
UC Irvine
ICS Technical Reports

Title
Debugging real-time software in a host-target environment

Permalink
https://escholarship.org/uc/item/4db4s5h5

Author
Taylor, Richard N.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4db4s5h5
https://escholarship.org
http://www.cdlib.org/

Notice: This Material

by Copyright Law
(Title 17 U.S.C.)

Debugging Real-Time Software
"in a Host-Target Environment

Richard N. Taylor

Technical Report #212

Programming Environment Project
Department of Information and Computer Science

University of California, Irvine
Irvine, California 92717 U.S.A.

Telephone (714) 856-7202

LIBRAF

University of |Cl!Ufernl|
fRVlNr^^

Debugging Real-Time Software
in a Host-Target Environment

Richard N. Taylor

PrograinmiDg Environment Project
Department of Information and Computer Science

University of California, Irvine
Irvine, California 92717 U.S.A.

Telephone (714) 856-7202

ABSTRACT

A common paradigm for the development of process-control or embedded computer software
is to do most of the implementation and testing on a large host computer, then retarget the code
for final checkout and production execution on the target machine. The host machine is usually
large and provides a variety of program development tools, while the target may be a small, bare
machine. A difficulty with the paradigm arises when the software developed has real-time con
straints and is composed of multiple communicating processes. If a test execution on the target
fails, it may be exceptionally tedious to determine the cause of the failure. Host machine
debuggers cannot normally be applied, because the same program processing the same data will
frequently exhibit different behavior on the host. Differences in processor speed, scheduling algo
rithm, and the like, account for the disparity. This paper proposes a partial solution to this prob
lem, in which the errant execution is reconstructed and made amenable to source language level
debugging on the host. The solution involves the integrated application of a static concurrency
analyzer, an interactive interpreter, and a graphical program visualization aid. Though generally
applicable, the solution is described here in the context of multi-tasked real-time Ada* programs.

Keywords: debugging, host-target development, concurrency, real-time software, Ada, environ
ments

1. Introduction

Real-time software is often developed on a host machine and then recompiled for execution

on a target machine. The host machine is typically much more powerful than the target, provid

ing a variety of program development services. Target machines are frequently "bare machines",

having no support software at all — not even operating systems.

The difficulty with this development model is in testing software on the target machine.

Some testing must be done on the target, as host machine testing is grounded upon some assump

tions about the target. For example, host testing often involves use of a target machine emulator.

Target machine testing is necessary to ensure that the emulator correctly reflected the target's

•Adi is i trademark of the U.S. Department of Defense (AJPO).

characteristics. The difficulty is in determining the cause of an error detected during target test^

ing: most likely there are no tools to aid in this determination. The analyst may have only a

memory dump from which to work.

This unfortunate situation is greatly aggravated when the software being developed contains

multiple concurrent tasks, or when its functionality is determined by real-time considerations.

Target machines are often embedded processors, executing in a real-time feedback loop. When

this is the case, several additional factors, such as the following, may cause target machine execu

tions to deviate from host executions:

• The real-time input simulators on the host may not operate at the same rate as the actual

inputs to the target.

• The real-time clock may be less (or more) precise.

• The number of physical CPU's may vary between host and target, affecting the execution

rates of separate tasks.

• The relative speed of the multiple processors may vary.

• Though the same scheduler algorithm may be used on both machines, different behavior

may be observed because of differences in processor construction.

• Different scheduling algorithms may operate on the host and the target.

Because of these matters, a very real possibility is that a concurrent program may execute

correctly on the host, but deadlock on the target, even though it is processing the "same" data.

Thus straightforward attempts to debug on the host may be fruitless.

The intent of this paper is to present a technique for host debugging of failed target

machine executions which addresses all the relevant concerns.

1.1. Objective

The initial objective of the technique we present is to reconstruct, with fidelity, the target

execution on the host. This means determining the exact sequence of (target) machine state tran

sitions. Once this reconstruction is achieved, a secondary objective is to provide debugging tech-

niques that enable effective investigation of the behavior of concurrent, real-time programs.

These techniques should be provided at the level of source language concepts (e.g. Ada rendez

vous), not assembly language or, worse yet, machine code instructions. Furthermore, the tech

niques must enable a program to be viewed from different perspectives, and the analyst must be

able to move smoothly from one to another. The perspectives we have in mind are: 1) looking

within a single task to investigate its particular behavior, and 2) looking at the system of interact

ing processes to study the task interactions that occur. The focus of this paper will be on the

second of these perspectives, as techniques for debugging single process, non-real time programs

can be used for looking within a single task. It must be remembered, however, than any imple

mentation of the overall technique must provide both capabilities.

Achieving these objectives is difficult, and the technique presented below is not perfect. A

key characteristic of the technique, which is of interest in its own right, is that it involves the

integrated application of several sophisticated tools. To be used effectively these tools must be

housed in a programming environment. This will be considered more fully at the end of the

paper.

To provide focus for the discussion, attention will be restricted to concurrent, real-time Ada

programs. Ada provides several high-level facilities for describing multi-tasked systems [Ada83].

The technique has broad applicability, however, and could be used in debugging, for example,

CSP [Hoar78], ILAL/S [Mart77], or Industrial Real-Time Basic [IRTB81] programs.

Several other research groups are investigating the problems of debugging concurrent and

distributed systems. A variety of promising work is described in [HLDB83]. Other, more closely

related research is referred to in the following presentation.

2. Solution scheme

We are proposing a two-step approach to the problem of locating an error in a failed target

machine execution. The first step, and the most difficult one, is recreating the target machine's

execution back on the host. The second step is to analyze that execution, using a powerful

debugger, to isolate the fault.

I

I

I

The first step involves several operations. After listing them here we will then consider

them in more detail.

• From the-final target machine state (possibly given by a memory dump) derive the

corresponding Adarlevel machine state.

• Extract from the Ada state the final concurrency slate. (I.e., determine the final con

currency related action taken by each task.)

• Determine the full range of possible concurrency and real-time program actions that could

lead to the final concurrency state.

• Prune the range of concurrency actions potentially leading to the final state on the basis of

knowledge of the target's execution. (This may be a null step.)

• Find a viable sequence of concurrency and real-time actions, using a process of "depth-first

execution".

• Initiate a detailed debugging execution driven by the sequence of viable actions.

The processes and data flows involved in these activities are indicated in Figure 1.

The limitations of the technique will become painfully obvious in the remainder of the

presentation. Here we simply note a few of them.

• It must be possible to reconstruct (key portions of) the final Ada-level machine state from

the target machine's final state. Therefore errors whose penultimate action is to wipe out

all of memory cannot immediately be addressed.

• It must be possible to capture the sequence of data values that were read by the target

machine, though it is not necessary for them to be time-stamped. (But time-stamps may be

useful, however.)

• The process of reconstructing the execution may be slow, though it certainly will be more

efficient than having a person attempt the same.

A technology key to the entire process is static analysis of concurrent Ada programs. This

technology is described in detail in [Tayl83a]. The following subsection summarizes the key

Static
Analysis

Debugger

Interpreter

Ada
iSourcei

Text

<!Execution Characteristics

Test Data

Overview of Host-Target Debuggiag
Figure 1

Target Code

\
Hot — bench
Execution

Device inputs

techniques.

2.1. Static analysis of concurrent programs

The objective of this analysis technique is to determine, for a given program, all possible

sequences of concurrency related events. These sequences of concurrency related events are

expressed in terms of concurrency slates. A concurrency state displays the next synchronization-

related activity to occur in each of a system's tasks. A sequence of states presents a history of

synchronization activities for a class of program executions. The analysis algorithm can develop a

representation of all possible concurrency histories. From these sequences information regarding

several aspects of a program's synchronization structure may be derived. Included are

identification of all the rendezvous that are possible, detection of any task blockages (deadlocks)

that may occur, and listing of all program activities that may occur in parallel. For the purposes

of this paper, though, it is the existence of a representation of all possible histories that is impor

tant.

We will illustrate the concepts with an example. Figure 2 presents an Ada program

designed to solve a version of the Dining Philosophers problem. Five philosophers are seated at a

circular table, alternately eating and thinking. In order to eat, a philosopher must acquire the

fork to the left of his plate and the fork to the right. In Figure 2 each philosopher is a separate

task, as is each fork. The philosopher tasks request the fork resources by issuing entry calls. The

program presented is a poor one in the sense that it is possible for deadlock to occur: if each phi

losopher is able to acquire the fork to his left, then they will all starve while waiting for the fork

to the right. This possibility can be detected using static analysis.

The situation where all the tasks are active, the philosophers are all requesting the left fork,

and all the forks are ready to accept a call on "Up" is shown in the following concurrency state:

Main

Task

Philosorti ers Fork»

A K B T S 0 1 2 3 4

end

G

O

Up, UPj UP3 Up, Up' Up' Up' Up' Up'

Here we abbreviate each philosopher's name with its first initial, the entry calls on "Up" are sub

scripted to indicate which fork is requested, and the accept statments in the forks are marked

with an apostrophe (to distinguish them from entry calls). The main thread of control is shown

at "end", indicating it is ready to terminate when all its dependent tasks terminate. Among

many possible actions, the system may progress from this state to

Main Philosonh prs Fork?

Task A K R T R 0 1 2 3 4

end UPl Up, UPj UP3 Up, Down' Up' Up' Up' Up'

implying that Aquinas acquired Fork^^ and is now requesting Forkj, as is Kierkegaard. Supposing

Kierkegaard acquires Forkj next, the system can progress to

I

procedure Dining_Philosopher! is

type Seat^Assignment is Integer range 0..t;

task type Fork is
entry Up;
entry Down;

end Fork;
task body Fork is
begin

loop
accept Up;
accept Down;

end loop;
end Fork;
type Array_of_Fork is array (0..4) of Fork;

Forks: Array_of_Fork; —this declaration results in the activation of the 5 fork tasks

generic
N: Seat_As5igninent;

package Philosopher is
task T;

end;
package body Philosopher is

task body T is
begin

loop
Forks(N).Up; -acquire left fork
Forks((N+l) mod 5).Up; -acquire right fork
delay 1; -eating time
Forks(N).Down; —put down left fork
Forks((N+l) mod 6).Down;—put down right fork
delay 1; -thinking time;

end loop;
end T;

end Philosopher;

package AquinasfO) is new Philosopher;
package Kierkegaard(l) is new Philosopher;
package Bonhoeffer(2) is new Philosopher;
package Tilich(3) is new Philosopher;
package Schaeffei{4) is new Philosopher;
begin

null;
end Dining_Philosophers;

-This instantiation of each specific package results
—in the activation of the task contained within
—the package. Each task is activated with the
-generic actual,parameter (0, 1, 4) in place
—of the formal parameter N

Figure 2
Dining Philosophers, Reserved Seating

Main

Twit

Philosonh Fr rks

A K T 0 1 2 3 4

end UPi UP2 UP2 UP3 Up^ Down' Down' Up' Up' Up'

The key item to note is that the static analysis algorithm will calculate all the possible states,

exploring all eventualities. The particular states that arise during actual execution will be deter-

mined by the scheduler algorithm, processor speeds, and the like. (To simplify the presentation of

this example we have not considered the relative position of entry calls on the entry queues.)

Further consideration of this example reveals that, after a series of rendezvous, the following

state is possible;

Ma.iD

Task

Philosonhers Forks

A K R T 5 0 1 2 3 4

end Up, Upj Up3 UP4 UPo Down' Down' Down' Down' Down'

This represents the deadlock described earlier. Simple, automatic analysis of this state will cause

the deadlock to be reported. It is noteworthy that this state is a common successor of many

different earlier states. Moreover it may not occur until after an extended period of "eating and

thinking". All these possible sequences of states are revealed by the static analyzer.

It is important to note the limitations of the technique. First, static analysis must assume

that each intra-task path is executable. This presents no problem in the example shown, but

surely would introduce some non-realizable event sequences in a real program. Second, static

analysis is accurate only when individual program objects (like tasks or entries) can be identified

statically; program features potentially causing dynamic identification, such as access values

(pointers) and subscripts, may be inadequately handled. Again, in this example there was no

problem because of the use of the generic (compile-time) parameter to determine the "seating

arrangement". If the program had been constructed so that seating positions were assigned

dynamically, then analysis would not have been as useful. The static analyzer would have been

forced to compute all possible concurrency states, not knowing the value of "N". Even though

the program may guarantee that no two philosophers simultaneously have the same value of "N",

the static analyzer would nevertheless compute such outcomes. Literally thousands of spurious

states would result.

Regarding complexity, the algorithm is 0(n^, where T is the number of tasks in the system,

and n is the number of concurrency related statements [Tayl83b]. Usually a very large number of

states will be generated, and such generation may take considerable time.

Finally, since the analysis conducted is independent (ignorant) of the target execution

environment, the implications of delay statements, non-zero execution times, and scheduler algo

rithms are noftaken into account. This restriction, of course, is also a key advantage: the results

produced do not rely on any possibly erroneous assumptions about the target environment. In

fact it is this very characteristic which guarantees that the set of histories produced by the static

analyzer includes the history which led to the failed target execution that we are attempting to

debug. The problem then, is to determine which history is the one.

2.2. Path finding strategy

The problem of reconstructing the failed target execution back on the host is now con

sidered in some detail. The procedure described below makes few assumptions about communica

tion between the host and target. Necessarily the resulting analysis is potentially costly. After

presentation of the basic procedure several optimizations are described. At the expense of increas

ing the communication between the machines and constraining the structure of the target, sub

stantial speedup of the reconstruction process is obtained.

Working from perhaps a memory dump from the target execution, the first task is to recon

struct the final state of the program in Ada-level terminology. Ideally the complete program state

F would be "unloaded", yielding the last value of all variables as well as knowledge of what tasks

were in existence, their status (running, blocked, etc.) and which instruction in each of these tasks

was to be executed next. However a useful debugging exercise can be conducted even if only the

final concurrency state C can be reconstructed. The specifics of this unloading process will vary

from target to target and, as noted earlier, may not always be possible. When it is possible, ,

though, the reconstructed state is handed oVer to the host^resident tools which reconstruct the

execution path.

The first step in path reconstruction is static generation of all concurrency histories H lead

ing from the start state to C, the final concurrency state. Those are the only histories to be gen

erated. The static analysis technique described earlier can easily be used to do this. The next

step is determination of which of these histories describes the failed execution. This can be deter-

10

mined as follows. A host machine execution of the subject program is initiated. This execution

uses as input data the data values used by the target execution. These values need not be time-

stamped, and could be captured by simple hardware monitors on the target machine. Whenever

the host execution reaches a point where a scheduler decision or a time-dependent activity is

required, a decision or activity consistent with a concurrency history hj £ H is made. Execution

then resumes. This process continues until F (and thus C) is reached, in which case a candidate

valid history has been found and the process terminates, or else the debugging execution cannot

continue in accordance with h^.

This later situation can be thought of as follows. Let h, = s, s„ s, ... s s ,, ... C where s is
1 1*3 & i

a concurrency state in history h^, s^^ is the last concurrency state reached in the host execution,

and the transition from s^^ to s^^j is impossible in the host execution. This means that the data

processed by the program demands that some other concurrency state s' be reached from s
• ft

(perhaps because of a path within a particular task). If indeed s^ has another possible successor

that leads eventually to C, then that history hg = Sj Sg ... s' ... C is pursued, again until reach

ing C in the host execution or until the process can continue no further. If once again the process

stalls, another possible history is chosen and pursued. This may involve backing up before s^.

We are in fact suggesting that H be traversed in a depth-first manner to guide the scheduler in

exploration of all feasible histories until the desired one is found.

Note: If the path reconstruction process uses only the final concurrency state C and not the

complete final state F, then h, the concurrency history "found", may not be the history h' that

occurred during the target's execution. It will be an "interesting" history though, as it character

izes an execution with properties close to h'. Specifically, if h' resulted in a tasking error such as

deadlock, then h is a possible execution (with respect to the same input data) that will also result

in that error. If F is used instead of C then h is more likely to be h' since the value of program

variables can be used to determine the need for further depth-first executions. But since complete

intermediate program states are not compared between the target execution and the host, one

cannot guarantee that the two are identical.

11

This entire process poses many difficulties and is potentially expensive. Following are some

comments briefly addressing some of the serious issues.

• If two or more tasks in the program can reference the same input channel, then all refer

ences to that channel must be shown in the concurrency states of H. In so doing, all possi

ble patterns of reference to that shared resource can be examined.

• If the data values read by the target are time-stamped, then these time-stamps can be used

to prune H so that it only includes histories consistent with the observed patterns of refer

ence. To take advantage of these time-stamps all references to input devices must be shown

in the concurrency histories.

• Central to the above strategy is driving the host execution in accordance with a concurrency

history. This implies the host's scheduler must be completely controllable, and accept a his

tory as controlling input.

• When the debugging execution cannot proceed any further in connection with a given his

tory, execution is "backed up" to a previous concurrency state and resumed along another

history. This implies the (virtual) saving of complete intermediate program states by the

host. Such states would not actually have to be saved at all concurrency state —

concurrency state transitions, however, as states could be recomputed.

• The static analyzer is limited in its ability to generate histories for programs using pointers

to name tasks. It can be directed to generate histories based on all possible references, how

ever, and rapid pruning will occur when dynamically generated information is supplied.

2.3. Speed-up through dynamic analysis '

The above process is somewhat brute force and inelegant. But the problem is difficult and

the solution scheme only assumes that the target's final state can be unloaded and that input

values can be captured. Substantial speedup can be obtained by weakening restrictions on the

degree of host-target communication. Namely, if some information describing the progress of the

target can be gathered during its execution, that information can be used to prune substantially

the set of histories H that have to be explored on the host.

12

Most desirable, of course, would be a detailed description of the activities of the target's

scheduler. If it emitted a message describing its every activity then that would completely

describe the concurrency history. A scheduler that does this has been constructed at Stanford

[Germ82]. If messages were only issued intermittently then they could be used in the history-

pruning process. Less desirable but still very helpful would be snapshots of the target's memory,

or portions thereof. It may be impossible to obtain any of this additional information, however,

because of constraints the target machine may impose.

2.4. Execution visualization and intra-task debugging

The result of the path reconstruction process is specification of the concurrency history

which occurred on the failed target execution. Once this is obtained the analyst has available

complete knowledge about what events took place on the target. The concurrency history details

the scheduler and time-related phenomena, while the test data determines the actions within indi

vidual tasks. Based on this information a detailed debugging execution can be initiated, with the

purpose of determining the cause of the error.

Debuggers provide the ability to investigate program activities in detail: initially one is con

cerned with seeing what happens during execution. Further understanding is often obtained by

modifying the execution, such as by changing a variable's value, then observing the effect of the

change. We believe that aids which help visualize (or animate) the execution of concurrent pro

grams are particularly helpful, and briefly present here a few ideas which we think hold promise.

(Some issues association with construction of such an animator are briefly presented in a later sec

tion.) It is not sufficient, however, to just provide information about task interaction. The

analyst must also have the ability to look in detail within a given task, and readily move between

these perspectives. We will not consider techniques for debugging within a task, however, as that

technology has been described many places [HLDB83].

With respect to animation of concurrent executions, we envision the following features. The

analyst will use a bit-map terminal, preferably with color display capabilities. One window,

always visible on the screen, is a control menu. The bulk of the screen is devoted to displaying

13

task interactions. When a task comes into existence a new rectangle (window) appears on the

screen. This task window is linked to its parent task by an arc, indicating the task dependency

relationship. The priority at which a task runs is indicated by its color: high priority tasks glow

red while low priority is shown as violet. (A full color spectrum would be used.)

Each individual task may have further attributes displayed. A candidate set of default

attributes may be as follows. Within a task's window five lines of program text are displayed: the

first two lines are the two previously executed statements, the third is the current statement, and

the fourth and fifth are the two statements textually following the current statement. (The size

of this window could of course be varied to display more or less.) Each task may own entries.

Each entry owned by a task would be shown as a labeled rectangle attached to the outside of the

task. When an accept statement for a given entry is eligible for execution (such as when it

appears in a select statement and its guard is true) the entry rectangle would be highlighted.

Entry calls issued by a task would appear as dashed arcs from the task issuing the call to the

entry rectangle on the task owning the entry. The order of entry calls in the queue would be

shown by ordering the arcs on the entry rectangle. When a call is accepted (a rendezvous begins)

the appropriate arc would change from dashed to solid. The arc would disappear on rendezvous

completion. Delay statements (and timed entry calls) would cause the appearance of a count

down clock in the task rectangle. Finally, when a task became eligible for termination its ter

minate block would glow. Termination would result in removal of the block from the screen.

With the amount of information listed here it is clear that the ability to shrink and grow

rectangles is important. Furthermore when the analyst wishes to look in detail within a single

task, then that task's rectangle should fill the screen, its internal data values should become

accessible, and so forth.

Three key capabilities would be controlled by the menu items. The first is control of the

speed of the animation. The ability to slow and halt execution is necessary. The second is to ini

tiate and control intra-task debugging. The third is to initiate and control inter-task breakpoints.

Breakpoints could be set at specific rendezvous, or particular task elaborations, for instance.

Ability could also be given for the user to direct execution down another concurrency history

14

(different from the one which occurred on the target machine). Such directions could correspond

to the effects of applying a different scheduler algorithm.

We are guilty of the charge that the preceding list of capabilities is a "wish-list". We have

not implemented these yet, though we are convinced that it is a very feasible task. The impor

tant point is that provision of these types of features could make a tremendous impact in the

understanding and debugging of concurrent programs. Program visualization is an important con

cept and we are attempting to delineate worthy goals. (Some noteworthy related work concerning

application-specific animation is being carried out at SRI by Mark Moriconi [Mori83]. Our work

is with application-independent (structural) animation.)

3. Implementation

A host-target debugging sjstem built along the lines suggested will never achieve its full

potential unless it appears within a comprehensive programming environment. The full range of

debugging activities includes text editing, file manipulation, and all the subtasks associated with

interpretive or incrementally compiled execution. Furthermore the scheme we are proposing

involves the integration of an unloader, a static concurrency analyzer, a "pruner", an interpreter

or compiler, a display driver, and (potentially) dynamic analysis tools. Efficient application of the

technique will require a well-designed tool framework.

We are currently engaged in constructing such a system for Ada programs called Arcturus

[Stan83]. Two prototype implementations have been created. The current system provides

interactive Ada programming, a break package (an intra-task debugger), template-assisted Ada

program editing, command-completion using Ada as a command language, an integrated program

design language/rapid prototyping system, and performance profiling. We are now studying ways

of implementing the host-target debugging paradigm and its associated tools.

3.1. Some implementation issues

Listed below are a few of the more interesting implementation details that arise and which

must be investigated further.

15

The process of unloading target machine states is, as mentioned earlier, target-dependent.

A particular problem here is determining the names of tasks in the machine state,

corresponding to the names used on the host (such as by the static concurrency analyzer).

The unique task id technique of [Germ82] potentially offers a solution.

The execution animator can be driven by calls from the scheduler. Whenever the scheduler

performs an action, such as initiating a new task, a message is sent to the animator describ

ing the state change. The animator then determines, on the basis of current display

options, what changes to the screen are necessary, and then effects the changes. Techniques

for scrolling program text in the task rectangles can be taken from existing single process

debugging systems [HLDB83].

If the program animator is requested to highlight all accesses to global (shared) variables,

including alias references, then the debugger can adopt a software-implemented tagged

memory architecture. This strategy for dealing with alias references has been proposed by

Johnson [John79] in a system for debugging single process programs. Direct extension to a

multi-task model appears to present little difficulty.

The host system must provide software simulators corresponding to each external

input/interrupt to the target machine. External interrupts to an Ada program appear as

entry calls. Thus one simulator task is required for each potential source of hardware inter

rupt to the target. Sources of external inputs to the target could be modeled the same way.

(Recall that the rate of interrupt requests/inputs is completely specified in a concurrency

history." Finding the proper "speed" is thus a part of finding the desired concurrency his

tory. Note that this requires all points of external interaction to appear in the individual

concurrency states.)

4. Conclusion

By some estimates [D0D8O] debugging of target machine executions accounts for 25% of

total embedded-system development costs. This high cost can be attributed, at least in part, to a

lack of effective tools. This paper has presented an entirely new approach to host-target debug-

lA

ging in which debugging of target executions can be carried out on a host supplying many

automated tools. The basic solution proposed is potentially very inefficient, but it makes only

nominal demands on knowledge of the target's activities. As additional information about the

target's execution is supplied, the efficiency of the process increases dramatically (because the

search space is further pruned); Some program animation techniques have also been sketched.

We believe the use of animation promotes rapid understanding of the actions of a program.

Furthermore a graphic display is an effective device for controlling a debugging execution.

Design and implementation of the approach described is under way. Clearly we need to

carry out many experimental studies to determine the practical utility of the various techniques.

In particular we need to investigate additional ways of capturing information about a target's exe

cution (using both hardware and software technology) to guarantee rapid reconstruction of it on

the host. Finally, this study has emphasized the importance of building extensible, composable

programming environments such that a variety of tools can be applied in an integrated fashion.

Acknowledgements

Ralph London, Tim Standish, Anne Brindle, Dave Martin, Jeff Greenburg, and Carol
LeDoux all contributed to the formulation of these ideas. This work was supported in part by the
Defense Advanced Research Projects Agency of the United States Department of Defense under
contract (ONR) N00039-83-C-0567 to the Irvine Programming Environment Project. The views
and conclusions contained herein are those of the author and should not be interpreted as neces
sarily representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government. The support of The Aerospace Corporation is
also gratefully acknowledged.

References

[AdaSS]
Military Standard Ada Programming Language (ANSI/MIL-STD-1815A-1983). American
National Standards Institute, 22 January 1983.

[DoD80|
Department of Defense. Requirements for Ada programming support environments. "Stone-
man". February 1980.

[Germ82)
German, Steven M., David P. Helmbold, and David C. Luckham. Monitoring for deadlocks
in Ada tasking. Proceedings of the AdaTEC Conf. on Ada, Arlington, VA (October 1982)
pp. 10-25.

1HLDB83]
Proceedings of the ACM SIGSOFT-SIGPLAN Software Engineering Symposium on High-

I 17

Level Debugging, Asilomar, CA. (March 1983). Appeared as Software Engineering Notes, 8
4, (August 1983).

[Hoar78]
Hoare, C.A.R. Communicating sequential processes. Communications of the ACM, 17, 10,
666-677(1978).

[IRTBSl]
Industrial Real-Time Basic. Draft Standard, European Workshop on Industrial Computer
Systems (EWICS TC2), 1981.

[John79]
Johnson, Mark Scott. Translator design to support run-time debugging. Software — Prac
tice and Experience, 9, 1035-1041 (1979).

|Mart77)
Martin, F. HAL/S - The avionics programming system for shuttle. Proc. ALAA Conference
on Computers in Aerospace, Los Angeles, CA, pp. 308-318, 1977.

[Mori83]
Moriconi, Mark. PegaSys: an environment for displaying, animating, and reasoning about
graphical descriptions of ^stems. Proceedings of the Symposium on Software Validation,
Darmstadt, FRG, (September 1983) North-Holland.

[Stan83]
Standish, Thomas A. Interactive Ada in the Arcturus Environment. Ada Letters, ///, 1
(July, August 1983) 23-35.

|Tayl83a]
Taylor, Richard N. A general-purpose algorithin for analyzing concurrent programs. Com
munications of the ACM, 26, 5, 362-376 (May 1983).

[Tayl83b]
Taylor, Richard N. Complexity of analyzing the synchronization structure of concurrent
programs. Acta Informatica, 19, 57-84 (1983).

