
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Detecting Bugs and Security Issues by Identifying Developers’ Blind Spots

Permalink
https://escholarship.org/uc/item/4dc059n1

Author
Zhong, Li

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dc059n1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Detecting Bugs and Security Issues by Identifying Developers’ Blind Spots

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Li Zhong

Committee in charge:

Professor Yuanyuan Zhou, Chair
Professor Amy Ousterhout
Professor Aaron Schulman
Professor Geoff Voelker
Professor Xinyu Zhang

2024

Copyright

Li Zhong, 2024

All rights reserved.

The Dissertation of Li Zhong is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2024

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Contribution . 4
1.3 VALUECHECK: Effective Bug Detection with Unused Definitions 5
1.4 FENCEHOPPER: Detect Vulnerabilities by Client-Side Code Mutation 6

Chapter 2 VALUECHECK: Effective Bug Detection with Unused Definitions 7
2.1 Motivation . 7
2.2 Background . 11

2.2.1 Liveness Analysis . 11
2.2.2 Unused Definitions . 12

2.3 Design Overview . 12
2.3.1 Detection Scope . 12
2.3.2 Framework Overview. 14

2.4 Detecting Cross-Scope Unused Definitions . 15
2.4.1 Detect Local Unused Definitions . 15
2.4.2 Authorship Lookup . 17

2.5 Pruning . 20
2.5.1 Configuration Dependency . 20
2.5.2 Cursor . 20
2.5.3 Unused Hints . 21
2.5.4 Peer Definition Pruning . 21

2.6 Ranking based on Code Familiarity . 22
2.7 Implementation . 23
2.8 Evaluation . 24

2.8.1 Experiment Setup . 24
2.8.2 Detect New Bugs . 25
2.8.3 Accuracy of VALUECHECK . 28
2.8.4 Comparison with Existing Tools . 30

iv

2.8.5 Authorship and Code Familiarity Effectiveness . 34
2.8.6 Scalability of VALUECHECK . 36

2.9 Limitations and Discussion . 36
2.9.1 Limitation . 36
2.9.2 Alternatives of the DOK model . 37

2.10 Related Work . 37
2.11 Acknowledgments . 38

Chapter 3 FENCEHOPPER: Detect Vulnerabilities
by Client-Side Code Mutation . 39

3.1 Introduction . 39
3.1.1 Problem: Over-relying on Security Checks in Web Client 39
3.1.2 Existing Solutions . 41
3.1.3 Our Approach . 42

3.2 Client-side Code Mutation . 44
3.2.1 Identify Security Checks in Client-Side . 45
3.2.2 Mutate Security Checks in Client-Side . 48
3.2.3 Generate Data Input Based on Checks . 50
3.2.4 Fix Missing Data after Code Mutation . 52

3.3 Implementation . 53
3.4 Evaluation . 54

3.4.1 Detect New Vulnerabilities . 54
3.4.2 Comparison to Other Tools . 56
3.4.3 Detailed Evaluation of Each Component . 58
3.4.4 Coverage of FENCEHOPPER . 60
3.4.5 Manual Effort and Time . 62

3.5 Security Impact Analysis . 62
3.5.1 Systematic Analysis . 62
3.5.2 Case Study . 64

3.6 Limitations and Discussion . 65
3.7 Related Work . 66
3.8 Case Study: Blind Spots in Third-Party Services . 68
3.9 Acknowledgments . 69

Chapter 4 Conclusion . 70
4.1 Summary of this Dissertation . 70
4.2 Lessons Learned . 71

Bibliography . 73

v

LIST OF FIGURES

Figure 2.1. Two real-world bugs underlying unused definitions detected by VAL-
UECHECK with severe consequences like security issues and configuration
bugs. Both bugs cross the author scope. 8

Figure 2.2. Overview of VALUECHECK. VALUECHECK consists of cross-scope
unused definition detection, false positive pruning, and familiarity ranking. 14

Figure 2.3. An Example of Define Set. The first definition of v is overwritten by other
developers on all the successor paths. 17

Figure 2.4. Cross-Scope Unused Definition Detection. 18

Figure 2.5. Example of Cursors. 21

Figure 2.6. Examples of New Bugs Detected by VALUECHECK. 27

Figure 2.7. Bug Categorized by Component Distribution, Security Severity and
Days before Detected. All evaluated software undergo thorough test-
ing. Despite this, VALUECHECK uncovers high-severity bugs in critical
components that have previously gone undetected for a long time. 28

Figure 2.8. A bug detected by VALUECHECK but not detected by fb-infer, Smatch-
unused and Coverity-unused. The developer forgot to handle the return
error status from get permset, which would cause access control error if
the acl entry is invalid. 34

Figure 2.9. Precision of bug detection with different cutoffs after familarity rank-
ing. VALUECHECK has a precision of 97.5% when reporting the top 10
detected unused definitions with the lowest familiarity from each applica-
tions. 35

Figure 3.1. Overview of FENCEHOPPER. FENCEHOPPER mutates the client-side code
to bypass client-side checks to detect if such checks are missed by servers—a
common overlook by developers due to false sense of security from client-side
checks. 42

Figure 3.2. Overall Workflow of FENCEHOPPER. 44

Figure 3.3. Identify and Mutate Security Checks. 46

Figure 3.4. Identify Intra and Inter-Procedural Security Checks. Functions in heavy solid
line boxes are extracted directly from the stack traces, which are the ‘stem’ of
our analysis. We expand the relevant function set by checking the callees of these
functions, which are in the dotted line boxes. 47

vi

Figure 3.5. Vulnerability Categories. 55

Figure 3.6. FENCEHOPPER Supplements Existing Tools. It complements the vulnerability
category of ‘missing server-side checks’. The bugs detected by FENCEHOPPER

are non-trivial and orthogonal to other vulnerabilities in this category such as
cross-site scripting (XSS) and SQL injection. 57

Figure 3.7. Impact of Threshold Changes on Bug Detection and False Positive
Rates. 60

Figure 3.8. Email Verification Code Bypass. The verification code sent to email can be
bypassed by mutating client-side code and fill in attacker’s email address in
missing data objects. Name and UI of the victim website is anonymized. 64

vii

LIST OF TABLES

Table 2.1. Meaning of notations in the algorithms (Figure 2.4). 16

Table 2.2. Summary of pruning patterns in VALUECHECK. 20

Table 2.3. The number of bugs newly detected by VALUECHECK. Among the 210
bugs detected, 154 bugs are confirmed by developers. 25

Table 2.4. Bug examples detected by VALUECHECK. Generally, VALUECHECK

detects two categories of bugs: missing check bugs and semantic bugs. Of
154 bugs confirmed, 134 are missing check bugs, 20 are semantic bugs. . . . 26

Table 2.5. Pruning breakdown and sampled false negative rate in VALUECHECK.
The false negative rate of pruning is less than 10% based on sampling with
95% confidence. 28

Table 2.6. Unused Definition Bugs Detected by Clang, Infer, Smatch, Coverity and
VALUECHECK. VALUECHECK in total detects more bugs with lower false
positives than other tools. *Report errors during analysis. 33

Table 2.7. Effect of authorship and the DOK model in VALUECHECK. VAL-
UECHECK detects a higher total number of bugs compared to other groups.
. 34

Table 2.8. Scalability of VALUECHECK. 36

Table 3.1. Missing server-side check vulnerabilities affect billions of users in popular
websites. 40

Table 3.2. Branches on the Client Side of Popular Websites. 44

Table 3.3. Comparison to Other Tools. FENCEHOPPER detects vulnerabilities that
other state-of-the-art tools fail to detect. 57

Table 3.4. Effectiveness of Missing Data Fix in FENCEHOPPER. Missing data fix
enables detection of 9 additional vulnerabilities. 59

Table 3.5. 14 existing missing server-side check vulnerabilities. FENCEHOPPER

detects 10 but misses 4 vulnerabilities (in gray cells). 61

viii

ACKNOWLEDGEMENTS

First, I express my sincere gratitude to my advisor, Professor Yuanyuan (YY) Zhou, for

her support throughout my whole PhD study and research. It is not possible for me to complete

this hard journey without YY’s insightful guidance and inspiring suggestions. YY showed me

the real essence of science and always pushed me to think deeper, try bravely, and pursue what I

truly believed in. The guidance is not only in research but also in life. YY also taught me great

lessons to confront the hardships in life and always be tough and resilient. Her spirit encourages

me to continue in this field as a minority and keep fighting. She is my role model and will always

be! Thank you, YY! It is really my luck to become your student and get the chance to work with

you!

I would like to thank Professor Geoffrey M. Voelker. Geoff organizes SysLunch and

CSE294, which brings me a window to the most state-of-the-art system research. Every time I

turn to him for questions, he always gives generous help and suggestions! The SysNet hiking

and end-of-year celebration organized by Geoff are among my most interesting memories in

UCSD SysNet.

I would also like to thank my thesis committee members, Professor Aaron Schulman,

Professor Amy Ousterhout, Professor Xinyu Zhang, and Professor Geoffrey M. Voelker, for

always being supportive. They give me a lot of help in scheduling each presentation and provide

insightful feedback on this dissertation.

I was very lucky to have the chance to work with my academic brothers, Chengcheng

Xiang, Bingyu Shen, Haochen Huang, and Eric Mugnier. They showed a great example to me of

how to drive a research project and provided many hands-on experiences. They keep helping me

to revise my research draft even after graduation. It is lucky to have you all on my journey.

I would like to thank Cindy Moore, who provided experimental data for my past projects.

Her experience as a real sysadmin provides important insights into our research. Thank Bokai

Zhang who helped me conduct the experiments in my second project with high quality.

I would also like to thank all the faculties, staff, and students in the SysNet group and

ix

the whole CSE department. In this place, I learned the dedication to research and the inspiring

attitude to life and work. Thanks to Junda Chen, Julie Conner, Tierra Terell, Tyler Potyondy,

Vector Li, Shelby Thomas, Stewart Grant, Lixiang Ao, Nishant Bhaskar, Alex Liu, Zesen Zhang,

Alisha Ukani, Han Zhao, Tianyi Shan, Mingyao Shen, Yudong Wu for their help during my stay

in this department.

I learned a lot during my internships at Google working with Snehasish Kumar and

Sotiris Apostolakis, at Meta working with Hongtao Yu, Wenlei He, and Lei Wang, and at Apple

working with Cecile Foret and Zheng Li. They gave me the best guidance in industry projects

and helped me gain valuable experience. This invaluable experience gave me more insight into

what problems the industry focuses on. I would also thank my friends Xinyu Tang, Huiqi Ni, Yu

Pei, Yuanhang Zhang, Wuyue Lu, Lianke Qin, and other people that help me along the road.

Last but not least, I must thank my family. My PhD study went through the unprecedented

global pandemic and international travel restrictions. For many years, I became ‘the mysterious

family member in the US that nobody knows what she is doing’. But their remote care and love

never stopped. I am also deeply thankful to my boyfriend, Zilong Wang, whose warm hugs and

emotional support are always there whenever I need. I can never overstate my gratitude to him.

Chapter 2, in full, are reprints of the material as it appears in Proceedings of the Nineteenth

European Conference on Computer Systems (EuroSys’24). Zhong, Li; Xiang, Chengcheng;

Huang, Haochen; Shen, Bingyu; Mugnier, Eric; Zhou, Yuanyuan. The dissertation author was

the primary investigator and author of this paper. Chapter 3, in full, are reprints of the material

under submission. Zhong, Li; Zhang, Bokai; Zhou, Yuanyuan. The dissertation author was the

primary investigator and author of this paper.

x

VITA

2015-2019 Bachelor of Engineering, University of Science and Technology of China

2024 M.S. in Computer Science, University of California San Diego

2024 Ph.D. in Computer Science, University of California San Diego

PUBLICATIONS

“Effective Bug Detection with Unused Definitions”. Li Zhong, Chengcheng Xiang, Haochen
Huang, Bingyu Shen, Eric Mugnier, Yuanyuan Zhou. In Nineteenth European Conference on
Computer Systems (EuroSys ’24), April 22–25, 2024.

“Don’t Trust Your Code! Detect Vulnerabilities by Client-Side Code Mutation in Web Services”.
Li Zhong, Bokai Zhang, Yuanyuan Zhou. Under submission.

“PYLIVE: On-the-Fly Code Change for Python-based Online Services”. Haochen Huang*,
Chengcheng Xiang* (co-first), Li Zhong, Yuanyuan Zhou. 2021 USENIX Annual Technical
Conference (ATC’21), July 2021.

“Protecting Data Integrity of Web Applications with Database Constraints Inferred from Applica-
tion Code”. Haochen Huang, Bingyu Shen, Li Zhong, Yuanyuan Zhou. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023.

xi

ABSTRACT OF THE DISSERTATION

Detecting Bugs and Security Issues by Identifying Developers’ Blind Spots

by

Li Zhong

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Yuanyuan Zhou, Chair

Bugs and security issues are primary concerns for software developers. Existing research

has continuously focused on addressing these problems. However, the evolution of software

engineering leads to increasingly complex software systems that are more susceptible to bugs.

The rise of third-party services, cross-vendor libraries, and collaborative development introduces

significant challenges for developers, making it difficult for them to have a comprehensive

understanding of the entire codebase. Under the pressure of agile development timelines,

developers often work with incomplete knowledge, leading to potential blind spots in software

development. These blind spots can result in developers being unaware of certain constraints or

security implications imposed by other components or authors, causing serious issues in access

xii

control, memory management, I/O operations, and business logic.

This dissertation investigates two aspects of these challenges. The first aspect focuses on

cross-authorship blind spots. This part of the study identifies a specific pattern of bug-proneness,

namely cross-authorship unused definitions. To address this, we introduce syntactic and semantic

patterns that help identify such issues while filtering out false positives. Additionally, to accom-

modate the time pressures faced by developers, we use a code familiarity model to prioritize

bug validation. Our implementation, named VALUECHECK, has been evaluated on large-scale

systems including Linux, MySQL, OpenSSL, and NFS-ganesha, successfully detecting 210

unknown bugs, with 154 confirmed. In comparisons with the state-of-the-art tools like Infer and

Coverity, VALUECHECK demonstrates greater effectiveness and lower false positive rates.

The second part studies cross-component blind spots. It focuses on blind spots in web

applications with a client-server architecture, where client-side code is exposed. Relying solely

on client-side security checks for authorization, identity verification, and user input validation is

insufficient due to potential user manipulation. To address this, we propose a novel technique

that enhances existing methods by altering client-side code to assess server-side security. This

approach improves testing efficiency and detects complex vulnerabilities related to business

logic, token-based defenses, and data preprocessing. Our testing tool, FENCEHOPPER, identified

48 vulnerabilities in the top 300 websites from the Tranco dataset, including critical access

control flaws affecting over 20 million user accounts.

xiii

Chapter 1

Introduction

1.1 Motivation

Bugs and security issues have posed significant challenges for developers since the

invention of computer programs [32]. Researchers and practitioners have been actively addressing

this issue through extensive research on bug detection methods using program analysis and testing.

Also, industry companies contribute a range of bug detection tools [8, 4, 7, 158, 130] to eliminate

this problem, as bugs and security issues could cause potential financial loss in production

services. However, despite ongoing efforts, the battle against bugs and security issues persists

and grows more complex with the development of software engineering.

Several factors contribute to this complexity. Firstly, the evolving landscape of software

development practices, particularly the prevalence of collaborative development in open-source

communities and industry settings [24], presents both benefits and challenges. While collabora-

tive development enhances software delivery efficiency, it also introduces risks as developers may

interact with code from other authors without full comprehension [38]. Additionally, reliance on

third-party services offering abstract APIs without detailed implementation information further

compounds the challenge [21].

Traditional software development practices, characterized by formal documentation, ex-

tensive communication, and pre-development discussions [22], have evolved with methodologies

like agile development, where shorter project timelines and changing requirements prevail, lead-

1

ing to compressed documentation efforts [95]. High turnover rate becomes a norm in software

industry. In a study conducted in 2015, they found that over half of the studied project have

at least 30% turnover rate per year, even in popular open-source projects like Angular.JS [44].

According to the 2021 Bureau of Labor statistics report [5], the average turnover rate of a

software developers is 57.3%. Under the high turnover rate, it is hard to guarantee the sharing of

developers’ knowledge due to large number of newcomers and leaving members [111].

Besides, due to the abundance of open source projects and the popularity of cloud

computing and SaaS, developers are using many external APIs written by other developers or

by third-parties [171]. Under time pressure, developers may not be able to fully understand the

usage of external APIs, so they reuse code from online forums and tutorial examples, which

however cause bugs in their programs without their awareness [178, 166]. As reported in 2021,

90% of businesses experienced API security vulnerabilities in 2020 [6].

Under these new practices, developers often encounter blind spots, areas within the

software where their understanding is limited or incomplete, yet they must deliver code under

development pressures [55]. For example, they may not be familiar with external APIs [135],

or code and components written by other developers [114]. But still, due to the requirements

of agile development, they need to take action and deliver code even with blind spots in their

mind. If we resemble the process of software development as car driving, then the developers

are drivers in each car. They control their car, namely, the code they are responsible for. But they

may not be clear about what other developers are doing, like a driver cannot see some direction –

we call the missing piece of developers’ knowledge as blind spots in software development.

Bugs and security issues are often introduced due to developers’ blind spots. In 2020,

Zoom was found to use a substandard encryption API in its implementation due to the developer’s

insufficient knowledge of encryption APIs [40]. In 2023, hackers found security vulnerabilities

in Facebook Instant Games when this feature interacted with Facebook authentication [106].

Even within the same organization, since developers on the game module have blind spots on the

other component, the authentication APIs. They introduce security holes into the software.

2

While the definition of blind spots is clear, how to effectively apply knowledge of blind

spots remains a problem. Existing works has been proposed to detect bugs and vulnerabili-

ties [183, 150] with formal method [87, 36, 152], static analysis [93, 172, 88, 23, 69, 185, 184]

and automatic testing [83, 139, 151]. Some work directly infer rules from source code and picks

up deviant outliers, which could be potential bugs [159, 100, 180, 94, 41, 70, 175]. Compared to

them, this thesis is the first one to introduce the concept of ‘blind spot’, which shows a different

aspect of software bugs and vulnerabilities from the view of software creators.

To categorize, blind spots happen in two categories:

• Cross-author blind spots. The developers work on the same piece of software but due to

a lack of communication or knowledge sharing, they may not know clearly about other

developers’ intentions of writing some code snippets, even if they need to modify those

code snippets.

• Cross-component blind spots. In this category, developers work on different parts of the

software, which may require different skill sets or domain knowledge and cause blind

spots in other developers’ work. However, the different components of the system need to

have consistent design or security requirements, which cause bugs in the blind spots.

Although the code under blind spots has a high possibility of being bugs, blind spots are

not equivalent to bugs. There are several challenges to detecting real bugs from developers’ blind

spots: (1) How to pick up the potential bug candidates from the blind spots caused by cross-

developer collaboration? Developers collaborate widely across the software. It’s impossible to

mark all of these code snippets as bugs. (2) How to help developers be aware of their blind spots

in other components? It’s unreasonable to blame developers for not understanding thoroughly

code they don’t have ownership of. However, they need to know the missing pieces in their

code that are caused by cross-component blind spots. Therefore, it is demanding to develop

bug detection tools that can help resolve these challenges and identify bugs, including catching

signs of bugs like special code patterns that indicate potential problems from developers’ blind

3

spots, and automatically extracting important information like security assumptions from other

components and report the potential violations to developers.

1.2 Contribution

This dissertation presents the corresponding methods of tackling blind spots to help

developers detect software bugs and security issues. First, we study a special type of bug pattern

that goes unnoticed in existing program analysis and testing research, cross-authorship unused

definitions. This pattern happens when developers work on code that interacts with code written

by other developers, while they might not fully understand other developers’ code. As a typical

example of cross-authorship blind spots, it could indicate non-trivial bugs like security issues

or data corruption, which calls for more attention from developers. Although there are existing

techniques to detect unused definitions, it is still challenging to detect critical bugs from unused

definitions because only a small proportion of unused definitions are real bugs. We present

VALUECHECK to detect this specific pattern based on authorship analysis and code familiarity

ranking, which helps to detect bugs from cross-authorship blind spots.

Second, the architecture of the software itself could internally bring blind spots, which

we call cross-component blind spots. This problem happens when end-to-end testing cannot

guarantee the security of each component and validate the coordination between components.

We study a typical representative, the web application, which is a special type of client-server

application that sends its client source code to the users for local execution. Due to the client-

server architecture, web developers should enforce the security checks on the server side to avoid

missing server-side check vulnerabilities, which could be cross-component blind spots. We

propose a method to detect missing server-side checks by client-side code mutation. It provides

several advantages over the existing bypass testing solutions and allows automatic detection of

more complicated vulnerabilities that contain business logic constraints, token-based defense,

and data preprocessing.

4

Thesis Statement: By automatically capturing cross-author and cross-component blind

spots of developers, we can provide tooling support for developers to detect bugs and security

vulnerabilities.

1.3 VALUECHECK: Effective Bug Detection with Unused
Definitions

Chapter 2 delves into the concept of unused definitions, which are values assigned to

variables but never utilized in the code. Traditionally regarded as inconsequential, these unused

definitions have been treated as minor issues, often overlooked by developers. However, this

chapter sheds light on a reevaluation of their significance, revealing that certain instances of

unused definitions could signal more serious issues such as security vulnerabilities or data

corruption, demanding heightened attention from developers.

While existing techniques exist to identify unused definitions, discerning critical bugs

from this pool remains a challenge due to the overwhelming majority being benign. To address

this, the chapter introduces VALUECHECK, a static analysis framework designed to tackle this

problem. Firstly, it identifies that unused definitions situated at the periphery of developers’

interactions often indicate bugs. Secondly, it outlines syntactic and semantic patterns where

unused definitions are intentionally placed, thereby excluding them from bug consideration.

Finally, it employs code familiarity metrics borrowed from software engineering to prioritize

detected bugs, aiding developers in focusing their attention effectively.

The efficacy of VALUECHECK is evaluated across various large-scale system software and

libraries, including Linux, MySQL, OpenSSL, and NFS-ganesha. Impressively, VALUECHECK

uncovers 210 previously unknown bugs within these applications, with 154 bugs being confirmed

by developers. Notably, compared to existing tools, VALUECHECK demonstrates a marked

ability to detect bugs with minimal false positives, highlighting its effectiveness in enhancing

software quality.

5

1.4 FENCEHOPPER: Detect Vulnerabilities by Client-Side
Code Mutation

In Chapter 3, we delve into the unique dynamics of web applications, particularly their

client-server architecture, where the client’s source code is sent to users for local execution.

Given this setup, web developers must fortify security measures on the server side to prevent

vulnerabilities stemming from inadequate server-side checks. While existing literature primarily

addresses server vulnerabilities through techniques like request forgery detection, these methods,

while effective for straightforward web services, fall short in identifying bugs in complex

web applications, even with client-side code analysis. The limitations lie in their lack of

awareness regarding parameter semantics, interactions with third-party services, and business

logic constraints, leaving the industry to rely on white hat hackers for detecting missing server-

side checks.

In response to these challenges, this chapter introduces a novel approach capitalizing

on the distinctive nature of client-side code. Recognizing that client-side code is both accessi-

ble and modifiable by users, and is executed locally, the paper proposes a method to identify

missing server-side checks through client-side code mutation. This approach offers several

advantages over existing bypass testing solutions, enabling automatic detection of more intri-

cate vulnerabilities encompassing business logic constraints, token-based defense, and data

preprocessing.

To showcase the effectiveness of this technique, a testing framework named FENCEHOP-

PER is implemented. This framework minimizes human effort and security expertise requirements

while delivering robust testing capabilities. Evaluation conducted on the login and signup pages

of the top 300 websites from the Tranco dataset demonstrates the efficacy of FENCEHOPPER,

successfully uncovering 48 missing server-side check vulnerabilities, including critical access

control vulnerabilities that could compromise the security of over 20 million user accounts.

6

Chapter 2

VALUECHECK: Effective Bug Detection
with Unused Definitions

2.1 Motivation

Unused definitions have been long regarded as redundant code in C/C++ programs. To

be specific, a definition of variable v in programs refers to an occurrence of v on the left-hand

side of an assignment statement, and a use indicates an occurrence of v on the right-hand side. If

a variable is assigned with a value but the value is not used, that is an unused definition. Since

unused definitions do not directly cause severe consequences, they are mostly regarded as bad

code practices that do not require much attention. However, unused definitions could indicate

deeper problems. When developers write an assignment, intuitively they should use that value

from the assignment somewhere afterward. When the value assigned is not used, it violates this

intuition, thus reflecting the inconsistency of developers’ behavior [48, 15].

Unused definitions could reveal underlying critical bugs. Figure 2.1 gives two real-world

examples from a widely-used open-source software, NFS-ganesha [9]. In the first example from

Figure 2.1a, attr is assigned with the return value of next attr from bitmap. However, this

definition is soon overwritten and not used. This skips the first attribute of the source bitmap

list without copying it to the destination bitmap list, causing a severe problem — important file

attributes such as ownership are not copied properly to the destination bitmap, which is a security

issue that can further lead to privilege escalation. Another example in Figure 2.1b shows a bug

7

where the function argument bufsz in function logfile mod open is unused and overwritten,

which is an implicit unused definition. The unused definition serves as a symptom indicating the

code possibly contains a problem — In this example, bufsz originates from the configuration

value ‘logging buffer size’. If developers set the logging buffer size to zero, they would expect

logs to be output immediately. However, since the value is subsequently overwritten with 1400

within the function, the configuration has no effect. The actual access log buffer size is set to

1400 regardless of how the developer set it, resulting in unexpected memory consumption and

wrong buffering behaviors.

int bitmap4_to_attrmask_t(bitmap4 *bm, attrmask_t
*mask)
{
 int attr = next_attr_from_bitmap(bm); [Author1]
 ...
 for (attr = next_attr_from_bitmap(bm) [Author2];
 attr != -1; attr = next_attr_from_bitmap(bm))
 {...}
}

This definition is unused

(a) A Severe Bug Underlying Unused Definitions. Function bitmap4 to attrmask t() converts
NFSv4 attributes mask to the FSAL attribute mask. However, the first attribute returned by

next attr from bitmap() is unused and overwritten by another definition.Thus the first attribute
doesn’t get copied to the FSAL attribute mask, which can result in security issues related to file

permissions.

headerslog = log_mod_open("headers.log", 0); [Author1]

int logfile_mod_open(char *path, size_t bufsz)[Author2]
{ // implicit: bufsz = 0
 bufsz = 1400; [Author2]
 if (bufsz > 0) {...}
}

This definition is unused

(b) A Configuration Bug Underlying Unused Definitions. The developer of logfile mod open does
not use value of bufsz but directly overwrite it with 1400, thus the value 0 assigned to bufsz is unused.

This bug causes unexpected memory consumption and wrong buffering behaviors.

Figure 2.1. Two real-world bugs underlying unused definitions detected by VALUECHECK with
severe consequences like security issues and configuration bugs. Both bugs cross the author scope.

It is challenging to detect these bugs from unused definitions, although existing tools can

detect unused definitions:

8

(1) Existing techniques only detect which definitions are unused but do not differentiate

non-trivial bugs from simply redundant code. This is critical because non-trivial bugs require

developers to diagnose more carefully than simply removing the redundant code. Without

differentiation, detecting bugs from a large number of unused definitions will be impractical.

Besides, existing techniques fail to detect unused definitions precisely and miss unused definitions

that could be bugs. (2) Existing techniques do not consider the semantics of unused definitions.

Some of the unused definitions could still express special meanings in the programs. They are

written by developers intentionally and thus are not bug indications. (3) Existing techniques

provide no priority ranking of the detected unused definitions. Since unused definitions are not

directly the root cause of a bug but just bug indications, developers could spend more effort but

detect fewer bugs without a way to distill bugs. As a result, existing tools report hundreds of

unused definitions from a project with high false positives, which requires overwhelming effort

from developers to check. We observe that a subset of developers choose to disable unused

definition warnings in compilers. In the top 40 GitHub C++ repositories with the most stars,

nearly half of them do not use these options in their default compiler configurations1. In search

results of ’gcc unused’ from StackOverflow [13], the largest online community for developers,

the top-voted question looks for suggestions on how to silence unused definitions warnings.

In this paper, we design an effective and practical approach to detect, distill, and rank real

bugs from a large number of unused definition candidates. Our approach addresses the above

challenges based on three insights.

First, we make a unique observation that the unused definitions caused by code written

by multiple developers, which we call cross-scope unused definitions in this paper, are more

bug-prone. We randomly sample 42 unused definitions bugs from the history commits of 4 open

source projects from 2019-2021 (c.f. § 2.3.1) and observe that majority of these bugs involve

code written by two developers. The definition is written by one developer but is ignored/over-

1We collect this data on April 9, 2022. We regard compilation configuration with ‘-Wall’, ‘-Wunused-but-set-
variable’, ’-Wunused-value’ but without ’-Wno-unused-*’ options as detecting unused definitions.

9

written by another developer. We show two examples of such unused definitions. In Figure 2.1a,

attr is written by author Author1 but the definition is overwritten by author Author2. In

Figure 2.1b, the function call is written by author Author1 but the function is implemented by

author Author2, overwriting the value provided by Author1. The data flow from definitions to

uses in programs embeds the assumptions of developers on the programs. However, this implicit

knowledge sometimes cannot be fully shared due to the lack of documentation and communi-

cation. Therefore, the unused definition on the boundary potentially indicates inconsistency

between developers and a higher chance of being bugs. We take advantage of this observation to

distill bug-prone unused definitions.

Second, we summarize several patterns of unused definitions that are intentionally written

by developers in programs. We observe that not all unused definitions are redundant code in

programs, some of which have semantics like moving a cursor or are intentionally written to

keep compatibility. This kind of unused definition is not a true bug. Also, by mining the use

pattern of definitions in similar contexts, which we call peer definitions in this paper, we can

avoid reporting unused definitions that are not necessarily used. For example, return values of

printf() usually require no checks and get ignored but do not harm. With these summarized

patterns, we prune thousands of irrelevant unused definitions for detecting bugs, requiring no

additional input from developers.

Third, we make the first attempt to apply code familiarity models in bug detection to

prioritize the unused definitions that have a higher chance of being bugs. Since unused definitions

are not directly linked to bug root causes but just indications of potential bugs, the false positive

rate would be an internal drawback when applying them to detect bugs. Therefore, we hope to

figure out a way to maximize the output with low developer efforts. The intuition behind the

ranking algorithm is that unused definitions reflect the inconsistency in developers’ coordination.

A developer with lower expertise/familiarity with code may easily ignore the assumption and

intercept the original data flow [37]. Research on code familiarity and expertise are applied to

guide defect prediction and expert recommendation, etc. [104, 145, 47]. Existing code familiarity

10

models take authorship [104], commit history [145], and other code editing activities [47]

as metrics, which are obtainable from version control systems [72, 140]. However, few bug

detection tools ever take advantage of these explorations from the software engineering field. We

propose to prioritize code review on unused definitions that have a higher chance of bugs [27]

with code familiarity models, instead of requiring the developers to check all of them under time

pressure.

We implement a static analysis framework VALUECHECK based on these insights, which

detects cross-scope unused definitions, prunes false positives considering the semantics and

developers’ intention, then applies the code familiarity model to rank and prioritize detected

unused definitions. The analysis is flow-sensitive, field-sensitive, alias-aware, and involves

inter-procedural authorship analysis. We evaluate VALUECHECK with four systems and libraries:

Linux, MySQL, OpenSSL, and NFS-ganesha. VALUECHECK helps detect 210 new bugs, among

which 154 are confirmed and fixed by developers, with a false positive rate of 26%. Compared

to existing tools, VALUECHECK demonstrates that it can practically help developers in detecting

real bugs from unused definitions.

2.2 Background

2.2.1 Liveness Analysis

In this paper, we adopt the terminology defined in [16] to describe our algorithm.

Definition and Use. A definition of variable v in programs refers to an occurrence of

v on the left-hand-side of an assignment statement2. A use indicates an occurrence of v on the

right-hand-side.

Live Variable. A live variable is a variable that is assigned a value that is used in the

future.

Liveness Analysis. Liveness analysis is a type of def-use analysis that identify whether a

2This is different from C++ concept of ‘definition’ where a definition provides a unique description of an entity.

11

variable is live at certain points. It is a backward data flow analysis. It computes a live variable

set from successors of this point and checks whether the variable has a use in this live variable

set. If not, the variable is an unused definition. To formalize it as a dataflow problem, for each

statement node n, gen[n] is the set of variables used in n. kill[n] is the variable defined in n. in[n]

and out[n] are the live variable set before and after n. It has:

in[n] = out[n]− kill[n]∪gen[n]

out[n] =
⋃

s∈succ(n)

in[s]

By computing the in[n] and out[n] iteratively based on the worklist algorithm, these sets will

converge to a fixed point.

2.2.2 Unused Definitions

Detecting unused definitions has been regarded as compiler optimization [76, 73, 34,

144] for a long time and is extensively discussed in topics of dead variables [85, 167, 58,

30] and liveness analysis [132, 109]. This kind of optimization is even merged into modern

compilers [115, 86]. The technique of detecting unused definitions is fully developed and merged

into mainstream compilers [11, 1] to eliminate redundant computation in the generated assembly

code and release the allocated registers. Besides, compilers also provide warning options at the

source code level like ‘-Wunused-value’, ‘-Wunused-variable’, ‘-Wunused-but-set-parameter’,

etc. In this paper, we do not regard them as useless code that needs to be removed but as ‘useful

symptoms’ that indicate bugs.

2.3 Design Overview

2.3.1 Detection Scope

Detecting critical bugs from a large number of unused definitions is non-trivial. To

achieve this, we make a unique observation that unused definitions involving multiple developers

12

are likely to be bugs. Therefore, we define the concept cross-scope unused definitions to help us

pinpoint bugs, which includes the following scenarios: (1) Ignored/unused return value, where

the developer that implements this function is different from the developer call this function. (2)

Overwritten function argument value, where inside the function the argument value is overwritten

but the function call is invoked by another developer. (3) Overwritten definitions, where the

code of the old definition is written by one developer, and the code overwrites the old definition

is implemented by other developers on all successor paths of the overwritten definition. The

common characteristic of them is that the value of the definition is generated by one developer,

but ignored/overwritten by another developer, causing an unused definition in the code. In all

these scenarios, we only consider local variables in a function. Therefore, we do not consider

concurrent access to shared variables since shared variables are global variables.

Our design is inspired by a preliminary experiment on collecting existing bugs related to

cross-function definitions: We implement original liveness analysis and apply it to the snapshots

of MySQL, NFS-ganesha, OpenSSL, and Linux on the first commit of 2019 and 2021 separately.

We collect unused definitions that were present in the 2019 version but were subsequently

removed in the 2021 version. If a bug fix commit removes this unused definition, we investigate

how this bug relates to the unused definitions. We identified a total of 325 unused definitions

through differential comparison. To investigate their impact on bugs, we randomly selected 60

of these unused definitions by assigning them serial numbers and generating random numbers

between 1-325. We manually checked the commit messages to ensure that the developers had

addressed these unused definitions as part of the bug fixes, and we found 42 bug-related unused

definitions. Notably, 39 out of the 42 instances crossed author scopes, indicating that these

defects were located at the boundaries of developers’ interaction. Building on this insight, we

focused our attention on detecting cross-scope unused definitions in VALUECHECK and explored

their effectiveness in detecting bugs.

13

§4.1: Detect Local Unused Definitions

a : unused definition candidates for bug detection. is pruned later.b b

SVF

LLVM Bitcode

Liveness Analysis

a=1000

b == 1

a = 20

b = bar(b)

return a

int foo(int a, int b)

{a}

{a,b}

{b}

{a,b}

{a,b}

{b}

a

Value Flow
Graph

Pointer
Analysis Graph

int foo(int a, int b)

a foo(1, true) Author B

Author A

b int bar(int x) Author C

b = bar(b) Author A

int foo(int a,int b)
{
 a = 1000;
 if(b == 1)
 a = 20;

b = bar(b);
 return a;
}

Author A

foo(1, true);

int bar(int x) {
 return ret;
}

a

b

§4.2: Authorship Lookup

Author C

Author B

prune b

§6: Familarity Ranking

int foo(int a, int b)

DOK = �0
 + ��� ∗ FA
 + ��� ∗ DL
 − ��� ∗ ��(1 + AC)

Git
History

FA DL AC

0.64 1.390.37Familiarity:

§5: False Positive Pruning

Configuration
Dependency

Unused
Hints Cursor Peer Definition

Pruning

b

Figure 2.2. Overview of VALUECHECK. VALUECHECK consists of cross-scope unused definition
detection, false positive pruning, and familiarity ranking.

2.3.2 Framework Overview

VALUECHECK detects cross-scope unused definitions in source code, prunes the false

positives, and then ranks them by code familiarity to help detect bugs. Its workflow is shown in

Figure 2.2. The generated ranked unused definitions can be checked by developers with given

ranking as priority. VALUECHECK faces three unique challenges to achieve its goal:

(1) How to completely and precisely detect cross-scope unused definitions in all

scenarios? (Section 2.4) To overcome this challenge, we performed a more precise analysis to

achieve better coverage than the state of art compilers [11, 1]). First, we conduct flow-sensitive

liveness analysis to achieve a higher precision; Second, we propose a inter-procedural authorship

analysis to identify cross-scope unused definitions which have constraints on the authorship

of relevant code snippets within and across different functions; Third, we extend the detection

scope to unused definitions of field variables (a field in a struct or class) by extending the

detection algorithm of local unused definitions to be field-sensitive. Besides, we take advantage

of the existing pointer analysis and def-use analysis framework to precisely obtain value flow

information in the analysis.

(2) How to prune false positives from the large number of detected unused defini-

tions? (Section 2.5) The main issue with existing solutions is the high false positive rate. This

14

places a heavy burden on developers to manually check them to detect underlying non-trivial

bugs. Therefore, VALUECHECK needs effective approaches to prune false positives that are

misreported by the analysis. We propose pruning approaches which trims false positives that

have special meanings in the program, or are intentionally written by developers. The pruning

requires no additional annotations from developers.

(3) How to rank up unused definitions that are more likely to be bugs? (Section 2.6)

To reduce the effort from developers, VALUECHECK adopts code familiarity models to rank the

detected unused definitions. Our intuition is that for the cross-scope unused definitions, one of

the developers introduces unused definitions into the code because they are not fully aware of

the data flow in the program they touch. Therefore, for the developers with low familiarity, we

rank the unused definitions introduced by them with high priority.

2.4 Detecting Cross-Scope Unused Definitions

2.4.1 Detect Local Unused Definitions

Liveness Analysis. Existing detection of unused definitions in compilers mostly relies on

AST walking, which only reports a definition as unused when the variable is not referenced at all.

However, the order of defines and uses could decide whether a definition is unused, which is

flow-sensitive. Therefore, we detect unused definitions with a flow-sensitive liveness analysis

in VALUECHECK. It conducts analysis on the control flow graph of the function, starts from

the end of the function, traverses each basic block backward and updates the live variable set

based on the memory operations (load and store) on variables. To deal with loops in the function,

we iterate the liveness analysis for several times until it reaches the fix point. The live variable

set only records the existence of a use on the variable and cleans all the uses when traversing a

definition. After the live variable set converges, we check each definitions in this function to see

whether a use of this variable is in the live variable set. If not, we detect an unused definition. In

this way, we can also check at the entry of a function whether a parameter is in the use set. If not,

15

Table 2.1. Meaning of notations in the algorithms (Figure 2.4).

Notation Table

getVar(v) Get variable names of a value
getRetAuthor(F) Get authors of all return statements in function F

checkAuthor(A, List, LiveSet) Check whether A is different from items from
List before adding the unused definition to LiveSet.

updateDef(v, A, DefSet) Update the author of variable v to A in DefSet

getCallSite(F) Get all call sites of function F

getLine(A) Get the source code line of A
reverse() Traverse the basic blocks or instructions reversely

checkAlias()
Check the point-to graph and the value flow graph
for the variable aliases

this parameter value is not used in this function, thus also an unused definition.

Indirect Function Call. In cases where the unused definition is generated by a function call,

VALUECHECK extracts the source code location of the called function to enable querying in the

authorship lookup phase. When handling function pointers, VALUECHECK checks the points-to

set of the pointer to look up the corresponding functions. The pointee functions are treated as

direct function calls in authorship lookup phase. Since VALUECHECK focuses only on local

variables, it does not need to delve into the callees in the analysis phase. Thus, there is no need

for us to handle the recursive calls differently.

Pointer and Alias. To detect indirect access via pointers, we utilize pointer analysis and

examine the point-to graph to determine whether the definition variable is included in the pointer-

to sets of other variables. If the definition is referenced by pointers, it is considered possibly

used through indirect reference and is therefore not marked as an unused definition. We conduct

field-sensitive Andersen’s analysis [17] because its better scalability compared to flow-sensitive

pointer analysis, while providing a small difference in help detecting unused definitions according

to previous work [66]. To handle aliases of variables, we check the value-flow graph generated

based on the point-to graph to see whether this definition is used somewhere else. If it has other

use, this definition is not an unused definition.

16

v = a+b; [author V]
if (...) {
 v = c; [author C]
}
else {
 v = d; [author D]
}
v = e + v; [author E]

v = a + b [author V]

v = c [author C] v = d [author D]

v = e + v [author E]

Live: {e,c} Def: {v:C} Live: {e,d} Def: {v:D}

Live: {e,v} Def: {v:E}

Live: {e,c,d} Def: {v:[C,D]}

v: C!=V && D!=V cross-scope unused definition

∪

Live: {e,v} Def: {v:E}

Figure 2.3. An Example of Define Set. The first definition of v is overwritten by other developers on all
the successor paths.

2.4.2 Authorship Lookup

To decide whether an unused definition is a cross-scope unused definition, VALUECHECK

looks up the authorship information of the unused definitions it detects based on the three

scenarios we discussed in Section 2.3.1:

(1) For the unused return value, we get the author of the call site first, assuming it is

author D. Then we search the source code file of the callee and look up the authorship of the line

that returns this value. However, a function may have multiple locations of returning a value,

of which the authors are B1, B2, B3... In this case, we got all these locations. If author B1, B2,

B3... are all different from D, we regard this as a cross-scope unused definition. If the callee is a

library call not included in this project, we regard the author is different from D.

(2) For the unused function argument, we get the author of the call site, which we assume

17

Figure 2.4. Cross-Scope Unused Definition Detection.

18

is author C, then look up the author B that defines the parameters of function F . If C and B are

different, it is a cross-scope unused definition. If the parameter is overwritten inside the function

F by developer D, we compare D to author C.

(3) To decide whether an unused definition is overwritten by other developers, VAL-

UECHECK needs to record additional information on whether another definition overwrites it in

the successors of this definition. Therefore, we extend the original liveness analysis to maintain

another set define aside from the live variable set. It records the last definition of variables

we traverse and the corresponding authors. The define set follows the same update rule as the

live variable set. We show an example in Figure 2.3. In this example, VALUECHECK reversely

traverses blocks in this function. Whenever there is a definition of variable v, it updates the

author of v in the define set. For every block, it unions the define set of its successors. When an

unused definition is detected, it checks its author against the authors in the define set to decide

whether this is a cross-scope unused definition. Therefore, in this example, the first definition of

v written by author V is a cross-scope unused definition.

Algorithm Details. Table 2.1 and Figure 2.4 show our unused definition detection algorithm.

To handle field-sensitive analysis, we check the value inside getVar(). If this value is loaded

from a field of a struct variable v with offset n, we create a new variable name as the v n to

refer to this field. In this way, we can treat the field definitions similarly to other definitions. In

this unified framework, computeCrossDef() computes the cross-scope unused definitions for

each function. It traverses each basic block reversely. For each load instruction, it adds a use

to the live variable set. For each store instruction, it removes all the use of this variable and if

there is none, it detects an unused definition. In this case, it checks with checkAuthor() to see

whether this is a definition overwritten by other developers or a return value written by other

developers by getRetAuthor(). Besides, it will update DefSet by updateDef(). By iterating

repeatedly on this function, the live variable set and the define set are guaranteed to converge.

The cross-scope unused definitions in this function are reported.

19

Table 2.2. Summary of pruning patterns in VALUECHECK.

Name Code/IR Pattern

Configuration
Dependency

/* Variable host is used when the config USE ICMP is enabled. */
char host[10] = ”127.0.0.1”
#if USE ICMP

n = netdbLookupHost(host);
#endif

Cursor /* The definition expresses the semantic of moving cursor. */
(buf++) = ‘a’;

Unused
Hints

/* The unused definition is marked by developers with aware.*/
int do flush info(const bool force [[maybe unused]]) {...}

Peer Definition
Pruning

/* The unused definition is intentionally ignored by developers. */
printf(”%d\n”, num); // An implicit definition [tmp] = printf()

2.5 Pruning

Not all cross-scope unused definitions are bugs. We observed that there are many cases

where an unused definition is intentionally left in programs. Reporting them as bugs can introduce

a high false positive rate. Based on our observation, we summarize four patterns for pruning as

shown in Table 2.2.

2.5.1 Configuration Dependency

The use statements of some definitions could be controlled by preprocessor directives

(e.g., #if), which may be disabled by the compilation configurations. In this case, static analysis

may regard these definitions as unused because their uses are not compiled into IR. Therefore,

VALUECHECK looks into the corresponding source code of each definition and checks if there is

any use of this definition enclosed by #if, #ifdef, #ifndef and #endif directives in the same

function. If so, we prune this definition.

2.5.2 Cursor

As shown in Figure 2.5, after assigning a value to the memory region that the cursor

o points to in Line 259, the code increments o. This definition serves as program semantics

20

237 static void dashes_to_underscores(...)
238 {
239 char *o = output;
254 if (c == '-')
255 *o++ = '_';
259 *o++ = '\0';
260 } This unused definition is a cursor.

Figure 2.5. Example of Cursors.

“moving cursor” intentionally. Therefore, we regard these unused definitions are not bugs and

prune them to reduce false positives based on the uses of a variable in the value flow graph. If a

variable is incremented repeatedly by the same constant, VALUECHECK considers it as a cursor

and prunes it.

2.5.3 Unused Hints

In some cases, developers keep a definition unused for intended reasons. To hint these

definitions are unused, the developers could add an unused attributes to them. We exclude them

by matching the keyword ’unused’ in the source code of these unused definitions.

2.5.4 Peer Definition Pruning

Sometimes, function calls are guaranteed to be successful or developers just don’t

care whether the call succeeds or not, resulting in the return value being unused. To quantify

how much the developers ‘care about’ using the definition, we look at peer definitions of this

definition. We define peer definitions as (1) For the definition of a function ret = F() return

value, peer definitions of ret are return values of other call sites of F . (2) For nth parameter of

function F , its peer definitions are the nth parameter from functions with the same signatures. If

the occurrences are over ten and over half of the peer definitions are not used, we will not report

it.

21

2.6 Ranking based on Code Familiarity

We adopt the code familiarity model to help developers prioritize their effort in checking

unused definitions that are more likely to be bugs. Even with rigorous pruning strategies, there

are still unused definitions that require checks by developers, which could impose a workload on

developers.

To deal with this, we propose to integrate the code familiarity model into VALUECHECK,

which helps to rank the unused definitions that are more likely to be bugs. Our intuition is

that if the developer is not familiar with a certain snippet of code, he/she is more likely to

cause some inconsistent behaviors in code. To measure the developers’ code familiarity, the

software engineering area has explored the code familiarity models for years. These models

extract the familiarity metrics from the code contribution history to measure the developers’

expertise. VALUECHECK selects one representative work from the code familiarity area, the

degree-of-knowledge (DOK) model [47], to measure code familiarity. The DOK model used in

VALUECHECK is:

DOK = α0 +αFA ∗FA+αDL ∗DL−αAC ∗ ln(1+AC)

With this model, we select the author of each code line and compute this author’s familiarity

with the current file. FA, DL, and AC respectively represent first authorship, the number of

deliveries from a developer, and deliveries to this file that are not authored by this developer. We

count the commit numbers instead of committed lines because it is less resource-intensive and

time-consuming. Based on prior literature [108], there is a strong correlation between commit

numbers and commit line numbers. To obtain the weight in this model, we follow the steps of the

original paper [47] to sample 40 source code lines from each application and ask the developers

to self-rate their code familiarity (from 1-5) on these lines. Then we fit the linear model and get

the weights, which are α0 = 3.1, αFA = 1.2, αDL = 0.2, αAC = 0.5. We apply this linear model

22

in VALUECHECK to compute the code familiarity.

The DOK model is chosen for two reasons. First, the DOK model is the most recent

and representative model of code familiarity. It considers common factors that are mostly

accessible in real-world software development. Second, the DOK model has generality to

different applications. The three factors in DOK model, which are first authorship (FA), deliveries

from a developer (DL), and deliveries to a code element that are not authored by this developer

(AC), are language-independent and obtainable from most open source projects.

2.7 Implementation

Based on the design and techniques presented in Section 2.3, Section 2.4, Section 2.5 and

Section 2.6, we implement the framework VALUECHECK with LLVM-13.0.0 [10], SVF-2.6 [156]

and python. It consists of four components:

Code analysis. The clang compiler compiles the source code into LLVM [86] bitcode. Then

VALUECHECK obtains point-to graph and sparse value flow graph based on SVF [156]. Since

SVF takes a long time to analyze a whole large scale program, we apply VALUECHECK on

separate bitcode files generated by each single program file and only call SVF APIs to generates

value flow graphs and the point-to graphs when we identify unused definitions within this bitcode

file and want to further check aliases and indirect calls. It conducts analysis based on control

flow graphs of each function, and accesses the def-use information of variables based on the

sparse value flow graph and the point-to graph.

Authorship Lookup. This part is implemented in Python. It reads the meta information such as

file names, function names, and line numbers of each unused definition. Then it reads the git

meta files to look up authorship of unused definitions based on GitPython [2]. Then it compares

the authorship and outputs cross-scope unused definitions.

False Positive Pruning. This component consists of two parts in LLVM and Python respectively.

It checks the corresponding source code for each definition to see whether it should be pruned

23

based on the pruning strategies. To match the unused hints and configuration dependency, we

use re [12] library to do regex matching on code. For cursor and peer definition pruning, we

collect all uses of variables and functions by LLVM API getNumUses().

Familiarity Ranking. After pruning, VALUECHECK computes FA, DL, and AC values for

each unused definition by traversing the file commit log in git repositories with GitPython [2].

Lastly, VALUECHECK outputs the unused definition report ranked by code familiarity.

2.8 Evaluation

In the evaluation, we answer the following questions:

1. How effective is VALUECHECK in applying cross-scope unused definitions to help detect

bugs?

2. What is the accuracy of detecting bugs in VALUECHECK?

3. How does VALUECHECK compare with existing tools?

4. What is the contribution of each component in VALUECHECK?

5. How scalable is VALUECHECK on a large code base?

2.8.1 Experiment Setup

Evaluated Applications. We mainly evaluate VALUECHECK with four widely-used open-source

system software and libraries, Linux-5.19, MySQL-8.0.21, OpenSSL-3.0.0, NFS-ganesha-4.46.

These applications are selected with three criteria. First, they are popular real-world system

projects of various types, which reflect how generally VALUECHECK can be applied to real-world

applications. Second, the source code of these applications is well-maintained and tested. The

detected bugs are not from an immature program. Third, these applications have abundant

version histories.

24

Evaluation Environment. All the experiments are conducted on a machine with 3GHz 6-core

Intel i5-9500 CPU, 9216 KB cache, 16GB memory, and a 480GB SSD, which runs Ubuntu

18.04 with kernel 4.15.0. All applications are compiled with -O0 and -fno-inline by clang-12

to retain source-level information. We compile each source object into separate bitcode files

then perform analysis on these individual bitcodes. This helps reduce overhead of SVF from the

inter-procedural analyses but does not affect the detection results since our detection target is

local unused definitions.

2.8.2 Detect New Bugs

Table 2.3. The number of bugs newly detected by VALUECHECK. Among the 210 bugs detected, 154
bugs are confirmed by developers.

Application #Detected Bugs #Confirmed Bugs

Linux 63 44
NFS-ganesha 22 18

MySQL 99 74
OpenSSL 26 18

Total 210 154

Overall Results

VALUECHECK detects 210 new bugs from cross-scope unused definitions in applications,

among which 154 are confirmed by developers. We apply VALUECHECK to the recent versions

of the evaluated applications listed in Section 2.8.1. We report bugs detected by VALUECHECK

to developers and the result is shown in Table 2.3.

Ethics and Responsible Disclosure

We take ethics in the highest standard regarding the new bugs we detect. We report all

the bugs we detect to the developers though their official bug mailing list, clarify the potential

impact of the bugs and help with the patches. We do not reveal the details of the bugs to any

unofficial channels unless they are already fixed. In this paper, we anonymize all developers’

25

Table 2.4. Bug examples detected by VALUECHECK. Generally, VALUECHECK detects two categories
of bugs: missing check bugs and semantic bugs. Of 154 bugs confirmed, 134 are missing check bugs, 20

are semantic bugs.

Bug Type App. Bug Description

Missing
Check (134)

NFS-g Unhandled ACL error
MySQL Missing sanity check
MySQL Unhandled error code

OpenSSL Malloc a negative size
Linux Fail to check device status

Semantic
Bugs (20)

NFS-g Ignore first bitmap attribute
OpenSSL Use the wrong master secret in TLS

names and identifiers and hide irrelevant details of the bug code that could be used to trace the

authors.

Bug Case Study

Table 2.4 shows several bugs we detected with VALUECHECK. These bugs vary in

terms of types and root causes. We categorize them into two types: 1) Missing check bugs —

bugs that fail to check on function return values, parameters, or other variables, as the example

shown in Figure 2.6a. This will make the following execution take the wrong assumption on

completeness of certain operations and even cause corrupted data to be used by the program

silently; 2) Semantic bugs — bugs that break specific program semantics. This will cause no

runtime crash but the logic of the programs is wrong, as shown in Figure 2.6b. Some of them are

hard to detect with existing solutions. For example, for the bug in Figure 2.6a, VALUECHECK

detects latent errors which could cause invisible symptoms and affect further execution but do

not crash the programs immediately, which is hard for developers to detect pre-release by testing.

The error in initializing the recovery mechanism of the page archiver could cause failure in

future execution, which demonstrates the effectiveness of VALUECHECK in detecting real-world

non-trivial bugs.

26

dberr_t Arch_Page_Sys::recover() {
 err = arch_recv.init();
 ... // No reference to err
 err = arch_recv.fill_info(this);
 if (err != DB_SUCCESS) {
 return (DB_OUT_OF_MEMORY);
 }
}

err is unused

(a) A Missing Check Bug Detected by VALUECHECK. The error code returned from init() function is
unchecked, which could result in the crash of page archiver recovery. It is a latent error that will corrupt data and

cause failure in future execution, which is missed by the test suite.

void update_sctx() {
 const char *to_host; ...
 if (!to_host) to_host = ""; [author1]
 sctx->assign_host(to_user_ptr->host.str,
to_user_ptr->host.length); [author2]
 ...
} Need use ‘to_host’ here

(b) A Semantic Bug Detected by VALUECHECK. to host is assigned a value but not used. It should have been
used as the first parameter of assign host(). Otherwise, the incorrect host address could corrupt the security

context sctx.

Figure 2.6. Examples of New Bugs Detected by VALUECHECK.

Bug Categorization

To investigate when the 154 new bugs detected by VALUECHECK arise and how they

affect the applications, we classify them based on their distribution across software components,

security severity, and the number of days it took to detect them. The results are illustrated in

Figure 3.5.

(1) Distribution. 38% of the cross-scope unused definition bugs we detected are related

to file system, and 17% of the bugs are located in security modules such as authentication

modules (Figure 3.5a).

(2) Security Severity. We categorize the severity levels assigned by developers to the

bug reports. In cases that the severity level is not provided, we refer to the corresponding CWE.

As shown in Figure 3.5b, 15% of bugs are of high severity and 59% are of medium severity,

indicating that the bugs detected by VALUECHECK can point to severe security issues like broken

27

access control, data leak, etc.

(3) Days before Detected. From Figure 2.7c, more than 80% of the bugs had persisted

in the code base for over 1000 days before we reported them and get confirmed, indicating a

significant challenge in diagnosing and detecting these bugs. This suggests that VALUECHECK

is effective in detecting long-standing bugs that have gone undetected in the code base.

12%
5%

17%

38%

17%

11%

Network
Memory
Device
FileSystem
Security
Others

(a) Distribution of Bugs

Medium
(59%)

Low
(26%)

High
(15%)

(b) Security Severity

0 100 200 300 400 500 600 700 800 900 1000+
Days

0
50

100

Bu
g

Co
un

t

0 1 1 2 8 6 0 5 4 3

123

(c) Days Before a Bug is Detected

Figure 2.7. Bug Categorized by Component Distribution, Security Severity and Days before
Detected. All evaluated software undergo thorough testing. Despite this, VALUECHECK uncovers

high-severity bugs in critical components that have previously gone undetected for a long time.

2.8.3 Accuracy of VALUECHECK

Table 2.5. Pruning breakdown and sampled false negative rate in VALUECHECK. The false negative
rate of pruning is less than 10% based on sampling with 95% confidence.

App. #Original #Pruned (%Prune Rate) #Detected
After Pruned

% Prune False Negative
(sampled)Config Dependency Cursor Unused Hints Peer Definition Total

Linux 259 1 (0.39%) 22 (8.49%) 46 (17.76%) 127(49.03%) 196 (75.68%) 63 2%
NFS-g 898 7 (0.78%) 7 (0.78%) 839 (93.43%) 23 (2.56%) 876 (97.55%) 22 1%

MySQL 7743 37 (0.48%) 83 (1.07%) 3031 (39.15%) 4493 (58.03%) 7644 (98.72%) 99 3%
OpenSSL 642 18 (2.82%) 74 (11.60%) 322 (50.47%) 202 (31.66%) 616 (96.55%) 26 1%

False Positives

VALUECHECK has a low false positive rate (18%-30%) for detecting bugs if we only

consider the bugs already confirmed by developers. These false positives come from three

sources: (1) 51 false positives are still admitted by developers as minor defects in programs but

not serious bugs. Sometimes the developers do not mark a definition as unused even though

28

they know clearly it is no longer used. When we report them, some developers add the unused

markers to avoid confusing other developers and the markers will help improve code readability.

However, some developers just ignore them. For example, some return error codes are unused

because the developers know the function call will not fail in this context. (2) 5 false positives are

from debugging code and deprecated code but are not included in the release version. We detect

them and report them as bugs since we compile all applications in debug mode and conduct the

analysis on all functions. However, the developers do not put a high priority on these unused

definitions.

False Negatives

We apply VALUECHECK to detect the 39 existing bugs we collect in the preliminary

experiments. VALUECHECK successfully detects 37 existing bugs from them, namely 92.3%

recall. 2 bugs are missed from the detection due to the peer definition pruning, which prunes the

bugs when most of their peer definitions are unchecked.

Prune Rate

To help understand the effectiveness of our pruning strategies, we present the breakdown

of each pruning strategy in Table 2.5. Overall, VALUECHECK’s pruning strategies largely reduce

the number of candidates for detecting bugs. For all the evaluated software, VALUECHECK

prunes between 75.68% to 98.72% of the cases, significantly reducing the burden of developers

in reviewing all the potential bugs. Specifically, the unused hints and peer definition pruning

strategies are found to be the most effective in reducing the number of candidates. For example,

in MySQL, pruning eliminates over 7000 cases, with 98% due to these two pruning strategies.

It’s worth noting that the prune numbers are obtained from the pipeline of pruning as we showed

in Figure 2.2, which means some false positives may match multiple patterns in our pruning but

are pruned by the pruning strategies in the earlier stage. With powerful and aggressive pruning

strategies, VALUECHECK ensures that most of the detected cases are truly unused.

29

False Negatives of Pruning

To further evaluate the precision of the pruning strategy, we sample 100 cases from

the unused definitions that get pruned from each application and compute the sampled false

negatives, as shown in Table 2.5. We sampled pruned cases by assigning serial numbers to the

cases in the order they were detected by VALUECHECK. We generated random numbers within

the serial number range and selected the pruned cases corresponding to these numbers. For each

application, the false negative rate of pruning is less than 10%, which is statistically significant

with 95% confidence. This suggests that the vast majority of cases that were pruned are indeed

false positives. Among 7 false negative cases, 2 are due to the configuration dependency pruning,

for which developers mark the variables with (void) to silent the unused warnings. However,

this is not good practice of dealing with unused definitions. 5 are due to peer definitions pruning.

Despite the potential false negatives, we still regard these pruning strategies as necessary because

they effectively reduce the false positive rate to an acceptable level. According to experience

from [26], developers tolerates false negatives better than false positives.

2.8.4 Comparison with Existing Tools

In this section, we compare VALUECHECK to Clang, fb-infer, Smatch and Coverity on

detecting bugs from unused definitions, as shown in Table 2.6.

Comparison with Clang

We compare VALUECHECK to the compiler Clang. Maintainers of the evaluated applica-

tions periodically clean up code based on Clang warnings as indicated in their commit history.

Therefore, no unused definitions are reported when we compile with the option ‘-Wunused’.

Many unused definitions detected by VALUECHECK but not by Clang is because Clang does

not perform a precise analysis to detect unused definitions but just depends on recursive AST

walking. It follows gcc as the specification and only detects a variable as unused when it never

gets referred to on the right-hand side. Therefore, no bugs newly detected by VALUECHECK are

30

detected by Clang.

Comparison with fb-infer

FB-infer is a static analysis tool from Facebook. It can detect unused definitions that

are referred to as “Dead Store” in its report, which we refer as ‘Infer-unused’. Table 2.6 shows

fb-infer detects fewer bugs than VALUECHECK because they are incomplete in detecting all

types of unused definitions in programs like overwritten/ignored arguments and field unused

definitions. Also, fb-infer has a much higher false positive rate than VALUECHECK. The false

positives come from the following reasons: (1) fb-infer reports many unused definitions that are

not cross-scope. When developers call the function written by themselves, they usually have the

sense of when to use the parameter and the return value and when not. Therefore, they typically

do not confirm unused definitions that are not cross-scope as bugs. (2) Cursor assignments,

which are not excluded from fb-infer results. In our sampling, all the true bugs detected by

fb-infer are also detected by VALUECHECK. VALUECHECK detects more bugs from unused

definitions with a lower false positive rate compared to fb-infer.

Comparison with Smatch

Smatch [4] is a static analysis tool for Linux based on AST. It reports warnings when

bug patterns are matched. It helps kernel developers detect thousands of bugs in kernel [3].

Smatch detects fewer bugs with a higher false positive rate from unused definitions

compared to VALUECHECK. Smatch detects one type of unused definitions: the return value of

a function is unused. We refer the unused definition bugs detected by Smatch as Smatch-unused.

We run Smatch on the evaluated software. However, Smatch-unused reports compilation error on

all applications except Linux. Therefore, we only compare the result of Linux: Smatch-unused

detects 28 real bugs compared to 154 real bugs detected by VALUECHECK, with a false positive

rate of 81%. The bug number is lower and the false positive rate is higher than VALUECHECK

due to two reasons: (1) It only detects unused return values among unused definitions. Besides,

31

due to inlining, some unused return values are inlined as unused assignments, thus are not

detected by Smatch-unused. (2) It conducts analysis based on the AST parser instead of control

flow analysis, so the analysis is not precise and has high false positives.

Comparison with Coverity Scan

Coverity is a static analysis tool that can detect defects in C/C++ projects, which is a

commercial tool. We apply for its basic version Coverity Scan and evaluate it on the four projects.

Coverity Scan two types of unused definition bugs: unused value and unchecked return value

(unused return value is a subset). We call the bugs detected by Coverity Scan from unused

definitions as Coverity-unused. Coverity-unused detects 170 bugs with a total false positive

rate 62% from four applications. For Linux, though Coverity-unused detects more bugs, it

misses 35 bugs detected by VALUECHECK. For the other applications, their commit history

shows developers of some evaluated applications previously utilized Coverity and addressed its

warnings, which explains why Coverity detects much less bugs. VALUECHECK can detect new

bugs with lower false positive rate because: (1) Coverity-unused only detects unused assignment

and unused return value, excluding other types of unused definitions (e.g. assigned but unused

arguments). Besides, to avoid the huge number of unpruned results, it infers whether function

return values need be used based on the percentage of used return values. If the function is

only used once, it cannot correctly infer whether the return value should be used. Compared

to Coverity-unused, VALUECHECK additionally considers authorship when deciding whether

an unused definition should have been used, which is not limited by the number of function

invocations. (2) Coverity-unused pruning does not consider any authorship information and code

semantics, so it does not prune unused definitions that are intentionally left in the code, resulting

in higher total false positives.

32

Table 2.6. Unused Definition Bugs Detected by Clang, Infer, Smatch, Coverity and VALUECHECK.
VALUECHECK in total detects more bugs with lower false positives than other tools. *Report errors during

analysis.

Tool #Found Bugs/#Real Bugs/%Bug False Positive
Linux NFS-g MySQL OpenSSL Total

Clang 0 0 0 0 0

Infer −∗ 8/2/75% 45/9/80% 13/3/77% 66/14/79%-unused

Smatch 147/28/81% −∗ −∗ −∗ 147/28/81%-unused

Coverity 157/56/64% 3/3/0% 4/1/75% 6/4/33% 170/64/62%-unused
VALUECHECK 63/44/30% 22/18/18% 99/74/25% 26/18/31% 210/154/26%

Case Study: a bug detected by VALUECHECK but missed by other tools .

Figure 2.8 shows a bug example that fb-infer, Smatch-unused and Coverity-unused fail

to detect. Since the variable ret is referred in if(ret), all definitions of ret are regarded as

used by fb-infer and Smatch-unused due to their inaccurate analysis. Besides, Coverity-unused

does not report it as a bug because it fails to infer that the return value of get permset should

be checked since it is only invoked once. However, this actually is a real bug acknowledged by

developers with security concerns of broken access control when invalid permission set is read.

In fact, the definition in line 237 was previously used. But after author2 committed line 239, it

became an unused definition. When an unused definition spans multiple authors, it indicates

such bugs, which can be identified using authorship information.

It is worth noting that VALUECHECK is not a replacement of other tools but a complement.

It focuses on precisely detecting bugs from cross-scope unused definitions. However, it does not

detect unused definition bugs introduced by the same developers due to carelessness or other

reasons. Existing tools report this type of bugs but with high false positives, which remains as an

open problem to explore in the future.

33

235 acl_t fsal_acl_posix(...)
236 {
237 ret = get_permset(en, &pset);[Author 1]
238 ...
239 ret = calc_mask(&allow_acl); [Author 2]
240 if(ret) [Author 1]
...}

Unused Definition

Figure 2.8. A bug detected by VALUECHECK but not detected by fb-infer, Smatch-unused and
Coverity-unused. The developer forgot to handle the return error status from get permset, which

would cause access control error if the acl entry is invalid.

Table 2.7. Effect of authorship and the DOK model in VALUECHECK. VALUECHECK detects a
higher total number of bugs compared to other groups.

App. #Detected Bugs from Top 20 Bugs
VALUECHECK w/o Authorship w/o Familiarity w/o AC w/o DL w/o FA

Linux 20 14 16 20 19 20
NFS-g 17 2 16 17 16 17

MySQL 20 10 15 19 18 19
OpenSSL 17 2 15 17 16 17

Total 74 28 (-62%) 58 (-16%) 73 (-1%) 69 (-7%) 71 (-4%)

2.8.5 Authorship and Code Familiarity Effectiveness

Effectiveness of the Cross-Scope Authorship

To explore how cross-scope authorship can help distill unused definitions that are real

bugs from programs, we remove cross-scope filtering from VALUECHECK and preserve all

other components (w/o Authorship group). Then we report the top 20 bugs detected by the

modified tool. The result is presented in the second column of Table 2.7. Compared to original

VALUECHECK, the detected real bugs are much fewer, in total 28 bugs. This is because without

cross-scope authorship filtering, the number of detected unused definition is much higher (2259

in total), for which pruning and ranking are insufficient to reduce false positives to an acceptable

level.

34

Effectiveness of the DOK Model

To explore how effective the DOK model prioritizes bugs from detected unused defi-

nitions, we set up four groups: 1) (w/o Familarity) Remove the ranking from VALUECHECK.

Select the first 20 cross-scope unused definitions detected by VALUECHECK from each applica-

tion. 2) (w/o AC, w/o DL, w/o FA) Individually removing each factor from the code familiarity

model and applying VALUECHECK to get 20 cross-scope unused definitions with the lowest

code familiarity. Table 2.7 shows the number of bugs detected by the four groups. In total,

VALUECHECK detects 74 existing bugs, 16% more than detecting without the familiarity model.

Removing AC and DL factor decreases the total number of detected bugs and the precision of

bug detection in the evaluated applications.

Bug Detection Precision of Different Cutoffs

We evaluate the precision of bugs detected by VALUECHECK with different cutoffs on

report numbers in Figure 2.9. When VALUECHECK only reports the top 10 unused definitions

with the lowest code familiarity from each applications, the precision of confirmed bug is the

highest at 97.5%. With the increasing of the reported bug number, the precision of bug detection

decreases, which indicates the relevance of code familiarity and the possibility of detecting bugs.

From the result, it shows that the code familiarity model is effective in prioritizing real bugs.

0 10 20 30 All
Reported Bugs from Each Application

70

80

90

100

Pr
ec

isi
on

100 98
92

87

74

Figure 2.9. Precision of bug detection with different cutoffs after familarity ranking. VALUECHECK

has a precision of 97.5% when reporting the top 10 detected unused definitions with the lowest familiarity
from each applications.

35

2.8.6 Scalability of VALUECHECK

As shown in Table 2.8, for each application, the execution time of VALUECHECK on

the whole application code base is under 30 min even for Linux with 27.8M LOC (we turn on

allmodconfig compilation flag). Further, when integrating VALUECHECK into the code testing

and analysis process, this overhead could be reduced by running the analysis incrementally,

i.e., only on the changed functions and the affected files in a commit. We do the incremental

analysis on the first 20 commits after 2022 on each application. The average execution time on

each commit is under 5s for all the applications we evaluate. It empirically demonstrates that

VALUECHECK can be integrated into the code development with an acceptable time cost for a

large-scale code base.

Table 2.8. Scalability of VALUECHECK.

Application #LOC Time Incremental Time

Linux 27.8M 28m12s 4.6s
NFS-ganesha 315K 2m13s 2.2s

MySQL 1.7M 16m32s 2.6s
OpenSSL 1.5M 3m54s 1.9s

Total 31.3M 50m51s 11.3s

2.9 Limitations and Discussion

2.9.1 Limitation

VALUECHECK demonstrates to have better accuracy in detecting bugs from unused

definitions compared to the state-of-the-art. However, VALUECHECK still has limitations on

having false positives. For example, some unused definitions are just legacy code or debugging,

which could be further pruned by analyze the commit history and comments. But this will incur

much more overhead so we do not prune this type of false positive. Besides, our exploration

of cross-scope unused definitions is not an assertion that unused definitions which do not cross

author scopes are not bugs. The assumption we make in the design of VALUECHECK is based on

36

our preliminary experiments (Section 2.3.1). Whether there are other types of unused definitions

that are prone to be bugs is another problem to be explored in the future.

2.9.2 Alternatives of the DOK model

We use the DOK model because it is one of the state-of-the-art model and considers

accessible factors from public code repositories. However, some alternative models could be con-

sidered, which may be less accurate but do not require the original developers to participate. The

EA model [104] models the type of commits made by a developer, such as bug fixes, refactoring,

and new functionality and assigns familiarity score to them differently. [112] can automatically

infer developer expertise through their time to fix detects in commit histories. Another model

[19] considers activities like comment and review which may also increase familiarity with the

code. It is possible to replace with alternative familiarity models in VALUECHECK.

2.10 Related Work

Bug Detection. A range of research has been proposed to detect bugs and vulnerabilities [183,

150] with formal method [87, 36, 152], static analysis [93, 172, 88, 23, 69, 185, 184] and

automatic testing [83, 139, 151]. Some work directly infer rules from source code and picks up

deviant outliers, which could be potential bugs [159, 100, 180, 94, 41, 70, 175, 187]. Compared to

them, our work detects a potential bug pattern, cross-scope unused definitions, which previously

is regarded as redundant code, and demonstrates that it is possible to detect bugs from the unused

definitions with low effort.

Code Familiarity. Previous work measure how familiar a developer is with a code snippet in a

project by metrics include change history [96, 104, 68], file dependency [101], authorship [104],

and interaction information [161]. [47] proposes the Degree-of-Knowledge (DOK) model to

achieve a better measurement. In [168], the authors reveal the relationship between bug fixes

and developer familiarity. Our work borrows the existing literature in this field to help reduce

developers’ efforts under time pressure. Some work rank the reports from static analysis tools

37

with other methods like AdaBoost [137], which is orthogonal to our ranking method.

Inconsistent Code. Researchers studied the inconsistency in code in some past literature [143,

25, 162]. They focus on detecting unreachable code and removing them to reduce static analysis

and coverage analysis effort, but not for bug detection while our work focuses on bug detection.

Some previous work illustrates that certain code structures can indicate deeper problems in

software design [45, 46, 49, 149], etc. Code smells are also related to the code quality and defect

rate [79, 124, 64, 176, 153] of programs, which inspire our work to detect bugs from bad code

patterns (unused definitions).

Dead Code Elimination As we already discussed in Section 2.2, eliminating unused defini-

tions of registers has been regarded as a low-level code optimization [76, 73, 34, 144, 85, 167,

58, 30, 113, 136]. Unlike these previous works that simply remove all the redundant code, we

propose to treat cross-scope unused definitions as potential bugs.

2.11 Acknowledgments

Chapter 2, in full, is a reprint of the material as it appears in the Proceedings of the

Nineteenth European Conference on Computer Systems (EuroSys’24). Zhong, Li; Xiang,

Chengcheng; Huang, Haochen; Shen, Bingyu; Mugnier, Eric; Zhou, Yuanyuan [186]. The

dissertation author was the primary investigator and author of this paper.

38

Chapter 3

FENCEHOPPER: Detect Vulnerabilities
by Client-Side Code Mutation

3.1 Introduction

3.1.1 Problem: Over-relying on Security Checks in Web Client

Many software deploy a client-server architecture. They provide users with responsive

user interfaces in the client and offload the major services on the server side. Among them,

one special type of client-server applications is the web application, which normally have the

client-side components written in JavaScript, send the client-side source code to users, and

execute them by JavaScript engine inside a web browser [92]. From a system point of view, this

characteristic sets web applications apart from other client-server applications such as Zoom,

which typically involve sending executable binary files or other forms of executables to users to

install as application clients on laptops or desktops.

To enhance responsiveness and alleviate server loads, developers conduct various checks

on user requests within the web client before forwarding them to servers [155, 51]. These checks

encompass crucial aspects such as authorization [107], identity verification [71], and validation

of user input [147].

Despite the advantages of web client-side checks in terms of saving round-trip time

and reducing server load [51], it is imperative to recognize that they cannot serve as a guar-

39

anteed security measure. This limitation arises from the susceptibility of web client code to

manipulation by malicious users, enabling them to circumvent checks and dispatch malicious

requests to servers. Regrettably, the misconception of a ’false sense of security’ often arises

within development teams which results in a tendency to overlook server-side checks, creating

vulnerabilities that malicious attackers can exploit to compromise services and inflict severe

damage.

Surprisingly, instances of such blind spots in security practices, attributed to the false

sense of security arising from client-side checks, are not infrequent. A notable case in point

pertains to users successfully circumventing paywalls on news websites by altering the JavaScript

code, thereby gaining access to content without the requisite authorization. Furthermore, Ta-

ble 3.1 enumerates several examples from prominent web services where the omission of robust

server-side checks led to significant consequences.

Table 3.1. Missing server-side check vulnerabilities affect billions of users in popular websites.

Website Missing Server-Side Check Consequence

Twitter Missing password checks on email update [60] Account Takeover
MTN Missing passcode checks [62] Identify Theft

CoinBase Missing captcha checks [59] Account Probing
StarBucks Missing mobile verify checks [61] Account Takeover
Facebook Missing user id checks [131] Account Takeover

Despite the widespread recognition of the importance of server-side checks, missing

server-side checks remains prevalent in web applications. There are several possible reasons.

First, developers may be inconsistent when implementing checks, especially when they are

overwhelmed by the number of checks in a large code base. Second, rapid-evolving front-end

frameworks such as Vue [177], React [99], and Angular [52] can give developers a false sense

of security, leading them to rely solely on client-side checks. Third, when knowledge is not

effectively shared among developers, inconsistencies between client-side checks and server-side

checks can also arise. The rapid release cycle also makes it challenging for the developers to

ensure comprehensive testing coverage of entire web applications.

40

3.1.2 Existing Solutions

Given the profound implications of overlooking server-side checks, significant efforts

have been dedicated to addressing this issue. Previous research has primarily concentrated on the

direct generation of web requests to the server side as a means of identifying and exposing server

vulnerabilities. Examples of such efforts include bypass testing [118, 116, 117] and parameter

tampering [28, 97]. While effective in simpler web service scenarios, these techniques exhibit

limitations when applied to complex web applications characterized by comprehensive client-side

computational logic. Within the context of complex web applications, the parameters transmitted

to the server side often entail intricate semantics and logic relationships. Complicating matters

further, certain web applications also rely on interactions with multiple third-party services

before forming and transmitting requests to servers. Unaware of the nuanced semantic and logic

relationships inherent in request parameters, these solutions can generate mostly random requests

that may easily fail initial server-side checks, thereby cannot expose deeper server vulnerabilities.

Furthermore, due to the exponential nature of the request parameter space, testing

potentially unveils tens of thousands of parameter combinations to expose latent server issues. To

enhance testing efficiency, recent research endeavors optimize the parameter space exploration

by leveraging code analysis of client-side JavaScripts [56, 165]. These approaches prioritize

optimizing test efficiency by reducing the number of test cases, rather than concentrating on

augmenting effectiveness in uncovering more profound and elusive vulnerabilities beyond simple,

initial parameter sanity checks. Moreover, since these approaches rely on static analysis, they

cannot handle complex web applications where a portion of client-side computation is performed

by third-party services, such as Google Analytics, location services, token services, and time

zone services. Values obtained from these third-party services may be included as parameters

in the request to servers. In our experimental evaluation, the experiments showed that these

methods failed to detect many real-world vulnerabilities due to their disadvantages in handling

complex requests.

41

An alternative strategy to thwart bypass attacks involves the implementation of CSRF

tokens [123], double-submit cookies [122], and customized headers [121]. These defensive mea-

sures effectively mitigate the risk of request forgery. However, their efficacy is compromised in

situations where missed server-side checks pertain to initial authentication even before the client

obtains the token or cookie, as exemplified in the news website paywall bypass scenario. Addi-

tionally, these methods still rely on server-side security checks on those tokens. If servers do not

have checks or the checks are not comprehensive, attackers can still exploit such vulnerabilities

even with tokens or double cookies.

The common practice in industry relies on white hat hackers to manually detect and report

them to bug bounty programs [75, 98, 53, 164], as documented in their blogs [106, 105, 110, 134,

119, 148]. However, manual inspection, while useful, has inherent limitations—it can only cover

a finite number of checks in web applications and is also expensive and resource-intensive. As

the size of client-side code escalates, sometimes surpassing megabytes [81, 141], relying solely

on manual inspection becomes increasingly impractical to ensure comprehensive coverage. This

challenge is particularly prohibitive for non-technical organizations, such as schools, hospitals,

or non-profit groups, which often manage substantial amounts of sensitive user data.

3.1.3 Our Approach

Client Side
Security Tokens
Data Contraints

Request Preprocess Server Side

HTTP
Request

FenceHopper

Mutate

Figure 3.1. Overview of FENCEHOPPER. FENCEHOPPER mutates the client-side code to bypass
client-side checks to detect if such checks are missed by servers—a common overlook by developers due

to false sense of security from client-side checks.

Drawing inspiration from the observed false sense of security stemming from client-

42

side checks, this paper introduces a novel technique named FENCEHOPPER1 designed to au-

tonomously and systematically mutate client-side JavaScript code. The objective is to identify

and bypass checks, thereby detecting potential absences of analogous checks on the server side,

as depicted in Figure 3.1. As it is too expensive and unnecessary to mutate every branch in

client-side JavaScript code, FENCEHOPPER first leverages static code analysis to identify those

related to security and access control checks. Moreover, forcefully taking an alternative branch

can result in some uninitialized and inconsistent variable values. FENCEHOPPER leverages

several techniques to address this challenge to ensure the client-side code does not fall through

due to premature failure before sending the request to servers.

Our technique has several complementary advantages over previous solutions that directly

manipulate and fuzz requests to servers:

1) FENCEHOPPER leverages existing computation and business logics in client-side code

to generate requests that are semantically consistent to expose deeper and harder-to-expose server

vulnerabilities, including those shown in Table 3.1.

2) FENCEHOPPER is dynamic in terms of executing the mutated client-side code. It

can work effectively even if the client-side code requires communication/interactions with

web services to maintain server-side states and some parameters were generated remotely by

third-party services.

3) FENCEHOPPER operates automatically, and requires little manual effort. It can

systematically bypass each security-related check within the client-side JavaScript, assessing

whether corresponding server-side checks have been neglected by developers.

We evaluate the effectiveness of FENCEHOPPER through comprehensive experiments

conducted on the top 300 websites identified within the Tranco dataset. Our framework success-

fully identifies 48 novel vulnerabilities, among which 5 are categorized as critical access control

vulnerabilities, posing a risk of unauthorized access to accounts of over 20 million users. To mea-

1Named to metaphorically resemble a hopper (representing the attacker) that leaps into the garden (symbolized
by the server) by breaching the fence (symbolized by the client-side code).

43

sure the coverage of FENCEHOPPER, we manually curate a dataset comprising 14 documented

cases of missing server-side checks sourced from HackerOne and Bugcrowd. FENCEHOPPER

successfully identifies 10 of these issues. Notably, over 60% of the vulnerabilities detected by

FENCEHOPPER are missed by state-of-the-art tools.

3.2 Client-side Code Mutation

if Similarity > τ { otherwise

Entry URLs:
www.foo.com

Legal Input:
ABC@foo.com

Developer

 Web Crawler Third-party
Authentication

Stack
Trace

<I>

<II>

<III>

func register(·)

func beforeSubmit(•)

if(flag=="0")
if(data.success)

check().then(suc,fail)
…

Find checks in a function

func validEmail(•)

if(check(email))
…

On the stack trace
1. Locate functions
not on the stack trace
with Call Graph

2. Find checks in
the function

Call
Callee on the stack trace

Off the stack trace

if(check(email)==success)

Original Check

if(check(email)!=success)

Mutated Check

ABC@foo.com

123#.foo_c

Generated Legal Input

Generated Violated Input

HTTP/1.0 200 OK …
Response to Legal Input

Node.click()

Replay Browsing Action

Username=XYZ

Fill in Missing Data

HTTP/1.0 ??? ? …
Response to Violated Input

Fix Data
Dependency

Vulnerability
Report

II. Client-side Code Mutation

III. Response
Validation

I. Site Exploration

Input
Form

M
ut

at
e

C
lie

nt
-s

id
e

Se
cu

ri
ty

 C
he

ck
s

Id
en

tif
y

C
lie

nt
-s

id
e

Se
cu

ri
ty

 C
he

ck
s

Figure 3.2. Overall Workflow of FENCEHOPPER.

Table 3.2. Branches on the Client Side of Popular Websites.

Website #Branches in Client-Side Programs

Facebook 2744
Instagram 1434
Amazon 1045
Yelp 838
Youtube 10586

Mutating client-side checks to detect missing server-side checks presents unique chal-

lenges. First, we observe many if-else branches in client-side code, many of which were

non-security related, from libraries and frameworks (Table 3.2). Mutating all if-else branches

unnecessarily incurs high overhead. Also, asking developers to annotate requires a lot of human

effort. Therefore, we use static analysis combined with execution traces and dynamic testing to

overcome the highly dynamic feature of JavaScript. (Section 3.2.1)

44

With the extracted security checks, the next challenge is how to generate inputs that can

violate the client-side checks efficiently. Previous literature [50, 57] generates test inputs that

trigger specific branches. However, due to dynamic language features of JavaScript, end-to-end

input generation could suffer from the analysis imprecision. In our solution, rather than mutating

the entire end-to-end input, we mutate the intermediate input on demand when they are used in

relevant checks. The approach allows us to generate inputs with less cost while guaranteeing

that the check is violated. By employing code mutations to assign testing values to condition

variables, FENCEHOPPER effectively generates refined inputs corresponding to the negation of

check conditions. (Section 3.2.3)

After mutation, FENCEHOPPER needs to ensure crash-free execution so that the client-

side code can send the expected requests for testing the server. However, as the execution is

forced into another branch even though the data should not pass the check, it can result in missing

data objects on the forced execution path under certain circumstances. This can fail client-side

programs without sending requests to the server side. For example, the forced branch may

attempt to access data that should have been available or select page elements that should have

been present on the web page if the conditions were satisfied. To address this issue and allow

the execution to proceed until the request is dispatched, FENCEHOPPER fixes the missing data

object, which is achieved by assigning possible values to the objects, ensuring that the execution

can continue without missing data failures. The evaluation results in Section 3.4.3 validate the

necessity of fixing the missing data. (Section 3.2.4)

3.2.1 Identify Security Checks in Client-Side

Identify Security Checks within a Function. To identify security checks, we observe that

the majority of the security checks typically diverge into two branches: If the check fails, it

would raise errors or alerts. Otherwise, it would proceed to another path that dispatches a

request. FENCEHOPPER leverages this observation by analyzing stack traces collected during the

website exploration stage (see Section 3.3). These stack traces are generated when a request is

45

Figure 3.3. Identify and Mutate Security Checks.

46

if(data.success)

if (flag == “0”)

ajax()

if(name == “”)

if(check(exp, name))

if (validSms(code))

function
before

Submit()

function
check()

function
register()

function
valid

email()

if(reg.test(s))

ajax()

function
validSMS()

ajax()

if(check(email))

Stack Trace

Call

Call

Figure 3.4. Identify Intra and Inter-Procedural Security Checks. Functions in heavy solid line boxes
are extracted directly from the stack traces, which are the ‘stem’ of our analysis. We expand the relevant

function set by checking the callees of these functions, which are in the dotted line boxes.

dispatched, allowing us to address the highly dynamic features of client-side code like dynamic

code evaluation and dynamic typing. As shown in Algorithm 3.3 and Figure 3.4, FENCEHOPPER

starts by extracting the functions from the stack traces. These functions are the ‘stem’ of

our analysis, depicted as heavy solid boxes in Figure 3.4. For each function in stack traces,

FENCEHOPPER traverses the abstract syntax tree (AST) of that function to identify two types

of security checks: (1) if check with one branch specifically designed to raise errors or alerts.

(2) Reactions to promises, which can be regarded as condition checks that execute different

functions based on whether the promise is fulfilled or rejected. If any of the callbacks raise errors

or alerts, FENCEHOPPER considers it as a security check. We add them to the security check set

TraverseVisitor.checklist.

47

In FENCEHOPPER, we include the following patterns as raising errors or alerts: (1) Throw

exceptions using the throw statement. (2) Raise alerts with the alert() and window.alert()

methods. (3) Invoke other error-raising method with keywords of ‘error’, ‘exception’, and ‘alert’.

For example, modify HTML DOM to show the error messages. We do not include switch,

while, and for loops because security checks typically involve an allow-or-deny decision, which

is not aligned with the control flow of these statements.

Identify Security Checks Inter-procedurally. Dynamic traces are effective in analyzing client-

side JavaScript programs due to its dynamic nature [138]. However, it has limitations in terms

of coverage as discussed in existing literature [20]. It can only cover functions that appear

on the stack traces. To address this limitation and increase the coverage of FENCEHOPPER,

we incorporate static analysis based on the stack traces. In addition to the functions in the

traces, FENCEHOPPER collects functions that are called by these functions. These functions are

identified by building call graphs of the candidate functions. We similarly identify the security

checks within these callee functions.

Handling Obfuscation and Minification. In FENCEHOPPER, we do not specifically handle

the cases where the client-side code is obfuscated or minified. However, with deobfuscation

techniques on JavaScript [158, 33], FENCEHOPPER can provide more meaningful analysis

to assist developers and testing teams in identifying and addressing security vulnerabilities

effectively.

3.2.2 Mutate Security Checks in Client-Side

Mutation Strategy. There are numerous possible combinations of check mutations. For a single

user operation that triggers N security checks, there are at least 2N mutation combinations, which

is exponentially increasing. To balance time and resource requirements, we propose focusing on

one security check at a time and testing whether the corresponding check exists on the server

side. This helps pinpoint the missing check on the server side. The limitation of this strategy is

discussed in Section 3.6.

48

Mutate Check Predicates. Once a specific client-side check is selected, FENCEHOPPER mutates

the check to allow data that violates it to pass through. One option for mutating checks is to

mutate it into a constant boolean so that for any input data, it will proceed. However, we do not

adopt this approach because it will still send requests when FENCEHOPPER does not successfully

generate an illegal input, which results in false positives. Therefore, for if checks, to transform

a specific security check node, FENCEHOPPER identifies which branch of this check is the error

branch based on the error-raising patterns (raiseError function in Algorithm 3.3). Then it

mutates the condition node.text of the tested check into its negation ¬node.text. For checks

embedded in promises, FENCEHOPPER mutates the promise by reverting the rejected callback

with the fulfilled callback (switchCallback in Algorithm 3.3). When the promise is rejected, it

will execute the original fulfilled callback that assumes the check is successful.

Nested Checks and Relevant Checks. If the check c we test is nested inside branches of other

checks, we need to guarantee that the parent checks will proceed to the branch that contains

c. Therefore, FENCEHOPPER mutates predicates of checks that dominate c into the boolean

value that guarantees the execution on the branch containing c. Another type of checks must be

mutated, which could block the generated input from being sent to the server within a request.

For example, in checking the format of phone numbers, there are two checks 1 , 2 :

1 if (!(mobile.len > 9)) { // The tested check. Its condition is negated

alert(”Too long phone number!”);

return;

}

// Relevant check. Need to mutate the condition into false

2 if (Test(”[0-9]{9}”, mobile)==false) {

alert(”Invalid phone number format!”);

return;

}

sendRequest(mobile);

49

Now assume FENCEHOPPER is testing the first check, which verifies whether the phone number

is longer than nine digits. After mutating the check condition as false, an empty mobile number

"" can bypass the first check. However, since the second check validates whether the mobile

number is a nine-digit string, a mobile number longer than nine digits would not pass this check,

which ends up not being able to send the request to the server side. To tackle the scenario where

other checks can counteract the effect of the mutated check, FENCEHOPPER mutates predicates

of other security checks to make them unconditionally proceed to their success branch and not

block the request dispatch. In this above example, the second check condition will be mutated to

false so that even the mobile is longer than nine digits, it will not fail the second check. As

a result, it can be sent to the server for testing whether the server can handle extremely long

strings.

Avoid Infinite Loop and Recursion. As a programming practice, developers should not rely

on raising errors or exceptions to end loops or terminate recursive functions [146]. In ideal

cases, even after predicate mutation, client-side programs would not encounter infinite loops or

recursive calls. However, to ensure safe testing in FENCEHOPPER and prevent program crashes

due to infinite loops or recursions, a timeout is set to avoid such scenarios during the testing of

each mutated check.

3.2.3 Generate Data Input Based on Checks

As shown in Algorithm 3.3, FENCEHOPPER generates test inputs by negating the predi-

cate node.test of the tested check node into ¬node.test. It then solves the resulting constraints

using an SMT solver. FENCEHOPPER has several advantages in utilizing an SMT solver in

its problem context: (1) Security checks are simpler than functionality checks, involving less

complex data structures. (2) The computation of the SMT solver remains limited as we collect

constraints from only one execution trace at a time, resulting in efficient constraint solving

without significant overhead.

To dispatch requests that violate client-side checks, FENCEHOPPER focuses on mutating

50

the input data just before the check rather than manipulating the end-to-end input. For instance,

when testing the emptiness of a mobile number, FENCEHOPPER doesn’t need to mutate the user

input in the text box. Instead, it can directly mutate the variable mobile that the client-side check

accesses. We refer to these mutated variables as check inputs. There are four sources of check

inputs:

• Mutable objects in the client-side program. FENCEHOPPER mutates the generated test input

by instrumentation.

• Immutable objects in client-side programs. FENCEHOPPER mutates them by reassigning the

variable to new objects. For example, a String variable username will be assigned with a

new String object with a length of 3 so that the constraint username.length==3 is satisfied.

• Function Call. In the client-side check, a function call can be used to send requests to the server

to validate a security requirement. For such function calls as check inputs, FENCEHOPPER

replaces them with mutable variables and assigns values to these variables. FENCEHOPPER

needs to test the case where the server-side check result is not passed, which occurs when the

client side does not perform the check. For example, the security check:

// A request is sent to the server in checkCode()

if (checkCode(code)==”true”) {...}

is transformed into:

checkCode˙code˙ret = ”false”

// Condition is negated

if (checkCode˙code˙ret!=”true”) {...}

which is a violation of the original client-side check because the check is bypassed without

requesting any server-side validations. For promises, we assign the parameters with random

strings so that the promises cannot be fulfilled.

51

3.2.4 Fix Missing Data after Code Mutation

After code mutation, the client-side program is forced to execute a previously infeasible

path. This can lead to the problem of missing objects, where the data objects expected along the

forced path are not presented or initialized with the provided input. This can result in program

crashes and failure to dispatch the testing request. Here is an example of a missing data object:

// e = {”error”}

e.valid = false;

if (! e.valid) { // Condition is negated

userSignIn(e.user.userId)

// Missing object e.user

} else{

throw new Error(”Cannot log in!”)

}

In this example, the condition e.valid is mutated. As a result, the execution is forced to proceed

even when the e.valid is false, which means the user has entered an invalid email. The path

that passes this check then attempts to use e.user.userId to log in, which is looked up from

the server side based on a valid user email. However, when this path is forced to execution, the

user email is invalid and the data object e does not contain the user object. This leads to the

missing data error. Additionally, JavaScript may also read DOM elements from the web page

using selectors, which may also be missing or unavailable after code mutation.

To handle missing data objects, FENCEHOPPER fixes the missing data on demand by

inserting an assignment statement in the client-side code before the location where the missing

data error occurs, ensuring crash-free execution. In JavaScript, where most data objects are

mutable and dynamic typing, we directly assign values to undefined objects to resolve the error.

For DOM elements, we inject the DOM element based on the provided DOM selector. We apply

two strategies to assign value to the newly created data and DOM elements: (1) Complex Fix:

52

For the created object, we attempt to fill it with meaningful values based on the variable and

attribute names. We use several keywords to infer the data type from the variable and attribute

names: ‘email’, ‘mobile’/‘phone’, ‘id’, ‘user’, ‘number’, and ‘token’. For example, for ‘email’,

we try all the test emails. For other data objects that do not match any keywords, we apply

simple filling. (2) Simple Fix: We assign an empty string to the missing data object. For missing

DOM elements, we create them with no inner text and the minimum set of attributes to match

the selectors.

These two strategies allow the client-side code to continue executing after the muta-

tion performed by FENCEHOPPER with minimal effort but effectively increases the chance of

detecting vulnerabilities. For the code example we provided above, FENCEHOPPER inserts

the assignment e.user={},e.user.userId=12; before the crash location. The value 12 is a

randomly generated number.

3.3 Implementation

FENCEHOPPER is mainly written in Python using Selenium. The workflow of FENCE-

HOPPER is divided into three phases:

Site Exploration. FENCEHOPPER navigates target websites, collecting stack traces and inputs

for analysis. It employs WebDriver for page interactions, executes scripts to load hooks, and logs

browser activities. It hooks into functions like fetch and XMLHttpRequest.prototype.send

to log stack traces, performing actions like form submissions and hyperlink clicks. It also

identifies third-party login interfaces for post-authentication page detection.

Client-Side Code Mutation. After analyzing stack traces, FENCEHOPPER identifies client-side

checks for mutation, generates and traverses the abstract syntax tree (AST) of each function. It

creates a call graph [43] and mutates the AST nodes for input generation and missing data fixes.

The tool uses Z3 [182] for input generation to satisfy mutated predicates and logs to validate

check execution.

53

Response Validation. The mutated code is loaded into the browser, replacing the original

JavaScript. Actions triggering the mutated checks are replayed to compare responses. Differences

in status codes or significant response body disparities measured by Levenshtein distance indicate

potential vulnerabilities. FENCEHOPPER then generates reports detailing the actions, mutated

checks, and responses before and after mutation for users to verify the vulnerabilities.

3.4 Evaluation

The evaluation aims to answer the following questions:

(1) Can FENCEHOPPER successfully detect missing server-side check vulnerabilities in

real-world scenarios? (§ 3.4.1) What bugs does FENCEHOPPER detect that the state-of-the-art

tools fail to detect? (§ 3.4.2)

(2) What is the contribution of each component? (§ 3.4.3)

(3) How comprehensive is the coverage of FENCEHOPPER in detecting checks and

vulnerabilities? (§ 3.4.4)

(4) What is the time and effort involved in adopting and using FENCEHOPPER? (§ 3.4.5)

(5) What are the impacts of the missing server-side check vulnerabilities detected by

FENCEHOPPER? (§ 3.5)

3.4.1 Detect New Vulnerabilities

Methodology. To evaluate the capability of FENCEHOPPER to detect new vulnerabilities, we

select the top 300 websites from the Tranco dataset [129] as our evaluation targets. For each

website, we manually identify the entry URLs of login, sign up, and user settings, then provide

them to FENCEHOPPER as input. Then we run FENCEHOPPER to automatically explore the

website starting from the entry URLs and detect potential vulnerabilities. After execution,

FENCEHOPPER generates a report including the detected missing server-side checks. We analyze

the results and report to the developers.

Results. We spent 42.6 hours testing the 300 websites with 59 missing server-side checks

54

reported by FENCEHOPPER. Among them, 48 are real vulnerabilities from 38 different websites,

which indicate the method is applicable and effective for a wide range of websites. During the

detection, FENCEHOPPER analyzes 413,539 lines of client-side code, totaling 494 MB in size.

The total users affected by the vulnerabilities exceed 20 million. The detected vulnerabilities

include 11 access control vulnerabilities, 13 broken data integrity vulnerabilities, 2 broken

business logic vulnerabilities, and 23 legal agreement violation vulnerabilities. A detailed

security analysis is provided in Section 3.5, and an example is shown in Section 3.5 (full list in

the anonymous repo [18]).

We categorize the vulnerabilities based on their security severity, as shown in Figure 3.5b.

Approximately one third (16 vulnerabilities) are categorized as critical or high security severity,

which can result in consequences like account takeover, private data leak, and bypassed access

control. Over 80% (42 vulnerabilities) are of medium or higher severity. Overall, the vulner-

abilities detected by FENCEHOPPER are security issues with a severe impact on a wide range

of users. We further categorize the vulnerabilities based on the types of websites in which they

were found. Figure 3.5a illustrates that FENCEHOPPER detects most missing server-side check

vulnerabilities in recreation, news, and technology websites.

Education
12%

Social
Networking

10%

News

17%

Tech 15%

Recreation

21%

Business

15% Health
2% Shopping
8%

(a) Distribution of Bugs

Low
12%

Medium
55%

High

21%
Critical

12%

(b) Security Severity

Figure 3.5. Vulnerability Categories.

False Positives. FENCEHOPPER has a false positive rate of 18.6%. There are two reasons for

the 11 false positives: 9 false positive cases are caused by the limitations of response validation,

55

which can only determine whether the server responds differently, but it cannot differentiate

between different failure pages. As a result, FENCEHOPPER may mistakenly identify these

cases as missing server-side checks. 2 false positives occurred due to fake success responses

from the server side. Although FENCEHOPPER successfully bypassed the client-side checks and

received a success page, it failed to perform the intended operation. For example, on a business

website, FENCEHOPPER bypasses the client-side check on password requirements and registers

an account successfully based on the server’s response. However, upon manual verification,

it was discovered that the registered username and password could not be used to log into the

website.

3.4.2 Comparison to Other Tools

Position of FENCEHOPPER. We aim to delineate the position of FENCEHOPPER in comparison

to existing tools. Established tools such as BurpSuite [130] and ZAP [160] already offer vulnera-

bility detection within their functionalities. The vulnerabilities they detect can be categorized as

follows: (1) Missing client-side checks, which include DOM-based link manipulation, HTML5

storage manipulation, potential Clickjacking based on frameable responses, etc. (2) Leaked data

on the client side, such as exposed email addresses, robots.txt files, user agent-dependent

responses, and session tokens embedded in URLs. (3) Risky configurations, such as inadequate

TLS certificate settings, cacheable HTTPS responses, and cookies lacking HttpOnly flags. (4)

Missing server-side checks, such as cross-site scripting (XSS) and SQL injection vulnerabilities.

FENCEHOPPER serves as a supplement to the fourth category. However, it adopts a fundamen-

tally different approach to vulnerability detection. Rather than focusing on a specific type of

data injection, FENCEHOPPER detects vulnerabilities by mutating client-side checks related to

business security logic. Therefore, vulnerabilities detected by FENCEHOPPER are orthogonal to

those addressed by existing tools in the fourth category.

Comparison of Detected Vulnerabilities. ffuf [67] is an open-sourced fuzzing tool specialized

for web fuzzing with over ten thousand stars on GitHub, which proves its widespread acceptance.

56

Figure 3.6. FENCEHOPPER Supplements Existing Tools. It complements the vulnerability category of
‘missing server-side checks’. The bugs detected by FENCEHOPPER are non-trivial and orthogonal to other

vulnerabilities in this category such as cross-site scripting (XSS) and SQL injection.

We applied ffuf on the websites where we detected vulnerabilities with FENCEHOPPER. To

make sure the detection accuracy is not affected by the effectiveness of the crawler as observed

in previous studies [42], we directly provide the vulnerable endpoints to ffuf and use payloads

from dirbuster [163] and jbrofuzz [133] lists. Table 3.3 shows that ffuf can only detect 21% of

bugs detected by FENCEHOPPER. Since fuzzing does not consider the parameter structures such

as time formats and special strings, the search space could be extremely large and sometimes

result in blocking by websites for ’Too Many Requests’. Only testing requests with simple type

parameter values could be triggered by plain fuzzing. To evaluate fuzzing enhanced by client-side

Table 3.3. Comparison to Other Tools. FENCEHOPPER detects vulnerabilities that other state-of-the-art
tools fail to detect.

Tool FENCEHOPPER ffuf [67] ffuf+graybox BurpSuite Pro [130]

#Detected
48 10 (21%) 16 (33%) 17 (35%)Vulnerabilities

code analysis, we evaluate gray-box fuzzing. However, the previous work on gray-box web

fuzzing either do not provide access to their tools or require instrumentation on the server side,

which is not feasible for ‘in the wild’ testing. Therefore, we combine the test input generation

of FENCEHOPPER with ffuf to evaluate gray-box fuzzing. ffuf+graybox detects 33% bugs

57

detected by FENCEHOPPER. It misses bugs due to: (1) 26 vulnerable endpoints include security

tokens in the HTTP requests such as nonce tokens, and the data from third-parties to prevent

replay attacks, which are inaccessible to the fuzzing tool. (2) 4 cases have encoded inputs such

as appended digest fields in the HTTP body, which require manual effort to craft in fuzzing.

(3) 3 vulnerabilities have business logic constraints that fail to be captured by fuzzing tools

automatically.

Additionally, we included results from BurpSuite Pro [130] to explore the overlap of other

tools in bug detection with FENCEHOPPER. We choose BurpSuite Professional, a popular web

penetration testing tool among security testers. With the default settings, it detects 35.4% bugs.

While Burp Suite Pro does not directly detect missing server-side checks, it detects untrusted

data injection like XSS and SQL injection, insecure direct object references, and broken access

control, which is the manifestation of missing server-side checks. The comparison indicates that

FENCEHOPPER can detect complex bugs that other tools could miss.

3.4.3 Detailed Evaluation of Each Component

In this section, we provide an in-depth evaluation of each component to demonstrate its

effectiveness in FENCEHOPPER.

Code Mutation. The code mutation component of FENCEHOPPER aims to automatically identify

security checks in web applications, but it may introduce false positives. To evaluate the false

positive rate of code mutation, we randomly sampled 100 checks identified by FENCEHOPPER

from the 300 websites as potential security checks. These checks are distributed across 98

websites. Among the sampled checks, 93 are indeed security checks, resulting in a true positive

rate of 93%. Based on null hypothesis testing, the false positive rate in code mutation is 15%

with 95% confidence.

Fix Missing Data. To evaluate the necessity of data fix post code mutation, we conduct an abla-

tion experiment: We tested two FENCEHOPPER variants on 300 websites: (1) FENCEHOPPER

without the complex fix but with simple data fix (FENCEHOPPER-Complex Fix), and (2) FENCE-

58

HOPPER without any data correction, omitting tests after mutation failures (FENCEHOPPER-Data

Fix). The results shown in Table 3.4 reveal that the missing data fix in FENCEHOPPER enables

7% more testing requests to be sent to the server side. This increase led to 9 additional detected

vulnerabilities, a 19% rise compared to the version lacking data fix. Furthermore, the complex

fix identified 6 high-level security vulnerabilities, including one password check bypass and five

email one-time passcode bypass cases, compared to the simple data fix.

Table 3.4. Effectiveness of Missing Data Fix in FENCEHOPPER. Missing data fix enables detection of
9 additional vulnerabilities.

Tool FENCEHOPPER
FENCEHOPPER FENCEHOPPER

-Complex Fix -Data Fix

#Detected
48 42 (-13%) 39 (-19%)Vulnerability

#Testing
5,605 5,511 (-1.7%) 5,263 (-7%)Request

Third-party Authentication. Out of the 300 websites evaluated, FENCEHOPPER successfully

logs into 183 websites by automated third-party authentication. 4 vulnerabilities are detected from

post-authentication web pages. The result is expected: Critical data inputs like registration and

login, often with vulnerable checks, occur pre-authentication. Compared to the pre-authentication

vulnerabilities, the severity of post-authentication vulnerabilities we detect are generally lower

because they require the compromise of one user session, imposing a strong assumption on the

attacking.

Validation Threshold. As discussed in § 3.3, FENCEHOPPER conducted a comparative analysis

of web responses before and after mutation. This experiment delves into identifying the optimal

threshold for validating these responses empirically. We varied the threshold values from 0.5 to

0.9 and evaluate their impact on bug detection and false positive rates. As illustrated in Figure 3.7,

increasing the threshold is associated with lower number of bugs and fewer occurrences of false

positives. Notably, when the threshold surpasses 0.8, detected bugs notably declines. Conversely,

at a threshold of 0.9, the false positive rate only marginally decreases by less than 4% compared

59

to the 0.8 threshold. Our experiments advocate for an optimal empirical threshold of 0.8.

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0
10
20
30
40
50

#R
ep

or
te

d
Bu

gs 48 48 48 48 45

0

(a) Reported Bugs vs. Threshold

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0
0.1
0.2
0.3
0.4
0.5

%
Fa

lse
 P

os
iti

ve
 R

at
e

(b) False Positive vs. Threshold

Figure 3.7. Impact of Threshold Changes on Bug Detection and False Positive Rates.

3.4.4 Coverage of FENCEHOPPER

Coverage of Security Checks. We select 3 websites and manually extract the security checks

from their pages to see how many client-side security checks are covered by FENCEHOPPER.

These websites are from Entertainment, Education, and Shopping categories, respectively with

132K, 176K, and 124K size of client-side code. In total, we extract 114 client-side security

checks, cross-validated by two authors. FENCEHOPPER successfully detects 89 (78%) of them,

mutates and tests 84 (74%) of them. It misses 25 checks from the websites because these

checks either do not return errors on check failures or use developers’ customized error report

functions. FENCEHOPPER fails to test 5 checks because they are triggered by one-time operations.

Since FENCEHOPPER only replay the data provided by the users, it cannot re-execute one-time

operations due to the constraints of business logic.

Detect Existing Vulnerabilities. To evaluate the coverage of FENCEHOPPER in detecting

missing server-side checks, we conduct an empirical analysis by applying it to detect existing

missing server-side check vulnerabilities. We collect a dataset of existing missing server-side

check vulnerabilities by searching public reports from HackerOne [63] and BugCrowd [31] with

60

Table 3.5. 14 existing missing server-side check vulnerabilities. FENCEHOPPER detects 10 but misses
4 vulnerabilities (in gray cells).

Category Description of Client-side Check Bypass Issues Severity

1 Education Email validation code bypass when verifying user email Critical
2 Business Phone validation code bypass in registration High
3 Government Email validation bypass High
4 Technology Email validation bypass when enabling a feature High
5 Social Bypass password authentication when changing password High
6 Shopping Phone number validation bypass leads to OTP leak Critical
7 Business Bypass Terms of Service Medium
8 Business Shop cart limit bypass Medium
9 Finance Bypass name input validation Medium
10 Business Bypass phone validation in registration High
11 Technology Bypass password authentication in password reset High
12 Finance Bypass user agreement Medium
13 Recreation Email validation is bypassed High
14 Technology Username check is bypassed Medium

keywords ‘client side’, ‘bypass’, and ‘validation’ in titles and descriptions, which end up with 257

matched cases. Then we deduplicate and filter out cases without concrete descriptions, cases that

are not related to missing server-side checks for web applications, which ends up with 24 cases.

We try to reproduce these 24 cases by looking at the victim website and identify the vulnerable

client side interface, among which only 14 cases still preserve the client-side interface that aligns

with the vulnerability description. Among these 14 cases, 2 are critical vulnerabilities, 7 are

high level, and 5 are medium level. We apply FENCEHOPPER to the websites containing these

14 cases to determine their detection capabilities. Since the disclosed reports are post-mortem,

all vulnerabilities we collect have already been fixed. Therefore, we consider FENCEHOPPER

successful if it identifies the client-side checks and sends out testing requests.

Out of 14 cases, FENCEHOPPER successfully detects 10 of them as listed in Table 3.5,

including 1 critical, 5 high, and 4 medium level vulnerabilities. There are 4 vulnerabilities that

FENCEHOPPER fails to detect. 2 false negatives are because of the obfuscation of client-side

code, which prevents FENCEHOPPER from analyzing and identifying the client-side checks

61

effectively. 2 false negative cases are because the client-side checks are in other functions

that FENCEHOPPER’s inter-procedural analyses fail to cover. Due to the scalability concerns,

FENCEHOPPER only extends its inter-procedural analysis for one level. In total, the false negative

rate of FENCEHOPPER in detecting existing missing server-side check vulnerabilities is 29%.

3.4.5 Manual Effort and Time

We measure the breakdown of the runtime for each component. For site exploration, the

average time is 5.2 minutes. For static analysis, it takes 11.9 seconds on average. For replay and

data fix, it takes 3.7 mins on average. In total, it takes 9.1 minutes on average for each website.

The site exploration consumes the most time on web page navigation. For adoption efforts in

site exploration phases, a PhD student spends less than 10 minutes to record operations on each

website with the screenshots and URLs provided by FENCEHOPPER. For the effort of examining

vulnerability reports of FENCEHOPPER, it takes 15 minutes on average for the student to check

and validate each vulnerability.

3.5 Security Impact Analysis

3.5.1 Systematic Analysis

New vulnerabilities are categorized into four groups: broken authentication (22.9%),

broken data integrity (27%), broken business logic (4.2%), and legal agreement violations

(45.8%).

Broken Authentication. These vulnerabilities allow attackers to bypass checks in login, reg-

istration, and access control on the websites. 5 vulnerabilities allow attackers to bypass email

verification during login and gain unauthorized account access. Websites addressed these as

critical/high-impact issues upon our reporting. 2 vulnerabilities are missing server-side checks on

the password authentication: one enables attackers to log out of other login sessions without the

correct password, locking users out of their accounts. The other allows two-factor authentication

62

disabled without a password, weakening account security.

4 vulnerabilities involve bypassing the rate limit. Missing server-side checks on mobile

code rate limits enable attackers to request different mobile code messages at a high frequency,

incurring costs for service providers with potential exhaustion of the one-time passcode pools,

brute-force attacks, and user harassment. Bypassing captcha verification enables automated

scripts to circumvent human verification, leading to denial of service and brute-force attacks.

Risk to Data Integrity. 13 Vulnerabilities in this category enable attackers to input data that does

not comply with the checks enforced by developers on the client side. The input data includes

usernames, passwords, and emails. For ethics considerations, we do not try any malicious input

for further analysis but directly report these to the website owners. However, attackers can

potentially try to inject malicious data through these vulnerable input interfaces to perform SQL

injection, cross-site scripting, and command injection attacks. They can input excessively long

data to flood the application, causing a denial of service. Besides, missing server-side checks on

usernames can enable attackers to choose offensive or harmful usernames, making the website a

hostile environment for other users.

Legal Agreement Violation. 22 Vulnerabilities in this category enable the attackers to skip

agreements related to the terms of service and privacy policy on the websites. By doing so, they

can potentially engage in behaviors that violate these agreements and subject web application

providers to legal liabilities. This could also lead to legal issues since the attackers can skip

agreement on dispute resolution options, which harms the websites’ reputation. This category

contains non-trivial bugs. Existing vulnerability reports [?, ?, ?] show that these vulnerabilities

are of medium to high severity in developers’ perspective. Moreover, upon our reporting of these

vulnerabilities, 90% of the websites promptly addressed the legal agreement violation bypass

rather than dismissing them as inconsequential issues.

Broken Business Logic. 2 vulnerabilities are closely related to the business logic of the websites:

missing server-side checks on question correctness and no-cheating agreements, which results in

unfair advantages.

63

3.5.2 Case Study

Sign In
Username

Verification Code

victimwebsite**.com

Send Verification Code

① Generate input invalid data
 “xzcvbcn”

② Bypass the client-side check
 checkUser().done(cb1 cb2).fail(cb2 cb1)

③ Fix missing data object
 t.email = “attacker@gmail.com”

④ Validate response
 200 OK “success”

⑤ Manual Validation
 Attacker’s email receives verify codes

Account
Takeover!

Figure 3.8. Email Verification Code Bypass. The verification code sent to email can be bypassed by
mutating client-side code and fill in attacker’s email address in missing data objects. Name and UI of the

victim website is anonymized.

We illustrate a type of vulnerabilities that FENCEHOPPER effectively identifies, which is

found on 5 websites and affects over 20 million users, including a financial website (16 million),

a news website (40 million), a real estate information website (1.8 million), an e-magazine

website (9 million), and an investment analysis website (358.1 K). This case highlights the

importance of client-side code mutation and missing data fixes performed by FENCEHOPPER,

which existing tools and even human experts fail to cover. In this case, the victim website allows

users to log in by inputting their usernames. The website then sends a one-time passcode to

the user’s email, with which the users can log in to this website without passwords (Figure 3.8).

The client-side code normally checks if the entered username is registered. However, with

FENCEHOPPER’s mutation, the passwordlessLogin() function is triggered regardless of the

checkUser() result. Attackers can proceed with a passwordless login and trigger a verification

code request, even with an unregistered username. FENCEHOPPER automatically fills missing

data objects t.email and t.user, leading to a success check bypass. The code snippet is as follows:

this.checkUser(user, this.conf.checkUserPath)

64

.done(passwordlessLogin(t)alert(“User not exists!”))

.fail(alert(“User not exists!”) passwordlessLogin(t))

function passwordlessLogin(t) {

post(url, t.user, t.email , ...) // Missing data object

}

Upon further investigation of this reported missing server-side check, we discover that the one-

time passcode is received by the address filled into t.email by FENCEHOPPER regardless of

the data fixed into t.user. This means that when t.email is the attacker’s email and t.user is

the victim’s username, the attacker’s email will receive the one-time code, granting them access

to the victim’s account.

3.6 Limitations and Discussion

Limitations. FENCEHOPPER’s effectiveness is partly limited by its reliance on client-side checks

to detect missing server-side validations. It operates under the assumption that analogous checks

are either fully present or entirely absent on the server, leading to single-instance testing per check.

This might overlook checks that are only partially implemented on the server side. Besides, as

mentioned in Section 3, our analysis doesn’t account for code cloaking, assuming accessibility to

uncloaked source code. Moreover, the analysis of FENCEHOPPER is neither complete nor sound

due to the known challenges in JavaScript analysis like handling asynchronous events [97, 142],

dynamic testing coverage etc. FENCEHOPPER is a supplement to existing security testing tools

that target to detect complex vulnerabilities that existing tools fail to detect.

Ethics and Responsible Disclosure. We adhered to stringent ethical standards and responsible

disclosure practices. Our testing was conducted using legitimate email and third-party accounts

under our control, without accessing private user data. Request generation mimicked normal

user behavior, avoiding any form of denial-of-service attacks. Upon identifying vulnerabilities,

we promptly informed developers and anonymized sensitive details of the affected websites,

65

including their identity, interface, and code. For vulnerabilities that potentially affect the data

integrity of the website, we report them proactively without injecting any harmful data into the

website.

3.7 Related Work

Client-Side Missing Check Detection. Previous works also observe that missing checks in

client-side code lead to vulnerabilities, which can be exploited when attackers input illegal data

through the web clients and the requests are sent to the servers due to the missing client-side

checks. FLAX [142] can detect various types of client-side validation vulnerabilities by analyzing

the client-side code and fuzzing the web clients. ZigZag [174] instruments the client-side code

so that it can capture the malformed requests deviating from normal control flows and data values

in the client-side code. It focuses on detecting client-side validation vulnerabilities in browsers,

while FENCEHOPPER aims to find missing server-side security checks. Gelato [65] performs

taint analysis on the client source code, traverses the call graph, and generates input values based

on the semantics of the source code. These works focus on the client-side flaws and assume that

attackers interact with the client and exploit missing checks in the client-side code. However,

they cannot prevent attackers from directly sending manipulated requests to the servers, which

exploit server-side vulnerabilities.

[81] detects business logic tampering in web application client side like removing the

subscription bar above news without memberships, inspired from some Chrome extensions

like AdBlock [14] and Bypass Paywalls [74]. Although it also mutates client-side code on the

part that displays pop-up windows to block readers from viewing some content, it focuses on

detecting client-side vulnerabilities. In comparison, we focus on mutating client-side code to

examine if server sides incorrectly neglect some checks (based on the false sense of security

stemming from the existence of client-side checks). Therefore, FENCEHOPPER still needs to

ensure sending testing requests to the server, while the code mutation in [81] focuses on disabling

66

client-side rendering.

Server-Side Missing Check Detection. Previous works detect missing checks by inferring

invariants from execution traces. BLOCK [90] infers invariants between web messages and

session states. LogicScope [91] creates a finite state machine from execution traces and runtime

data. BATMAN [89] focuses on database access control violations via SQL query analysis.

WAPTEC [29] provides a unified framework for combining the above constraints together.

However, these methods have limitations in trace coverage and adaptation to evolving web

services. Unlike these, our approach based on mutating client-side code avoids these issues and

complements invariant-based methods.

In gray-box methods, client-side code analysis aids payload generation. NoTamper [28]

and WARDroid [97] analyze code for constraint violations, while TamperProof [154] focuses on

server defense against parameter tampering. These static methods, however, lack comprehensive

information. FENCEHOPPER dynamically executes and mutates client code, which generates

more representative requests to uncover latent server vulnerabilities, even in complex web

services involving third-party services.

Bypass testing, introduced in [118], identifies client-side check patterns for server testing

but is limited to specific patterns. FENCEHOPPER offers a broader approach by systematically

analyzing and mutating client-side JavaScript checks, thus detecting missing server-side checks

more effectively.

Specific Type Vulnerability Detection. Other works [189, 157, 35, 169, 155] detects security

vulnerabilities in access control [169, 188], payment [170, 157], and digital content [80] services

based on specific work models of these services. For example, [157] detects logic vulnerabilities

in e-commerce applications by statically analyzing the invariant violation in checkout processes.

[155] infers role-specific security logic in web applications to identify missing authorization

checks. AuthScope [189] substitutes HTTP protocol fields to discover unauthorized access. Com-

pared to them, FENCEHOPPER aims to detect missing checks without making any assumptions

about the service models. Besides, many previous works focus on detecting input validation

67

vulnerabilities on the server side, including cross-site scripting [78, 84] and SQL injections [173].

These works focus on specific types or patterns of vulnerability, whereas FENCEHOPPER is more

general and systematically explores security checks (regardless of specific types) in client-side

code.

Other Related Work. Mutation testing [125, 128, 179, 102, 103] is a technique for evaluating

test suite quality by generating a large number of mutants and executing them against the

suites. In FENCEHOPPER, we use mutation for testing vulnerabilities in server-side components.

Forced execution is essential in FENCEHOPPER after code mutation, inspired by many previous

works. [181] forced execution on multiple paths by dynamic instrumentation for debugging the

control flow bugs. [126] forced binary execution on different paths to expose hidden malware

behaviors with higher coverage. [82] explored forced execution in JavaScript programs to trigger

hidden malware scripts. Similar approaches are also used for malware detection in mobile apps

[39, 77]. One challenge of forced execution is ensuring crash-free execution as missing data

objects can cause execution failures. In FENCEHOPPER, forced execution is used to dispatch

requests to the server side while preserving most of the client-side functionality for request

processing. It borrows insights from previous work to fix the missing data on demand and

proposes fixing strategies based on web scenarios. Code mutation is also applied in fuzzing tools

like TFUZZ [127], which mutates tested programs to efficiently search for fuzzing payloads

in C++ code. However, FENCEHOPPER diverges from TFUZZ in its objective, generating

test inputs based on client-side code rather than employing random fuzzing. Additionally,

FENCEHOPPER validates vulnerabilities by inspecting web responses, whereas TFUZZ requires

reverting to the unmutated program to confirm the presence of bugs.

3.8 Case Study: Blind Spots in Third-Party Services

In this chapter, we briefly discuss another example of cross-component blind spots as

a supplemental case study to this thesis. We study a recent type of web services, AI-related

68

services, and identify two typical blind spots in OpenAI, a representative platform in this category.

Two typical blind spots are: (1) Bring your own key. As illustrated in OpenAI policy, this is

not allowed [120]. However, many third-party services are not aware of this but instead ask

customers to provide them with the OpenAI API key so that they use customers’ quota instead

of managing their own OpenAI quota. (2) Client-side key leak. The key leaks happen when the

developers are not aware of a fact that the client-side code is accessible to users. If the developers

put OpenAI API keys on the client side, by inspecting the client-side code, malicious users can

easily obtain these keys and use the keys for their own benefit. To investigate this problem,

we conduct a study on the websites and Chrome extensions that could potentially use OpenAI

services.

We selected the websites from Google Search resutls. We search with keywords “AI

chat”, ”AI writing”, and ”AI assistant” and filter out the results before 2023. We choose the first

10 pages of search results for each keywords and manually check each search results to make

sure this is a web service that provide AI services. In the end, we get 577 websites. Among

them, 80 websites (13.9%) provide ‘bring your own key’ interface. 2 (0.3%) websites leaked

OpenAI API keys in the client-side code. We selected the Chrome extensions from Chrome Web

Store [54]. We search with the same keywords as for websites, and filter out the extensions that

has less than 10 users. We manually check each search results to make sure this is a Chrome

extension that provide AI services. In the end, we get 791 Chrome extensions, with 51 of them

(6.4%) have ‘bring your own key’ interface. 15 extensions (1.9%) leak OpenAI API keys in their

client. The study results reveal that a proportion of developers do have these blind spots in the

new-emerging services, which could cause severe security and financial consequences.

3.9 Acknowledgments

Chapter 3, in full, is a reprint of the material under submission. Zhong, Li; Zhang, Bokai;

Zhou, Yuanyuan. The dissertation author was the primary investigator and author of this paper.

69

Chapter 4

Conclusion

4.1 Summary of this Dissertation

This dissertation presents two methods for detecting bugs from developers’ blind spots.

This dissertation presents VALUECHECK to help developers to identify cross-authorship blind

spots in the collaborative large-scale code repositories. It discusses the perception of unused defi-

nitions in C/C++ programs, initially regarded as redundant code but potentially indicating deeper

issues. This dissertation presents multiple real-world examples to illustrate severe bugs caused by

unused definitions, such as security vulnerabilities and configuration errors. Existing techniques

for detecting unused definitions are insufficient for their inability to differentiate between trivial

redundancies and critical bugs, leading to impracticality and high false positives. Furthermore,

developers often disable unused definition warnings due to their overwhelming volume. To

address these challenges, this dissertation proposes an approach called VALUECHECK, which

leverages insights on cross-scope unused definitions, identifies intentional unused definitions,

and prioritizes bug detection using code familiarity models. VALUECHECK is evaluated on

Linux, MySQL, OpenSSL, and NFS-ganesha, demonstrating its effectiveness in detecting and

fixing real bugs with a reduced false positive rate compared to existing tools. This dissertation

then presents FENCEHOPPER to detect another type of developers’ blind spots, cross-component

blind spots. We observe that the internal architecture of web applications cause a false sense

of security, which leads to missing server-side checks, a type of cross-component blind spots.

70

FENCEHOPPER detects missing server-side checks from web applications based on a novel code

mutation method, which supplements existing methods when there are complicated constraints

or data relationships. We design a check-based code mutation method including code mutation,

input generation, and output validation. We conduct experiments with FENCEHOPPER on top

300 websites from Tranco, which proves to be a practical framework. Our evaluation reveals

the detection of 48 previously unidentified vulnerabilities by our framework. Within this set, 5

vulnerabilities are classified as critical access control issues, posing a substantial risk of unautho-

rized account access for more than 20 million users. To evaluate FENCEHOPPER’s coverage, we

manually compile a dataset containing 14 documented instances of missing server-side checks

sourced from HackerOne and Bugcrowd. Impressively, FENCEHOPPER successfully pinpoints

10 of these vulnerabilities. Notably, our findings indicate that over 60% of the vulnerabilities

identified by FENCEHOPPER remain undetected by existing state-of-the-art tools.

4.2 Lessons Learned

In this section, I will share insights drawn from my research experiences, providing

lessons for future research endeavors and encourage forthcoming investigations.

Firstly, the escalating complexity of software development poses a formidable challenge

for developers striving to comprehend the entirety of the development landscape. With the

necessity to integrate code from various sources and components, developers face the arduous

task of discerning potential risks and understanding underlying assumptions. Moreover, the

time constraints in agile development methodologies underscore the need for tools that can

help developers in this endeavor, mitigating the limitations in human judgment. Novel ap-

proaches are required to analyze developers’ interactions with code beyond traditional methods

that solely depends on code analysis and testing. Incorporating additional meta information,

such as authorship details, could further enable wiser and more reliable decision-making in

software development. We provide an illustrative example to demonstrate how modern software

71

engineering can leverage these underlying factors for enhanced outcomes in VALUECHECK.

Furthermore, other potential factors are worth consideration including: (1) Developers’

interactions with Integrated Development Environments (IDEs). (2) The integral processes of

code review and documentation within most industry organizations. (3) The reliance on third-

party documentation and tutorials, which can sometimes be ambiguous and mislead developers.

We believe that future research could gain significant insights by exploring these directions.

Secondly, an expanded range of applications stands to benefit from cross-component

blind spot detection. As micro-service architecture becomes more prevalent, the assumptions

across the boundaries between different components are not diminishing, but rather proliferating.

Within such systems, comprising components from diverse trust zones, ensuring the elimination

of cross-component blind spots poses a significant challenge. The methodologies introduced

in this dissertation are promising for further application in these contexts. By mutating each

component’s code strategically, we can effectively transform it into a testing engine for validating

other components that interact with it. This approach augments the reliability and security of all

components within complex systems, thereby fortifying the integrity of the entire system.

Thirdly, as discussed in one pilot study of this dissertation, the advent of new services

introduces fresh challenges within web ecosystems. Recent popular web services such as OpenAI

APIs and Stripe APIs exemplify this trend, featuring inadequate access management designs

coupled with ineligible usage costs. Such flawed designs leave unwitting developers vulnerable

to cross-component blind spots inherently in software development practices. Our preliminary

investigation uncovers a concerning prevalence of such practices among developers, leading

to significant repercussions. These include ’bring your own key’ architectures and client-side

key leakage, the ramifications of which cannot be understated. Hence, we advocate for further

research to delve into the underlying causes and raise awareness among developers about these

risks. Moreover, addressing this issue necessitates collaborative efforts from various stakeholders

to promote the adoption of more robust access management protocols in emerging services, even

as some vendors may prioritize financial gains over security considerations.

72

Bibliography

[1] Diagnostic flags in Clang. https://clang.llvm.org/docs/
DiagnosticsReference.html#wunused, 2007.

[2] GitPython Documentation — GitPython 3.1.12 documentation. https://gitpython.readthed
ocs.io/en/stable/index.html, 2015.

[3] Smatch: pluggable static analysis for C. https://lwn.net/Articles/691882/, 2016.

[4] Smatch the Source Matcher. https://smatch.sourceforge.net/, 2020.

[5] Software Developers : Occupational Outlook Handbook: : U.S. Bureau of Labor
Statistics. https://www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm, 2020-09-01.

[6] 90https://www.itpro.com/development/application-programming-interface-api/358546/
nearly-every-company-surveyed-experienced, 2021.

[7] ESLint - Pluggable JavaScript linter. https://eslint.org/, 2021.

[8] Infer Static Analyzer — Infer — Infer. https://fbinfer.com/, 2021.

[9] NFS-ganesha : User Space NFS and 9P File Server. https://nfs-ganesha.github.io/, 2021.

[10] The LLVM Compiler Infrastructure. https://llvm.org/, 2021.

[11] Warning Options (Using the GNU Compiler Collection (GCC)). https://gcc.gnu.org/
onlinedocs/gcc/Warning-Options.html#Warning-Options, 2021.

[12] re - Regular expression operations. https://docs.python.org/3/library/re.html, 2022.

[13] StackOverflow. https://stackoverflow.com/, 2022.

[14] Inc. AdBlock. Adblock — best ad blocker. https://chromewebstore.google.com/detail/
gighmmpiobklfepjocnamgkkbiglidom, 2023.

[15] Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long Lu. Finding
bugs using your own code: detecting functionally-similar yet inconsistent code. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2025–2040, 2021.

73

https://clang.llvm.org/docs/DiagnosticsReference.html#wunused
https://clang.llvm.org/docs/DiagnosticsReference.html#wunused
https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html
https://lwn.net/Articles/691882/
https://smatch.sourceforge.net/
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.itpro.com/development/application-programming-interface-api/358546/nearly-every-company-surveyed-experienced
https://www.itpro.com/development/application-programming-interface-api/358546/nearly-every-company-surveyed-experienced
https://eslint.org/
https://fbinfer.com/
https://nfs-ganesha.github.io/
https://llvm.org/
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#Warning-Options
https://docs.python.org/3/library/re.html
https://stackoverflow.com/
https://chromewebstore.google.com/detail/gighmmpiobklfepjocnamgkkbiglidom
https://chromewebstore.google.com/detail/gighmmpiobklfepjocnamgkkbiglidom

[16] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles, techniques.
Addison wesley, 7(8):9, 1986.

[17] Lars Ole Andersen. Program analysis and specialization for the C programming language.
PhD thesis, Citeseer, 1994.

[18] Anonymous. Anonymized Repository - Anonymous GitHub. https:
//anonymous.4open.science/r/FenceHooper-1DBC/, 2023.

[19] John Anvik and Gail C Murphy. Determining implementation expertise from bug reports.
In Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE
Workshops 2007), pages 2–2. IEEE, 2007.

[20] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. A frame-
work for automated testing of javascript web applications. In Proceedings of the 33rd
International Conference on Software Engineering, pages 571–580, 2011.

[21] Joop Aué, Maurı́cio Aniche, Maikel Lobbezoo, and Arie van Deursen. An exploratory
study on faults in web api integration in a large-scale payment company. In Proceedings
of the 40th International Conference on Software Engineering: Software Engineering in
Practice, pages 13–22, 2018.

[22] MA Awad. A comparison between agile and traditional software development methodolo-
gies. University of Western Australia, 30:1–69, 2005.

[23] Jia-Ju Bai, Tuo Li, and Shi-Min Hu. {DLOS}: Effective static detection of deadlocks in
{OS} kernels. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
367–382, 2022.

[24] Andrew Begel, James D Herbsleb, and Margaret-Anne Storey. The future of collabora-
tive software development. In Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work Companion, pages 17–18, 2012.

[25] Cristiano Bertolini, Martin Schäf, and Pascal Schweitzer. Infeasible code detection.
In International Conference on Verified Software: Tools, Theories, Experiments, pages
310–325. Springer, 2012.

[26] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010.

[27] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premkumar
Devanbu. Don’t touch my code! examining the effects of ownership on software quality.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 4–14, 2011.

74

https://anonymous.4open.science/r/FenceHooper-1DBC/
https://anonymous.4open.science/r/FenceHooper-1DBC/

[28] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and
VN Venkatakrishnan. Notamper: automatic blackbox detection of parameter tamper-
ing opportunities in web applications. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 607–618, 2010.

[29] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and VN Venkatakrishnan. Waptec:
whitebox analysis of web applications for parameter tampering exploit construction. In
Proceedings of the 18th ACM conference on Computer and communications security,
pages 575–586, 2011.

[30] Preston Briggs and Keith D Cooper. Effective partial redundancy elimination. ACM
SIGPLAN Notices, 29(6):159–170, 1994.

[31] BugCrowd. #1 Crowdsourced Cybersecurity Platform — Bugcrowd. https://
www.bugcrowd.com/, 2023.

[32] Martin Campbell-Kelly. The airy tape: An early chapter in the history of debugging. 1990.

[33] CapacitorSet. box-js - a tool for studying javascript malware. https://github.com/
CapacitorSet/box-js, 2023.

[34] Gregory J Chaitin. Register allocation & spilling via graph coloring. ACM Sigplan Notices,
17(6):98–101, 1982.

[35] Eric Y Chen, Shuo Chen, Shaz Qadeer, and Rui Wang. Securing multiparty online services
via certification of symbolic transactions. In 2015 IEEE Symposium on Security and
Privacy, pages 833–849. IEEE, 2015.

[36] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans Kaashoek, and
Nickolai Zeldovich. Using crash hoare logic for certifying the fscq file system. In
Proceedings of the 25th Symposium on Operating Systems Principles, pages 18–37, 2015.

[37] Lykes Claytor and Francisco Servant. Understanding and leveraging developer inexpertise.
In Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, pages 404–405, 2018.

[38] Cleidson RB De Souza, David Redmiles, and Paul Dourish. ” breaking the code”, moving
between private and public work in collaborative software development. In Proceedings
of the 2003 ACM International Conference on Supporting Group Work, pages 105–114,
2003.

[39] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. iris: Vetting
private api abuse in ios applications. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 44–56, 2015.

[40] Chris Duckett. Zoom concedes custom encryption is substandard as citizen lab pokes
holes in it. https://www.zdnet.com/article/zoom-concedes-custom-encryption-is-sub-
standard-as-citizen-lab-pokes-holes-in-it/, 2023.

75

https://www.bugcrowd.com/
https://www.bugcrowd.com/
https://github.com/CapacitorSet/box-js
https://github.com/CapacitorSet/box-js
https://www.zdnet.com/article/zoom-concedes-custom-encryption-is-sub-standard-as-citizen-lab-pokes-holes-in-it/
https://www.zdnet.com/article/zoom-concedes-custom-encryption-is-sub-standard-as-citizen-lab-pokes-holes-in-it/

[41] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code. ACM SIGOPS
Operating Systems Review, 35(5):57–72, 2001.

[42] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black widow: Blackbox
data-driven web scanning. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1125–1142. IEEE, 2021.

[43] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Effi-
cient construction of approximate call graphs for javascript ide services. In 2013 35th
International Conference on Software Engineering (ICSE), pages 752–761. IEEE, 2013.

[44] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy Falleri.
Impact of developer turnover on quality in open-source software. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pages 829–841, 2015.

[45] Martin Fowler. Refactoring: Improving the design of existing code. In 11th European
Conference. Jyväskylä, Finland, 1997.

[46] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[47] Thomas Fritz, Jingwen Ou, Gail C Murphy, and Emerson Murphy-Hill. A degree-
of-knowledge model to capture source code familiarity. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1, pages 385–394,
2010.

[48] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong Su. Scalable
and systematic detection of buggy inconsistencies in source code. In Proceedings of the
ACM international conference on Object oriented programming systems languages and
applications, pages 175–190, 2010.

[49] Emanuel Giger and Harald Gall. Object-oriented design heuristics. 1996.

[50] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox fuzzing for
security testing. Communications of the ACM, 55(3):40–44, 2012.

[51] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck, Peter Pietzuch, and
Rüdiger Kapitza. Trustjs: Trusted client-side execution of javascript. In Proceedings of
the 10th European Workshop on Systems Security, pages 1–6, 2017.

[52] Google. Angular. https://angular.io/, 2023.

[53] Google. Google bug hunters - google bug hunters. https://bughunters.google.com/, 2023.

[54] Google. Chrome Web Store. https://chromewebstore.google.com/, 2024.

76

https://angular.io/
https://bughunters.google.com/
https://chromewebstore.google.com/

[55] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K-C Yeh,
and Justin Cappos. Understanding misunderstandings in source code. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, pages 129–139,
2017.

[56] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz, Xinyi Xu,
Cemal Kaygusuz, and Thorsten Holz. Atropos: Effective fuzzing of web applications for
server-side vulnerabilities.

[57] Neelam Gupta, Aditya P Mathur, and Mary Lou Soffa. Generating test data for branch cov-
erage. In Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated
Software Engineering, pages 219–227. IEEE, 2000.

[58] Rajiv Gupta, DA Benson, and Jesse Zhixi Fang. Path profile guided partial dead code
elimination using predication. In Proceedings 1997 International Conference on Parallel
Architectures and Compilation Techniques, pages 102–113. IEEE, 1997.

[59] HackerOne. Captcha bypass in coinbase signup form. https://hackerone.com/reports/
246801, 2017.

[60] HackerOne. Bypass password authentication for updating email and phone number -
security vulnerability. https://hackerone.com/reports/770504, 2020.

[61] HackerOne. India - otp bypass on phone number verification for account creation. https:
//hackerone.com/reports/762695, 2020.

[62] HackerOne. Otp bypass in verifying nin. https://hackerone.com/reports/1314172, 2021.

[63] Hackerone. HackerOne — #1 Trusted Security Platform and Hacker Program. https:
//www.hackerone.com/, 2023.

[64] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have a significant
but small effect on faults. ACM Transactions on Software Engineering and Methodology
(TOSEM), 23(4):1–39, 2014.

[65] Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan. Gelato: Feedback-driven and
guided security analysis of client-side web applications. In 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 618–629.
IEEE, 2022.

[66] Michael Hind and Anthony Pioli. Which pointer analysis should i use? In Proceedings
of the 2000 ACM SIGSOFT international symposium on Software testing and analysis,
pages 113–123, 2000.

[67] Joona Hoikkala. ffuf/ffuf: Fast web fuzzer written in go. https://github.com/ffuf/ffuf,
2023.

77

https://hackerone.com/reports/246801
https://hackerone.com/reports/246801
https://hackerone.com/reports/770504
https://hackerone.com/reports/762695
https://hackerone.com/reports/762695
https://hackerone.com/reports/1314172
https://www.hackerone.com/
https://www.hackerone.com/
https://github.com/ffuf/ffuf

[68] Hao Hu, Hongyu Zhang, Jifeng Xuan, and Weigang Sun. Effective bug triage based on
historical bug-fix information. In 2014 IEEE 25th International Symposium on Software
Reliability Engineering, pages 122–132. IEEE, 2014.

[69] Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou. Protecting data integrity of
web applications with database constraints inferred from application code. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 632–645, 2023.

[70] Haochen Huang, Chengcheng Xiang, Li Zhong, and Yuanyuan Zhou. {PYLIVE}:{On-the-
Fly} code change for python-based online services. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 349–363, 2021.

[71] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-
Yen Kuo. Securing web application code by static analysis and runtime protection. In
Proceedings of the 13th international conference on World Wide Web, pages 40–52, 2004.

[72] Yuan Huang, Qiaoyang Zheng, Xiangping Chen, Yingfei Xiong, Zhiyong Liu, and Xiao-
nan Luo. Mining version control system for automatically generating commit comment.
In 2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 414–423. IEEE, 2017.

[73] Yuan-Shin Hwang and Joel Saltz. Identifying def/use information of statements that
construct and traverse dynamic recursive data structures. In International Workshop on
Languages and Compilers for Parallel Computing, pages 131–145. Springer, 1997.

[74] iamadamdev. iamadamdev/bypass-paywalls-chrome: Bypass paywalls web browser ex-
tension for chrome and firefox. https://github.com/iamadamdev/bypass-paywalls-chrome,
2023.

[75] Instagram. Instagram — vulnerability disclosure policy — hackerone. https://
hackerone.com/instagram?type=team, 2023.

[76] Richard Johnson and Keshav Pingali. Dependence-based program analysis. In Pro-
ceedings of the ACM SIGPLAN 1993 conference on Programming language design and
implementation, pages 78–89, 1993.

[77] Ryan Johnson and Angelos Stavrou. Forced-path execution for android applications on
x86 platforms. In 2013 IEEE Seventh International Conference on Software Security and
Reliability Companion, pages 188–197. IEEE, 2013.

[78] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis tool
for detecting web application vulnerabilities. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 6–pp. IEEE, 2006.

[79] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.
An exploratory study of the impact of antipatterns on class change-and fault-proneness.
Empirical Software Engineering, 17(3):243–275, 2012.

78

https://github.com/iamadamdev/bypass-paywalls-chrome
https://hackerone.com/instagram?type=team
https://hackerone.com/instagram?type=team

[80] I Luk Kim, Weihang Wang, Yonghwi Kwon, and Xiangyu Zhang. Bftdetector: Automatic
detection of business flow tampering for digital content service.

[81] I Luk Kim, Yunhui Zheng, Hogun Park, Weihang Wang, Wei You, Yousra Aafer, and
Xiangyu Zhang. Finding client-side business flow tampering vulnerabilities. In Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering, pages
222–233, 2020.

[82] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng, Xiangyu
Zhang, and Dongyan Xu. J-force: Forced execution on javascript. In Proceedings of the
26th international conference on World Wide Web, pages 897–906, 2017.

[83] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. Finding semantic bugs in file systems with an extensible fuzzing framework. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 147–
161, 2019.

[84] Lukas Knittel, Christian Mainka, Marcus Niemietz, Dominik Trevor Noß, and Jörg
Schwenk. Xsinator. com: From a formal model to the automatic evaluation of cross-site
leaks in web browsers. In CCS, pages 1771–1788, 2021.

[85] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. ACM
SIGPLAN Notices, 29(6):147–158, 1994.

[86] Chris Lattner. Llvm and clang: Next generation compiler technology. In The BSD
conference, volume 5, 2008.

[87] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and
Haryadi S. Gunawi. Samc: Semantic-aware model checking for fast discovery of deep
bugs in cloud systems. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, page 399–414, USA, 2014. USENIX
Association.

[88] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. Path-sensitive and alias-aware typestate
analysis for detecting os bugs. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
859–872, 2022.

[89] Xiaowei Li, Xujie Si, and Yuan Xue. Automated black-box detection of access control
vulnerabilities in web applications. In Proceedings of the 4th ACM Conference on Data
and Application Security and Privacy, pages 49–60, 2014.

[90] Xiaowei Li and Yuan Xue. Block: a black-box approach for detection of state violation
attacks towards web applications. In Proceedings of the 27th Annual Computer Security
Applications Conference, pages 247–256, 2011.

79

[91] Xiaowei Li and Yuan Xue. Logicscope: Automatic discovery of logic vulnerabilities
within web applications. In Proceedings of the 8th ACM SIGSAC symposium on Informa-
tion, computer and communications security, pages 481–486, 2013.

[92] Xiaowei Li and Yuan Xue. A survey on server-side approaches to securing web applica-
tions. ACM Computing Surveys (CSUR), 46(4):1–29, 2014.

[93] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Automatically identifying security checks for
detecting kernel semantic bugs. In Computer Security–ESORICS 2019: 24th European
Symposium on Research in Computer Security, Luxembourg, September 23–27, 2019,
Proceedings, Part II 24, pages 3–25. Springer, 2019.

[94] Kangjie Lu Lu, Aditya Pakki, and Qiushi Wu. Detecting missing-check bugs via semantic-
and context-aware criticalness and constraints inferences. In Proceedings of the 28th
USENIX Conference on Security Symposium, 2019.

[95] Gurpreet Singh Matharu, Anju Mishra, Harmeet Singh, and Priyanka Upadhyay. Empirical
study of agile software development methodologies: A comparative analysis. ACM
SIGSOFT Software Engineering Notes, 40(1):1–6, 2015.

[96] David W McDonald and Mark S Ackerman. Expertise recommender: a flexible rec-
ommendation system and architecture. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 231–240, 2000.

[97] Abner Mendoza and Guofei Gu. Mobile application web api reconnaissance: Web-to-
mobile inconsistencies & vulnerabilities. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 756–769. IEEE, 2018.

[98] Meta. Meta bug bounty — facebook. https://www.facebook.com/BugBounty/, 2023.

[99] Meta. React - the library for web and native user interfaces. https://react.dev/, 2023.

[100] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo Kim.
Cross-checking semantic correctness: The case of finding file system bugs. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 361–377, 2015.

[101] Shawn Minto and Gail C Murphy. Recommending emergent teams. In Fourth International
Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007), pages 5–5.
IEEE, 2007.

[102] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. Efficient javascript muta-
tion testing. In 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation, pages 74–83. IEEE, 2013.

[103] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. Guided mutation testing for
javascript web applications. IEEE Transactions on Software Engineering, 41(5):429–444,
2014.

80

https://www.facebook.com/BugBounty/
https://react.dev/

[104] Audris Mockus and James D Herbsleb. Expertise browser: a quantitative approach to
identifying expertise. In Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, pages 503–512. IEEE, 2002.

[105] Youssef A. Mohamed. More secure Facebook Canvas : Tale of $126k worth of bugs that
lead to Facebook Account Takeovers. https://ysamm.com/?p=708, 2022.

[106] Youssef A. Mohamed. DOM-XSS in Instant Games due to improper verification of
supplied URLs. https://ysamm.com/?p=779, 2023.

[107] Maliheh Monshizadeh, Prasad Naldurg, and VN Venkatakrishnan. Mace: Detecting
privilege escalation vulnerabilities in web applications. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 690–701, 2014.

[108] John C Munson and Sebastian G Elbaum. Code churn: A measure for estimating the im-
pact of code change. In Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272), pages 24–31. IEEE, 1998.

[109] Robert Muth. Register liveness analysis of executable code. Manuscript, Dept. of
Computer Science, The University of Arizona, Dec, 1998.

[110] Gtm Mänôz. Two factor authentication bypass on facebook — by gtm mänôz — jan, 2023
— pentester nepal. https://medium.com/pentesternepal/two-factor-authentication-bypass-
on-facebook-3f4ac3ea139c, 2023.

[111] Mathieu Nassif and Martin P Robillard. Revisiting turnover-induced knowledge loss in
software projects. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 261–272. IEEE, 2017.

[112] Tung Thanh Nguyen, Tien N Nguyen, Evelyn Duesterwald, Tim Klinger, and Peter San-
thanam. Inferring developer expertise through defect analysis. In 2012 34th International
Conference on Software Engineering (ICSE), pages 1297–1300. IEEE, 2012.

[113] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis.
Springer Science & Business Media, 2004.

[114] John Noll, Sarah Beecham, and Ita Richardson. Global software development and
collaboration: barriers and solutions. ACM inroads, 1(3):66–78, 2011.

[115] Diego Novillo. Gcc an architectural overview, current status, and future directions. In
Proceedings of the Linux Symposium, volume 2, page 185, 2006.

[116] Jeff Offutt, Qingxiang Wang, and Joann Ordille. An industrial case study of bypass
testing on web applications. In 2008 1st International Conference on Software Testing,
Verification, and Validation, pages 465–474. IEEE, 2008.

[117] Jeff Offutt, Ye Wu, Xaiochen Du, and Hong Huang. Web application bypass testing.
In Proceedings of the 28th Annual International Computer Software and Applications
Conference, 2004. COMPSAC 2004., volume 2, pages 106–109. IEEE, 2004.

81

https://ysamm.com/?p=708
https://ysamm.com/?p=779
https://medium.com/pentesternepal/two-factor-authentication-bypass-on-facebook-3f4ac3ea139c
https://medium.com/pentesternepal/two-factor-authentication-bypass-on-facebook-3f4ac3ea139c

[118] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass testing of web applications.
In 15th International Symposium on Software Reliability Engineering, pages 187–197.
IEEE, 2004.

[119] Adeyefa Oluwatoba. 2fa bypass vulnerability — part 1 — by adeyefa oluwatoba —
medium. https://sainttobs.medium.com/2fa-bypass-vulnerability-part-1-447cf11a1525,
2021.

[120] OpenAI. Terms of use. https://openai.com/policies/terms-of-use, 2023.

[121] OWASP. Customized headers - owasp cheat sheet series. https:
//cheatsheetseries.owasp.org/cheatsheets/Cross-Site Request Forgery Prevention
Cheat Sheet.html#custom-request-headers, 2023.

[122] OWASP. Double submit cookie - owasp cheat sheet series. https:
//cheatsheetseries.owasp.org/cheatsheets/Cross-Site Request Forgery Prevention
Cheat Sheet.html#double-submit-cookie, 2023.

[123] OWASP. Token-based mitigation - owasp cheat sheet series. https:
//cheatsheetseries.owasp.org/cheatsheets/Cross-Site Request Forgery Prevention
Cheat Sheet.html#token-based-mitigation, 2023.

[124] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrea
De Lucia. Do they really smell bad? a study on developers’ perception of bad code smells.
In 2014 IEEE International Conference on Software Maintenance and Evolution, pages
101–110. IEEE, 2014.

[125] Mike Papadakis and Nicos Malevris. Mutation based test case generation via a path
selection strategy. Information and Software Technology, 54(9):915–932, 2012.

[126] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong Su.
X-force: Force-executing binary programs for security applications. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pages 829–844, 2014.

[127] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program transfor-
mation. In 2018 IEEE Symposium on Security and Privacy (SP), pages 697–710. IEEE,
2018.

[128] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. Practical mutation
testing at scale. arXiv preprint arXiv:2102.11378, 2021.

[129] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyński,
and Wouter Joosen. Tranco: A research-oriented top sites ranking hardened against
manipulation. arXiv preprint arXiv:1806.01156, 2018.

[130] Burp Suite Professional PortSwigger. Burp suite professional - portswigger. https:
//www.kali.org/tools/dirbuster/, 2023.

82

https://sainttobs.medium.com/2fa-bypass-vulnerability-part-1-447cf11a1525
https://openai.com/policies/terms-of-use
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#custom-request-headers
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#custom-request-headers
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#custom-request-headers
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#token-based-mitigation
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#token-based-mitigation
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#token-based-mitigation
https://www.kali.org/tools/dirbuster/
https://www.kali.org/tools/dirbuster/

[131] Pouya. India - otp bypass on phone number verification for account creation. https:
//www.darabi.me/2015/04/bypass-facebook-csrf.html, 2015.

[132] Mark Probst, Andreas Krall, and Bernhard Scholz. Register liveness analysis for optimiz-
ing dynamic binary translation. In Ninth Working Conference on Reverse Engineering,
2002. Proceedings., pages 35–44. IEEE, 2002.

[133] yns000 ranulf. Jbrofuzz download — sourceforge.net. https://sourceforge.net/projects/
jbrofuzz/, 2013.

[134] Dark Reading. Facebook bug allows 2fa bypass via instagram. https://www.darkread
ing.com/application-security/facebook-bug-2fa-bypass-instagram, 2023.

[135] Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun. Demystify official
api usage directives with crowdsourced api misuse scenarios, erroneous code examples
and patches. In Proceedings of the ACM/IEEE 42nd international conference on software
engineering, pages 925–936, 2020.

[136] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 49–61, 1995.

[137] Athos Ribeiro, Paulo Meirelles, Nelson Lago, and Fabio Kon. Ranking warnings from
multiple source code static analyzers via ensemble learning. In Proceedings of the 15th
International Symposium on Open Collaboration, pages 1–10, 2019.

[138] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic
behavior of javascript programs. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 1–12, 2010.

[139] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and
Peter Sewell. Sibylfs: formal specification and oracle-based testing for posix and real-
world file systems. In Proceedings of the 25th Symposium on Operating Systems Principles,
pages 38–53, 2015.

[140] Nayan B Ruparelia. The history of version control. ACM SIGSOFT Software Engineering
Notes, 35(1):5–9, 2010.

[141] Amir Saboury, Pooya Musavi, Foutse Khomh, and Giulio Antoniol. An empirical study
of code smells in javascript projects. In 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER), pages 294–305. IEEE, 2017.

[142] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. Flax: Systematic
discovery of client-side validation vulnerabilities in rich web applications. In NDss, 2010.

[143] Martin Schäf, Daniel Schwartz-Narbonne, and Thomas Wies. Explaining inconsistent
code. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineer-
ing, pages 521–531, 2013.

83

https://www.darabi.me/2015/04/bypass-facebook-csrf.html
https://www.darabi.me/2015/04/bypass-facebook-csrf.html
https://sourceforge.net/projects/jbrofuzz/
https://sourceforge.net/projects/jbrofuzz/
https://www.darkreading.com/application-security/facebook-bug-2fa-bypass-instagram
https://www.darkreading.com/application-security/facebook-bug-2fa-bypass-instagram

[144] Paul B Schneck. A survey of compiler optimization techniques. In Proceedings of the
ACM annual conference, pages 106–113, 1973.

[145] David Schuler and Thomas Zimmermann. Mining usage expertise from version archives.
In Proceedings of the 2008 international working conference on Mining software reposi-
tories, pages 121–124, 2008.

[146] Hina Shah, Carsten Gorg, and Mary Jean Harrold. Understanding exception han-
dling: Viewpoints of novices and experts. IEEE Transactions on Software Engineering,
36(2):150–161, 2010.

[147] Lwin Khin Shar and Hee Beng Kuan Tan. Predicting common web application vul-
nerabilities from input validation and sanitization code patterns. In Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering, pages
310–313, 2012.

[148] Nishant Sharma. CVE-2020-8772 exploitation under 3 minutes — by nishant sharma —
pentester academy blog. https://blog.pentesteracademy.com/cve-2020-8772-exploitation-
under-3-minutes-594265b4e26a, 2020.

[149] Raed Shatnawi and Wei Li. An investigation of bad smells in object-oriented design. In
Third International Conference on Information Technology: New Generations (ITNG’06),
pages 161–165. IEEE, 2006.

[150] Bingyu Shen. Automatic Methods to Enhance Server Systems in Access Control Diagnosis.
University of California, San Diego, 2022.

[151] Bingyu Shen, Tianyi Shan, and Yuanyuan Zhou. Multiview: Finding blind spots in
access-deny issues diagnosis. In USENIX Security Symposium, 2023.

[152] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button verifica-
tion of file systems via crash refinement. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16, page 1–16, USA, 2016.
USENIX Association.

[153] Dag IK Sjøberg, Aiko Yamashita, Bente CD Anda, Audris Mockus, and Tore Dybå.
Quantifying the effect of code smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156, 2012.

[154] Nazari Skrupsky, Prithvi Bisht, Timothy Hinrichs, VN Venkatakrishnan, and Lenore
Zuck. Tamperproof: a server-agnostic defense for parameter tampering attacks on web
applications. In Proceedings of the third ACM conference on Data and application security
and privacy, pages 129–140, 2013.

[155] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. Rolecast: finding missing
security checks when you do not know what checks are. In Proceedings of the 2011
ACM international conference on Object oriented programming systems languages and
applications, pages 1069–1084, 2011.

84

https://blog.pentesteracademy.com/cve-2020-8772-exploitation-under-3-minutes-594265b4e26a
https://blog.pentesteracademy.com/cve-2020-8772-exploitation-under-3-minutes-594265b4e26a

[156] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in llvm. In
Proceedings of the 25th international conference on compiler construction, pages 265–266.
ACM, 2016.

[157] Fangqi Sun, Liang Xu, and Zhendong Su. Detecting logic vulnerabilities in e-commerce
applications. In NDSS, 2014.

[158] Sven. Jsdetox - a javascript malware analysis tool using static analysis / deobfuscation
techniques and an execution engine featuring html dom emulation. http://www.relentless-
coding.org/projects/jsdetox, 2023.

[159] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. Autoises: Auto-
matically inferring security specification and detecting violations. In USENIX Security
Symposium, pages 379–394, 2008.

[160] the ZAP Dev Team. The zap homepage. https://www.zaproxy.org/, 2024.

[161] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida. Revis-
iting code ownership and its relationship with software quality in the scope of modern
code review. In Proceedings of the 38th international conference on software engineering,
pages 1039–1050, 2016.

[162] Aaron Tomb and Cormac Flanagan. Detecting inconsistencies via universal reachability
analysis. In Proceedings of the 2012 International Symposium on Software Testing and
Analysis, pages 287–297, 2012.

[163] Kali Linux Tools. dirbuster — kali linux tools. https://www.kali.org/tools/dirbuster/,
2023.

[164] Twitter. Twitter — bug bounty program policy — hackerone. https://hackerone.com/
twitter?type=team, 2023.

[165] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis Pa-
paevripides, and Elias Athanasopoulos. webfuzz: Grey-box fuzzing for web applications.
In Computer Security–ESORICS 2021: 26th European Symposium on Research in Com-
puter Security, Darmstadt, Germany, October 4–8, 2021, Proceedings, Part I 26, pages
152–172. Springer, 2021.

[166] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and
Alireza Karami Motlagh. An empirical study of c++ vulnerabilities in crowd-sourced
code examples. IEEE Transactions on Software Engineering, 48(5):1497–1514, 2020.

[167] Mitchell Wand and Igor Siveroni. Constraint systems for useless variable elimination. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 291–302, 1999.

85

http://www.relentless-coding.org/projects/jsdetox
http://www.relentless-coding.org/projects/jsdetox
https://www.zaproxy.org/
https://www.kali.org/tools/dirbuster/
https://hackerone.com/twitter?type=team
https://hackerone.com/twitter?type=team

[168] Chuanqi Wang, Yanhui Li, Lin Chen, Wenchin Huang, Yuming Zhou, and Baowen Xu.
Examining the effects of developer familiarity on bug fixing. Journal of Systems and
Software, 169:110667, 2020.

[169] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts through
facebook and google: A traffic-guided security study of commercially deployed single-
sign-on web services. In 2012 IEEE Symposium on Security and Privacy, pages 365–379.
IEEE, 2012.

[170] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to shop for free online–
security analysis of cashier-as-a-service based web stores. In 2011 IEEE symposium on
security and privacy, pages 465–480. IEEE, 2011.

[171] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng, Yijian
Wu, and Yang Liu. An empirical study of usages, updates and risks of third-party libraries
in java projects. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 35–45. IEEE, 2020.

[172] Ying-Jie Wang, Liang-Ze Yin, and Wei Dong. Amchex: Accurate analysis of missing-
check bugs for linux kernel. Journal of Computer Science and Technology, 36:1325–1341,
2021.

[173] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications
for injection vulnerabilities. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 32–41, 2007.

[174] Michael Weissbacher, William Robertson, Engin Kirda, Christopher Kruegel, and Gio-
vanni Vigna. {ZigZag}: Automatically hardening web applications against client-side
validation vulnerabilities. In 24th USENIX Security Symposium (USENIX Security 15),
pages 737–752, 2015.

[175] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen, Haochen Huang, Tianyin
Xu, Yuanyuan Zhou, Cindy Moore, Xinxin Jin, and Tianwei Sheng. Towards continu-
ous access control validation and forensics. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pages 113–129, 2019.

[176] Aiko Yamashita and Leon Moonen. Exploring the impact of inter-smell relations on
software maintainability: An empirical study. In 2013 35th International Conference on
Software Engineering (ICSE), pages 682–691. IEEE, 2013.

[177] Evan You. Vue.js - the progressive javascript framework — vue.js. https://vuejs.org/,
2023.

[178] Asimina Zaimi, Apostolos Ampatzoglou, Noni Triantafyllidou, Alexander Chatzigeorgiou,
Androklis Mavridis, Theodore Chaikalis, Ignatios Deligiannis, Panagiotis Sfetsos, and
Ioannis Stamelos. An empirical study on the reuse of third-party libraries in open-source
software development. In Proceedings of the 7th Balkan Conference on Informatics
Conference, pages 1–8, 2015.

86

https://vuejs.org/

[179] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and
Lu Zhang. Predictive mutation testing. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, pages 342–353, 2016.

[180] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M. Azab, and Ruowen
Wang. Pex: A permission check analysis framework for linux kernel. In Proceedings of
the 28th USENIX Conference on Security Symposium, SEC’19, page 1205–1220, USA,
2019. USENIX Association.

[181] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through automated
predicate switching. In Proceedings of the 28th international conference on Software
engineering, pages 272–281, 2006.

[182] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based string solver for
web application analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 114–124, 2013.

[183] Li Zhong. A survey of prevent and detect access control vulnerabilities. arXiv preprint
arXiv:2304.10600, 2023.

[184] Li Zhong and Zilong Wang. Can chatgpt replace stackoverflow? a study on robustness
and reliability of large language model code generation, 2023.

[185] Li Zhong and Zilong Wang. A study on robustness and reliability of large language model
code generation. arXiv preprint arXiv:2308.10335, 2023.

[186] Li Zhong, Chengcheng Xiang, Haochen Huang, Bingyu Shen, Eric Mugnier, and
Yuanyuan Zhou. Effective bug detection with unused definitions. In Proceedings of
the Nineteenth European Conference on Computer Systems, pages 720–735, 2024.

[187] Lily Zhong, Zilong Wang, and Jingbo Shang. Ldb: A large language model debugger via
verifying runtime execution step-by-step. arXiv preprint arXiv:2402.16906, 2024.

[188] Yuchen Zhou and David Evans. Ssoscan: Automated testing of web applications for single
sign-on vulnerabilities. In 23rd {USENIX} Security Symposium ({USENIX} Security 14),
pages 495–510, 2014.

[189] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. Authscope: Towards automatic
discovery of vulnerable authorizations in online services. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 799–813,
2017.

87

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Contribution
	ValueCheck: Effective Bug Detection with Unused Definitions
	FenceHopper: Detect Vulnerabilities by Client-Side Code Mutation

	ValueCheck: Effective Bug Detection with Unused Definitions
	Motivation
	Background
	Liveness Analysis
	Unused Definitions

	Design Overview
	Detection Scope
	Framework Overview

	Detecting Cross-Scope Unused Definitions
	Detect Local Unused Definitions
	Authorship Lookup

	Pruning
	Configuration Dependency
	Cursor
	Unused Hints
	Peer Definition Pruning

	Ranking based on Code Familiarity
	Implementation
	Evaluation
	Experiment Setup
	Detect New Bugs
	Accuracy of ValueCheck
	Comparison with Existing Tools
	Authorship and Code Familiarity Effectiveness
	Scalability of ValueCheck

	Limitations and Discussion
	Limitation
	Alternatives of the DOK model

	Related Work
	Acknowledgments

	FenceHopper: Detect Vulnerabilities by Client-Side Code Mutation
	Introduction
	Problem: Over-relying on Security Checks in Web Client
	Existing Solutions
	Our Approach

	Client-side Code Mutation
	Identify Security Checks in Client-Side
	Mutate Security Checks in Client-Side
	Generate Data Input Based on Checks
	Fix Missing Data after Code Mutation

	Implementation
	Evaluation
	Detect New Vulnerabilities
	Comparison to Other Tools
	Detailed Evaluation of Each Component
	Coverage of FenceHopper
	Manual Effort and Time

	Security Impact Analysis
	Systematic Analysis
	Case Study

	Limitations and Discussion
	Related Work
	Case Study: Blind Spots in Third-Party Services
	Acknowledgments

	Conclusion
	Summary of this Dissertation
	Lessons Learned

	Bibliography

