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Abstract 

Recent research has shown that when people multitask, both 
the subtask structure and the temporal constraints of the 
component tasks strongly influence people’s task-switching 
behavior. In this paper, we propose an integrated theoretical 
account and associated computational model that aims to 
quantify how people balance structural and temporal 
constraints in everyday multitasking. We validate the theory 
using data from an empirical study in which drivers performed 
a visual-search task while navigating a driving environment. 
Through examination of illustrative protocols from the model 
and human drivers as well as the overall fit on the aggregate 
glance data, we explore the implications of the theory and 
model for time-critical multitasking domains. 

Keywords: Multitasking; driving; cognitive architectures 

Introduction 
Multitasking often occurs in time-critical situations, such as 
answering a ringing phone while babysitting, cooking over a 
stove, or driving a vehicle. In these situations, the structure 
of one or both tasks may impose a sense of urgency to 
complete a task, perhaps due to the environment (e.g., a pot 
boiling over) or perhaps due to self-imposed pressures. For 
instance, consider Janssen, Brumby, and Garnett’s (2012) 
example of texting the message “Running late” while driving: 
even as driving is clearly the task with the highest priority, a 
driver who is almost done typing the message (“Running 
lat...”) will feel strongly compelled to finish typing before 
continuing to drive. In such situations, we continually 
balance our urgency to complete one task with the urgency 
imposed by other tasks. 
 A wealth of recent research has explored how we multitask, 
both in constrained laboratory studies and in complex real-
world environments. One general finding is that task 
structure—how a task breaks down into smaller subtasks—
strongly affects how people perform that task concurrently 
with other tasks (e.g., Borst, Taatgen, & van Rijn, 2015; Iqbal 
& Bailey, 2005). Complementary studies have shown that a 
task’s temporal constraints can strongly affect multitasking; 
arguably the most studied context is that of driving, for which 
studies have explored the relationship between driving 
urgency (or uncertainty) and time looking away from the road 
(e.g., Kujala et al., 2015; Lee, Gibson, & Lee, 2015). 

 In this paper, we examine the critical relationship between 
structural and temporal constraints on multitask behavior and 
performance. Although there are multitasking scenarios in 
which either the structural or the temporal constraints are 
dominant, they are both generally present in some form: 
structural constraints (e.g., the chunking of a telephone 
number: Brumby, Howes, & Salvucci, 2009; Janssen, 
Brumby, & Garnett, 2012) still appear in very time-critical 
domains like driving, and temporal constraints (e.g., the 
limited time for answering a ringing phone) still appear in 
primarily structurally-driven domains. Although most studies 
have focused on only one of these constraints at a time, recent 
studies have examined how overall task priorities affect task 
switching (e.g., Brumby, Howes, & Salvucci, 2009; Janssen, 
Brumby, & Garnett, 2012) and glance durations between 
tasks (Lee, Gibson, & Lee, 2015). As yet, however, a rigorous 
cognitive process model that quantifies this relationship has 
proven elusive. Here, we propose a theoretical framework to 
help understand and quantify the balance between subtask 
structure and temporal constraints. 

Balancing Structure and Time 
The issues that arise in balancing structural and temporal 
constraints are perhaps best illustrated by behavioral 
protocols collected from people acting in multitasking 
contexts. For this purpose, we delve more deeply into a 
recently collected data set in which drivers (N=12) were 
asked to perform visual-search tasks while driving (Kujala & 
Salvucci, 2015). In the experiment, drivers searched through 
multiple screens of 6, 9, or 12 songs for a particular target 
song. The screens were laid out in one of two ways: a Grid 
layout, with 2, 3, or 4 rows of 3 songs each; or a List layout, 
with the songs listed vertically top to bottom. If the target 
song did not appear on a given screen, the driver was asked 
to press the down-arrow button to advance to the next screen. 
Here we are concerned only with screens without the target, 
in which drivers searched through all the songs. Drivers 
performed the search tasks in a driving simulator, on a display 
to the right of the steering wheel, and navigated a straight 
three-lane road at highway speed (80 km/h), occasionally 
performing the search task when requested. 
 The visual-search and driving task includes the types of 
structural and temporal constraints found in many 
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multitasking contexts. The search task comprises two 
subtasks that repeat for each screen, namely to search 
through the on-screen items and to press the button when 
finished. At the same time, the driving task involves 
increasing urgency over time as the driver looks away from 
the road, eventually reaching the point where the driver needs 
to look back. Thus, the balance between completing the 
search task and driving safely created the key challenge for 
the driver in managing both tasks concurrently. 
 The original treatment of these data (Kujala & Salvucci, 
2015) focused on aggregate analysis and modeling of human 
behavior in this task. In focusing on individual behavior 
protocols in the data, however, we found that the aggregate 
analysis shrouded the interesting cognitive strategies that 
arose on individual trials. To this end, we now focus on 
examining the human protocols from the study, and in the 
next section develop a much more in-depth model that 
matches both individual and aggregate behavior. 

Switching at Subtask Boundaries. As mentioned earlier, 
many studies have shown that people tend to switch tasks at 
subtask boundaries. Participants in the present study were no 
exception, and often switched from search to driving and 
from press to driving after each of these subtask boundaries. 
Figure 1 shows a classic example of this type of switching, 
taken from a person performing the search task on the Grid-
6 display. Specifically, the figure shows the timeline of 
screen glances and button presses as the person searches 
through 3 consecutive screens for the target. Throughout the 
timeline, we see an alternation between glances for each 
subtask: a first glance for search and a second for press. The 
emerging pattern is one of switching at subtask boundaries, 
with the total number of glances equal to the total number of 
subtasks completed (2 glances for each of 3 screens). 

 
Figure 1: Human protocol showing task switching at 
subtask boundaries (highlighted: switch after search, 

switch after press). 

Self-Interrupting during Subtasks. Although switching at 
subtask boundaries is commonly observed in the study 
protocols, there are at least two other common behaviors. One 
such behavior involves interrupting oneself (or “giving up”: 
Bogunovich & Salvucci, 2011) during a subtask, when a 
person decides during a subtask that s/he needs to switch 
immediately rather than complete the subtask. Figure 2 
illustrates this behavior in the timeline of glances and presses 
for a person doing 3 trials in the Grid-12 condition. Here, for 
each trial, the person divides the search subtask into three 
roughly equal components, and finally makes a fourth shorter 
glance to press the button. 

 
Figure 2: Human protocol showing self-interruption during 

subtask (highlighted: multiple glances during search). 

Continuing beyond Subtask Boundaries. Besides self-
interrupting before subtask boundaries, people also exhibit 
the behavior of continuing beyond subtask boundaries—that 
is, reaching the subtask boundary, but then continuing to the 
next subtask rather than switching away from the task. Figure 
3 shows the sample protocol for one example in the List-12 
condition (see highlighted area): the driver presses the button 
and then immediately continues to search the next screen. 
Unfortunately, for some of these cases, continuing to the next 
subtask results in a long off-road glance lasting over 2 
seconds, illustrating a perhaps unintuitive effect: shorter tasks 
and faster behavior may sometimes actually lead to longer 
glance times at a task, because it tempts a person into 
continuing with the next subtask. 

 
Figure 3: Human protocol showing subtask continuation 
(highlighted: press followed by search in same glance). 

A Theory and Computational Model 
The main goal of our work here is to better understand the 
interplay between subtask boundaries and temporal urgency 
illustrated by the above examples. In particular, we aim to 
develop a computational model that can run in simulation and 
thus produce behaviors directly comparable to those of 
human participants. In this section we describe the details of 
our theoretical account and computational model, to be 
validated with human data in the next section. 
 An individual task can generally be thought of as a 
hierarchy of higher- and lower-level tasks (or goals) and 
subtasks (or subgoals) (see, e.g., Schraagen, Chipman, & 
Shalin, 2000). To account for the interaction of structural and 
temporal constraints, we require that the hierarchical 
decomposition also specify the timing of the various 
components. The simplest way to achieve this goal is to 
assign times to the actions at the leaves of the hierarchy tree; 
one might assume constant times (e.g., taken from the 
keystroke-level model: Card, Moran, & Newell, 1980), or 
variable times based on aspects of the current environment 
(e.g., mouse movement over different distances, cognitive 
delays due to recalling information). Taken further, the task 
hierarchy could be instantiated as a running computational 
model that adapts continuously to its environment—for 
example, a model developed using a computational cognitive 
architecture (e.g., Anderson, 2007; Newell, 1990). For our 
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purposes here, a task hierarchy augmented with action times 
is sufficient to serve as a model of an individual task. 
 Given two task models, we would like to express how 
structural and temporal constraints are balanced to dictate 
how people switch tasks in a multitasking context. As a first 
step toward this goal, we define urgency as a measure of a 
person’s desire to work on a given task; in essence, each task 
in a multitasking context has an associated urgency, and 
generally speaking, people tend to switch to (or continue 
with) the most urgent task at a given time. Urgency provides 
a convenient way to formulate the effects of structure and 
time into a single measure, and a way to evaluate concurrent 
tasks and decide whether and when to switch between them. 

Urgency and Structural Constraints. Earlier we noted how 
task structure has a strong influence on multitasking; how can 
we formulate this influence in terms of urgency? Empirical 
studies have made clear that people value the completion of 
a subtask, and thus, a person’s urgency should increase as 
s/he approaches a subtask boundary. If we assume a strong 
association between urgency and time, we could say that a 
person receives a “reward” upon completion of each subtask 
(e.g., Fu & Anderson, 2006), and that the reward is equal to 
the time spent on that subtask. 
 The value of receiving a reward at the completion of a 
subtask may also be propagated back to the actions that led 
to successful completion. One method allows prior actions to 
receive a boost to their urgency, but with a discount factor 𝛾 
between 0 and 1 that reduces the reward with increasing 
temporal distance from the actual subtask completion. 
Consider a subtask 𝑆# comprised of actions 𝑎%#  with times 
(durations) 𝑡%# . The total reward 𝑅(𝑆#) for this subtask is 
computed as the sum of its action times: 

𝑅 𝑆# = 𝑡%#%   

We then compute the structural urgency 𝑈,(𝑎%# ) of a 
particular action 𝑎%#  as a function of the subtask reward, 
𝑅(𝑆#), and the remaining time between the end of the action 
and the completion of the subtask, 𝑇(𝑎%# ):  

𝑇(𝑎%# ) = 𝑡.#./%   

𝑈,(𝑎%# ) = 𝛾0(12
3 ) ∙ 𝑅(𝑆#) 

The final action receives the full reward (𝑇(𝑎%# ) = 0), and 
each action before the final action receives the reward 
discounted by 𝛾 and the remaining time to completion. For 
example, Figure 4 graphs the structural urgency for 10 
actions of 300 ms with different values of 𝛾. This produces a 
hook-like function with larger 𝛾 values producing a flatter 
urgency function (earlier actions receiving more reward) and 
smaller values producing a sharper curve. 

 
Figure 4: Sample structural urgency profiles 

for 10 actions each with a duration of 300 ms. 

 Structural urgency as defined thus far accounts for people’s 
preferences in switching at subtask boundaries. A 
complementary empirical finding is that as people complete 
one subtask in a multitasking scenario, they are generally 
averse to continuing to the next subtask unless they feel they 
have sufficient time to complete that one as well (Bogunovich 
& Salvucci, 2011). This finding suggests that people have an 
awareness of the time needed to complete a full subtask, and 
that they use this information in deciding whether or not to 
continue. In terms of urgency, the aversion to continuing to 
another subtask can be represented as a negative urgency at 
the start of the subtask. Specifically, we define a continuation 
penalty when continuing from one subtask to the next, 
whereby we subtract the full duration of the next subtask 
from the structural urgency. In the context of a multitasking 
scenario, continuing to the next subtask will generally have a 
lower urgency than switching to another task; however, if no 
other task can proceed and/or other tasks have even lower 
urgency, the next subtask may then proceed. 

Urgency and Temporal Constraints. In addition to the 
urgency contributed by its structure, a task will often have an 
associated temporal urgency—a feeling that compels a 
person to complete the task as soon as possible. Temporal 
urgency is influenced by the amount of time passed since 
switching away from the task, with urgency (typically) 
increasing with the passage of time. We define temporal 
urgency 𝑈6(∆𝑡) as a function of the time since switching 
away ∆𝑡. The specific form of this function depends heavily 
on the task domain: highly time-critical domains will have a 
steep function with urgency rapidly increasing over time, 
whereas less time-critical domains will have flatter functions. 
In the next section we will see a concrete example of such a 
function for a time-critical task domain. 

Deciding when to Switch Tasks. In the case of multiple 
concurrent tasks, we use a decision mechanism similar to the 
conflict resolution mechanism in ACT-R (Anderson, 2007) 
to determine which task will progress at a given time. First, 
for each task, the total urgency 𝑈 is computed as the sum of 
its structural urgency, temporal urgency, and noise factor 𝜖: 

𝑈(𝑎%# , ∆𝑡) = 𝑈,(𝑎%# ) + 𝑈6(∆𝑡) 	+ 𝜖 

As in ACT-R, the noise 𝜖 is sampled from a logistic 
distribution, with mean 𝜇 = 0 and scale 𝑠, a free parameter 
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to be estimated (described shortly). Then, the task with the 
larger urgency is allowed to proceed. 

Computational Simulation. We implemented the proposed 
framework as a Java simulation system to enable rapid testing 
of models and parameters settings. The system takes as input 
a model as described above (with subtasks and associated 
action times), and generates sequential behavioral protocols 
as output. The protocols can then be analyzed for more 
aggregate measures, such as the common measures of glance 
times to be used shortly in the forthcoming study. 

Study: Visual Search and Driving 
To test the proposed approach, we return to the domain 
discussed earlier, namely visual search and driving. The prior 
model in Kujala & Salvucci (2015) focused mainly on the 
temporal constraints of the driving task, dynamically 
adjusting an in-car glance duration threshold according to the 
stability of the vehicle after switching back to the driving 
task. While this prior model provides a good account of the 
aggregate data, it does not conform well to the individual 
protocols shown earlier—notably, because it does not 
account for the structural constraints of the visual-search task 
(e.g., it is equally likely to switch early or late in the visual 
search, whereas people show a tendency to avoid switching 
late in the task). Here, we use the theoretical framework 
above to model the two tasks of visual search and driving, 
and then illustrate how the theory and simulations produce 
behavior that better resembles that of human participants. 

Models of Visual Search and Driving 
As discussed earlier, the visual-search task breaks down into 
a repeated iteration of two basic subtasks: a search of each of 
the on-screen items; and (assuming the target is not found, 
which is always the case for the screens analyzed here) a 
press of the down-arrow button to advance to the next screen. 
The search subtask includes an encoding action for each of 
the on-screen items—that is, 6, 9, or 12 actions to match the 
items in that particular condition. The press subtask contains 
a single action to press the button. The time required for each 
action was derived from simulations of the earlier ACT-R 
model of this task (Kujala & Salvucci, 2015): 368 ms per item 
for search in the Grid layout; 291 ms per item for search in 
the List layout; and 564 ms for press in all cases. 
 The model of driving used here is derived from the ACT-
R model of driver behavior (Salvucci, 2006). The core 
subtask is a cycle that visually encodes the near and far points 
of the road and updates the vehicle controls accordingly. 
These actions require a total of 200 ms to complete the cycle, 
and thus this is also the duration of the driving subtask, which 
is simply repeated while the model is actively driving. 
However, because the focus of our analysis here is on 
behavior in the visual-search task, we simply assume that the 
model drives for 1 second (5 cycles) and then switches back 
to the visual-search task. 
 Beyond the above structural details, we also require some 
formalization of the temporal constraints of the driving task 

in particular. There have been several attempts to quantify a 
driver’s cognitive state while looking away from the road, 
most notably in terms of uncertainty (see Kujala et al., 2015): 
as time passes, the driver’s uncertainty about the external 
environment (lane position, speed, other vehicles, etc.) 
gradually increases until it reaches a point at which the driver 
feels compelled to look back to the road. We translate these 
ideas into the temporal urgency of the driving task as follows. 
When the driver has stabilized the driving task, the urgency 
of further driving updates is rather low. We define a value 
𝑈,61>?@ to denote the low urgency of driving in this condition, 
a value analogous to the uncertainty threshold in prior work 
(e.g., Kujala et al., 2015). This value is presumed to be 
negative to indicate a lack of urgency—that is, it indicates 
that time might better be spent on some other task. In all, we 
define the temporal urgency of driving as: 

𝑈6(∆𝑡) = 𝑈,61>?@ + ∆𝑡 

When the driver looks away from the road (∆𝑡 = 0), the 
temporal urgency is equal to 𝑈,61>?@; however, as time passes 
and the driver continues the secondary task, the urgency of 
driving climbs steadily, eventually passing zero and 
becoming positive if the driver does not switch back to 
driving within 𝑈,61>?@ seconds. 
 When we combine these models of visual search and 
driving, we can visualize their competing urgencies as a 
function of time, as illustrated in Figure 5. The urgency of the 
search task builds gradually because of the increasing 
urgency to finish the task, ramping up quickly toward the end 
of the subtask. Meanwhile, the urgency of driving starts low 
(at the assumed 𝑈,61>?@ level) but increases over time due to 
increasing levels of uncertainty. At each point, the two 
urgencies are compared using the noisy conflict resolution 
process described earlier, forcing a switch to driving if the 
urgency of driving exceeds that of the search task. The graph 
on the right shows the probability of switching to driving at 
the various times: highest in the middle of the search subtask, 
and lowest early in the process (because driving still has a 
very low urgency) and late in the process (because there is 
high urgency to complete the search subtask). The resulting 
probability distribution is thus an emergent property of the 
theoretical mechanisms. 

 
Figure 5: Sample urgency graph for visual search and 

driving, with associated probability of switching to driving. 

 For these models, we estimated the three free parameters 
(the urgency value 𝑈,61>?@, the scaling factor 𝛾, and the noise 
scale 𝑠) by running 1000 simulations per parameter-value 
combination and finding the values that produced the best fit 
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on the aggregate data described later. The estimated values 
were 𝑈,61>?@ = −1.7, 𝛾 = 0.1, and 𝑠 = 0.3. 

Model Behavior and Results 
Kujala & Salvucci (2015) examined five separate measures 
(30 data points total) of aggregate behavior by the human 
participants. Because of space constraints and because our 
focus lies primarily in the individual protocols, we avoid a 
detailed comparison of these aggregate measures here. 
However, it should be noted that for these five measures, the 
overall fit of the current model was very much on par with 
that of the previous model. Table 1 includes the correlation 
(R) and normalized root-mean-squared-error (RMSE/mean) 
for both models for all measures. 

Table 1: Model-human correlations and errors for prior 
model (Kujala & Salvucci, 2015) and current model. 

 Prior Model Current Model 
 R NRMSE R NRMSE 
Number of in-car 
glances 

.99 .32 .96 .20 

Total in-car glance 
duration 

.97 .08 .99 .05 

Mean in-car glance 
duration 

.81 .13 .62 .15 

Maximum in car 
glance duration 

.94 .30 .83 .05 

Percent glances 
over 2 seconds 

.65 .31 .62 .31 

 
 While the current model matches aggregate behavior as 
well as the prior model, the current model importantly 
provides a much better account of the behavior of individual 
participants and trials by accounting for both temporal and 
structural constraints. Figure 6 shows one such behavior for 
the model in the Grid-6 condition, namely the classic strategy 
of switching at subtask boundaries. The upper portion of the 
graph shows a timeline of the model’s glances and button 
presses—again, analogous to our earlier analysis of human 
data. The lower portion shows the competing urgency 
between search and driving over time. For the first three 
screens, including behavior for the section screen at the point 
labeled A1, the model begins the search subtask; the urgency 
of driving steadily grows from its starting 𝑈,61>?@ value, but 
the urgency of completing the search subtask grows as well. 
When search is done, the urgency to continue with the next 
subtask (press) includes the continuation penalty defined 
earlier, namely subtracting the duration of the next subtask; 
in essence, the model is checking whether there is sufficient 
time to complete the next subtask, and if not, it switches back 
to driving. At the next opportunity, though, the model 
completes the pressing subtask and switches back. At the 
point labeled A2, the model switches slightly earlier but then 
completes the search as well as the button press on the next 
glance. 

 
Figure 6: Model protocol showing task switching 

at subtask boundaries (after search and press). 

 Not surprisingly, self-interruption during subtasks 
becomes more common as the number of on-screen items 
increases. Figure 7 shows an example in the Grid-9 condition. 
At point B1, we see a typical behavior in which the model 
reads several items during one glance, several more in a 
second glance, then finishes reading and finally makes the 
button press on the third glance. At point B2, the model splits 
up the item reading differently, but the end result is still a 
total of three glances to complete the search and press, 
instead of two glances in the canonical behavior in Figure 6. 
The behaviors for the other screens show similar patterns; 
note that because of the noisy conflict resolution mechanism, 
a lower urgency can sometimes “win” over a higher one, 
producing a similarly large variety of protocols as for human 
drivers. 

 
Figure 7: Model protocol showing self-interruption 

during subtask (multiple glances during search). 

 As the number of on-screen items decreases, or the 
duration of individual actions decreases (from Grid to List), 
the model adapts by occasionally continuing beyond subtask 
boundaries, as shown in Figure 8 in the List-6 condition. At 
point C1, the model finishes searching the 6 on-screen items 
so quickly that the urgency for the next subtask, press, is very 
close to that of driving; in this case (with noise), the model 
continues and presses the button before switching back to 
driving. Point C2 illustrates a different form of continuation: 
after pressing the button, the urgency of driving is still very 
low, and again the model decides to continue and begin 
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searching the on-screen items. The end result for this segment 
of behavior is a total of 4 glances to complete 3 screens, 
instead of the 6 glances (2 per screen) that would result from 
switching at subtask boundaries. While continuation after 
pressing the button was observed as a relatively infrequent 
behavior for human and model alike, the presence of this 
behavior at all (again, in both human and model) emphasizes 
the flexible nature of the balance between structural and 
temporal constraints. 

 
Figure 8: Model protocol showing subtask continuation 

(C1: press à search; C2: search à press). 

General Discussion 
The complex relationship between structural and temporal 
constraints presents a fascinating challenge when examining 
everyday multitasking behaviors, especially those in time-
critical contexts. The concept of urgency developed here 
offers a way to unify these two important factors on 
multitasking, both in understanding the human behaviors that 
emerge, and in formalizing rigorous computational models to 
predict behavior in novel situations. One might consider 
urgency as related to task priorities that influence behavior 
through rational adaptation (e.g., Howes, Lewis, Vera, 2009). 
Empirical work along these lines have focused on 
manipulating the overall priority of each task (e.g., 
instructing participants to focus on one task or the other: 
Janssen, Brumby, & Garnett, 2012). Our treatment here is 
complementary in focusing on the rise and fall of urgency at 
a second-by-second level, being closely dependent on the 
lower-level conditions of each task. Urgency thus helps to 
formalize how people get “hooked on” subtasks, and how 
they balance structural urgency of subtasks with the temporal 
urgency of time-critical task domains. 
 As a step in this direction, the formulation of urgency has 
potential for incorporation into larger theories of cognition. 
For example, the ACT-R cognitive architecture (Anderson, 
2007) posits that behavioral rules have an associated utility 
that can be learned and adapted using reinforcement 
mechanisms similar to those here (Fu & Anderson, 2006). 
However, whereas each rule has only one utility, a particular 
instantiation of a rule can have different urgency values 
depending on its place in the subtask structure. Urgency is 
more akin to threaded cognition’s (Salvucci & Taatgen, 

2011) “least-recently-used” heuristic in choosing the next 
cognitive thread to run; the heuristic might be subsumed by 
an improved formulation of urgency as a dynamic property 
of a complex task. 
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