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Segregating two simultaneous sounds in elevation using
temporal envelope: Human psychophysics and
a physiological model

Jeffrey S. Johnson, Kevin N. O’Connor, and Mitchell L. Suttera)

Center for Neuroscience, University of California at Davis, 1544 Newton Court, Davis, California 95618,
USA

(Received 18 March 2014; revised 29 April 2015; accepted 21 May 2015; published online 2 July
2015)

The ability to segregate simultaneous sound sources based on their spatial locations is an impor-

tant aspect of auditory scene analysis. While the role of sound azimuth in segregation is well stud-

ied, the contribution of sound elevation remains unknown. Although previous studies in humans

suggest that elevation cues alone are not sufficient to segregate simultaneous broadband sources,

the current study demonstrates they can suffice. Listeners segregating a temporally modulated

noise target from a simultaneous unmodulated noise distracter differing in elevation fall into two

statistically distinct groups: one that identifies target direction accurately across a wide range of

modulation frequencies (MF) and one that cannot identify target direction accurately and, on av-

erage, reports the opposite direction of the target for low MF. A non-spiking model of inferior

colliculus neurons that process single-source elevation cues suggests that the performance of both

listener groups at the population level can be accounted for by the balance of excitatory and inhib-

itory inputs in the model. These results establish the potential for broadband elevation cues to

contribute to the computations underlying sound source segregation and suggest a potential mech-

anism underlying this contribution. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4922224]

[VMR] Pages: 33–43

I. INTRODUCTION

The segregation of multiple simultaneous sound sour-

ces, exemplified for speech in the cocktail party problem

(Cherry, 1953), is an everyday task facing the auditory sys-

tem. In general, segregation refers to the act of forming sepa-

rate percepts of simultaneous stimuli, and stands in contrast

to integration where simultaneous stimuli are combined into

a single percept. Several types of cues can be used to segre-

gate sources in an auditory scene, including spatial location,

spectral content, and temporal envelope properties

(Bregman, 1990; O’Connor and Sutter, 2000; Woods et al.,
2001; Shinn-Cunningham et al., 2007; Hill and Miller,

2010). Spatial location information arising from interaural

time and intensity cues is an important contributor to sound

segregation for sources that differ in azimuth (i.e., the hori-

zontal plane), but in mammals these cues are not available

when sources are separated only in elevation (i.e., the verti-

cal plane). Spatial location in elevation is instead encoded

by the presence of frequency-specific decreases in energy

(“notches”), which are produced by the spatially dependent

spectral filtering of the sounds by the pinnae (Middlebrooks

and Green, 1991; Hofman et al., 1998; Tollin and Yin,

2003).

One complication when using spatial location to segre-

gate multiple sources in elevation is that of spectral notch in-

terference: when competing sounds sum at the cochlea, the

absence of spectral power at the notch frequencies corre-

sponding to a sound source at one elevation may be masked

by spectral power arising from a sound source at another ele-

vation, making detection of the notches, and therefore local-

ization of the sounds, difficult. Two recent studies highlight

the difficulty of segregating simultaneous broadband sounds

in elevation. Best et al. (2004) reported that humans are

unable to accurately report whether one or two identical

broadband noises are present if both sources are on the verti-

cal midline, suggesting that when simultaneous broadband

noise stimuli are distinguished only by elevation cues, they

are integrated to a single percept. Integration of broadband

sounds was also found in a study where listeners freely

reported the vertical location of a brief (50 ms) amplitude-

modulated (AM) target in the presence of an isospectral

noise masker with both sounds located on the vertical mid-

line (Bremen et al., 2010). When the target and noise were

of similar intensity and within 75 degrees of each other, the

listeners’ reports, intended to localize the target, were better

predicted by a weighted average of the two speaker locations

than by either of the speaker locations themselves, suggest-

ing that for narrow separations, the two sounds are inte-

grated. At higher separations (60 degrees and above, pooled

together) a bimodal response corresponding to the two loca-

tions of the speakers emerges, but in this case, the louder

speaker is favored regardless of the location of the target.

This suggests that for wide separations, the listeners

were able to partially segregate the sounds—sufficient to

recover the approximate elevations of the speakers–but were

unable to fully segregate the sounds in order to assign thea)Electronic mail: mlsutter@ucdavis.edu
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appropriate respective elevations to the target and the

masker, an ability which would have resulted in a unimodal

distribution at the veridical location of the target.

Contrary to the Bremen et al. (2010) results, preliminary

data in our laboratory suggested that human listeners were

capable of segregating two simultaneous broadband sounds

in elevation on the basis of temporally modulated cues. We

designed the present experiment to re-assess this ability

across a range of modulation frequencies (MF). Amplitude

modulation is a natural manipulation to use here (as it was in

Bremen et al., 2010) because it preserves the spectral com-

position of the original stimuli, allowing us to create target

and masker stimuli that have identical spectral carriers. In

addition to employing a range of MF, our design differed

from the Bremen et al. (2010) paradigm in some respects—

our stimuli were of longer duration (400 ms), were presented

from known, discrete locations, and we removed the analog

component of localization and replaced it with a forced

choice. When listeners were asked to identify the up/down

direction of an amplitude-modulated broadband sound in the

presence of a simultaneous unmodulated masker from the

opposite direction, they fell into two statistically distinct

groups. One group (“veridical”) responded to the actual loca-

tion of the target across a wide range of MF. The other group

(“non-veridical”) performed near chance for most MF, but

tended to identify the modulated sound as coming from the

opposite direction at low MF.

To investigate the basis of this bimodal behavioral popula-

tion, we turned to the known physiology of elevation determi-

nation. In mammals, the pathway including the dorsal cochlear

nucleus (DCN) (Young et al., 1992) and the inferior colliculus

(IC) (Davis et al., 2003) has been posited to play a role in

sound elevation processing. Neurons with responses that are

tuned for elevation have been reported in the IC in both maca-

que (Zwiers et al., 2004) and cat (Aitkin and Martin, 1990).

Most IC elevation research has been done in the cat, where

these cells are termed “type-O” neurons and are selective to

the elevation-based spectral notches introduced by the cat’s

head-related transfer function (HRTF) (May et al., 2008). A

detailed circuit diagram for cat type-O neurons, which

accounts for notch selectivity, has been proposed (Davis et al.,
2003). We developed a model based on this proposed type-O

circuit and found that the responses of modeled type-O neu-

rons are capable of accounting for both veridical and non-

veridical response groups, at both a population and an individ-

ual level, using only adjustments to the gain ratio of excitatory

and inhibitory inputs.

II. MATERIALS AND METHODS

A. Experimental protocol

Nine human listeners (eight male, ages 21–55, mean

31.8) participated in the experiment. All listeners gave

informed consent. The study was approved by the University

of California at Davis Human Subjects institutional review

board. Initials have been changed. Two listeners (L.A. and

S.T.) are authors on this study; the remaining listeners were

naive. Listeners’ hearing thresholds were not pre-tested, but

all listeners self-reported having no hearing deficiencies.

Two exemplars (“NoiseA” and “NoiseB”) of broadband

Gaussian noise (400 ms, 100 kHz sampling rate) were cre-

ated. These exemplars were presented either unmodulated,

or sine-phase 100%-depth AM at MF of 5, 10, 15, 30, 60,

120, 250, 500, 1000, or 2000 Hz. All stimuli were onset- and

offset-ramped with a 5-ms sin2 function.

Stimuli were presented using a CED Power1401 micro-

processor controlled by Spike2 (Cambridge Electronic

Design, Cambridge, England). Stimuli passed through a pas-

sive attenuator (Leader LAT-45, Leader Electronics Corp.,

Yokohama, Japan) and an active attenuator (Tucker-Davis

Technologies PA5, Alachua, FL) before reaching amplifier-

equipped studio monitor speakers (Yamaha MSP5, Yamaha

Corporation of America, Buena Park, CA). Stimuli were

calibrated using a sound level meter (Bruel & Kjaer 2133

with microphone 4155, Br€uel & Kjær, Nærum, Denmark)

and adjusted to 58 6 0.3 dB sound pressure level (SPL) using

the active attenuator. The same equipment was used to col-

lect speaker transfer functions (STFs).

Listeners sat in a sound-attenuated booth one meter from

two visible speakers located on the vertical midline and dis-

placed 620 degrees from the interaural horizontal plane.

Listeners used a joystick for both trial initiation and response.

Listeners were familiarized with the AM stimuli at each MF

before the experiment. There were two classes of trials: AM-

alone (AM stimulus from either speaker, no sound from oppo-

site speaker) and AM þ masker (AM stimulus from either

speaker, equal-intensity unmodulated noise stimulus from op-

posite speaker). The two trial classes were randomly inter-

leaved, and listeners were not informed which class of trial

would occur. For both classes, listeners were required to indi-

cate, via two-alternative forced-choice, the direction (up/

down) from which the AM stimulus originated. For AM þ
masker trials, different noise carrier exemplars (NoiseA/

NoiseB) were used for the modulated and unmodulated stimuli,

counterbalanced over the course of the experiment. Each stim-

ulus was presented 10 times from each speaker in each condi-

tion for a total of 800 presentations (2 noise exemplars � 2

speakers � 2 stimulus classes � 10 MFs � 10 trials). Both

stimulus classes, both target directions, and all target MF were

randomly interleaved. Trial accuracy feedback was not pro-

vided during either the experiment or during the brief (10–20

stimuli) pre-experimental familiarization period.

HRTFs for upper and lower speaker locations were col-

lected [Etymotic ER-7C (Etymotic Research Inc., Elk Grove

Village, IL) probe microphone, in-ear tubes, left and right

ear collected simultaneously] for all listeners using 80 dB

uniform noise bursts.

B. Modeling

Modeling was done with MATLAB (MathWorks, Natick,

MA). All stimulus waveforms were filtered by a STF col-

lected using 80 dB uniform noise bursts, digitally adjusted to

the same peak SPL, then filtered by individual HRTFs to pro-

duce an estimate of each waveform at each tympanum for

three conditions: unmodulated-alone (not used in the psycho-

physical experiment), AM-alone, and AM þ masker (linear

sum of AM-alone and unmodulated-alone). Each tympanum

34 J. Acoust. Soc. Am. 138 (1), July 2015 Johnson et al.



estimate was A-weighted and converted to a stimulus power

representation using MATLAB’s “Spectrogram” function (time

window 3 ms, overlap 1.5 ms). A similar non-directional

“comparison” was created for each speaker using STF-

transformed but non-HRTF-transformed noise.

A filterbank of 20 model IC type-O cells was created

with logarithmically spaced best frequencies (BFs) between

7 kHz and 14 kHz; this frequency range was chosen because

it spans the frequencies that have been shown to be most use-

ful in determining sound elevation (Roffler and Butler, 1968;

Hebrank and Wright, 1974; Asano et al., 1990). Model cells

were based on existing IC (Davis et al., 2003) and DCN

models (Nelken and Young, 1994; Reiss and Young, 2005),

and produced an output (“firing rate,” arbitrary units) for

each time point in the spectrogram representation of the

stimulus. A simplified graphical representation of the model

is found in Fig. 2. The model consisted of six cell (or input)

types altogether. For the description below, all centering is

logarithmic and BFO means the BF of the corresponding

type-O cell. The bandwidths of model inputs were initially

chosen based on a qualitative interpretation of the above IC

and DCN models and were not adjusted. Wide band inhibi-

tion (WBI) was based on energy in a span of 1.0 octaves cen-

tered at the BFO. Type-II cells were excited by energy in a

narrow band of 0.1 octaves centered at 80% of the BFO, and

inhibited by WBI. Type-IV cells were excited by energy in a

narrow band of 0.1 octaves centered at BFO, and inhibited

by WBI and type-II cells. Wide band excitation (WBE) was

based on energy between 0 kHz and 17 kHz. Narrow band in-

hibition (NBI) was based on energy in a narrow band of 0.25

octaves centered at 80% of the BFO. Type-O cells were

excited by type-IV cells and WBE, and inhibited by NBI.

Connection strengths for the model were initially chosen

based on a qualitative interpretation (e.g., “strong con-

nection,” “weak connection”) of the above IC and DCN

models, and were adjusted so that model responses to

notched-noise sweeps resulted in reasonable approximations

to known physiology. The gain of the NBI connection to the

type-O cells was the only parameter varied while modeling

the output of type-O cells.

The overall output of the model was as follows:

RO ¼ ½ðRIV=2Þ þ ðRWBE=2Þ � gNBIRNBI�þ;

where RX is instantaneous “firing rate” (RO: IC type-O cells;

RIV: DCN type-IV cells; RWBE: wide band excitatory input;

RNBI: narrow band inhibition), and gNBI is the narrow band

inhibitory gain factor, varied between 0.1 and 7.0 in incre-

ments of 0.1. The [ ]þ operator indicates half-wave rectifica-

tion. The specific calculations of the “firing rates” for the

various inputs were as follows:

RIV ¼ ½RIV EXC � ðRWBI=3Þ � RII�þ;

RIV EXC¼ 150� 2� ððdBSBFof0:1oct:g�dBCBFof0:33oct:gÞ=6Þ;

RWBI ¼ 25� 2 � ððdBSBFof1:0 oct:g�dBCBFof1:0 oct:gÞ=6Þ;

RII ¼ RII EXC � RWBI;

RII EXC ¼ 25� 2 � ððdBS0:8BFof0:1 oct:g

�dBC0:8BFof0:33 oct:gÞ=6Þ;

RWBE¼100�2�ððdBSf0kHz�17kHzg�dBCf0kHz�17kHzgÞ=6Þ;

RNBI¼100�2�ððdBS0:8BFof0:25oct:g�dBC0:8BFof0:25oct:gÞ=6Þ:

(RII: DCN type-II cells; RIV_EXC: excitatory input to IV;

RII_EXC: excitatory input to II; RWBI: wide band inhibition.
dBS: dB SPL of stimulus in defined window; dBC: dB SPL of

“comparison” noise in defined window; subscripts indicate

center of octave range with values in curly braces indicating

width of octave range, or frequency window if no center is

specified. Thus, “dBS0.8BFo{0.25 oct.}” indicates the dB inten-

sity of the test stimulus in the 0.25-octave-wide window cen-

tered at a frequency that is 0.8 multiplied by the cell’s BFO.)

Modeling was done separately for each ear. For model

readout, the time-domain firing rate output of the model

type-O cells was subjected to a frequency-based analysis. In

this readout analysis, a 20-element reference distribution,

(Rup, Rdown), of the filterbank responses to an unmodulated

noise from each speaker was generated (averaged response

across both noise exemplars). For each possible stimulus

(both AM-alone and AM þ masker conditions), the 400-ms

firing rate vs time response of each model type-O cell was

Fourier transformed into the frequency domain. We selected

the maximum value in this fast Fourier transform (FFT) am-

plitude spectrum as each model cell’s response strength, cre-

ating a 20-element test distribution (T) for each stimulus.

(The frequency corresponding to the maximum FFT ampli-

tude was always the stimulus MF for MF < 500 Hz, the only

frequencies at which human performance deviated from

chance.) Thus, Rup and Rdown were vectors of typical

response strengths for each cell for up/down broadband stim-

uli, respectively, and T was a vector of the strength of modu-

lation for each cell under test conditions. The mean squared

error (MSE) of T with Rup and Rdown was calculated. Model

performance was considered correct if the MSE averaged

across both noise exemplars and both ears (Hofman and van

Opstal, 2003; van Wanrooij and van Opstal, 2007) for the

correct speaker (origin of target stimulus) was lower than the

corresponding value for the incorrect speaker (that is, if the

test distribution was nearer to the reference response vector

of the target speaker than the reference response vector of

the distracter speaker). Because the model would otherwise

produce binary results, uniformly distributed noise (between

�0.02 and 0.02) was added to the MSE values (100 repeti-

tions), and an average value was taken so that model results

could be compared to behavioral results. The magnitude of

this noise was selected “by hand” to reduce quantization in

the output, but was not tuned on the basis of model results.

As a control, we implemented a “pinna-only” model.

For the pinna-only model, we calculated the spectrogram of

our AM-alone and AM þ masker stimuli, as detailed in the

first paragraph of this section to estimate the power of each

stimulus at the tympanum over time. We computed the MSE

of each AM þ masker spectrogram to the corresponding

AM-alone spectrogram for stimuli in the up and down

J. Acoust. Soc. Am. 138 (1), July 2015 Johnson et al. 35



positions. Model performance on each repeat was considered

correct if the MSE averaged across both noise exemplars

and both ears for the correct speaker was lower than the cor-

responding value for the incorrect speaker. As for the pri-

mary model, uniformly distributed noise (in this case

between �1000 and 1000 due to different values being com-

pared) was added to the MSE (100 repetitions) and an aver-

age value was calculated.

For testing the drift hypothesis, the gNBI levels used in

the AM þ masker condition to compare the model predicted

proportion correct to the psychophysical results were

selected on the basis of limits established in the AM-alone

condition. To select upper and lower bounds of gNBI, a

constant-width gain window (width 0.4 gain units) was used

to calculate model predicted proportion correct in the

AM-alone condition. For each individual listener, this gain

window was centered on gNBI¼ 3.0 and moved either up

(non-veridical listeners) or down (veridical listeners) in gNBI

to determine the gNBI bounds where the mean predicted pro-

portion correct across all MFs in the gain window fell below

a criterion of 98%. The window chosen was the most

extreme window which had a mean predicted proportion cor-

rect across all MFs no lower than the 98% criterion.

C. Statistical analysis

Analysis was done with MATLAB (MathWorks, Natick,

MA). Separation of listeners into two groups was done on

the basis of their behavioral performance curves using

K-means clustering. Hierarchical cluster trees were gener-

ated on the Euclidean distance between behavioral perform-

ance curves using a single-linkage algorithm and Ward’s

criterion (increase in within-cluster sum-of-squares distance

from the cluster centroid when merging clusters). In the clus-

tering Monte Carlo analysis, 100 000 randomized behavioral

performance curves were generated by permuting behavioral

performance values (within MF) across listeners; the linkage

distance between the topmost two groups in each resulting

cluster tree was compared to the corresponding value in the

observed data to determine the probability that two groups

so widely separated might arise by chance.

III. RESULTS

A. Human behavioral performance in the elevation task

In the AM-alone task, all listeners were able to identify

the target speaker at ceiling performance regardless of target

MF [Fig. 1(a), open circles]. In the AM þ masker task, lis-

teners fell into two distinct performance groups. The high-

performing group (veridical responders, n¼ 4) identified the

target speaker in the presence of the masker at a rate better

FIG. 1. (a) Accuracy on sound segregation task. Black open circles (line

omitted) are the mean across all nine listeners in the AM-alone task. Error

bars are standard deviation. Gray lines indicate accuracy on the AM

þ masker task for veridical responders. Black lines indicate accuracy on the

AM þ masker task for non-veridical responders. Dashed lines indicate indi-

vidual performance, solid lines indicate mean performance, and filled circles

indicate performance significantly different from chance (0.5, dashed black

line) using a binomial test, p< 0.05, Bonferroni corrected for ten compari-

sons. Actual p-values (5–2000 Hz) for the veridical group are: 0, 0, 0, 0, 0,

0, 4.2� 10�9, 8.9� 10�3, 0.30. 0.94; actual p-values for the non-veridical

group are: 2.9� 10�4, 4.5� 10�3, 1.7� 10�6, 0.10, 0.10, 8.7� 10�3, 0.14,

0.44, 0.48, 0.78. (b) Dendrogram of cluster analysis of accuracy functions

from AMþmasker task. Gray lines indicate veridical responders. Black

lines indicate non-veridical responders.

FIG. 2. Model circuit diagram. Connections between the six cell types mod-

eled are shown as arrows (excitatory) and circles (inhibitory). The horizontal

black bar corresponds to auditory nerve fiber inputs. Inputs to WBE and

WBI cells come across large frequency ranges illustrated with shaded areas.

Inputs to type-IV, type-II, and NBI cells are narrower and are illustrated

with arrows. Inputs to type-II and NBI cells are centered at a frequency that

is 0.8 multiplied by the best frequency (BF) of the corresponding type-IV

cell. The weight of the NBI-to-O inhibitory connection (“inhibitory gain”)

was the only parameter systematically varied. Full connection details can be

found in the methods in Sec. II.
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than chance (binomial test, P< 0.05 corrected for multiple

comparisons to 5.1� 10�3) for all MFs between 5 and

250 Hz and dropped to chance performance for MFs of

500 Hz and above [Fig. 1(a), solid gray line, mean; dashed

gray lines, individual]. The low-performing group (non-

veridical responders, n¼ 5) performed significantly worse

than chance for 5–15 Hz AM [Fig, 1(a), solid black line,

mean; dashed black lines, individual]. These non-veridical

responders rose to chance performance for MFs of 30 Hz and

above. K-means cluster analysis on the accuracy curves [Fig.

1(b)] revealed two distinct groups, and a Monte Carlo analysis

put the likelihood that two groups at least this distinct would

arise by chance at P< 10�5, indicating that our placement of

listeners into veridical and non-veridical groups is not a spuri-

ous assignment, but reflects a categorical difference between

listeners. By an analogous Monte Carlo, neither the veridical

responders (P¼ 0.77) nor the non-veridical responders

(P¼ 0.36) could be further broken down into subgroups.

B. Modeling a bimodal listener population using IC

The existence of two distinct listener populations, one

with veridical and one with non-veridical responses, is quite

unexpected. In the hope of uncovering a mechanism which

might account for the segregation of listeners into these two

groups, we developed a simple, non-spiking quantitative

model of DCN type-IV and IC type-O neurons based on pre-

vious qualitative models (Nelken and Young, 1994; Davis

et al., 2003; Reiss and Young, 2005). A circuit diagram for

our model is shown in Fig. 2. (See the methods in Sec. II for

complete model details.)

Type-IV and type-O neurons have characteristic

responses to notched-noise stimuli. To verify that our model

had normal notched-noise responses, both the output type-O

and the intermediate type-IV model neurons were presented

with a series of wide-band Gaussian noise stimuli, each with

a 30 dB notch (3.2 kHz bandwidth, notch center varied

between 3 kHz and 24 kHz) created using Fourier methods.

The responses of one model neuron with a BF of 11 kHz are

shown in Fig. 3. Response is in arbitrary units (see model

details in the methods in Sec. II), scaled to approximate a fir-

ing rate in spikes/s. Model cell outputs to notched noise are

comparable to observed IC type-O (solid lines) and DCN

type-IV (dashed line) cell responses (Davis et al., 2003).

Notch-inhibited type-IV neurons respond strongly to noise

unless there is a notch at their (BF, in which case their

response is reduced. Type-O cells respond weakly to noise

unless there is a notch below their BF, in which case their

response increases. The dip in response below noise baseline

at BF for the type-O cell with an inhibitory gain (gNBI; see

the methods in Sec. II) of 1 parallels a similar finding in the

physiology [notably Figs. 1(D) and 4(B) from Davis et al.,
2003]. For high inhibitory gains, model type-O cells are fully

silenced except for the case where there is a notch below

their BF. Responses to broadband noise without a notch (not

shown) are not distinguishable from the response to notched

noise where the notch is distant from the BF (e.g., left- or

right-hand tails in Fig. 3).

Because the appropriate ratio of excitation to inhibition

was not clear, when comparing our model’s performance

with human performance, the weight of the model narrow

band inhibitory cells’ connection to the type-O cells (gNBI,

or “inhibitory gain”) was varied systematically. For the AM-

alone condition, the model result averaged across all listen-

ers accurately determines the origin of the AM stimulus

across a wide range of inhibitory gains [Fig. 4(a), red-

colored area], consistent with behavioral performance (Fig.

1, open circles). For each listener, we calculated MSE

between the behavioral performance in the AM-alone condi-

tion and the individual’s model predicted performance in a

0.4-unit wide gain window varied across all levels of gNBI.

Figure 4(b) depicts these results. The averaged results of

veridical responders (green) and non-veridical responders

(magenta) indicate that there is a very wide range of gNBI

over which the model is capable of reproducing behavioral

performance on the AM-alone task at an individual level.

The model result averaged across all listeners for AM

þ masker stimuli is shown in Fig. 4(c). Unlike the AM-

alone condition, for AM þ masker stimuli, there is a much

narrower inhibitory gain region in which the model accu-

rately determines the origin of the AM stimulus, primarily

where the weight of inhibition is less, or only slightly

greater, than the weight of the excitatory inputs. Figure 4(d)

shows the effect of varying gNBI on the MSE between each

individual listener’s behavioral performance on the AM

þ masker task and their individual model performance in a

0.4-unit wide gain window [as in Fig. 4(b)]. Again, our lis-

teners fell into the same two distinct groups found in Fig. 1.

Dashed lines indicate individual model fits and solid lines

indicate the average of these individual fits for the veridical

(green) and non-veridical (magenta) populations. For veridi-

cal responders, gNBI levels below or slightly greater than one

always resulted in a good match to the behavior, while gNBI

levels above �1.5 resulted in a poor match to behavior for

all but one veridical responder. Non-veridical responders

showed a different pattern, with gNBI levels below one

always resulting in a poor match to behavior and better

FIG. 3. Model neuron responses to notched-noise sweeps. The black dashed

line indicates model DCN type-IV cell response as a function of notch cen-

ter frequency. The solid black line indicates model IC type-O cell response

with an inhibitory gain of 1. The solid gray line indicates model IC type-O

cell response with an inhibitory gain of 5. The thin vertical dashed line indi-

cates the BF of all three model cells (11 kHz).
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matches at gNBI levels between �1 and 4, with a mean opti-

mum �2.5.

The best fitting gNBI windows for the mean model results

and mean behavioral results are overlaid on Fig. 4(c), and cor-

respond closely with the results of the individual fits in Fig.

4(d). The mean response in each of these windows is shown

in Fig. 4(e) (solid lines), along with a plot of the mean accu-

racy (6 standard error, shaded areas) for the veridical (green)

and non-veridical (magenta) behavioral groups.

Because these model results could potentially be derived

from the pinna-transformed stimulus without requiring the

IC step of the model, we also created a pinna-only model.

This model attempted to determine, using only the spectro-

grams of the pinna-transformed sounds, whether the AM in

an AM þ masker stimulus originated in the up or down posi-

tion based on similarity to the AM-alone stimuli (see the

methods in Sec. II). The results of this pinna-only model are

presented in Fig. 4(e) in the dashed green (mean of veridical

FIG. 4. Model predictions in sound segregation task. (a) Heat map showing predicted proportion correct (mean across all listeners) as a function of inhibitory

gain and modulation frequency in model IC type-O cells for the AM-alone task. A scale bar is present to the left of (a). (b) Averaged mean-squared error

between model predicted proportion correct and the mean performance of veridical (green) and non-veridical (magenta) responders as a function of inhibitory

gain. (c) Same as (a), for the AM þ masker task. The upper black box indicates the gain window that best fits the mean performance of veridical responders.

The lower black box indicates the gain window that best fits the mean performance of non-veridical responders. (d) Same as (b) for the AM þ masker task.

Also included are the data for individual listeners (dashed lines). (e) Model predicted proportion correct compared to human performance. The green and ma-

genta solid lines indicate the mean model predicted proportion correct from the upper and lower black boxes in (c), respectively. The green and magenta dotted

lines indicate the mean predicted proportion correct from the pinna-only model, for listeners with veridical and non-veridical task performance, respectively.

The green and magenta stripes indicate listener performance 6 standard error of a proportion for listeners with veridical and non-veridical task performance,

respectively, reproduced from Fig. 1(a). (f) Model predicted proportion correct for different model temporal windows. The green and magenta solid and

dashed lines indicate the mean model predicted proportion correct as the solid lines in (e), but for data corresponding to different temporal windows [heat

maps and gain windows not shown, but created as in (c)]. The line styles correspond to maximum representable AM frequencies as follows: thickest line,

1000 Hz; thick line, 667 Hz; thin line, 100 Hz; wide dashed line, 67 Hz; narrow dashed line, 33 Hz. The green and magenta stripes are as in (e). For all lines in

(b), (d), (e), and (f), green corresponds to veridical responders and magenta corresponds to non-veridical responders.

38 J. Acoust. Soc. Am. 138 (1), July 2015 Johnson et al.



responders) and magenta (mean of non-veridical responders)

lines. Although the pinna-only model performs slightly bet-

ter than chance, it does not replicate the differences between

our veridical and non-veridical responders, suggesting that

individual listener differences in the pinna-transformations

of the sounds are not sufficient to account for our behavioral

results.

The fact that the full model (for veridical responders)

continues to perform well to slightly higher AM frequencies

than our listeners may be due to our choice of a 3-ms win-

dow size in the time domain transformation of the model.

With 50% overlap in samples, this resulted in a spectrogram

with 667 samples per second, which by Nyquist limits would

result in a maximum representable frequency of 333 Hz AM.

To investigate the role of changing the window size in the

time domain transformation of our model, we ran our model

again with windows corresponding to maximum represent-

able AM frequencies of 33, 67, 100, 667, and 1000 Hz AM

[plotted in Fig. 4(f), 333 Hz omitted from plot for clarity, but

see Fig. 4(e)]. For our veridical responders, we calculated

the MSE between the resulting model predicted proportion

correct for each temporal window size and the behavioral

performance and fit these MSEs with a log-transformed

Gaussian. The peak of this Gaussian was at 195 Hz, suggest-

ing that we would have gotten a better match of the data

with a slightly larger (�5 ms) temporal window.

C. Toward explaining a bimodal gain distribution

The results from Fig. 4(d) indicate that our bimodal be-

havioral results in the AM þ masker condition could not be

accounted for by a single inhibitory gain setting in our

model. Although individual estimates of best gain ratio are a

bit noisy, these results suggest instead that a bimodal gain

distribution would be sufficient for our model to account for

both veridical and non-veridical populations. However, the

model does not provide a rationale for why gain ratios would

be distributed bimodally.

As a first-pass attempt to explain a bimodal gain distri-

bution, we proposed and tested an inhibitory drift hypothesis

that was based on individualized model performance in the

AM-alone condition. We found that a wide range of inhibi-

tory gains results in veridical model performance for our

AM-alone task [Fig. 4(a)], which as a single-sound task

exemplifies the majority of real-world elevation tasks. The

wide range of inhibitory gains that result in near-zero MSE

for the AM-alone task [Fig. 4(b)] make it unlikely that the

long-term in vivo gain ratio is solely determined by choosing

the single optimized value from single-sound elevations.

This is because a change in gain would not result in a signifi-

cant change in the accuracy in the single-source condition.

An additional mechanism could also play a role in determin-

ing a gain within the large range of possible values. In our

drift hypothesis, we proposed that a bimodal gain distribu-

tion could arise from an initial random gain drift coupled

with a small positive feedback (or feedback that discourages

gain ratios toward the center of the range). Under this hy-

pothesis, long-term gain movement toward either high or

low gain ratios would eventually be stopped by instructive

feedback from elevation localization experience similar to

the AM-alone task. When real-world errors in single-sound

up/down localization (as modeled here by the AM-alone

condition) result, instructive feedback should stop further

movement toward higher or lower gain ratios to preserve

accurate single-sound localization. This elevation-instructive

feedback would therefore establish a ceiling and floor for the

gain ratio, which would maintain veridical performance in

single-sound tasks, and combined with bidirectional gain

drift would result in two populations, one at the ceiling and

one at the floor gain ratio.

We implemented this hypothesis in our model by select-

ing a low-inhibition gain window (for veridical responders)

and a high-inhibition gain window (for non-veridical res-

ponders) from the AM-alone task (see the methods in Sec. II

for details on window selection). We then applied the same

gain windows determined by the AM-alone task to AM

þ masker model responses (similar to the black boxes in

Fig. 4(c), but for individual listeners) and calculated the

MSE of the model predicted performance in the gain win-

dow selected by the drift hypothesis against actual behav-

ioral performance.

Figure 5 shows the results of this analysis, with the

MSE calculated from the drift hypothesis plotted against the

minimum MSE produced by the model across all possible

gain windows. For each individual listener, the model is ca-

pable of making an approximation of behavior that is good

enough to result in an MSE <0.05. For veridical responders

(open circles), the drift hypothesis is also capable of approxi-

mating listener behavior to the same standard—in two cases,

it comes close to selecting the best possible gain setting from

the model’s standpoint. However, for non-veridical respond-

ers (star symbols) the situation is different. Although the

drift hypothesis does a good job for two listeners, for the

other three it selects gain windows that are much higher than

the optimal gain windows identified by the model, resulting

in poor approximations to behavior. Thus, although the drift

FIG. 5. Model evaluation of drift hypothesis, individual listeners.

Comparison of model performance under the drift hypothesis to optimal

model performance. MSEs are calculated as in Fig. 4(c), but with individual

data rather than averaged data. The open circles indicate veridical respond-

ers. The star symbols indicate non-veridical responders. The dashed line is a

unity line.
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hypothesis, by design, creates a bimodal gain distribution,

only one of the two distributions can be reasonably said to

have a good correspondence with behavior.

IV. DISCUSSION

For this study, our listeners were asked to perform a

simple (up/down only) source localization of an amplitude-

modulated target. There is little doubt that in the AM-alone

condition, the listeners are doing an elevation localization as

requested, in this case without the demand of segregating the

target from a masking stimulus. The AM þ masker condition

is more complicated, not only because the stimulus would

seem to require segregation, but also because our listeners

unexpectedly form two distinct groups with different

response curves. There are two key issues to be considered

here. The first is why our listeners should fall into two

groups that treat the same stimulus so differently. The sec-

ond issue is whether our listeners are, in fact, segregating the

stimuli in the AM þ masker condition. Along with the ques-

tion of segregation, we will consider differences between the

current study and previous studies that might account for dif-

ferent conclusions in what seem to be similar tasks.

A. Accounting for two listener populations

A major finding of this study is that our listeners fall

into two distinct populations in the behavioral task.

Accounting for the existence of these two populations

requires consideration of a range of possibilities, many of

these related to different potential listener strategies adopted

by the two populations.

Several competing hypotheses about listener strategies

can be proposed to account for why our listeners fall into

two groups as they do. In order to infer which of these lis-

tener strategies was likely used, we should look to two con-

straints arising from the data. (1) The hypothesis must be

consistent with above-chance performance in veridical res-

ponders and below-chance performance in non-veridical res-

ponders. (2) The hypothesis must be consistent with the

frequency dependency and magnitude differences of the

effects.

One possible interpretation of listener strategy in the

AM þ masker condition is that neither listener group used

perceived elevation cues to perform the task. The overall

data are not consistent with random guessing, but it is possi-

ble that a non-elevation cue (i.e., a pinna-imposed spectral

feature in the stimulus that does not generate the perception

of elevation) could be found to distinguish between the AM-

up and -down sounds in the presence of a masker. It is im-

portant to note that our listeners were not provided with

accuracy feedback and, thus, did not have any way to sys-

tematically correct errors, or even to know when an error

was made. Therefore, if listeners made decisions based on a

non-elevation cue, the mapping between that cue and the

AM-up and -down responses should be arbitrary rather than

consistent across listeners. About half of the listeners would

assign a veridical mapping to the non-elevation cue, and

about half would assign a non-veridical mapping. Although

we do see an approximately equal split in the number of

listeners in each population, we would additionally predict

that the veridical and non-veridical populations would have

mirror-symmetric curves with the same dependence on mod-

ulation frequency and the same magnitude of difference

from chance. However, the mirror-symmetric prediction

does not hold true, which argues against our listeners using

an arbitrary assignment of a single non-elevation cue.

Another hypothesis, that the veridical and non-veridical

groups might use two different non-elevation cues, could

potentially account for differences in modulation frequency

dependence and peak accuracy, but cannot account for the

absence of within-group mirror-symmetric performance—

without feedback, we would again expect an arbitrary cue-

response mapping resulting in two mirror-symmetric

response curves for each non-elevation cue used. Hence, our

data do not support the hypothesis that both groups were

using non-elevation cues.

Alternatively, it is possible that veridical responders

were able to perceive elevation cues in the AM þ masker

condition, but non-veridical responders were not. Our data

argue against random guessing from our non-veridical res-

ponders due to the significant bias to report modulation from

the incorrect speaker at low MF. While the performance of

two of our subjects might be consistent with random guess-

ing (Fig. 1), three clearly show the bias at all lower MF. As

noted above, the absence of mirror-symmetric performance

curves among our non-veridical responders argues against

their using a non-elevation cue. Thus, the weight of the evi-

dence suggests that both listener groups are using the eleva-

tion cues inherent in the stimulus to perform the task.

How our listeners are able to use elevation cues to give

two widely different response modes is the next important

question. One possible explanation for this could arise from

the fact that, during the troughs of the AM noise, there is a

brief window when the masking sound might be localized

without interference. Such “dip-listening” models have been

widely used in work on the cocktail party problem (Bacon

et al., 1998; V�elez and Bee, 2011) and speech perception

(Festen and Plomp, 1990; Gustafsson and Arlinger, 1994).

This ability would likely depend on AM frequency because

the duration of this window will become shorter as the AM

frequency increases. Our bimodal population could result

from some listeners misidentifying the masker (localizable

during these windows) as the target. If some listeners were

dip-listening and others used a different strategy, differences

in accuracy and temporal cutoff frequency between the

veridical and non-veridical groups such as we observe could

arise. This remains an open possibility, though there is little

way of assessing whether listeners, in fact, used different

strategies, or of making predictions about accuracy and tem-

poral cutoff frequency for these two potential populations.

Our model of the notch-detection circuit, however, does

predict these differences in accuracy and temporal cutoff fre-

quency, and it does so without requiring the listeners to

adopt different strategies. Instead, it can allow for a bimodal

listener population if an appropriate bimodal inhibitory gain

distribution is established. Under this model, one simple

assumption—that the gain is not primarily set by elevation

localization—can suffice to establish a bimodal gain

40 J. Acoust. Soc. Am. 138 (1), July 2015 Johnson et al.



distribution. Our drift hypothesis is one way to imagine how

such a bimodal gain distribution might be established. In

fact, the drift hypothesis does a good job of selecting low-

gain windows (those appropriate for the veridical respond-

ers), consistent with the idea that there may be a floor to the

inhibitory gain value that is instructively imposed by per-

formance on single-sound vertical localization tasks.

However, the drift hypothesis does a poor job of selecting

high-gain windows (those appropriate for non-veridical res-

ponders) using an analogous method. Thus, if the drift hy-

pothesis for the establishment of a bimodal distribution of

gain ratios is conceptually correct, there must be a different

source of feedback (perhaps a different auditory task) or

some physiological constraint which determines the upper

limit of inhibitory gain.

Ultimately, the model suggests that at low and middle

MF, listeners with low gains on the inhibitory inputs to IC

type-O cells would be provided with strong evidence for the

veridical direction of AM, and that at low MF, listeners with

high gains would be provided with weaker evidence for the

non-veridical direction of AM. Notably, in this case, both

populations use the same stimulus features and the same de-

cision criteria (i.e., the same “mapping”). However, whether

these result in evidence for or against the veridical location

of the AM in the presence of the masker depends on specific

aspects of our model—aspects which (1) can easily be

changed by long-term activity-dependent (e.g., Hebbian)

processes and (2) should not result in differences in every-

day, non-masked localization.

B. Segregation of two sounds in elevation

When the auditory system is faced with two simultane-

ous broadband sounds that are both located on the vertical

midline, are they integrated into one sound or can they be

segregated into their two constituent sounds? This question

has been recently addressed by two studies, with the weight

of the evidence favoring integration. Best et al. (2004) pre-

sented either one or two 150-ms isospectral broadband

noises in virtual space and found that when two sounds were

both located on the vertical midline, listeners only reported

the presence of one sound. This suggests that the two sounds

were integrated. Given that there were no onset/offset asyn-

chronies, no envelope differences, and no spectral differen-

ces (outside of those imposed by the pinnae) to mark the

presence of two sounds, the fact that listeners perceived one

sound is sensible.

In a study with more similarities to the one presented

here, Bremen et al. (2010) played two 50-ms isospectral (but

not iso-intensity) broadband sounds from speakers on the

vertical midline, distinguishing one of the two sounds by

applying an AM envelope. Listeners were asked to make a

head saccade to identify the location of the AM stimulus.

For sounds that were not widely separated (generally, 60

degrees and below), Bremen et al. (2010) found that listen-

ers’ localizations of the AM target better corresponded with

the weighted average of the stimulus intensities than with

the actual location of either of the stimuli, again, suggesting

that the two sounds were integrated. In this case, the

presence of an AM envelope was not sufficient to bring

about segregation of the two sounds. For sounds that were

widely separated (generally 75 degrees and above), Bremen

et al. (2010) found an emerging class of bimodal responses,

where the listeners’ responses corresponded better with the

actual location of one of the two stimuli than with the

weighted average, but there was no apparent bias for localiz-

ing the target. In these cases, the results suggest that the two

sounds were partially segregated—enough to recover the

two source locations, but not enough to properly assign the

AM stimulus to its source, which would have resulted in a

unimodal distribution of responses only at the target

location.

We do not believe that the results seen at high spatial

disparities in Bremen et al. (2010) correspond to the results

found in the current study for two reasons. First, our stimuli

were separated by only 40 degrees, within the range of dis-

parities that resulted in integration in Bremen et al. (2010),

where the weighted-average prediction was very good up to

45 degrees, and continued to outperform a bimodal predic-

tion up to at least 75 degrees. Second, unlike Bremen et al.
(2010), where there is no indication that listeners preferred

to respond to the location of the target in the bimodal case,

for our data (among our veridical responders) responses

were effectively unimodal, with the listener selecting the

direction of the target sound with, generally, between 80%

and 90% accuracy across a wide range of MF.

Does this ability to accurately identify the direction of

the target indicate that our listeners are, in fact, segregating

the stimuli? We believe that it does. When presented with

two simultaneous sounds, ultimately, the listener must either

integrate them into one sound (as seen in Best et al., 2004),

or segregate them into two. Bremen et al. (2010) indicates

that the integration of sounds on the vertical midline results

in an elevation estimate that is at the weighted average loca-

tion of the two sounds, which, for our study, would be

directly between the two speakers because our AM-target

and our noise masker were at the same intensity. We have

argued above that our veridical responders are using the ele-

vation information contained in the AM þ masker stimulus

to perform the task. However, an elevation cue directly

between the two speakers, as would occur for an integrated

stimulus, would not allow our veridical responders to per-

form at high accuracy. The raw data from Bremen et al.
(2010) indicate that saccade distribution endpoints relative

to the weighted average span on the order of 20 degrees for

sound pairs with a large intensity difference and are even

larger when the two sounds have similar sound levels—with

this sort of uncertainty in the localization, the elevation cue

from an integrated stimulus, even if it were slightly biased

from the direct center of the two speakers, would result in

random guessing rather than high accuracy. As such, it

seems that our listeners must be using an elevation cue that

does not arise from a weighted average of the speaker loca-

tions, but instead is a result of segregated stimuli. Note that

it is not necessarily true that our listeners perform a valid

segregation of the stimuli—in fact, it seems our non-

veridical responders incorrectly segregate at low MF such
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that the AM envelope is falsely assigned to the wrong sound

location.

It is important to consider why we have found evidence

for segregation of sounds on the vertical midline when previ-

ous studies have not. Best et al. (2004) used identical stim-

uli, so sound integration is more likely than in our study.

Integration at small spatial disparities in Bremen et al.
(2010) is notable considering the contrary findings here.

Bremen et al. (2010) used stimuli with similar spectral char-

acteristics (their noise carrier was bandpassed between 0.5

and 20 kHz, while ours was not bandpassed) and their 50 Hz

AM target was close to the 30 and 60 Hz AM targets in our

experiment, both of which resulted in high-accuracy per-

formance among our veridical responders. There are, how-

ever, a few salient differences between the two studies that

could potentially account for the differing results. One is the

task, which differed in the required precision of the localiza-

tion that the listeners were asked to perform, as well as the

underlying uncertainty of the locations of the stimuli. In the

Bremen et al. (2010) study, listeners were asked to pinpoint

the source of the AM, with many possible spatial configura-

tions of the sounds. In our study, listeners were merely asked

to select the source of the AM, which was known to have

come from one of two speakers. Although the change from a

free localization to a forced-choice decision cannot have

impaired our listeners’ performance (instead, perhaps, turn-

ing a coarse localization estimate, as often seen in Bremen

et al. (2010), into a discrete up/down decision), we find it

unlikely that this change in task can account for the differen-

ces between the two studies. In Bremen et al. (2010), the

contribution of each stimulus to the integrated stimulus was

weighted by long-term level of each stimulus independent of

the temporal properties of the stimulus. If our listeners were

integrating our equal-level stimuli as seen in Bremen et al.
(2010), the apparent elevation would have been more or less

directly between the speakers and, when thresholded to an

up/down decision, this would have resulted in a bimodal dis-

tribution of responses, not the unimodal distribution seen in

our veridical responders.

A second difference between the studies is in the num-

ber of speaker configurations. In Bremen et al. (2010), there

were 72 possible speaker configurations and the listeners had

no prior information about where the next pair of sounds

was going to come from, whereas in our study, the listeners

knew the two locations (one configuration) and could, in

principle, attend to particular elevations. This a priori infor-

mation about the source elevations could well assist the seg-

regation of the sounds. For example, in the azimuthal plane,

prior information about the location of one source has been

shown to aid in the localization of another simultaneous

source (Yost and Brown, 2013). Because our task involved

only two known speaker locations, a template-matching so-

lution based on specific spectral notch locations may have

been easier for our listeners to implement than in a task with

multiple speaker configurations.

A third difference between the studies was the duration

of the stimuli. Our study used longer stimuli (400 ms vs

50 ms), a factor which has been shown to confer modest ben-

efits in single-sound vertical localization in mammals

(ferrets: Bizley et al., 2007; cats: Gai et al., 2013; but, see

Hofman and van Opstal, 1998 for inconclusive improvement

in human elevation localization between 80 and 500 ms du-

ration) and in AM detection (O’Connor et al., 2011).

Another factor when considering the effect of duration on

vertical localization is the fact that the integration/segrega-

tion process itself takes time (see Bregman, 1990 for exam-

ples of duration effects on stream segregation, auditory

continuity illusions, and other aspects of auditory segrega-

tion), and a brief 50-ms stimulus may not be sufficient to

perform a difficult segregation in elevation on the basis of

temporal envelope differences alone.

Fourth, our stimuli, which were presented at 58 dB,

were >10 dB higher than those in Bremen et al. (2010),

which were �42–45 dB for the case of nearly iso-intensity

presentations. Interestingly, in cat IC, Davis et al. (2003)

show example type-O notch responses that are strong

between 50 and 70 dB, but which largely disappear at 40 dB.

It is possible that in this application, segregation is an

intensity-dependent effect and that the Bremen et al. (2010)

stimuli may have been too quiet to elicit it. Together, these

factors may account for why we were able to demonstrate

segregation for simultaneously presented sounds on the ver-

tical midline while others have not.

V. CONCLUSIONS

Here, we show that the ability to properly analyze an

“auditory scene” is not limited to sounds along the horizontal

plane, but can also extend to the segregation of similar

sounds from different elevations. We also report the unex-

pected finding that this ability appears in only about half of

our listeners, with the remainder showing non-veridical

source assignment of an AM target that is not consistent

with an inability to perform the task. At the population level,

both veridical and non-veridical performance on our task can

be accounted for by a simple model based on the physiology

of IC neurons. Cells in the IC are known to be sensitive to

elevation (Aitkin and Martin, 1990, Zwiers et al., 2004) due

to their selectivity to spectral notches (Davis et al., 2003).

The data presented here suggest two further insights. First,

segregation of two similar sounds in elevation is possible

through the evaluation of temporal envelopes in conjunction

with notch selectivity. Second, veridical or non-veridical

identification of elevation direction in a two-sound segrega-

tion task may be determined by the synaptic strength of the

inhibitory inputs that shape notch selectivity in the IC.
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