vatican 
Library, but they were not made public until about the end of the 
nineteenth century. They have now been examined by various 
scholars. Rudolf Lammel has written a factual biography of Galileo 
in which the forgery is discussed, as well as the provocative effect of 
Galileo's vanity and irascibility. It becomes clear that the accusation 
and trial of Galileo was not based on broad principles, but was more 
in the nature of a personal vendetta. Many Vatican officials recog- 
nized its potential for harming the cause of the Catholic Church, 
and may have deeply regretted the whole scandalous affair. 
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Unfortunately, Lammel's book has not been translated into English. 
G. de Santillano's book, The Crime of Galileo, also presents the 
results of studies of the trial records, but it attempts to demonstrate 
that broad moral principles were involved. Almost for this very rea- 
son, his book is more than fair to Galileo; it glosses over his per- 
sonal foibles. It does not mention Luther's part in the affair, or the 
long time that elapsed between the publication of Copernicus' book 
and the first action by the Inquisition to supress it. 

Today, it seems remarkable that the trial assumed such inter- 
national importance; perhaps this was unexpected even then. The 
Reformation was in progress, but it had begun before Galileo was 
born. The heliocentric theory was not at issue. The issues were 
numerous and complex; for the present purpose it will suffice to 
enumerate a few of them. During the Renaissance, there was a 
strong tendency to revert to older religious forms, in which there 
was no sharp distinction between secular and religious offices and 
functions. In the upper levels of the Church hierarchy, there was 
an interest in both science and scholarship, which Plato and his con- 
temporaries had made aristocratically respectable. At all levels, the 
less ethical incumbents often served their own selfish interests, pol- 
itical and financial, with ruthless cruelty and misuse of power. In 
the lower levels of the hierarchy, this malfeasance became crass 
commercialism. Luther, as leader of the reformers, at first directed 
his attack on the more obvious commercialism; later he called for a 
general return to the old theology, by which he seems to have 
meant Thomism. Very soon, however, there was dissention accom- 
panied by physical violence, both among the reformers and those 
who supported the established Church. Of immediate concern are 
the political and international consequences of these dissentions. 

Without analyzing the matter in detail, it is a fact that Eng- 
land had rebelled against the political power of the Pope, and that it 
was considered quite possible that France would do the same. 
Florence was allied with France in a long conflict with the Vatican 
that had already resulted in military action. The Duke of Florence, 
and the leaders in France, including its ambassador to the Vatican, 
were personal friends of Galileo. His trial thus became pivotal in 
this phase of the Reformation. It is entirely possible that, without 
the compromise and the light sentence, the relations between 
France and the Vatican would have become irrevocably strained. 
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This made the trial and the heliocentric system notorious and good 
material for Protestant propaganda against the Catholic Church. 

Returning to the heliocentric system, and perception as a 
source of knowledge: the motion of the Earth in its orbit and 
around its axis is not directly perceptible. This is certainly one rea- 
son for the age-long debate about the heliocentric system, and 
makes it unsuitable as an example with which to refute either the 
Platonic or the Aristotlelian theories of knowledge. Galileo's use of 
the telescope for astronomical observations did little to alter this 
situation. He had obtained a telescope from Holland; today, we 
would not dignify it with that name, but instead call it half of an 
opera-glass. He enlarged and improved it until it became service- 
able for astronomical observations. With it, Galileo saw the moun- 
tains on the Moon, the four major satellites of Jupiter, the rings of 
Saturn, spots on the Sun, and the stars of the Milky Way. Except 
for possibly the last, none of these are visible to the unaided eye. 
Many of his contemporaries (and not only his enemies) were skepti- 
cal. If, according to Plato, the unaided senses were unreliable 
sources of knowledge, what about the telescope? Was it not merely 
a further source of illusion? Some of the skeptics were afraid to 
look through the telescope, fearing that it was the work of the 
Devil. A century earlier, Columbus had encountered the same 
skepticism. Three centuries later, Abbe and Zeiss encountered a 
similar, though less stubborn, skepticism when they first produced 
their improved microscopes. Kepler's invention of the astronomical 
refractor, Newton's invention of the reflector, as well as increased 
familiarity with these devices, did much to dispel this skepticism. 
Yet, even George Berkeley confined his discussion of vision to the 
unaided eye. Using one of Galileo's telescopes, Aleiphron would 
have seen the turrets and windows of the distant castle. Conse- 
quently, it was easily possible, even in the seventeenth century, to 
convince oneself that the telescope did not produce illusions; at 
least, not when it was used to observe terrestrial objects. Since the 
astronauts landed on the Moon, the truth of the round Earth, and 
of Galileo's lunar observations, has been demonstrated. The only 
skepticism that remains concerns observations of objects outside the 
solar system; professional astronomers are still debating alternative 
versions of the cosmological theory of relativity, of the red-shifts of 
the spectra of distant stars, and of quasars. While their debate is 
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conducted in modern words, it is essentially a discussion of the 
same problems that confused Galileo's contemporaries. 

It must also be emphasized, for it is usually not mentioned, 
that Galileo did not use the telescope to quantitatively measure the 
apparent motions of celestial objects. For this, he relied on Coper- 
nicus, and to some extent on the non-telescopic measurements of 
Tycho Brahe. It does not detract from his achievement to describe 
it as a partial confirmation of Thales' ancient hypothesis that celes- 
tial objects are made of the same stuff as the Earth. 

Galileo's work on falling objects was even further removed 
from direct perception by the unaided senses. Contrary to popular 
opinion, he did not perform the famous experiment of dropping two 
objects from the Leaning Tower of Pisa. This experiment was first 
mentioned by Galileo's contemporary, Giorgio Coresio, who 
ascribes it to an earlier Mazzone. It is true that Coresio cites it as 
evidence against Galileo's conclusions. In a letter to a friend, pub- 
lished only posthumously, Galileo discusses the experiment, but 
makes no mention of having performed it himself. His own experi- 
ments were with blocks sliding down smooth inclined boards. He 
timed their motion by counting his pulse. After much fumbling, he 
succeeded in establishing the mathematical theory that describes 
their motion and its dependence on the degree to which the board is 
inclined. Free fall was much too rapid to be reliably observed with 
his methods. He arrived at the law by extrapolation, by calculating 
what would happen if the board were vertical. This is inference 
from perception, not perception itself. Moreover, the inference 
involves mathematics that even Galileo found difficult. It was, even 
more than the telescope, a new way of aiding the senses to perceive 
phenomena with greater clarity. At the other extreme, the sliding 
motion of objects on a horizontal plane was very erratic. Instead of 
trusting his unaided senses, Galileo again extrapolated from his 
experiments with inclined boards. He thus concluded that, under 
ideal circumstances, the block would continue sliding indefinitely 
with unaltered speed; yet anyone could see that this was not the 
case in any actual experiment. In the same way, his discussion of 
the motion of projectiles was not based on direct observation, as is 
that of an archer or gunner. He again used mathematics to supple- 
ment his experiments with sliding blocks. And finally, all of this 
was contrary to Aristotle. His contemporaries' bewilderment should 
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not occasion surprise. 

It is true that theology theoretically placed much emphasis on 
revelation and meditation as reliable sources of truth concerning the 
nature of things. For everyday purposes, however, people of those 
days relied on direct sense-perception, just as we do today. Galileo 
was relying neither on accepted theology, nor on direct sense- 
perception. This raised novel and difficult problems that few were 
prepared to face, much less solve. Galileo's writings show that he  
had little understanding of the reasons for their bewilderment. 

One should now return to Copernicus, and inquire whether 
he had more convincing reasons for adopting the heliocentric 
theory. He was Polish, raised by an uncle, who was Prince-Bishop 
of one of the Polish dioceses. This uncle sent him to Italy, where 
he received the best education then available. He studied medicine, 
mathematics, astronomy, law, and theology. Throughout his life, 
his services as a physician were always available to poor and rich 
alike. At the age of twenty-eight he lectured in Rome on 
mathematics and astronomy to enthusiastic and distinguished audi- 
ences. The Pythagorean doctrines were being freely discussed 
there, despite Aristotle's scorn for them. Such wide-ranging discus- 
sions were characteristic of the Italian Renaissance in the period 
preceding the Reformation. Unlike Thomas Aquinas, these scholars 
were able to read Greek and Hebrew, and thus had better access to 
the ancient writings. Egyptian and Babylonian, were, of course, not 
known to them. Copernicus' lectures in Rome preceded the forma- 
tion of the now famous Accademedia dei Lincei, but only by a few 
years. Membership in this society and participation in its discus- 
sions was restricted to relatively few scholars. Less well-educated 
people were ignorant of all this activity, or, if it came to their atten- 
tion, they were offended by it. 

Even before this second visit to Rome, Copernicus had been 
appointed as his uncle's chief assistant in the secular administration 
of his diocese. He made a few astronomical observations, but his 
major interest in this field was the calculation of the future positions 
of the planets. The reason for this interest is not clear, and some 
commentators think it a mystery. He used the decimal numerals, 
but not the decimal point; Stevin would not send his greetings to 
astrologers until a generation later. The increasing precision of 
astronomical calculations had resulted in complicating Ptolemy's 
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geocentric description and made the calculations more and more 
laborious. Copernicus tells us that his reading (presumably of 
Archimedes' Sand Reckoner) had made him aware of the heliocen- 
tric theory. He therefore recast his calculations in this form and 
found that they were much simplified. He became convinced that 
the heliocentric description was the one and only true description of 
the solar system. He soon finished a manuscript containing his cal- 
culations and this conclusion, but delayed its publication for many 
years. Through conversations and letters, others became acquainted 
with its contents, and made them public. His friends in Rome 
urged him to publish, and Pope Clement VII seems to have had no 
reluctance in concurring. The book was finally published in 1543, 
the last year of Copernicus' life. Its publisher, in Leipzig, added an 
unauthorized preface, stating that the heliocentric description was 
only a means for simplifying planetary calculations. This contrad- 
icted the text, and it is generally supposed that the publisher 
inserted it to protect himself; Leipzig was in Luther's country. He 
may also have been sincere, and may even have voiced the general 
opinion of contemporary educated people. Today, the cosmological 
theory of relativity agrees with the publisher, not with Copernicus; 
moreover, geophysicists and observational astronomers find the 
geocentric description more convenient for many of their calcula- 
tions. 

Although Copernicus' book circulated freely for many years, 
it is therefore unlikely that it relieved its readers of their confusion. 
In fact, Tycho Brahe, who worked during these years and made 
better astronomical observations than anyone before, advocated a 
modified geocentric theory. According to Tycho's theory, the Sun 
and Moon circle about the stationary Earth, but the planets circle 
about the moving Sun. The ancient origins of Tycho's system are 
confused, but various Greek writers seem to have foreshadowed it. 
Anyone who was sufficiently interested to read Tycho as well as 
Copernicus and Galileo would certainly be confused: even the con- 
temporary authorities disagreed with each other! Kepler was 
another contemporary of Galileo; his contributions, both to science 
and to confusion, will be discussed after Newton's. 

Newton was born in 1642, the year of Galileo's death; he was 
two years older than William Penn. It was a scant generation since 
the Pilgrims had landed at Plymouth Rock. In England, the turmoil 
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of the Reformation was greater than ever. The Puritan revolution, 
led by Oliver Cromwell, began at about the time of Newton's birth. 
Some of its early battles were fought within fifty miles of his home, 
and the disturbances did not end until he  was middle-aged. At the 
universities, the freedom to discuss non-Aristotlelian philosophers 
was maintained. This made it possible for Newton to publish his 
elaboration of the heliocentric theory but, like Copernicus, he  did so 
only at the urging of friends. There was no similar freedom of reli- 
gious belief. After Cromwell's downfall and the restoration of 
Charles I1 to the throne, the Puritan, John Milton, lost his income 
and died in poverty. William Penn was twice imprisoned. On a 
third occasion, he defended himself so ably that the jury acquitted 
him and made the judge angry. This famous case established the 
English common law that "a judge may not lead a jury by the 
nose," but it did little for the cause of religious freedom. Under 
Charles 11, imprisonment was not the worst thing thing that could 
happen to an avowed Quaker. Penn emigrated to America, prefer- 
ring exile to conformity. Even Cromwell's tolerance of most forms 
of Puritanism did not extend to Unitarianism. If Newton had 
allowed his Unitarian convictions be known, he would have become 
ineligible for teaching and governmental appointments. At the very 
best, he would have shared Milton's poverty. 

Newton's most famous book is the Mathematical Principles of 
Natural Philosophy. Samuel Pepys records that its Latin manuscript 
was received by the Royal Society on July 5, 1686; Newton was 
then in his forty-fourth year. The book is much more than an ela- 
boration of the heliocentric system. It is a kind of synthesis of the 
ideas of Aristotle, Plato, Euclid, and other Greek writers; he made 
this quite clear in his preface to the first edition. The book is not a 
mere compilation, however, and contains so much originality that 
the materials he  borrowed from the past are often overlooked. 

The Mathematical Principles has more or less the same format 
as Euclid's Elements, but it is not so tersely formal. It opens with 
eight definitions, and three "Axioms, or Laws of Motion." These 
axioms are: 

Law I 
Every body continues in its state of rest, or of uniform motion 
in a right line, unless it is compelled to change that state by 
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forces impressed upon it 

Law I1 
The change of motion is proportional to the motive force 
impressed; and is made in the direction of the right line in 
which that force is impressed. 

Law 111 
To every action there is always opposed an equal reaction; or, 
the mutual actions of two bodies upon each other are always 
equal, and directed to contrary parts. 

These laws are again contrary to Aristotle, who held that a 
force is needed to keep an object in motion. Newton explains: 
"Projectiles continue in their motions, so far as they are not 
retarded by the resistance of the air, or impelled downwards by the 
force of gravity." It is clear that Newton was borrowing, though not 
slavishly, from Galileo. This was recognized by Albert Einstein, 
who attached Galilee's name to Law I. Newton believed that, start- 
ing with these three axioms, he could derive both the mathematical 
formulae for planetary motion, and also his famous law of gravita- 
tion. The latter linked the motion of a planet with that of a projec- 
tile, much as Galileo had linked the motion of a sliding block with 
that of a freely falling object. For these demonstrations, Newton 
used mathematical methods that were then novel, and are now 
known as the calculus. At the time, there was a controversy as to 
Newton's priority in inventing the calculus; his rival was G.W. Leib- 
niz. This controversy was very painful to Newton, but it is no 
longer of much importance; both were somewhat anticipated by 
Archimedes and many later mathematicians, including Kepler. 
However, these methods were not widely known, and this made it 
difficult for Newton's contemporaries to understand the Mathemati- 
cal Principles. This did not lead them to be skeptical of his work, 
though the reasons for its immediate acceptance by mathematicians 
are not clear. Many thinkers devoted themselves to understanding 
and extending his work. Since his use of the calculus made it 
difficult for even well-educated people to understand the Mathemati- 
cal Principles, there were soon "popular" editions of the book, writ- 
ten in English, that avoided the use of the calculus. Perhaps the 
first of these was by Henry Pemberton, published in 1728; he had 
edited the third Latin edition of the Mathematical Principles a few 
years earlier, and the manuscript of his popular version had also 
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circulated for some years. It seems to have had a wide circulation, 
and its influence on physics textbooks used in the nineteenth- 
century United States is clearly recognizable. 

Today, we can be more critical and inquire how Newton came 
to enunciate these particular laws or axioms. Since no one had 
accepted them in earlier times, and Aristotle had even accepted oth- 
ers, it cannot be maintained that they are self-evident. It seems 
that Newton arrived at them from a consideration of some conclu- 
sions reached by Johannes Kepler, that is, by induction or infer- 
ence. 

Kepler was a younger contemporary of Galileo. He was for 
many years the astrologer at the court of the Emperor Rudolf 11, in 
Prague. In this post he succeeded the Danish observational astro- 
nomer, Tycho Brahe. After Rudolf's death, Kepler became astro- 
loger to the famous Wallenstein. Originally, Tycho had been sup- 
ported by the King of Denmark and had his observatory on the 
island of Hven. When the Reformation spread to Denmark, he was 
advised to leave. He then found employment with Rudolf, the 
Holy Roman Emperor. Kepler fell heir to Tycho's records, which, 
as has already been noted, contained the most accurate and continu- 
ous series of observations then available. Kepler also made obser- 
vations; he invented the astronomical refractor, which is an 
improvement of Galilee's telescope. With this, he was able to 
observe the planetary motions with even greater precision than 
Tycho had achieved. 

Both Tycho and Kepler had to draw horoscopes and publish 
astrological-astronomical almanacs. To most people of the time, 
"astrology" and "astronomy" were synonymous; the concept of 
astronomy for its own sake had not yet developed. While astrology 
was not officially recognized as part of Christian theology, so many 
prominent people availed themselves of its predictions that it was 
scarcely frowned upon. Kepler himself was never persecuted for it, 
but his mother was accused of witchcraft and was saved from the 
stake only by Rudolf' s intervention. After doing this favor, Rudolf 
never paid Kepler's salary. Kepler explained astrology as follows: 

Insofar as the soul has the idea of the zodiac ... it also feels 
which planet at which time is under what sign, and measures 
the angles of the rays that reach the Earth. Insofar, however, 
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as it takes up from the rays the divine essence of the geometric 
figures of the zodiac ... and also knows the measure of the 
angles, it evaluates some (configurations) as congruent or har- 
monic, others as incongruent. 

Kepler also believed that mathematics was the ordering princi- 
ple of the universe. His specialized writings show that he devoted 
much time to studying the unprecedented amount of observational 
material available to him, with the object of finding the mathemati- 
cal order hidden in it. This is certainly decipherment of the book of 
Nature, whether it be Pythagoreanism, rationalism, or empiricism. 
It requires much good will to describe these writings as consisting of 
theorems and demonstrations; today his logic is considered deplor- 
able. Despite their fantastic quality, it is convenient to speak as if 
his demonstrations were bona fide; this was certainly Kepler's 
intent, for he was not a charlatan. Today, only three of his 
theorems and none of his demonstrations are quoted. The three 
theorems were not even published simultaneously. They have been 
selected from among all the others because they represent an 
advance over all previous heliocentric theories. They are called 
Kepler's Laws, and are expessed in words as follows. 

Kepler's First Law 
The planets (including Earth) move about the stationary Sun 
in elliptic orbits, the Sun being at one focus of the ellipse. 

Kepler's Second Law 
The line drawn from the Sun to a planet sweeps over equal 
areas in equal times. 

Kepler's Third Law 
The squares of the times of revolution of the planets are pro- 
portional to the cubes of their mean distances from the Sun. 

These laws make it possible to calculate future positions of 
the planets rather more simply and accurately than with Copernicus' 
system. Copernicus had supposed that the planets move about the 
Sun in circular orbits, and with constant speed. Using the Coperni- 
can system, therefore, the predicted positions of the planets differ 
from those observed by appreciable amounts. To improve the accu- 
racy of the predictions, corrective calculations are needed. These 
are simpler than those required by the Ptolemaic system, yet they 
are not trivial. Kepler's introduction of elliptical orbits and constant 
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areal speeds resulted in predictions that were more accurate, and 
required less correction. For some purposes, one can even omit the 
corrective calculations. Kepler found the first two laws primarily by 
studying his own and Tycho's observations of Mars; the third law 
required study of the observations of all the planets. The remainder 
of Kepler's theorems are no longer quoted because they are of little 
use in simplifying the planetary calculations. 

With these provisos and reservations, it is possible to explain 
the relation between Newton and Kepler in simple terms. Newton 
accepted Kepler's three theorems, but was not satisfied with their 
demonstrations. He therefore extended Kepler's writings in the 
inductive direction, arriving at the three Axioms or Laws of Motion. 
Starting from these, he devised more satisfactory demonstrations of 
the three theorems, as well as demonstrating many other interesting 
and useful theorems. The evidence for this is of two kinds: the 
statements of Newton's friends, and the outline of the earlier parts 
of Principles of Natural Philosophy. As has been noted, it opens with 
definitions. These are followed by some pages of discussion that 
would be revised and extended by Albert Einstein, but not until 
more than two centuries later. The Axioms are followed by the 
demonstration of some theorems (corollaries). Some of these are 
similar to Galileo's conclusions, others explain experiments by 
Christopher Wren and others of Newton's fellow members of the 
Royal Society of London. Following Euclid's outline, only then 
does Book I open. Its first section is devoted to an exposition of 
the mathematical method we now know as the differential calculus. 
Section I1 opens with: 

Theorem I 
The areas which revolving bodies describe by radii drawn to an 
immovable centre of force do lie in the same immovable 
plane, and are proportional to the times in which they are 
described. 

The differential calculus is used in the demonstration of this 
theorem. The theorem is obviously a carefully worded version of 
Kepler's Second Law, although there is no explicit mention of 
either the planets or the Sun. Theorem I1 is the converse of 
Theorem I. There follow other theorems and problems; Section 111 
is entitled "The Motion of Bodies in Eccentric Conic Sections." It 
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opens with: 

Problem VI 
If a body revolves in an ellipse; it is required to find the law of 
centripetal force tending to the focus of the ellipse. 

It is shown that the solution is the famous law of gravitation: the 
force is inversely proportional to the square of the distance of the 
body from the center of force. The relation of this to Kepler's First 
Law is again clear, though it is not identical to it. Skipping a few 
pages, one comes to: 

Theorem VI 
If several bodies revolve about one common centre, and the 
centripetal force is inversely as the square of the distance of 
places from that centre, I say that .... 

and, 

Theorem VII 
The same things being supposed, I say, that the periodic times 
in ellipses are as of the (3121th power of their greater axes. 

Again, Theorem VII is essentially Kepler's Third Law. One hardly 
requires additional evidence to see that Newton chose his axioms so 
that he would be able to demonstrate Kepler's three laws. It is 
known that he had solved Problem VI several years before the Prin- 
ciples of Natural Philosophy was written. 

One will be curious about the way in which he made this 
choice of axioms; the record is not clear. The legend of the falling 
apple may contain a seed of truth. It may have been a lucky guess, 
or it may have been a matter of trial and error. It is known that he 
at first rejected the inverse square law of gravitation because the 
currently accepted value for the distance between the Earth and 
Moon was very inaccurate. In suggesting trial and error, it is not 
implied that anyone with patience could have done it. Newton was 
not only extraordinarily creative, but he must have systematized 
and been perfectly familiar with the differential calculus before he 
could have solved Problem VI. 



The Intellectual Problems of 
the Seventeenth Century 

The doctrines of empiricism and rationalism are now accepted 
uncritically by most educated people. It has been seen that this was 
not possible in the seventeenth century, when these doctrines first 
began to spread through Europe. They were, perhaps, an integral 
part of the theological confusion of the times, but most people were 
so preoccupied with the theological problems that they were 
unaware of rationalism. The struggle for religious freedom was 
essentially an egoistic one: it concerned the right of all persons to 
make their own decisions as to the truth or falsehood of certain 
beliefs, rather than having these decisions made by persons in 
authority. The empirical investigation of new phenomena and the 
intellectual efforts required by rationalism were relatively safe occu- 
pations, much less dangerous than involvement in the politico- 
religious anarchy of the time. This retreat to safety has been recog- 
nized by some historians, but not in a derogatory way: Galileo and 
Newton were not the stuff that martyrs and heroes are made of. 
However, all members of the intellectual community were conscious 
of the religious conflicts, and gave some attention to them, in 
private if not in public. 

Even if one avoids passing moral judgement on these escap- 
ists, their activities often seem ridiculous to us. A popular theory 
held that the powdered ashes of a murderer's bones were sprinkled 
in a circle, a frog placed within the circle would not be able to 
escape. One evening, after a good dinner, the Fellows of the Royal 
Society put the matter to a test. The frog cleared the magic circle in 
a single bound and fled to the darkest corner of the room. This 
incident is remarkable only for the throughness with which this 
theory was investigated. The early volumes of the Royal Society's 
Transactions contain other items, less adequately investigated. 

The mention, in an extract from the Royal Society's Transac- 
tions, of the transmutation of iron into silver is also of significance. 



288 Our Modern Idol: Mathematical Science 

Books on alchemy and astrology were available and carefully studied 
by the ablest scientists of the time. Kepler's influence on Newton 
has already been mentioned. Kepler himself compared astrology to 
a dung heap in which precious jewels are buried. This is often 
thought to have been a defense against any possible charge of 
heresy. It may also have been sincere: Kepler would, of course, 
have considered his own writings to be jewels. Robert Boyle's 
choice of "Sceptical Chymist" as the name of one of his books is 
further evidence of the scientific temper of the time. Newton and 
Leibniz, rivals in the invention of the calculus, shared this interest 
in astrology and alchemy. Newton seems always to have found 
experimental work a welcome relief after lengthy periods of concen- 
tration on mathematics and theory. Some biographers have 
represented his alchemical work as mere recreation; but it seems to 
have been as significant to him as was his other work. He did not 
publish most of his voluminous records, and very little on chemistry 
or alchemy. Yet his library contained many alchemical books and 
they show signs (in the form of marginal notes and turned-down 
page corners) of serious study. A letter to a friend who was about 
to start a journey through Europe has been the subject of much 
speculation. Each of his biographers has used it to support his spe- 
cial view of Newton's character and personality. In the letter, New- 
ton asks his friend to look for evidence of the transmutation of 
metals in the mines and smelters of the Continent. The knowledge 
of metallurgy which he obtained through these studies became very 
valuable to Newton in later years, when he became Master of the 
Mint. 

In summary, the seventeenth century scientific community 
was not as glib as ours in making the distinction between supersti- 
tion, theory, and fact. We tend to ignore the fact that the Book of 
Nature is not written in a single alphabet. Perhaps it is more accu- 
rate to say that we hope that it is all written in the language of 
mathematics and logic, and that developing these sciences, a uni- 
form version of the Book will be obtained. For practical purposes, 
it must be remembered that the characters of some of its chapters 
are geologic strata and their fossils; others are written in buried 
cities and human bones, and the letters of other chapters are living 
things, including people. This makes the Book confusing to read, 
and our hope of a uniform text was born in seventeenth-century 
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empiricism, which had not yet crystallized into the rationalist faith. 
Paradoxically, the alphabet of some chapters of the Book of Nature 
consists of human languages. This was not ignored by our prede- 
cessors, and their investigation of these chapters is closely related to 
the evolution of empiricism into rationalism. Many of these linguis- 
tic problems had roots in much earlier times. When Greek dis- 
placed Babylonian as the international language of commerce and 
diplomacy, this was complacently accepted as a barbarian ack- 
nowledgement of Greek superiority, not worthy of record. When 
the needs of trade consolidated the Greek dialects into a single 
language, the aristocratic philosophers seem to have continued to 
speak and write in their native dialects. When Latin displaced 
Greek, the Romans seem to have considered this a matter of 
administrative convenience; Roman philosophers continued to pay a 
barbarian's tribute to their Greek predecessors. In medieval times, 
Latin became a dead language, but the internationalism of the 
Christian Church preserved it, in a modified form. The revival of 
interest in Greek and Latin writings during the Italian Renaissance 
was uncritical, and again gave the Greeks the barbarian's respect, 
which they had taken as their natural due. But the Greek spoken 
during the Renaissance would have been unintelligible to Plato, and 
the Latin unintelligible to Caesar. 

For a time, these "dead" languages were the international 
medium through which scholars and diplomats communicated. 
They still retain this international character, but their usefulness has 
slowly diminished over time. The various European languages and 
dialects evolved from their aboriginal forms, until, by the seven- 
teenth century, they were not much different than they are today. 
The Roman military domination exerted some influence on the 
early evolution of these languages, more so in Southern than in 
Northern Europe, and left some mangled Latin words behind. 
Other phenomena of greater importance began to appear very early: 
"Beowulf" and other literary works were written in Anglo-Saxon 
during the eighth century; the "Domesday Book" was written in 
Norman French at the command of William the Conqueror. In the 
fourteenth century, Dante, Boccaccio, and Petrarch were writing in 
Italian. By the seventeenth century, Shakespeare had written his 
plays and they were already being translated into other languages. 
Galileo wrote both in Latin and in Italian, Descartes wrote in Latin 
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and French. Printers in Holland set Galilee's Italian manuscript in 
"Roman" type, which was used for all the languages of Western 
Europe except German. Various national academies of science and 
philosophy had been founded, and the proceedings were published 
in the local language. Finally, the increasing number of new 
discoveries and inventions required that the vocabularies of all 
languages be increased. The new words were manufactured out of 
bits and pieces of Latin and Greek words, and acquired an interna- 
tional character. A popular misunderstanding of this process is 
reflected in the modern adage that "the Greeks had a word for it." 
Actually, the Greek language of Plato's time had a relatively small 
vocabulary. These linguistic phenomena excited the curiosity of 
seventeenth-century scientists as much as physical and chemical 
phenomena. Newton was no exception. 

Since Newton has had a great influence on us, it will be well 
to consider how the seventeenth century influenced him. He habi- 
tually wrote in English and left an abundance of unpublished 
manuscripts and letters as evidence of this. His book on optics was 
first printed in English. The Latin manuscript for the first edition of 
the Mathematical Principles of Natural Philosophy was prepared with 
the assistance of a nephew, but this does not demonstrate that he 
knew only the English language. His library contained Bibles in 
Hebrew, Greek, Latin, and Syriac, as well as polyglot editions. 
Many of his manuscripts that are usually described as theological 
were actually critical and comparative studies of scores of New Tes- 
tament texts. In these works, Newton anticipated the methods used 
by modern scholars in restoring the original version of ancient texts 
that have undergone many editions and translations. His work in 
this field was biased by the hypothesis that the earliest people were 
monotheists, and that polytheistic religions were corruptions of the 
original faith. Other Newtonian manuscripts are attempts at a chro- 
nological history; the Bible and astronomy were among the few 
sources of data that he considered to be reliable. He seems never 
to have been satisfied with any of his chronological tables; an unau- 
thorized abstract of one of them was published, much to Newton's 
distress. Frank E. Maurel has given an account of this phase of 
Newton's studies, together with an extensive bibliography. 

A number of linguistic problems were isolated and formulated 
more or less clearly. One was the adoption of a standard spelling 
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for each language; France attempted to solve this by fiat, and the 
Academie des Inscriptiones was established to formulate and issue 
these edicts. In the course of time, other countries have followed 
this example in various modified forms, such as the present-day 
Oxford English Dictionary. A more theoretical effort was to make 
spelling conform to pronunciation. There are many difficulties to 
overcome before this is possible. Each adult person has his own 
voice, which is almost as individual as his fingerprints. This voice, 
however, is influenced by the dialect of homeland and instruction, 
as well as by the structure of the vocal organs. However, certain 
positions of tongue and jaw, the inhalation and exhalation of air, do 
have a general correspondence to the sounds of a language. Early 
phoneticists found it difficult to observe, much less describe, these 
processes of speech. A notebook of Isaac Newton's, dating from 
about the time that he entered Trinity College at Cambridge, has 
been published recently. It was not copied from other works, 
although reading may have influenced it. He does not give a com- 
plete description of the formation of the sounds of speech, but his 
classification is fairly good and there are a few descriptive sentences: 
e.g., "To ye labialls may be added ye jarring of ye lips caused by 
shutting ye lips and forcing ye breath through yon." As has been 
confirmed by many others, there are not enough letters in our 
alphabet to make it possible to spell English phonetically. Conse- 
quently, Newton borrowed from both the Greek and Hebrew alpha- 
bets, and invented other signs for himself. While this phonetic 
work was clearly left unfinished, it does exhibit the range of 
Newton's interests, and may deserve more study than it has 
received. 

Another problem that attracted Newton at about this time was 
that of a "universal character." This was clearly formulated, some 
fifteen years earlier, by Robert Boyle. Boyle wrote: "And truly, 
since our arithmetical characters are understood by all the nations of 
Europe, the same way, though several people express that 
comprehension with its own particular language, I conceive no 
impossibility that opposes the doing that in words that we see 
already done in numbers." In fact, one part of this complex prob- 
lem had already been solved in China. Documents written in North 
China could be read and understood in South China, although when 
read by a Southerner, the Northern writer would not understand the 
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spoken words. This was known in seventeenth century Europe 
from the accounts of travelers who had reached the Orient. The 
Florentine merchant, Francesco Carletti, spent several years in 
China and Japan. As befitted his time and nationality, he was a 
shrewd observer, not too credulous, and he had an interest in 
languages. He confirms the above and adds that Japanese scholars 
could read Chinese books, although they could not understand spo- 
ken Chinese. He also mentions phonetic alphabets with about forty 
letters used for writing Japanese and Chinese. His narrative con- 
tains evidence that he had made a considerable effort to understand 
these linguistic matters. He describes the huge profits that were 
made by the East India Company and others. He does not become 
emotional when he  describes the inhumane and dishonest methods, 
which included murder, by which these profits were made. How- 
ever, when he was deprived of his own profits by a cruel and bloody 
act of piracy by Dutch ships, his complaints are loud and long. 

Another problem, that of inventing a language whose gram- 
mar and spelling are as simple and exact as the rules of arithmetic 
but with a vocabulary large enough to deal with abstract concepts, is 
more difficult. This problem has had a great influence on the 
development of mathematics and logic, and now influences our 
computer technology. Very little progress could be made toward a 
solution until the distinction between grammar and meaning, syntax 
and semantics, had been made clear. It has been seen that the 
Europeans learned this from ancient Sanskrit writings; the great 
importance of this was not recognized until very recently. Unaware 
of this distinction, Boyle and many of his successors could only 
appeal to a vague form of the doctrine of psychomathematical paral- 
lelism. 

Newton, not yet twenty, wrote two drafts (both unfinished) of 
a paper to be entitled "Of an Universal Language." This 
manuscript has also been published only recently. It seems to have 
been his plan to construct this language according to "philosophical 
notions," thus making it a tool for scientific and philosophical dis- 
cussions. However, the implications of these drafts have not been 
investigated sufficiently to make it possible to summarize them. 
Although they were left unfinished, there is evidence that Newton's 
interest in linguistics continued throughout his life. Only a part of a 
much later philological manuscript, "Concerning the Language of 
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the Prophets," has been published. 

These examples do not exhaust the range of problems that 
interested and bewildered the scientists of the time of Newton, but 
will serve as guides while we investigate some of our inheritance, 
both good and bad, from this remarkable century. 



The Rise and 
Decline of the Axioms 

Perhaps the seventeenth century can be described as one of 
enthusiastic intellectual confusion. This enthusiasm and some of 
the confusion has persisted until now, but by the eighteenth cen- 
tury, several trends can be distinguished. One is the elaboration 
and extension of empiricism and rationalism for the production of 
new knowledge. Another is the effort to answer some of the ques- 
tions stirred up by these doctrines. The second of these trends will 
be investigated first, since some of the later stages of the first have 
already been discussed in connection with the Industrial and 
Scientific Revolutions. 

One of the most influential philosophers who tried to solve 
the problem connected with empiricism and rationalism was 
Immanuel Kant. The best known of his writings is the Critique of 
Pure Reason, which can be seen as a defense of Aristotle and New- 
ton, though Kant's own creative ability made it more than that. 
Immanuel Kant was born in 1724, in Konigsberg, East Prussia. His 
grandfather was Scottish, probably having emigrated to escape the 
religious disturbances at home; his father was a master leather 
worker or saddler, and not wealthy. The family was deeply, though 
not orthodoxly, religious. Like many such families, they made it 
possible for Immanuel to attend the local university. At the age of 
thirty-one he joined its teaching staff, on which he remained for 
nearly fifty years. During this time, his opinions changed and 
matured; he wrote the Critique of Pure Reason at the age of fifty- 
seven. In the preface to the second edition he says that no essential 
change has been made in the logical science of Aristotle. He notes 
that Copernicus and Newton had based their work on principles that 
are contrary to perception (e.g., the motion of the earth is not per- 
ceptible by the unaided senses). However, he says, these principles 
are known with certainty. Elsewhere, he dismisses "the good 
Berkeley's" doctrine that things exist only because they are being 
perceived. He vigorously denies David Hume's contention that the 
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relation of cause and effect is merely the perception of an oft- 
repeated coincidence in space and time which evokes the expecta- 
tion of the effect whenever the cause is perceived. In modern 
terms, Hume's relation of cause and effect is called a conditional 
reflex. The classic experiment in this field was performed by the 
Russian scientist Ivan Pavlov. The subjects in this experiment were 
dogs. He rang a bell just before feeding the animals. After repeat- 
ing this procedure several times, he found that the dogs would 
begin to salivate at the sound of the bell, even if their food was 
delayed. Both Kant and Hume would have argued in this case that 
the sound of the bell caused the dogs to salivate. In other words, 
Kant would agree that every particular case of cause and effect is a 
conditional reflex, in the sense that all learning by experience is a 
conditional reflex. However, he maintained that the general princi- 
ple of cause and effect somehow exists in nature, independent of 
the existence of people who can, in Galileo's words, decipher the 
Book of Nature. Furthermore, according to Kant, people are born 
with a knowledge of the principle of cause and effect; it is one of 
the principles that they use to interpret their sensations and convert 
them into perceptions and knowledge. Since it is impossible to 
question a young infant about such abstract matters, Kant had to 
resort to indirect methods for demonstrating the validity of his 
opinions. He maintained that cause and effect is a necessary rela- 
tion, axiomatic and not arising out of experience. Mathematical 
theorems provide other examples of truths that are certain, but are 
not obtained from experience or perception. In this, Kant followed 
Aristotle and thus contributed to the doctrine of psychomathemati- 
cal parallelism. In the Introduction to the second edition of the Cri- 
tique of Pure Reason, he summarized his views as follows: "There 
can be no doubt that all our knowledge begins with 
perception ... [even so, our knowledge] does not all spring from 
perception ... It is at least worthwhile to investigate the question, 
whether ... there is knowledge that is independent of experience and 
the impressions of the senses." At the end of the book, he thought 
that he had successfully answered this question in the affirmative: 
such knowledge is certain, even though it cannot be demonstrated 
either theoretically or by sensory experience. This knowledge 
corresponds to Aristotle's axioms, but Kant called it "knowledge a 
priori"; modern dictionaries call it intuitive or self-evident 
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knowledge, just as the axioms are said to be self-evident. 

One is passive in perception, but active and spontaneous in 
the intuitive appraisal and imaginative construction of the objects 
perceived. Space and time are a priori objects; Kant wrote, 
"geometric principles are always apodictic, i.e., combined with 
awareness of their necessity. Principles of this kind cannot be 
empirically perceived or derived from perception." (Here one has 
an example of the modern technical use of "apodictic," in contrast 
to the original Greek meaning of demonstration, proof, or deriva- 
tion.) Had Kant confined himself to such esoteric matters, his book 
would have received attention only in academic circles. However, 
he maintained that the existence of God, though certain, is known a 
priori, and cannot be proven. Since politically powerful theologians 
believed that they could construct such a proof, this nearly cost him 
his career. 

Beginning almost at the time of Aristotle, an increasing 
number of axioms, undemonstrable but asserted to be certainly 
true, were proposed. Newton's three laws of motion were only the 
most recent additions to this list. Kant's writings proved to be their 
ablest philosophical defense, possibly because they are scarcely 
mentioned in the Critique of &re Reason and the reader is left to 
make his own application of Kant's principles to them. If he had 
made a special effort to defend Newton, someone would surely have 
pointed out that Aristotle had denied his axioms of force and 
motion. Aristotle had said that an axiom must be held by anyone 
who is to learn anything. Kant made this more explicit; he  main- 
tained that anyone who denied the truth of an axiom would become 
entangled in absurd contradictions. Any mention of Aristotle's 
writings about motion and force would have demolished Kant's 
defense of Newton's axioms. By evading the issue, Kant (uninten- 
tionally, most likely) avoided the fate of the Royal Society's 
seventeenth-century frog, and kept the discussion on a more 
dignified level. 

It is easily seen, however, that if it could be shown that even 
one accepted axiom could be denied without leading to logical con- 
tradictions, Kant's whole philosophical system would be demolished. 
This was an implicit challenge, and no axiom was better suited for 
attack than Euclid's Fifth Postulate. The astronomer Ptolemy, and 
Proclus after him, attempted to demonstrate the validity of the Fifth 
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Postulate. Possibly even Euclid attempted it, but in hindsight it is 
now thought that he showed genius in not trying it. Euclid's editors 
and revisors changed the wording, and by the time of Kant, the 
Fifth Postulate was generally known as "Axiom XI: The Axiom of 
Parallels." A typical revised form is: 

Through any point in a plane, there goes exactly one straight 
line that does not intersect a given straight line which lies in 
that plane and does not go through the point. 

The words "exactly one" are to be emphasized. 

The discussion of this axiom occurred in two phases. During 
the first phase, its validity was not disputed, and all efforts were 
devoted to "proving" it, to show that it was actually a theorem, 
derivable from Euclid's other axioms. Few, if any, have read the 
mountain of literature generated by these efforts. By the time of 
Kant, it was virtually certain that it could not be so derived, and 
that it was an axiom in the strict sense, not demonstrable, yet true. 
In the second phase, its truth was challenged, and it was shown that 
no contradictions arose if one denied it. One need not be crazy or 
even illogical to deny it. By 1904, Oswald Veblen's revision of 
Euclid's geometry had reduced it to "Assumption XIII," which 
could be accepted or rejected as the reader pleased. 

The transition between the two phases occurred in a some- 
what dramatic manner. J.K.F. Gauss, a German, and Wolfgang 
Bolyai, a Hungarian, were fellow students at the University of 
Gottingen. Gauss remained there and became a mathematician, 
physicist, and geodesist, whose ability and versatility can only be 
compared with that of Archimedes or Newton. Bolyai became a 
professor of mathematics, physics, and chemistry at a small Hun- 
garian college; he was also a poet and playwright. As students, 
Gauss and Bolyai must have discussed the problem of demonstrat- 
ing the axiom of parallels; later both worked on it and corresponded 
about it. Gauss was always able to find a flaw in the demonstra- 
tions, not only in his own work, but also in that of his friend. 
Janos Bolyai was the son of Wolfgang; by the age of fourteen his 
father had already taught him the calculus. He then studied at the 
University of Vienna, after which he had to do a term of military 
service. He relieved the tedium of army life by working on the 



298 Our Modern Idol: Mathematical Science 

problem of parallels. He wrote a series of elements in which the 
words "exactly one" in the axiom were essentially replaced by "two 
or more." When this work was polished and scrutinized for flaws, 
it was published as an appendix to a book of his father's. With 
youthful enthusiasm, he called it "the absolutely true science of 
space." But he had shown only that the axiom of parallels could be 
denied without being absurd. Although he did not realize it, he had 
demolished Kant's work. Unfortunately, others had already done 
much the same thing, and he became so discouraged that he pub- 
lished little more. 

One of those who had anticipated him was his father's friend, 
Gauss, who did not publish his own notes. The other was a previ- 
ously unknown Russian mathematician, N.I. Lobatchevsky, who 
was at the University of Kazan (on the Volga, about 450 miles east 
of Moscow). Lobatchevsky's work was published at a date variously 
given as 1826, 1829, or 1835. The writings of Lobatchevsky and 
Gauss were sufficiently different to make it certain that neither man 
knew of the other's work until later. Lobatchevsky continued his 
work, and published a shorter and more mature account in 1855, 
which he entitled "Pangeometry." 

In 1854, Bernhard Riemann, who had studied with Gauss and 
others, applied for an instructorship at the University of Gottingen. 
To show his fitness for the position, he had to lecture before the 
entire faculty about his own work. His lecture was "On the 
Hypotheses Which Lie at the Foundations of Geometry." While 
his methodology was not that of Bolyai and Lobatchevsky, one can 
say that he replaced "exactly one" in the axiom with "not one." It 
is said that as Gauss was leaving after this lecture, a colleague asked 
his opinion of the work, and that he answered, "I wish I had done 
it myself." Although Riemann died less than twelve years after the 
lecture, his influence on nineteenth-century mathematics was 
second only to that of Gauss. Every one of his few papers 
pioneered a new field or a new method. This first lecture prepared 
the way for the non-Euclidean, non-Newtonian geometries and 
cosmologies proposed by Einstein and other twentieth-century 
thinkers. 



Pacifism and the 
Elements of Logic 

It might be supposed that all this would have discredited 
Kant's doctrines, but this was not so. They could be defended in 
various ways. It could be held that the axiom of parallels is not a 
true axiom: many people have believed that it is not. Then, if it is 
an axiom, it might be that Bolyai, Lobatchevsky, and Riemann had 
not continued their series of elements far enough: contradictions 
might have appeared if they had extended their Elements in the 
deductive direction. It could also be maintained that parallel lines 
are unnecessary; the argument is similar to that given above in the 
chapter "Ideals and the Technology of Triangles." No one can con- 
struct infinitely long straight lines. And it might be that even 
Aristotle's logic was too primitive. Kant had remarked that no 
essential change had been made for two millenia. A close examina- 
tion of Euclid's work soon shows that his proof of the very first 
theorem in his Elements contains a fallacy. Zeno had "proven" 
that Achilles could not overtake a tortoise. This proof had been 
debated for centuries, but the fallacy had not been explained until 
just about the time in which Kant was writing. The Bolyai- 
Lobatchevsky Elements would reveal the contradictions that were 
expected to follow from the denial of an axiom. 

An overhaul of the science of logic was long overdue. 
Newton's competitor in the invention of the calculus, Leibniz, had 
speculated that many of the inconclusive philosophical debates were 
due to the looseness of the laws of grammar in the natural 
languages. If it were possible to construct an artificial language, 
whose grammatical rules were as simple as the rules of arithmetic, 
philosophy might become an exact science. Robert Boyle had anti- 
cipated this in his remark about a "universal character", and 
Newton's "universal language" was an incomplete attempt. But 
some additional progress had been made by George Boole. Boole's 
father was a tradesman and amateur mathematician who imparted 
his enthusiasm to his son at an early age. George Boole's creativity 
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has increasingly influenced both mathematics and logic since the 
mid-nineteenth century. He was ably assisted by his wife, though 
she took no credit for herself. The fundamental step beyond 
Aristotle's "If A, then B" required a precise definition of the word 
"if": once this step was taken, the way to a mathematized language 
(or logic) was open. The Boolean definition of "If A ,  then B" is 
"Not A and/or B." Two items require comment: one is the intro- 
duction of the non-exclusive "and/orv which has by now become 
commonplace in our ordinary language. The other is the prom- 
inence given the word "not." So long as A and B are interpreted as 
sentences there is no formal or syntactic problem. Suppose A is the 
sentence "Apples are fruits," then Not A is the sentence "Apples 
are not fruits." But when the medieval distinction between a sen- 
tence and a proposition is introduced, the problem becomes more 
difficult. Both Sigmund Freud and Bertrand Russell have pointed 
out that it then becomes a problem of meaning and psychology, of 
semantics. Both Freud and Russell analyzed it in the same way 
(though they disagreed on so many other matters). Suppose I open 
the refrigerator and say "There is no(t) apple here": that means "I 
expected that there would have been an apple here; I am disap- 
pointed." This is why ancient mathematicians, before irrational 
numbers had been invented, did not, and could not, write "The 
ratio of the diagonal of a square to its side is not a rational 
number." Neither Boyle nor Newton (nor the Booles, most likely) 
were aware of the distinction between syntax and semantics. All of 
this seems very simple and innocuous; it is surprising that Freud 
has been so violently ridiculed for advancing this psychological doc- 
trine. 

Once the relation between "if '  and "not" (and between 
"not," "all," and "some") had been clarified, Boolean algebra 
became possible. Today it is fundamental to both logic and com- 
puter technology. Its only shortcoming as a language is the small 
size of its vocabulary. Other workers soon began to remedy this 
failing; especially noteworthy are the works of Peano and Frege. 
The latter extended Boole's work until he thought that he had 
shown that arithmetic is merely a branch of logic. When Bertrand 
Russell first read these works in 1900, he was elated for he had long 
been looking for a reason to believe that mathematics is true. He 
immediately planned a much more ambitious work in which all 
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mathematics would be shown to be a subset of logic. His elation 
soon turned to frustration and despair, from which he did not 
recover for some time. Frege and others believed that they had 
demonstrated Archimedes' Axiom which states that there is no larg- 
est whole number. Frege's scheme was as follows. An apple is a 
thing, apples are a class of things. Fruits are a class that has apples, 
cherries, bananas, plums, dates, (and so on) as members. There- 
fore there are classes whose members are themselves classes. It 
was then shown that the class of all classes has an infinite number 
of members: Archimedes' Axiom was thus proven. In examining 
this demonstration, Russell was led to consider those classes that 
are members of themselves. He defined N as the class of all classes 
that are not members of themselves. Now, is N a member of 
itself? If it is, it isn't; if it isn't, it is. 

Russell's frustration stemmed from the fact that he thought 
this to be a triviality, but unless he could eliminate it, no philoso- 
pher would accept the thesis that mathematics is simply a part of 
logic. Further examination of the work of Bolyai and Lobatchevsky 
might disclose a similar contradiction. After what seems like an 
unduly long time, and much mental anguish, Russell found the 
simple solution to the paradox: classes of classes are different from 
classes of things. No class can be a member of itself; but this also 
made the demonstration of Archimedes' Axiom impossible. The 
elation was gone, but with ten years of grim determination and the 
assistance of Alfred North Whitehead, three volumes of a work 
called the Principia Mathematica were finally published. 

The Principia Mathematica is essentially a series of elements, 
the most ambitious ever published. It begins with the axioms of 
logic, and all of mathematics is then deduced from them; all except 
that there is no largest whole number. Since mathematicians will 
not agree to stop talking about infinity, it was necessary to introduce 
Archimedes' Axiom, or some equivalent axiom that is obviously 
not an axiom of logic. The book is difficult to read for it is written 
in an artificial language, the "Language of the Principia." It is not 
too much to say that it realized Boyle's and Newton's ideal of a 
"universal character" with a fairly large vocabulary. A special font 
of type had to be cast, and typesetters specially trained before the 
Principia Mathematica could be printed. Later, RusseIl wrote An 
Introduction to Mathematical Philosophy, that can be enjoyed by 
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anyone who has retained an interest in high school mathematics. 
Like Boyle and Newton, Russell and Whitehead hoped that philoso- 
phy could be made into an exact science. 

Many superlatives have been written about the Principia 
Mathernatica ("colossal," "monumental," and so on), but it was, 
after all, the work of two young men who both were to accomplish 
much more during their lives. Russell's life was especially long and 
dramatic; his autobiography fills three volumes, of which only a part 
of one chapter is devoted to the Principia Mathernatica. Having 
been so influential in the founding of mathematical philosophy, it 
might be expected that he would have kept all of his opinions to 
himself until they had been proven mathematically. Some of his 
followers have shown this tendency, and it is even more prevalent 
among scientists who have not studied the Principia Mathernatica. 
Russell, however, did nothing of the sort, as is evidenced by his 
biography. He took an active role in bringing about change in our 
society, and his influence continues today. This will be investigated 
before returning to the investigation of mathematics. If one of the 
founders of mathematical philosophy did not proceed to elaborate 
on the doctrine of psychomathematical parallelism, this is an impor- 
tant datum to be included in the present investigation. 

Both Russell's mother and father were members of large and 
ancient British noble families, the Stanleys and the Russells. No 
doubt, many of his ancestors were nonentities, but many were 
active in public affairs. During the latter part of the nineteenth cen- 
tury, all of his close relatives were strong individualists, often radi- 
cals. His maternal grandmother has already been mentioned. Her 
immediate family was much given to excited debates on all the 
social and intellectual issues of the day. Russell's father ruined his 
political career at a private party, where he spoke "not unfavorably" 
about birth control; worse things were whispered about Bertrand's 
mother. His paternal grandmother died young, and his grandfather 
then married a younger woman, who was noted as much for her 
beauty as for her shyness on public occasions. Shortly after his 
marriage, grandfather Russell became Prime Minister of Britain. 
He respected his young wife's ethical opinions, and allowed them to 
influence his decisions. This was disconcerting to his colleagues; 
they ruefully named her "Deadly Nightshade." She gave Bertrand 
a Bible in which she had written,"Thou shalt not follow a multitude 
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to do evil." No one can read his autobiography and doubt that this 
commandment dominated his whole life. 

When Bertrand was not yet four, both his mother and his 
father had died. His father's will had nominated two men, both 
avowed atheists, as guardians for his sons. Presumably after discus- 
sions with Queen Victoria, the Lord Chancellor declared this portion 
of the will invalid, and that the boys were wards of the court. The 
former Prime Minister and "Deadly Nightshade" were made 
responsible for raising the boys. Most of the responsibility for Ber- 
trand (the younger by nine years) fell on her and a succession of 
governesses and tutors. She was a strict disciplinarian, though far 
from orthodox and unchangable, and would allow no one to discuss 
opinions that differed from her own current views; most tutors were 
dismissed after a few months. When the young Bertrand visited his 
boisterous Stanley relatives, he found himself confused and 
tongue-tied. Since his older brother was mostly away at school, 
Bertrand led a lonely and bookish life, with few friends his own age. 
He read books on theology, ethics, mathematics, and science. He 
found no unanimity of views in these books, and thus began debat- 
ing the issues by himself. Some of these soliloquies were recorded 
in a diary. He considered it obvious that the happiness of all mank- 
ind should be the goal of all planning, and was surprised to find that 
some people disagreed. Like many well-known mathematicians, he 
had difficulty memorizing the multiplication table. 

The summer that he was eleven, his older brother (home 
from school) began teaching him geometry. At first, he felt that he 
had reached certainty, only to find that Euclid's demonstrations 
depend on unproven premises. Still, mathematics provided him 
with problems that he could solve without the painful doubts of his 
own competence that were left after he had worked on theological 
and philosophical problems. At the age of sixteen, he was sent to a 
"cram-schooi" to prepare him for the university. Here, for the first 
time, he was placed in a group of boys, mostly older than himself. 
He found it very disagreeable. Arriving at Cambridge, his entrance 
examination in mathematics was read by Alfred North Whitehead. 
Recognizing his ability, Whitehead saw to it that Russell met every- 
one worth knowing, and got him elected to a semi-secret society 
that debated all kinds of topics, social and political as well as philo- 
sophical. The reason for the closed meetings and undisclosed 



304 Our Modern Idol: Mathematical Science 

membership of this society is obvious. Russell majored in 
mathematics but he devoted his fourth year to a concentrated study 
of moral philosophy, his minor. 

Russell became engaged to, and ultimately married, Alys 
Smith, an American Quaker. At the home of her parents, he 
became acquainted with Sidney and Beatrice Webb, who were 
among the leaders of the British socialist movement. After their 
marriage, the Russells traveled extensively and spent some time in 
Germany, where they attended the meetings of the socialists. This 
so disturbed the German government that it protested to the British 
Embassy. Returning to England, Russell published his first book, 
in which he discussed German socialism. Soon afterward, he pub- 
lished a revised version of his dissertation, which was entitled "An 
Essay on the Foundations of Geometry." This essay shows that he 
was then strongly influenced by Kant's ideas, and he sought to res- 
cue them. In 1900, he became acquainted with the work of Peano 
and Frege, published another book on mathematics, and began to 
plan the Principia Mathematica. He and his wife were staying with 
the Whiteheads. Mrs. Whitehead suffered from frequent heart 
attacks. The sight of her agony affected Russell very strongly. Dur- 
ing one of the attacks he took her young son, who was frightened, 
for a walk. On this walk Russell underwent an intense emotional 
upheaval. In five minutes, he says, he became a completely 
different person. Having been an imperialist, he became a pacifist; 
having cared only for the exactness of mathematics and philosophy, 
he  discovered within himself an intense interest in people, especially 
children, and in beauty. 

Such emotional crises are common among able mathemati- 
cians, and often end in suicide. Fortunately, neither Newton nor 
Russell chose that way out. Anyone who has engaged in intensive 
mathematical work knows that it is an anodyne for the painful 
awareness of the uncertainties of life, the dirt and misery of ordi- 
nary human existence. Like all pallatives, however, it does not cure 
the pain, and when it becomes inadequate, the pain is greater 
because the sufferer has not become accustomed to enduring it. 

The intensity of Russell's crisis passed, but its influence 
remained with him. The remainder of his life will be more under- 
standable if his ultimate and considered conclusion about war is 
stated at once. Russell believed that most wars are unjustified 
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because, as Gorgias had said long ago, their issues can be resolved 
by peaceful discussion, without resorting to armed conflict, which is 
so disastrous to both sides. A very few wars are justified; this is 
always because evils have been allowed to grow, slowly but 
unchecked, until they can only be eradicated by force. It would be 
desirable that this force be applied by a permanent world govern- 
ment, rather than by a temporary alliance of individual nations. 

Russell's earlier enthusiasm for mathematics was gone; 
nevertheless, he and Whitehead doggedly worked at the Principia 
Mathernatica for more than a decade, and finally finished three of 
the four volumes originally planned. Neither man seems to have 
done much original mathematics afterward, but Russell kept abreast 
of developments in the field, and often gave systematic series of 
lectures on mathematics and mathematical philosophy. Even before 
this work was finished, Russell spoke publically on political issues. 
He even stood for Parliament on the issue of votes for women. He 
and his wife were pelted with rotten eggs. Neither the behavior of 
the Russells, nor that of the egg-throwers, can be cited as evidence 
for the doctrine of psychomathematical parallelism. Russell's activi- 
ties are of special interest in assessing the proposal to mathematize 
the behavioral sciences, in order to enable man to control his own 
future. Russell was certainly an able mathematician, with wide 
interests, yet, like Abbe, he propounded no mathematical theories 
of behavior, but sought to alleviate human misery by practical 
action. Like Abbe, he held strong views on the ethics of the 
unearned increment to capital. He had inherited much money from 
various relatives; he gave it all away, most of it to Cambridge 
University and its associated Newnham College for Women. 
Russell proved to be a prolific and popular writer and lecturer, who 
could usually earn his own living. Yet there were periods when 
finances were worrisome. When the Principia Mathematica was 
finished (it was not one of his bestsellers), Russell again tried to 
enter politics, but so unsuccessfully that he accepted an invitation 
from Newton's Trinity College to be a lecturer on mathematics. 

His political work made him personally acquainted with the 
leaders of the British government. During World War I, he was an 
outspoken pacifist, and especially critical of conscription and the 
treatment of conscientious objectors. Under certain circumstances, 
they were tried by court martial and sentenced to death. Russell 
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easily persuaded Asquith to stop the executions, but he was not 
able to persuade Lloyd George to improve the treatment of con- 
scientious objectors in prison. Russell founded the No Conscription 
Fellowship, almost all of whose members ultimately went to prison. 
He spoke at a public meeting and was mobbed; he was appalled to 
find that the general public was even more bloodthirsty than its 
leaders. He wrote pacifistic leaflets and was arrested; as a first 
offender, he was merely fined. Unable to pay the fine at once, his 
library was confiscated and sold. Recalcitrant, he repeated the 
offense and was sent to prison for six months; while there, he wrote 
the Introduction to Mathematical Philosophy. Trinity College can- 
celled his appointment as a lecturer in mathematics. Harvard 
University invited him to come to the United States, but he was 
denied a British passport. 

By 1920, the war hysteria had subsided. Though Russell was 
critical of the treatment of Germany by the Allies, he  was sent to 
Russia as part of an official delegation. He found the visit a night- 
mare. It formed the basis of his book, Practice and Theory of 
Bolshevism, in which he described and denounced the actions of 
Lenin and his Party. A later visit to China led him to take an 
unduly optimistic view of the future of that country. 

While continuing to give occasional series of lectures on 
mathematics and logic, Russell became more and more preoccupied 
with social and educational problems. He, and later his second 
wife, again stood for Parliament, again unsuccessfully. He wrote a 
book, On Education, Especially in Early Childhood; it was widely read, 
and provided an income for some years. He and his wife founded 
an experimental school, which provided them with more than sim- 
ple financial worries. It was, however, one of the forerunners of 
the progressive education movement. Another popular book was 
The Conquest of Happiness, in which Russell considered what an 
individual could do to achieve a satisfying life, without waiting for a 
change in the social and economic system. 

In 1929, he wrote Marriage and Morals, which caused a storm 
of indignation among the orthodox. Ten years later, it was the basis 
of a court decision that abruptly canceled his appointment as Visit- 
ing Professor of Mathematics at the College of the City of New 
York. Twenty years later, he was awarded the Nobel Prize for this 
book. Today, it is almost lost in the welter of books on the subject, 
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most of them much less carefully considered than Russell's. 

During this period, he also became concerned about the after- 
math of World War I. Fascism and Nazism were even worse disas- 
ters than he had anticipated. In 1931, he foresaw the possibility of 
atomic bombs. This was not as early as Anatole France, but at a 
time when most physicists agreed with Lord Rutherford that 
radioactive decay could neither be slowed nor accelerated by human 
action. In private conversations, some physicists foresaw the time 
when the atom would provide a new source of energy. None real- 
ized how easily or how soon the problem would be solved; most 
thought of the new energy source as beneficent, very few thought 
of it as a new and immensely destructive weapon. It is not 
irrelevant to mention that, almost simultaneously, Michael Arlen 
wrote his novel, Man's Mortality. His knowledge of science was 
much less than Russell's. He also underestimated the pace of tech- 
nological development; he did foresee television, radar, walkie- 
talkies, nuclear energy, large intercontinental airliners, smaller 
supersonic military aircraft, laser beams used as "death rays," and 
so on. Of course he did not use these names, but it is easy to iden- 
tify them now. Like Bellamy, he set his story in 1987; like Russell, 
he foresaw mass murder and the destruction of cities; like Anatole 
France, he was ignored. Arlen's prolific imagination, though 
remarkably accurate in foreseeing technological developments, 
roused only incredulous smiles in his contemporary readers. He 
might almost as well have been addressing an Elizabethan audience. 

Then Russell wrote Which Way to Peace?. When World War 
I1 broke out, Russell agreed that while Nazism and Fascism were 
the disastrous consequences of World War I, they could be elim- 
inated only by an Allied victory. At the end of the war, he had 
become temporarily respectable. Trinity College reappointed him as 
a Lecturer; his History of Western Philosophy was an international 
bestseller. He became increasingly concerned about the possibility 
of nuclear war; after writing Common Sense and Nuclear War, he 
was invited to lecture at the Imperial Defense College. During the 
Berlin Airlift, he was made a member of a military deputation to 
Berlin and was horrified by the destruction which the Allies had 
visited upon Berlin and Dresden, even without using nuclear 
weapons. 
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It is difficult to summarize Russell's activities during the 
remaining twenty years of his life, and impossible to list them all in 
the space available here. He seemed to become more energetic with 
the years. He also found more than a few people eager to supple- 
ment his own energy and work under his guidance. In 1949, he 
published Authority and the Individual, which may be taken as an 
outline of his future activities. He shared Gandhi's views on pas- 
sive resistance and civil disobedience. The Nuremberg Trials had 
discarded military commands as a justification for individual wrong- 
doing. Russell felt that there was then a greater need to seek indi- 
vidual liberty than in the past. World War 11, despite the defeat of 
the Nazis and Fascists, had left an encroachment on individual 
liberty throughout the world, and this could not be ignored; other- 
wise there would be private lethargy and undue displays of public 
power in suppressing the individual. Then, thinking he had been 
unduly pessimistic, he wrote New Hopes for a Changing World. 
World government and an end to wars, especially nuclear war, was a 
possibility. 

Russell spoke and wrote about nuclear disarmament. He was 
discouraged by the reception given his views by high government 
officials, and by some of the men who had made nuclear weapons 
possible. He was encouraged by letters from private individuals and 
resolved to organize these individuals for more effective action. 
The result was a long series of committees and other organizations, 
many of them short-lived. He persuaded many people of various 
ideologies to sign what has become known as the Einstein-Russell 
Manifesto against nuclear war. He arranged a congress of Parli- 
amentarians for World Government, which was attended by people 
from both sides of the Iron Curtain, and this group unanimously 
passed favorable resolutions. He supported Cyrus Eaton's 
"Pugwash Conferences" (these were named for Eaton's home in 
Nova Scotia), which even today provide a forum for personal dis- 
cussions between individuals of many nations and viewpoints. 
These activities were successful and received wide and favorable 
publicity. Russell hoped to create much larger, politically powerful, 
organizations devoted to these same goals. 

In 1960, Russell was joined by Ralph Schoenman, who 
brought news of the initial successes of sit-down strikes in the 
United States. In England, there was much dissatisfaction with the 
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granting of a nuclear submarine base to the United States. Russell 
and Schoenman organized this discontent into a nonviolent sit-down 
strike in front of the Ministry of Defense, in which about 5000 peo- 
ple participated. On the anniversary of the explosion of the atom 
bomb over Hiroshima, Russell addressed a crowd in Hyde Park. 
Knowing that the crowd would be large, Russell and his associates 
resolved to use loudspeakers, even though these were prohibited by 
the park's rules. The police therefore interfered, politely enough. 
The meeting adjourned, and Russell led a march to Trafalgar 
Square. Despite a thunderstorm, many followed him there. 
Russell, his wife, and other associates were summoned to trial for 
inciting civil disobedience. They were all sentenced to two months 
or more in jail. Out of consideration for their age and health, the 
sentences of Russell and his wife were commuted to one week. 
During this week, some of their associates announced a meeting in 
Trafalgar Square, to be followed by a sit-in before Parliament. 
Despite a public order forbidding it, this and similar meetings were 
attended by unprecedented but peaceful crowds. Police brutality 
against the participants was documented by photographs, and 
received worldwide publicity. Before the end of the year, five of 
Russell's associates were indicted under the Official Secrets Act. 
The jury deliberated at great length, but eventually brought in a 
verdict of guilty; the defendants were sentenced to eighteen months 
in jail. 

In 1962, Russell reached the age of ninety, and it became 
obvious that his work could be carried on only by a permanent 
organization. Ralph Schoenman proposed the Bertrand Russell 
Foundation, a group organized "for any purpose that would further 
the struggle against war, armament races, and injustice suffered by 
oppressed individuals and peoples." The British government 
refused to incorporate this group, much less grant it tax-exempt 
status. The lack of a corporate status meant that each member of 
the Foundation would be liable for all of its debts, a risk that only 
the most dedicated would take. After much maneuvering, the Ber- 
trand Russell Foundation has finally been incorporated. It usually 
functions without publicity. 

An exception to this occurred in 1966. After some of the 
Foundation's leaders had personally investigated the Vietnam war, 
it sponsored the "International War Crimes Tribunal." Although 
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without any legal authority to enforce its decisions, it followed the 
legal precedents of the Nuremberg Trials. It found many members 
of the United States Government and its Armed Forces to be guilty 
of war crimes. Russell personally participated in this, and in a sit-in 
in front of the U.S. Embassy in London. Russell and the "Tribu- 
nal" were ridiculed, especially in England and the United States. 
Since then, the publication of the secret Pentagon Papers by Daniel 
Ellsberg, and the My Lai court-martial conviction of Lt. William 
Calley have confirmed much of the evidence considered by the 
"Tribunal" and amplified some of it. 

Russell was criticized for his activism, his attempts to incite 
civil disobedience, and he was made to suffer for this. No final con- 
clusion concerning him will be reached without considering the 
ineffectiveness of the milder methods used by Anatole France, 
Ignatius Donnely, and Michael Arlen. One will also recall the 
effectiveness of Uncle Tom's Cabin. When Harriet Beecher Stowe 
was introduced to Abraham Lincoln, he  greeted her: "So this is the 
little woman whose book provoked so great a war!" It appears to 
be easier to provoke a war than to prevent one. The militarism of 
Plato, and his diatribe against the pacifist Gorgias continue to 
influence our present society. 



Atoms, Evolution, 
and Ethics 

It has been seen that at least two able mathematicians, Abbe 
and Russell, abandoned mathematics when they approached the 
problems of people rather than those of technology and science. 
They are not the only examples of this phenomenon, which seems 
worthy of more investigation. It has also been seen that mathemat- 
ics originated among the tradesmen and craftsmen, but that there 
was a discontinuity in its development at about the time of Plato 
and Aristotle. This had two results that might be associated with 
these two men, even though this is an oversimplification. Plato 
gave all knowledge, including mathematics, a high status in the aris- 
tocratic hierarchy. Since Plato also gave warfare a high status, and 
the crafts and trades a low status, this somewhat reversed the trend 
which has been called the sedimentation of knowledge. However, it 
gave knowledge, especially mathematics, a mystical cast, and left it 
without roots in human society. It also perpetuated the aristocratic 
glorification of war and violent political action, both of which are 
inhumane, and neither of which is productive of knowledge. Ironi- 
cally, Plato is now classified as a humanist. Aristotle's interests 
were wider than Plato's, and his attitude less biased by the aristo- 
cratic fallacy. For the present, it is sufficient to recall his attempt to 
humanize knowledge. He referred it, on the one hand, to human 
experience (including instruction), but on the other, he tried to fol- 
low Plato's early view that knowledge is inherent in the human soul 
or mind (the classical Greeks made little distinction between soul 
and mind). To reconcile these two opposing doctrines, he intro- 
duced the notion of axioms, which ultimately led to the doctrine of 
psychomathematical parallelism. The humanitarian activities of 
Abbe and Russell thus amounted to a rejection of the theory of 
psychomathematical parallelism as well as the high aristocratic value 
placed on inhumane action. This is not so evident in the activities 
of their predecessors, such as Galileo and Newton. 
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A century or so before PIato and Aristotle, Thales and 
Pythagoras had initiated another trend in mathematics and philoso- 
phy that, as has been seen, was more closely related to later views 
of Galileo and Newton. This trend was also aristocratic in that it 
made the pursuit of knowledge at least respectable. Pythagoras 
seems to have given it the very highest status. It was more 
humane, however, in that it placed a much lower value on violence. 
It is this second trend that may provide a clue for understanding the 
phenomenon exhibited by Abbe and Russell. 

It is important to remember that both Pythagoras and Plato 
were pagans. They subscribed to theologies that are no longer 
current in Europe and the United States. In the case of Plato, 
Christian commentators have tended to ignore this. In the case of 
Pythagoras, both Christian and secular commentators tend to ridi- 
cule it. Plato's paganism, especially as exhibited in the dialogues, 
Timaeus and Phaedo, has an affinity to Christian theology. This is 
not to say that the teachings of Jesus were in any way similar to 
those of Plato, but rather that the two are incongruously combined 
in orthodox Christian theology. The doctrines of Pythagoras were 
never incorporated into Christian theology, but did evolve into the 
European philosophies of empiricism and rationalism. This evolu- 
tion will now be investigated. 

Both Plato and Pythagoras believed in the immortality of 
souls. Plato believed in reincarnation, and Pythagoras believed in 
transmigration. The doctrine of reincarnation assumes that only 
people (sometimes not even women) have souls. The doctrine of 
transmigration assumes that animals as well as people have souls. 
Ancient myths suggest that trees were sometimes considered to 
have souls. Both doctrines declare that after death the soul is freed 
from the body but retains its identity, and later returns to Earth to 
inhabit another body. Implicit in both doctrines is an ethics of 
rewards and punishments. Wrongdoing is punished by reincarna- 
tion in a worse body, a soul that has done good is rewarded by rein- 
carnation in a better body. Plato's ordering of better and worse 
bodies is based on his own version of the aristocratic fallacy. His 
belief about good and evil is confused, and it is not easily found in 
the dialogues, but he certainly did not believe that war is evil. The 
ethics of the Pythagoreans is quite as difficult to reconstruct, but 
they certainly believed that it is evil to kill even animals. 
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In the generation just before Plato, the doctrine of the 
transmigration of souls was given a unique and distinct form that is 
very different from that which has survived in the Orient. In a 
modified form, it is implicit in the modern theories of evolution of 
the universe and of man. This point is rarely emphasized. While 
its origin can be traced to Thales of Miletus, it was given a 
definitive form by Leucippus and Democritus. Both lived in the 
Thracian city of Abdera, on the northern shore of the Aegean. 
Democritus was either a student or an associate of Leucippus; as a 
third alternative, it has been suggested that Democritus and Leu- 
cippus were two names for the same man. Abdera was a colony 
founded by Miletus to exploit the Thracian gold mines, so that the 
connection with Thales and his successors is understandable. When 
Hippocrates left his position as the head of the Asklepian medical 
cult on the island of Cos, he settled in Abdera and formed a close 
friendship with Democritus. The two may have met earlier, and in 
any case, have been congenial. They were the same age, and con- 
siderably older than Plato and Aristotle, even ten years older than 
Eucleides of Megara. They both lived to be very old, and therefore 
can be called contemporaries of Plato and Aristotle. More impor- 
tantly, they would have formed their mature opinions independently 
of Plato. For this reason, it is unwise to allow simple chronology to 
force one to discuss Plato and Democritus simultaneously. 

Democritus is known as the "Laughing Philosopher" and 
must have been cheerful and light-hearted. He is said to have been 
amused by people's foibles, though not cynical. Hippocrates seems 
to have had a more somber personality. Democritus had inherited a 
fortune from his father which he spent on travel, thus becoming 
acquainted with many countries, religions, and scholars. Returning 
to Abdera, he lived modestly and wrote many books. Hippocrates 
wrote books about medicine, though not as many as were originally 
attributed to him. Leucippus had proposed an atomic theory that 
supposed that the universe contained only empty space and indes- 
tructible atoms. The atoms move "of necessity." This is the same 
phrase that appears in Plato's "Ordinance of Necessity." Neither 
man made the meaning of this very clear, and logicians have 
debated the matter ever since. For the present purpose, no harm 
will be done if Democritus' law of necessity is equated to the fami- 
liar "law" of cause and effect. Leucippus explicitly states that the 
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atoms are not moved by love and hate, and Democritus says that 
what we call "chance" or "accident" is merely our ignorance of the 
detaiIs of the event. Plato, on the other hand, equated ignorance 
first to the soul's failure to remember past incarnations and then to 
evil. In Menon, Socrates says that no one knowingly does evil, but 
no other explanation of evil is given. Such differences among the 
ancient writers gave rise to the logical problem of modalities; for the 
present purpose, it will be convenient to follow Leucippus and 
Democritus and ignore Plato and the others. The tendency to 
revere ancient writings and to view their contradictions and confu- 
sions as concealed profundities has created much mischief. 

Returning to Democritus and his atoms: in the primeval 
Chaos or Vortex, each atom was separate from the others. Then 
they collided, combining into stars and worlds, which again collided. 
Democritus said that the Milky Way is composed of innumerable 
stars and worlds. The original forms of all things were "of neces- 
sity" formed in this way. He elaborated this theory by supposing 
that there are many kinds of atoms; those of the sou1 are the nob- 
lest, exceedingly small, smooth, and round. We still use the word 
"noble" in such a chemical sense, gold and platinum being noble 
metals, helium a noble gas; this is, however, a somewhat old- 
fashioned mode of speech and may soon become obsolete. The 
"soul" atoms are not confined to man and the other animals, 
though there are more of them in living creatures than in inanimate 
matter. Plants, and even stones contain some "soul" atoms. Soul, 
Mind, and Vital Essence are one and the same thing. In animals, 
including people, the "soul" or "mental" atoms are distributed 
throughout the body. Living things, ranging from plants to people, 
originated in the moist Earth. This is reminiscent of later theories 
of evolution. The body owes its shape to the way in which its 
atoms have arranged themselves under the law of necessity. The 
atoms do not combine or merge, but move about each other, still of 
necessity. On death, the body loses its shape, its atoms (including 
the "soul" atoms) disperse and return to the earth and the atmo- 
sphere. Later, through obvious processes, they rearrange them- 
selves into other living beings or inanimate objects. Hence, the 
structure of the individual soul does not survive the death of its liv- 
ing body. Only its atoms are immortal, and they transmigrate into 
new material shapes. Continuing, Democritus held that all 
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knowledge comes from the senses, from changes in the body caused 
by the impact of atoms from the outside. But we can know nothing 
for certain, since a single atom is not perceptible. Some commenta- 
tors have said that this is scandalous materialism, atheism, and 
heresy. Plato was certainly not pleased with it. Others have said 
that Democritus was the greatest of the ancient philosophers. 

Democritus evolved a system of ethics which was definite and 
humane, and which he seems to have considered a consequence of 
his cosmology. To us, the connection between cosmology and eth- 
ics seems vague, or even illogical or incongruous. It must be 
emphasized that our notion of logic, and our fear of being incon- 
sistent, stems from Aristotle. Democritus is said to have been a 
very able and creative geometer, but he wrote no series of elements. 
He was writing for an audience that was very different from our- 
selves. Our history and philosophy teachers rarely bring this to our 
attention. As to ethics, he says that every person should strive for 
knowledge and happiness. This seems to imply a freedom to 
decide, to choose between alternatives, that does not follow from 
the law of necessity. Good actions should be done without expecta- 
tion of reward; people should be ashamed to do evil. Sensual pleas- 
ure brings only a transient happiness; a more lasting though less 
intense happiness comes from leading a life of moderation. Cer- 
tainly, happiness does not come from acquiring wealth, or from 
spending it. Contentment can only be found within oneself. 
Democritus wrote extensively, though not everything has survived. 
This summary is only sufficient to show that his doctrine is easily 
separated into two parts, which may be called the scientific or 
cosmological and the ethical or moral. The latter is only loosely 
associated with the former, and they are certainly not connected by 
a chain of close logical reasoning. Democritus foreshadows much 
that is to be found in our own times, including the activities of 
Abbe and Russell, Darwin's theory of evolution, and the atomic 
theory of physics and chemistry. He astonishes modern readers. 
Those who take modern science to be unquestionably true marvel at 
his preview of so much of it. 

The authenticated writings of Democritus' friend Hippocrates 
add to our bewilderment, not only in regard to the connection 
between science and ethics, but also because he is a much less 
controversial figure than Democritus. Commentators have only 
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praise for Hippocrates. On the scientific side, he describes nearly 
fifty medical case histories, recording the patients' initial symptoms, 
the treatments administered, and the changes in the symptoms dur- 
ing treatment. This is the prototype of modern clinical science. 
With what has come to be known as scientific honesty, he records 
that more than half of the patients died, despite the treatment. 
With the accumulated knowledge of two thousand years, we might 
be tempted to say "because of the treatment." Hippocrates may 
have suspected the same. This suggests a possible reason why he 
left his eminent position as head of the Asklepian cult on Cos, and 
retired to Abdera. No other explanation has ever been advanced. 

Then there is the Hippocratic Oath, which is still fundamental 
for the professional ethics of medical practice. Again it is not 
directly related to his science; it may have been older than Hippo- 
crates, but there is internal evidence that he (or one of his contem- 
poraries) added to it in an essential way. The Oath lists certain 
things that the physician swears not to do. It does not present the 
reasons for these prohibitions. The performance of abortions and 
the preparation of contraceptive pessaries are both prohibited. This 
is the more remarkable because both practices were common among 
the Greeks of his day. More than that, it was legal to expose 
unwanted infants, and allow them to die unattended. It is said that 
in Athens it was becoming customary to expose children near a 
temple, where they might be found and adopted by kindly people. 
In Sparta, however, sickness was a crime against the State, and it 
was still customary to expose weak and sick babies in lonely, barren 
places where they were almost certain to die. This problem is not 
brought nearer to a solution by noting that the medical cult of 
Asklepios was originally Dorian, and that its center was originally in 
the mainland area that later became Sparta. When the stern Spartan 
constitution was adopted, members of the cult moved to distant 
Asia Minor and then to the island of Cos. Others appear to have 
gone to Crotona and Locri in Italy. 

One begins to see that both Democritus and Hippocrates were 
innovators who did not follow the multitude of their contem- 
poraries. In the following generation, their ideas were elaborated 
and propagated by Epicurus. Like Pythagoras, Epicurus was born 
on Samos. He spent a year in Athens at the Academy shortly after 
Plato's death, and after Aristotle had left. He seems to have 
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learned of Democritus' ideas from the elder Aristippus of Cyrene, 
who is often confused with a grandson of the same name. The 
elder Aristippus is supposed to have been a pupil of Socrates, the 
first to accept money for teaching. After the death of Socrates, he 
spent some time at Syracuse, at the court of the king who enslaved 
Plato. Aristippus seems to have been in Athens at the time of Epi- 
curus' first visit to that city. After leaving the Academy, Epicurus 
studied and taught elsewhere. He later returned to Athens and 
started a school in a pleasant garden at about the same time that 
Euclid was starting his school in Alexandria. Unlike the Academy, 
Epicurus' school was not incorporated as a religious cult. He lived 
very frugally and charged tuition; apparently the precise amount was 
determined by individual agreement, based on the student's ability 
to pay. 

The most original part of Epicurus' philosophy is not often 
emphasized. He held that cosmology is not essential to ethics. He 
must have known enough of Aristotle's logic to recognize that 
Democritus' ethics cannot be logically derived from his cosmology. 
Yet he said that if one must have a cosmology, that of Democritus 
is preferable. He did teach Democritus' cosmology and even 
extended it in at least one respect. He taught that the atoms in 
compounds remained distinct, and they did not fuse or lose their 
identity. However, they remained close together while moving 
about. This is very much like the theory of atoms and molecules 
that was developed during the late nineteenth and early twentieth 
centuries. One hesitates to ascribe precision to Epicurus any more 
than to ascribe it to Democritus or Hippocrates. It seems more 
likely that, two thousand years later, people were stimulated by his 
writings, either directly or indirectly, and were thus induced to 
interpret their new experiments in terms of his speculations. In the 
eighteenth century, some copies of his correspondence and other 
writings were found at Herculaneum in the "House of Papyri," 
having been preserved through the centuries by the heavy layer of 
ash from Mount Vesuvius that had obliterated the ancient town in a 
few hours. More of Epicurus' writings survived in edited and 
translated form. 

One should pause and ask which cosmology is less good than 
Democritus'? Epicurus seems to have given no answer; presumably 
the answer was too obvious to his contemporaries to require 
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explanation. Perhaps, however, it was too dangerous to be too 
explicit; Epicurus did not have the immunity of the leader of a reli- 
gious cult. Even so, commentators have persistently maligned and 
denounced him and his ethics, which is an elaboration and 
refinement of Democritus' ethics. He did say that the aim of philo- 
sophy is not to explain the universe, but to free men from the fear 
of the gods and death. Epicurus claimed that there are gods, but 
they do not choose to involve themselves in the relatively inconse- 
quential affairs of human beings. Hippocrates had previously 
claimed that sickness was not caused by the gods. This is slightly 
reminiscent of Pythagoras' "conversing with the divine" to obtain 
knowledge, rather than praying for miraculous favors. However, 
Epicurus asked that if knowledge does not indeed come from the 
senses, where then does it come from? He confusingly implied that 
the knowledge of the existence of the gods is a priori, to use Kant's 
term. 

Epicurean ethics is based on the principle that the goal of all 
men should be the simple and undisturbed joy of being alive; he 
called this goal hedone. We have no single equivalent word in 
English for this as "hedonism" now has a completely different 
meaning. In Epicurus' view, many things prevent the achievement 
of this goal, and many of these are under the individual's control, 
they do not occur "of necessity." Obvious examples of this include 
the overindulgence in food and wine. Epicurus was certainly not 
the "philosopher of the belly" as some have said. Plato's Academy 
was, at least theoretically, coeducational; Epicurus' school actually 
was. Moreover, he had a mistress, an Athenian, who he was prohi- 
bited as a foreigner from marrying. This contributed to later scan- 
dalous stories that are most likely without foundation in fact. Epi- 
curus advocated moderation in all activities: the strength that comes 
from incessant exercise (a habit among Athenian men) is a virtue 
in a horse, but not in a man. This is a somewhat aristocratic view, 
for many of his contemporaries, especially slaves, had need of such 
strength to earn even the barest necessities of life. For if much 
food is not conducive to hedone, neither is too little and Epicurus 
did not advocate asceticism. Not everything necessary for hedone is 
material: the love, friendship, and respect of other people is also 
essential. These can easily be lost if one does evil, if one behaves 
so as to prevent others from achieving hedone. The fear of an 
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enemy is disturbing to one's pleasure in being alive: it is therefore 
well to behave so as not to make enemies. Envy of another's good 
fortune, ambition for the unattainable, competitiveness in general; 
all can and should be avoided, since they are disturbing emotions. 
There are other obstacles in life which one cannot control, acciden- 
tal misfortunes of all kinds, including sickness and death. However, 
these are not eased by complaining or by envying the more for- 
tunate. In particular, death is not avoidable by living in constant 
dread of it; besides, death might not be as painful as other misfor- 
tunes that one has endured. One may even risk one's life to save a 
loved one, or in war, knowing that the loss of the beloved or the 
defeat of one's country will make one incapable of achieving hedone. 
All of this is an ethics of personal responsibility, responsibility not 
only for oneself, but for others as well. 

While Epicurus must have been aware of Aristotle's logic, his 
ethics is not a closely reasoned series of elements. It contains no 
references to axioms, or to anything resembling Kant's a priori 
knowledge. The a priori knowledge of the existence of gods was as 
irrelevant to Epicurus as Democritus' cosmology. Certainly, Epi- 
curus' ethics contains nothing resembling the principle of 
psychomathematical parallelism, or do the writings of Democritus or 
Hippocrates. This is one of the reasons why the work of these men 
should be considered separately from the mathematical work of 
classical Greece which culminated in Aristotle and Euclid. Epi- 
curus' philosophy is an ethics of courage and self-control, though 
not of asceticism and empty humility. It has never had a large fol- 
lowing, and it is therefore impossible to say what its unforeseen 
consequences would have been, especially in our industrial civiliza- 
tion. But it is not contemptible ethics as they have often been said 
to be. Epicureanism is certainly not a "philosophy of the belly," 
but Aristippus the Younger transplanted it to Cyrene, and from 
there it came to pre-Christian Rome. It was gradually debased, and 
it ultimately did become a philosophy of the belly. 

In Rome, the original pure form of Epicureanism was revived 
by the melancholy poet and reformer, Lucretius. He lived during 
the early part of the first century B.C., and his long poem, On the 
Nature of Things, expounds both Epicurus' ethics and Democritus' 
atomic cosmology. He also said that the purpose of philosophy is to 
free people from the fear of the gods and punishment after death. 
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Freed from these fears, a nobler ethics of personal responsibility, 
for oneself and for others, becomes possible. These ideas are very 
like those expressed in some of Bertrand Russell's writings. Lucre- 
tius died young and under suspicious circumstances; the gossipy 
record leaves one uncertain whether the cause of death was acciden- 
tal poisoning or murder. Perhaps he  was fortunate, for had his 
writings become widely known and influential before his death, he 
would certainly have been persecuted. 

It seems as if people do not wish to be freed of the fear of 
gods. But this merely shifts the question: why do people persecute 
those who seek to free them from this fear? There are certainly no 
easy answers to this question, but perhaps historical studies can sug- 
gest answers. 



Greek Religion 
and Mythology 

Lucretius thus provided further evidence that Democritus, 
Hippocrates, and Epicurus were not following the multitude, espe- 
cially not in matters of religion. To study the questions just raised 
one will need to know more about the religious beliefs of their con- 
temporaries; otherwise, one will not be able to understand these 
innovators. In one of Plato's dialogues, Socrates induces Euthy- 
phron to say that religion is the art of doing business with the gods. 
Socrates, of course, rejects this, but it is likely that Euthyphron 
summarized the vague notions of most of his contemporaries. It 
has been seen that in ancient Rome there was no sharp distinction 
between religious rituals and secular routines, between priests and 
public officials charged with preventing cheating in the market place. 
Religion, ethics, and business were closely linked. From the epic 
poems of Homer and the tragedies of Aeschylus and Euripides, one 
also learns that it was believed the world was operated by a group of 
capricious, sometimes vengeful or even idly malicious gods. These 
gods intervened directly in the affairs of mortals, causing their 
favorites to be successful, and others to be unsuccessful. The gods 
were powerful but all too human in their likes and dislikes, loves 
and hates. It was possible to do business with them, to buy their 
help. This is very different from Democritus' cosmos, that runs 
according to the impersonal law of necessity. One also begins to 
understand why Epicurus explicitly separated ethics from cosmol- 
ogy, and stated that the gods do not concern themselves with 
human affairs. For Epicurus, ethics is the art of doing business 
with people, if "business" is not given a strictly mercantile mean- 
ing. One must make the same allowance for Euthyphron. Whether 
or not one accepts Democritus' and Epicurus' other ideas, one must 
admit that this clear distinction was a major intellectual achieve- 
ment, even though it was foreshadowed by Thales and Pythagoras. 
For Epicurus, it increased, rather than diminished, the grandeur of 
the gods. 
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The religious, ethical, and cosmological writings of philoso- 
phers and poets are no sure guides to the beliefs of their contem- 
poraries and predecessors. Until the present century, historians 
based their accounts of classical Greek religious beliefs on the epic 
poems of Homer and the tragic dramas of Aeschylus and Euripides. 
As these passed through various editions and translations, their ori- 
ginal poetic content was increasingly romanticized. Similarly, Plato 
was romanticized into a humanist, the inhumane passages in his 
writings being ignored. This movement culminated in nineteenth- 
century Romanticism, and is still influential in the semi-historical 
popular literature of the present day. 

In its own time, however, the poetic religion can have been 
prevalent only among the intellectuals, for whose education these 
poems and plays were the major textbooks, and to which they con- 
stantly referred in their writings and discussions. There is abundant 
recorded evidence of a darker, superstitious attitude toward the 
gods. ?us Nicias, the wealthiest slaveowner in Athens, became 
very powerful politically, but was presumably only semi-literate and 
certainly superstitious. In Greece at that time, there was no distinc- 
tion between political and military leadership. Nicias became the 
leader of a large fleet; he allowed it to be destroyed because he was 
terrified by a solar eclipse and the warnings of soothsayers and he 
ignored the approaching enemy fleet. Instead of preparing for the 
impending battle, he  did business with the gods by offering 
sacrifices. Nicias' attitude can be explained even by an examination 
of the poetic literature of the time. Homer's Iliad describes the par- 
ticipation of the gods in the Trojan War, some gods intervening on 
one side, some on the other. Poseidon, god of the sea, and Apollo 
are said to have built the walls of Troy. The goddess Athena is said 
to have inspired the building of the Trojan Horse, which enabled 
the Greeks to enter Troy, despite its impregnable walls. Euripides' 
tragedy, The Women of Troy, opens with a conversation between 
Athena and her uncle, Poseidon. She asks that their feud be ended, 
and suggests his help against the Greek fleet. Later, the Greek vic- 
tors burn the city and desecrate the temple of Athena there. Want- 
ing revenge, she wishes to make the homeward voyage of the 
Greeks "unfortunate." Poseidon readily agrees to infuriate the 
Aegean waves, Zeus has already agreed to send storms and thun- 
derbolts against the fleet. 
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The ruins of many large theaters in Greece show that even 
craftsmen and farmers had an opportunity to become familiar with 
this literary religion. Dramatic performances, as well as the athletic 
games that often accompanied them, had a ritual significance. This 
is attested to by the Sacred Truce that protected travelers on their 
way to the Olympic Games. But the festivals also had a secular ele- 
ment; commercial fairs were held at the same time. The festivals 
were held during established periods of a few days, and their season 
varied from city to city. Both actors and hucksters toured from one 
city to the next. Many animals were sacrificed to the gods on these 
occasions, which contributed to the prosperity of the local farmers. 
The fairs gave everyone a chance to buy foreign trinkets, perhaps 
also useful animals and artifacts. The expense of the plays and 
sacrifices was borne partly by the city governments, and partly by 
private individuals wishing to ingratiate themselves with the general 
populace as well as with the gods. Surviving inscriptions show that 
for a period of years, every new play financed by Nicias the Pious 
received first prize at Athens. By Roman times, these festivals had 
turned into brutal circuses. It is unlikely that the earlier Greek fes- 
tivals did much to improve either the intellectual or ethical tone of 
most of the popuIation. This was one of the reasons why Plato 
wished to censor the poets and playwrights; he was not inclined to 
romantic notions of their eloquence, and seems to have considered 
it immoral to attribute human failings to the gods. In other words, 
he too was dissatisfied with the contemporary popular religion. 

The latter part of the nineteenth century saw archaeology and 
anthropology evolve out of classical scholarship. One of the early 
workers in these fields was Jane Harrison. She was born in 
Yorkshire, England, and educated at Cambridge University. There 
she became acquainted with many of the most progressive classicists 
of the time, including J.G. Frazer and Gilbert Murray. She began 
to study the Greek vases and pottery fragments in the museums, 
not simply as works of art, but as records of the lives of the people 
who made and used them. In 1900, at the age of fifty, Harrison 
became Fellow and Lecturer in Classical Archaeology at Newnham 
College, and she began to publish the results of her studies. Her 
first book was entitled Prolegomena to the Study of the Greek Religion, 
and her last book was entitled Epilegomena to the Study of the Greek 
Religion. Despite these forbidding titles, her writings have a 
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freshness that comes from her lack of the customary European con- 
descension toward early and primitive peoples. More recently, 
W.K.C. Guthrie, who made new translations of many Greek writ- 
ings, has written a critical summary of the work of Harrison and her 
successors. The writings of Harrison are technical works, addressed 
to those who are familiar with classical Greek literature. Robert 
Graves has written a book for the modern public which generally 
does not have this familiarity. In his Greek Myths, he gives prose 
versions of closely related parts of this literature before proceeding 
to comment on them. 

An example of the way in which history has been exhumed 
from legend is provided by the story of Diogenes. The legend 
asserts that Diogenes lived in a barrel and went about in broad day- 
light with a lantern seeking an honest man. It now appears that 
sometimes many people lived in barrels, except that the barrels 
were large earthenware jars, normally used for the storage of 
foodstuffs. The most unfortunate class of persons found shelter in 
empty food jars. When they went in search of food, they took all 
their meager belongings with them, since they might otherwise be 
stolen. The legend is therefore a concise, but distorted version of 
history. Combined with information obtained from decorations on 
surviving artifacts, the history can be inferred with some certainty. 

In the same way, the historical religion of the Greeks has 
been exhumed or restored. Sacrifices to the gods were an important 
part of everyday life in classical Greece. The sacrifices were of two 
kinds. The festive sacrifice was most clearly exemplified by the liba- 
tion: before drinking a cup of wine, some of it was spilled on the 
ground. Thus the wine was shared with the earth gods, who were 
included as participants in the feast. Similarly, when animals were 
sacrificed, often only parts of them were burnt, so that the sweet- 
smelling (!) smoke would nourish and delight the gods. The 
animals' blood ran into gutters; ghosts were thought to come and 
lap it up, greedily depriving the gods of the nether regions from its 
benefit. The larger part of the sacrificial animal was roasted and 
formed the main course of the sacrificial feast. During the large 
festivals, which were financed by the city and its politicians, the 
crowd of spectators thus received free meals. The gusto with which 
these meals were eaten was enhanced by the feeling that the gods 
were also present at the feast. The other kind of sacrifice was the 
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holocaust, intended to appease an angry deity, to bribe the gods into 
helping with a proposed project, or to cease punishing a repentant 
offender. In this case, the entire sacrificial animal was burnt, and 
there was no feasting. Holocaust sacrifices were often preceded by 
rites of purification. The rites of purification combined ascetic fast- 
ing, laxatives, and ritual baths. In contrast to the festive sacrifice, 
the holocaust was an occasion filled with anxiety, fear, or even 
abject terror. 

A business transaction involves two parties, even if one of 
them is a god. There was always doubt whether the god agreed to 
the proposal or request made by the sacrificer, whether he would 
cooperate with the sacrificer or work against him in the future. The 
soothsayers determined the god's will by inspecting the entrails of 
the sacrificial animals. It was also considered a favorable omen if 
the animal did not resist slaughter. There is some evidence that 
sacrificial animals were drugged before being led to the altar. 

To those whose religion included the doctrine of the transmi- 
gration of souls, the thought of animal sacrifice was as revolting as 
that of human sacrifice. There is strong evidence that the poetic 
Greek religion evolved out of an older religion in which human 
sacrifice was practiced. Homer's Iliad and Euripides' Women of Troy 
contain references to human sacrifice. When the Greeks were 
about to sail for Troy, they were delayed by storms. The sooth- 
sayers said that these were caused by the anger of the goddess 
Artemis, which could be soothed only by the sacrifice of Iphigenia, 
the daughter of Agamemnon. There are two versions of this story. 
According to one version, Iphigenia was sacrificed. According to 
the other version, she was rescued by Artemis herself and tran- 
sported to the Chersonese (Crimean) Peninsula. There she was 
made into a priestess with the duty of sacrificing all passing 
strangers to Artemis. When her brother, Orestes, came in search of 
her, Iphigenia failed to recognize him at first, and almost sacrificed 
him in the temple. Another tale of human sacrifice concerns the 
looting of Troy by the victorious Greeks. Achilles had been killed 
earlier, and Polyxema, the daughter of the Trojan king Priam, was 
sacrificed at his tomb. 

This story leads naturally to a consideration of burial rituals 
and attitudes toward the dead. Some archaeologists see ritual buri- 
als as a sign of the beginning of family love and affection. This may 
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be true, but Jane Harrison and others have shown that the fear and 
appeasement of the spirits of the dead was also involved. There are 
ancient burials in which the corpse was bound with cords; this can 
be interpreted as the immobilization of his ghost. The fear and 
appeasement of ghosts persisted well into the classical period, espe- 
cially among the less educated people. In more recent times in Eng- 
land, the bodies of executed criminals were buried with a stake 
driven through them, to keep the ghost from wandering. The fear 
of ghosts is thus very ancient and very persistent. The same can be 
said of the fear of gods that intervene in human affairs. It may be 
surmised that these fears originated in dreams and nightmares. 
Other aspects of the lives of the very earliest people must also have 
contributed to these fears and beliefs. 

It is impossible to name all the gods and demigods, goddesses 
and demigoddesses, that were worshipped in classical Greece. 
Academus, whose power did not extend beyond a small grove of 
trees, is remembered only because of an unusual combination of 
circumstances. These numerous deities were all related by a 
confusing, and not always consistent, genealogy. Their functions in 
running the world were vague and these often overlapped. The 
rituals and titles of even the major gods varied from place to place. 
Jane Harrison showed that in one place, Zeus was worshipped as 
"Zeus Smintheus," which translates literally into "the Great God 
Mouse." A clue to such local variants, as well as to the confused 
genealogy, is to be found in the mythical sexual relations between 
gods and humans. Instead of approaching a woman in the shape of 
a man, they changed both her and themselves into animals. Thus 
Zeus seduced 10 while in the form of a bull; his jealous wife Hera 
kept 10 in the form of a white heifer, doomed to wander about the 
world tormented by gadflies. Zeus turned Leda into a swan, and the 
Gemini, Castor and Pollux, hatched from one of her eggs. Europa, 
sister of Cadmus, was carried off and raped by Zeus, again in the 
form of a white bull; she bore King Minos of Crete and King Rha- 
damanthus of the Cyclades Islands. All of these myths are 
explained by the hypothesis that the classical Greeks were a 
conglomerate of many small clans, each having its own totemistic 
religion. As the clans united politically into larger units, their 
animal gods were fused with the major gods of Greek myth. A 
variant of this theory was expounded by Newton; instead of 
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supposing that the clan-gods were totems, he supposed that they 
were ancient leaders, deified by legend. Very likely, there is truth 
in both theories. The belief, in classical Greece, that there were 
satyrs (creatures that were half man, half goat), and centaurs (half 
man, half horse), suggests that the totemistic religions survived 
longest in wild, remote regions. The consolidation of the older gods 
into a "Great God" was a step toward monotheism. 

Euripides' last play, The Bacchae, was written when Athens 
had been defeated by Sparta in the Peloponnesian War, and was so 
impoverished that there was little chance that the play would be per- 
formed in the foreseeable future. The play tells a story that was 
widespread, even in earlier times. Dionysus, god of wine, appears 
on the stage as a mortal, carrying a whip. He has intoxicated and 
maddened a crowd of women. Agave, daughter of Cadmus, the 
former king of Thebes, is among them. (The reader should not try 
to reconcile this myth with other myths concerning Cadmus). 
Cadmus himself, or his ghost, leads the crowd of women. In their 
frenzy, the women range over the mountainside, killing and 
dismembering cattle with their bare hands. The indignant King 
Pentheus imprisons Dionysus and those of the women that his men 
have caught. Dionysus frees himself and the women by causing an 
earthquake to shatter the prison walls. Pentheus then goes up the 
mountainside in an endeavor to subdue the riot, but is killed and 
dismembered by his own mother. 

All of Euripides' plays except this one had their premiere dur- 
ing the Athenian festival of the Dionysia, held annually in honor of 
the wine-god. This festival was conducted more decorously than 
the wild revel just described, with the performance of plays, both 
new and old, over a period of several days. But much wine was 
drunk, and many sacrificial animals were dismembered for the 
feasts. It is little wonder that many scholars have devoted much 
time to the elucidation of the problems which the play raises. The 
least of these is Euripides' motive in writing it. Perhaps he 
intended it as an allegory of the dismemberment of the Periclean 
empire by the madness of its rulers, one of whom was Nicias. Euri- 
pides' treatment of the characters is original; the plot is older. 

J.G. Frazer approached the problem with what would now be 
called the methods of comparative anthropology. He collected 
myths from all over the world, and published them and his 
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conclusions in a twelve volume work entitled The Golden Bough. He 
was led, on the one hand, to conclusions about very ancient and 
primitive societies, and on the other, to conclusions about the pre- 
Lenten carnivals of modern Europe, with records of the riotous, but 
ritualistic, Roman Bacchanalia linking the two. More recent anthro- 
pologists reject his more sweeping conclusions, but respect his work 
none the less. 

According to Frazer, the earliest non-nomadic agricultural set- 
tlements were matriarchal. They were small, and were governed by 
a Priestess-Queen; her male consort had little authority of his own. 
The yearly succession of the seasons, sometimes favorable, and 
sometimes unfavorable, was obvious and explained by various 
myths. It was the function of the Priestess-Queen to conduct rituals 
to ensure a favorable harvest. The short, dark days of winter led to 
a fear that the sickly sun might die and never return. Counting had 
not yet led people to note the constancy of the solar year, or, at 
least, not to have faith in its recurrence without human (or divine) 
intervention. The approximately constant lunar month and its rela- 
tion to the women's menstrual cycles was more easily recognized. 
Besides, the maternity of a child is indisputable; its paternity was 
often doubtful. The role of men in the reproductive process was 
less obvious and certainly not easily explained. All of this was 
favorable to the ascendency of women, and the assignment of an 
inferior role to men. The Earth became a goddess, not a god: she 
was the Great Mother. Somehow, it became customary to sacrifice 
the Queen's consort (and perhaps her male children) each year. 
Their dismembered bodies were scattered over the newly plowed 
autumn fields to ensure their fertility. The Priestess-Queen then 
took a new consort, thus magically ensuring the rebirth of the sun. 
The wastefulness of this ritual must slowly have been recognized. 
The clan had need of an experienced warlord. What could be more 
natural than that he should marry the Queen, thus consolidating the 
two authorities? Instead of sacrificing the King, perhaps an annual 
surrogate, perhaps a slave, or a subordinate consort of the Queen 
was sacrificed. Later this would become the sacrifice of an animal. 
Underlying these changes would be the endeavors of men to assert 
their rights. 

Much has been written about the intellectualism of classical 
Greece. Yet its religion was one of unreasoning fear, fear of a 
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rabble of moronic gods. Its rituals were magical efforts to avert the 
anger and the malice of these supposedly brutal, powerful, and 
invisible idiots. A few poets, architects, and sculptors tried to give 
the rituals a gloss of beauty and dignity; they were successful only 
in the wealthier cities and sanctuaries. In the hinterland, the reli- 
gion must have retained much of its primitive ugliness. The intel- 
lectualism of the philosophers must have made them disconcerted 
with this state of affairs. The old religion was unsuitable for an 
increasingly large and mercantile people, perhaps even less suitable 
than the religion of Mesopotamia, and not much better than that of 
Egypt. It is in this context that the Greek philosophers become 
understandable. They were faced with three problems. The first 
was that it was unnecessary (or even impossible) to do business 
with the gods. The second was to construct an ethics of doing busi- 
ness with people rather than with the gods. The third was to per- 
suade others to accept their heretical beliefs. None of the three was 
easy, and success was unlikely to be rewarded by the gratitude of 
the multitude. It is not surprising that some retreated into the calm 
delights of abstract mathematics, or that Epicurus secluded himself 
in his garden. 

The distinctness of these three tasks accounts for the illogical 
discontinuity of Democritus' atomic, causal cosmology and his eth- 
ics of freedom of choice and the will. In his travels, he must have 
learned of other religions than the Greek. The hinterland of 
Abdera was still uncivilized; he might have known of quite savage 
rituals practiced there. His cosmological speculations provided him 
with an example demonstrating that the universe could run itself, 
and did not need to be run by willful gods whose motives were far 
from admirable. He could therefore afford to ignore them and their 
supposed angers, or even deny their existence. He could begin the 
second task, that of constructing an ethics suitable for responsible, 
self-reliant people seeking to make their lives happier. But he 
seems to have been convinced that the third, evangelical, task was 
beyond his ability, and resigned himself to smiling at the follies of 
frightened people. He was a creative geometer, but he did not write 
elements. His writings were not constrained by the narrow logic 
that Aristotle would impose later. Even later, Lucretius also would 
not condescend to Aristotle's logic. 
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Perhaps enough has been said to explain the relation of these 
early cosmologists to their contemporaries, but it can do no harm to 
review the matter in more general terms. Lucretius explicitly said 
that it is not the purpose of philosophy to explain the world, but to 
relieve people of the fear of the gods. Remarkably, many, or even 
most, people do not want to be relieved of this fear. But this only 
shifts the question. How did this fear originate, and how has it 
been transmitted from generation to generation? First, as to its ori- 
gin: this can only be inferred from the nature of early religions. It 
must be a transformed fear of the environment, a fear that must 
have been present before people invented speech, or thought, or 
soliloquy. This primeval fear of the environment was transformed 
by the earliest people into the fear of gods: strange and powerful 
replicas of themselves. The dangers of the world became the 
dangers of the gods. Second, this world is not a safe place in which 
to live. Death is inevitable; it sometimes occurs suddenly and hor- 
ribly, or it is sometimes preceded by a period of misery or pain. It 
seems to follow that those who deny fear of the gods are denying 
the obvious, as well as denying the wisdom passed down from pre- 
vious generations. The veneration of dead ancestors is itself com- 
plex, compounded of love and fear. For all these reasons, those 
who deny fear of the gods (and much more, those who deny their 
existence or power) seem to be provoking the anger of the gods. 
Other people therefore repudiate the doubters, lest they too share 
the consequences of divine anger. Since this repudiation is founded 
on fear, it readily turns into anger and violence against the repudi- 
ated. It is not clear whether, and if so how, this is related to the 
ancient custom of human sacrifice, and the more recent asceticism 
that is accompanied by the "mortification" of one's own flesh by 
inflicting pain and discomfort upon oneself. 

This seems to be a more or less adequate account of the 
efforts of these early philosophers, and of the resistance which their 
efforts encountered. It does not explain the situation in which we 
find ourselves today. Our environment is not the primeval one; it is 
not even the environment of medieval times. It is less dangerous; 
people tend to live longer. Death from wild animals almost never 
occurs; many fatal diseases have been eliminated. The accumulated 
knowledge of past generations, and especially that accumulated dur- 
ing the industrial and scientific revolutions, has made it possible for 
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people to modify their environment. New, and more or less unanti- 
cipated dangers have also entered the environment. In spite of 
these, it is still safer than it was. The great increase in the popula- 
tion of the Earth is evidence for this. Much less effort today is 
spent on doing business with the gods; some people deplore this, 
but there has been a separation of secular and religious activities. 
People have been freed from the fear of the gods to such an extent 
that they can and do spend much more time doing business with 
each other. They also devote more time to the acquisition of 
knowledge. Yet, the results are scarcely those which Democritus 
and his followers anticipated. This is essentially the problem formu- 
lated in the Introduction to this book, and it almost seems that we 
have not come closer to its solution. The investigation must be 
continued further. 



The Influence of Democritus 
in Recent Centuries 

It has already been noted that the ideas of Democritus did not 
become widespread in Europe until after the time of Galileo and 
Newton. The survival of these ideas during the preceding years was 
only partly due to the survival of Democritus' writings, as well as 
those of Epicurus and Lucretius. As has already been noted, astro- 
logers and alchemists helped to keep Democritus' ideas alive. It is 
often said that astrology originated in early Chaldea, and careless 
historians have even attached the date 3000 B.C. to its origin. It 
does seem that the ancient Mesopotamians considered the celestial 
objects (the planets and some major constellations) to be gods; but 
these were not the major gods. Business with the gods was con- 
ducted much as it was in later Greece, with the sacrifice of animals 
and the inspection of their entrails. This is not proper astrology: 
worship of the stars is no more astrology than worship of fire is 
cooking. Astrology rejects animal sacrifice, does not do business 
with the gods, and, finally, it does not seek omens in the entrails of 
animals. It does attempt to foretell something of the future through 
the systematic observation of the planets and the stars. There is no 
archaeological evidence that the earlier Mesopotamians made sys- 
tematic astronomical observations. The oldest Mesopotamian 
record of a solar eclipse dates to 720 B.C. Systematic astronomical 
record-keeping seems to have originated in Greece at about the 
time of Pythagoras. The early history of astrology is not clearly 
recorded, and, as usual, much must be inferred. The major gods 
were identified with the planets, the minor deities were identified 
with the constellations. Since "planet" is derived from the Greek 
word for "wanderer," it may be that the gods originally retained 
their freedom of action in operating the cosmos. They certainly 
continued to influence human events. But the motions of the 
planets are implacable; sacrifices are consequently unnecessary. 
With the progress of what we now call astronomy, it became clear 
that the motions of the planets are predictable by mathematical 
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calculations. The gods thus lost their freedom of action and were 
brought under increasingly strict laws. This brought about a major 
theological change. Perhaps it may even be called theological pro- 
gress, though Gilbert Murray has shown that the abstract idea of 
progress was not understood by any of the Greek philosophers. 

As it became increasingly evident that the motions of the 
planetary gods were implacable, all need for sacrifices disappeared. 
It is this recognition that constitutes the intellectual and theological 
advance. The future actions of the gods could no longer be foretold 
by the inspection of the entrails of animals, nor could they be 
influenced by sacrifice. However, those who understood these 
matters could calculate the future motion of the planets, and infer 
their influence on people by drawing horoscopes. The astrologers 
could explain these influences to other people. These others could 
then resist and modify (although not nullify) the effects of the 
planetary forces by taking suitable actions in their everyday lives. 
Such ethics as is involved here is a matter of self-interest, not a 
matter of doing business with the gods. It is not an ethics of 
rewards and punishments. The final conclusion of astrology is 
much the same as those of Democritus and Epicurus. Although 
man is not omnipotent, he need not placate frightful gods, but is 
more or less free to do business with people rather than divinities. 

In the later Roman Empire, astrology was a competitor of 
Christianity in the attempt to reform the old Roman religion and its 
rituals; both were prohibited at about the same time. Neither prohi- 
bition was successful, but Christianity emerged more triumphant, 
and has therefore received more attention from historians. It is 
difficult to be certain, but it is likely that astrology has more 
adherents today than ever before. It must also be remarked that 
the earIy Christians did not concern themselves with either cosmol- 
ogy or the fear of God. Christ brought tidings of cheer and good 
will, taught that God was benevolent and that people should do 
business with each other in a spirit of brotherly love. Early Chris- 
tianity was not fatalistic. God, like people, was to be both rever- 
enced and loved; He demanded no return for His own love of, and 
good win toward, mankind. 

Alchemy appears to have originated in the metallurgical 
crafts, and was infused with Democritus' ideas of the combination 
and recombination of the atoms. The astrological and alchemical 
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communities overlapped; this produced a literature in which the two 
are not easily separated. Magical incantations and (in the popular 
opinion) witchcraft entered into it. Perhaps it was only to be 
expected that the intellectual discontents that led to the Reforma- 
tion should have also have led to a revival of alchemy and astrol- 
ogy. It has been noted that both Tycho Brahe and Kepler received 
the patronage of the Holy Roman Emperor in return for their ser- 
vices as astrologers, and that the Emperor's interest in pure astron- 
omy was negligible. Kepler, at least, seems to have been sincere in 
his astrological work. Both Newton and his rival, Leibniz, began 
their investigations under the influence of alchemical writings. Ini- 
tially, alchemy influenced the development of modern chemistry, 
while astrology had more influence on physics and cosmology. 

The revival of Democritus' atomic theory during and after 
Newton's lifetime has a complex history which has never been ade- 
quately presented in a systematic way. Newton is properly credited 
with making Democritus' Law of Necessity more explicit by intro- 
ducing the mathematical relation between mass, force, and accelera- 
tion. It may be inferred that Newton's atoms, like those of Demo- 
critus, were devoid of intelligence. He makes no mention of the 
"soul" atoms; except for his theory of vision, Newton made no 
effort to construct a mathematical theory of psychology. He had 
strong religious convictions. He seems to have believed that the 
Creator not only made the sun and the planets, but that He also 
placed them in their initial positions, gave them their initial veloci- 
ties, and then imposed the law of gravitation to govern their future. 
Thus, Newton did not share Democritus' belief in the evolution of 
the solar system from an initial Chaos in which the law of gravita- 
tion was already active. He does seem to have thought that human 
society had evolved into its present condition, and that this process 
of evolution was continuing. However, his efforts seem to have 
been directed entirely toward establishing a chronology of these 
changes, not to investigating their psychological dynamics. Perhaps, 
like his predecessor, Bishop Ussher, he  hoped to find a reliable date 
for the Creation. These remarks regarding Newton's beliefs and 
hopes are quite speculative, and may need revision when his unpub- 
lished writings have been studied more throughly. 

Newton's rival in the invention of the calculus was G.W. 
Leibniz. He was perhaps more "worldly" than Newton. Like 
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Newton, he was a mathematician, historian, theologian, and 
linguist, but he was also a poet, jurist, logician, and diplomat. As a 
young man he tried to solve the problem of Europe (which was 
already agitating the nations in the seventeenth century) by a 
mathematical demonstration. He invented the most advanced cal- 
culating machine of his day. Robert Boyle's proposal to generalize 
mathematics into a universal language is sometimes ascribed to 
him, for he was certainly interested in that project. When about to 
become a diplomat, he wrote a treatise on the blessings of God, the 
freedom of man, and the origin of evil. As a logician, Leibniz was 
occupied with the problem of "necessity," which arose out of 
differences in the way that Democritus, Plato, and Aristotle had 
used this word. Because he dissipated his energy over so many 
fields, he never wrote a systematic account of his mature ideas, but 
he did leave many notes. Those who first edited them for 
posthumous publication certainly failed to understand them. Even 
today, there is as much room for uncertainty as in the case of New- 
ton. It does seem almost certain that he sought to bridge the gap 
between Democritus' cosmology and ethics by a dualistic theory, 
according to which every phenomenon is explicable in two ways. 
The one is scientific, non-vital, causal, and purposeless; the other is 
ethical, vital, teleological, and purposeful. The ease with which 
Leibniz could read Greek and Latin makes it most unlikely that he 
was unaware of the logical gap between Democritus' cosmology and 
ethics. Leibniz's atoms (he called them monads) are arranged in a 
hierarchy, from the lowest to the highest. The highest is essentially 
God. No two atoms are exactly alike, and they do not combine; 
like Euclid's points, they have no parts, no extension in space. This 
is very reminiscent of Kepler's explanation of astrology with which 
Leibniz must have been familiar. The monads are separate but the 
space between them is filled by the ether, which is "something like 
light." All of the monads are intelligent, perceptive beings, and 
they have something like appetite or feeling. Each perceives all the 
others, and therefore mirrors the entire cosmos; it is itself a micro- 
cosm. Each monad is self-active, its present actions being deter- 
mined, at least partially, by its past. Force is therefore real, and 
involved in the monad's ability to perceive. Yet the monads also 
have freedom of choice, and behave purposefully. Thus, they are 
also the operators of the universe, giving it its purpose. 
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This summary is confusing, but no more so than the sum- 
maries of Leibniz's edited works prepared by others. These do not 
sound like the works of the ablest logician of his time, of the man 
who was competent to criticize Aristotle's logic and to set the goal 
for twentieth- century logic and computer technology. It is possible 
that editors have combined manuscript fragments which Leibniz 
would have considered to be preliminary studies, to be revised 
before combining them into a systematic cosmology and ethics. The 
confusion cannot be put aside by simply saying that Leibniz was a 
theologian and mystic as well as a mathematician and scientist. 
There are echoes of Democritus in his work, but Leibniz was not 
merely copying him. Leibniz's knowledge of the classical literature 
would have made this very easy, and he was most likely striving for 
something more logical, which may have eluded him. 

Compared to this, Immanuel Kant's contribution to the 
revival of the atomic theory and the concept of evolution was very 
simple. Kant elevated the Principle of Sufficient Reason, the Law 
of Cause and Effect to the status of an axiom. It was known a 
priori, no sane person would deny it. Then he restated the idea that 
the solar system had evolved from the original chaos, adding only 
that Newton's laws of motion and gravitation were sufficient reason 
for the solar system evolving as it did (there is hence no need for 
the Creator to have placed the newly-formed planets in their respec- 
tive orbits). This is usually known as the Nebular Hypothesis and is 
attributed to Kant rather than Democritus. 

This brings us to the nineteenth century and the work of 
Laplace, which must be considered in more detail. 



Laplace's 
Mechanical Man 

The molecular hypothesis might have escaped the attention of 
nineteenth-century scientists had it not been taken up by Laplace. 
Pierre-Simon Laplace was the son of peasants; he was secretive 
about his early life and little seems to be known about it. He 
became one of the intellectual group with which Mongt surrounded 
Napoleon, and was one of the members of the early Ecole Normale, 
and later, the Ecole Polytechnique. After the banishment of 
Napoleon, Mongt fell into disfavor with Louis XVIII and had to 
hide from the police. Laplace, however, managed not only to 
succeed Mongt as head of the Ecole Polytechnique, but to obtain 
the title of marquis as well. 

Laplace first referred to Kant's nebular hypothesis in a semi- 
popular book entitled System of the Universe. The book, which was 
published in 1796, was based on lectures which Laplace had given at 
the old Ecole Normale. He later briefly referred to it in a technical 
mathematical work entitled Celestial Mechanics. In this four-volume 
work, Laplace greatly extended Newton's theory of mechanics and, 
in particular, of the solar system. It has had a great influence on all 
later work in this field, although it was not free from errors and 
misunderstandings. Some of the theorems in this large work can be 
interpreted as disproving the nebular hypothesis. Newton had con- 
sidered it possible for gravity to eventually cause the planets to fall 
into the sun. In that event, he speculated, there might be a new 
Creation. Using Newton's theory, Laplace was able to show that 
the planets would not fall into the sun, so Newton's fear of that 
particular catastrophe was groundless. But the theory could also be 
used to calculate the past motions of the planets. This seemed to 
show that, just as they would continue to revolve around the sun 
indefinitely, so they had been moving since the beginning. Thus, 
they had not evolved out of Democritus' primeval Vortex or Chaos. 
Laplace did not emphasize this, but his mathematics, in various 
modified forms, continues to plague all those who seek to discover 
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the true origin of the solar system. 

Napoleon is said to have teased Laplace about his System of 
the Universe. "You have written this large book about the universe 
without ever mentioning its Creator"; to this, Laplace is said to 
have replied, "I had no need for that hypothesis." Newton surely 
would not have said this. Laplace may have had in mind his 
demonstration that the solar system is eternal. He later elaborated 
this epigram into an extreme form of Democritus' opinion that the 
universe runs itself according to the Law of Necessity. Like Demo- 
critus, Laplace considered chance and accident to be illusions, the 
result of our ignorance. A mathematical theory of probability had 
originated earlier but Laplace greatly extended it. His work has 
been so influential that he is sometimes cited as its originator. As 
early as 1795, he gave semi-popular, non-mathematical lectures on 
the subject to the prospective teachers studying at the Ecole Nor- 
male. These were published under the title, A Philosophical Essay 
on Probabilities, in 1819. I t  has been reprinted and translated many 
times since then. In it he explains the essentials of Newton's 
mathematical system of mechanics in a single sentence! Others 
have used more words for the same purpose and succeeded less 
well. In this work he also summarizes ideas of Democritus, Epi- 
curus, and Lucretius, which Laplace evidently received from Leib- 
niz. However, there is one difference. It is explicitly stated that the 
ability of people to make choices and decisions is an illusion. All 
human actions are inevitable, they are governed by natural laws 
such as Newton's laws of mechanics. People are thus mechanisms, 
not very different from clocks. Then comes the same hiatus that 
has already been noted in the case of Democritus. Laplace refers to 
the human mind and its striving for knowledge, its search for truth. 
One might conclude these strivings are illusions. Mankind will 
never control its future, but the human mind will inevitably become 
more and more mathematical. This is an extremely fatalistic doc- 
trine; it does not admit that people have even that small measure of 
control that astrology assigns to them. It is also an extreme form of 
the doctrine of psychomathematical parallelism. Finally, one sees 
again that the object of this eloquent exposition of an inconsistent 
doctrine is to persuade people that they need not fear the wrath of 
God. 
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There are other major differences between this and the ideas 
of Democritus. There is no reference to "soul" atoms; people are 
said to differ from animals in their tendency to become more 
mathematical. Finally, the hiatus is not used for the insertion of a 
system of ethics. Laplace made no reference to ethics in the entire 
essay: Part I is devoted to the exposition of the ten principles of 
probability, and Part I1 illustrates their application to many problems 
of daily life. Uncritical readers have sometimes been persuaded that 
the success of Laplace's theory demonstrates that man is really a 
machine. The character of the problems that Laplace solves shows 
that this does not follow; the essay ends with a history of the theory 
prior to 1816, and this contributes further evidence against the 
erroneous conclusion. 



Chance, Gambling, 
and Insurance 

The critique of Laplace's Philosophical Essay on Probabilities 
may be separated into a number of parts, but it should first be said 
that his ten principles of probability have survived, with only minor 
modification, to the present day. They have been applied to a wide 
variety of problems, ranging through gambling, insurance, business, 
politics, physics, psychology, genetics, and evolution. In each of 
these applications, the ten principles are supplemented with other 
assumptions or hypotheses, which are often not clearly stated. In 
particular, textbooks on probability are written in general terms, 
without explicit reference to these other hypotheses, except possibly 
a disclaimer to relieve the author of responsibility for their correct- 
ness. Laplace's persuasive style has therefore influenced theories of 
all these many topics to a greater extent than is justified, and a criti- 
cal discussion must consider many of these topics separately. There 
are only a few criticisms of a general nature. 

First, there is historical evidence that Newtonian mechanics is 
not an essential component of the theory. The French mathemati- 
cian and theologian, Pascal, solved a quite difficult gambling prob- 
lem more than twenty years before Newton published his Mathemat- 
ical Principles. A discussion of this problem will reveal another 
important aspect of the matter. Two gamblers, A and B, deposit 
equal amounts of money; they agree to toss a coin 100 times. If it 
falls heads, A scores a point, if tails, B scores. At the end of the 
100 tosses, the one whose score is higher will take the entire depo- 
sit. But their game is unavoidably interrupted after, say, 37 tosses, 
at which time A has the higher score. If A then proposes to take 
the entire stake, B may quite properly object, for if the original 
agreement had been fulfilled, he might have had the higher score at 
the end of the game. The issue of equity, an ethical or legal con- 
cept, has been raised. The problem was brought to Pascal for a 
solution. The details of his calculations need not delay us here: 
authorities agree that they are correct. Two important conclusions 
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follow. First, Newton's theory of the motion of the coin is 
irrelevant, and second, equity is an essential element of this prob- 
lem. One is returned to Democritus' ethics, not to his cosmology. 
This aspect of probability was not discussed by Laplace. 

It is also an interesting fact that Pascal was a Jansenist, a 
member of a puritanical Christian sect. He invented Pascal's Wager 
to persuade people that it was a good gamble to follow the ascetic 
life which he advocated. He argued that men had little or nothing 
to lose in the present, but much to gain in the hereafter. Clearly, 
Pascal was a God-fearing man; not even the fear of God is incon- 
sistent with the theory of probability. In fact, Pascal brought it back 
to doing business with God. It is also clear that he introduced 
several theological hypotheses, both about life in the hereafter and 
life in the present. 

If one abandons the historical approach, the argument is even 
simpler. There are certainly many events that we cannot foresee, 
many plans we may initiate without knowing their outcome. It is 
certain that no person is omniscient: this is sufficient foundation for 
the most sophisticated mathematical theory of probability. It is a 
gratuitous assumption that this human ignorance of the future is an 
illusion, that what is now unpredictable will some day become 
predictable. Laplace's vast "intelligence" is a fictional ideal; his 
statement that human intelligence will tend toward this ideal may or 
may not be true. Even this alternative is not relevant to current 
transactions between people now living. 

Pascal, despite his puritanism, recognized that equity is an 
essential element in gambling. A general reference to cheating does 
not tell us whether it occurred in the market place, the casino, or at 
the racetrack. Betting on the outcome of a horse race is one of the 
simplest kinds of gambling. In discussing the selection of aediles, it 
was not necessary to describe the entire Roman agricultural com- 
munity; one can also discuss the bookmaker in isolation from the 
rest of the racing community. The bookmaker accepts bets on any 
horse, whether or not he thinks it will win. He arranges his transac- 
tions so that, whatever the outcome of the race, he will have money 
left over. If few people wish to bet on a particular horse, he gives 
them Iong odds. That is, in the event that the horse does win, he 
will pay them much more than what they deposited with him. Con- 
versely, if many people wish to bet on a particular horse, he gives 
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them short odds. Since he is operating under pressure of time and 
in an excited crowd, his calculations will not be very precise, but he 
will be careful that all errors are in his own favor. Some fee is due 
him for his services, but he  will be tempted to charge an exorbitant 
amount, since his customers have no way to audit his accounts. 
Only competition with other bookmakers will restrain his greed. He 
may also cheat by knowlingly giving out false information, in order 
to lower the odds his customers will accept. When horse racing was 
first brought under legal supervision, bookmaker's accounts were 
subjected to audit. This resulted in all the evils of an unenforcable 
law. The bookmaker could operate at a distance from the racetrack, 
and not register himself as a bookmaker. Since his business was 
now illegal, he increased his fees to cover the cost of fines and 
other legal expenses. Today, the legal bookmaker has been replaced 
by the tote-machine, a somewhat elaborate cash register or simple 
computer. The machine determines the payment due each winning 
bettor in such a way as to leave a residue in the till that will cover 
the reasonable expenses and profit of the operators of the racetrack. 
In other words, it computes the odds in exactly the same way as an 
old-time bookie. It is important to understand this. In computing 
the odds, the machine makes no use of the knowledge available at 
the time the bets were placed; it does not consult the previous day's 
racing form, nor does it use any information concerning the horses 
at the starting time. It makes the calculation using only the number 
and amounts of bets placed on each horse and the total amount of 
money in the till when the betting is closed. Naturally, these 
matters are automatically recorded and are subject to later audit. 
The machine does not begin its calculations until after the race is 
over; it makes no attempt to predict its outcome. Only the bettors 
take any risk. The operator of the racetrack is certain to profit, pro- 
viding that the attendance is not too low. 

One does not usually consider life insurance as a form of 
gambling, and there are fundamental ethical reasons for this. But 
there are also superficial mathematical similarities between gambling 
and insurance, and it will be simpler to explain the differences 
between the two activities if the calculations are considered first. 
The insurance company is the bookmaker -- an honest one, for its 
operations are open to audit by legally constituted state and federal 
authorities. The policy holders are the bettors. A life insurance 
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policy is a long-term contract, and is thus different from the simple 
ticket issued at the racetrack. The policy requires the insured to 
make periodic payments, premiums, to the insurer. In return, the 
insurer agrees that, in the event of the policyholder's death, it will 
pay certain designated survivors a definite amount of money. Obvi- 
ously, the policy holder is gambling that he will die before the accu- 
mulated premium payments exceed the amount the company will 
pay to his survivors. Otherwise, he would do well not to make pay- 
ments to the company, but instead accumulate his savings in some 
safe way, leaving them to his survivors in his will. No one can 
determine, long in advance, the date on which someone will die. 
Some policy holders will "win" their bet, others will "lose." The 
insurance company must operate so that its payments to "winners" 
are balanced by its income from the "losers," leaving a net amount 
to cover its expenses and allow for a reasonable profit. But unlike 
the tote-machine, it cannot wait until the race with Death is run; it 
must fix the odds (premiums) long before. To do this, it must con- 
sult the equivalent of the racing form, which is called the mortality 
table. Unlike the tote-machine, it must take a risk. For example, 
in 1968, past experience had shown that a person then aged 30, 
might be expected to live an additional 43 years; he might die 
within one year, but he also might live for an additional 60 years. 
The premiums on life insurance policies issued in 1968 to persons 
aged 30 were calculated on this assumption (among others). But 
five years later, in 1973, more information had accumulated. The 
conditions of life (including advances in medical science and the 
increase in the number of cars on the road) had changed. In 1973, 
a person then aged 30 might be expected to live an additional 43 
years and 11 months, an increase of more than two percent over 
1968. It would have been inequitable to issue policies in 1973 at 
the same premium rates as in 1968, and these were therefore 
revised. The simple calculations of the tote-machine are thus 
greatly complicated. This has given rise to professional actuaries to 
make these calculations. It is true that the arithmetic is now done 
by electronic computers, but it is still a human being who devises 
the required calculations. As has been noted above, these calcula- 
tions are still based on Laplace's ten principles; but Newton's 
mathematical theory of mechanics does not enter into them. The 
actuaries ignore Laplace's mechanical man. 
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One could write an impressive book about the difference 
between the mathematics of the tote-machine and the mathematics 
of the actuary, but it would still be superficial if it contained no dis- 
cussion of equity, which is a special part of ethics. 

In our world, unexpected, unforeseeable events occur very 
frequently. It is irrelevant whether this is an illusion or not; the 
unforeseeable may be caused by the capriciousness of other people, 
the capriciousness of the gods, or by the inevitable operation of 
some law of necessity that we do not understand. Some of these 
events make us happy, some make us unhappy. One must often 
make a decision, initiate a course of action, before one knows 
whether it will end happily or unhappily. It is again irrelevant 
whether or not this is an illusion of free will, of an ability to choose 
between alternatives. In a word, Laplace's hypothesis that people 
are mechanisms is as irrelevant to this discussion as the Greek 
hypothesis that the destinies of men are controlled by Fate. How- 
ever this may be, it is a condition of our lives that we must take 
some risks. It does seem at least foolish to take avoidable risks, 
such as staking one's fortune on a roll of dice or a draw of cards. If 
one has dependents who will share in one's misfortune, such an 
action is not only foolish, but irresponsible as well. If ethics is to be 
based on responsibility for others, such actions are unethical. One 
can, of course, avoid this conclusion by basing ethics on the prom- 
ise of divine rewards and punishments, but many who have such 
ethical beliefs condemn gambling, condemn the taking of avoidable 
risks. In practice, most people do adopt an ethics of responsibility. 

The fundamental difference between horse racing and life 
insurance is therefore ethical, not mathematical. It is important to 
be clear about this. The relatives and friends of a person who dies 
young are saddened; this is unavoidable, and occurs whether or not 
the deceased had earlier decided to take out a life insurance policy. 
If the deceased had taken the policy, he  now has "won" his bet, 
and his survivors are spared the additional misery of poverty. The 
wager was therefore not irresponsible. If a policyholder enjoys an 
exceptionally long life, the situation is different, for he "loses" his 
wager. His survivors receive less money than if he  had not insured 
his life. Still his decision was not irresponsible, unless he  took out 
such an excessive amount of insurance that his dependents are left 
in poverty because of the premium payments. What his survivors 
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lose has been given to others. It is much as though he had donated 
the premiums to a philanthropic organization. Had he not taken 
out insurance but made such a donation instead, his action would 
not have been irresponsible from a broader social viewpoint. He 
would have accepted responsibility for people not closely related to 
him. Again, one should suppose that this donation was not exces- 
sive. 

What has just been discussed is not the whole of ethics, but 
only that part which involves money, and is usually called equity. 
Neither has this completed the discussion of gambling: there is an 
aspect which is neither mathematical nor ethical, but psychological. 
Like all matters that involve psychology, this is too complex to per- 
mit a simple exposition. There are some people who enjoy taking 
risks: this group includes the inveterate gambler as well as the 
entrepreneur. There are others who prefer the relative security of 
working for a salary. With Lucretius, it may be remarked that it is 
not the present task to explain this difference between people but 
only to take notice of it, and to elaborate upon it. 

It has already been noted that the socio-religious Roman insti- 
tution of the aediles was a satisfactory way of preventing cheating in 
the marketplace so long as Rome was small, and business was tran- 
sacted face-to-face between producers and consumers. In Mesopo- 
tamia and Asia Minor, however, the caravans and wholesalers func- 
tioned as intermediaries between consumers and producers. An 
institution such as the aediles could not function effectively in such 
an environment: the arm of the law was not long enough. The cus- 
tom of bargaining developed: there were proposals and counterpro- 
posals before a transaction was completed. Each party tried to 
determine the honesty or the dishonesty of the other, using reputa- 
tion, inadvertent remarks, facial expression, and other indications. 
The transaction of business became something of a game of skill. 
But neither party could ever be sure of having gotten the better of 
the other. 



Atoms, Causality, 
and Politics 

It has been noted that the atomic theory first influenced 
chemistry, and only later became a fundamental part of physics. 
Atomic chemistry had been well started by the time of Laplace, but 
this start is overshadowed by later developments, of which he could 
know nothing. These can scarcely be dismissed as details, but they 
do not provide a good beginning for a critique. In particular, they 
are not immediately relevant to the doctrine of causality and that 
chance, accident, and probability are merely illusions caused by our 
ignorance. Some fifty years after Laplace, James C. Maxwell, 
together with others, developed a theory of heat in which they 
explictily used both of these doctrines. Maxwell makes explicit 
reference to Lucretius; his description of the difference between 
atoms and molecules is essentially that of Epicurus, but there is no 
reference to him. Neither is there any explicit reference to 
Laplace's theory of probability, although it is used in Maxwell's cal- 
culations and explanations. Thomas Huxley, whose lectures were 
very popular at the time, summarized this theory by saying that 
heat is a mode of motion of the molecules of matter, and is there- 
fore also a form of energy. The pressure of a gas on the walls of its 
container is caused by the impact of its molecules on those walls. 
The molecules do not all move with the same speed, nor in the 
same direction, and human senses are unable to perceive them indi- 
vidually, or to determine the speed and direction of any one of 
them. They are too small, and there is an enormous number of 
them in even the smallest container with which one can experiment. 
Their motion, however, is governed by Newton's laws of dynamics. 
Laplace's "vast intelligence," therefore, could comprehend their 
positions and motions, and then calculate their positions and 
motions at all other times. This would include their impacts on the 
walls of the container, and hence the force or pressure on the wall. 
This would not be constant in time, nor uniform over the waIls, 
since the number and character of the impacts will be different from 
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time to time and place to place. We too could make this calcula- 
tion, except for two things. One is, that unlike the "vast intelli- 
gence," we cannot perceive the configuration and motion of all the 
molecules at a single instant. The other is that our minds are too 
sluggish to make the calculation in any reasonable length of time. 
Because of our ignorance, we therefore resort to calculating proba- 
bilities; even this is difficult (or impossible), except in the simplest 
cases. 

In order to illustrate a fundamental difference between these 
two doctorines, Maxwell conceived of an imaginary experiment: for 
this purpose, he imagined a small intelligent being (he called it a 
demon) that could directly perceive the atoms of a gas and their 
velocity. The demon could make decisions on the basis of this data, 
open a small door to let rapidly moving atoms through, but keep it 
closed when a slow moving one approached. It would do the con- 
trary when atoms approached the door from the other side. Thus 
the gas on one side of the door would become hotter because its 
atoms move faster, while the gas on the other side would become 
colder. This difference in temperature could be used to drive a heat 
engine, and the need for Watt's condenser would be circumvented. 
The condenser was needed only because of our ignorance and ina- 
bility to make and implement decisions quickly enough. This is sci- 
ence fiction, of course, but ever since Plato's psychomathematical 
experiment with Menon's slave, people have become accustomed to 
accepting such fictional experiments as revealing reality, even 
though many, including Plato, doubted the evidence of actual 
experiments. 

Fifty years passed before the theoretical physicist, Leo Szilard, 
pointed out a fallacy in Maxwell's argument. Szilard did not doubt 
the validity of reasoning from imaginary experiments, but he did 
point out the fact that Maxwell had neglected the metabolism of his 
living demon. The metabolism of actual living things, and espe- 
cially the metabolism of the brain, was then (and is still) poorly 
understood. Szilard therefore imagined an automaton, whose 
"metabolism" could be described in mathematical terms. 
Nevertheless, this automaton could make simple decisions on the 
basis of data already accumulated, even though it could not foresee 
the future. This automaton could effectively do everything that 
Maxwell's living demon was supposed to do. But when its 
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metabolism is taken into account, it could be shown that Watt's 
condenser is still an essential element in any heat engine. 

Szilard's paper is highly mathematical, and is difficult reading 
even for specialists. However, it has now been widely discussed and 
often misinterpreted by psychologists and biologists. The paper at 
first attracted little attention. It did not become widely known until 
Szilard's countryman and friend, John von Neumann, recognized 
that the demonstration of the fact that non-living automata could 
make simple decisions, was a discovery of major significance for the 
theory and construction of actual electronic computers. It was the 
successful construction and use of these automata that directed 
attention to Szilard's pioneering work. 

It must be emphasized that automata can make only simple 
decisions, but it is not quite simple to explain what "simple" means 
in this context. Fundamentally, each automaton can understand 
only one language, and that language is an artificial one, with a very 
strict syntax. It is determined by the people who construct the 
machine. And the automaton can understand this language only 
partially: it can determine whether a statement is correct or 
incorrect. It cannot determine whether it is true, fictional, or false. 
The automaton must be supplied with data and instructions; basi- 
cally, both must be written in the one language whose syntax is 
built into it. These sentences must be written by people, who can 
tell whether the sentences are true, fictional, or false. But the com- 
puter will accept false sentences as readily as true, provided that 
they are correct. It will reject incorrect sentences, even though peo- 
ple would readily understand the intent of the writer and correct the 
error. It is therefore an exaggeration to say that a computer under- 
stands even the one language that is built into it. The computer will 
then make decisions and generate sentences expressing them. But 
the decisions will be based solely on correctness or incorrectness. If 
the machine is supplied with false data or instructions, its decisions 
will be false. Even this somewhat lengthy explanation needs some 
amplification, as any computer scientist will know, but it embodies 
the essentials of the matter. A technical word has been coined to 
describe this limitation of the automaton's ability. It is "gigo," 
which is an acronym for the disrespectful sentence, "Garbage in, 
garbage out." As a matter of fact, not only automatic computers, 
but all of the symbolic, artificial languages used by mathematicians 
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and logicians in their calculations are "gigo." This is part of what 
von Neumann meant when he concluded that the language of 
mathematics is not the language of the brain. A company that 
manufactures many computers summarizes this point even more 
simply. It advertizes that its machines cannot make a 
businessman's decisions for him; the machines can only provide 
him with data summarized in a convenient form. In making his 
decisions, the businessman must take risks: risks as to the future 
behavior of people, and the risk of "gigo." This company finds it 
preferable to advertize this fact rather then let its customers dis- 
cover it at their own expense. 

Returning to Leo Szilard, this work on Maxwell's demon was 
only one of his earliest achievements. He was one of the first, 
perhaps the first, to understand that nuclear weapons were not only 
possible, but they could be constructed using the technology avail- 
able in 1940. He persuaded Albert Einstein not only of this, but 
also to write a letter to President Roosevelt, informing him of this. 
This, and the certainty that Nazi Germany would attempt the con- 
struction of these weapons, led Roosevelt to initiate the Manhattan 
Project in the United States. 

After World War 11, Szilard, like Bertrand Russell, became 
increasingly concerned with the prevention of nuclear war and the 
proliferation of nuclear weapons. His writings on this and similar 
matters are non-mathematical. They are being collected and will 
soon be published. Like Russell, he recognized the need for an 
organization to carry on this work. It was first named "The Council 
for the Abolition of War," and is now known as "The Council for a 
Liveable World." Ingeniously, Szilard avoided Russell's difficulties 
with incorporation. The Council does not collect or disburse large 
funds. Instead, its offices merely monitor the candidates for high 
political office, and make recommendations to make personal contri- 
butions to the campaign funds of those candidates that seem 
disposed to further the objectives of the Council. This procedure 
has had enough unobtrusive successes so that the Council's 
influence in the political community is increasing. 



Man is an Animal, 
but not an Ape 

Before attempting to answer the question regarding his 
future, it is well to pause and ask "What is man?" Man is an 
animal. When this view was first advanced, its negative aspects 
were widely emphasized; they are not conducive to conceit. There 
are also positive aspects that have not yet received adequate 
emphasis, and it is these aspects that one should keep in mind. 
There are major anatomical and mental differences between man 
and the other animals. It will be sufficient to consider those charac- 
teristics which differentiate man from the ape. The most obvious 
are seen in the hands and feet. Man's toes are almost vestigial; the 
four smaller toes can hardly be moved independently, and the big 
toe can hardly be flexed. In marked contrast, the thumb can be 
made to touch the tips of each of the other four fingers of its hand, 
and all five digits can be moved and flexed independently. Scarcely 
less obvious are man's lips and tongue. These can modulate the 
grunts and squeaks of the larynx into the sounds of speech. The 
tongue and larynx of the ape are too sluggish to make the motions 
required for speech; at most, apes can roar or chatter by moving the 
jaw. 

Man's brain also differs from that of the ape, although these 
differences are hidden by the skull. These three differences are not 
independent; rather, they seem to be the varied expressions of a 
single character. Hand gestures often accompany speech. Some 
anatomists believe that communication by gesture preceded com- 
munication by speech. The mental effort of counting things that are 
out of sight is often aided by making the thumb successively contact 
the tips of the other four fingers. In writing, the pen is held 
between the thumb and two fingers, and the mental effort of com- 
position is translated into the motion of the pen. Communicable 
thought, that is intelligent thought, is converted into speech by the 
movements of the lips and tongue. One sometimes says that speech 
is thinking out loud. Our kind of thought, again intelligent thought, 



Man: Animal, but not Ape 351 

is a silent soliloquy. In neurophysiological terms, the brain then 
generates the nerve inpulses that would ordinarily cause motion of 
the lips and tongue, but these are inhibited. Just what happens to 
these impulses that do not reach their destination is unknown. 

All of this is easily observed in man, and helps to distinguish 
him from the ape. It all has its counterpart in the brain, but this is 
not so easily seen. The anatomy and physiology of the brain are 
complicated and still poorly understood. What follows is a much 
simplified account of what is known about this correspondence 
between the anatomy of the brain and the anatomy of the body. 

It will only be necessary to discuss the upper part of the 
brain, which is known as the cerebrum. It is relatively larger in 
man than it is in the ape, and it diminishes in size as one goes down 
the evolutionary ladder. Reptiles have practically no cerebrum. 
The surface of the cerebrum is covered by a layer of gray matter, 
which is called the cerebral cortex. In man, the cerebral surface is 
deeply folded. Because of this folding, the surface area of the cor- 
tex is much greater than the surface area of the skull that protects 
it. This enhancement of the cortex is most pronounced in man, 
less so in the ape, and is absent in more primitive animals. There 
are also two kinds of cortex: layered, and non-layered. Almost all 
of man's cortex is layered. In other animals, the two kinds of cor- 
tex are about equal in area. The non-layered cortex is involved in 
the sense of smell, so this, rather than the anatomy of the nose, 
accounts for man's inferior olfactory ability. 

Much effort has been devoted to theories of the process 
which we call memory; almost none has been devoted to forgetting. 
We have all forgotten important matters. Many have had the 
experience of meeting a friend with whom they participated in a 
memorable event long before. Each believes that he has a clear 
recollection of the event, but when the two memories are com- 
pared, there are found to be significant discrepencies. Memories 
can not only fade: they can become distorted. 

Of special interest for the present is the large fold known as 
the Rolando fissure. It separates the frontal lobe of the cerebrum 
from the parietal lobe. The frontal lobe generates electrochemical 
impulses that are transmitted through nerves which end in the 
extremities (hands, eyes, feet, etc.). These motor impulses control 
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the movements of the various parts of the body. The parietal lobe 
receives nerve impulses that are generated by the sense organs (the 
eyes, ears, nose, etc.). 

When the sensory impulses are received by the parietal lobe, 
they are somehow synthesized, coordinated, or analyzed. The phy- 
siology of this process is not understood in any detail, but ulti- 
mately, modified impulses pass across the two layers of cortex in 
the Rolando fissure and reach the frontal lobe. Again, the physiol- 
ogy is not clear, but somehow new motor impulses are generated 
and transmitted to the moveable parts of the body, where they 
(unless they are inhibited) release the energy that is needed for 
movement. 

These processes enable the cerebrum to coordinate the move- 
ment of the various parts of the body. We are conscious of this 
ability to control the motions of our body, and call it "will", or 
"volition". Ordinarily, we are not aware of the components of this 
ability. When, for example, we reach for a tool with the left hand, 
transfer it to the right, and then use it, a very complex and well- 
coordinated series of motions is made. This coordination is accom- 
plished by the constant flow of nerve impulses in both directions. 
The eyes follow the hand; the many nerve endings in the hand also 
constantly generate impulses that reach the parietal lobe. Here they 
are coordinated, cross the Rolandic cortex, and the frontal lobe gen- 
erates the impulses that initiate the complex movement needed in 
the next instant. 

This kind of control, involving the flow of impulses from 
sense organs to a control organ and thence to effector organs, is 
called feedback, or cybernetic control. We are not ordinarily aware 
of feedback, but if we try to take the action which is described 
above when blindfolded, we become unsure. Our movements are 
groping, less coordinated. If we handicap ourselves still more by 
putting on heavy gloves, our coordination deteriorates further. 
Thus, anyone can establish that volitional control of the body is by 
means of feedback. Elaborate neuroanatomic research is needed 
only to establish the physiology of the process. Such research has 
shown that the impulses which control various muscles in the body 
cross the Rolandic cortex at quite specific points. Occasionally, 
small tumors or blood clots form in this cortex. The victim thus 
loses volitional control of certain muscles. This loss of control may 
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range from paralysis to constant involuntary twitching. Clinical 
observation of the symptoms, followed by post-mortem dissection, 
has made it possible to map the parts of the body on the surface of 
the Rolando fissure. In such a map, the tongue is mapped onto an 
area larger than that of the whole head; the lips are mapped onto an 
area larger than that of the eyes and scalp. The disproportionate 
enlargement of the thumb and fingers corresponds to the complex- 
ity of the movements which they are able to make. The map of the 
larynx is relatively small, indicating the simplicity of the motions it 
can make. 

We are accustomed to speak of the mind as though it had 
parts and as though these parts were distinct and quite different 
from other organs such as the hands, eyes, tongue, ears, and so on. 
Like many common notions, this requires only elaboration to make 
it precise. The mind is a process, not a substantial thing. That part 
of mind called wiN has been under discussion in this chapter. It has 
been seen to be a process that involves those substantial parts of 
the body that are most characteristic of man: the cerebrum and its 
cortex, the tongue with its ability to fashion the sounds of speech, 
and the hands with their ability to create artifacts and to use them. 
It also involves parts of the body, like the eyes and ears, which are 
common to man and the other animals. 

The will is itself a complex process which involves the 
transmission of impulses along nerve fibers, their generation and 
reception, both in the cerebrum and in other parts of the body. 
Only the transmission of the impulses is well understood; it is an 
electrochemical process. The other parts of the will are much less 
well understood. It would be rash to even assert that all the 
processes taking place in the cerebral lobes are electrochemical in 
nature. Memory and consciousness are other parts of the mind. 
There is clinical evidence that they also are processes in which the 
cerebrum is involved. The nature of the memory process has been 
the subject of speculation, but no conclusive knowledge has 
emerged. There has not even been speculation concerning the pro- 
cess we call consciousness. Many professional psychologists 
discourage such speculations, and none have indulged in them. 

It is with this scant knowledge and great ignorance that we 
approach the question, "Can man's mind control his future?" 



The Changing Beliefs 
of Physical Scientists 

Enough evidence has now accumulated to justify some con- 
clusions. When men of proven mathematical creativity become 
seriously concerned with the problems of people and society, they 
abandon the mathematical methods of which they are masters. 
Their actions show that they do not consider that the problems of 
society are amenable to mathematical theories and calculations. No 
matter how pessimistic they may be about the future, or how 
ungratefully their efforts to improve it are received, they do not 
become fatalistic. Their hope for improving the future of man rests 
not on inexorable mathematical calculations, but on the ability of 
people to make decisions, to make plans, and to implement them. 

One would like an explanation of this phenomenon. None 
has been advanced. That is, none which is not an apology for the 
past and a reaffirmation of Laplace's faith in future improvement. 
Of course, such a reaffirmation might be all that is needed, but 
there are many reasons for thinking that the past needs no apology 
and the future will bring no such improvement. These reasons 
have never been collected in one place. The following will be an 
attempt to reassemble most of them and explain them in non- 
technical terms, without mathematical detail. 

The most obvious reason is the failure of Thurston's attempt 
to construct a mathematical theory of human abilities and behavior. 
But this is not the most fundamental reason. This is the recogni- 
tion that there are no self-evident axioms, no a priori knowledge. 
This is not to say that there are no instincts. A chick that has just 
been hatched in a incubator and has never been in the presence of 
an adult chicken, will run and walk, eat and drink. Presumably, a 
human infant would do the same, but this is not knowledge. 
Experiments show that other behavior of such chicks depends 
strongly on the presence or absence of adult hens during the early 
days of their lives. Perhaps this second kind of behavior, normal or 
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abnormal, can be considered to be indicative of knowledge, but it is 
a very rudimentary form of knowledge. All knowledge comes from 
perception, but perception is not simple sensation. The sting of an 
insect or the prick of a needle comes close to being a simple sensa- 
tion, and the two cannot be distinguished unless one also perceives 
the presence of the insect or the needle, or later perceives the 
development of the wound. One may say that perception is the 
mind's interpretation of sensation. This has been discussed previ- 
ously in connection with our knowledge of space-filling objects. 
Because people can speak, the interpretive element of perception 
can be passed from generation to generation, and changes only 
slowly with time. But it can, and does, change. This recognition of 
an interpretive element in perception does not imply that what we 
perceive exists only while we perceive it, as Berkeley maintained. 
There are things in the world that are not perceptions. Nor are per- 
ceptions limited to the unaided senses. The invention of new 
artifacts may alter and improve our perceptions. For example, 
copper and iron, if present in sufficient quantity and close enough at 
hand, can be distinguished by the unaided senses. But with the aid 
of a spectroscope, much smaller quantities, or larger amounts at 
greater distances, can be distinguished. When anything is heated 
sufficiently, it becomes a luminous vapor. When this is viewed 
through a spectroscope, it is seen as a set of colored lines, separated 
from each other. Luminous copper vapor always produces the same 
set of colored lines; luminous iron vapor produces a different set of 
lines. Thales had speculated that the sun and stars were composed 
of ordinary terrestrial matter, but, strictly speaking, he had not per- 
ceived this. It was a hypothesis, a fiction. When the spectroscope 
and the telescope were combined, it became possible to perceive it, 
for the spectral lines in sunlight are the same as those in the light of 
terrestrial substances. After improvement of the spectroscope and 
telescope, it was perceived that the stars are also composed only of 
terrestrial substances. With his telescope, Galileo had seen moun- 
tains on the moon. At that time, most people were unaccustomed 
to sensory aids, and some refused to believe him. Biologists 
repeated this refusal when Abbe and Zeiss made better and better 
microscopes. Only very recently has anyone actually been to the 
moon. The astronauts' unaided senses perceived what had previ- 
ously been perceptible only with the aid of telescopes. Since they 
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were there, they perceived it in more detail, for they were able to 
move about and handle the dust and the rocks. It is also to be 
noted that not everyone is able to use large teIescopes and spectro- 
scopes: their use requires technical education not available to every- 
one. Yet, the perception of the few can be made available to all 
through lectures, books, and photographs; this is an obligation on 
the part of the technically trained. This duty should not be per- 
formed perfunctorily, uncritically, or with undue enthusiasm for 
unwarrented conclusions. 

Laplace was justifiably proud of the astronomy that he and his 
predecessors had developed, but it was by no means as perfect as he 
thought. It was limited to the motion of the planets and their satel- 
lites. It was possible to calculate their past and future positions with 
some accuracy. The occurrence of eclipses could be predicted for 
years in advance, but not to a fraction of a second. Old records of 
solar eclipses could be used to help establish a chronology for 
ancient history. But the nebular hypothesis remained a hypothesis; 
it was not possible to calculate the history of the solar system as it 
evolved from the primeval chaos. It was not possible to perceive 
the slow changes that should, if the hypothesis is true, still be modi- 
fying the solar system, much less those that had occurred long ago 
and brought it to its present state. In Laplace's time, telescopes 
were still rather crude; their improvement had to await Abbe's work 
on the errors of optical images, and the invention of the spectro- 
scope. They were already good enough to verify Democritus' con- 
jecture that the Milky Way galaxy was a concentration of stars. By 
the end of the nineteenth century, it was perceived that our sun was 
one of these stars. Although the sun is of paramount importance to 
us, it is a mediocre star. It is neither large nor unusually hot and 
bright. It does not occupy a distinguished place in the Galaxy. 
There are many stars which are not very different form our sun, 
and it may be conjectured that some may have planets like ours. 
Then it was found that even our Galaxy is not unique: there are an 
uncounted number of other galaxies in the universe. These obser- 
vations or perceptions required several revisions of the nebular 
hypothesis. Then it was found that the universe contains objects 
other than stars and galaxies. It was seen that, contrary to Demo- 
critus' ideas, collisions between stars are rare events, but stars fre- 
quently explode spontaneously, somewhat like enormous nuclear 
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bombs. Combining the knowledge of nuclear weapons with these 
new observations, it has been possible to construct a semi- 
mathematical theory of the life-history of a typical star. But almost 
every year brings new phenomena to the attention of astronomers. 
These are often unreconcilable with the current cosmologies, and 
new ones must be invented. It might be expected that, at least, the 
theory of the origin of the earth and moon would remain relatively 
unchanged. Much thought and many observations have been 
devoted to this topic. Since the return of the astronauts with their 
samples of lunar materials, specialists are more reluctant to be dog- 
matic than ever before. There is no indication that Laplace's "one 
formula" that governs everything in the solar system is being eluci- 
dated, much less, that one formula governs everything in the 
universe. 

There are still other reasons for doubting that mathematical 
laws of cause and effect govern everything. Democritus was not 
very explicit, even about the Law of Necessity that he thought 
governed the atoms. He did say that the atoms were tiny spheres, 
indestructable and immortal. Plato imagined the atoms to be 
polyhedra with flat faces, straight edges, and corners; he was less 
explicit about their immortality. While everyone seems to have 
argued that a single atom cannot be perceived with the unaided 
senses, everyone seems to have agreed that they were objects that 
existed and moved in space. They were among the things which are 
not perceptions. Sometime, it might be possible to devise some way 
of perceiving them. By the beginning of the twentieth century, 
chemists had learned much about the way in which the atoms com- 
bined into molecules and even into ordinary large objects that can 
be perceived with the unaided senses. After the discovery of 
radioactivity, it was learned that the atoms are not immortal. It was 
found that a radium atom undergoes spontaneous changes and 
eventually becomes an atom of lead. During each of these changes 
(decays), "rays" of various kinds are emitted. Some of these rays 
are corpuscular: beta rays are electrons moving with great speed, 
while alpha rays are helium nuclei moving with high energy. It was 
at this time that Anatole France foresaw that people would soon 
build atomic bombs rather than use gunpowder. It was necessary to 
suppose that atoms are neither immortal nor without parts. 
Mathematical theories of atomic structure began to be devised. 
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Only a few skeptical chemists, led by Wilhelm Ostwald, doubted 
such theories. Then it was found that when a bit of radium was 
placed in very moist cool air, the radioactivity caused minute water 
droplets to form, which could easily be seen. Under the simplest 
conditions, the droplets were arranged in a more or less straight 
line. The path (or track) of a single helium nucleus or electron was 
thus made visible as a cloud-track. Even Ostwald ceased to be 
skeptical. There were other rays, however, the gamma rays pro- 
duced no track, but when they struck a bit of metal, electron tracks 
emerged from the point of impact. Newton had believed that light 
was a stream of particles, and his theory was revised to explain the 
behavior of gamma rays: the moist air is transparent to them, and 
hence they leave no cloud-tracks to show where they have passed. 
Evidence accumulated that seemed to show that gamma rays, like 
x-rays, are an invisible form of light. 

This sounds much more satisfactory than it was, even at the 
time, in the 1920's. Newton's corpuscular theory of light had not 
predicted all optical phenomena that would later be observed, and 
then it could not be modified to calculate them. When a beam of 
light falls on an opaque object, it casts a shadow, which is some- 
thing like a single perspective of the object. When the shadow is 
observed carefully, this description is found to be inaccurate. 
Under controlled conditions, the shadow of a straight knife-edge is 
found not to have a sharp boundary. Instead, the regions of light 
and dark are found to be separated by a region in which there are 
colored fringes of varying intensity; this phenomenon is called 
diffraction. Newton and others tried, unsuccessfully, to explain 
diffraction. While writing his major works, Laplace was convinced 
that Newton's corpuscular theory of light would ultimately be suc- 
cessful; this was generally believed by all physicists. It was another 
apology for the past, accompanied by a promise for the future. 

Thomas Young was an English physician, physicist, linguist, 
and a contemporary of Laplace. Young's work on the anatomy and 
physiology of the eye is still recognized as fundamental. In addi- 
tion, he diciphered that form of Egyptian script known as demotic, 
(one of the cursive forms of the hieroglyphs.) Turning his attention 
to diffraction, he  revived a theory of light which had been advanced 
by Newton's rivals, Leibniz and Huygens. According to this theory, 
all space is filled with a very tenuous substance, the ether. The 
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ether is inperceptible to the unaided senses, and it has properties 
that are very different from those of any perceptible substance. It 
was these paradoxical properties of the ether that led Newton and 
his followers to reject the hypothesis that it exists. Young ela- 
borated Huygen's theory of light so that the phenomena of 
diffraction could be described mathematically. Light is a motion of 
the ether, much as ocean waves are a motion of water. Diffraction 
is analogous to the bending of ocean swell around the end of a 
breakwater, or of ripples around a protruding rock. Young's theory 
was extended by others; it was the foundation upon which Abbe 
constructed his mathematical theory of the microscope. When the 
phenomena of electricity and magnetism had been fully explored, 
James C. Maxwell was able to unify the theory of light with elec- 
tromagnetism, but only by assigning still more paradoxical proper- 
ties to the ether. Still later, Albert Einstein introduced a still more 
radical notion: the ether not only fills all space, it is identical with 
space. Euclid's axioms were only hypotheses; the mathematical 
theory of geometry was only approximate. The axioms were not a 
priori knowledge; they were hypotheses inferred from unaided 
sense-perceptions. They could be replaced by others, differing very 
little from Euclid's, and the new mathematical theory of space 
seemed to embrace light, electromagnetism, and the law of gravita- 
tion. It seemed as though Laplace's "single formula" was at last 
being approached. 

But unfortunately, it was not possible to include the 
phenomena of chemistry and radioactivity in this theory; again, one 
could only hope for future improvements. 



Some Conclusions 

It is clear from the forgoing chapters that when men, whose 
mathematical creativity is unquestionable, begin to consider the 
problems of people and society, they do not try to solve them 
mathematically. This is of especial importance, since men of lesser 
mathematical ability continue to try to construct mathematical 
theories of economics, politics, sociology, and even psychology. 
Neither Abbe, Russell, nor Szilard explicitly denied Laplace's Credo 
of Determinism, unless one wishes to infer such a denial from their 
behavior. It is also important to note that Laplace did not obtain 
his marquisate by presenting Louis XVIII with a mathematical 
demonstration. The current version of the atomic theory does deny 
that chance and probability are merely the result of our ignorance. 
Only one major physicist, Arthur Holly Compton, used this as an 
argument for people's free will, freedom to make decisions. Most 
others have rarely bothered themselves with the logical conclusion 
that if completely deterministic laws apply to the universe, man is 
himself an automaton. It has been seen that this strange oversight 
(or whatever it may be) was initiated by Democritus, who was cer- 
tainly one of the first, if not the first, to cite the Law of Necessity or 
Principle of Sufficient Reason. Epicurus denied that there was any 
connection between cosmology or science and ethics or religion; the 
vigor with which his ethics have been denounced has obscured this 
major element in his writings. Leibniz presumably labored over this 
problem, without coming to a final conclusion. Apart from him, 
only one other recent mathematician has approached this two 
thousand year old problem; this is not to say that non- 
mathematicians have been silent. 

Alfred North Whitehead, who collaborated with Bertrand 
Russell in writing the Principia Mathernatica, was another of those 
who abandoned mathematics and approached more general prob- 
lems by writing in ordinary English. In his book, The Concept of 
Nature his major thesis is that nature is what we observe by sense- 
perception; we are aware that in this sense-perception there is 
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something which is not thought; this is nature. It can be thought 
about without thinking that one (or anyone else) is thinking about 
it. This he calls thinking homogeneously about nature. We can 
also think about it while thinking that we (or someone else) is 
thinking about it; this is thinking heterogeneously about nature. 
Natural science consists entirely of homogeneous thoughts about 
nature. 

Whitehead's thesis, and especially his distinction between 
homogeneous and heterogeneous thought, has implications that are 
too important to be ignored. The one is the distinction between 
nature and natural science, the latter being a system of homogene- 
ous thoughts about nature. Whether or not people have free will 
does not depend on their homogeneous thoughts about nature. 
Hence Laplace's deterministic, fatalistic theory of nature, and the 
more recent atomic theory which assigns to chance or probability a 
fundamental role in atomic events, are both irrelevant to the matter 
of free will, and hence to ethics. Compton was in error because he 
attempted to establish a logical connection between homogeneous 
and heterogeneous thoughts. Epicurus (however one might value 
his ethical system) was right in rejecting cosmology (or natural sci- 
ence) as prerequisite to ethics. 

The second implication of Whitehead's thesis follows almost 
immediately from the first: it is that natural science does not 
exhaust the possibilities for thought about nature, which is not 
natural science. The importance of Whitehead's thesis is that it 
leaves room for ethics and morality. In thinking about doing busi- 
ness with people, we can think heterogeneously. We are all parts of 
nature, but we are also capable of thought. Thus heterogeneous 
thought, thinking that we and all people are thinking about nature, 
becomes a possible, almost an essential part of our transactions with 
people. In some circumstances, for example during a surgical 
operation on an anesthetized patient, it may be important to think 
homogeneously about a human being. But the Hippocratic Oath is 
heterogeneous thought and remains in the back of the surgeon's 
mind; it was in the foreground when he  decided to operate, and will 
again come forward while the patient convalesces. Thus, Whitehead 
has unwittingly contributed to our understanding of the personal 
relations between Democritus, Hippocrates, and Epicurus, three 
people whose importance for history cannot be doubted. Since 
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Whitehead was educated in the classical curriculum of nineteenth- 
century England, this proposition may also be inverted: he may well 
have been influenced by them. 

There is much evidence that early people thought only 
heterogeneously about nature. Two people bargaining about the 
exchange of arrowheads and stone knives would each be conscious 
that the other was thinking about the arrowheads and stone knives 
which were a part of nature that was being perceived by them. By 
using shrewder words, by taking more risk that the other would call 
the deal off, one could get a better bargain. What the other has said 
may be a clue to what he is thinking and will say next. A stupid 
person may intentionally display eagerness, a clever person may 
intentionally hide his eagerness. Shrewdness borders on deceit, but 
it may pay off. Doing business face to face with other people 
almost inevitably required heterogeneous thought. Persuasive sen- 
tences express heterogeneous thoughts. 

Hunting is doing business with animals. One could possibly 
bargain shrewdly with them. Magic incantations, rituals in which 
the hunted animal is impersonated and addressed, would be under- 
taken. When inantimate nature, rain, winds, and floods, were 
involved, it is understandable that people accustomed only to 
heterogeneous thought would suppose that they were produced by 
sentient beings. The origins of the Greek and similar religions that 
involve doing business with the gods, also becomes understandable. 
Evidence for this is to be found in the failure of early peoples to 
make a distinction between religious ritual and secular routine. 

Although this is not stated in the Credo, Laplace's other writ- 
ings show that he believed in the atomic theory, and that the atoms 
were both immortal and had no parts. "Atom" means indivisible. 
This was also the belief of his immediate followers. By the begin- 
ning of the twentieth century, evidence had accumulated that the 
atoms were neither simple nor immortal. They were, it was 
thought, composed of protons, neutrons, and electrons. The explo- 
sion of the first atomic bomb was a dramatic confirmation of this 
theory, though all physical scientists had accepted it years before. 

For a time, it was possible to believe that the electrons and 
protons were indivisible and immortal, though evidence to the con- 
trary had been accumulating since about 1930. After World War 11, 
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many new subatomic particles, still often called strange particles, 
were found. These seemed to be constituents of the protons and 
electrons; they were certainly not immortal. They appeared, 
changed, and disintegrated in a remarkably short time, usually in 
less than one millionth of a second. All of this is still not clearly 
understood; but there seems to be no way to calculate the lifetime 
of any single one, any more than it is possible to calculate the exact 
lifetime of a certain human being. Neither is it possible to calculate 
the lifetime of any atom of radium. The precise moment at which 
an atom of radium will disintegrate appears to be a matter of 
chance. One can measure its probability; one can calculate the pro- 
bability that it will disintegrate before the end of the year. But one 
can neither describe the disintegration process nor calculate exactly 
when it will occur. Of course, one may follow Laplace and maintain 
that this is merely our temporary ignorance which will inevitably be 
remedied before long. For a time, some physicists, including Albert 
Einstein, maintained this belief. An increasingly larger majority of 
physicists do not believe this, for a reason that can be explained in 
non-technical terms. 

Of course, there is no way of finding out whether Laplace is 
right or wrong. The Principle of Sufficient Reason is not self- 
evident. Physicists, and most modern statisticians, no  longer accept 
as valid any argument which depends on it. Some fifty years ago, 
the astronomer Henry Norris Russell considered this matter in a 
lecture before a general audience. He concluded that, even if 
Laplace is right, we might as well behave as responsible people 
should. And this is the common sense of the matter. It amounts 
to dismissing the Credo as irrelevant. 

But Laplace is not irrelevant. His ideas have not only 
influenced physicists and chemists, but biologists and psychologists 
as well. It is in these last two groups that his ideas are most evident 
today. 

The fact of biological evolution was established by Lamarck, 
Darwin, and Wallace. Laplace's direct effect on these men was not 
great. They were not mathematicians. But after Mendel's discovery 
of the laws of inheritance, it became possible to develop a 
mathematical theory of biological evolution, using Laplace's theory 
of probability. Mendel's laws are both empirical and probabilistic, 
so that this use of Laplace's mathematics is fully justified. It is 
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justified, whether chance is a delusion, or inherent in the world. 

More of less simultaneously, psychologists began using proba- 
bility theory to interpret the results of intelligence tests and similar 
questionnaires. It will be recalled that initially this was because of 
dissatisfaction with the aristocratic scheme of rank-ordering people 
by their grade point averages and intelligence quotients. Secon- 
darily, it could be justified by the hope of discoveries as fundamen- 
tal as Mendel's. After fifty years, this hope has not been realized, 
but it has not yet been abandoned. More and more elaborate 
mathematical methods are being used, and larger and larger elec- 
tronic computers. It has been forgotten that Mendel made his diso- 
veries in a monastery garden, using only the very simplest arith- 
metic. Even more distressing, all of this effort has caused only 
minor changes in the scheme of rank-ordering students. 

It will be recalled that Thurstone's major hypotheses were 
that people's abilities are numerically measurable and that these 
abilities are innate. Both are implications of the Credo. People's 
abilities are fixed at birth; no conscious effort on their part can 
change their abilities. Consciousness, if not a delusion, is impotent, 
irrelevant. This has been generalized by the school of behavioral 
psychology. Not only abilities, but all of people's behavior is 
governed by mathematical laws. Conscious effort is irrelevant. 
Thurstone's original hypotheses are thus made to conform even 
more closely to the Credo, and in turn, the Credo justifies the use 
of more elaborate mathematical methods. 

Historically, it is an oversimplification to say that Mendel's 
discoveries fused the theory of biological evolution with the Kant- 
Laplace theory of the evolution of the solar system. Yet that is 
what has happened, and the Mendelian laws were essential. The 
discovery of genes, and their later identification as large chains of 
DNA molecules, provided a causal explanation of the Medndelian 
laws, of precisely the kind envisioned by the Credo. What Ardrey 
has called the accident of the might could be made to seem deter- 
mined. A conceivable improvement in the theory of fluids and a 
conceivable improvement in the recording of muscular movements, 
and the outcome might be calculable by a conceivably improved 
electronic computer. 
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Before the discovery of the double helix DNA and RNA 
molecules, the behavioral psychologists used to say that no 
definition of life could be framed which would exclude the candle 
flame. The flame metabolizes oxygen and organic matter; in the 
absence of external stimuli, it becomes quiescent; given the proper 
occasion, it reproduces itself. After the discovery of these 
molecules and their role in the life of plants and animals, it was 
possible to frame such a definition. The metabloism of the candle 
flame does not involve DNA or RNA. 

But it also became possible to develop theories of the origin 
of life; that is, of the natural synthesis of the first self-replicating 
DNA and RNA molecules from non-living matter. It became possi- 
ble to theorize about the entire prehistory of man, from the primor- 
dial matter, to the synthesis of the first self-replicating molecule, to 
the evolution of plants, animals, and man. Kant and Laplace sup- 
posed that the primordial matter of the solar system was uncons- 
cious, unintelligent; most recent cosmologists follow their lead. 
Alfred North Whitehead has pointed out that there are then two, 
much neglected, problems. At what stage of the evolution of life 
did portions of that matter become conscious? And, at what stage 
did these portions, which we call people, become intelligent, or, at 
least, begin to suffer the delusion of intelligence? This has also 
been emphasized by the paleontologist Theilhard de Chardin, from 
a somewhat more theological viewpoint. 

It is related that Whitehead once startled an audience by say- 
ing that there might be life on the Sun. He went on to explain that 
he  was thinking of beings that had a lifetime measured in 
microseconds, dimensions measured in kilometers, but were yet 
able to learn. The astrophysicist Fred Hoyle has elaborated on this 
theme in his science fiction novel, The Black Cloud. 

The question can be simplified to this: Is a candle flame cons- 
cious? This is clearly a difficult question to answer, but as yet no  
attempt has been made to explain the consciousness of people. 
Some psychologists are annoyed by the suggestion that this might 
be a topic worthy of study; they are also annoyed if asked whether 
they are unconscious. 

The mathematician John von Neumann wrote on many sub- 
jects, including self-replicating automata and the theory of 
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automatic computers. The title of the last chapter of his last book is 
"The Language of the Brain, Not the Language of Mathematics." 
There are thus signs that the influence of the Credo is waning, at 
least within the physical sciences. Elsewhere, however, its influence 
seems to be increasing. Remarkably, the humanities are no excep- 
tion to this statement. W.H. Simon reports: 

This debut (of the computer) has been nowhere more spectac- 
ular than at Princeton, where two departments -- history and 
music -- lead the world in developing computer applications to 
their disciplines, and where nearly all other humanities divi- 
sions are getting into the act. A survey of these departments 
gives credence to the prediction made by Edmund Bowles, 
IBM's humanist-in-residence, that of the common baggage of 
research tools and techniques required of every graduate stu- 
dent in the humanities.' ... The machine rushes forth answers 
uncontaminated by human consciousness, free from vague- 
ness, ambiguity, prejudice, inconsistancy, and all other 
infirmities of the human mind. 

The idolatry of mathematics is being replaced by the idolatry of the 
computer. 




