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association statistics

Bogdan Pasaniuc1,2 and Alkes L. Price3,4,5

1Department of Pathology and Laboratory Medicine, UCLA

2Department of Human Genetics, UCLA

3Department of Epidemiology, Harvard T.H. Chan School of Public Health
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Abstract

During the past decade, genome-wide association studies (GWAS) have successfully identified 

tens of thousands of genetic variants associated with complex traits and diseases. These studies 

have produced extensive repositories of genetic variation and trait measurements across large 

numbers of individuals, providing tremendous opportunities for further analyses. However, privacy 

concerns and other logistical considerations often limit access to individual-level genetic data, 

motivating the development of methods that analyze summary association statistics. Here we 

review recent progress on statistical methods that leverage summary association data to gain 

insights into the genetic basis of complex traits and diseases.

Introduction

Genome-wide association studies (GWAS) have been broadly successful in identifying 

genetic variants associated to complex traits and diseases, explaining a significant fraction of 

narrow-sense heritability and occasionally pinpointing biological mechanisms1. These 

studies have produced extensive databases of genetic variation (typically at the level of 

common single nucleotide polymorphisms (SNPs) included on genotyping arrays) in large 

numbers of individuals across hundreds of complex traits. Further analyses of this data can 

yield important insights into the genetics of complex traits, but privacy concerns and other 

logistical considerations often restrict access to individual-level data. On the other hand, 

summary association statistics, defined here as per-allele SNP effect sizes (log odds ratios 

for case-control traits) together with their standard errors, are often readily available and can 

be used to compute z-scores (per-allele effect sizes divided by their standard errors; see 

Figure 1); we note that in some applications, allele frequencies may also be required. A 

partial list of publicly available summary association statistics from large GWAS is provided 
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in Table 1. Summary statistics also offer advantages in computational cost, which does not 

scale with the number of individuals in the study. These advantages have motivated the 

recent development of many new methods for analyzing summary association data, often in 

conjunction with linkage disequilibrium (LD) information from a population reference panel 

such as 1000 Genomes2.

Here, we review these summary statistic-based methods. First, we review methods for 

performing single-variant association tests, including meta-analysis, conditional association 

and imputation using summary statistics. Second, we review methods for performing gene-

based association tests by incorporating transcriptome reference data or aggregating signals 

across multiple rare variants. Third, we review methods for fine-mapping causal variants, 

including integration of functional annotation and/or trans-ethnic data. Fourth, we review 

methods for constructing polygenic predictions of disease risk and inferring polygenic 

architectures. Finally, we review methods for jointly analyzing multiple traits. We conclude 

with a discussion of research areas where further work on summary statistic based methods 

is needed.

Single-variant association tests

Meta-analysis using fixed-effects or random-effects models

Large consortia often combine multiple GWAS studies into a single aggregate analysis to 

boost power for discovering SNP associations of small effect. Studies are combined either 

by jointly analyzing summary association results from each study (meta-analysis) or by re-

analyzing individual-level data across all studies (mega-analysis)3. It has been shown that 

meta-analysis attains similar power for association as mega-analysis, with fewer privacy 

constraints and logistical challenges (since only summary association data is shared across 

studies)4. Meta-analysis is usually performed using fixed-effects approaches, which assume 

that true effect sizes are the same across studies. Under the assumption that causal effect 

sizes may differ across studies, this heterogeneity can be explicitly modeled using random-

effects methods, which include an extra variance term in the model to account for 

heterogeneity. Traditional random-effects methods allow for heterogeneity under the null 

model, leading to low power even when heterogeneity is present. This motivated the 

development of a random-effects method based on a null model of no-heterogeneity, which 

increases power over traditional random-effects methods5. Under this framework, a 

statistical test against a null model of no-heterogeneity can be viewed as a summation of a 

fixed-effect component and a heterogeneity component, thus connecting fixed-effects and 

random-effects meta-analysis5. Subsequent work has introduced the concept of posterior 

probability that each study has an effect, aiding interpretation and power under the 

assumption that a subset of studies may have a negligible effect on the trait6.

Conditional association using LD reference data

Conditional association, in which the association between SNP and trait is evaluated after 

conditioning on the top SNP at a locus, can be used to identify multiple signals of 

association at a previously identified GWAS locus. Conditional association methods have 

traditionally required individual-level data in order to jointly fit multiple SNPs. Recent work 
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has shown that conditional and joint association analysis of multiple SNPs can be 

approximated using only summary association statistics together with linkage disequilibrium 

(LD) information estimated from a population reference panel such as 1000 Genomes (see 

Box 1)7. This has enabled the discovery of new secondary associations at known loci for 

height, BMI, and other complex traits and diseases, increasing the variance explained by 

GWAS associations for these traits8–10; for example, in a recent height GWAS, approximate 

conditional analysis using summary data identified 697 genome-wide significant 

associations, including 34 secondary associations with r2>0.1 to a more significant SNP at 

the same locus8.

Imputation using summary association statistics

A standard approach to boost association power in GWAS is to leverage LD information 

from a population reference panel to impute genotypes at variants not typed in the study11. 

Imputation is traditionally performed using individual-level data, which requires substantial 

computational resources and can be logistically cumbersome when new reference panels 

become available, particularly for large consortia combining data from multiple studies. As 

an alternative to imputation using individual-level data, approaches have been developed to 

perform imputation directly at the level of summary statistics12–18 (providing an alternative 

to other multivariate tests19,20). The key insight of these approaches is that LD induces 

correlations between z-scores, which can be modeled using a multi-variate normal (MVN) 

distribution with variance equal to the LD correlation matrix21 (an adjustment in the LD 

computation is needed for z-scores estimated using mixed models22). Thus, z-scores at 

untyped SNPs can be imputed from observations at typed SNPs using conditional means and 

variances of the MVN distribution. Imputation using summary statistics recovers >80% of 

the information from imputation using individual-level data at common variants14–16, and is 

practical and efficient since the imputed summary statistics are linear combinations of the 

observed statistics (see Box 1). However, imputation using summary statistics cannot 

capture non-linear relationships between SNPs, which are modeled using haplotypes in 

imputation from individual-level data.

Conditional association and imputation using summary statistics critically rely on accurate 

LD information from a population reference panel. Even in the best case where the reference 

population closely matches the GWAS population, the relatively small size of reference 

panels for which LD information is publicly available (typically hundreds or at most 

thousands of individuals) makes accurate estimation of a large number of LD parameters a 

challenge. This motivates regularization of the estimated LD matrix, both to maximize 

accuracy and to ensure robustness in the case of imputation using summary statistics, as mis-

estimation of the variance of imputed statistics can lead to false-positive associations. A 

simple approach to regularization is to set all correlations between distal SNPs to zero, based 

on a fixed distance threshold7 or approximately independent LD blocks inferred from the 

data23. An alternative is to specify a prior distribution and compute Bayesian posteriors12; 

data can be combined across multiple ancestry reference panels to further boost 

accuracy17,18. Singular value decomposition based approaches for LD regularization have 

also been proposed in other contexts10. In general, the accuracy of conditional association 

and imputation using summary statistics is reduced at low-frequency variants and when the 
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LD structure between typed and imputed SNPs is mis-specified (e.g., when the ancestry of 

the GWAS sample does not exactly match the reference panel). We note that concerns about 

false-positive associations in imputation using summary statistics can be avoided entirely via 

the release of in-sample summary LD information, i.e. pairwise correlations between all 

typed SNPs.

Gene-based association tests

Gene-based association using transcriptome reference data

GWAS risk variants are significantly enriched for genetic variants that impact gene 

expression (eQTLs)24. This motivates the paradigm of transcriptome-wide association 
studies (TWAS), which evaluate the association between the expression of each gene and a 

complex trait of interest. Due to the limited availability of very large samples with measured 

gene expression and trait values, initial TWAS approaches integrated eQTL and GWAS to 

identify susceptibility genes either via matching the association signals25–27, via mediation 

analyses28, or via assessing whether the same causal variant impacts both gene expression 

and trait under a single causal variant model29–31.

More recent studies have leveraged predicted expression to improve the power of TWAS. 

Under this paradigm, transcriptome reference data is used to predict gene expression in the 

GWAS data set (using cis SNPs, e.g. within 1Mb of the transcription start site), followed by 

a test for association between predicted expression and trait. As an alternative to TWAS 

using individual-level data32, TWAS using predicted expression can also be performed using 

only summary association statistics and summary LD information33–35. These studies 

respectively employed expression predictors that do not account for LD33, account for LD 

and allow for sparsity in eQTL effect sizes34, or utilize the top eQTL at the locus35. The key 

intuition is that the correlation between a weighted linear combination of SNPs (i.e. 

predicted gene expression) and trait is equivalent to a weighted linear combination of 

correlations between SNPs and trait (i.e. summary association statistics from GWAS) (see 

Figure 2). Since TWAS using predicted expression is conceptually similar to a test for non-

zero genetic covariance between gene expression and trait34, it can also be performed via a 

two-sample Mendelian randomization from summary statistics35. TWAS using predicted 

expression can increase power over a standard GWAS when there exist multiple causal 

variants whose effect on trait is mediated through expression. TWAS also reduces the 

multiple hypothesis burden by testing tens of thousands of genes instead of millions of 

SNPs. TWAS using predicted expression typically uses individual-level transcriptome 

reference data to predict gene expression, but can also be performed using only summary 

association statistics between SNPs and gene expression, albeit with a reduction in power34. 

The potential power gains of TWAS are underscored by the recent identification of 71 new 

susceptibility genes across 28 complex traits, of which 17 have no GWAS association within 

1 Mb36. However, TWAS is underpowered compared to standard GWAS when the true 

biological mechanism is independent of gene expression or when expression data in the 

most relevant tissue is not available.
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Rare variant association tests

Although most GWAS of complex traits and diseases have focused on common variants that 

are typed on genotyping arrays or imputed from population reference panels, rare variant 

associations may also provide a rich source of biological insights, particularly for traits 

under strong negative selection37,38. Because association tests of individual rare variants are 

likely to be underpowered, rare variant association tests generally aggregate evidence for 

association across multiple rare variants at a locus. In exome sequencing studies (or exome 

array studies), rare variants are aggregated at the gene level, making the gene the unit of 

association. This can be done either using burden tests, which assume that all rare variants in 

a candidate gene have the same direction of effect, or using overdispersion tests, which 

assume that rare variants in a candidate gene can impact a complex trait in either direction; 

hybrid omnibus tests are also possible39. Recent studies have shown that both burden tests 

and overdispersion tests can be performed using only summary association statistics from 

each rare variant, together with summary LD information40–42 (see Box 2). Roughly, burden 

tests are computed as weighted sums of single-variant z-scores and overdispersion tests are 

computed as weighted sums of squared single-variant z-scores (analogous to previous work 

on common variant overdispersion tests using summary statistics19,20), with summary LD 

information used to specify appropriate null distributions in each case. However, a key 

limitation is that these studies require the use of in-sample summary LD information in 

preference to reference LD information to ensure appropriate null distributions and avoid 

false-positive associations. Thus, in contrast to summary statistic based methods for 

common variants (see above), both summary association statistics and in-sample summary 

LD information are required in order for these methods to be useful (see Discussion). An 

additional limitation is that, for case-control traits, asymptotic null distributions may not be 

valid when variant counts or case or control sample sizes are small, necessitating careful 

scrutiny of quantile-quantile plots.

Fine-mapping

Fine-mapping using posterior probabilities of causality

Statistical fine-mapping aims to identify the causal variant(s) that are driving a GWAS 

association signal, enabling functional experiments to validate biological function. A 

straightforward approach to fine-mapping is to prioritize variants based on the strength of 

the marginal association statistics (i.e. ranking p-values)43. This is an effective strategy in 

the case of a single causal variant, but can be suboptimal when multiple causal variants are 

present, as the SNP with the top p-value at the locus may be tagging multiple causal 

variants. An alternative is to compute the posterior probabilities of causality for every SNP 

in the region, based on the likelihoods of the observed z-scores conditional on each possible 

set of causal variant(s)44. These posterior probabilities can be used to construct a credible set 

of SNPs, defined as the smallest set of SNPs that contains the true causal variant(s) with a 

given probability (typically 90% or 99%). Initial studies approximated the posterior 

probabilities of causality under a single causal variant assumption. Under this assumption, 

posterior probabilities of causality can be estimated from z-scores without the need for LD 

information45; this approach is both practical and computationally efficient. More recent 

studies have computed posterior probabilities of causality under a multiple causal variant 
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assumption46. As in the case of imputation using summary statistics, the likelihoods of the 

observed z-scores can be computed based on the multi-variate normal (MVN) distribution 

with variance equal to the LD correlation matrix, with LD estimated from population 

reference panels using regularization techniques. Unlike imputation using summary 

statistics, which uses the null model of no association (i.e. a mean of 0 in the MVN), in fine-

mapping the mean is a function of causal effect sizes, which can be heuristically 

approximated or integrated out using conjugate priors46,47. These methods often restrict 

computations to a maximum number of causal variants (e.g. 3 or 6); more recent studies 

have shown that further speed-ups can be achieved through matrix factorizations48 or 

stochastic search49. Methods that model multiple causal variants generally improve the 

accuracy (and calibration) of credible sets at loci with multiple causal variants46–50, with 

very limited decreases in accuracy at loci with only a single causal variant46–52. A less 

accurate alternative is to use conditional association analysis to detect multiple signals of 

associations7,53,54, followed by estimation of posterior probabilities of causality under a 

single causal variant assumption for each independent signal. In this case, special care is 

required in specifying the boundaries of each independent signal and the threshold for the 

conditional test.

Leveraging functional annotation data

Fine-mapping accuracy can be improved by integrating functional annotation data such as 

predicted regulatory elements from the ENCODE and ROADMAP Epigenomics 

projects55,56. This approach is motivated by early studies showing that disease-associated 

variants are systematically enriched in chromatin marks that delineate active regulatory 

regions in disease-relevant cell types57,58. Under this paradigm, a statistical model is 

developed to jointly estimate functional enrichment and update posterior probabilities of 

causality using functional annotations47,52,59,60. Some integrative methods assume that 

SNPs are unlinked60 or assume a single causal variant per locus52,59, but a recent study built 

upon the multiple causal variant model of ref.46 to incorporate functional annotation data47. 

In an analysis of rheumatoid arthritis summary association data, integrative fine-mapping 

using this approach reduced the average size of 90% credible sets by 10%61. In addition to 

increasing fine-mapping accuracy, these studies have also provided insights into polygenic 

architectures (see below) by identifying tissue-specific functional annotations that are 

enriched for causal disease signals. This can also be achieved by conducting fine-mapping 

without integrating functional annotation data (typically under a single causal variant 

assumption) and then overlapping the resulting credible sets with functional annotation data 

to assess enrichment62–64. Future integrative methods could increase fine-mapping 

resolution by integrating probabilistic functional annotations (e.g., ChIP-seq peak intensity) 

or modeling the strength of association between SNPs and chromatin marks in population-

based studies65,66.

Trans-ethnic fine-mapping

Fine-mapping accuracy can also be improved by leveraging differences in LD patterns 

across continental populations that have arisen due to differences in demographic events 

such as population bottlenecks (see Figure 3)67–70. Intuitively, the set of tag SNPs linked to a 

causal variant will vary across populations, so that aggregating evidence of association 
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across populations will dilute signals from tag SNPs and strengthen signals from causal 

variants. A standard approach to combining information across multiple studies is to 

compute posterior probabilities of causality from fixed-effects meta-analysis 

results67,69,71,72. Alternately, posterior probabilities can be computed from results of 

random-effects trans-ethnic meta-analysis methods64,68. These approaches assume a single 

causal variant and thus do not require LD information from the underlying populations. 

More recent studies have introduced hierarchical probabilistic models that allow for multiple 

causal variants while incorporating LD information from population reference panels61. 

These studies assume that causal variants are shared across populations but allow for 

heterogeneity in effect sizes across populations, and can also incorporate functional 

annotation data to further increase fine-mapping accuracy61. In an analysis of rheumatoid 

arthritis summary association data in Europeans and Asians (see above), trans-ethnic fine-

mapping reduced the average size of 90% credible sets by 25%, and by 32% when also 

integrating functional annotation data61.

Polygenicity of complex traits

Polygenic risk prediction

Although the main focus of complex disease genetics is to gain insights about disease 

biology, genetics can also be leveraged to build predictions of disease risk, which may 

become clinically useful as sample sizes increase73,74. A landmark study of schizophrenia 

showed that polygenic risk scores, constructed by summing the predicted effects of all 

markers below a P-value threshold in the training sample, produced predictions of 

schizophrenia risk in validation samples that were significantly better than random, and far 

more accurate than those based on the single genome-wide significant locus identified in the 

study75. This provided an early demonstration of the advantages of incorporating markers 

that do not attain genome-wide significance into polygenic risk scores to improve prediction 

accuracy for polygenic traits. An important issue in computing polygenic risk scores is that 

of LD between markers, which has historically been addressed by LD-pruning—either 

without regard to P-values75, or via informed LD-pruning76 (clumping) that preferentially 

retains markers with more significant P-values. More recent work has shown that explicitly 

modeling LD using an LD reference panel and estimating posterior mean causal effect sizes 

can improve prediction accuracy from summary statistics77. An alternative to summary 

statistic based methods is to fit effect sizes of all markers simultaneously using Best Linear 

Unbiased Prediction (BLUP) methods and their extensions78–80, which require individual-

level training data. Fitting all markers simultaneously is theoretically more appropriate and 

can produce more accurate predictions, although the relative advantage is small when overall 

prediction accuracies are modest (Box 3). In their simplest form, polygenic risk scores and 

BLUP methods assume infinitesimal (Gaussian) architectures in which all markers are 

causal, but these methods have been extended to increase prediction accuracy in the case of 

non-infinitesimal architectures; this has been accomplished for polygenic risk scores via 

restricting to markers below a P-value threshold75 or estimating posterior mean causal effect 

sizes under a point-normal prior77, and for BLUP methods by estimating (joint-fit) posterior 

mean causal effect sizes under a normal mixture prior81,82. Although polygenic risk scores 

must await even larger training sample sizes to attain clinical utility, appreciable prediction 
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accuracies have been achieved for some traits, including a Nagelkerke R2 of 0.25 (AUC: 

75%) for schizophrenia77. An important caveat is that it is critical when constructing and 

evaluating polygenic risk scores to avoid non-independence of training and validation 

samples (e.g. due to cryptic relatedness or shared population stratification), which could 

cause prediction accuracy to be overstated relative to what could be achieved in an 

independent validation sample77,83.

Inferring polygenic architectures

It is increasingly clear that most complex traits and diseases have highly polygenic 

architectures, with a large number of causal variants of small effect. In order to understand 

these polygenic architectures, it is of interest to infer parameters such as the heritability 

explained by SNPs and the number of variants with non-negligible effects on the trait. Both 

of these quantities have been estimated using accuracies of polygenic risk scores (see 

above), as a function of the P-value threshold used to constrain the set of markers 

employed75,76. Computing polygenic risk scores requires individual-level data in the 

validation cohort, implying that these methods are not strictly summary statistic based. 

Recent work has shown that the information in polygenic risk scores can be derived from 

summary-level data in the training and validation cohorts to estimate the heritability 

explained by SNPs and the number of causal variants84; a limitation of this approach is that 

SNPs are assumed to be uncorrelated, which can be approximately achieved by LD-pruning 

but precludes analyses of dense marker panels. The heritability explained by SNPs can 

alternatively be estimated from the slope of LD score regression85, in which χ2 statistics for 

each SNP are regressed against LD scores (sum of squared correlations with all SNPs), 

leveraging the fact that SNPs with higher LD scores are expected to contain more polygenic 

signal86. This approach explicitly allows for LD between SNPs and can distinguish between 

polygenicity and confounding, although it assumes a linear model that may not hold in 

practice and makes strong assumptions about effect sizes of rare variants that only enable 

robust estimates for common variants. Another recent method models LD while treating 

SNP effects as fixed rather than random (similar to ref.84), enabling estimation of heritability 

explained by common SNPs in local regions as well as genome-wide10. Overall, summary 

statistic based methods provide a useful alternative to methods for estimating heritability 

explained by SNPs from individual-level data using restricted maximum likelihood (REML) 

and its extensions87,88.

The increasing availability of functional annotation data (see above) can also be used to 

identify functional annotations that are enriched for polygenic signals of disease heritability. 

A recent study accomplished this using a Bayesian hierarchical model that splits the genome 

into blocks and incorporates both coarse-scale functional annotations at the level of blocks 

and fine-scale functional annotations at the level of SNPs59. This was the first study to 

quantify polygenic enrichments for cell-type-specific chromatin marks and DNase I 

hypersensitivity sites (DHS) across a broad set of complex traits and diseases. For example, 

polygenic signals for platelet volume and platelet count were enriched at DHS in CD34+ 

cells, which are on the cell lineage that lead to platelets, and polygenic signals for Crohn’s 

disease were depleted at repressed chromatin in LCL, an immune-related cell line. 

Functional enrichments can alternatively be estimated by stratified LD score regression89, 
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which generalizes LD score regression85 to regress χ2 statistics for each SNP against LD 

scores with each functional category. Fine-mapping methods can also estimate functional 

enrichments, although these analyses are often restricted to disease-associated loci47,52,61. 

Notably, all of these summary statistic based methods have been applied to a large number 

of overlapping functional annotations, whereas methods that analyze individual-level 

genotypes have only been applied to a small number of non-overlapping functional 

annotations88,90. In addition, stratified LD score regression is not limited by the single 

causal variant per block assumption of the Bayesian hierarchical model, increasing power in 

settings of highly polygenic traits89. Application of the method identified significant cell-

type-specific enrichments for many highly polygenic traits, including enrichments for 

histone marks in brain for smoking behavior and educational attainment—even though the 

summary statistics analyzed contained only one and three genome-wide significant loci, 

respectively. One limitation of the method is limited power for functional categories 

spanning a small percentage of the genome, motivating additional work in this area. As both 

summary statistic and functional annotation data sets grow larger and richer, identifying 

enriched functional annotations using summary statistic data will likely continue to be a 

fruitful endeavor.

Cross-trait analyses

Many complex traits and diseases have a shared genetic etiology, either via shared genetic 

variant(s) with nonzero effect sizes (pleiotropy) or via a correlation between causal effect 

sizes (genetic correlation). Indeed, many instances of genetic variants with pleiotropic 

effects on multiple traits have been identified91–96. A recent study applied a Bayesian 

framework to summary association statistics from pairs of traits to estimate, at each locus in 

the genome, the probability that an associated variant has pleiotropic effects on both traits97. 

Pleiotropic SNPs can also be utilized as instrumental variables in Mendelian randomization 

analyses from summary statistics98–100, with one such analysis showing that increased body 

mass index causally increases triglyceride levels97.

An alternate approach to assessing the genetic overlap between two traits is to estimate the 

correlation between causal effect sizes across the two traits. Genome-wide genetic 

correlations can be estimated from individual-level data using bivariate REML101. A recent 

study estimated genome-wide genetic correlations from summary data using the information 

in polygenic risk scores, although this approach required LD-pruning the data which may 

lead to upwards bias84. Another recent study estimated genome-wide genetic correlations 

from summary data using cross-trait LD score regression102, which generalizes LD score 

regression to regress products of z-scores against LD scores for each SNP; this method 

produced estimates that were highly concordant with those from individual-level data101. 

Fitting the underlying MVN model using maximum likelihood instead of linear regression 

has produced promising results in applications to estimating cross-trait and cross-population 

genetic correlations, and may also prove useful in other settings103. Although genetic 

correlation analyses restricted to associated variants have also produced important 

findings97, the power of methods that leverage polygenic signals in genome-wide data is 

underscored by the discovery of significant genetic correlations involving traits with zero or 

few genome-wide significant loci, including a significant negative genetic correlation 
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between smoking behavior and educational attainment102. Notably, recent work shows that 

association statistics for unmeasured traits can be computed using summary statistics from 

genetically correlated traits104,105.

Conclusion

Recently developed methods have made it possible to leverage summary association 

statistics to perform a wide range of analyses, many of which previously required individual-

level data. As the availability of summary association statistics continues to grow (Table 1), 

summary statistics will continue to be broadly used in analyses involving single-variant 

association tests, gene-based association tests, fine-mapping, polygenic prediction and 

inferring polygenic architectures, and cross-trait analysis. The use of summary data will 

entail a loss of accuracy in some applications, such as imputation, where methods that 

analyze individual-level data can use haplotypes to model nonlinear structure, and polygenic 

prediction, where methods that analyze individual-level data can reduce noise by fitting all 

markers simultaneously; however, when summary statistics are available in larger sample 

size than individual-level data, the advantage of larger sample size will outweigh those 

limitations. In addition, there are some settings where summary statistic based methods are 

the method of choice even when individual-level data is available, such as identifying 

functional annotations that are enriched for heritability, where methods that analyze 

individual-level data cannot currently handle a large number of overlapping annotations.

Despite considerable recent progress, there are some areas where further research on 

summary statistic based methods is needed. As population reference panels grow, more 

accurate modeling of rare and low-frequency variants will become possible, and it will be 

important to assess the limits of such efforts. It is also of interest to develop methods for 

inferring polygenic architectures from summary statistics that allow for different 

relationships between allele frequency and effect size. Identifying functional annotations 

that are enriched for heritability is an application that is particularly likely to produce 

important biological insights, and here there is a need for new methods that are well-

powered for functional categories spanning a small percentage of the genome. As the 

number of functional annotations continues to increase, the integration of such data poses 

computational and statistical challenges in disentangling the correct functional annotations 

among many correlated ones.

We conclude by emphasizing the importance of making summary association statistics 

publicly available. A 2012 editorial in the journal Nature Genetics asked its authors to 

publish or database summary association statistics for all SNPs analyzed106, broadly 

impacting the set of publicly available summary statistics in the years that followed (Table 

1). The public release of summary statistics is a useful compromise in situations where 

sample consent restrictions or privacy concerns preclude the release of individual-level data 

in a public repository. Although even the release of summary statistics can in principle lead 

to privacy concerns107, more recent work has shown that such privacy attacks have low 

power when the summary sample size exceeds the effective number of independent markers 

(currently estimated at 60,000 in typical GWAS data sets108), implying that privacy concerns 

should not preclude the public release of summary statistics from large studies109–111. 
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Indeed, some recent studies have created web portals where summary data can be publicly 

accessed and visualized63. Finally, we note the potential benefits of publicly releasing 

summary statistics that include summary LD information (i.e. correlations) between each 

pair of proximal SNPs; however, the optimal approach to aggregating summary LD 

information across multiple cohorts in large-scale meta-analyses remains unclear, motivating 

future work in this area.
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Glossary

INDIVIDUAL-LEVEL DATA
Genome-wide SNP genotypes and trait values for each individual included in a GWAS

SUMMARY ASSOCIATION STATISTICS
Estimated effect sizes and their standard errors for each SNP analyzed in a GWAS

Z-SCORES
Association statistics that follow a standard normal distribution under the null; often 

computed as per-allele effect sizes divided by their standard error

META-ANALYSIS
A method for combining data from different studies in which summary association statistics 

from each study are jointly analyzed

MEGA-ANALYSIS
A method for combining data from different studies in which individual-level data from each 

study are merged and jointly analyzed

SUMMARY LD INFORMATION
In-sample correlations between each pair of typed SNPs analyzed in a GWAS; can be 

restricted to proximal pairs of typed SNPs to limit the number of pairs of SNPs

TRANSCRIPTOME-WIDE ASSOCIATION STUDY (TWAS)
A study that evaluates the association between expression of each gene and a trait of interest; 

predicted expression may be used instead of measured expression to improve practicality

MENDELIAN RANDOMIZATION
A method that uses significantly associated SNPs as instrumental variables to quantify 

causal relationships between two traits

BURDEN TEST
A gene-based rare variant test in which all rare variants in a gene are assumed to have the 

same direction of effect
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OVERDISPERSION TEST
A gene-based rare variant test in which rare variants in a gene are assumed to impact trait in 

either direction

POSTERIOR PROBABILITY OF CAUSALITY
The inferred probability that a SNP is causal, based on association data and optional prior 

information

POLYGENIC RISK SCORE
A method of predicting trait by summing the predicted marginal effects of all markers below 

a P-value threshold in a training sample, multiplied by marker genotypes in a validation 

sample

LD SCORE REGRESSION
A method of assessing trait polygenicity by regressing χ2 association statistics against LD 

scores for each SNP, computed as sums of squared correlations of each SNP with all SNPs 

including itself

PLEIOTROPY
The existence of genetic variant(s) that affect more than one trait

GENETIC CORRELATION
The signed correlation across SNPs between causal effect sizes for two traits
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Box 1

Conditional association and summary statistic imputation using LD 
reference data

Let X be an N × M matrix of genotypes, standardized to mean 0 and unit variance, and Y 
be an N × 1 vector of standardized trait values, where M is the number of SNPs at the 

locus and N is the number of samples. Under a standard linear model, . Let 

be an M × M LD matrix of pairwise LD;  is equal to  if individual-level data is 

available, but can otherwise be estimated from a population reference sample (with or 

without regularization).

Conditional association using LD reference data

We estimate the joint effects of all SNPs using least-squares as  with 

, where  is the residual variance in the joint analysis. In a standard 

GWAS, however, each SNP is marginally tested one at a time, which can be expressed in 

matrix form as  with , where  is the (nearly 

constant) diagonal matrix of  and  is the residual variance in the marginal analysis. It 

follows that:

Summary statistic imputation using LD reference data

Let  be a vector of z-scores (estimated effect sizes divided by their 

s.e.) obtained by marginally testing each SNP one at a time. Under the null hypothesis of 

no association, . Let Zt and Zi partition the vector Z into T typed SNPs and M 

− T untyped SNPs, and let  (covariances among typed SNPs),  (covariances among 

untyped SNPs), and  (covariances among typed and untyped SNPs) partition the 

matrix  accordingly. It follows that

The mean and variance of the conditional distribution can be used to impute summary 

association statistics at untyped SNPs.
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Box 2

Rare variant association tests using summary association statistics

Let X be an N × M matrix of genotypes, standardized to mean 0 and variance 1, and Y be 

an N × 1 matrix of standardized trait values, where M is the number of rare variants (e.g. 

in a given gene being tested for association) and N is the number of samples. An M × 1 

vector of z-scores (estimated effect sizes divided by their s.e.) can be computed as 

, with multivariate normal null distribution  where  is an in-

sample LD matrix.

Burden tests

Burden tests assume that all rare variants in a candidate gene have the same direction of 

effect. Burden tests may either assume that standardized effect sizes are the same for each 

rare variant112 (i.e. per-allele effect sizes are proportional to , where pi is 

the allele frequency), or apply weights or thresholds based on allele frequency or 

functional information113,114. If w is an M × 1 vector of weights for each rare variant 

(including zero weights for rare variants excluded by a threshold), the test statistic for a 

weighted burden test is  with null distribution . This 

test statistic can naturally be extended to meta-analysis of burden tests from multiple 

cohorts (via inverse-variance weighting), and can be extended to variable threshold tests 

and binary traits40–42.

Overdispersion tests

Overdispersion tests assume that rare variants in a candidate gene can impact a complex 

trait in either direction, and can be computed as weighted sums of squared single-variant 

test statistics115,116. If W = diag(w1, …, wM) is an M × M diagonal matrix of weights for 

each rare variant, the test statistic for a weighted overdispersion test is 

 with null distribution , where weights μi for each 

χ2 (1 d.o.f.) distribution χi
2 are given by eigenvalues of the matrix . This test 

statistic can be extended to meta-analysis of overdispersion tests from multiple cohorts 

(via inverse-variance weighting), and can be extended to binary traits40–42.
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Box 3

Polygenic risk prediction using summary vs. individual-level data

Suppose that polygenic risk prediction for a quantitative trait is conducted using a 

training cohort with N unrelated samples, using M unlinked markers with SNP-

heritability7 equal to hg
2. We initially consider two polygenic risk prediction methods 

that assume infinitesimal (Gaussian) architectures: polygenic risk scores computed using 

marginal effects at all markers with no P-value thresholding (PRSall), and fitting effect 

sizes of all markers simultaneously via Best Linear Unbiased Prediction (BLUP). We 

note that PRSall requires only summary statistics from the training cohort, whereas BLUP 

requires individual-level data. The prediction R2 for each method are given by83,117

These equations can naturally be extended to linked markers (using the effective number 

of unlinked markers108) and case-control traits (using observed-scale SNP-

heritability118). The relative advantage of BLUP over PRSall is small when prediction R2 

is small in absolute terms, but grows larger when prediction R2 is larger; this is illustrated 

in the figure below, which reports prediction R2 at various training sample sizes based on 

M=60,000 unlinked markers and a SNP-heritability of hg
2=0.5. These results generalize 

to non-infinitesimal extensions of polygenic risk scores75,77 and BLUP81,82; in the latter 

case, the noise reduction from fitting all markers simultaneously remains equal to 1‒R2, 

corresponding to an increase in training sample size of 1/(1‒R2).
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Figure. 
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Figure 1. Illustration of summary association statistics
Per-allele SNP effect sizes (and their standard errors) are typically estimated by regressing 

the phenotype on the genotype values at the SNP of interest (top). At large sample sizes, the 

vector of z-scores (effect sizes divided by their standard errors) at a locus are approximated 

by a multivariate normal distribution with mean 0 and variance equal to the LD matrix V 
(bottom).
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Figure 2. TWAS using predicted expression and summary data
TWAS using predicted expression and summary data follows two steps. First, transcriptome 

reference data is used to build a linear predictor for gene expression, typically using SNPs 

from the 1Mb local region around the gene with regularized effect sizes (e.g. using 

BSLMM81). Second, this predictor is applied to summary GWAS z-scores and gene-trait 

association z-scores are computed, testing the null model of no association between gene 

and trait.
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Figure 3. Leveraging functional annotation and trans-ethnic data to improve fine-mapping
A sample locus with simulated fine-mapping data in Europeans and Africans is displayed. 

The top panel shows the 99% credible set (denoted in red) produced by leveraging 

functional annotation data (DNase I Hypersensitivity Sites, DHS) in trans-ethnic fine-

mapping. The middle and bottom panels show the –log 10 p-values (left) and LD (right) in 

Europeans and Africans.
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Table 1
Publicly available summary association statistics

We provide a partial list of publicly available summary statistics from GWAS with sample size at least 20,000. 

A more complete list is provided in ref.119.

Trait N Reference URL

Age at menarche 127,884
Perry et 
al. 2014 
Nature

http://www.reprogen.org/

Alzheimer’s 54,162
Lambert 
et al. 2013 
Nat Genet

http://www.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php

Bone mineral density 53,236

Zheng et 
al Nat 
Genet 
2015

http://www.gefos.org/?q=content/data-release-2015

BMI 122,033
Speliotes 
et al. 2010 
Nat Genet

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

BMI* 322,154
Locke et 
al. 2015 
Nature

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

Coronary artery disease 77,210
Schunkert 
et al. 2011 
Nat Genet

http://www.cardiogramplusc4d.org/

Crohn’s disease 20,883
Jostins et 
al. 2012 
Nature

http://www.ibdgenetics.org/downloads.html

Crohn’s disease* 51,874
Liu et al. 
2015 Nat 
Genet

http://www.ibdgenetics.org/downloads.html

Depressive symptoms 161,460
Okbay et 
al. 2016 
Nat Genet

http://ssgac.org/documents/

Ever smoked 74,035
Furberg et 
al. 2010 
Nat Genet

http://www.med.unc.edu/pgc/downloads/

Fasting glucose 58,074
Manning 
et al. 2012 
Nat Genet

http://www.magicinvestigators.org/downloads/

HbA1C 46,368
Soranzo et 
al. 2010 
Diabetes

http://www.magicinvestigators.org/downloads/

HDL 97,749
Teslovich 
et al. 2010 
Nature

http://www.broadinstitute.org/mpg/pubs/lipids2010/

HDL* 188,577
Willer et 
al. 2013 
NG

http://csg.sph.umich.edu//abecasis/public/lipids2013/

Height 131,547

Lango 
Allen et 
al. 2010 
Nature

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

Height* 253,288
Wood et 
al. 2014 
Nat Genet

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
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Trait N Reference URL

Hip Circumference 213,038

Shungin 
et al Nat 
Genet 
2015

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

IBD (Crohn’s/UC) 34,652
Jostins et 
al. 2012 
Nature

http://www.ibdgenetics.org/downloads.html

IBD* (Crohn’s/UC) 65,643
Liu et al. 
2015 Nat 
Genet

http://www.ibdgenetics.org/downloads.html

LDL 93,354
Teslovich 
et al. 2010 
Nature

http://www.broadinstitute.org/mpg/pubs/lipids2010/

LDL* 188,577
Willer et 
al. 2013 
NG

http://csg.sph.umich.edu//abecasis/public/lipids2013/

Neuroticism 170,911
Okbay et 
al. 2016 
Nat Genet

http://ssgac.org/documents/

RA (Europeans) 38,242
Okada et 
al. 2014 
Nature

http://plaza.umin.ac.jp/yokada/datasource/software.html

RA* (Europeans) 58,284
Okada et 
al. 2014 
Nature

http://plaza.umin.ac.jp/yokada/datasource/software.html

RA (East Asians) 22,515
Okada et 
al. 2014 
Nature

http://plaza.umin.ac.jp/yokada/datasource/software.html

Schizophrenia 70,100
Ripke et 
al. 2014 
Nature

http://www.med.unc.edu/pgc/downloads/

Subjective well-being 298,420
Okbay et 
al. 2016 
Nat Genet

http://ssgac.org/documents/

Triglycerides 94,461
Teslovich 
et al. 2010 
Nature

http://www.broadinstitute.org/mpg/pubs/lipids2010/

Triglycerides* 188,577
Willer et 
al. 2013 
NG

http://csg.sph.umich.edu//abecasis/public/lipids2013/

Type 2 diabetes 60,786
Morris et 
al. 2012 
Nat Genet

http://www.diagram-consortium.org/

Ulcerative colitis 27,432
Jostins et 
al. 2012 
Nature

http://www.ibdgenetics.org/downloads.html

Ulcerative colitis* 47,746
Liu et al. 
2015 Nat 
Genet

http://www.ibdgenetics.org/downloads.html

Waist Circumference 232,101

Shungin 
et al Nat 
Genet 
2015

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

Waist Hip Ratio 212,248

Shungin 
et al Nat 
Genet 
2015

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
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Trait N Reference URL

Years of education 328,917
Okbay et 
al. 2016 
Nature

http://ssgac.org/documents/

*
: includes specialty chip data; not suitable for analysis using LD score regression and its extensions.
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