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Abstract
Non-intrusive presence detection of individuals in commercial

buildings is much easier to implement than intrusive methods such
as passive infrared, acoustic sensors, and camera. Individual power
consumption, while providing useful feedback and motivation for
energy saving, can be used as a valuable source for presence de-
tection. We conduct pilot experiments in an office setting to collect
individual presence data by ultrasonic sensors, acceleration sensors,
and WiFi access points, in addition to the individual power monitor-
ing data. PresenceSense (PS), a semi-supervised learning algorithm
based on power measurement that trains itself with only unlabeled
data, is proposed, analyzed and evaluated in the study. Without
any labeling efforts, which are usually tedious and time consuming,
PresenceSense outperforms popular models whose parameters are
optimized over a large training set. The results are interpreted and
potential applications of PresenceSense on other data sources are
discussed. The significance of this study attaches to space security,
occupancy behavior modeling, and energy saving of plug loads.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Classi-

fier design and evaluation; I.5.4 [Pattern Recognition]: Applica-
tions—Signal processing; H.4.1 [Information Systems Applica-
tions]: Office Automation

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Occupancy detection, non-intrusive method, power measure-

ment, semi-supervised learning, plug loads, energy saving
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1 Introduction
Technological innovations in multiple disciplines extend the

frontier of building science and opens up ample opportunities.
First, low-cost manufacture of sensors and electrical meters re-
duces the economic barrier of the deployment of large sensor net-
work. Second, pioneering works in the collection, communication,
storage, and visualization of time series data, such as the Simple
Measurement and Actuation Profile (sMAP) [5] and building-in-a-
suitcase [23], greatly facilitate the profiling of energy consumption
and building environments, as well as monitor-based commission-
ing (MBCx). Also recent development in statistical inference such
as semi-supervised learning marks paradigm shift of using freely
available unlabeled data for knowledge discovery [3].

Energy consumption of buildings, both residential and commer-
cial, accounts for approximately 40% of all energy usage in the U.S.
Plug loads alone represent 20% to 30% of the whole building en-
ergy use [18,19]. While top-down approaches like dynamic pricing
is often effective for shared resources such as HVAC and lighting,
considerable savings can be delivered by various bottom-up mea-
sures, including plug load metering, occupancy sensing, replace-
ment of legacy equipment with Energy Star equipment, and social
games, where users have the central control of their devices [13].
Economic incentives and social motivations are effective means to
induce behavior change.

Above all, reliable detection of individual presence in building
space is a key component of an intelligent, occupant-friendly, and
energy-efficient building. From the point of view of the building
manager, it can help motivate occupants to save energy, scope occu-
pants working behaviors to deliver personalized care and attention,
as well as guarantee space security. For the occupants, the pres-
ence information can make them aware of their working patterns,
identify occasional unusual behaviors, also get informed of energy
consumption and ways to save energy. Cost effectiveness, never-
theless, is a major concern for the building owners given limited
budgets. Additional presence sensors represent substantial amount
of investment, which makes it not a practical solution for house-
holds or large commercial buildings.

It is, therefore, the objective of this paper to propose Presence-
Sense (PS), a framework that leverages existing infrastructure for
presence inference and unusual behavior detection. In light of the
submetering trends in green buildings, we base this framework on
power measurement data in a typical office to infer individual pres-
ence as a replacement of additional presence sensor network that
requires extra economic and set-up costs. The PresenceSense al-
gorithm, as a semi-supervised learning method, does not require
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any training samples to avoid the labor-intensive labeling effort and
it is very reliable. The paper is organized as follows. Section 2
introduces the experimental setup including several novel methods
such as ultrasonic, acceleration, and WiFi, and the individual power
monitoring system. The PresenceSense algorithm is discussed in
Section 3. Section 4 reports the results of evaluating the algorithm
in a typical office environment with diverse energy consumption
profiles. In section 5, we provide an overview of previous works
on occupancy detection and building plug-loads analysis. Conclu-
sion and future works are provided in Section 6.

2 Experimental Procedure
This section provides a description of the presence sensor net-

works and the electric meter network in a typical office. Three novel
types of sensors are implemented, namely ultrasonic sensor, accel-
eration sensor, and WiFi access points, which detects user presence
by sensing the distance to sensor, movement of chairs, and presence
of smart phones, other than the traditional motion detection. As il-
lustrated in this section, each method has distinct false positive and
false negative detection characteristics, and inevitably suffers from
measurement noise. To evaluate these methods, we asked 4 users to
provide a 5-minute resolution record of their presence in the office,
with different markers for presence in the desk and presence in the
office area except for his/her own desk. Their recording is used as
a reliable ground truth in the evaluation.

2.1 Ultrasonic Sensor Network
Ultrasonic sensors measure the distance of the nearest obstacle,

d, by recording the time it takes from sending to receiving the ul-
trasonic wave, Δt, according to the following relation:

d =
1

2
·Δt · vsound (1)

where vsound
.
= 340m/s is the velocity of ultrasonic wave travelling

in the air.
The ZigBee networking protocol is adopted for communication,

which features a network that is power efficient, ad-hoc, and self-
organizing with no centralized control. The Tree network topology,
as shown in Fig.1, consists of ZigBee coordinator (ZC), ZigBee
Router (ZR), and ZigBee End Device (ZED). Coordinator is the
root of the tree and connects to the database through serial connec-
tion. It stores information about the network and acts as the Trust
Center and repository for security keys. The ZigBee Router runs
applications and acts as intermediate router. As parent of end de-
vices, it acts as their mailbox, store messages while the end device
is asleep and forward them when the end devices wakes back up.
The protocol is automatically managed right inside the mesh net-
work radios with no additional components or code required. Zig-
Bee End Device is the sensor module that is placed on each persons
desk. It only talks to parent node and cannot relay message.

The sensor module, or ZED, consists of an Arduino microcon-
troller, which controls the ZigBee module for communication and
the ultrasonic sensors for reading. The ZigBee coordinator, namely
base station, centrally coordinates all the sample collection by is-
suing requests periodically for each ZED one at a time. We use 10
seconds as the period to achieve a relatively high time resolution.
Fig. 2 illustrates the ultrasonic measurement trace and the ground
truth presence states.

2.2 Acceleration Sensor Network
To provide ground truth for user presence, we made use of

our previously developed low-cost, battery-powered Building-in-
Briefcase (BiB) [23]. The device collects a rich set of environmen-
tal variables, such as temperature, humidity, ambient light, orienta-
tion sensing and motion detection. Furthermore, the small size of

Figure 1. Network configuration of the ultrasonic sensor net-
work based on the IEEE 802.15 standard. The sensor module is
controlled by the Arduino microcontroller, and senses the dis-
tance by the ultrasonic sensor. The router is used for message
passing and also as a sensor module. The coordinator collects
the data periodically and stores in the local database.
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Figure 2. Typical ultrasonic measurements (blue) and the user
presence ground truth (orange), where HIGH level indicates
presence and LOW for absence. For some day the user might
have left some obstacles in front of the sensor that the measured
distance is in the range of normal presence but the change is not
as large compared with presence.

the sensor makes it possible to be installed easily in indoor environ-
ment. One BiB sensor is attached to the chair to detect motion by
measuring the acceleration, as shown in Fig. 3.

All the BiB sensors attached to individual chairs are connected
to centroid servers using WiFi. The acceleration measurements are
sent to a local server and an Internet server simultaneously. All
the data are stored on an on-board PostgreSQL server which also
contains metadata about the incoming measurements. The internet
server is similar to the local server. It uses an online cloud database
to store all of the data.

The raw data includes the XYZ tri-axial acceleration measure-
ments at a resolution of 1 second. To process the data, we obtain
the standard deviation of the acceleration, σ, given as

σ =

√
1

n

n

∑
i=1

(ā [i]−μ)2 (2)

where

μ =
1

n

n

∑
i=1

ā [i] (3)
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Figure 3. Experimental setup of the ultrasonic sensor and ac-
celeration sensor. The location of the ultrasonic sensor is chosen
so that it directly faces the user when he/she is working on the
desk, and there should be no obstacles in front of it once the
user departs. The acceleration sensor is attached to the chair in
order to sense the chair movement. It is very uncommon that
users share chairs, so the movement is a unique indicator of
presence.

ā [i] =
√

(aX [i])2 +(aY [i])2 +(aZ [i])
2 (4)

which is a popular feature based on acceleration data for activity
recognition [11]. Fig. 4 demonstrates one typical trace of the stan-
dard deviation of acceleration data compared to the presence states.
There are some days when the readings are noisy, which gives rise
to deterioration of detection accuracy.
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Figure 4. Chair acceleration (blue) and ground truth (orange)
for user 17, where HIGH indicates presence and LOW indicates
absence. For this user the threshold is chosen as .03g. For possi-
ble reasons of network or sensor degradation, the noise during
the last several days is overwhelming, which deteriorates the
performance of the presence detection accuracy.

2.3 WiFi Access Points
IEEE 802.11 (WiFi) is the most commonly used technology for

internet access with widely available infrastructure in large num-
bers of commercial and residential buildings. For users with smart
phones, it is likely that the WiFi transceiver is turned on. We em-
ployed a D-Link DIR-605L WiFi Cloud Router as the access points
in the test-bed to detect the signal emitted from the phone. This

method does not rely on the platform of the phone, and is rel-
atively easy to implement. The collected WiFi Received Signal
Strength (RSS) can be used as fingerprints to perform indoor po-
sitioning [26]. For the detection of presence, we only use the bi-
nary valued indicator, that if the connection of the phone to the
access point is detected, it is indicated that user is present. Due to
the IEEE 802.11 protocol, the communication is minimized to save
energy, which means that the sampling period ranges from several
seconds to tens of minutes. To obtain the presence inference, we
apply a simple scheme that if at any time the access signal is de-
tected, we denote points that are within 1 hour of the access point
as presence.

2.4 Office Testbed
Our present study is carried out in the Center for Research in

Energy Systems Transformation (CREST) located in Cory Hall on
UC Berkeley campus, which is an office for graduate students in
the EECS department. Each user works in a cubicle, where we in-
stall the ACme sensor to monitor the power consumption [10]. The
power is measured at a resolution of one second. Connectivity to
the Internet is provided via a small set of edge routers which func-
tion as a gateway to the Internet. The data is stored in our cloud
database based on the Apache Cassandra.

The user is able to access his/her energy consumption by log-
ging in our website (http://sbb01.eecs.berkeley.edu). It provides an
interactive visualization of the real-time energy consumption to mo-
tivate users to monitor and save energy. The user is able to access
his/her energy consumption by logging in our website.

By carefully observing the trends and distribution, we employ
simple algorithms to infer the users presence. For the ultrasonic
data, as illustrated in Fig. 2, we design the interval of absence for
each individual i:

Ai =
[
ai

1,a
i
2

]
∪·· ·∪

[
ai

k−1,a
i
k

]
(5)

and the decision rule is:

si (t) =

{
1, for t ∈ {n : d (n) /∈ Ai}
0, otherwise

(6)

where si(t) is the state of user i, namely presence (1) or absence (0),
at time t. For the acceleration data, as shown in Fig. 4, we notice
that high standard deviation of acceleration often indicates move-
ment of user, and thus user presence. A simple threshold model as
follow is applied

si (t) =

{
1, for t ∈ {n : σ(n)> θi}
0, otherwise

(7)

where σ(n) is given by Equ. 2. The WiFi data is smoothed to obtain
the presence states as follow:

si (t) =

{
1, for t ∈ {n : |n− t0|< δi, t0 ∈ Oi}
0, otherwise

(8)

where Oi is the observed time stamps when the access point detects
the connection signal, δi is the time span for presence.

As is shown in Table 1, these methods can only provide approxi-
mate inference results, as the measurement itself is inevitably noisy.
To evaluate the accuracy, the traditional, labor-intensive method
of actually recording each person’s presence was also conducted.
Given the difficulty and demanding requirements of this task, we
only asked 4 users to participate in providing us with this informa-
tion.
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Table 1. Accuracy of the various methods under investigation as
evaluated against the ground truth. The accuracy is aggregated
over all the users for ultrasonic, acceleration, and WiFi data,
which are processed as illustrated above.

Method Absence Presence Total
Ultrasonic 98.25% 81.31% 93.71%

Acceleration 71.31% 69.24% 70.62%
WiFi 90.13% 47.43% 77.21%

3 Zero-training Algorithm
In this section we introduce the main algorithm of Presence-

Sense, namely the zero-training algorithm, which require “zero”
training labels for learning. Suppose the example space X =
X 1 ×X 2 × ·· · ×X ν can be partitioned into v views, namely fea-
ture spaces, and the class space is denoted as Y = {y1,y2}.
The sets of labeled and unlabeled samples are given by L ={((

x1
i , · · · ,xν

i
)
,yi

)|L|

i=1

}
and U =

{((
x1

i , · · · ,xν
i
)
, ·
)|U |

i=1

}
re-

spectively. Assume ν classifiers, h1, · · · ,hν are trained based on
each view of the example space.

The PresenceSense algorithm repeats the following steps until
the maximum number of iterations is achieved or the stopping con-
dition is met. At the start of the algorithm, all the samples are la-
beled according to the prior information incorporated in h1, where
X 1 is assumed to be a sufficient view as suggested by Blum and
Mitchell [2]. Then all the other classifiers are trained using the ini-
tial labeled set, L1. All the samples are relabeled by the majority
voting rules, where ties are resolved according to the prior, which
produce the new labeled set, L1

new. The labeled set for the next
iteration is updated according to the rule as detailed in Equ. 11,

Lk+1 = g
(
Lk,Lk

new;α1,α2

)
as parameterized by the learning rates

α1, α2. This constitutes one round of iteration. Detailed pseudo-
code of the PresenceSense algorithm is provided in Algorithm 1.

The finding of Angluin and Laird [1] on probably approximately
correct (PAC) framework proposed by Valiant [21] is applied.

THEOREM 1. If we draw a sequence

m ≥ 2

ε2 (1−2ηb)
2

log

(
2N
δ

)
(9)

samples from a distribution and find any hypothesis Li that mini-
mizes disagreement with σ, where ε denotes the hypothesis worst-
case classification error rate, η is the upper bound on the clas-
sification noise rate, N is the number of hypotheses, and δ is the
confidence, then the following PAC property is satisfied:

Pr [d (Li,L∗)≥ ε]≤ δ (10)

where d(,) is the sum over the probability of elements from the
symmetric difference between the two hypothesis sets Li and the
ground-truth L∗.

According to the proposed algorithm, the labeled set, Lk+1
i ,

where i represents the label, is updated in each iteration according
to the following rule:

Lk+1
i = {Lk

i ∩Lk
i,new}∪Sample{Lk

i ΔLk
i,new;αi}, i ∈ {1,2} (11)

where Lk
i ΔLk

i,new is the symmetric difference, αi is the sampling rate

for the set of samples labeled yi, for i = 1,2. In other words, the set
of samples with label yi is given by the intersection of the previous

set, Lk
i , and the labeled set produced by the classifiers of this round,

Lk
i,new, together with a random subset of samples that these two sets

do not share, with sampling rate of αi. If we denote Lk
1 = Ak ∪Bk,

where Ak and Bk are the set of correctly and incorrectly labeled

samples respectively, and similarly Lk
2 =Ck ∪Dk where Ck and Dk

are the set of correctly and incorrectly labeled samples respectively.
Also denote Uk = Ek ∪Fk where Ek and Fk are the set of unlabeled
samples that should be labeled with y1 and y2 as the ground truth.
For notation simplicity, we use ak,bk, · · · , fk to denote the size of
sets Ak,Bk, · · · ,Fk respectively. Then the classification noise rate,
ηk, is given by:

ηk =
bk +dk

ak +bk + ck +dk
(12)

Assume the hypothesis makes a classification error independently

for samples at the rate εk. We establish the following lemma to
obtain an estimate of the classification noise rate ηk and hypothesis

classification error εk in each iteration.

LEMMA 1. The classification noise rate ηk and hypothesis classi-
fication error εk can be estimated assuming we have access to any
two of the following quantities (categories do not matter):

a) (prior information) the number of y1 in the samples, namely
ak +dk + ek, or ak +dk for the labeled set

b) (Type I or II error) the misclassification rate of y1 or y2,
namely dk

ak+dk
or bk

bk+ck

PROOF. (Sketch) According to the update rule in Equ. 11, the num-
ber of elements in the labeled set of the next iteration depends on
the current iteration as follow:

ak+1 = ak(1− εk)+(dk + ek)(1− εk)α1 (13)

bk+1 = bkεk +(ck + fk)εkα1 (14)

ck+1 = ck(1− εk)+(bk + fk)(1− εk)α2 (15)

dk+1 = dkεk +(ak + ek)εkα2 (16)

Since we can observe the number of samples in |Lk
1| = ak + bk,

|Lk
2|= ck +dk, and |Uk|= ek + fk, and also for those in round k+1,

we can sum the pairs of Equ. (13,14), also (15,16). Together with
two of the quantities proposed in Lemma 1, we can solve the system

of equations for the estimation of εk and ηk.

Remark (numerical solution): The system of equations to be
solved in Lemma 1 is non-linear, which makes it computationally

costly to solve. Since the problem is defined for 0 ≤ εk ≤ 1, we

can perform a line search of εk. Given the value of εk, the system
becomes linear and is very easy to solve by taking the inverse,

or constrained quadratic programming. Then the optimal εk that
corresponds to the solution that best fits the remaining single
equation should be chosen.

Theorem 1 provides the relationship among the number of
training samples, m, and the classification noise bound, η, as well
as the classification error rate, ε, of the hypothesis that minimizes
the training error. Lemma 1 offers an estimation method of the
classification noise rate ηk in the k round. Inspired by Zhou and
Li [25] and Goldman and Zhou [7], we state the following corollary
that guarantees the improvement of classification performance in
each round of iterations.

COROLLARY 1. The gap between the learned and optimal hy-
potheses as shown in PAC property Equ. (10) is going to decrease
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with high probability in each iteration with suitable sampling rates,
α1 and α2, whenever the following condition is satisfied:(

|Lk+1
1 |+ |Lk+1

2 |
)
(1−2ηk+1)

2 >
(
|Lk

1|+ |Lk
2|
)
(1−2ηk)

2 (17)

where
(
|Lk+1

1 |+ |Lk+1
2 |

)
is the total number of samples in the train-

ing set in round k+1, and ηk+1 is the classification noise rate.

PROOF. (Sketch) Let c = 2μ log
(

2N
δ
)

where μ is chosen to make

the equality holds in Equ. 9, then we have mk =
c

ε2
k(1−2ηk)

, where

mk = |Lk+1
1 |+ |Lk+1

2 | is the number of samples in the labeled set.
We introduce uk as follow for the simplicity of computation:

uk =
c
ε2

k
= mk (1−2ηk)

2 (18)

Since uk is proportional to 1
ε2

k
, we have the following relation that if

uk+1 > uk, then εk+1 < εk, and thus the corollary follows.

Remark (search of sampling rates). As we have shown in
Lemma 1, the number of elements in the labeled set is inherently a
function of the sampling rates α1 and α2. By varying the sampling
rates we can control the size of the labeled set in the next iteration,
thus ensure the minimization of the optimal gap in each iteration.
The calculation of sampling rates can be formulated as a feasible
set problem in optimization.

Algorithm 1 Pseudo-code of PresenceSense Labeling Algorithm

1: function PRESENCESENSE LABELING(X , Prior, MaxIter)
2: Inputs: X : feature matrix of size n×ν, where n is the num-

ber of samples, ν is the number of views.
3: Prior: expert knowledge used for initialization
4: MaxIter: maximum number of iterations
5: Initialization:
6: L0

1,L
0
2 ← Prior(X) � initial estimation by Prior

7: stopCond ← f alse � stop condition
8: k ← 0 � iteration number
9: η0 ← 0.5 � classification noise rate

10: Main program:
11: while ¬stopCond ∧ k < MaxIter do
12: Y Mat ← emptyMatrix(n,ν)
13: for vind ∈ {1, ...,ν} do � train and predict

14: EstModl ← ModelEstimation(Xvind ,Lk
1,L

k
2)

15: Y Mat(·,vind)← ModelPredict(EstModl,Xvind )
16: end for
17: for sind ∈ {1, ...,n} do � for each sample
18: Y (sind)← Ma jorityVote(Y Mat(sind , ·))
19: end for
20: Lk

i,n ← getSet(Y ) � obtain the new labeled set

21: Lk+1
i = {Lk

i ∩Lk
i,n}∪Sample{Lk

i ΔLk
i,n;αi}, i ∈ {1,2}(∗)

22: ηk+1 ← EstEta(Lk
1,2,L

k+1
1,2 ,α1,α2,V est)(∗) � Lem.1

23: stopCond ← checkStop(Lk
1,2,L

k+1
1,2 ,ηk,k+1)(∗) � Cor.1

24: (Optional) search α1,α2 such that stopCond ← f alse
by repeating (*) steps � line search with constraints

25: k ← k+1 � update the iteration number
26: end while
27: Outputs: L1,L2 ← Lk

1,L
k
2 � labeled sets for class 1 and 2

28: end function

Table 2. User possession and usage of plug-loads. The user id is
assigned to protect user identity in the experiments.

Desktop Monitor Laptop Lamp Chargers
6 0 0 1, often 1 1-2
8 0 1 1, often 1 1

17 1 1 1, seldom 1 1-2
20 1 2 1, often 1 1-3
26 1 1 1, often 1 1-2

4 Results and Discussion
The individual user’s energy consumption monitoring started

from July 31, 2013 till July 1, 2014. For the presence data, the
approximate and ground truth are available from June 1, 2014 and
June 18, 2014, respectively, till July 1, 2014. Table 2 is a summary
of the profiles of subjects.

In the subsequent sections we first present result of feature
explorations of power data, which are employed to generate mul-
tiple views in the example space, X = X 1 ×X 2 ×X 3 ×X 4. Then
the PresenceSense algorithm is applied to multiple views to infer
presence of each individual based on their power consumption.
The classification results are interpreted and compared against
ground truth.

4.1 Power Feature Exploration
In this section features based on electricity consumption, includ-

ing power level, edge effects, and rippling effects, are presented
which are informative about user presence inference.

4.1.1 Power Level
Generally speaking the electricity consumption when the user

is present is higher, since devices such as personal computer and/or
laptops, desk lamp, electric chargers are turned on during working
time. Fig. 5 illustrates power level distribution for the absence and
presence states.

As can be seen, during the absence states, 2 distinct levels of

Figure 5. Normalized histogram of power level for user 17. The
plug-loads profile includes a desktop, a monitor, a laptop, and
various chargers. The non-zero power during absence is due
to the desktop not being turned off when the user left. Simple
absolute thresholding will not work in this case.

demands exist, corresponding to desktop being left on or off when
user is absent. The number of distinct levels ranges from one (1)
to five (5) depending on the profile of devices in the cubicle. Also
power level distribution during business hours, compared with
non-business hours, exhibits wider spreads. Due to the behaviors
of users who do not turn off their devices when absent, despite
that power level is a valuable source of information, some other

5



features are necessary to be acquired to improve the classification.

4.1.2 Edge Effect
The change of states usually happens with a large increase or

decrease of power in a short amount of time, as marked by an edge
in the trace of power. It is also observed that transition power does
not belong to any stationary power distributions during presence
and/or absence. Fig. 6 shows the power edge distribution during
state changes.

As can be seen, edges are often associated with states change,
though there are some exceptions when the user switches the states
of the device during working. We design the maximum absolute
change (MAC) to capture this edge effect:

MAC = max
1≤i≤w

|xi − xi−1| (19)

where xi is the power level indexed by i, and w is the window size.
For highly autocorrelated signal, change of states is more robust

to noise and also directly model the transition process, which are
used in statistical models such as Hidden Markov Model (HMM).
In addition, edge occurrence is related to hour of the day, which can
be exploited by change-point detection methods [16].

Figure 6. Normalized histogram of absolute power change. The
change states refer to either departure or arrival. Since the
value span is very large, all the values greater than 20W are
counted at the boundary of 20W. The counts in each bin are di-
vided by the total number of points in that category to obtain
the normalized plot.

4.1.3 Rippling Effect
As one of the key observations, the rippling effect refers to the

high frequency fluctuations exhibited in the power trace, as shown
in Fig. 7 for an example.

Based on the rippling effect, some most informative and reli-
able metrics can be designed to capture the information from the
high-resolution electricity measurement:

• Mean of absolute difference (MAD):

MAD =
1

w

w

∑
i=1

|xi − xi−1| (20)

• Mean of absolute height difference (MAHD):

MAHD =
1

n−1

n

∑
i=1

|xc(i)− xc(i−1)| (21)

Figure 7. Observation of electricity consumption trace which
reveals the correlation of rippling effects and user presence
states. When the device is under usage, the intensity of power
fluctuation increases, which is a useful indicator for presence.

Figure 8. Normalized histogram of power standard deviation
for user 17 as a measurement of the rippling effects. All the val-
ues greater than 55W are counted at the boundary for clarity.

• Standard deviation (SD):

SD =

√
1

w−1

w

∑
i=1

(xi − x̄)2 (22)

where x̄ is the average power, n is the number of
change points in the span, whose indices are given by
c(i) ∈ { j : x( j) is a local maximum or minimum, 1 ≤ j ≤ w}.
The conditional distribution of SD for presence and absence states
is plotted in Fig. 8, and MAD and MAHD are very similar.

As can be seen, all the features based on power rippling
effects can achieve satisfactory separation of states, with SD being
slightly better than the others. Based on experiences, to achieve a
good balance of the aggregation of noise and user activity, 1min
resolution is usually sufficient. It is worth to mention that rippling
effect itself does not directly link to the states of being present or
absent, as it indicates current intensity of device usage; therefore, it
needs to be combined with other information to infer presence state.

4.2 PresenceSense Classification
In this section we present classification results as evaluated

against the ground truth. As we propose in Section 3, Presence-
Sense is a zero-training algorithm, which means it does not require
any tedious labeling of the data. Theorem 1 provides insights into
the optimal learning process that we can allow a certain bounded
classification noise in the training set as long as the number of train-
ing samples meets the requirement as set by Equ. (9). This result
is used to guarantee the reliability of the learning result even with
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noisy training labels, where samples taken during absence are in-
correctly marked as presence and vice versa.

The electricity consumption data is often correlated with each
users schedule, which can be used as useful prior knowledge for
the PresenceSense initialization. Usually people are absent during
non-business hours, which can be 0-8am for some users and 6pm to
8am for others. PresenceSense is not particularly demanding about
the accuracy of the schedule, as long as the misclassification rate is
less than 0.5. For most users they are absent during 8pm to 8am,
12 hours in total, which can already achieve a misclassification rate
of less than 0.5. For our classification, we apply the same working
schedule for all the users, namely, 0-9am absent, 9am 8pm present,
and 8pm 0 absent. As we demonstrated next, the algorithm can get
close to the ground truth even with this rough, and even incorrect,
initial knowledge.

In each iteration we update the labels of the data by aggregat-
ing over the predictions of several classifiers with majority voting
scheme, as shown in Algorithm 1. The model can be of any choice
that is suitable. Since we observe the distribution of features, such
as power level, MAC, MAD and SD can be captured in a simple
model with possibly few mixture components, we apply Bayesian
classification rule by making the assumption that features are inde-
pendent given the class, which is used for Nave Bayes classifier for
text categorization [20].

The optimal classification rule for each classifier is given by:

F
(
xν

i
)
= argmax

c
p(C = c) p

(
Xν = xν

i |C = c
)

(23)

where the conditional distribution, p̂
(
Xν = xν

i |C = c
)

can be esti-
mated by kernel density estimation

p̂
(
Xν = xν

i |C = c
)
=

1

n

n

∑
i=1

Kh (x− xi) (24)

where n is the number of samples in class c, Kh (x− xi) is the kernel

function. We use the Gaussian kernel, Kh (u) = 1
h
√

2π
e−

1

2h2 u2

, where

h is the standard deviation. Then the following majority scheme is
applied to aggregate the views:

Fma j

(
x1,··· ,ν

i

)
= median

(
F
(

x1
i

)
, · · · ,F (

xν
i
))

(25)

There are several reasons to apply early stopping rule in the
training. First, early stopping when the convergence criterion is
satisfied can save unnecessary computational power and improve
the efficiency. Also, in the situation where few or even no training
labels are available, stopping rules provide a guideline to track the
performance of the algorithm and ensure that the algorithm achieves
the optimal solution. Since by stochastically assigning training la-
bels, it is possible that some misclassification will lead to confusion
to the algorithm, which in turn tries to correct previously assigned
accurate labels, the early stopping rules can prevent the training
from dramatically increasing the misclassification rates.

We define the stopping metric φk as follow:

φk =
(
|Lk

1|+ |Lk
2|
)
(1−2ηk)

2 −
(
|Lk−1

1 |+ |Lk−1
2 |

)
(1−2ηk−1)

2

(26)
where |Lk

1| and |Lk
2| are the number of training samples with label

1 and 2 at iteration k respectively. The classification noise rate at
iteration k, ηk, is estimated by Lemma 1. By Corollary 1, if the
stopping metric is negative, then we don’t have the guarantee that
the misclassification rate will decrease in the next round. There-
fore, it is recommended that the algorithm stop as soon as possible
to avoid potential increase of misclassification rate.

We apply the PresenceSense algorithm on all the users’ elec-
tricity consumption data. In general the early stopping indicator
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Figure 9. Misclassification rates and early stopping indicator
for user 17. The misclassification rates drops significantly in the
first several iterations, and converge as the iteration increases.
The stopping indicator fires infrequently when the algorithm is
detected to be converging.

fires when the algorithm is in proximity to the optimal solution.
As shown in Fig. 9 which shows the convergence of misclassifica-
tion rate together with the stopping indicators, the indicator fires the
first time after a sharp decrease of misclassification, then remains
silent when the algorithm further improves incrementally until con-
vergence. In this case, the optimal stopping time is around 3, but
the iteration can also keep going until 30, but the improvement is
minimal.

The importance of early stopping rule can be further appreci-
ated in the case for user 8, whose plug-load profile does not include
a desktop as shown in Table 2. As shown in Fig. 10, the Presence-
Sense achieves an optimal solution after only 2 iterations, and starts
to include unnecessary and probably wrong labels afterwards. By
inspection of the misclassification curve, the optimal stopping time
is 2, which is also suggested by the stopping indicator. Since the
misclassification rates deteriorate significantly afterwards, the indi-
cator fires very frequently during the degradation, which strongly
suggest that the process should be terminated. The profiles for the
other two users are similar to the illustrated examples so they are
not included here.

As expected, the stopping indicator fires frequently when the
misclassification rates increases significantly, and remains silent
otherwise. It does not require any training labels or additional in-
formation, since the stopping metric shown in Equ. (26) can be
computed readily with all the known information and Lemma 1.
Therefore it is very convenient to work in practice and should be
used whenever possible to ensure optimal solution. The accuracy
of PresenceSense as compared with other popular models is listed
in Table 3.

The power level threshold model determines a threshold based
on power level. If the power exceeds the threshold, the model infers
presence. The change and percentage threshold models work in a
similar way, except that the metric used are change and percent-
age in power respectively. When the change exceeds a threshold, if
the state is absence, then it makes a transition to presence and vice
versa. For the comparison, we use all the training labels for these
models, and optimize over the space of threshold values to find the
optimum. Even in this scenario, PS outperforms all the others in
most cases.

The presence inference by PresenceSense and ground truth is
shown in Fig. 11 for user 8 and 17. As we show in Fig. 12, the
learned hourly schedule is very close to the ground truth, which
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Figure 10. Misclassification rates and early stopping indicator
for user 8. The misclassification rates drops significantly in the
first several iterations, and starts to increase due to the random
training errors. The stopping indicator fires frequently when
this happens as a strong indication for termination.

Table 3. Accuracy of each model for different users. The three
numbers separated by ‘/’ represent the detection rates given
that the user is absent, present, and overall, respectively. The
best performance is marked in bold, and the second best is un-
derlined for comparison. Chg/Th: power level change thresh-
old. Abs/Th: power level threshold. Prc/Th: change percentage
threshold.

Chg/Th Abs/Th Prc/Th PresSence
8 .87/.36/.72 .97/.62/.86 .79/.45/.69 .97/.71/.89
17 .69/.64/.68 .92/.76/.86 .83/.49/.71 .92/.77/.87
20 .67/.67/.67 .94/.69/.86 .87/.40/.72 .94/.68/.87
26 .80/.14/.62 .99/.66/.90 .87/.15/.67 .96/.84/.93

means that PresenceSense can improve the estimation even with in-
accurate initial knowledge.

5 Related Work
This section provides an overview of previous works in presence

sensors, occupancy sensing, and plug-in loads sensors. The differ-
ence of the current study is also highlighted.

A. Presence Sensor and Occupancy Sensing
Occupancy sensing is a natural extension of the presence sens-

ing in indoor environment. Occupancy sensing endeavors to predict
indoor occupancy level based on the correlation of sensor measure-
ments to room occupancy.

Some of the sensors can infer the static occupancy information.
For example, CO2 sensor has been deployed to infer the number
of people in a zone [22]. Although there is a response time of the
sensor to human movements, careful calibration can be done based
on PDE framework to achieve good modeling. Other sensors can
infer the movement of occupants. Particulate Matter (PM) sensor
is shown to correlate well with the human movement [24]. PIR
sensors and video camera sensors have also been proved to have
strong correlations with human activities [14, 15], and have been
used a set of experiment to infer occupancy in different zones in a
building. When individual types of sensors fail to give reliable per-
formance on occupancy, sensor fusion is used which integrate the
results from different sensors. The authors in [17] proposed a sen-
sor utility framework based on CO2 sensors, plug-in load sensor,
video camera sensor, and PIR sensors. They formulate a quadratic
optimization framework based on mass conservation law.
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Figure 11. Presence inference by PresenceSense vs. ground
truth for user 8 (top) and 17 (bottom). In addition to sens-
ing the power level, PresenceSense captures the rippling effect
which correlates with user presence to lower the misdetection
rates for presence.

B. Plug-in loads Sensors
Plug-in loads are believed to carry information on the building

performance, sustainability and efficiency [8, 19]. The ACme sen-
sor has been developed by UC Berkeley to smartly measure the
power consumption of plug-in loads, based on a resistance Power
IC [10], and has been adopted in home energy sensing applica-
tion [9]. LBNL used ACme system to measure a larger build-
ing space and demonstrated reliable performance [6]. The work
from [17] showed a usage of power meters to help sense the oc-
cupancy of individuals. Chen et al. [4] and Kleiminger et al. [12]
demonstrated the use of electricity consumption data obtained by
smart meters to detect presence in residential buildings. However,
none of those work tried to systematically explore the hidden rela-
tionship between plug-in loads and occupant behavior.

Our work is different from the previous works by considering
the relationship of plug-loads electricity consumption and individ-
ual presence. The PresenceSense (PS) algorithm, based on semi-
supervised learning theory, provides an easy method of learning the
occupancy schedules without requiring any training labels, which
is essential for portability and scalability to apply in other buildings
with large crowds.

6 Conclusions
Presence detection is a key component in smart buildings to

improve energy efficiency, occupancy comforts, and space manage-
ment. Nevertheless, intrusive methods are often costly and difficult
to implement due to privacy concerns. In this study we investigated
the non-intrusive detection method based on individual power
consumption. Since more and more buildings choose to closely
monitor the plug-loads consumption as it consists of 20% to 30% of
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Figure 12. Comparison of hourly absence rates before learn-
ing, after learning, and ground truth for user 17 (top) and 8
(bottom).

the total consumption, it does not require additional infrastructure
investment. We also employed several presence detection methods,
including the ultrasonic sensor, acceleration sensor, and WiFi
access points, which represent some new possibilities of obtaining
the presence states. Most importantly, we evaluated these methods
against a set of ground truth that users supplied. The false positive
and false negative rates for each method differ, as a reflection of
the different characteristics.

We proposed PresenceSense (PS) algorithm to infer presence
from the electricity consumption data. It is a zero-training
algorithm, that is, it does not require any training labels which are
usually costly to obtain. The algorithm works with very rough
estimates of the user’s working schedules, and iteratively relabels
the data using the majority votes scheme by classifiers based on
average power, power standard deviation, and absolute maximum
power change. These features are demonstrated to have good
separability for presence and absence states. The PresenceSense
is compared with other common models, including the absolute
power level threshold model, power level change threshold model,
power level percentage change threshold model, whose threshold
parameters are optimized over all the training sets. Even though
the comparison is unfair for PresenceSense as it does not use any
training sets, PS outperforms all the others in most of the cases as
evaluated against the absence, presence, and overall detection rates.
The theoretical effort to derive an early stopping rule is worthwhile
as the early stopping indicator ensures that the algorithm finds the
optimal sets of solution and saves computational power.

For future works, PresenceSense is useful for social games
that are designed to motivate user energy saving [13]. Also
unusual behaviors can be detected based on the presence infer-
ence, which are useful information for occupants and managers.
The PS algorithm is based on semi-supervised learning theory,

and it is of interests to improve the convergence bounds and
estimates of classification accuracy, as it is essential when no
training labels are available. Another interesting direction that
we are exploring is to apply PS algorithm on other types of
datasets such as indoor positioning and room-level occupancy
estimation to achieve state-of-the-art results without training labels.
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