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Abstract

Spectral Gaps of Random Hecke Operators

by

Zhe Xu

In this dissertation, we address a number of issues dealing with the edge spectrum of random

Hecke operators. In particular, we focus on the spectral gap property of random 2d-regular

graphs, which can be thought of as random Hecke operators of form z = π1 +π
−1
1 + · · ·+πd +

π
−1
d with πi ∈ Sn under the permutation representation of symmetric group Sn. This dissertation

is organized in essentially two parts.

In the first portion of the dissertation, we deal with the spectral gap property of random

2d-regular graphs. Puder and Parzanchevski ([Puder11], [PP12]) developed a crucial theorem

of cancellations between certain collections of closed walks in random n lifts, which simplifies

the work of counting the expected number of closed walks in random lifts. Our observation of

the connection between generalized forms and core graphs enables us to adopt the cancellation

theorem to estimate the expected number of closed walks under the permutation model. The

resulting contribution from the cancellation theorem can be expanded to any order by using

Friedmans expansion method [Fri91]. The freedom of choosing expansion order leads to an

optimal estimation of the spectral gap. However, it is challenging to control high order terms

from the expansion. We solve this key issue by separating the summation of irreducible walks

into “a good part” and “a bad part” , and showing the probability of the bad part occurring is

small. With a lemma of complex random variables [Fri08], and Bartholdi identity [OS09], we

v



provide an alternative proof of Friedman’s strong Alon’s conjecture λ(G) ≤ 2
√

2d−1+ ε for

any ε > 0 with probability 1− c

nd
√

d−1−1
2 e

in a simpler way.

There is a strong connection between random Hecke operators/random regular graphs

and random matrices. It is conjectured that the edge spectra of random regular graphs can

be modeled by certain Tracy-Widom distributions from random matrices. Due to the lack of

a proper normalization factor, only indirect evidence [MNS08] is known. In Chapter 3, we

consider a normalization factor obtained by matching the first four moments of random Hecke

operators/random regular graphs with the corresponding moments of general β ensembles. The

validity of this normalization factor is supported by numerical analysis, where we are able to

demonstrate that the edge spectra of both random Cayley graphs G(SL2(Fp),Sp) and the Fourier

transform of random Hecke operators over SU(2) at irreducible representations can be modeled

by certain Tracy-Widom distributions.
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Chapter 1

Introduction

For any finite integer N ≥ 2, independently and randomly picking g1, · · · ,gN from a

group G, one can associate a random Hecke type of operator z in the form

z f (x) =
N

∑
i=1

( f (gix)+ f (g−1
i x)) for f ∈ L2(G). (1.1)

To understand the spectrum of z, one can study the spectrum of δ̂zρ, the Fourier transform of

δz = ∑
N
i=1 δgi +δg−1

i
at a representation ρ ∈ Ĝ on a vector space W . Here the Fourier transform

of a complex valued function f on G at ρ is defined as

f̂ = ∑
g∈G

f (g)ρ(g). (1.2)

By assuming z is self-adjoint, ẑ is also self-adjoint with respect to a suitable inner product of W .

Therefore, the spectrum spec(ẑ) is real and is contained in the interval [−2N,2N] as follows,

λ1 ≥ λ2 · · · ≥ λdim(ρ), (1.3)

where dim(ρ) is the dimension of the representation ρ.

Let ‖ẑ‖ be the norm of matrix ẑ. If ρ is an irreducible representation, then ‖ẑ‖ =

maxi=1,···dim(ρ){|λi|}. And if ρ is the permutation/regular representation (which contains the
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trivial representation), ‖ẑ‖= max{|λ2|, |λdim(ρ)|}. There is a spectral gap, if limdim(ρ)→∞ ‖ẑ‖<

2N. For a given z, does spectral gap exist? if so, how large would it be?

The above two questions are especially important for d-regular graphs (i.e. each

vertex has the same degree d). A d-regular graph (for even d) on n vertices can also be con-

sidered as the Fourier transform of a Hecke operator z at the permutation representation ρ of

the symmetric group Sn, where the Hecke operator z is constructed by picking d/2 permuta-

tions π1, · · · ,πd/2 independently and randomly from Sn. If there is a spectral gap, the spectral

gap property of a regular graph shows that the graph is an expander, a highly-connected sparse

graph. Here “sparse” is in terms of a linear relation between the number of edges and the

number of vertices. A thorough survey of expanders can be found in [HLW06]. Expanders can

be described by the expansion coefficient:

h(G) = min
{S⊂|V |||S|≤ |V |2 }

|E(S,V/S)|
|S|

, (1.4)

where V is the vertex set of a graph G, and |E(S,V/S)| is the number of edges between a subset

S of the vertex set and its complement set V/S. G is an expander, if and only if, h(G) ≥ ε > 0

for any ε > 0. In addition, there is a relationship by Alon and Milman ([Alon86], [AM85])

between the spectral gap property and the expansion coefficient, d−λ2
2 ≤ h(G) ≤

√
2d(d−λ2)

for a d-regular graph with eigenvalues d = λ1 ≥ λ2 · · · ≥ λn.

Pinsker [Pinsker73] first noted random d-regular graphs are expanders (i.e. positive

spectral gaps exist). Quantitatively, how large are those spectral gaps? If denoting λ(G) =

max(λ2, |λn|), for a d-regular graph on n vertices, Alon-Boppana bound [Nil91] tells that

λ(G)≥ 2
√

d−1−on(1).

Lubotzky, Phillips and Sarnak [LPS88] and Margulis [Margulis88] provided a cel-
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ebrated construction of a family of Cayley graphs X p,q of PSL2(Fq) with respect to a very

special choice of a generating set of size p + 1, which are 2p + 2-regular graphs satisfying

λ ≤ 2
√

2p+1. These particular graphs are called Ramanujan graphs. With respect to Alon-

Boppana bound, the spectral gap of a Ramanujan graph is optimal asymptotically.

Alon [Alon86] conjectured that for any d ≥ 3 and ε > 0, λ(G) ≤ 2
√

d−1+ on(1)

for “most” d-regular graphs on a sufficiently large number of vertices. In other words, almost

every d-regular graph is near Ramanujan.

Friedman used the trace method (for example, see [BS87] and [FK81]) to attack

Alon’s conjecture, and obtained a bound λ(G) ≤ 2
√

d−1+ 2logd + c in [Fri91] for even d.

Later, Friedman noticed that the small spectral gap comes from certain small configurations

(so-called “supercritical tangles” in [Fri08]). He constructed a B-selective trace by ruling out

all irreducible closed walks which have a length < B subwalk tracing out any supercritical tan-

gle of rank d
√

d−1−1
2 e, then additionally he required that subgraphs traced out by the B-selective

trace not to contain a minimal collection of the above supercritical tangles. Through this so-

phisticated construction, Alon’s conjecture is finally proved in a monumental paper [Fri08].

Theorem 1.0.1 (Friedman). For a given ε > 0 and even d ≥ 4, there exists a constant c =

c(d,ε)> 0, such that for a random d-regular graph on n vertices,

λ(G)≤ 2
√

d−1+ ε with probability 1− c

nd
√

d−1−1
2 e

(1.5)

Stemming from Linial and Puder’s new machinery [LP10], Puder and Parzanchevski

built a crucial theorem ([Puder11], [PP12], recalled in Theorem 2.2.6) to analyze closed walks

in random n lifts of a finite connected graph. Namely, using the notation of Stallings’ folding

core graphs (for example, see [Sta83], [KM02], [MVW07]), they defined a quotient relation

3



between core graphs, and noticed a cancellation among a certain collection of quotient core

graphs. The cancellation can be used to simplify the work of counting the expected number

of closed walks in random n lifts. Very recently, using random n lifts of a banquet of d/2 self

loops, Puder [Puder12] provided a simpler but weaker bound of Alon conjecture. This result is

followed by a simple computation of an expansion of all closed walks up to order d/2 using the

cancellation.

Theorem 1.0.2 (Puder). For a random d-regular graph on n vertices with even d,

λ(G)≤ 2
√

d−1+0.84 a.s.. (1.6)

There are other similar bounds for λ(G) of type C
√

2d−1. The interested reader can

refer to [Puder12] where the author provides a list of similar results.

Our work is motivated by the simplicity of counting the expected number of closed

walks in random n lifts using Puder and Parzanchevski’s cancellation theorem ([Puder11],

[PP12]). Relying on our observation of a connection between generalized forms and core

graphs, we are able to adopt the cancellation theorem to estimate the expected number of closed

walks under the permutation model. The resulting contribution from the cancellation theorem

can be expanded to any order by using Friedman’s expansion method [Fri91]. However, high

order terms from the expansion are challenging to control simultaneously and directly. Through

separating a high order term into a good part and a bad part, and showing the probability of the

bad part occurring is small, we solve the above key issue. As a result, we are able to arrive at the

following Theorem 1.0.3. Compared with Puder’s approach which leads to Theorem 1.0.2, our

approach has an advantage of choosing any expansion order benefited from using Friedman’s

expansion method under the permutation model. Later, we will see that the freedom of choosing
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expansion order leads to an optimal error estimation.

Theorem 1.0.3 (Theorem 2.3.14). For a 2d-random regular graph on n vertices with 2d ≥

6, and any ε > 0, there exists an expansion order rexp, such that λ(G) ≤ 2
√

2d−1+ ε with

probability 1−Od,rexp(n
−b(
√

2d−1+1)/2c).

The result of Theorem 1.0.3 is similar as Friedman’s form of Alon’s conjecture (see

Theorem 1.0.1). Unlike [Fri08], where Friedman constructed an artificial B-selective trace at the

beginning, then tediously computed the expansion for the B-selective trace and the expansion for

the B-selective trace on graphs without certain supercritical tangles, we bypass this complexity

by starting from a simpler computation of an expansion for all irreducible closed walks up

to any order, and naturally separate the expansion into a good part and a bad part with small

probability of the bad part occurring. Consequently, the analysis of the good part and the bad

part is easier without involving B-selective trace.

Table 1.1 summarizes the major ingredients of Friedman’s [Fri08], Puder’s [Puder12],

and our approach.

More precisely, an outline of our proof is as follows.

Step 1 The Trace method. Let A be the adjacency matrix of a random 2d-regular

graph G on n vertices. We estimate the expected number of closed walks of length k in the

graph using the trace formula

n

∑
i=1

λ
k
i = tr(Ak) = #{closed walks of length k}=

n

∑
i=1

∑
ω∈Πk

I[ω(i) = i] ,

where I[ω(i) = i] is the indicator of the event that a length k word ω ∈ Πk corresponds to a

closed walk from vertex i to itself on the graph G, and Π = {π±1
1 , · · · ,π±1

d }. For a closed walk

ω from vertex t1 = i to itself with sequentially visited vertices t = {t2, · · · , tk}, Friedman [Fri91]

5



Table 1.1: Comparing between Friedman’s, Puder’s, and our approach.

Friedman’s

[Fri08]

Under the permutation model, constructing B-selective trace, then computing

the expansion of B-selective trace to any order; next, further computing the

expansion of B-selective trace on subgraphs without containing certain small

configurations to any order; after estimating the loss probability, Friedman’s

Lemma 2.1.12 of complex random variables, and a Markov type of argument

lead to Friedman’s Theorem 1.0.1.

Puder’s

[Puder12]

Applying Puder and Parzanchevski’s Theorem 2.2.6 to count closed walks in

random n lifts of a banquet with d self loops; after cancellation among cer-

tain core graphs, computing the sizes of critical groups by a purely counting

argument; next, applying co-growth formula to obtain leading terms of the ex-

pansion of all walks up to order 2d; finally a Markov type of argument leads

to Puder’s Theorem 1.0.2.

Our approach Under the permutation model, the connection between generalized forms and

core graphs (Lemma 2.3.1) makes Puder and Parzanchevski’s Theorem 2.2.6

still applicable in our setting; Friedman’s expansion method [Fri91] is applied

to study the result from Theorem 2.2.6 to any order; then applying a pivotal

trick of separating high order terms into a good part and a bad part, and showing

the probability of bad part occurring is small; finally using Bartholdi identity

(recalled in Lemma 2.3.10), Friedman’s Lemma 2.1.12 of complex random

variables, and a Markov type of argument lead to our Theorem 1.0.3.
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defined a generalized form Γω,i,t to be a subgraph on all distinct vertices among {i, t2, · · · , tk},

and the edge set of Γω,i,t contains all of generic free choice steps and coincidence steps (see

Definition 2.1.1). If ignoring a particular (ω, i, t) and maintaining the same shape, one has an

abstract generalized form Γ. Given a length k word ω, a labeling l, and an abstract generalized

form Γ, the expected total number of closed walks for various (i, t) can be easily calculated as,

E[Γ]ω = ∑
{(i,t)|Γω,i,t=Γ}

EI[ω(i) = i] =
n!

(n− v)!

d

∏
j=1

(n−α j)!
n!

, (1.7)

where v is the size of vertex set of Γ, and α j is the number of appearance of π j and π
−1
j labeled

edges in Γ for j = 1, · · · ,d.

Additionally, Friedman showed that the Taylor expansion of E[Γ]ω up to any order r

(see Lemma 2.1.3) is,

E[Γ]ω = nv−e(p0 +
p1

n
+ · · ·+ pr−1

nr−1 +
error

nr ), (1.8)

with error term ≤ exp( rk
n−k )k

2r, where e = |E(Γ)|, v = |V (Γ)|, and k is the length of walk. Here

pi is a polynomial pi = pi(v,α1, · · · ,αd) for i = 0, · · · ,r−1.

Step 2 New machinery of closed walk counting in random n lifts. Linial and Puder

first [LP10] associated a word ω with a universal core graph ΓΠ(< ω >), and defined its core

graph quotients ΓΠ(H) with < ω >
Π

� H ≤ Fd(Π). The universal graph of ω together with all its

quotient graphs is a set denoted as Qω. Further, Puder and Parzanchevski ([Puder11], [PP12])

defined the primitive rank π(ω) and the critical group Crit(ω) of a word ω (see Definition

2.2.4). For a fixed ω, in random n lifts, Puder and Parzanchevski provided a crucial estimation

(see Theorem 2.2.6) of the expected number of fixed points of ω,

E[Φω,n] = ∑
Γ∈Qω

E(Γ) = 1+
|Crit(ω)|
nπ(ω)−1 +O(

1
nπ(ω)

), (1.9)

7



where the error term can be re-estimated to be an uniform bound Ck2π(ω)+2

nπ(ω)−1(n−k2)
for all ω of length

k (see Lemma 2.2.10). We provide an alternative proof of the above uniform error term in

Lemma 2.3.3.

For random n lifts of a graph Ω, the expected number of fixed points of ω is the same

as the expected number of closed walks in the lifts of Ω under ω , and the expected value is

fully determined by ω. Therefore, the expected number of fixed points of ω under realization

ΓΠ(H) ∈ Qω is the expected number of closed walks on ΓΠ(H).

Step 3 A connection between generalized forms and core graphs. We observe that

there is a one-to-one correspondence between generalized forms and core graphs (see Lemma

2.3.1). Obviously, the expected number of closed walks compatible with Γω,i,t on a 2d-regular

graph with n vertices is the same as the expected number of fixed points of ΓΠ(H) in random n

lifts of a graph with d edges. That is,

E[Γ]ω =
n!

(n− v)!

d

∏
j=1

(n−α j(Γ))!
n!

= E(ΓΠ(H)). (1.10)

The above one-to-one correspondence and Equation (1.10) enable Puder and

Parzanchevski’s result (Equation 1.9) to be applicable in the permutation model. Namely, by

grouping closed walks according to their primitive ranks and the quotient relation, and using

Puder and Parzanchevski’s result (Equation 1.9), we have the summation of irreducible closed

walks of length k as follows (see Equation 2.22),

∑
i

∑
ω∈Irredk

I[ω(i) = i] (1.11)

≤
d

∑
j=1

∑
{ω∈Irredk|π(ω)= j}

(1+
|Crit(ω)|

n j−1 +
Ck2 j+2

n j−1(n− k2)
)

≤ 2d(2d−1)k−1 +
d

∑
j=1

∑
Γ with

Coin(Γ)= j

(
E[Γ]ωI(multiplicity of each edge≥ 2)+

Ck2 j+2

n j−1(n− k2)

)
,

8



where Coin(Γ) denotes the coincidence of Γ. Here we apply a useful observation by Linial and

Puder (see Lemma 2.2.8) of the following equivalence:

1. H is a proper algebraic extension of < ω >;

2. The closed walk ω in the core graph ΓΠ(H) traces every edge at least twice.

Step 4 Friedman’s expansion method. For each primitive rank j = 1, · · · ,d, the

resulting irreducible closed walks from Equation 1.11 can be re-grouped as,

∑
Γ with

Coin(Γ)= j

E[Γ]ωI(mi ≥ 2) (1.12)

= ∑
Coin(T )= j

∑
m1,··· ,mt

with mi≥2

N(T,−→m ) ∑
k1,···kt≥1

and ∑
t
i=1 miki=k

∑
l∈LT,k1 ,··· ,kt

E[T, l],

where a type T (i.e. a type is an abstract generalized form by ignoring all degree two vertices.)

has edge set {e1, · · · ,et}, with edge multiplicities −→m = {m1, · · · ,mt} and edge lengths
−→
k =

{k1, · · · ,kt}. k is the length of closed walks, l ∈ LT,k1,··· ,kt is a labeling compatible with T of

fixed edge lengths
−→
k = {k1, · · · ,kt}, and N(T,−→m ) is the number of length k irreducible closed

walks compatible with T of edge multiplicities −→m .

When a type T is given, we need specify the multiplicities, the lengths, and the labels

of all edges. The starting point is the following result by Friedman (see Lemma 2.1.4),

∑
l∈LT,k1 ,··· ,kt

pi(T, l) = ∑
K1,K2,K3

(2d−1)|K1|(−1)|K2|QK1,K2,K3(
−→
k ), (1.13)

for a fixed type T , with fixed multiplicities −→m , fixed edge lengths
−→
k , and fixed coincidence

r ≤ d. And pi is the polynomial from the Taylor expansion of E[Γω] in Equation 1.8 with

i ≤ r− 1. K1,K2,K3 is a partition of the set
−→
k = {k1, · · · ,kt}, with size |Ks| = ∑k j∈Ks k j for

s = 1,2,3, and QK1,K2,K3 is a polynomial of degree at most 2i, whose coefficients are bounded

by (cd)cd2
.

9



In our case, after cancellation, since we are only left with irreducible closed walks

with edge multiplicities being larger than or equal to two, the computation of the expansion is

easier than Friedman’s original version [Fri91]. Essentially, the multiplicity condition reduces

the chance of a closed walk passing through certain bad configurations.

Proceeding along the lines of Friedman’s expansion method [Fri91], we finally obtain

the following result (see Proposition 2.3.5):

∑
Γ with

Coin(Γ)= j

E[Γ]ωI(mi ≥ 2) =
f j−1

n j−1 + · · ·+
frexp−1

nrexp−1 +
ε j

nrexp
, (1.14)

where the expansion order rexp will be chosen later. Thus, we have

f j−1, · · · , frexp−1 (1.15)

≤


(2d−1)

k
2 kc1d(c2drexp)

c2drexp if 1≤ j ≤ b(
√

2d−1+1)/2c

(2d−1)
k
2 ( 2 j−1√

2d−1
)k/2kc1d(c2drexp)

c2drexp if b(
√

2d−1+1)/2c< j ≤ d

with error ε j ≤C2d(2d−1)k−1k4 j+2rexpn1− j−rexp .

Step 5 Controlling high order terms from expansion. The expansion (Equation

1.14) is true for any expansion order rexp. However, when rexp is larger than b(
√

2d−1+1)/2c,

we have contributions of type (2d− 1)
k
2 ( 2l−1√

2d−1
)k/2kc1d(c2drexp)

c2drexp . It is difficult to control

all of those high order contributions simultaneously and directly. Through separating those high

order terms into a good part and a bad part, and showing the probability of the bad part occurring

is small, we solve this key issue. Roughly,

(2d−1)
k
2 (

2l−1√
2d−1

)k/2kc1d(c2drexp)
c2drexp (1.16)

= (2d−1)
k
2 kc1d(c2drexp)

c2drexp︸ ︷︷ ︸
good

+(2d−1)
k
2 ((

2l−1√
2d−1

)k/2−1)kc1d(c2drexp)
c2drexp︸ ︷︷ ︸

bad

10



Using the spectral method, the number of all length k closed walks in a type T with

edge multiplicities −→m can be easily computed to be O(kc(ρT )
m/2), where m = ∑i mi and ρT is

the spectral radius of T . Comparing this result with the above good part, the proof of Equation

1.14 and Equation 1.16 tells that we need restrict all irreducible closed walks to be those not

tracing out a subgraph H with λirred(H)≥
√

2d−1. As a result, irreducible closed walks with

the above property will be our good part, and the rest is the bad part. After determining the good

part and the bad part combinatorially, we will estimate the probability of the bad part occurring

in the next step.

Step 6 Bartholdi identity. A very useful tool to study the spectrum of a regular graph

is Bartholdi identity ([OS09], recalled in Lemma 2.3.10),

det(I2|E|− s(B− J)) = (1− s2)|E|−|V | det((1+(2d−1)s2)I|V |− sA), (1.17)

where A is the adjacency matrix of a 2d-regular graph G = (V,E), B is a 2E × 2E matrix

describing the length 2 irreducible walks of the graph G in terms of its directed edges, and J is

a 2E×2E matrix describing the length 2 back-tracking walks.

Furthermore, the spectrum of B− J can be read out as,

σ(B− J) =

{
2d−1,1,1× (|E|− |V |),−1× (|E|− |V |), (1.18)

√
2d−1eiφi ,

√
2d−1e−iφi , with φi = arccos(

λi

2
√

2d−1
) for i = 2, · · · , |V |

}
,

where 2d = λ1 ≥ λ2 · · · ≥ λ|V | are all the eigenvalues of the graph G.

From Bartholdi identity, we are able to read out the spectrum of directional Girred =

B− J. We realize that those bad part could be a banquet with b(
√

2d−1+ 1)/2c self loops.

Luckily, banquet with b(
√

2d−1+1)/2c self loops occurs with maximal probability

11



n−b(
√

2d−1+1)/2c in all of those bad part subgraphs. Also, it is easy to check that the prob-

ability of more than two occurrences of bad subgraph is smaller than n−b(
√

2d−1+1)/2c, and

there are only finite many bad subgraphs. Therefore, the total loss probability is bounded by

O(n−b(
√

2d−1+1)/2c).

Again, with help of Bartholdi identity, we are able to rewrite the eigenvalues of G into

a new form

µ1,2(λi) =
λi±

√
λi−4(2d−1)

2
for i = 2, · · · , |V |= n. (1.19)

The new eigenvalue forms µ1,2(λi) enable us to separate exceptional eigenvalues (i.e. λi ≥

2
√

2d−1) and well-tempered eigenvalues (i.e. λi < 2
√

2d−1).

Step 7 A sidestepping lemma of complex random variables. The very last tool is a

lemma of complex random variables from Friedman [Fri08], see Lemma 2.1.12. Very roughly,

for complex random variables θ1, · · · ,θcn, from the binomial expansion of order r, one would

expect

E(
cn

∑
i=1

(1−θi)
k) =

r−1

∑
j=0

p j(k)n− j +O(kr
′
n−r) for some polynomial p j(k), (1.20)

where r
′
= r

′
(r) is a constant. The lemma tells that there is a similar expansion for

E(∑cn
i=1 χ|θi|>log−2 n(1−θi)

k), where χ is the indicator function.

By the lemma of complex random variables (Lemma 2.1.12), and a Markov inequality

type standard argument, we obtain the main Theorem 1.0.3.

The second part of the dissertation focus on the connection between the spectra of

random matrices and the spectra of random d-regular graphs/random Hecke operators. Jakob-

son, Miller and Rivin [JMR96] indicated that the level spacing distribution of a generic regular

graph approaches that of the Gaussian orthogonal ensemble of random matrix theory. Later,

12



Miller, Novikoff and Sabelli [MNS08] pointed out that the edge spectra of families of random

regular graphs could be well modeled by β = 1 Tracy-Widom distribution. However, due to the

lack of proper normalization, the connection between the spectra of random regular graphs and

the spectra of random matrices is still not fully understood.

In Chapter 3, we provide a normalization factor by matching the first four moments

of general β ensembles with the first four moments of random regular graphs/random Hecke

operators. It is found that the normalization factor does not depend on the value of β, and

the dimension of a random matrix depends linearly on the dimension of a regular graph/Hecke

operator. Random d-regular graphs/random Hecke operators can be normalized in a similar

manner as random matrices, but with an extra factor of
√

n
d−1 .

Conjecture 1.0.4 (Conjecture 3.0.17). For a random d-regular graph on N vertices, or a ran-

dom Hecke operator with d/2 independent and random generators under N-dimensional irre-

ducible representation, its edge spectrum λ1,λN , and λ± = max(λ1, |λN |) can be normalized

as

λ̃edge = n1/6(λedge−µsample)

√
n

d−1
, (1.21)

where n∼ 2d
2d−1 N, and µsample is the sample mean of the edge spectrum.

Besides random d-regular graphs, random Cayley graphs over SL2(Fp) are another

important type of random Hecke operators. Bourgain and Gamburd [BGSL08] proved the ex-

istence of the uniform spectral gaps for Cayley graphs over SL2(Fp), and the existence of the

spectral gaps of random Hecke operators over SU(2) [BGSU08] and SU(N) [BG12]. We carry

out numerical studies of the edge spectra of random Cayley graphs G(SL2(Fp),Sp) and random

Hecke operators over SU(2) in Chapter 4, 5. These numerical studies conclude that the normal-
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ization factor is valid and explore the connection between the edge spectra of random Hecke

operators and random matrices.

In Chapter 4, all irreducible representations of SL2(Fp) are reviewed at the beginning.

There are p+5
2 principal irreducible representations and p+3

2 discrete irreducible representations.

The adjacency matrix of a Cayley graph G(SL2(Fp),Sp) can be decomposed into p+4 diagonal

blocks. The normalized (Chapter 3) edge spectra of the Cayley graph blocks are shown to fit

with certain Tracy-Widom distributions through numerical experiments. In order to obtain a

more conclusive evidence, the Kolmogorov-Smirnov tests are performed, and the P-values are

computed. When the dimension is large enough, a supportive conclusion is obtained. Also for

all prime number p, sample means of the edge spectra of all blocks are shown on the left side

of the Ramanujan bound, which converge to the Ramanujan bound as dimension increases.

In Chapter 5, similar numerical experiments of random Hecke operators over SU(2)

are carried out. SU(2) only has one type of irreducible representations SymNV (with V to

be standard two dimensional representation). With the normalization factor (Chapter 3), edge

spectra are shown to fit with certain Tracy-Widom distributions. The sample mean is also shown

on the left of the Ramanujan bound and converges to the Ramanujan bound.
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Chapter 2

Expansion of Random Regular Graphs

In this chapter, we provide an alternative proof of Alon’s conjecture for 2d-regular

graphs in a simpler way. Our approach contains five major ingredients: Linial and Puder’s

new machinery [LP10] along with the crucial cancellation result by Puder and Parzanchevski

([Puder11], [PP12]) of counting the expected number of closed walks in random n lifts; our ob-

servation of a connection between core graphs and generalized forms (see Lemma 2.3.1); Fried-

man’s earlier expansion method on random regular graphs [Fri91]; our key trick (see Equation

2.36) of controlling all high order terms in the expansion indirectly; and Friedman’s sidestep-

ping lemma of complex random variables [Fri08].

We start this chapter by reviewing Friedman’s expansion method of regular graphs

under the permutation model in Section 2.1. Then we revisit Linial, Puder and Parzanchevski’s

new framework of counting closed walks in random n lifts in Section 2.2. We complete the

proof of λ(G)≤ 2
√

2d−1+ ε with probability 1−O(n−b(
√

2d−1+1)/2c) in Section 2.3.
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2.1 A Brief Review of Friedman’s Approach

2.1.1 Expansion Method for Random Regular Graphs by Friedman

Friedman’s earlier approach [Fri91] is based on the trace method, where he was work-

ing under the permutation model of random 2d-regular graphs on n vertices. A 2d-regular graph

under the permutation model can be constructed as follows: pick d permutations π1, · · · ,πd in-

dependently and randomly, then the edge set is defined to be

E = {(i,π j(i)),(i,π−1
j (i))| j = 1, · · · ,d i = 1, · · · ,n} .

In the permutation model, any regular graph automatically carries with labels and directions.

Namely, edge (i,π j(i)) from vertex i to vertex π j(i) is labeled by πi, and edge (i,π−1
j (i)) from

vertex i to vertex π
−1
j (i) is labeled by π

−1
i (One has the freedom of reversing the direction of

π−1 labeled edge by changing the label to be π). Thus, any length k walk on graph G will give

rise to a length k formal word ω from a rank d free group Fd(Π) with letters Π = {π±1 , · · · ,π
±
d }.

Let ε1, · · · ,εk =±1. A length k formal word ω = π
ε1
1 · · ·π

εk
k ∈Πk in free group Fd(Π)

with letters Π = {π±1
1 , · · · ,π±1

d } will correspond to a walk of length k on graph G from vertex

i0 to vertex ik if there exists a sequence of vertices i0, · · · , ik (the vertices may not be distinct)

such that πs(is−1) = is for all s = 1, · · · ,k,

i0
π1−→ i1

π2−→ ·· · πk−→ ik ,

where the indicator of the above event is denoted by I[ω(i0) = ik].

Moreover, if i0 = ik, the walk is a closed walk. If a word ω is reduced without any

consecutive pair of form ππ−1 for a letter π ∈ Π, this word is called irreducible. The set of

irreducible words of length k is denoted by Irredk. Now, one has the trace formula for k-th
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power adjacency matrix to be

n

∑
i=1

λ
k
i = tr(Ak) = #{closed walks of length k}=

n

∑
i=1

∑
ω∈Πk

I[ω(i) = i], (2.1)

n

∑
i=1

qk(λi) = tr(qk(A)) = #{irreducible closed walks of length k}=
n

∑
i=1

∑
ω∈Irredk

I[ω(i) = i],

where qk(2
√

2d−1cosθ) = (2d−1)k
(

2
2d−1 coskθ+ 2d−2

2d−1
sin(k+1)θ

sinθ

)
, see [LPS86], or [LPS88].

The choices and the outcomes of πs(is−1) = is are divided into three cases [Fri91]:

Definition 2.1.1. • If is has already been determined by previous steps such that there is

no freedom to choose, we call this s-step a forced choice;

• If is has not been determined, we call this s-step a free choice; For a free choice, there

are still two cases. If is appears previously (i.e., πs(is−1) takes one of previous values

i0, · · · , is−1), we call it a coincidence; otherwise, we call it a generic free choice, where is

dose not appear previously (i.e., πs(is−1) takes one of n−m new values, where m≤ s−1);

It’s easy to see that step s will be a coincidence with probability less than or equal to

s
n−s+1 ≤

k
n−k .

For a closed walk from vertex i to itself on a labeled graph, its edges’ labels give rise

to a word ω = π1 · · ·πk and a sequence of vertices t = (t2, · · · , tk). Associated with this walk,

one can define a directed and labeled graph, a generalized form Γω,i,t. The vertex set of Γω,i,t

contains all distinct vertices among t∪{i}, denoted as VΓω,i,t = {i1, · · · , i|VΓω,i,t |}. And the edge

set EΓ contains all directed free choice steps (including coincidence steps), with edges labeled

by the word. If ignoring the particular (ω, i, t) and grouping all generalized forms with the same

shape, one has an abstract generalized form, Γ = (VΓ,EΓ). Given an abstract generalized form

Γ, a fixed compatible word ω, and a fixed compatible label l, one has n(n− 1) · · ·(n− |VΓ|)
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ways to pick different vertices. After vertices are fixed, there are α j(Γ) conditions on π j and

π
−1
j labeled edges, where α j(Γ) is the number of the appearances of π j and π

−1
j labeled edges.

Therefore, it’s easy to see that the expected number of closed walks which are compatible with

Γ, ω and label l is,

E[Γ]ω = ∑
{(i,t)|Γω,i,t=Γ}

EI[ω(i) = i] =
n!

(n− v)!

d

∏
j=1

(n−α j)!
n!

. (2.2)

The abstract generalized forms can be further grouped based on their “topological

shapes”. One obtains a type T = (VT ,ET ) by ignoring all degree two vertices in the abstract

generalized form. For each ei ∈ ET , the length ki ≥ 1 is defined to be one plus the number of the

erased degree 2 vertices on this edge, and the label is a length ki word ωi ∈ Πki . When a walk

goes through the type, it might cross an edge multiple times. One can denote the multiplicity to

be mi ≥ 1 for edge ei. Thus, when given a type T , lengths
−→
k = (k1, · · · ,k|E(T )|) and a label l,

E[Γω] of Equation (2.2) is fully determined and can be denoted by E[T, l] alternatively.

If N(T,−→m ) is the number of words which are compatible with a type T with multi-

plicity −→m = {m1, · · · ,mt}, and if LT,k1,··· ,kt contains all the labelings which are compatible with

the type T of fixed edge lengths k1, · · · ,kt , Friedman had the following decomposition [Fri91],

∑
i

∑
ω∈Πk

I[ω(i) = i] = ∑
T

∑
m1,··· ,mt

N(T,−→m ) ∑
k1,···kt≥1

and ∑miki=k

∑
l∈LT,k1 ,··· ,kt

E[T, l]. (2.3)

We list below some essential properties (Lemma 2.1-2.6 of [Fri91]) of generalized

forms Γ and types T . For any Γ ∈ T with T = (V,E),

• Coincidence number is Coin(Γ) =Coin(T ) = |E|− |V |+1;

• If T has coincidence r, then |V | ≤ 2r and |E| ≤ 3r−1;

• The number of types of coincidence r is less than (2r)6r−2;
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• The maximal degree of a type with coincidence r is 2r if no leaf is connected to a banquet

of r self loops; The minimal degree of a type is 2 except possible degree one at leaves;

• For a fixed type T of coincidence r, there are at most (2r)m walks which go through this

type T with multiplicity −→m = {m1, · · · ,mt}, where m = ∑i mi.

Here one more lemma from the above properties,

Lemma 2.1.2 (A claim in the proof of Theorem 2.18 of [Fri91]). For a given word ω of length

k, the probability of coincidence ≥ r is bounded by n
(k

r

)
( k

n−k )
r ≤ k2rn−r+1. On the other hand,

for a given ω of length k, there are at most 2k2r compatible Γ with coincidence ≤ r−1.

Friedman analyzed E[Γ]ω by its Taylor expansion.

Lemma 2.1.3 (Lemma 2.7 of [Fri91]). E[Γ]ω of Equation (2.2) has expansion for any integer

r ≥ 0, denoting v = |V (Γ)| and e = |E(Γ)|,

E[Γ]ω = nv−e(p0 +
p1

n
+ · · ·+ pr−1

nr−1 +
error

nr ), (2.4)

where error≤ exp( rk
n−k )k

2r, and pi is polynomial pi = pi(v,α1, · · · ,αd) with

α j = #|{π j,π
−1
j labeled edge in Γ}| for j = 1, · · · ,d.

If fixing a type T = (VT ,ET ) with ET = (e1, · · · ,et), fixing the multiplicities −→m =

(m1, · · · ,mt) and the edge lengths
−→
k = (k1, · · · ,kt), then one is left with the only freedom of the

labeling l. The set of all possible labelings compatible with the fixed type T with edge lengths

−→
k is denoted by LT,k1,··· ,kt . Then,

Lemma 2.1.4 (Lemma 2.13 of [Fri91]). For a fixed type T , fixed multiplicities −→m , fixed edge

lengths
−→
k , and fixed coincidence r≤ d, for pi from the expansion of E[Γ]ω in Lemma 2.1.3 with
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any i≤ r−1, one has,

∑
l∈LT,k1 ,··· ,kt

pi(T, l) = ∑
K1,K2,K3

(2d−1)|K1|(−1)|K2|QK1,K2,K3(
−→
k ), (2.5)

where K1,K2,K3 is a partition of
−→
k = {k1, · · · ,kt}, with size |Ks|= ∑k j∈Ks k j for s = 1,2,3. And

QK1,K2,K3 is a polynomial of degree at most 2i, whose coefficients are bounded by (cd)cd2
.

Remark 2.1.5. The proof of Lemma 2.1.4 has a tiny error of bounding of the coefficients,

original bound (cdr)cr should be (cdr)cr2
as above, though the error does not affect Friedman’s

final result in [Fri91]. On the other hand, from Friedman’s proof, we realize that the lemma

is still true for any integer i which is larger than d. But in this case, the coefficients will be

bounded by (cdi)cdi .

With Lemma 2.1.4, the following result is obtained by relaxing the condition on the

lengths of all edges in a type T .

Lemma 2.1.6 (Lemma 2.14 of [Fri91]). For a fixed type T with coincidence ≤ r, fixed multi-

plicities −→m , and fixed k = ∑
t
1 kimi, for any i≤ r−1, one has

∑
∑

t
1 kimi=k with

ki≥1 and k≥∑
t
1 mi

∑
l∈LT,k1 ,··· ,kt

pi(T, l) = (2d−1)k+t−mPi(k)+ ε, (2.6)

where ε ≤ (2d−1)
k−m

2 kt+2i(cdr+m)cr2
, and Pi(k) is a polynomial of degree t +2i with coeffi-

cients bounded by (cdr+m)cr2
for some c, and m = ∑

t
1 mi.

Remark 2.1.7. We will develop a similar result as Lemma 2.1.6 on irreducible closed walks

with mi ≥ 2, and the result will be presented in Lemma 2.3.4.

With Lemma 2.1.6, one still needs to sum over all possible multiplicities and all types.

After that, to achieve the result in [Fri91], another two ingredients are needed, magnification
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inequalities and equation Ak = ∑Nk,sqs(A). Here Nk,s is the number of length k words which

are reduced to a given irreducible word of length s, q is a polynomial in Equation 2.1. On the

other hand, magnification inequalities are

Lemma 2.1.8 (Theorem 3.1 of [Fri91]). For any 2d-regular graph G, there exists a α > 0 such

that

Pr(|λ(G)| ≤ 2d−α) = 1− 1
nd−1 +O(

1
n2d−2 ), (2.7)

Pr(λ(G) = 2d) =
1

nd−1 +O(
1

n2d−2 ).

The magnification inequalities show that expansion polynomials vanish except the

zero-th order f0. Those ingredients lead to Friedman’s earlier bound [Fri91] of Alon’s conjec-

ture λ(G)≤ 2
√

2d−1(1+2logd + c) for 2d-regular graphs.

Remark 2.1.9. The first magnification inequality was refined in [Fri08] as Pr(|λ(G)| ≤ 2d−

α) = 1−O(nb(
√

2d−1+1)/2c).

2.1.2 Strong Form of Alon’s Conjecture by Friedman

Friedman [Fri08] proved a strong form of Alon’s conjecture λ(G)≤ 2
√

2d−1+ε for

random 2d-regular graphs with probability 1−Od,ε(n−b(
√

2d−1+1)/2c). In order to compare his

new approach with the earlier version (See Subsection 2.1.1), the basic ideas are very briefly

reviewed in this subsection. The interested reader can refer to [Fri08] for more details.

Fact 2.1.10 (See [SW49], or Theorem 3.5 of [Fri08]). Given a graph G = (V,E), a graph

Girred is defined on vertex set E(G), where an edge from vertex e1 to e2 exists if and only if

e1e2 is a length 2 irreducible walk in G. Friedman defined supercritical tangles to be graphs
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H with λirred ≥
√

d−1, where λirred is the largest eigenvalue of Hirred . Moreover, if f (u,v) =

∑
∞
0 cG(u,v;k)zk in which cG(u,v;k) denotes the number of length k irreducible walks from u to

v on graph G, then 1/λirred(G) is equal to the radius of convergence of f .

With the notation of Girred and with respect to inclusions, a minimum set Ψ(r) of su-

percritical tangles (i.e. subgraphs with λirred ≥
√

2d−1) with coincidences at most r exists, and

the size of Ψ(r) is finite. A type T is modified to be a B-new type T̃ = (T,Elong,E f ixed ,
−→
k f ixed)

(see Chapter 5 of [Fri08]), with the lengths of its edges from E f ixed fixed and 0 ≤ k f ixed
i ≤ B,

while the edges from Elong have lengths klong
i > B. In a B-new type selective trace, Fried-

man required irreducible closed walks not to have any length < B subwalk which traces out a

supercritical tangle. However, this selective trace is not equal to the summation of normal irre-

ducible closed walks unless the graph is free of supercritical tangles. Consequently, subgraphs

traced out by B-selective walks are additionally required not to contain a minimal set of super-

critical tangles Ψ(r). Let χΨ(r) be the indicator of a B-selective trace on a subgraph which

contains elements from Ψ(r). Thus, E(1− χΨmin(r))SSITS,Ψ(G,k) = E(1− χΨ(r))SIT (G,k),

where SIT (G,K) denotes all strong irreducible walks of length k (i.e. irreducible closed walks

with e1 6= e−1
k ) and SSIT denotes selective strong irreducible walks. Under this new frame-

work, B-selective trace has a similar expansion (Chapter 8 and Chapter 9 of [Fri08]) as in

[Fri91]. Denotes M1 = m1 + · · ·+mt (i.e. M1 is the summation of multiplicities of all long

edges), M2 = mt+1 + · · ·+mb (i.e. M2 is the summation of multiplicities of all fixed length

edges), and m = M1 + M2 (i.e. m is the summation of multiplicities of all edges). Since

m = M1 +M2 ≤ BM1 +M2, the contribution from B-selective traces would have a gain from

(2d− 1)
k−m

2 to (2d− 1)
k−BM1−M2

2 . In fact, this is the motivation of Friedman’s construction of

B-selective trace. However, the expansion of a B-selective trace is tedious, and the expansion
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of the B-selective trace on a graph that is free of a minimal set of supercritical tangles is even

more complicated.

Meanwhile, Friedman used the following fact to bound the number of irreducible

walks with given edge multiplicities in a B-new type.

Fact 2.1.11 (A general fact used in Theorem 6.6 of [Fri08]). For power series f (z) = ∑
∞
k=0 akzk

and g(z) = ∑
∞
k=0 bkzk with all coefficients ak,bk ≥ 0. f (z) majorizes g(z) if and only if ∑

j
k=0 ak ≥

∑
j
k=0 bk for any j ≥ 0. Therefore, bk ≤ f (z0)z−k

0 for z0 ∈ (0,1).

With a lemma of complex random variables (Chapter 11 of [Fri08]), he successfully

controlled the behavior of the eigenvalues which are not close to 2d.

Lemma 2.1.12. (Lemma 11.1 of [Fri08]) Fix integer r, r
′
, d ≥ 2, polynomials p0, · · · , pr, a con-

stant c, and integer D. Assume there are m = nD complex valued random variables, θ1, · · · ,θm

with maxi |1−θi| ≤ 1, and assume 1−θi is real if and only if |θi| ≥ (2d−1)−1/2. Further if all

θi satisfy

E(
m

∑
i=1

(1−θi)
k) =

r−1

∑
j=0

p j(k)n− j +O(kr
′
n−r + kc(2d−1)−k/2) (2.8)

then for a sufficiently large n, one has

E(
m

∑
i=1

χ|θi|>log−2 n(1−θi)
k) = Od,r(Dn1−(r/3)+ kc(2d−1)−k/2) (2.9)

After applying the above sidestepping Lemma 2.1.12 to the expansion result, a stan-

dard Markov inequality type argument leads to Friedman’s final conclusion, for a 2d-regular

graph, for any ε > 0, there exists a c = c(d,ε)> 0, such that λ(G)≤ 2
√

2d−1+ ε with proba-

bility 1− cn−b(
√

2d−1+1)/2c.
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2.2 New Framework on Closed Walks Counting in Random n Lifts

by Linial, Puder and Parzanchevski

In studying the spectra of random graph lifts, Linial and Puder [LP10] first use the

notation of core graphs of subgroups of a free group to study closed walks in random n lifts. In

the following, we review some basic facts about their new machinery. The interested reader can

refer to [LP10] for details.

Given a finite connected graph Ω with d labeled edges x1, · · · ,xd , let random n lifts

of Ω be ϒ as follows: first define the vertex set of ϒ to be V (Ω)×{1, · · · ,n}; then one can

independently and uniformly pick d permutations σ1, · · · ,σd from the symmetric group Sn; for

each edge e = (u,v) ∈ E(Ω), one can define n edges in the lifts ϒ of form ((u, i),(v,σe(i))) for

i = 1, · · · ,n. If denote ε1, · · · ,εk = ±1, any length k closed walk in Ω of form xε1
ji · · ·x

εk
jk will

correspond to a permutation ω(σ1, · · · ,σd) by substituting x j with σ j for j = 1, · · · ,d. A closed

walk in Ω might not be lifted as a closed walk unless there is a fixed point of ω(σ1, · · · ,σd).

Thus, if denoting φω,n to be the number of fixed points of ω(σ1, · · · ,σd), one has

E(φω,n) = E(the number of closed walks in random n lifts). (2.10)

Further, Linial and Puder [LP10] associated a word ω with a core graph. The orig-

inal concept of core graphs applies to every subgroup of a free group H ≤ Fd(Π). A word ω

corresponds a special case H =< ω >. In general, the core graph of H can be constructed as

follows ([Puder11], [PP12]). At first one constructs Schreier right coset graph ΓΠ(H) of H with

respect to some basis Π of the free group Fd(Π). The vertices of ΓΠ(H) are all right cosets Hu

with a base point H1. For any two vertices Hu and Hv, if there is a xi ∈Π such that Hu = Hvxi,

then an edge pointing from Hv to Hu is added. This edge is labeled by the letter xi. We fix the
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orientation by reversing the direction of x−1 labeled edge and changing the label to be x. As

a result, the core graph ΓΠ(H) is the union of all irreducible (non-backtracking) walks from

base point H to itself.

Moreover, if H is a finitely generated group H =< h1, · · · ,hr > where hi is non-

identity and reduced with respect to the basis Π, ΓΠ(H) can be effectively constructed as follows

([KM02], [MVW07], etc): pick a base point and construct r simple closed walks from the base

point to itself; then each closed walk is labeled by a word hi, and its orientation is fixed by

reversing the direction of x−1 labeled edge and changing label to x. Roughly, one will have a

bouquet shape graph. Then possibly Stallings folding is needed by identifying two edges e1 and

e2 to be a single edge, if they have the same label x j, and if they have either the same starting

point or the same ending point. The folded new edge inherits the same label and the same

direction. One can show that this process terminates in finite steps, and the resulting graph is a

core graph ΓΠ(H) such that π1(ΓΠ(H)) = H, and the core graph dose not depend on the order

of the foldings ([KM02], [MVW07], etc).

We list several important properties of core graphs as follows.

Fact 2.2.1. (Lemma 3.3, Lemma 6.1, and Lemma 8.2 of [KM02])

1. There is a way to construct a free generating set of H on ΓΠ(H) as follows: at first, one

can pick a spanning tree T for ΓΠ(H). Assume edges e1, · · · ,es are outside the spanning

tree T . For one of such edge e, there is an unique irreducible walk p1 on the spanning

tree from the base point to the starting point of e, as well as an unique irreducible walk

p2 on the spanning tree from the base point to the ending point of e. Thus, the whole

closed walk p1ep−1
2 is an irreducible walk from the base point to itself. It is not hard to
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check that H is generated by {p j1e j p−1
j2 , for j = 1, · · · ,s}, and H = π1(ΓΠ(H)) is a free

subgroup of Fd . Also H is independent of the choice of a spanning tree.

2. Item [1.] is true for any folded labeled directed finite graph.

3. From the construction, the rank rk(H) = |E(ΓΠ(H))|− |E(T )|= |E(ΓΠ)|− |V (ΓΠ)|+1.

There is also a one-to-one correspondence between finitely generated subgroups of

Fd(Π) and finite core graphs labeled by Π (see [MVW07]):

{(finitely) generated subgroups of Fd(Π)}
 {(finite) core graphs labeled by Π} (2.11)

With the notation of core graph morphism, Puder and Parzanchevski ([Puder11],

[PP12]) grouped certain core graphs together. A core graph morphism is a graph morphism

between two core graphs, if it preserves incidence relation, the base point, and the labels.

We list some core graph morphism properties as follows (see [Sta83], [KM02], [MVW07],

or [Puder11]):

• A morphism η : ΓΠ(H1)→ ΓΠ(H2) exists if and only if H1 ≤ H2;

• A surjective morphism is called covering, denoted by Γ1 � Γ2 or H1
Π

� H2; Γ2 is called

quotient of Γ1, and H1 is called cover of H2;

• A finite core graph only has finite number of quotients.

In [LP10], for a given word ω, Linial and Puder defined the universal graph of ω to be

ΓΠ(< ω >). Then they grouped together all quotient graphs ΓΠ(H) of core graphs ΓΠ(< ω >)

for all <w >
Π

� H ≤ Fd(Π). This set is denoted by Qω.
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Remark 2.2.2. Linial and Puder [LP10] also defined quotient graphs in a combinatorial way.

They noticed all quotient graphs can be generated as follows. First, one can divide the vertex

set i0, · · · , ik of a length k walk ω into blocks, and then identify all vertices in the same block

on the universal graph. After possible finite steps Stallings foldings, this procedure generates a

quotient core graph of the universal core graph. A quotient graph H1 is also called an immediate

quotient of H2 if H1 can be obtained by identifying a single pair of vertices in H2.

By the construction from Remark 2.2.2, an easy observation tells,

Lemma 2.2.3 (Lemma 18 of [LP10]). |{Γ ∈ Qω|rk(Γ) = i}| ≤ |ω|2i.

A word ω ∈ Fd(Π) is called to be primitive if it belongs to a basis of Fd(Π). In

general, a subgroup H of a free group J is called to be a free factor of J, if every basis of H can

be extended to be a basis of J. On the other hand, J is called an algebraic extension of < ω > if

< ω >≤ J and < ω > is not contained in any proper free factor of J. To study primitive property

of a word, Puder and Parzanchevski gave the following definitions.

Definition 2.2.4 (Definition 1 of [Puder11], or Definition 1.4 of [PP12]). The primitive rank of

a word ω ∈ Fd(Π) is

π(ω) = min{rk(J)|ω is not primitive in J} (2.12)

= min{rk(J)|< ω >
Π

� J and < ω > is not a free factor of J}

And the critical group of ω is

Crit(ω) = {J|< ω >
Π

� J with rk(J) = π(ω) and < ω > is not a free factor of J}. (2.13)

Remark 2.2.5. By the definition of algebraic extension, Crit(ω) consists of all algebraic exten-

sions of < ω > with minimal rank π(ω) besides < ω > itself.
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Puder and Parzanchevski [Puder11], [PP12] grouped all core graphs from Qω to-

gether, investigated their total contributions of the expected number of fixed points of ω, and

denoted the total contribution by Φω,n. After a complicated analysis, a crucial theorem is ob-

tained as follow,

Theorem 2.2.6 (Table 1 of [Puder11], Theorem 1.5 of [PP12]). For any ω ∈ Fd(Π), the expec-

tation of Φω,n is

E[Φω,n] = ∑
Γ∈Qω

E(Γ) = 1+
|Crit(ω)|
nπ(ω)−1 +O(

1
nπ(ω)

) (2.14)

Remark 2.2.7. Roughly, this theorem says that the contribution of 1
nπ(ω)−1 term of the universal

core graph ΓΠ(< ω >) of a word ω is offset by the contribution of all non-algebraic extension

quotient core graphs of characteristic ≤ π(ω), and the resulting |Crit(ω)|
nπ(ω)−1 term is from critical

quotient core graphs.

A useful observation to analyze algebraic extension:

Lemma 2.2.8 (Lemma 10 of [LP10], Lemma 4.1 of [Puder12]). Let ω∈Fd(Π) and let <ω>
Π

�

H, if H is a proper algebraic extension of < ω >, then the walk ω in core graph ΓΠ(H) traces

every edge at least twice.

Remark 2.2.9. We notice that the converse of the lemma is still true. Proof is as follows: To

be a basis, ω must start from the base point, and go through a spanning tree T , arrive at the

starting point of an edge e (which is outside of the spanning tree), then cross the edge e only

once, and return to the base point. Since e ∈ ΓΠ(H)−T , e will be traced only once. Because ω

traces every edge more than twice, ω can not be a basis of H.

Using Theorem 2.2.6 and Lemma 2.2.8, Puder provided a new result λ(G)≤ 2
√

d−1+

0.84 for d-regular graph in [Puder12] very recently. In that paper, a banquet of d/2 self loops
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(for d even) is lifted and Theorem 2.2.6 is used to obtain the cancellation between proper

grouped closed walks in the lifts. Using Lemma 2.2.8 together with a purely counting argu-

ment on the sizes of critical groups and a “cogrowth formula”, an asymptotic result is obtained

(Corollary of [Puder12]),

limsup
t→∞

[
∑

ω∈(X∪X−1)t

π(ω)=m

|Crit(ω)|
]1/t

= g(2m−1)≤


2
√

d−1 if 1≤ m≤
√

d−1,

2d−1
2m−1 +2m−1 if

√
d−1 < m≤ d.

(2.15)

Further, Puder re-estimated an uniform bound for the error term in Theorem 2.2.6 to be

Lemma 2.2.10 (Lemma 19 of [LP10], Proposition 5.1 of [Puder12]). Uniform bound for the

error term for all primitive rank m words is t2+2m

(n−t2)(nm−1)
.

Therefore, Puder had an expansion up to order d as follows,

Eλ(G)k ≤
d/2

∑
m=0

∑
ω∈(X∪X−1)k

π(ω)=m

(|Crit(ω)|+ k2m+2

nm−1(n− k2)
) (2.16)

≤ (1+
kd+2

n− k2 )(d/2+1)
[

max{n1/k(g(0+ ε)),g(1)+ ε, · · · , g(d−3)
n(d/2−2)/k

,
d + ε

n(d/2−1)/k
}
]k

With a carefully picked n1/k = e
2

5
√

d−1 , Puder reached his result λ(G)≤ 2
√

d−1+0.84 a.s. for

d-regular graphs.

2.3 An Alternative Proof of Alon’s Conjecture of Random 2d-Regular

Graphs In A Simpler Way

As we have seen in Section 2.2, Puder’s approach in random n lifts of a banquet with

d self loops has an expansion to order d. Our approach will have an advantage of choosing

any desired expansion order, which benefits from applying Friedman’s expansion method under
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the permutation model. On the other hand, as we have seen in Subsection 2.1.2, Friedman’s

approach has to compute tedious expansions two times, for B-selective trace and for B-selective

trace on graphs without containing certain supercritical tangles. We will bypass this issue by

an easier computation of an expansion for all irreducible closed walks, then separating the

expansion into good parts and bad parts naturally, and showing the probability of bad parts

occurring is small. Furthermore, Puder and Parzanchevski’s cancellation theorem (see Theorem

2.2.6) helps simplify the computation of the expansion.

Connection Between Generalized Forms And Core Graphs

Our approach is motivated by Puder and Parzanchevski’s cancellation Theorem 2.2.6

in random lifts. Lemma 2.3.1 enable us to work under the permutation model of random

2d-regular graphs, where not only Friedman’s expansion method [Fri91], but also Puder and

Parzanchevski’s Theorem 2.2.6 are applicable.

Lemma 2.3.1. There is a one-to-one correspondence between the following generalized forms

and reduced core graphs,

1. A generalized form Γω,i,t traced out by a length k irreducible closed walk ω on a 2d-

regular graph with n-vertices, and with a given label l compatible with ω;

2. A finite reduced core graph ΓΠ(H) traced by the same length k irreducible closed walk

ω in random n lifts of a finite connected graph with d edges, with some subgroup H

satisfying < ω >
Π

� H ≤ Fd(Π).

Remark 2.3.2. • Here we require ω to trace out both Γω,i,t and ΓΠ(H). If this is not true,

both cases will give zero contribution, which is not of our interest.

30



• Given Γω,i,t and a fixed ω, the label of Γω,i,t is not fully fixed by ω. For example, barbell

shape generalized form for walk x1x2x−1
1 x−1

2 has two different labels depending on the

choice of label on the handlebar. Different labels will give rise to different quotient core

graphs of ω.

Proof. =⇒. Based on the permutation model, the edges of a 2d-regular graph auto-

matically carry labels and directions. We fix the orientation by reverting the direction of π−1

labeled edges and changing the label to be π. Noticing at every vertex, there are at most one

edge labeled by some letter x and at most one edge labeled by x−1, thus Γω,i,t is folded. Now

we pick a spanning tree T on Γω,i,t. For each edge e j ∈ Γω,i,t−T , one has an unique irreducible

walk p j1 from vertex i to the starting point of e j through the spanning tree, and another unique

irreducible walk p j2 from vertex i to the ending point of e j through the spanning tree. Since e j

does not belong to the spanning tree, the closed walk p j1e j p−1
j2 is irreducible. Therefore the set

{p j1e j p−1
j2 } forms a free and reduced basis for a subgroup H ≤ Fd(Π). Since Γω,i,t is folded, by

Fact 2.2.1, H = π1(Γω,i,t) is independent of the choice of the spanning tree. H corresponds to

an unique reduced core graph ΓΠ(H), and π1(ΓΠ(H)) = H. Next we want to show that Γω,i,t

is a core graph. If it is true, then by the one-to-one correspondence between finitely generated

subgroups and core graphs, Γω,i,t = ΓΠ(H). Therefore, ω trace out ΓΠ(H). Consequently, Γω,i,t

must be obtained by identifying certain vertices. Linial and Puder’s construction of quotient

core graph (Remark 2.2.2) shows < ω >
Π

� H.

If Γω,i,t is not a core graph, by definition of core graphs, we have

Γω,i,t ! ∪{all irreducible closed walks on Γω,i,t from vertex i to itself}. (2.17)

Case 1, If there is a vertex v 6= i not visited by any irreducible closed walk on Γω,i,t from
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vertex i to itself, then either v is disconnected to vertex i, or v will be visited by back-tracking

closed walks from vertex i to itself. Since Γω,i,t is connected, we avoid the first case. Thus,

the closed walk visiting v must have a leaf other than the possible one at the starting point i.

Since ω is irreducible, then Γω,i,t has at most one possible leaf at the starting vertex i, which is

a contradiction.

Case 2, Assume there is an edge e = (u,v) that can not be visited by irreducible

closed walks from vertex i to itself. As discussed earlier, any vertex will be visited. So we have

irreducible closed walks p1 and p2 from i to itself, such that p1 = p1
1up2

1 and p2 = p1
2vp2

2 with

at least one part p j
i not to be empty for i, j = 1,2. Assume p1

1 6= Id, we have a new closed walk

of form p1
1ep1

2 from vertex i to itself, which is irreducible, contradiction.

Therefore, Γω,i,t must be a core graph, done.

⇐=. Given a fixed finite core graph ΓΠ(H) traced out by some length k irreducible

closed walk ω, we want to show all edges traced out by ω must be free choice (include coin-

cidence). If this is not true, then there is at least one forced step e1 = (u,v) with label π. By

the definition of forced choice, π(u) = v is determined previously, either by e0 : π(u) = v or

by e0 : π−1(v) = u. But under both cases, these two edges e0 and e1 will be folded, which is a

contradiction. Since ω traces out the core graph ΓΠ(H), ΓΠ(H) is a generalized form Γω,i,t with

vertex i being the base point, and the labels on the edges are compatible with ω.

Finally, we want to embed the core graph ΓΠ(H) in a 2d-regular graph. This can be

done by adding self loops to every vertex. If the vertex v is even degree, we just add 2d−deg(v)
2

self loops to the vertex. Notice odd degree vertices appear in pairs. For any pair of odd degree

vertices, we add an edge to connect them, then add 2d−deg(v)−1
2 self loops to each of the two

odd degree vertices. And since there are at most d letters, there obviously exists a compatible
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labeling on the 2d-regular graph. �

Meanwhile, we know

E[Γ]ω =
n!

(n− v)!

d

∏
j=1

(n−α j(Γ))!
n!

= E(ΓΠ(H)), (2.18)

where for an unique H satisfying < ω >
Π

� H. Notice on the left hand side, n is the number of

vertices of a 2d-regular graph; while on the right hand side, n is the number of lifts of some

connected graph with d edges.

Therefore, by Lemma 2.3.1 and Equation 2.18, instead of estimating the irreducible

closed walks in a 2d-regular graph with n vertices, we can estimate irreducible closed walks in

random n lifts of any finite connected d edges graph1. Consequently, Puder and Parzanchevski’s

Theorem 2.2.6 is applicable to our random 2d-regular graph permutation model.

Applying Puder and Parzanchevski’s Cancellation Theorem

Before using Puder and Parzanchevski’s Theorem 2.2.6, we need to estimate an uni-

form bound for the error term in their theorem. The following Lemma 2.3.3 is similar as Lemma

2.2.10 , but we provide a simpler proof by using Taylor expansion (see Lemma 2.1.3).

Lemma 2.3.3. For a given word ω with primitive rank π(ω) =m, the error term O( 1
nm ) in Puder

and Parzanchevski’s Theorem 2.2.6 can be re-estimated to be C k2m+2

nm−1(n−k2)
, where k ≤ n/2, and

C is an absolute constant.

Proof. The error term comes from the contribution of finite many quotient graphs of

ω with coincidence Coin ≤ m+ 1. Each quotient core graph with coincidence Coin = m+ 1

contributes at most 1
nm . By Lemma 2.2.3, there are at most k2(m+1) quotients. Applying Lemma

1In [Puder12], Puder worked in random n lifts of a banquet with d self loops.
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2.1.3 to each quotient core graph of coincidence Coin = m− l with expansion order r = l,

then the contribution is bounded by exp((l+1)k/(n− k))k2l+2. Again there are at most k2(m−l)

quotients. When k≤ n/2, exp((l+1)k/(n−k)) are all bounded by a constant C for l = 1, · · · ,d.

Then the m-th error term can be bounded by

error≤C(1+ k2 + · · ·+ k2m+2)/nm ≤Ck2m+2/nm. (2.19)

To get an uniform bound, we sum over all terms from m to ∞.

∞

∑
m

C
k2m+2

nm =
Ck2m+2

nm−1(n− k2)
. (2.20)

�

By using Linial and Puder’s Lemma 2.2.8, for j = 1, · · · ,d, we have

∑
π(ω)= j and
|ω|=k

|Crit(ω)|/n j−1 (2.21)

= ∑
π(ω)= j and
|ω|=k

∑
<ω>

Π

�H and
rk(H)= j

ICrit(ω)(H)/n j−1

= ∑
<ω>

Π

�H and
rk(H)= j

|{ω ∈ Fd(Π)||ω|= k and H ∈Crit(ω)}|
n j−1

= ∑
<ω>

Π

�H and
rk(H)= j

|{ω ∈ Fd(Π)||ω|= k and < ω >≤alg H}|
n j−1

= ∑
<ω>

Π

�H and
rk(H)= j

|{ω ∈ Fd(Π)|ω trace every edge of ΓΠ(H) at least twice}|
n j−1

= ∑
Γ

with Coin(Γ)= j

|{ω ∈ Fd(Π)|ω trace every edge of Γ at least twice}|
n j−1

≤ ∑
Γ

with Coin(Γ)= j

E[Γ]ωI(multiplicity of each edge≥ 2)

Here, the second “=” sign is due to changing the order of summation, the third “=” sign is by the

definition of critical groups, the fourth “=” sign comes from Linial and Puder’s Lemma 2.2.8,
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and the fifth “=” sign is because of the one-to-one correspondence between finitely generated

subgroups of Fd(Π) and finite core graphs labeled by Π, see Correspondence 2.11.

Using Puder and Parzanchevski’s theorem 2.2.6, we group closed walks by core graph

quotient relation. Then when k ≤ n1/2, the summation of irreducible closed walks becomes:

n

∑
i=1

∑
ω∈Irredk

I[ω(i) = i] (2.22)

≤
d

∑
j=1

∑
{ω∈Irredk|π(ω)= j}

(1+
|Crit(ω)|

n j−1 +
Ck2 j+2

n j−1(n− k2)
)

≤ 2d(2d−1)k−1 +
d

∑
j=1

∑
Γ with

Coin(Γ)= j

(
E[Γ]ωI(mi ≥ 2)

)
+2d(2d−1)k−1 Ck4

(n− k2)
,

where we do not have irreducible words of length k with π(ω) = 0, since those words are all

reduced to identity 1. Recall I(mi ≥ 2) denotes the event of each edge multiplicity large than or

equal to two.

Applying Friedman’s early Expansion Method

The middle term of Equation 2.22 can be studied by Friedman’s early expansion

method. Starting from Friedman’s Lemma 2.1.4, and summing over all irreducible closed walks

with fixed type T and fixed multiplicities≥ 2, we arrive at the following Lemma 2.3.4, which is

an analog of Friedman’s Lemma 2.1.6.

Lemma 2.3.4. For a fixed type T with t edges, fixed multiplicities ms ≥ 2 for s = 1, · · · , t, any

coincidence r ≤ d, and any expansion order rexp which will be chosen later, we have

∑
∑

t
1 kimi=k with

ki≥1 and k≥∑
t
1 mi

∑
l∈LT,k1 ,··· ,kt

pi(T, l)≤ (2d−1)
k−m

2 kt+2rexp−1(cdrexp)
cdrexp , (2.23)

where m = m1 + · · ·+mt , and i≤ rexp−1.

35



Proof. Recall K1,K2,K3 is a partition of the set
−→
k = {k1, · · · ,kt}, with size |Ks| =

∑k j∈Ks k j for s = 1,2,3. Assume K1 = (k1, · · · ,ku). By Friedman’s Lemma 2.1.4 on summing

over all labels, and by switching the summation order, we have

∑
K1,K2,K3

∑
∑kimi=k

(2d−1)k1+···+ku(−1)|K2|QK1,K2,K3 . (2.24)

Notice QK1,K2,K3 is a polynomial of degree at most 2rexp, whose coefficients are bounded by

(c1drexp)
c1drexp . Thus |Q| ≤ (c1drexp)

c1drexp(∑ki)
2rexp ≤ (c1drexp)

c1drexp(k/2)2rexp .

On the other hand,

(k1 + · · ·+ ku) =
1
2
(k−

t

∑
i=1

miki +2(k1 + · · ·+ ku)) (2.25)

=
1
2
(k− (m1−2)k1−·· ·− (mu−2)ku−mu+1ku+1−·· ·−mtkt)

≤ 1
2
(k− (m1−2)−·· ·− (mu−2)−mu+1−·· ·−mt)

≤ 1
2
(k−m+2u).

Also note there are at most
(k+t−1

t−1

)
≤ kt−1 solutions of ∑

t
i=1 kimi = k. In addition,

u≤ t ≤ 3r−1, and then (2d−1)u ≤ (c2d)c2d . Thus

∑
∑kimi=k

(2d−1)k1+···+kuQK1,K2,K3 ≤ (2d−1)
k−m

2 kt+2rexp−1(cdrexp)
cdrexp . (2.26)

Finally, we need sum over all possible K1,K2,K3 of the partition of
−→
k . Since there

are no more than 3t ≤ (cdrexp)
cdrexp partitions, Lemma 2.3.4 is proved. �

Further, by summing over all types, and by summing over all possible multiplicities

mi ≥ 2, we have the following Proposition 2.3.5.

Proposition 2.3.5. Summing over all possible types of fixed coincidence l satisfying 1≤Coin(T )=

j ≤ d, and summing over all possible multiplicities −→m with mi ≥ 2 for i = 1, · · · , t, one has the
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following expansion,

∑
Γω,i,t∈T with
Coin(T )= j

E[Γ]ωI(mi ≥ 2) =
f j−1

n j−1 + · · ·+
frexp−1

nrexp−1 +
ε j

nrexp
, (2.27)

where

f j−1 = · · ·= frexp−1 (2.28)

≤


(2d−1)

k
2 kc1d(c2drexp)

c2drexp if 1≤ j ≤ b(
√

2d−1+1)/2c

(2d−1)
k
2 ( 2 j−1√

2d−1
)k/2kc1d(c2drexp)

c2drexp if b(
√

2d−1+1)/2c< j ≤ d

and error ε j ≤C2d(2d−1)k−1k4 j+2rexpn1− j−rexp . Here the expansion order rexp is a constant to

be chosen later, and c1 = c1(rexp), c2, and C are constants.

Proof. Denote N(T,−→m ) is the number of length k irreducible closed walks compatible

with T of edge multiplicities −→m , then

∑
Γ with

Coin(Γ)= j

E[Γ]ωI(ω ∈ Irredk and mi ≥ 2) (2.29)

= ∑
T with

Coin(Γ)= j

∑
−→m

[
N(T,−→m ) ∑

∑kimi=k
with ki≥1

∑
l∈LT,k1 ,··· ,kt

E[T, l]
]
,

where the third summation has non-zero contributions only when k ≥ m = ∑mi. Given a word

ω of length k and Coin = j, the total number of possible walks compatible with Γ∈ T is
(k

j

)
k j ≤

k2 j. By Lemma 2.1.3, E[T, l] has the following expansion for any r,

E[T, l] =
pCoin(T )−1

nCoin(T )−1 + · · ·+ pr−1

nr−1 +
error

nr (2.30)

with error ≤ exp( rk
n−k )k

2r. For r = rexp, one has

∑
T with

Coin(Γ)= j

∑
−→m

[
N(T,−→m ) ∑

∑kimi=k
with ki≥1

∑
l∈LT,k1 ,··· ,kt

E[T, l]
]
=

f j−1

n j−1 + · · ·+
frexp−1

nrexp−1 +
ε j

nrexp
(2.31)
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with ε j≤ (2d)(2d−1)k−1k2 jn− j+1k2 j exp( rexpk
n−k )k

2rexpn−rexp ≤C2d(2d−1)k−1k4 j+2rexpn− j−rexp+1

for k≤ n/2. The k2 jn− j+1 term comes from Lemma 2.1.2, the probability of a given word with

j coincidence.

Therefore, for i = j−1, · · · ,rexp−1, we have

fi = ∑
T with

Coin(Γ)= j

∑
−→m

[
N(T,−→m ) ∑

∑kimi=k
with ki≥1

∑
l∈LT,k1 ,··· ,kt

pi[T, l]
]
. (2.32)

Notice that any type T with Coin(T ) = j has the number of edges t ≤ 3 j−1, the total number

of coincidence j types is at most (2 j)6 j−2, and the total number of irreducible walks on a given

T with Coin(T ) = j and multiplicities −→m is at most (2 j)(2 j−1)m−1.

Also

(m1 + · · ·+mt) =
1
2
(k−

t

∑
i=1

miki +2(m1 + · · ·+mt)) (2.33)

=
1
2
(k− (k1−2)m1−·· ·− (kt −2)mt)

≤ 1
2
(k−2(k1−2)−·· ·−2(kt −2))

≤ k
2
− t +2t ≤ k

2
+ t ≤ k

2
+3d−1.

Therefore, by Lemma 2.3.4, one has

f j−1, · · · , frexp−1 (2.34)

≤ (2 j)6 j−2(2 j)(2 j−1)m−1(2d−1)
k−m

2 k2rexp+t−1(c2drexp)
c2drexp

≤


(2d−1)

k
2 kc1d(c2drexp)

c2drexp if 1≤ j ≤ b(
√

2d−1+1)/2c

(2d−1)
k
2 ( 2 j−1√

2d−1
)k/2kc1d(c2drexp)

c2drexp if b(
√

2d−1+1)/2c< j ≤ d

�

Remark 2.3.6. All fi do not depend on the index i= j−1, · · · ,rexp−1. When 1≤ j≤b(
√

2d−1+
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1)/2c, we denote it to be f = (2d−1)
k
2 kc1d(c2drexp)

c2drexp , and when b(
√

2d−1+1)/2c< j≤

d, we denote it to be f ( 2 j−1√
2d−1

)k. Also we denote rkc = b
√

2d−1+1
2 c.

Remark 2.3.7. From the proof of our Lemma 2.3.3, for any primitive rank j, the uniform er-

ror bound is δ j ≤ 2d(2d− 1)k−1
∑

∞
i= j

Ck2i+2

ni−1(n−k2)
. Thus, the expansion error ε j from the above

Proposition 2.3.5 is already included in δ j, once the expansion order rexp > j and k < n1/2.

Thus, let rexp be large enough (to be chosen later), by applying Proposition 2.3.5, we

have

Irred(G,k) =
n

∑
i=1

∑
ω∈Irredk

I[ω(i) = i] (2.35)

≤ 2d(2d−1)k−1 + f +
f
n
+ · · ·+ f

nrexp−1 +δ1

+
f
n
+ · · ·+ f

nrexp−1 +δ2

+ · · ·

+
f ( 2rkc+1√

2d−1
)k/2

nrkc+1 · · ·+
f ( 2rkc+1√

2d−1
)k/2

nrexp−1 +δrkc+1

+ · · ·

+
f ( 2d−1√

2d−1
)k/2

nd−1 + · · ·++
f ( 2d−1√

2d−1
)k/2

nrexp−1 +δd

≤ 2d(2d−1)k−1 + f +
2 f
n

+ · · ·+ (rkc) f
nrkc−1 +

(rkc +( 2rkc+1√
2d−1

)k/2) f

nrkc
+ · · ·

+
(rkc +∑

d
j=rkc+1(

2 j−1√
2d−1

)k/2) f

nd−1 + · · ·+
(rkc +∑

d
j=rkc+1(

2 j−1√
2d−1

)k/2) f

nrexp−1 +2d(2d−1)k−1 ck4

n− k2

Controlling High Order Terms

To get a finer estimation of λ(G), we have to choose a sufficient large expansion

order. When the expansion order rexp ≥ rkc + 1, we need deal with terms of form (2d −
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1)
k
2 ( 2 j−1√

2d−1
)k/2kc1d(c2drexp)

c2drexp , where b(
√

2d−1+ 1)/2c < j ≤ d. However, it is hopeless

to control all such terms simultaneously and directly. This is the essential reason that the expan-

sion order was only selected to be b(
√

2d−1+1)/2c in [Fri91]. We find a trick to estimate each

high order term indirectly through separating it into a good part and a bad part, and showing the

probability of bad part occurring is small. As a result, when rkc +1≤ r ≤ d, we have

(rkc +∑
r
j=rkc+1(

2 j−1√
2d−1

)k/2) f

nr−1 =
r f

nr−1︸︷︷︸
good

+
(∑r

j=rkc+1(
2 j−1√
2d−1

)k/2− (r− rkc)) f

nr−1︸ ︷︷ ︸
bad

. (2.36)

Accordingly, we have Irred(G,k) = Irred(G,k)χgood + Irred(G,k)(1−χgood).

From the proof of Proposition 2.3.5, to achieve the contribution of form r f
nr−1 ,the num-

ber of irreducible closed walks on a given type T with multiplicities −→m must be no more than

O((2d−1)m/2).

When estimating the number of irreducible closed walks on a given type T with given

edge multiplicities, the edge length and the corresponding label are irrelevant. Thus, we need

estimate the number of irreducible closed walk with length m = ∑mi on a given type T . Notice,

a type T with coincidence r has at most 2r vertices and 3r− 1 edges. Since the walk will

cross each edge at least twice, the walk can be decomposed into at most 2(3r− 1) parts with

2(3r− 1)− 1 spacers. By the spectral method (the idea originated in [Buck86], and used in

[Fri03], also in [LP10], etc), the number of all length k closed walks can be bounded by

k ∑
l1+···+l6r−3=k−2t

(AT δx)(y)(A
l1
T δx)(y) · · ·(AT δx)(y)≤ O(k6r−3(ρT )

k), (2.37)

where AT is the adjacency matrix of T , and ρT is the spectral radius of T . This inspires us to

restrict T with λirred(T )≤
√

2d−1 to match the desired number of irreducible closed walks of

type O((2d−1)m/2). (Recall, λirred(G) is the largest eigenvalue of Girred . And given G, Girred
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is a derived graph on vertex set V (Girred) = E(G), with an edge between a vertex e ∈ E(G) and

another vertex e
′ ∈ E(G) if e and e

′
form a length two irreducible walk in G.)

Turns out, the above observation is true, and we obtain the following lemma.

Lemma 2.3.8. Given a fixed type T of coincidence r with t edges, if multiplicities−→m =(m1, · · · ,mt)

is given with mi ≥ 2, and if T does not contain any subgraph H with λirred(H) >
√

2d−1,

then the number of irreducible closed walks of length k from a fixed starting point is at most

c(2d−1)−m/2, where m = ∑
t
i=1 mi and c is a constant.

Remark 2.3.9. Recall Fact 2.1.11, for power series f (z) = ∑
∞
k=0 akzk and g(z) = ∑

∞
k=0 bkzk with

all coefficients ak,bk ≥ 0. f (z) majorizes g(z) if and only if ∑
j
k=0 ak ≥ ∑

j
k=0 bk for any j ≥ 0.

Therefore, bk ≤ f (z0)z−k
0 for z0 ∈ (0,1). We will use the above fact to estimate the number of

irreducible closed walks over restricted T .

Proof. Since we are estimating the number of irreducible closed walks on topological

T , the edge lengths and labels are irrelevant. Therefore, we only need estimate the number of

irreducible closed walks with length m = ∑
t
i=1 mi, tracing out T topologically.

Any type T is a finite graph. Since it has coincidence r, we have at most 2r vertices

and t ≤ 3r− 1 edges. As the walk will trace out each edge at least twice, the whole walk can

be decomposed into 6r− 2+ 6r− 3 parts, where 6r− 3 is the number of spacers between two

edges being traced out consecutively. Each part will be a subgraph Hi for i = 1, · · · ,12r− 5,

and its corresponding type T (Hi) will be a subgroup of our fixed type T . From the assumption,

we know λirred(Hi)<
√

2d−1. Let f (z) = ∑
∞
k=0 ckzk be a generating function with ck being the

number of irreducible walks we are interested. Let hi = ∑
∞
k=0 ci,kzk with ci,k being the number

of irreducible closed walks on Hi. Then hi(z) has convergence radius at least (2d− 1)−1/2 by
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Fact 2.1.10. If define ĉi,k = c1,k + · · ·+ c12r−5,k, ĉi,k denote the number of all irreducible walks

with length at most k in Hi. Therefore, one has generating function,

ĥi(z) =
∞

∑
k=0

ĉi,kzk =
1

1− z
hi(z) with convergence radius > (2d−1)−1/2. (2.38)

Denote h(z) = ∑
12r−5
i=1 hi(z) and ĥ(z) = ∑

12r−5
i=1 ĥi(z). Then we claim (1−dĥ(z))−1ĥ(z)

majorizes f (z). Starting from a vertex v, the walk must first trace out a Hi1 in ji < m steps, then

the walk has at most d choices to continue, and keeps tracing out another Hi2 in j2 < m steps,

... until trace out the very last part to go back the starting vertex v. As a result, f (z) must be

majorized by (1−dĥ(z))−1ĥ(z).

If we pick z0 = (2d−1)−1/2 inside convergence radius, then we have

ck ≤ (1−dĥ(z0))
−1ĥ(z0)zm

0 ≤ c(2d−1)−m/2 for some c.

Applying Bartholdi Identity

We found out the bad part combinatorially in previous Subsection 2.3. Now we will

use Bartholdi identity to estimate the loss probability from throwing away the bad part. First of

all, let’s recall Bartholdi identity,

Lemma 2.3.10. (see Equation 2.1 of [OS09]) For a 2d-regular graph with adjacency matrix

A, one can define that B is a 2E × 2E matrix describing irreducible length 2 walks, Be,e′ =

δt(e),o(e′ ) with t(e) denoting the ending point of e and o(e) denoting the starting point of e; J is a

2E×2E matrix describing back-tracking length 2 walks, Je,e′ = δe,e′ with e denoting changing

the direction of the edge e.

Therefore,

det(I2|E|− s(B− J)) = (1− s2)|E|−|V | det((1+(2d−1)s2)I|V |− sA). (2.39)
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Furthermore, the spectrum of B− J can be read out as,

σ(B− J) =

{
2d−1,1,1× (|E|− |V |),−1× (|E|− |V |), (2.40)

√
2d−1eiφi ,

√
2d−1e−iφi with φi = arccos(

λi

2
√

2d−1
), for i = 2, · · · , |V |

}
,

where 2d = λ1 ≥ λ2 ≥ ·· · ≥ λ|V | are all eigenvalues of the adjacency matrix A.

Remark 2.3.11. It’s easy to see that B− J is actually the adjacency matrix of a directional

graph Girred .

Easy observations give the following two simple results,

Lemma 2.3.12. • If H is a banquet of rkc self loops, by Bartholdi identity, λirred(H) =

√
2d−1;

• By the one-to-one correspondence between generalized form and core graphs, also the

one-to-one correspondence between core graphs and finitely generated subgroups of

Fd(Π), there are only finite many types with coincidence l (actually, this number can

be bounded by (2l)6l−2). Among all of those types, banquet of l self loops happens with

maximal probability n−l . For all the other types, we must have at least one edge label

occurs more than once, αi ≥ 2. Thus, we will have a factor 1
n(n−1)···(n−αi+1) in probability

of the occurrence of the type, which is smaller than 1
n for a banquet.

Lemma 2.3.12 tells us that a banquet with l self loops occurs with maximal probability

in all coincidence l types, and we know its value is λirred . Now, we still need analyze λirred of

all other types with the same coincidence l.

Since a banquet G1 can be obtained by contracting all edges and identifying all ver-

tices of a graph G2 with the same coincidence, any length k irreducible closed walk on G2 from
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a base vertex vo to itself will correspond to an irreducible closed walk on the banquet G1 with

length less than or equal to k. Thus, the number of irreducible closed walks with length ≤ k

is less than or equal to the number of irreducible closed walks on the banquet G1. Therefore,

λirred(G1) ≥ λirred(G2). On the other hand, if a graph G3 with λirred(G3) > λirred(G1), by the

same reason as the above, we know that G3 must have a higher coincidence. Then the probabil-

ity of occurring of G3 will have at least one additional factor k
n−k < 1, compared with the prob-

ability of occurring of the banquet G1. As a result, by Lemma 2.3.12, we know that in all types

of coincidence rkc, banquet with rkc self loops has the maximal eigenvalue λirred =
√

2d−1,

and the maximal probability of occurring n−rkc . Further, if there are more than one occurrence

of subgraphs H1 and H2 with λirred(H1,2)≥
√

2d−1, there are two cases. If H1∩H2 = /0, then

the probability of occurrence of H1 and H2 at the same time is the product of probabilities of

each occurrence, of course smaller than n−rkc . If their intersection is non-empty, their union

H1 ∪H2 must has coincidence at least rkc, thus the probability of occurrence is also bounded

by n−rkc . Therefore, the probability of occurrences of at least one bad subgraph H is bounded

by n−rkc . Since the maximum primitive rank is d, after Puder’s cancellation Theorem 2.2.6, the

maximum coincidence of T is thus d (see the summation index of the middle term in Equation

2.22), as well as any subgraph of T . As a result, there are at most finite many bad events,

∑
d
rkc
(2l)6l−2 = O(1). Finally, we find out the probability of bad part occurring is bounded by

O(n−rkc).

Lemma 2.3.13. Pr(Bad parts occurring) = O(n−rkc).

Now, Proposition 2.3.5 can be modified as follows. By Lemma 2.3.8, when b(
√

2d−1+

1)/2c < l, if T does not contain any subgroup H with λirred(H) >
√

2d−1, we can replace

44



the original bound 2l(2l− 1)m−1 by c(2d− 1)m/2. As a result, we have f0 = · · · = frexp−1 =

(2d−1)
k
2 kc1d(c2drexp)

c2drexp .

Accordingly, we have the good part of length k irreducible walks as,

Irred(G,k)χgood ≤ 2d(2d−1)k−1 + f +
2 f
n

+ · · ·+ (rkc) f
nrkc−1 +

(rkc +1) f
nrkc

(2.41)

+ · · ·+
rexp f

nrexp−1 +(2d)(2d−1)k−1 Ck4

n− k2 .

Applying A Sidestepping Lemma of Complex Random Variables

From Bartholdi identity 2.3.10, we have

Irred(G,k)≥ tr((B− J)k) = (2d−1)k +1+(1+(−1)k)(nd−n)

+
n

∑
i=2

(
√

2d−1eiφi)k +(
√

2d−1e−iφi)k. (2.42)

If combine pair
√

2d−1eiφi ,
√

2d−1e−iφi for subscript i = 2, · · · ,n, we can write the pair of

eigenvalues into another form, solutions of the following quadratic equation,

µ2− (
√

2d−1eiφi +
√

2d−1e−iφi)µ+
√

2d−1eiφi
√

2d−1e−iφi (2.43)

= µ2−λiµ+(2d−1) = 0.

Therefore, we can define µ1,2(λi) =
λi±
√

λ2
i−4(2d−1)

2 for i = 2, · · · ,n. Now we can easily sep-

arate exceptional eigenvalues (i.e. λi ≥ 2
√

2d−1) with well-tempered eigenvalues (i.e. λi <

2
√

2d−1) in this new form, since exceptional eigenvalue λi will make µ1,2(λi) be real, and

well-tempered λ j will make µ1,2(λi) be complex with norm
√

2d−1.

We denote all the eigenvalues of B−J by {ν1 · · · ,ν2nd}, νs is complex if it is of abso-

lute value
√

2d−1 for s = 1, · · · ,2nd. Thus, if let θs = 1−νs/(2d−1), from the contribution

of the good part of irreducible walks of length k (Inequality 2.41), the condition of Friedman’s
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sidestepping Lemma 2.1.12 is satisfied. More precisely, in our case, for k = O(logn), p0 is a

constant polynomial, p1 = k4, and all other pi vanish, and the rest part of Irred(G,k)χgood is

bounded by f (2d−1)−k = Od,e(kc(2d−1)−k/2).

On the other hand, since µ1,2(λi) is complex if and only if it is of absolute value

√
2d−1. As a result, for even k, we have

∑
i s.t. µ1,2(λi)/∈R

2

∑
j=1

µk
j(λi)≥−2(n−1)(2d−1)k/2 (2.44)

Since the bipartite graphs are rare, and with probability roughly O(n1/2e−cn)≤ n−rkc

[Wormald99] in Gn,d , they are excluded from our discussion. Also by the second magnification

inequality 2.1.8, Pr(λ(G) = 2d) = 1
nd−1 ≤ n−rkc when 2d ≥ 6. Thus, we can assume λi < 2d,

and the corresponding µ1,2(λi)< 2d−1 for i = 2, · · · ,n, at a loss probability O(n−rkc).

A Markov Type Argument Leads To The Proof

Let A be the event µ j(λi) ≥ eη
√

2d−1 for some i 6= 1 and j = 1,2. In terms of λ,

event A will correspond to λi = 2
√

2d−1+(eη−1)(
√

2d−1+1) for some i.

Therefore, by following a Markov inequality type standard argument, and applying

Friedman’s sidestepping Lemma 2.1.12 ([Fri08]), we have

Pr(A)(eη
√

2d−1)k ≤ E
(

∑
i s.t µ j(λi)∈R

2

∑
j=1

µk
j(λi)

)
(2.45)

≤ E(
n

∑
i=2

2

∑
j=1

µk
j(λi))−E( ∑

i s.t µ j(λi)/∈R

2

∑
j=1

µk
j(λi))

≤ Od,rexp(Dn1−rexp/3(2d−1)k + kc(2d−1)k/2)+2(n−1)(2d−1)k/2
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If picking k = 2d rexp logn
3log(2d−1)e, we can combine all terms together

Pr(A) ≤ Od,rexp(ne−ηk + kce−ηk +2(n−1)e−ηk) (2.46)

≤ cne−kη = cn1−αrexp , with α =
2/3η

log(2d−1)
.

Choosing rexp satisfying αrexp−1≥ rkc, thus Pr(A) = O(n−rkc).

Consequently, for any fixed small ε, we can solve η from λi = 2
√

2d−1+ (eη−

1)(
√

2d−1+ 1). And such η together with α determines the expansion order rexp satisfying

αrexp−1≥ rkc (rexp depends on d and ε.). Finally, for such expansion order rexp, we have a loss

probability O(n−rkc) from ruling out the bad part, and another loss probability O(n−rkc) from

requiring λ(G)< 2d. Therefore, we have P(λ(G)≥ 2
√

2d−1+ε) = Od,e(n−rkc)+O(n−rkc) =

Od,e(n−rkc).

Theorem 2.3.14. For a random 2d-regular graph G with 2d ≥ 6 and any ε > 0, there exists an

expansion order rexp such that P(λ(G)≥ 2
√

2d−1+ ε) = Od,rexp(n
−rkc).

Remark 2.3.15. If apply Remark 2.1.9, 2d ≥ 6 condition in the above theorem can be improved

to 2d ≥ 4.

Remark 2.3.16. We will carry out two numerical studies on the edge spectra of random Cayley

graphs G(SL2(Fp),Sp) in Chapter 4 and random Hecke operators over SU(2) in Chapter 5.

In the both numerical experiments, it is shown that the sample mean of λ(G) is on the left side

of the Ramanujan bound, and the distance to the Ramanujan bound is about ε(n) ∼ −n−c for

some c ∈ (0,1). Thus, can one improve Alon’s conjecture of error term ε = 0 or even ε < 0?
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Chapter 3

Edge Spectrum Normalization

In Section 2.3, the largest non-trivial eigenvalue of a random 2d-regular graph was

studied, λ(G) ≤ 2
√

2d−1+ ε with probability 1−O(n−rkc). On the other hand, Jakobson,

Miller, and Rivin ([JMR96]) indicated that the level spacing distribution of a generic k-regular

graph approaches that of the Gaussian orthogonal ensemble of random matrix theory. Later,

Miller, Novikoff and Sabelli ([MNS08]) pointed out that the edge spectra of a family of random

regular graphs could be well modeled by β = 1 Tracy-Widom distribution. However, due to the

lack of a proper normalization, the connection between the spectra of regular graphs and the

spectra of random matrices is still not fully understood.

In this chapter, a normalization method for the edge spectra of regular graphs is pro-

vided. And it is numerically proven to be correct for random Cayley graphs and random Hecke

operators in Chapter 4 and Chapter 5.

Let the eigenvalues of a 2d-regular graph on N vertices be sorted by λ1 ≥ λ2 ≥ ·· · ≥

λN .

Recall ([AGZ10]), Gaussian orthogonal ensemble (GOE, β = 1) is defined as sym-
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metric matrices Mn = (ξ jk)1≤ j,k≤n with ξi j = ξ ji, where their n(n+1)
2 entries {ξi j,1≤ i≤ j ≤ n}

are independent Gaussian random variables with mean zero and variance (1+δi j)σ
2.

Gaussian unitary ensemble (GUE, β = 2) is defined as Hermitian matrices Mn =

(ξ jk)1≤ j,k≤n with ξi j = ξ ji, where n2 elements {ℜξi j,1 ≤ i ≤ j ≤ n;ℑξi j,1 ≤ i < j ≤ n} are

independent Gaussian random variables with mean zero and variance (
1+δi j

2 )σ2.

Gaussian symplectic ensemble (GSE, β = 4) is defined as quaternion self-dual Her-

mitian matrices Mn = (ξ jk)1≤ j,k≤n with ξi j = ξ
(0)
i j + ξ

(1)
i j e1 + ξ

(2)
i j e2 + ξ

(3)
i j e3 = ξ

(0)
ji − ξ

(1)
ji e1−

ξ
(2)
ji e2 − ξ

(3)
ji e3 = ξ ji, where their n(2n− 1) elements {ξ(0)i j ,1 ≤ i ≤ j ≤ n;ξ

(k)
i j ,1 ≤ i < j ≤

n for k = 1,2,3} are independent Gaussian random variables with mean zero. For i < j, ξ
(k)
i j

has variance σ2/4 for each k = 0,1,2,3 and ξ
(0)
ii has variance σ2/2 .

By applying Householder transform, the above three models can be described in gen-

eralized β ensemble ([DE02]) as a real symmetric tridiagonal matrix Hn with independent en-

tries ξ∼ N(0,
√

2) and positive roots of Chi square random variables χkβ, k = 1 · · · ,n−1,

Mn ∼ Hn =
σ√

β



N(0,
√

2) χ(n−1)β

χ(n−1)β N(0,
√

2) χ(n−2)β

. . . . . . . . .

χ2β N(0,
√

2) χβ

χβ N(0,
√

2)


. (3.1)

Using this tridiagonal β ensemble, we can easily compute the moments of the matrix

Mn.

Let µ1, · · · ,µn be the eigenvalues of a n× n Gaussian random matrix Mn. Noticing

Eξ2 = 2, Eξ4 = 12, Eξ6 = 120, Eχ2
k = k, Eχ4

k = k(k+2), Eχ6
k = k(k+2)(k+4), and tr(A2) =
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∑i, j a2
i j for a symmetric matrix A = (ai j), we have

E
n

∑
1

µ2
i = tr(M2

n) = tr(H2
n ) = {βn2 +(2−β)n}σ2/β. (3.2)

Similarly, H2
n is a 5-diagonal real symmetric matrix, and we have

E
n

∑
1

µ4
i = tr((H2

n )
2) = {2β

2n3 +(−5β
2 +10β)n2 +(3β

2−10β+12)n}σ4/β
2. (3.3)

On the other hand, for a 2d-regular graph, Solé’s trace formula ([Sole92]) states that

1
N

N

∑
1

λ
m
i =

∫ 2
√

2d−1

−2
√

2d−1
umdρKM(u) f or m = 0,1, · · · ,g−1, (3.4)

where g is the girth of a 2d-regular graph, and ρKM is Kesten-Makcy law of the form,

ρKM(u) =
2d
√

4(2d−1)−u2

2π((2d)2−u2)
f or u ∈ [−2

√
2d−1,2

√
2d−1]. (3.5)

By matching the first four moments of the spectrum of a 2d-regular graph with Mn, we have

2dN =
N

∑
1

λ
2
i =

n

∑
1

µ2
j = {βn2 +(2−β)n}σ2/β, (3.6)

2d(4d−1)N =
N

∑
1

λ
4
i =

n

∑
1

µ4
j (3.7)

= {2β
2n3 +(−5β

2 +10β)n2 +(3β
2−10β+12)n}σ4/β

2.

Numerically, we find that for a fixed number of vertices N, when β increases, the

dimension n of a random matrix Mn decreases extremely slow. Similarly, the variance of the

matrix entries σ increases very slow, see Figure (3.1).

Therefore, we could assume β = 2 when computing the dimension and the variance

of the corresponding Gaussian random matrix. Solving equation (3.6) and (3.7), n and σ can

be written in terms of N. Asymptotically, we will see n ∼ 4d
4d−1 N for 2d-regular graphs. Then
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Figure 3.1: Corresponding Gaussian random matrix dimension n = n(N) and variance σ with

respect to β for a diagonal block of a random Cayley graph with random pair generators at

principal presentation ρ of dim(ρ) = 1283.

the edge eigenvalues of 2d-regular graphs can be normalized in a similar manner as random

matrices. For random matrices, we know

µ̃max = n1/6(µmax(Mn)−2σ
√

n). (3.8)

Thus, we conjecture the following normalization for 2d-regular graphs,

Conjecture 3.0.17.

λ̃max = n1/6(λmax−µsample)

√
n

2d−1
, (3.9)

where n = n(N) is the solution of Equation (3.6) and (3.7). the expectation of edge spectrum

of a random matrix 2σ
√

n is replaced by sample mean µsample, and an extra factor
√

n
2d−1 is

added.
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Chapter 4

Random Cayley Graphs G(SL2(Fp),Sp)

Cayley graph is a special case of Schreier right coset graph with respect to H = {1G}.

Namely, every two elements g1,g2 are connected if there exists s ∈ S∪S−1 such that g1 = g2s.

The resulting graph is a 2|S|-regular graph. If elements of S ⊆ G are selected independently

and randomly, a random Cayley graph is constructed. (Random) Cayley graph received a lot

of attention. Lubotzky, Phillips and Sarnak [LPS88], and Margulis [Margulis88] provided a

celebrated construction of a family of Cayley graphs, which are so called Ramuanjuan graphs

X p,q. X p,q are Cayley graphs over PSL2(Fq) with respect to a very special choice of a gener-

ating set of size p+ 1. The largest eigenvalue of X p,q satisfies the Ramanujan bound (i.e. less

than or equal to 2
√

2p+1). Recently, Bourgain and Gamburd [BGSL08] fully established the

spectral gap property (the first non-trivial eigenvalue λ1 < 2d) of a random 2d-Cayley graphs

G(SL2(Fp),Sp), where S is a generic symmetric generating set, and Sp is the set obtained by

reducing S by mod p.

In this chapter, the distribution of the edge spectrum of each diagonal block of the

adjacency matrix of a random Cayley graph G(SL2(Fp),Sp) under all non-trivial irreducible
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representations is fully investigated. Using the normalization factor in Chapter 3, the edge

spectrum is shown to be β = 2 or β = 4 Tracy-Widom distributions up to an extra ± sign.

4.1 The Fourier Transform of Random Cayley Graphs

Fourier analysis provides a useful tool to study the spectrum of G(SL2(Fp),Sp). Re-

call, the Fourier transform of a complex valued function f on a group G at any irreducible

representation ρ of G can be defined to be,

f̂ (ρ) = ∑
g∈G

f (g)ρ(g). (4.1)

Since the size of SL2(Fp) is p(p2− 1), the adjacency matrix of G(SL2(Fp),Sp) is a

p(p2−1) by p(p2−1) matrix. This adjacency matrix can be thought as the Fourier transform

of δSp at the regular representation πR, where Sp = {s1,s−1
1 , · · · ,sk,s−1

k }. Then the adjacency

matrix can be written as

A(G(SL2(Fp)),Sp) = δ̂Sp(πR) = πR(s1)+πR(s−1
1 )+ · · ·+πR(sk)+πR(s−1

k ). (4.2)

From representation theory, we know that any irreducible representation ρ ∈ Ĝ ap-

pears in πR with multiplicity dimρ. That is,

πR = ρ0
⊕

ρ∈Ĝ,ρ 6=Id

ρ⊕·· ·⊕ρ︸ ︷︷ ︸
dimρ

. (4.3)

Therefore, the adjacency matrix is of a diagonal form,

δ̂Sp(πR)∼ diag(B1,B1 · · ·B1︸ ︷︷ ︸
dimB1

, · · · ,Br,Br · · ·Br)︸ ︷︷ ︸
dimBr

. (4.4)

Instead of studying the whole adjacency matrix, we study each diagonal block matrix Bi, which

is the Fourier transform of δ̂Sp(ρ) at irreducible representation ρ ∈ ŜL2(Fp). We denote the

block submatrix Bi as ẑρ = ρ(s1)+ρ(s−1
1 )+ · · ·+ρ(sk)+ρ(s−1

k ).
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The irreducible representations of SL2(Fp) occur in two types, principal representa-

tions and discrete representations. The difference between these two types depends on their

restrictions to Borel subgroup B of upper triangular matrices. The restrictions of the princi-

pal representations to B contain the trivial representation, while the restrictions of the discrete

representation do not.

Briefly, the principal representations are constructed by inducing characters from B to

SL2(Fp), denoted as ρφ = φ ↑ SL2(Fp), where φ is any character of F∗p, and φ̃ is the associated

character of Borel subgroup defined by φ̃

 a b

0 a−1

= φ(a). Then

(ρφ(g) f )(g
′
) = f (g

′
g) with g ∈ SL2(Fp), (4.5)

where f is a complex function on SL2(Fp) such that

f (

 a b

0 a−1

g) = φ(a) f (g). (4.6)

From [NS82], all irreducible principal representations contain:

Theorem 4.1.1. • Any ρφ corresponding to a character φ of F∗p with φ2 6= 1 is irreducible

with dimension p+1;

• Two representations ρφi and ρφ j are equivalent if and only if φi = φ j, or φi = φ
−1
j ;

• ρ1 = 1+ ρ̃1, where 1 is the trivial representation, and ρ̃1 is an irreducible representation

with dimension p;

• If φ0 assumes the value 1 at all squares in F∗p, and −1 at all non-squares F∗p�F∗
2

p , then

ρφ0 = ρ
+
φ0
+ρ

−
φ0

, where both ρ
+
φ0

and ρ
−
φ0

are irreducible representations with dimension

p+1
2 .
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• There are totally p+5
2 irreducible principal representations. One might sort them in the

order of ρφ0 = 1⊕ ρ̃φ0 ,ρφ1 , · · · ,ρφ p−3
2
,ρφ p−1

2
= ρ

+
φ p−1

2

⊕ρ
−
φ p−1

2

, where φi are inequivalent

characters of F∗p.

Numerically, we fix the coset representatives of B to be

sx =

 0 1

−1 −x

 , · · · ,s∞ =

 1 0

0 1

 , (4.7)

where x ∈ Fp. Under a basis fx(sy) = δx(y), we have

ρφ(ua) f∞ = f∞, ρφ(ua) fx = fx−a,

ρφ(gα) f∞ = φ(α) f∞, ρφ(gα) fx = φ(α−1) fα2x,

ρφ(ω) f∞ = φ(−1) f0, ρφ(ω) f0 = f∞, ρφ(ω) fx = φ(u) f−x−1 , (4.8)

where ua =

 1 a

0 1

, gα =

 α 0

0 α−1

, and ω =

 0 1

−1 0

.

Let ex = ∑y∈Fp χ(xy) fy and e∞ = f∞, where x ∈ Fp and χ are non-identity additive

characters of Fp. When calculating ρ
±
φ0

, we need to change basis from { fx} to {ex,Γe∞± e0},

where x ∈ F∗p and Γ = ∑v 6=0 χ(v)φ0(v). After re-grouping the basis in the following order,

Γe∞ + e0,ex2 ,x ∈ F∗p and Γe∞− e0,ex,x ∈ F∗p�F∗
2

p , ρφ0 becomes a 2 by 2 diagonal block form

with ρ
±
φ0

on diagonal.

On the other hand, discrete representations can be constructed from non-decomposable

characters of quadratic extension Fp(
√

ε)/Fp. Let U = {t ∈ Fp(
√

ε)|tt = 1} be the subgroup

of norm 1 elements, where t = x− y
√

ε for t = x+ y
√

ε. The character ψ of Fp(
√

ε) is non-

decomposable if ψ(t) 6= 1 for t ∈U . Discrete representations can be realized through SL2(Fp)
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group action on the vector space of complex functions over F∗p by

(ρψ(g) f )(x) = ∑
v∈F∗p

Kψ(x,y;g) f (y) with g =

 a b

c d

 ∈ SL2(Fp), (4.9)

where

Kψ(u,v;g) =


1
p χ(dy+ax

c )∑tt=xy−1 χ(− yt+x−1t
c )ψ(t) if c 6= 0;

ψ(d)χ(dbu)δ(d2u− v) if c = 0.

Here χ is a fixed additive character of Fp, which is not identically equal to 1.

From [NS82], all discrete representations contain:

Theorem 4.1.2. Denote the restriction of ψ of Fp(
√

ε) on U to be π.

• Any ρπ corresponding to π with π2 6= 1 is irreducible with dimension p−1;

• Two representations ρπi and ρπ j are equivalent if and only if πi = π j, or πi = π
−1
j ;

• If π1 assumes the value 1 at all squares in U2, and −1 at all non-squares U�U2, then

ρπ1 = ρ+
π1
+ρ−π1

, where both ρ+
π1

and ρ
−
φ1

are irreducible representations with dimension

p−1
2 .

• There are totally p+3
2 irreducible discrete representations. One might sort them in the

order of ρπ1 ,ρπ2 , · · · , ρπ p−1
2
, ρπ p+1

2
= ρ+

π p+1
2

⊕ ρ−π p+1
2

. where πi = ψi|U are inequivalent

restrictions of characters ψ of Fp(
√

ε).

Under a basis of fx(y) = δx(y), we have

ρψ(ua) fx = χ(ax) fx,

ρψ(gα) fx = ψ(α−1) fα−2x,

ρψ(ω) fx = Kψ(x,y;g) fy. (4.10)
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where ua =

 1 a

0 1

, gα =

 α 0

0 α−1

, and ω =

 0 1

−1 0

.

Theorem 4.1.1 and 4.1.2 provide all p+4 irreducible representations of SL2(Fp).

4.2 Generating Random Cayley Graphs

This section focuses on the study of 4-regular random Cayley graphs, whose generat-

ing set is a random pair and its inverse. We follow the approach from [LR92].

Using Bruhat decomposition, group SL2(Fp) can be parameterized as:

SL2(Fp) = TUωU
⋃

TU, (4.11)

where T denotes diagonal matrices subgroup of the form T = {

 α 0

0 α−1

 |α ∈ F∗p}, and U

denotes unipotent matrices subgroup of the form {U =

 1 u

0 1

 |u∈F}, and ω=

 0 1

−1 0

.

To uniformly generate an element of SL2(Fp), all elements of SL2(Fp) are ordered

naturally. First, we generate a random integer 1 ≤ r ≤ p(p2− 1). If r ≤ p(p− 1), then we

uniformly pick α ∈ F∗p and u ∈ Fp, and construct

 α 0

0 α−1


 1 u

0 1

 ∈ TU ; otherwise,

we uniformly pick α ∈ F∗p and u,v ∈ Fp, and construct α 0

0 α−1


 1 u

0 1


 0 1

−1 0


 1 v

0 1

 ∈ TUωU (4.12)

.

For the uniformly generated random pair from SL2(Fp), we still need to check that

the random pair does not generate any proper subgroup of SL2(Fp), or equivalently the pair
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does not generate any proper subgroup of PSL2(Fp). The subgroups of latter are clearly known,

which are the following six types,

Theorem 4.2.1. [Su82] All possible subgroups of PSL2(Fp) are

• Abelian groups;

• Dihedral groups of order 2n with n| p±1
2 ;

• Alternating group A4;

• Noncommutative subgroups of upper triangular subgroup, and their conjugates;

• Symmetric group S4 when p2−1 = 0 mod 16;

• Alternating group A5 when p = 5 or p2−1 = 0 mod 5.

If the random pair does not generate any subgroup listed in Theorem 4.2.1, one can

keep doing the Fourier transform of its indicator function, and compute the spectrum.

4.3 Discussion of Numerical Results of Random Cayley Graphs

G(SL2(Fp),Sp)

In this section, several numerical results of the edge spectra of random Cayley graphs

of SL2(Fp) under both principal representations and discrete representations are presented. The

spectrum for a random Cayley graph is ordered as λ1 ≥ λ2 ≥ ·· · ≥ λN , with N = dimρ. The

edge spectrum is normalized as in Equation (3.9) in Chapter 3.

λ̃max = n1/6(λmax−µsample)

√
n

2d−1
, (4.13)
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where n = n(N) is the solution of Equation (3.6) and (3.7). Then the distributions of λ1, |λN |,

and λ± = max(λ1, |λN |) are analyzed. It is shown that under any non-identity irreducible rep-

resentation, the edge spectrum of Fourier transform δ̂Sp(ρ) fits a properly shifted Tracy-Widom

β = 2 or β = 4 distribution quite well.

4.3.1 Edge Spectra of Principal Series

The largest integer datatype in MATLAB is 32 bits and 1300× (13002− 1) > 231.

Therefore, in order to keep the uniformity of random pairs, we only allow prime numbers p ≤

1300. Here p =83, 163, 307, 587, 643, 733, 877, 997, 1187, 1237, 1283 cases are investigated,

and the results are summarized in Table (4.1). For each p, there are four different types of

principal representations, ρ̃φ0 , ρ
±
φ p−1

2

, ρeven index and ρodd index, while ρodd index and ρ
±
φ p−1

2

are

further divided into two subcases depending on 1 ≡ k mod 4 or 3 ≡ k mod 4. The extra “-

” sign comes from the asymmetric mass distribution of the edge spectrum of ẑρ.

When p = 1237 ≡ 1 mod 4, it is shown in Figures (4.1), (4.2), (4.3), (4.4), that the

probability density function of the normalized λ1 fits well with a shifted β = 2 Tracy-Widom

distribution for ẑρ̃φ0
,−ẑρφ1

, ẑρφ2
, · · · ,(−1)

p−3
2 ẑρφ p−3

2

, and (−1)
p−1

2 ẑ
ρ
+
φ p−1

2

,

(−1)
p−1

2 ẑ
ρ
−
φ p−1

2

. In all figures, dark blue color represents the edge spectrum of ẑρ, and β = 1,

β = 2, and β = 4 Tracy-Widom distributions are denoted with red, green, and cyan colors,

respectively.

Similarly, the normalized λ± of (−1)kẑρk when p = 1237 are displayed in Figures

(4.5). For even index k, λ± fits β = 2 Tracy-Widom distribution. For odd index k, −λ± fits

β = 4 Tracy-Widom distribution. When k = p−1
2 it fits β = 4 Tracy-Widom distribution.

Also, for the same p = 1237, the normalized λN of (−1)kẑρk of any index fits β = 2
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Table 4.1: The edge spectrum of a random pair under non-identity principal irreducible repre-

sentations fits with different Tracy-Widom distributions.

k = 1,2, · · · , p−3
2 λ1 λN λ±

ẑρ̃φ0
β = 2 β = 2 β = 2

ẑρφk
(k even) β = 2 β = 2 β = 2

−ẑρφk
(1≡ k mod 4) β = 2 β = 2 β = 4

−ẑρφk
(3≡ k mod 4) β = 2 β = 4 β = 4

ẑ
ρ
+
φ p−1

2

(1≡ p mod 4) β = 2 β = 2 β = 4

−ẑ
ρ
+
φ p−1

2

(3≡ p mod 4) β = 4 β = 4 β = 4
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Figure 4.1: Probability density of the normalized λ1 of ẑρ̃φ0
of p = 1237 with 2000 samples,

which fits β = 2 Tracy-Widom distribution. Recall ρφ0 = 1⊕ ρ̃φ0 . So λ1 actually is the second

largest eigenvalue of ẑρφ0
.
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Figure 4.2: Probability density of the normalized −λ1 of ẑρφ1
of p = 1237 with 2000 samples,

which fits β = 2 Tracy-Widom distribution.
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Figure 4.3: Probability density of the normalized λ1 of ẑρφ2
of p = 1237 with 2000 samples,

which fits β = 2 Tracy-Widom distribution.
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Figure 4.4: Probability density of the normalized λ1 of ẑ
ρ
+
φ618

of p = 1237 with 2000 samples,

which fits β = 2 Tracy-Widom distribution. Recall ρφ p−1
2

= ρ
+
φ p−1

2

⊕ρ
−
φ p−1

2

.

Tracy-Widom distribution, see Figures (4.6).

In all cases, a small discrepancy is observed at the right tail of the distribution, where

the sample distribution has a longer tail than Tracy-Widom distribution. This is amplified by

the normalization factor N2/3/
√

3. Also the edge spectrum of ẑρ2k+1 of odd index is shown to

concentrate more sharply than ẑ2k with even index.

4.3.1.1 Kolmogorov-Smirnov test (KS Test) of λ1 of Principal Series

Kolmogorov-Smirnov test is used here to verify the fitting between the normalized

edge spectrum and Tracy-Widom distribution.

Let Fn(x) = 1
n ∑

n
1 IXk≤x be the empirical distribution function for n independently iden-

tical distributed samples Xk, and let F(x) be the cumulative distribution function of the theoret-
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(a) λ± of ẑρ̃φ0
fits β = 2.
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(b) λ± of −ẑρφ1
fits β = 4.
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(c) λ± of ẑρφ2
fits β = 2.
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(d) λ± of ẑ
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Figure 4.5: Probability density function of the normalized λ± for p = 1237 with 2000 samples.

ical prediction. Discrepancy can be defined as Dn = supx |Fn(x)−F(x)|. If Dn is small, then

the samples fit theoretical prediction well. If the samples follow theoretical prediction F(x),

as n→ ∞, the normalized discrepancy converges
√

nDn → supt∈[0,1] |B(F(t))|, where B(t) is

Brownian Bridge. Meanwhile supt∈[0,1] |B(F(t))| has a limit distribution, called Kolomogorov

Law,

Pr( sup
t∈[0,1]

|B(t)| ≤ z) =
∞

∑
−∞

(−1)ke−2k2z2
. (4.14)

For a given α, one can define Kα to satisfy Pr(K ≤ Kα) = 1−α of Kolomogorov Law. If the

normalized discrepancy
√

nDn ≤ Kα, this fitting is good at level of α. Statisticians also use

p-value to characterize the fitting, which is the probability of obtaining the actually observed,

by assuming that it follows theoretical prediction.

Given α = 0.05, KS test results of the normalized edge spectrum are summarized in

63



−6 −4 −2 0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
f(

x)

 

 
Normalized histogram λ

N

Centered β=1 TW
Centered β=2 TW
Centered β=4 TW

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
0

5

10

15

20

25

30

35
Before Normalization

(a) λN of ẑρ̃φ0
fits β = 2.
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(b) λN of −ẑρφ1
fits β = 2.
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(c) λN of ẑρφ2
fits β = 2.
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(d) λN of ẑ
ρ
+
φ618

fits β = 2.

Figure 4.6: Probability density function of the normalized λN for p = 1237 with 2000 samples.

Table (4.2) and (4.3). ẑρφk
with even k case is skipped, since its edge spectrum behaviors is

found to be nearly identical to ẑρ̃φ0
case, see Figures (4.1) and (4.3). In all KS tests, KS(x,y) =

0 denotes that null hypothesis of x and y are from the same continuous distribution, while

KS(x,y) = 1 denotes that null hypothesis is rejected.

We notice that the fitting and the p-values are roughly improved with the increase of

the dimension. In Table (4.3), we compute KS test between λ1 with both β = 2 and β = 4 Tracy-

Widom distributions. If both tests accept null hypothesis, their P-values are further compared

to make a conclusion. In Table (4.3), p = 307 case is the only exception, which dose not follow

the results summarized in Table (4.1). And p = 83 case rejects both KS tests.

64



Table 4.2: Kolomogorov test between the shifted β = 2 Tracy-Widom distribution and the nor-

malized λ1.

(a) λ1 of ẑρ̃φ0
with 2000 Samples.

Dimension KS Test P-value

p = 1283 0 0.1441

p = 1237 0 0.2816

p = 1187 0 0.3072

p = 997 0 0.1298

p = 877 0 0.1298

p = 733 0 0.1763

p = 643 0 0.1763

p = 587 1 0.0412

p = 307 0 0.1048

p = 163 0 0.1441

p = 83 0 0.0666

(b) λ1 of −ẑρφ1
with 2000 Samples.

Dimension KS Test P-value

p = 1283 0 0.3632

p = 1237 0 0.1441

p = 1187 0 0.3072

p = 997 0 0.4586

p = 877 0 0.2575

p = 733 0 0.1048

p = 643 0 0.5654

p = 587 0 0.2575

p = 307 0 0.4586

p = 163 0 0.1168

p = 83 1 0.0122
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Table 4.3: Kolomogorov test between the shifted β = 4 Tracy-Widom distribution and the nor-

malized λ1 of (−1)
p−1

2 ẑ
ρ
+
φ p−1

2

with 2000 Samples.

Dimension KS Test(β = 2) P-value KS test(β = 4) P-value Result

p = 1283 1 0.0036 0 0.1441 β = 4

p = 1237 0 0.1168 0 0.0939 β = 2

p = 1187 1 0.0043 0 0.3344 β = 4

p = 997 0 0.3344 1 0.0141 β = 2

p = 877 0 0.1944 1 0.0141 β = 2

p = 733 0 0.5654 1 0.0141 β = 2

p = 643 1 0.0122 0 0.3344 β = 4

p = 587 1 0.0244 0 0.2350 β = 4

p = 307 0 0.1048 0 0.0666 β = 2

p = 163 0 0.1168 0 0.1298 β = 4

p = 83 1 0.0079 1 0.0036 NA
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4.3.2 Edge Spectra of Discrete Series

In practice, the computation of Fourier transform under discrete representations is

more time consuming than principal representations. So only p =37, 43, 53, 67, 107, 157 cases

are investigated due to computer limitations. For each p, there are three types of irreducible

discrete representations, ρπkeven , ρπkodd and ρ±π p+1
2

, where k = 1, 2, · · · , p−1
2 . The probability den-

sity functions of 1000 samples of the normalized λ1 for p = 157 are displayed in Figure (4.7),

(4.8) and (4.9). More computations are needed to draw a confirmed answer for ẑπ at discrete

representations.
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Figure 4.7: Probability density function of the normalized λ1 of ẑρπ2
of p = 157 with 1000

samples, which fits β = 2 centered Tracy-Widom distribution.

67



−6 −4 −2 0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
f(

x)

 

 
normalized histogram λ

1

centered β=1 TW f(−x)
centered β=2 TW f(−x)
centered β=4 TW f(−x)

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

1

2

3

4

5

6

7

8
Before Normalization

Figure 4.8: Probability density function of the normalized λ1 of −ẑρπ3
of p = 157 with 1000

samples, which fits β = 2 centered Tracy-Widom distribution.

4.3.3 Correlations Between Edge Spectra of Different Irreducible Representa-

tions

A numerical study of the distribution of the edge spectrum of each irreducible repre-

sentation (i.e each block inside the adjacency matrix of Cayley graphs) is carried out in Section

4.3.1 and 4.3.2. Though the adjacency matrix is block diagonalized, blocks are not independent

of each other. Intuitively, for the same generator set, if one block shows large non-trivial eigen-

value, the other blocks under different irreducible representations should have higher probability

to behavior similarly. To confirm this intuition, edge spectrum correlations between different

irreducible representations are studied here.

Recall for given samples x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn), the correlation
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Figure 4.9: Probability density function of the normalized λ1 of (−1)
157+1

2 ẑρπ79
of p = 157 with

1000 samples, which fits β = 4 centered Tracy-Widom distribution. Recall ρπ p+1
2

= ρ+
π p+1

2

⊕

ρ−π p+1
2

.

coefficient is defined as

rxy =
∑

n
1(xi− x)(yi− y)√

∑
n
1(xi− x)2 ∑

n
1(yi− y)2

Our numerical experiments show that for all three cases λ1, λN , λ±, they are either

almost fully correlated with correlation coefficient ∼ 0.95 or strong correlated with correlation

coefficient ∼ ±0.60, where ± sign depends on index even or odd, no matter under principal

representations or discrete representations. More important, there are exact half of them with

positive correlation coefficients, and half of them with negative coefficients. Correlations of λ±

between principal representations and discrete representations with 1000 samples for p = 67

are shown in Figure (4.10)
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Figure 4.10: Correlation coefficients of λ± between all principal irreducible representations and

discrete irreducible representations for the same 1000 random generating pairs when p = 67.

Recall we order principal representations using index 0 : p−1
2 , and discrete representations using

index 1 : p+1
2 .

4.3.4 Sample Mean and Sample Variance

Sample mean has its own interest of connection with the Ramuanjuan bound. To study

the difference between sample mean and the Ramanujan bound 2
√

d−1, edge eigenvalues are

standardized with mean 0 and variance 1 in the following form,

λ̃1 =
λ1−2

√
2k−1+ c1Nm

c2Ns . (4.15)

The numerical experiments of random pairs show that logc1Nm and logc2Ns are ap-
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proximate to linear functions of logN. For example, for λ± case one obtain followings,

logc1Nm ∼ −0.70logN +2.00 for ẑρ̃φ0
,

logc2Ns ∼ −0.56logN +0.30;

logc1Nm ∼ −0.75logN +1.65 for ẑρφ1
,

logc2Ns ∼ −0.59logN +1.23;

logc1Nm ∼ −0.78logN +1.79 for ẑ
ρ
+
φ p−1

2

when p≡ 3 mod 4,

logc2Ns ∼ −0.56logN +1.19;

logc1Nm ∼ −0.47logN−0.83 for ẑ
ρ
+
φ p−1

2

when p≡ 1 mod 4,

logc2Ns ∼ −0.77logN +1.75. (4.16)

For all cases, we have c1 > 0, and c2 > 0. This tells that the sample mean µsample of

the edge spectrum is less than the Ramanujan bound 2
√

3, and its distance decays at a rate of

N−m. Also the edge spectrum will concentrate at a rate of N−s. Interestedly, we have s > m

except ẑ
ρ
±
φ p−1

2

when p ≡ 1 mod 4. Similar results hold for λ1 and |λN | under any non-identity

irreducible principal representation. While under discrete irreducible representations, the edge

spectrum also has similar results with no exception. Results of λ± of ẑρπ
are listed below in
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Equation (4.17).

logc1Nm ∼ −0.78logN +0.57 for ẑρπ2
,

logc2Ns ∼ −0.54logN +0.16;

logc1Nm ∼ −0.74logN +1.62 for ẑρπ3 ,

logc2Ns ∼ −0.41logN +0.33;

logc1Nm ∼ −0.77logN +1.41 for ẑ
ρ
+
π p+1

2

when p≡ 3 mod 4,

logc2Ns ∼ −0.67logN +0.83;

logc1Nm ∼ −0.77logN−2.17 for ẑ
ρ
+
π p+1

2

when p≡ 1 mod 4,

logc2Ns ∼ −0.44logN +0.41. (4.17)

Since s > m, c1 > 0 and c1 > 0, Equation (4.18) tells that the Ramanujan bound 2
√

3

has zero standard deviation to the right of the sample mean µsample when p→ ∞ and p � 1

mod 4 for any non-identity irreducible representation. While p ≡ 1 mod 4, to make Equation

(4.18) still hold, σsample must decay at speed of Ns−m. Also sample mean µsample is “far” to the

left side of the Ramanujan bound 2
√

3, which provides a better chance to be Ramanujan graphs.

2
√

3≈ µsample +
c1

c2
Nm−s

σsample, (4.18)

Conjecture 4.3.1. Random Cayley graphs G(SL2(Fp),Sp) have better chance to be Ramanujan

for p≡ 1 mod 4 than other prime numbers.
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Chapter 5

Random Hecke Operators of SU(2)

In Chapter 4, the distribution of the edge spectra of random Cayley graphs of

G(SL2(Fp),Sp) has been shown numerically to be certain Tracy-Widom distribution. Similar

behaviors for a type of random Hecke operators of SU(2) are shown in this chapter.

Lubotzky, Philips and Sarnak [LPS86] first introduced those arithmetic Hecke opera-

tors on S2, which evenly distribute points {p,H p, · · · ,Hn p · · ·} over S2. Gamburd and Bourgain

[BGSU08], fully established the spectral gap property λ1 < 2k for any random Hecke type of

operators with form,

zg1,··· ,gk f (x) =
k

∑
1
( f (gix)+ f (g−1

i x)) for k ≥ 2, and f (x) ∈ L2(SU(2)), (5.1)

where g1, · · · ,gk is a finite set of elements in G = SU(2) generating a free group and satisfying

non-commutative diophantine property. Gamburd, Jakobson and Sarnak ([GJS99]) also found

that the bulk spectrum of ẑπN converges to GOE/GSE bulk spectrum for dimension even/odd,

and the level spacing of ẑπN fits very well with GOE/GSE statistics for dimension even/odd.

This connection with random matrices also suggests that the properly normalized edge spec-

tra of random Hecke operators as in Equation (5.1) would follow β = 1/β = 2 Tracy-Widom

73



distributions. This result is shown in this Chapter numerically.

5.1 Generating of SU(2) Random Hecke Operators

The irreducible representation of G = SU(2) is πN = symNV with N ≥ 0, where V is

the standard two dimensional representation of G. It can be represented by linear action as

(x,y)−→ (αx+ γy,βx+δy),

 α β

γ δ

 ∈ G (5.2)

on WN+1, the space of homogeneous polynomials in (x,y) of degree N. Thus the dimension of

πN is N +1.

To generate SU(2) elements uniformly with respect to Haar measure, we use Euler

angle to parametrize SU(2). Let σ1 =

 i 0

0 −i

, σ2 =

 0 1

−1 0

, σ3 =

 0 i

i 0

, then

the generic element of SU(2) can be written as

g = eφσ1eθσ3eψσ2 , (5.3)

with φ ∈ [0,π], ψ ∈ [0,2π], θ ∈ [0,π/2]. Here φ, ψ, θ are so-called Euler angles of SU(2).

Hence, Haar measure can be written in terms of φ, ψ, θ as dg∼ sinθdθdφdψ.

The matrix realization of a random Hecke operator z can be thought as the Fourier

transformation of δ = ∑
k
1 δgi +δg−1

i
at an irreducible representation πN . Thus,

ẑπN =
k

∑
i=1

π(eφiσ1)π(eθiσ3)π(eψiσ2)+(π(eφiσ1)π(eθiσ3)π(eψiσ2))−1 (5.4)

=
k

∑
i=1

edπ(φiσ1)edπ(θiσ3)edπ(ψiσ2)+(edπ(φiσ1)edπ(θiσ3)edπ(ψiσ2))∗T .

Here dπ is the induced representation on Lie algebra su(2). Under a basis e j =
x jyN− j√
j!(N− j)!

, the
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N +1 dimensional induced representation has the forms,

dπ(σ1)(e j) = i(2 j−N)e j, (5.5)

dπ(σ2)(e j) = −
√

j(N− j+1)e j−1 +
√

(N− j)( j+1)e j+1, (5.6)

dπ(σ3)(e j) = i
√

j(N− j+1)e j−1 + i
√
(N− j)( j+1)e j+1, (5.7)

where j = 0,1, · · · ,N.

By applying Equation (5.4), we can compute the matrix realization of random Heck

operators. After that, the edge spectrum can be normalized as

λ̃max = n1/6(λmax−µsample)

√
n

2d−1
, (5.8)

where n = n(N) is the solution of Equation (3.6) and (3.7) in Chapter 3.

5.2 Discussion of Numerical Results of SU(2) Random Hecke Op-

erators ẑπN

As in Chapter 4, the spectra of SU(2) random Hecke operators ẑπN are sorted as

λ1 ≥ λ2 ≥ ·· · ≥ λN+1. Results of the distributions of the normalized edge spectrum λ1, |λN+1|,

and λ± = max(λ1, |λN+1|) of ẑπN are illustrated for even N =50, 100, 200, 300, 500, 800, 1000,

1200, 1500, 2000, 2500, 3000, and for odd N =51, 101, 201, 301, 501, 801, 1001, 1201, 1501,

2001, 2501, 3001. It is showed that for even N the normalized λ1 and |λN+1| fit β = 1 Tracy-

Widom distribution quite well, and the normalized λ± fits β = 2 Tracy-Widom distribution.

While for odd N, the distributions of the normalized λ1, |λN+1|, and λ± are all showed to be

fitted with β = 2 Tracy-Widom distribution.
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5.2.1 The Edge Spectra of Random Hecke Operators of SU(2)

The probability density function of the normalized largest eigenvalue λ1 for k = 3

with N = 3000 (i.e. dim = 3001) is displayed in Figure (5.1). Similarly, with the same random

samples as in Figure (5.1), k = 3 and N = 3000, the probability density function of the normal-

ized smallest eigenvalue |λN+1| and the normalized maximal eigenvalue λ± are shown in Figure

(5.2) and (5.3). In all figures, dark blue color represents the edge spectrum of ẑπN . β = 1, β = 2,

and β = 4 Tracy-Widom distributions are denoted with red, green, and cyan colors, respectively.

It is shown that the normalized edge spectrum fits well with certain Tracy-Widom distributions

except at the right tail. The normalized λ± fits β = 2 instead of β = 1 Tracy-Widom distribution,

which might be due to the large correlations between λ1 and λN+1, see Figure (5.7).
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Figure 5.1: Probability density function of the normalized λ1 of ẑπ3000 with 1000 samples, which

fits β = 1 Tracy-Widom distribution.

When N is odd, [GJS99] shows that the level spacing of de-symmetrized (i.e. remov-
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Figure 5.2: Probability density function of the normalized λ3001 of ẑπ3000 with 1000 samples, the

same ẑπ3000 as in Figure 5.1, which fits β = 1 Tracy-Widom distribution.
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Figure 5.3: Probability density of the normalized λ± of ẑπ3000 with 1000 samples, the same ẑπ3000

as in Figure 5.1, which fits β = 2 Tracy-Widom distribution.
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ing multiplicities) ẑπN follows β = 4 level spacing distribution. Since de-symmetry does not

make any difference for the edge spectrum, the normalized λ1, λN+1, and λ± of−ẑπN now all fit

β = 2 Tracy-Widom distribution. N = 3001 (i.e. dim = 3002) cases are shown in Figure (5.4),

Figure (5.5) and Figure (5.6). The extra “-”sign is due to the asymmetric mass distribution of

the edge spectrum of both random Hecke operators and random matrices.
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Figure 5.4: Probability density function of the normalized λ1 of −ẑπ3001 with 1000 samples,

which fits β = 2 Tracy-Widom distribution.

Recall for a given α, if discrepancy
√

nDn ≤ Kα, where Kα satisfying Kolomogorov

law Pr(K ≤ Kα) = 1−α, one says that the fitting is good at level α. And p-value is the prob-

ability of obtaining the actually observes, by assuming observes follow theoretical prediction.

See Section 4.3.1.1 of Chapter 4.

Given α = 0.05, the results for the normalized λ1 and λN+1 with even N are summa-

rized in Table (5.1), and the results of λ± with even N are shown in Table (5.2). We notice the
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Figure 5.5: Probability density function of the normalized λN+1 of −ẑπ3001 with 1000 samples,

the same ẑπ3001 as in Figure 5.4, which fits β = 2 Tracy-Widom distribution.
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Figure 5.6: Probability density function of the normalized λ± of −ẑπ3001 with 1000 samples, the

same ẑπ3001 as in Figure 5.4, which fits β = 2 Tracy-Widom distribution.
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Table 5.1: Kolomogorov test between the shifted β = 1 Tracy-Widom distribution and the nor-

malized λ1 and λN+1of ẑπN with 1000 samples.

Dim N +1 KS (λ1) P-value KS (λN+1) P-value

N = 50 0 0.5566 0 0.2419

N = 100 0 0.1238 0 0.2350

N = 200 0 0.2184 0 0.2184

N = 300 0 0.3599 0 0.4493

N = 500 0 0.1909 0 0.1056

N = 800 0 0.2184 0 0.1238

N = 1000 0 0.2829 0 0.1238

N = 1200 0 0.1326 0 0.1907

N = 1500 0 0.3584 0 0.1657

N = 2000 0 0.1863 0 0.1711

N = 2500 0 0.1774 0 0.1467

N = 3000 0 0.2208 0 0.1238

fit and the p-value are roughly improved with the increase of the dimension. Also, λ± rejects

all KS test with β = 1 Tracy-Widom distribution with at level of α = 0.05.

In all KS test tables, KS(x,y) = 0 denotes that null hypothesis of x and y are from the

same continuous distribution, while KS(x,y) = 1 denotes that null hypothesis is rejected.

Shown in Figure (5.4), Figure (5.5), and Figure (5.6), when N is odd, the normalized

edge spectrum of −ẑπN matches with β = 2 Tracy-Widom distribution. Table (5.3) summarizes

Kolomogorov test results, which confirm the above observations.
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Table 5.2: Kolomogorov test between the shifted β = 2 Tracy-Widom distribution and the nor-

malized λ± of ẑπN with 1000 samples

Dim N +1 KS Test(β = 2) P-value KS Test(β = 1) P-vale

N = 50 0 0.1436 1 0.0066

N = 100 0 0.2829 1 0.0002

N = 200 0 0.2491 1 0.0068

N = 300 0 0.1657 1 0.0079

N = 500 0 0.1063 1 0.0002

N = 800 0 0.4031 1 0.0013

N = 1000 0 0.2491 1 0.0009

N = 1200 0 0.1907 1 0.0002

N = 1500 0 0.1238 1 0.0022

N = 2000 0 0.4031 1 0.0022

N = 2500 0 0.1907 1 0.0011

N = 3000 0 0.4981 1 0.0007
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Table 5.3: Kolomogorov test between the shifted β = 2 Tracy-Widom distribution and the nor-

malized λ1, λN+1 and λ± of−ẑπN with 1000 samples. 0 denote KS test accepted, while 1 denote

rejected.

Dim N +1 KS (λ1) P-value KS (λN+1) P-value KS (λ±) P-value

N = 51 1 0.0008 1 0.0007 1 0.0141

N = 101 1 0.0122 1 0.0244 0 0.1763

N = 201 1 0.0410 0 0.0666 0 0.1944

N = 301 0 0.1796 0 0.4493 0 0.2350

N = 501 0 0.4253 0 0.4586 0 0.1763

N = 801 0 0.5288 0 0.5654 0 0.1596

N = 1001 0 0.6785 0 0.2816 0 0.4586

N = 1201 0 0.3344 0 0.4931 0 0.1168

N = 1501 0 0.6785 0 0.3632 0 0.1441

N = 2001 0 0.3632 0 0.4253 0 0.1907

N = 2501 0 0.3344 0 0.4586 0 0.1763

N = 3001 0 0.3935 0 0.2816 0 0.1658
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By computing the sample correlation coefficient Sxy√
SxxSyy

(see Equation 4.15), the nu-

merical experiments indicate that there are strong correlations between λ1 and λN+1 for both N

even and odd, see Figure (5.7).
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Figure 5.7: Correlation coefficient between λ1 and |λN+1| of random Hecke operators.

5.2.2 Sample Mean and The Ramanujan Bound

As in Section (4.3.4), edge eigenvalues are standardized with mean 0 and variance 1

as follows,

λ̃1 =
λ1−2

√
2k−1+ c1Nm

c2Ns . (5.9)

The logarithm of the standard derivation logc1Ns and the logarithm of the difference

to the Ramanujan bound logc1Nm are shown to be linear functions of logN approximately. In

the case of λ1 for k = 3 and N = 3000 even, we have,

logc2Ns ∼ −0.53logN +0.40 for λ1, (5.10)

logc1Nm ∼ −0.76logN +0.85. (5.11)
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Similarly, when k = 3 and N = 3000 even, for λN+1 and λ±, we have

logc2Ns ∼ −0.52logN +0.35 for λN+1, (5.12)

logc1Nm ∼ −0.78logN +0.80,

logc2Ns ∼ −0.51logN +0.20 for λ±,

logc1Nm ∼ −0.82logN +0.66.

While N = 3001 odd, for k = 3, we have

logc2Ns ∼ −0.43logN +0.27 for λ1, (5.13)

logc1Nm ∼ −0.68logN +1.74,

logc2Ns ∼ −0.44logN +0.30 for λN+1,

logc1Nm ∼ −0.69logN +1.79,

logc2Ns ∼ −0.43logN +0.22 for λ±,

logc1Nm ∼ −0.68logN +1.50,

In all cases, the numerical experiments indicate that c1 > 0, c2 > 0 and s > m. This

indicates that 2
√

5−µedgespectrum > 0, and it decays to 0 at a rate of N−m. µsample will converge

to the Ramanujan bound 2
√

5. Also the variance decays at a rate of N−s, which tells that the

edge spectrum is getting more and more concentrated.
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