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Abstract

Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active

site domain called the trigger loop (TL), which achieves roles in transcription through confor-

mational changes and interaction with NTP substrates. The mutations of TL residues cause

distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied

molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize

TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did

so to determine relationships between individual mutations and phenotypes and to associ-

ate phenotypes with MD simulated structural alterations. Using fitness values of mutants

under various stress conditions, we modeled phenotypes along a spectrum of continual val-

ues. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino

acid sequences alone. It was more difficult to incorporate MD data to improve predictions

from machine learning, presumably because MD data is too noisy and possibly incomplete

to directly infer functional phenotypes. However, a variational auto-encoder model based on

the MD data allowed the clustering of mutants with different phenotypes based on structural

details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended

to increase distances of TL residues to the NTP substrate, while another subset of LOF and

lethal substitutions tended to confer an increase in distances between TL and bridge helix

(BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of

hydrophobic contacts among TL and nearby helices.

Author summary

RNA polymerase II (Pol II) synthesizes RNA with the help of an active site domain called

the trigger loop (TL). Mutations in the TL cause changes in the activity of Pol II that range

from gain-of-function (GOF, viable but hyperactive) to loss-of-function (LOF, viable but

hypoactive) or lethal. This study provides a systematic characterization of the structural
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and functional outcomes of the TL mutations using molecular dynamics (MD) simula-

tions and machine learning (ML). We obtained functional phenotypes of mutants by ML

using genetic fitness scores (measure of growth defect strength) as input. We revealed that

mutant TL sequences could predict the functional outcomes at a relatively high correla-

tion. Then, we performed MD simulations to relate structural information to the pheno-

types. The analysis of the MD data suggested that there are two subsets of lethal and LOF

mutants, where one subset had increased distances between the TL and the substrate,

while the other subset showed increased distances between TL and another active site

domain called the bridge helix (BH). On the other hand, some of the GOF mutants altered

a key hydrophobic pocket formed by interactions between residues near the active site.

Overall, this study enhances our understanding of the effects of TL mutations to the Pol II

function.

Introduction

RNA polymerase II (Pol II) is the enzyme that synthesizes mRNA in eukaryotes. Structural

[1,2,3,4] and computational [5,6,7,8] studies have provided insights into the mechanism of this

process, which takes place by repeating a nucleotide addition cycle (NAC) for addition of new

nucleotides to the nascent RNA [9]. Proposed mechanisms for the NAC emphasize conforma-

tional changes of a highly conserved domains in the active site, present within the largest sub-

unit of yeast Pol II, Rpb1, but the insights gained here can be transferred to other polymerase

systems due to a high level of conservation of active site domains. One of these domains is

called the trigger loop (TL) and the other is the nearby bridge helix (BH). The TL has open and

closed conformations, which are known to be important for nucleotide addition [10,11,12,13].

The NAC starts with the Pol II complex with an open TL that allows an incoming nucleoside

triphosphate (NTP) to enter the active site. Upon initial binding of the NTP, the TL closes and

catalysis is promoted for substrates base-paired with the template. This results in the pre-trans-

location (substrate added) state, followed by TL opening together with pyrophosphate ion

(PPi) release, and subsequent or concurrent translocation [14]. The TL has been suggested to

have an important function in selecting [4,15,16,17] and positioning [18,19] the correct NTP

at the active site and in affecting the kinetics [15,20,21] of the NAC. TL involvement during

transcriptional pausing [22,23], backtracking [24,25] and translocation [10,26,27] has also

been proposed.

Detailed mechanisms of TL function are still not fully known. Previous studies suggest that

TL is crucial for transcription by showing that a complete deletion of the TL from different

species caused marked reductions in transcription rate [23,28,29] In the case of deletion of TL,

transcription could still take place but with a large decrease, 102−104 fold, in the catalysis rate,

[28,29] and with a significant compromise in fidelity [29]. These studies suggest that TL is

playing a fundamental role in transcription. Certain residues were identified to be especially

important for function, such as H1085, L1081, E1103 and Q1078 [4,15,16,18,26,30,31,32].

H1085 and L1081 are in close distance to the NTP when the TL is closed. Therefore, their roles

have been attributed to the positioning of the correct NTP. Most of substitutions of H1085 and

L1081 are lethal [4,18,32]. On the other hand, E1103 mutations are known to cause an

increased catalytic rate but with compromised fidelity [15,16,26,32]. Further studies showed

that Q1078 has interactions with the sugar moiety of the NTP, and most of its mutations are

also not viable [30,31,32]. Because the TL must support multiple conformations, there may be

complex effects of specific substitutions. Site-directed mutagenesis and a prior comprehensive
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genetic study of TL alleles together suggest Pol II mutant phenotypic classes and complex

interactions between residues supporting a functional network [21,32]. In that study, the

effects of mutations were classified broadly as either ‘loss of function’ (LOF), where catalytic

activity is, or is predicted to be, reduced in vitro, ‘gain of function’ (GOF), where catalytic

activity is, or is predicted to be, increased, or ‘lethal’, where essential functions are compro-

mised. As a result, genetic phenotypes were associated different functional outcomes providing

a framework for insights into the role of different TL residues during transcription.

The effects of mutations on proteins have been studied previously by computational meth-

ods. Many studies report MD simulations that predict structural effects of mutations and link

those effects with function [18,33,34]. These studies have brought invaluable insights into the

effects of mutations but covering a large number of mutations with MD simulations is compu-

tationally challenging. Recently, machine learning approaches have become widely used for

predicting the effects of mutations on various properties like protein stabilities [35,36], ligand

binding [37,38,39], variant fitness [40,41] and functional phenotypes [42,43,44]. In these stud-

ies, the input typically consists of amino acid sequences, evolutionary data, structural informa-

tion and biochemical data. A range of machine learning approaches have been applied,

including feed-forward neural networks [39,41,42], variational autoencoder (VAE) models

[43,44], convolutional neural networks [36,39,40], and ensemble learning methods

[35,37,38,41]. The predictive performance measured in terms of Pearson coefficients typically

ranges from 0.5 to 0.8 [35,37,38] suggesting that machine learning models can be useful in pre-

dicting effects of mutations. Here, we apply similar machine learning frameworks to predict

functional outcomes for Pol II. Different from previous studies, we added input from MD sim-

ulations as additional features with the goal of gaining additional insights by combining both

approaches to predicting function.

How the functional TL phenotypes that result from residue variations are manifested is an

open question, since structural and dynamic details at the atomic level for individual mutants

is lacking, as is understanding of potential commonalities at the biochemical level within

mutant classes. To address this, we combined the data from experimental fitness scores and

molecular dynamics (MD) simulations for TLs with different amino acid sequences to predict

functional and structural outcomes of TL mutations using machine learning (ML) frame-

works. The analysis here is based on an updated fitness dataset that extends the earlier analysis

of Qiu et al. to develop a complete TL mutation phenotype map based on a continuous repre-

sentation of functional phenotypes [32]. First, we developed ML models using amino acid

sequences to predict TL mutation phenotypes. Then, we selected 135 TL single mutants with

known functional phenotypes and performed atomistic molecular dynamics (MD) simulations

of those mutants. Following MD simulations, we applied ML algorithms on data extracted

from the simulations to develop a better understanding how different phenotypes map onto

differences in structure and dynamics of Pol II near the active site. The structural data obtained

from the MD simulations was primarily used to provide a mechanistic understanding of the

TL mutant phenotypes when used in a VAE framework that allowed us to map function to

structural features. Specific insights from this analysis are that lethal and LOF mutants have

increased intramolecular distances between TL residues and the NTP for one subset of

mutants, while for another subset of the lethal and LOF mutants, large distances between TL

and BH residues are observed. We also predicted two distinct classes of GOF phenotypes

where both affect a hydrophobic pocket formed by active site residues while a subset has

increased BH-TL interactions. Overall, these findings lead to further understanding of the spe-

cific roles of the TL and the BH during Pol II function. This study also suggests that longer

MD simulations, on possibly μs time scale, might be required to enhance the inference of the

mutant mechanisms.
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Results

This study focuses on the interpretation of Pol II TL mutation phenotypes based on experi-

ments via MD simulations and ML to develop a deeper mechanistic understanding of the role

of the TL during transcription. We describe here three sets of results: 1) Based on fitness data

from second-generation deep mutational scanning of the Pol II TL in S. cerevisiae (see meth-

ods), we generated a model for the classification of TL mutants along a continuous phenotypic

spectrum and projected continuous phenotypes on a reduced dimensional latent space gener-

ated using a VAE model; 2) we applied ML to infer TL mutant phenotypes from TL sequence

with and without structural data from MD simulations using a subset of gold standard mutants

as training data; and, 3) we extracted mechanistic principles for how different classes of TL

mutations modulate Pol II function based on VAE models that were trained on MD simula-

tion data.

Continuous Pol II function phenotypes for TL mutations from

experimental fitness data

Pol II TL is highly conserved among three domains of life (Fig 1A) especially for the residues

that are close to the catalytic site (Fig 1B). The level of conservation can be correlated with the

importance of each residue for function. T1077 to G1088 are overall the most conserved resi-

dues of TL (Fig 1A), suggesting that any mutation on these residues may have a high impact

on the function of the enzyme. Previous deep mutational scanning of the Pol II TL in yeast

had classified mutants as lethal, LOF, GOF, or indeterminate [32]. In this study, we classified

mutants based on a phenotypic numerical continuum instead of discrete classes. GOF, LOF,

and lethal phenotypes were mapped to values of +1, -1 and -2, respectively and a value of 0 cor-

responds to the WT or indeterminate phenotypes those did not show any strong phenotype

under any condition. A continuous phenotype better reflects gradual variations in functional

outcomes. It also allowed us to project the phenotypes into a two-dimensional latent space and

quantitatively analyze the transition between phenotypes. To place individual mutants along a

phenotypic continuum, we first obtained quantitative fitness data for all possible TL single

substitution mutants and a range of selected double mutants for a number of selection condi-

tions (Fig 1C), (see Methods). These conditions have previously been shown to enable discrim-

ination among hypo- and hyperactive Pol II mutants (LOF and GOF, respectively) [32]. We

trained a neural network model (three hidden layers with 256, 128 and 64 nodes) based on the

fitness data against the annotated functional phenotypes, converted to their corresponding

numerical values, for a subset of the mutations described in the previous study [3,21,32]. The

complete fitness set is provided in the S1 Spreadsheet and the training set contains 83 mutants

annotated with their known phenotype classes. The resulting ML model was then used to pre-

dict the functional phenotype from the fitness data for the complete set of mutations in the TL

as described in the Methods (Fig 1D). Most substitutions of residues between T1077 to G1088

were predicted as lethal or LOF consistent with the study of Qiu et al [32] and consistent with

high sequence conservation for those residues (Fig 1A). These residues were also suggested to

be important for function by earlier studies [4,12,18,19,29,45,46]. L1081 and H1085 are in

close vicinity to the incoming NTP and they interact with the base and phosphate groups of

NTP, respectively [4]. They were attributed to have functions in nucleotide selection, position-

ing and translocation [18,19,45,46]. In addition, F1084 and F1086 were suggested to have func-

tions in stabilizing the orientation of H1085 that may play a role in NTP selection [12]. Q1078

is in close vicinity to the sugar of the incoming nucleotide [4] and was suggested to play a role

in selecting the correct NTP [29]. Mutations of V1094, P1099, and to a lesser extent, L1105

broadly resulted in LOF phenotypes, suggesting importance for WT fitness. Conversely,
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Fig 1. TL sequence conservation and ML prediction of phenotypes from fitness data. (A) Sequence conservation of TL in different organisms that are

eukaryotes (S.cerevisiae and S. pombe from yeast, H. sapiens from mammals, A. thaliana from plants and D. melanogaster from insects), bacterium (T.

thermophilus), and archaeon (S. solfataricus). (B) The structure of TL residues and GTP from S.cerevisiae (PDB code:2E2H). The TL is colored with the level

of conservation among the species shown in A. (C) Fitness scores for mutants of TL residues under different conditions (see x-axis labels). The x-axis shows

the different conditions with three replicates and the y-axis shows the TL mutations with 19 mutants for each residue, y-axis was labeled by only the TL

residue number for avoiding a crowded labeling using all mutant names. For each residue, there are 19 mutants and for each mutant there are 21 data points

with three replicates each. (D) Phenotypical landscape predicted from the fitness data. Each box is colored with the phenotype; white boxes reflect the WT

amino acid at those positions; the row at the bottom depicted as “Mean” shows the average phenotypes for the residues. (E) Latent space of the unsupervised

VAE model based on the fitness data with each data point colored according to its corresponding phenotype. The axes z[0] and z[1] are the first and second

dimensions of the 2D latent space generated by projecting the fitness scores using the VAE model.

https://doi.org/10.1371/journal.pcbi.1010999.g001
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substitutions of selected residues mostly result in GOF phenotypes, as previously suggested.

Among those, A1076, M1079, G1097, and L1101 form a hydrophobic pocket that may stabilize

the open TL state [30]. Disruption of this pocket by mutations may facilitate TL closing leading

to a GOF phenotype [30,32], albeit a bias towards TL closing may come at the expense of

decreased fidelity [15,16,17,26,47,48]. In addition, selected mutations at K1092, K1093, R1100

and most at E1103 lead to GOF phenotypes. The residues K1092 and K1093 were suggested to

stabilize the TL open state through interactions with other Rpb1 residues like D716, and

D1309/E1280, respectively, shown by simulation and experimental studies [12,30,32]. Simi-

larly, the GOF phenotype observed for E1103 substitutions was attributed to their stabilizing

effect on the closed TL state [15,21,26].

To reduce dimensionality of the mutant space and associate the locations of mutants with

different phenotypes, we mapped the fitness values of mutants onto a two-dimensional latent

space by applying a VAE model (three layers with 256, 128 and 64 nodes in both encoder and

decoder parts). There were two main reasons for using VAE model. First, VAE would provide

clustering of similar phenotypes together in a reduced dimensional space without any supervi-

sion that would further support the accuracy of the predictions of continuous phenotypes

obtained by a supervised model. The second reason is to use the reduce dimensional space to

gather generalized information from the complex non-linear fitness data. The latent space cap-

tures the information in the fitness dataset in a reduced dimension, from which the fitness val-

ues can be regenerated with minimal loss as an output of the generative part of the model

(decoder). Fig 1E shows the resulting latent space distribution of each mutant, colored accord-

ing to the predicted phenotypes. We note that VAE models with 2D and 3D latent spaces pro-

vided similar generative performances (S1 Fig), therefore, we showed 2D model in Fig 1E.

Although continuous phenotype predictions benefitted from supervision based on known

phenotypes, the VAE model was trained without such supervision. Nevertheless, there is clear

clustering of the mutants according to predicted phenotypes. The VAE model provides a regu-

larized latent space with a more gradual transition of the phenotypes compared to the relatively

more distinct locations of the different phenotypes in a 2D PCA analysis (S2 Fig). Moreover,

the gradual transition between different phenotype classes suggests that this type of classifica-

tion provides additional insights that are not captured by a discrete classification and that may

be more consistent with an evolutionary fitness landscape. Transitions between phenotypes

suggests that different phenotypes have similar fitness scores so that they are at the edge of

their presented phenotypes and can be interconverted between phenotypes by additional

mutations. Interestingly, transitions between nearby latent space projections are not just

between neighboring phenotypes (e.g. from lethal to LOF and from LOF to neutral and then

GOF) but also almost directly from GOF to lethal for some mutations (e.g. GOF mutants

L1101E, G1097D, M1079A, E1103K, K1093F, F1084I) (S3 Fig). L1101E is at close distance in

the latent space to LOF mutants A1087E and F1084Y and the lethal mutants G1088F and

L1081S. The other GOF mutants, G1097D, M1079A, E1103K, K1093F, F1084I, are also at the

boundary that they are close to LOF mutants F1084K, E1103P T1077D and the lethal mutant

H1085F (S3 Fig). Their close distances to the lethal mutants on the latent space suggest that

they have fitness values that are close to mutants causing serious defects on catalysis and, there-

fore, these GOF mutants are supposably most likely to be converted to lethality by additional

mutations. An earlier study [21] on double mutations showed that the two GOF mutants at

the boundary, which are G1097D and F1084I, turned to lethal upon an additional mutation,

E1103G, which has GOF phenotype by itself. Although, E1103G is not at the border with the

lethal mutants (S3 Fig), the additional effects of this mutation might have pushed the GOF

mutants to the other side of the boundary.
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Inferring phenotypes from TL sequence

To further understand the information about fitness encoded in the TL sequence, we trained a

supervised neural network (three layers with 128, 64, and 32 nodes and a flattening layer) to

predict function from sequence. The target data were the continuous phenotype values deter-

mined from the experimental fitness data as described above (S1 Spreadsheet). In total, ten

model replicates were generated for ten randomly generated training (100 mutants) and test

(35 mutants) sets to result in 100 models in total. We note that decreasing the size of the train-

ing set to 80 reduces the performance of the models (average R2 decreases from 0.52 to 0.44 for

the test sets) while increasing it to 120 slightly increases the performance (average R2 increases

from 0.52 to 0.54 for the test sets) but limits the number of mutants in the test sets. Then, we

took the models that provided the best R2 and slope combination for each test set. The predic-

tions from the best models for the ten sets were ensemble averaged to obtain the overall predic-

tions. These are provided in the S1 Spreadsheet. The training and test loss of the ten models is

shown in S4 Fig and the correlations for the training and test sets for each model are shown in

S5 and S6 Figs, respectively. Fig 2A shows the average prediction performance with good cor-

relation (R2 = 0.68). However, the slope of 0.60 and a more limited range in predicted values

compared to the actual phenotypes indicates that extreme outcomes (gain of function or

lethal) are not predicted as reliably as the overall trend. This is also evident in the difference

map for predictions shown in S7 Fig. The model also could not predict LOF phenotypes of spe-

cific substitutions in residues that otherwise have predominantly GOF mutants like in the case

of E1103P. Fig 2B shows sequence-based phenotype predictions of single mutations. The pre-

dictions largely agree with the phenotypes from the fitness values, but, again, with less varia-

tion in the predicted values towards the extremes. We also compared sequence-based model

with a simple model that predicts the phenotypes from the average phenotypes for each

mutant from the training sets used in the sequence models (see S8 Fig). Compared to the

sequence-based model we found a lower overall correlation (R2 = 0.59) but an improved slope

(0.71). However, for the sequence model, there were difficulties in predicting phenotypes that

have a large deviation from the average phenotype of each residue (see the outliers of M1079P,

I1104P, L1101R, T1080M in S7 Fig). Overall, the improved correlation obtained by the

Fig 2. Prediction of phenotype from TL sequence. (A) Phenotype predicted from sequence vs. phenotype obtained from fitness data along with a

linear regression curve. The predictions are the ensemble average values from models trained with 10 random training/test sets (B) Phenotypes

predicted from the sequence for all single mutations.

https://doi.org/10.1371/journal.pcbi.1010999.g002
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sequence model over the simple model suggests that the TL sequence is a powerful predictive

feature for inferring functional phenotypes of TL residue mutants.

We further tested the models trained on single mutants for the prediction of double

mutants. Predictions of double mutants is practically more important since not all combina-

tions of double mutants can be tested by experiments. Double mutants are interesting from a

functional point of view to understand to what degree mutations have additive effects. At the

same time, this analysis reveals limitations of a prediction model trained on single mutants for

predicting the phenotypes of double mutants. We ensemble averaged the predictions of ten

models as we did for the single mutants. Fig 3 shows the phenotypic landscapes of all individ-

ual TL substitutions combined with either E1103G (GOF), G1097D (GOF), F1084I (GOF) or

Q1078S (LOF). Generally, our model predicted additive effects of double mutants on pheno-

types in which similar phenotypes showed an increase effect while opposite phenotypes sup-

pressed each other. More specifically, the GOF mutants (E1103G, G1097D, F1084I) were

predicted to cause the suppression of LOF and lethal mutants across the entire set of additional

mutations. To quantify the additivity of the double mutants, we calculated completely additive

phenotypes by adding up single mutant phenotypes and showed that the predicted phenotypes

are highly correlated with the additive phenotypes with R2 of 1.0 and mean squared error of

0.29 (S9A Fig). S9B Fig showed that the predicted phenotypes are slightly higher than the addi-

tive ones. The agreement with additivity is higher for GOF-GOF mutants and tend to be corre-

lated with the spatial distances between the mutation sites that the closer mutation sites

Fig 3. Prediction of phenotypes from TL sequence for double mutants of E1103G (A), G1097D (B), F1084I (C) and Q1078S (D).

https://doi.org/10.1371/journal.pcbi.1010999.g003
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provided a better agreement with the additive phenotypes. (S9B Fig). The overall additive pre-

diction is consistent with previous studies for most of the cases [16,21]. For example, the com-

bination of E1103G, which has a GOF phenotype, with LOF mutants F1086S, H1085Q and

H1085Y resulted in enzyme activity between the two phenotypes, while combinations with

lethal mutants of Q1078A, N1082A and H1085A resulted in suppression of lethality [21]. The

predicted increased GOF phenotypes for GOF-GOF double mutants were in contrast to GOF

combinations E1103G-G1097D and E1103G-F1084I having been found to be lethal [21].

These combinations were hypothesized to be lethal due to extreme GOF phenotypes crossing a

threshold for viability where an overemphasized GOF phenotype may eventually disrupt the

activity of the enzyme, an outcome not included in the training of ML model based on single

mutations. Alternatively, a complete disruption of the hydrophobic pocket near the active site

may result in larger structural changes that disable any polymerase activity. The LOF mutant

of Q1078S also predicted additive effects by suppressing the GOF phenotypes and causing

lethal or more severe LOF phenotypes for LOF-LOF double mutants. We note that neutral

(WT) function may be restored for certain double mutations of M1079, K1092, K1093, G1097,

L1101, when added to Q1078S according to the predictions. It remains to be tested experimen-

tally whether such double mutants could in fact restore normal function.

Inferring phenotypes from MD simulations of mutants

MD simulations were performed on 135 mutants to determine if emergent properties of the

simulated mutants might provide better discrimination across mutant classes or between phe-

notypes, and, if so, what structural and dynamic properties might be hallmarks of specific phe-

notypical outcomes. Mutants were chosen based on the predictions from the previous studies

[21,32]. To generate features for ML training, we extracted intramolecular distance data from

the MD simulations (Fig 4). Specifically, we captured a subset of intramolecular distances

from the MD trajectories deemed to be relevant for Pol II function and potentially sensitive to

TL mutations: TL-TL residue pairs, TL-BH residue pairs and BH-BH residue pairs and TL res-

idue-GTP pairs that are at close distance in the WT structure; GTP Pα and terminal RNA

O3‘distance relevant for catalysis; base pair distance between GTP-H1 and the corresponding

DNA (18-DNA-N3) and the distance between sugar carbons of GTP-C1‘and 18-DNA-C1‘;

finally, the distance between Mg2+ and Pα of GTP. In total, 62 distances were calculated, and

the distance lists and average distances are provided in the S2 Spreadsheet. We selected dis-

tances close to the TL since it has the mutation sites and distances close to the active site that

are likely to be relevant to catalysis.

Fig 4A and 4B show the schematic representation of the distances and Fig 4C shows the

free energy map for the phenotype vs. average distances for each mutant studied via simula-

tion. Most of the distances stay between 2–12 Å, while as the phenotypes range from GOF

(1.0) to lethal (-2), some distances become longer. However, the affected distances differ

between mutants. The lethal mutants (phenotype < -1.5) mostly affect the GTP-TL distances

since the heatmap shows minimum energies at large GTP-TL distances for the lethal mutants

(S10 Fig). On the other hand, some of the LOF mutants seem to affect the TL-GTP, TL-TL and

BH-TL pairs as they span larger distances at minimum energies. (S10 Fig). Overall, this sug-

gests that lethal and LOF mutants cause increase in distances either of GTP or TL-BH residues

that directly or indirectly impact the catalysis.

ML models (three layers with 128, 64 and 32 nodes) for predicting phenotypes were then

trained using the MD data with and without sequence data (Figs 5 and S4–S6). ML models

using only the MD-derived distances were clearly not as predictive as the models based on just

amino acid sequence, even when a more complex model with an attention layer (two layers
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with 128, 64 nodes and an attention layer) was considered (Fig 5). We note that the R2 values

in Figs 2 and 5 are different since Fig 2 shows the correlations of the average predictions over

the sets for all the mutants while Fig 5 shows the averaged R2 over the sets for the mutants in

the test sets. We also attempted to combine MD and sequence data and found that the MD

data could not improve the predictions over using just the sequence information by itself. We

interpret this finding to suggest that the MD data may be too noisy and sampling may be

incomplete to reliably discern differences between specific mutations. We note that we used a

different set of features which is backbone dihedral angles of TL residues and higher number

of features by combining distances and dihedral angles and in both cases, we did not obtain

any improvement in the predictions (S11 Fig). In addition to that, we did not observe any par-

ticular impact of five set of distances into the predictions as removing them did not decrease

the correlations significantly (S11 Fig). On the other hand, knowledge about different amino

acids implicitly contains information about amino acid sizes and physical characteristics such

as charge and hydrophobicity. Taken together, this may be sufficient to characterize the effects

of mutations with respect to phenotypic outcomes.

VAE models of MD data provide structural classification of mutants

Finally, we developed a VAE model (three layers with 128, 64, and 32 nodes and an attention

layer after 32 nodes in both encoder and decoder) based on the MD distance data to identify

Fig 4. Distance analysis of the MD trajectories. (A) Schematic illustration of the pairs of BH-BH, TL-TL, TL-GTP and GTP with Mg2+, terminal RNA and

base-pair DNA and (B) BH-TL with the color codes given in the figure, the black lines are used to show the adjacent amino acids (C) heatmap plot of

phenotypes vs average distances for the mutants from MD simulations. Distances are provided in the S2 Spreadsheet.

https://doi.org/10.1371/journal.pcbi.1010999.g004
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structural principles underlying different phenotypical outcomes since the sequence-based ML

predictor developed above does not provide such insight. MD simulations of the mutant

library with 135 mutants generates a large amount of data that make it challenging to reach

generalized conclusions for the structural effects of certain phenotypes. In order to reduce this

high-dimensional data, i.e. the intra-molecular distance network, into a low-dimensional

space we used a VAE model. VAEs are generative models that learn optimal collective variables

in the latent space representation, from which higher-dimensional data can be reconstructed

with minimal loss via the non-linear decoder block of the VAE model. The projection onto the

latent space was then further analyzed via clustering (using Kmeans). Applying the decoder to

cluster centers and interpolations between them in latent space then provides information

about the key structural determinants that giving rise to different phenotypes. The VAE model

was applied as described previously [49], but we also added an attention layer both on the

encoder and decoder sides to better account for the variations of effects of mutations on dis-

tances as different mutants affects different parts of the enzyme. The resulting latent space

mapping is shown in Fig 6A. Mutants in latent space were further grouped into three clusters

using a Kmeans clustering algorithm. Although prediction models from MD could not predict

phenotypes well, the VAE models did result, to some extent, in a phenotypical separation of

mutants as average phenotypes between the clusters I, II and III differed with average pheno-

types of -0.49, -0.75 and -0.83, respectively (see S2 Table). Cluster I has a mixture of pheno-

types with GOF and LOF mutants as the majority, and cluster II and III contains a majority of

lethal and LOF and a minority of GOF mutants.

We proceeded to identify cluster centers in latent space and then applied the generative

decoder model to the cluster centers to obtain representative distance information for each

cluster. Cluster centers are expected to be meaningful and representative points because of the

Fig 5. Performance of phenotype predictions from sequence and MD data based on linear regression R2 correlation coefficients,

slope and intercept of linear regression curves, and mean squared errors (MSE) between given and predicted phenotypes. Every

metric was calculated as the average over 10 sets.

https://doi.org/10.1371/journal.pcbi.1010999.g005
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Fig 6. VAE analysis of MD distance data. (A) Latent space from VAE model based on MD distance data shaded

according to clusters (I is white, II is gray, III is dark gray) and with each point colored to the mutant phenotype. The

axes z[0] and z[1] are the first and second dimensions of the 2D latent space generated by projecting the MD data using

the VAE model. (B) Distance difference graph; Δdistance shows the differences of the distances from the generative

model of VAE at the cluster centers from the WT structure after the equilibration. Panels (C), (D) and (E) show the active

site neighborhoods for representative mutants for each cluster in final MD snapshots with the TL (red), BH (yellow),

DNA (violet), RNA (magenta) and GTP. Atoms are colored by atom name for residues shown in licorice representation.

Panels (F), (G) and (H) show the residues forming hydrophobic pocket for the WT after equilibration and GOF mutants

at their final MD snapshots. Color codes are the same as described above except that the TL is shown with residues

colored by residue type where positively charged amino acids are in blue, negatively charged ones are in red, polar ones

are in green, and hydrophobic ones are in white.

https://doi.org/10.1371/journal.pcbi.1010999.g006
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regularization term applied to latent space distribution, which prevents overfitting and helps

to obtain meaningful outputs outside the real points. We note that the real points closest to the

cluster centers, which are 1076N (phenotype is 1.02), 1080W (phenotype is -2.14) and 1081N

(phenotype is -1.85) for the clusters I, II and III, respectively, provided an almost identical dis-

tance profiles with the cluster centers suggesting that the latent space is well-regularized. Fig

6B shows the difference map between WT and the resulting distances of each cluster based on

the latent space center coordinates. Fig 6B shows that the distances for cluster I, which is domi-

nated by WT-like and GOF mutants, are generally lower than for the other two clusters with

more lethal and LOF phenotypes. The finding of longer intra-molecular distances for key resi-

dues around the TL for LOF/lethal mutants (Fig 6B) is similar as to what is shown above from

the direct analysis of MD data (Fig 4C). However, more detailed insights can be extracted

from the VAE-based analysis (Fig 6B): Cluster II features larger distances between TL residues

and GTP compared to the other clusters, especially for H1085 and L1081 suggesting that the

underlying mutants (T1077N, R; T1080W; F1084D, N; F1086S; G1088E; S1091W; N1106F; all

the distances provided in S2 Spreadsheet) act by directly distorting the active site and thereby

hindering catalysis. Cluster III also features larger distances between TL and GTP for some

mutants (Q1078C, K, S, W; L1081A; H1085L, Q, S, W; A1087Y, V1089G, P1099D; S2 Spread-

sheet). However, cluster III mostly features increased distances for BH-TL pairs (Fig 6B), espe-

cially for the distances of the residues K830 and D826 with V1094 that are known to be in

close distance in the closed TL [4]. This suggests a more indirect mechanism for affecting the

mostly negative phenotypes in this cluster that involves disrupting the BH-TL interactions.

The BH-TL interactions have been suggested to be functionally important previously [7,32]. In

cluster III, most of the substitutions causing large K830-V1094 distances are at close distance

to BH, while there are also mutants that are away from BH and results in large distances

between K830 and V1094 (S12 Fig). Some of the TL-TL distances for the residues that are

close to V1094 are also increased for the cluster III like the distances of T1083-K1093,

N1082-K1093, T1080-V1094 (Fig 6B). This suggests, furthermore, a particularly important

role of V1094 for the transcription mechanism. Individual members of each clusters show a

similar trend with the cluster centers (S13 Fig); the members of cluster II, including the

mutants distant to the GTP that are N1106F, S1091W and G1088E, show larger distances for

GTP and trigger loop residues while the members of cluster III (F1086R, Q1078K, L1081Y,

A1087K and T1080K given in S13 Fig) have higher TL-BH distances for mutants both close to

BH (L1081Y, A1087K and T1080K) or away from BH (F1086R and Q1078K).

To further illustrate structural details, we selected three representative mutants for each

cluster based on the following key distances: 1085-GTP, 1081-GTP, 830–1094. Accordingly,

we selected the G1088E, F1086R and G1097S with predicted numerical phenotypes of -1.75,

-0.92 and 0.33 based on fitness data, for clusters II, III, and I, respectively. G1088E would be

considered a lethal mutant (phenotype� -1.5). As a result of the mutation, there are large dis-

tances between GTP and 1085 (Fig 6C) which are expected to inhibit enzyme function.

F1086R is a LOF mutant where distances between GTP and residues 1085 and 1081 remain

relatively close, but the distances between BH and TL increase as seen for the pair of 1094 and

830 (Fig 6D). As a result, catalysis is still likely possible but less efficient. Finally, G1097S exhib-

its a near-WT phenotype as it has 0.33 predicted numerical phenotype, which can be classified

as weak GOF-near WT. In this mutant, all residues surrounding the active site are close, result-

ing in the tighter active site geometry (Fig 6E) that is necessary for WT-like enzyme

performance.

GOF mutants are scattered mostly between clusters I and III suggesting that there may also

be different mechanisms for this phenotype. The main difference is that the GOF members of

cluster III demonstrated relatively larger distances for BH-TL residues compared with GOF
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mutants in cluster I (S14 Fig). We selected two mutants, M1079N and E1103G in the clusters

III and I, respectively, as representative examples. Their final snapshots are shown in Fig 6F–

6H with a focus on the hydrophobic pocket formed by the TL residues A1076, M1079, T1080,

G1097 and L1101. Both M1079N and E1103G lead to disruptions of the hydrophobic

pocket although the mechanism may be slightly different. M1079 points directly to the hydro-

phobic pocket with close distances to V1355, I1356 and L1101 in the WT equilibrated struc-

ture. Mutation of M1079N directly disrupts the hydrophobic interactions. The last snapshot of

the E1103G simulation also shows a disrupted hydrophobic pocket with the M1079 pointing

away, but because 1103 is positioned further away, the effect must be more indirect by modu-

lating TL-BH interactions. These results support the hypothesis that the primary mechanism

for GOF phenotypes is via the direct or indirect disruption of the hydrophobic pocket formed

by TL residues near the BH as suggested by previous studies [30,32]. To quantitatively analyze

the hydrophobic pocket, we calculated the number of contacts between the residues (I837,

L841, A1076, M1079, G1097, L1101, V1352, V1355, I1356) that form the hydrophobic pocket

and the surface area within these residues (S15 Fig). The distributions of number of contacts

and surface area were not significantly different among the phenotypes; therefore, it is difficult

to reach a generalized conclusion. However, a subset of GOF mutants (L1101E, G1097H,

T1080L, L1101H and G1097D) tend to have larger surface area while a subset of LOF and

lethal mutants (L1081A, Q1078S, P1099N, V1098R and N1106F) tend to have smaller surface

area that may suggest disruption of hydrophobic pocket was observed more in some of the

GOF mutants than LOF and lethal mutants.

Discussion

In this study, we applied ML approaches to interpret genetic fitness values, sequence informa-

tion, and MD simulation data to predict and characterize TL mutants of yeast RNA Pol II. Fit-

ness values from different conditions were used to generate a quantitative score for TL

mutants on a phenotypic continuum from GOF to LOF and lethal. Then, we asked if machine

learning approaches using protein sequence and MD simulation could predict these pheno-

types when trained on a subset of mutants. The amino acid sequence of proteins is widely used

with machine learning approaches to predict various information about structure

[50,51,52,53,54] and function [55,56,57] to mutational phenotypes [35,37,40,42]. These studies

suggest that sequences contain the key information about the structure and function of the

proteins, which can be learned. In this study, we used the sequence of TL residues as an input

and obtained predictive models of the mutant phenotypes that provide higher correlations

than a simple model from average phenotypes for each residue. It may be possible to improve

these models further by incorporating additional data on basic physical properties of mutation

sites like molecular weight and volume, hydrophobicity, surface area, solvation energy, electro-

static interactions, position specific scoring matrix (PSSM), etc. as applied in some of earlier

studies [35,37,58]. Similar approaches could be used for RNA polymerase or other systems to

understand function and phenotypes, especially for disease-related mutants. We also tested the

sequence-based models trained on single mutants for the prediction of double mutant pheno-

types. The model predicts the addition of similar type phenotypes and suppression of opposite

type phenotypes and it predicted lethal phenotypes for some LOF-LOF double mutants like

H1085Q-Q1078S, but was unable to predict lethal phenotypes from the combination of GOF-

GOF mutants observed previously [21]. Prediction could easily be improved by training with

double mutants allowing the model to learn different double mutant effects.

Recent studies showed that the combination of MD simulations with ML algorithms could

provide insight on dynamics, conformations, and kinetics of proteins [59,60,61,62,63]. With
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the motivation from these studies, we used the distance data from MD simulations to investi-

gate their predictive performance. There are computational limitations of working with a large

protein like RNA Pol II. Thus, instead of running long simulations, we performed multiple,

relatively short simulations to obtain insight about the structural effects of mutations. Surpris-

ingly, we found that structural data obtained from these MD trajectories could not add predic-

tive abilities with respect to the functional phenotypes for specific mutations when used within

a ML framework. In light of this finding, several potential advances can be imagined. First, lon-

ger, perhaps on μs scales, or higher-quality simulations with different force fields might allow

greater inference on mutant mechanisms. Second, obtaining additional data from simulations

using a starting structure with an open TL in addition to the closed TL structure and simulat-

ing the transition from open to closed states of TL may be needed to provide more detailed

structural, physics-based input in addition to what is already encoded in differences in amino

acid sequences when predicting enzyme function. Simulation of the transition from open to

closed TL are computationally expensive especially for a large mutant library, while such simu-

lations may provide a deeper understanding of the functions of mutants and will be a future

direction of this study. Our previously published study on open and closed TL exhibited that

the distances for TL and BH residues are dynamically changing along the transition from open

to closed state [12]. Some of the TL-TL and TL-BH distances are larger in the open TL com-

pared to the closed TL, while the others showed smaller distances for the open TL or the transi-

tion states [12]. Additional analysis on open and closed state simulations based on our

published study [17] showed that most of the distances we used in the machine learning analy-

sis, especially for TL-GTP and TL-BH pairs, were larger for the open TL (S16 Fig) indicating

that those distances are relevant to the closed TL. Notably, the distances that are larger in the

open TL also appeared to be increased for the lethal and LOF mutants (Fig 6B) suggesting that

lethal and LOF mutants were destabilizing the closed TL. The previous studies also showed

that some of the TL residues had overall large distances for the closed TL compared to open

TL. We speculate that such TL residues, like E1103 or 1093, may have impacts on the open TL

state and the phenotypes of the mutations of these residues may have structural outcomes for

the open TL simulations rather than the closed TL. Therefore, the mutant simulations of such

residues on the closed TL state may not provide a relevant information about their function

and this might be partly responsible for the noisy results of the ML models.

Despite the limitation in the MD data, VAE models developed based on MD still could pro-

vide mechanistic insights into the potential structural basis of lethal, LOF, and GOF mutants.

Based on this analysis, it appears that a subset of lethal/LOF phenotypes (cluster II in Fig 6A

and 6B) correlates with mutations that directly increase the distances between key TL residues

and the GTP in the active site, thereby inhibiting catalysis. Another subset of lethal/LOF phe-

notypes (cluster III in Fig 6A and 6B) for the examined mutants appears to be related more to

disruptions in the TL-BH interactions. In contrast, some of the GOF phenotypes appear to

result from a disruption of a hydrophobic pocket near the TL (Figs 6F–6H and S15). With a

compromised hydrophobic pocket, closing of the TL may be favored, accelerating enzyme

kinetics presumably at the expense of reduced fidelity. We expect that mutations on residues

outside the TL and in close distance to the hydrophobic pocket like V1352, V1355, I1356,

which were not tested in any earlier studies, may manifest GOF phenotypes and provide addi-

tional insight of the function of this hydrophobic pocket in achieving GOF phenotypes. Addi-

tionally, we observed increased BH-TL distances (Cluster III in S14 Fig) in a subset of GOF

mutants. These general findings are consistent with previous studies but go further because of

a more comprehensive analysis that is based on a systematic analysis of a larger number of TL

mutations. Still, more work is left to be done to understand specific mutations and specific

roles of individual residues. One avenue for further studies may be via the exploration of
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double mutants that may restore non-WT phenotypes to WT function based on the predic-

tions made above.

Conclusion

In this study, we report a comprehensive characterization of the mutations of RNA Pol II TL

residues using ML techniques on high throughput genetic fitness data, sequence data and MD

simulations of TL residue mutations. Our study suggests that fitness data and sequence infor-

mation are correlated such that the phenotype that was predicted from fitness values can be

learned by sequence information and the predictions from sequence go beyond the simple pre-

diction model from average phenotypes. Such a prediction was not possible with our MD data

due to computational limitations. Nevertheless, MD data could provide some mechanistic

understanding on different phenotypes. Longer simulations may be necessary to obtain a pre-

dictive model that would be comparable with the sequence-based model. However, μs scale

simulations of large TL mutation libraries of RNA Pol II still remain a major computational

challenge. As an alternative to that, artificial intelligence methods that predict structural details

from sequence of mutants could be developed and applied to RNA Pol II systems as a future

direction.

Methods

Prediction of continuous phenotypes from fitness data

The Pol II TL fitness and phenotypic landscape approach of Qiu et al. [32] based on a deep

mutational scanning approach was applied here to a second-generation TL mutant library [64].

Briefly, a library of mutants is grown under different experimental conditions. These conditions

detect growth changes of mutants relative to WT (phenotypes) that are predictive of Pol II bio-

chemical defects [32]. Phenotypes are expressed as “fitness” scores that represent the log2 allele

frequency changes of individual mutants within the library pool over time for the series of

experimental stress conditions relative to a control growth condition relative to allele frequency

changes of a WT allele. Allele frequencies are determined by deep sequencing of variant pools

after growth relative to starting or control conditions. Sequencing allows quantitative determi-

nation of each allele’s frequency in the library. A mutant that grows worse than WT for a partic-

ular stress condition relative to control will have a negative fitness score whereas a mutant that

grows better than WT for a particular stress condition will have a positive fitness score.

The construction of the TL mutant library was followed by en masse phenotyping assays

monitored by deep sequencing. This work will be described in detail elsewhere but key updates

to the original approach are as follows. A second-generation TL mutant library was synthe-

sized using programmed oligo synthesis (Agilent). Library oligos were amplified from synthe-

sized pools and homology arms of WT sequence were added using overlap PCR. These

fragments comprising ~200 nt of flanking RPB1 sequence on each side and a central 93-nt

region encoding the WT Pol II TL (Rpb1 amino acids 1076–1106) or individual TL variants

were introduced into yeast along with RPB1 plasmid lacking TL sequence and linearized at the

TL position in three replicates. This cotransformation allows construction of a pool of variant

plasmids by gap repair, exactly as performed previously by Qiu et al. Transformants were

plated at high density (~10,000 per plate) instead of 300–400 as done previously. 5-FOA-resis-

tant colonies were scraped from SC-Leu+5FOA plate and replated on SC-Leu, SC-Leu

+ 20mg/ml MPA (Fisher Scientific), SC-Leu + 15 mM Mn (Sigma), YPRaff, YPRaffGal,

SC-Lys, and SC-Leu + 3% Formamide (JT Baker) plates for phenotyping. Cells were scraped

from each phenotyping plate after defined growth periods and genomic DNA was extracted

from each screening plate with Yeastar Genomic DNA kit (Zymo) and amplified using
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emulsion PCR (EURx Micellula DNA Emulsion & Purification (ePCR) PCR kit) according to

manufacturer’s instructions. A dual indexing strategy where custom indexing primers were

paired with primers using 28 NEB indices was utilized in the amplification to discriminate

between various screening plates. Amplified libraries were sequenced with Illumina Next-seq

for 150nt single-end reads.

Experimental fitness data for yeast Pol II TL variants from a total of 21 conditions with

three replicates each were used for deriving a predictive phenotype model. Missing fitness val-

ues were imputed using mean values of a given feature. The model was based on continuous

real-valued phenotypes, where previously classified GOF, LOF, and lethal outcomes map to

values of +1.0, -1.0, and -2.0 and where the WT maps to 0.0. A neural network consisting of

three fully-connected layers with 256, 128 and 64 nodes (S17A Fig) was trained against known

phenotypes from previous studies [3,21,32] for 83 mutants. Mutations that did not lead to

clear GOF, LOF, or lethal outcomes were treated as WT with a continuous phenotype value of

0.0. The mean squared error (MSE) was used as the loss function. After training based on the

classified mutations, phenotypes were predicted from the experimental fitness data for all of

the TL mutants.

The fitness data was used further in a variational autoencoder model to map the phenotypes

into a reduced dimensional space. Both encoder and decoder models have three layers with

256, 128 and 64 nodes (S17B Fig). The loss function of MSE between input features and gener-

ated output values was used. For the regularization of the latent space, the Kullback-Leibler

(KL) divergence between latent space distribution and the standard normal distribution was

applied as defined by Kingma and Welling [49]. The performance of the generative models

with 2D and 3D latent spaces is similar (S1 Fig). All the fitness data, the predicted phenotypes,

and the latent space coordinates are summarized in the S1 Spreadsheet.

MD simulations

The WT RNA Pol II structure used as a starting point was deposited to Protein Data Bank

with PDB ID:2E2H [4]. Missing residues were modeled for the loops that have less than eight

amino acids using MODELLER version 9.15 [65]. The histidine at 1085 of Rbp1 was proton-

ated based on the study by Huang et al [18]. The system was solvated in a cubic box with a 10

Å cutoff distance between the box edges and any atom of the RNA-Pol II complex resulting in

a total box size of 162 Å. The system was then neutralized with Na+ ions. Periodic boundary

conditions were applied along with the particle-mesh Ewald Algorithm for the calculation of

long-range electrostatic interactions. Lennard-Jones interactions were switched from 10 to 12

Å. The SHAKE algorithm was used to constrain bond lengths involving hydrogen atoms. The

CHARMM 36m force field [66] was used for proteins and the CHARMM 36 force field [67]

was used for nucleic acids. The TIP3P model [68] was used for explicit water molecules and a

recently suggested NBFIX for Na+ phosphate interactions was applied [69]. The force fields

were modified to redistribute the atomic masses of atoms that are attached to hydrogen atoms,

so that hydrogen atoms had an increased mass of 3 a.m.u instead of 1 [70]. This modification

allowed us to perform the simulations using a 4 fs time step.

The WT system was subjected to 5,000 steps of energy minimization. The system was then

equilibrated for around 1.6 ns by gradually increasing the temperature from 100 K to 300 K

and using restraints on the heavy atoms of backbone and sidechains with force constants of

400 and 40 kJ/mol/nm2, respectively. The equilibrated Pol II complex was used to prepare the

single site TL mutants. In total, 135 mutants were prepared (see S2 Spreadsheet). Each mutant

system was minimized again using the same minimization scheme as for the WT and equili-

brated for an additional 1 ns. Production simulations were then performed using Langevin
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dynamics with a friction coefficient of 0.01 ps-1 under the constant temperature of 298 K. Sim-

ulations were run using OPENMM [71] on GPU hardware. 100 ns production runs were per-

formed for three replicates for each mutant and the last 50 ns of the production runs was used

for the analysis. In total, 40.5 μs of mutant simulations were generated.

The analysis of the MD simulations was done using the MMTSB package [72] in combina-

tion with in-house scripts. The minimum distances between the residues were analyzed and

the average distances were calculated from the combined distribution of distances from the

three replicate simulations. The distances for the hydrophobic pocket were calculated as mini-

mum pairwise distances between the residues I837, L841, A1076, M10079, G1097, L1101,

V1352, V1355, I1356. Two residues were considered to be in contact if they were within a dis-

tance of 6 Å. All the distances and numbers of contacts are provided in Supplementary Sheet

2. Solvent accessible surface area for the hydrophobic pocket was calculated using MMTSB

package with probe radius of 1.4 Å. The RMSD was calculated for the TL and BH regions for

all the mutants and is shown in S18 and S19 Figs, respectively.

Phenotype prediction models using sequence and MD data

For models predicting phenotypes based on the TL amino acid sequence, sequence data was

converted into one-hot encoding sparse matrices, where each feature was a 21-size vector that

represents a single amino acid along the sequence. Histidine was coded as either protonated or

deprotonated to allow the model to distinguish protonated histidine at residue 1085. The one-

hot-encoded sequence-based features, a two-dimensional matrix (31x21), were used as input

for a neural network with three fully connected layers with 128, 64, and 32 nodes in two

dimensional matrices (31x128, 31x64, 31x32), respectively. The 32-node third layer was flat-

tened two a one-dimensional vector with a size of 992 and passed through another layer with

32 nodes before the single-valued output layer (S17A Fig).

For models trained to predict phenotypes based on MD data, pairwise distances between

key residues involving the TL and neighboring elements were extracted from the simulation

trajectories and averaged. A list of distances used in the models is provided in the S2 Spread-

sheet. A neural network with three fully connected layers with 128, 64 and 32 nodes was used

as for the sequence-based predictors. To emphasize the effect of mutations at the different

parts of the structure, we also tested another model that has 128 and 64-nodes layers that were

connected to the output layer via an attention layer [73] (S17A Fig). Attention is a more com-

plex machine learning model that can learn to focus on the most informative part of the data

and fade out other parts that are less important as a function of the input data. The attention

layer was generated for the last hidden layer with 64 nodes, which was used as query, key, and

value vectors for the self-attention framework. The new values were calculated by the multipli-

cation of the values and the weighted sum of the similarities between the query and key

vectors.

The mutants examined via MD simulations were used for both sequence and MD predic-

tion models to compare the performances of the neural network models. The mutants were

split into ten training and test sets with randomly chosen 100 and 35 mutants, respectively. A

1:1 combination of loss functions of mean squared error (MSE) and KL divergence was applied

to the prediction models with sequence and MD data. The KL divergence was calculated ana-

lytically as follows:

KL ¼
1

2

sTrue

sPred

� �2

þ
ðmTrue � mPredÞ

2

sPred
2

� �

� 1þ log
sPred

2

sTrue
2

� � !

ð1Þ
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The model weights and biases were saved every 500 epochs and training continued until a

maximum of 20,000 epochs. For each set, ten different models were generated, and the best

model was chosen from the saved models at intervals that provides the best combination of R2

correlations and slope for the regression line between predictions and label phenotypes for the

test set. The overall performance of the models was calculated by the average performance of

the best models of the sets for the comparison of different models from either sequence or MD

data. A complete phenotypical landscape was generated using the sequence-based models

based on the ensemble average of the predictions from the best models of the sets.

The models based on MD data and sequence were also combined to see if there was any

improvement in the predictions when using both data as input features. The data was com-

bined in two different ways: First, we took the pre-trained sequence model and added the MD-

based model to be trained to add additional input to the last layer of the sequence model before

generating the output. Second, we used a pre-trained MD model and added the sequence

model and concatenated the last layers of the two models to generate the final output. In each

case, we froze the pre-trained weights to test whether the additional input features can improve

the predictions.

Variational auto-encoder models based on the MD data

Variational auto-encoder models were generated based on the MD data in order to extract

mechanistic insights from the simulations. Both, the encoder and decoder networks, consisted

of three fully-connected layers with 128, 64, and 32 nodes. We applied an asymmetrical VAE

model at which the attention layers were applied after the layers with 32 nodes for both, the

encoder and decoder (S17B Fig). Attention layers help the model to better group similar phe-

notypes together compared to the models without attention (S20 Fig). We experimented with

2D and 3D latent spaces. The performance of the generative model with a 3D latent space was

similar to the model with the 2D latent space (S21 Fig). Therefore, we performed further analy-

sis of the model with the 2D latent space. The resulting reduced dimensional latent space was

then clustered via a Kmeans clustering algorithm as it provided a better visual separation than

other clustering algorithms (S22 Fig). Three clusters provided the best separation of average

phenotypes between the clusters (S23 Fig). Thus, we separated the latent space into three clus-

ters. The cluster centroids were used subsequently to generate representative molecular states

for each cluster via the decoder network.

Machine learning details and software

All ML models were generated with the Tensorflow package [74]. The models are summarized

as diagrams in S17 Fig. The Python scripts to train the models and to predict from the trained

models along with the weight of the trained models and the input files for the models are avail-

able at https://github.com/bercemd/PolII-mutants. Data imputation, Kmeans clustering and

principal component analysis (PCA) were performed with the Sklearn module in Python [75].

The Adam optimizer was used for all models. The learning rate and number of epochs were

varied according to the model that are summarized in S1 Table. Different learning rates were

applied to prevent unstable training but achieve convergence to a minimum loss within rea-

sonable training times (S24–S26 Figs). A batch size of 4 was used for all models except for the

prediction models with the KL divergence loss in which a batch size of 100 is used to calculate

the loss for the complete training set. The rectified linear unit (ReLU) activation function was

used for each hidden layer for both prediction and VAE models except for the attention layer,

where the Softmax activation function was used.
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Supporting information

S1 Fig. The distribution of mutants on the latent spaces (top) and generative performances

(bottom) of the VAE models with 3D (left) and 2D (right) latent spaces using fitness data as

the input.

(TIF)

S2 Fig. Principal component analysis (PCA) on the fitness data with each data point col-

ored according to its corresponding phenotype.

(TIF)

S3 Fig. Latent space of the unsupervised VAE model based on the fitness data. Each data

point is colored according to its corresponding phenotype with transparency except the

selected mutants that are colored without transparency for clarity. GOF mutants and LOF/

lethal mutants at the boundary are shown. The position of E1103G in the latent space is also

shown since its double mutants with the GOF mutants at the boundary cause lethality.

(TIF)

S4 Fig. Training and test loss during the training of the models. The models are trained

with the input features from sequence data (Sequence), MD data without an attention layer

(MD wo attention), MD data with an attention layer (MD w attention), MD and sequence

data with pre-trained sequence weights (MD pre-trained sequence) and pre-trained MD

weights (Sequence pre-trained MD).

(TIF)

S5 Fig. Correlations between predictions and label phenotypes for the training sets of dif-

ferent models. The model details are as in S2 Fig.

(TIF)

S6 Fig. Correlations between predictions and label phenotypes for the test sets of different

models. The model details are as in S2 Fig.

(TIF)

S7 Fig. The difference map for the phenotypes predicted from sequence and fitness. Y-axis

shows the absolute value of the differences of phenotypes from the fitness and sequence data

and X-axis shows the phenotypes from the fitness data. The outliers with difference larger than

1.25 are shown.

(TIF)

S8 Fig. Prediction of phenotypes from the average phenotypes for each mutant for the

training sets. (A) the phenotypes predicted from the average values vs phenotypes from the

fitness and the linear regression line (B) the average phenotypes from the training sets shown

in the complete mutation map.

(TIF)

S9 Fig. Analysis of phenotype predictions of double mutants using sequence-based ML

models. (A) Predicted phenotypes (Ppredicted) vs. additive phenotypes (Padditive) that were calcu-

lated as the sum of the predicted phenotypes of single mutants, (B) the change of difference

between Ppredicted and Padditive with respect to the spatial distance between the mutation sites.

Each point is colored with the single phenotype before the second mutation site (E1103G,

G1097D, F1084I or Q1078S) was introduced.

(TIF)
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S10 Fig. Heatmap plots of phenotypes vs average distances for the five groups of distances that are

the distances between 1) GTP and MG/RNA/DNA, 2) GTP and TL residues, 3) BH and BH resi-

dues, 4) BH and TL residues, and 5) TL and TL residues for the mutants from MD simulations.

(TIF)

S11 Fig. Performance of phenotype predictions from MD data based on linear regression

R2 correlation coefficients. Eight model was generated using different inputs from MD data

that are the five set of distances near the active site (see Fig 4), TL backbone dihedral angles,

combination of distances and dihedral angles and distances by excluding one set of distance

values at each model.

(TIF)

S12 Fig. The average distances between K830 and V1094 in mutant simulations vs. the

minimum distance of the mutated amino acid site to the BH in the WT structure. Each

panel shows the plot for the members of each cluster found in the MD-VAE latent space. The

dashed lines show the distance of K830 and V1094 in the WT structure.

(TIF)

S13 Fig. Distribution of distances between L1081 and GTP, H1085 and GTP, and K830

and V1094 for the selected members of the clusters from the VAE latent space. The

mutants are given in the legends with their continuum phenotypes in the parentheses.

(TIF)

S14 Fig. Distribution of distances between D826 and V1094, K830 and V1094, and G819

and G1088 for the selected GOF mutants of the clusters from the VAE latent space. The

mutants are given in the legends with their continuum phenotypes in the parentheses.

(TIF)

S15 Fig. Analysis of the hydrophobic pocket formed by the residues I837, L841, A1076,

M1079, G1097, L1101, V1352, V1355, I1356. (A) Number of contacts vs. phenotypes at the

hydrophobic pocket. (B) Surface area vs. phenotypes within the hydrophobic pocket.

(TIF)

S16 Fig. Distances from the open and closed TL simulations of WT Pol II. Distances were

calculated by analyzing the simulations published in an earlier study.

(TIF)

S17 Fig. The diagram of the neural network models. (A) The models for the prediction of

continuous phenotypes have alternating layers depending on the input: For the models with

fitness score as the input, three dense layers were used. For the models with the MD data as the

input, three dense layers or two dense layers and one attention layer were used. For the models

with amino acid sequence as the input, two-dimensional matrix at the third dense layer was

flattened out and passed through another dense layer. (B) VAE model was applied to the fit-

ness scores as three dense layers on the encoder and decoder models. It was applied to the MD

data with additional attention layers on the encoder and decoder.

(TIF)

S18 Fig. RMSD values of TL residues for 135 mutants. RMSD values from three replicate

simulations were represented with different colors. There are not large changes in RMSD for

TL suggesting that TL is retaining its overall conformation for the mutants within the simula-

tion time scale.

(TIF)
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S19 Fig. RMSD values of BH residues for 135 mutants. RMSD values from three replicate

simulations were represented with different colors. There are not large changes in RMSD for

BH suggesting that BH is retaining its overall conformation for the mutants within the simula-

tion time scale.

(TIF)

S20 Fig. The distribution of mutants on the latent spaces generated by VAE with and with-

out attention layer using MD data as the input.

(TIF)

S21 Fig. The distribution of mutants on the latent spaces (top) and generative performances

(bottom) of the VAE models with 3D (left) and 2D (right) latent spaces using MD data as the

input.

(TIF)

S22 Fig. The clustering of the VAE latent space of the MD data using different clustering

algorithms. Each cluster is shown in colors from white to different shades of grey; mutants are

scattered, and color coded with corresponding phenotypes.

(TIF)

S23 Fig. The clustering of the VAE latent space of the MD data using Kmeans clustering

algorithm with three, four and five clusters. Each cluster is shown in colors from white to

different shades of grey; mutants are scattered, and color coded with corresponding pheno-

types; at each cluster the average phenotypes of the mutants are shown.

(TIF)

S24 Fig. Three replicates of VAE models using the fitness data as features at different

learning rates. Models with 10−6 learning rate were not converged. Models with 10−3 learning

rate tend to be stuck in a local minimum loss. The models with 10−4 and 10−5 learning rates

provided similar latent spaces without any convergence problem, therefore a learning rate of

10−4 was used for fitness-based models.

(TIF)

S25 Fig. Three replicates of VAE models using the MD data as features at different learn-

ing rates. The same trend with the S20 Fig is observed. Learning rate of 10−4 provided the

most visual separation of phenotypes, therefore it was used for the MD data models.

(TIF)

S26 Fig. Three replicates of prediction models using the sequence data as features at differ-

ent learning rates. Learning rate of 10−5 provided the minimum losses for the test sets, there-

fore it was used for the sequence models.

(TIF)

S1 Table. Summary of deep learning models.

(DOCX)

S2 Table. Statistical analysis of the clusters obtained from VAE model using MD data. T-

test was performed by assuming the two populations have different variance. Clusters I, II and

III corresponds to the clusters shown in Fig 6A.

(DOCX)

S1 Spreadsheet. The fitness scores, the predicted phenotypes, and the latent space coordi-

nates.

(XLSX)
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S2 Spreadsheet. The distance analysis results, and the latent space coordinates from the

distance input features from MD simulations.

(XLSX)
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