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The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy
are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary
dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the
symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles.
The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider
the balance of internal angular momentum in addition to the usual moment of momentum. In the
absence of spin, the moment of momentum is the same as the total angular momentum. In deriving
the form of the balance of total angular momentum, we find the microscopic expressions for the
couple stress tensor that drives the spin field. We show that the couple stress contains contributions
from both intermolecular interactions and the active forces. The presence of spin leads to the idea
of balance of moment of inertia due to the constant exchange of particles in a small neighborhood
around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale
and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of
total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the
system. Published by AIP Publishing. https://doi.org/10.1063/1.4997091

I. INTRODUCTION

In this paper, we consider the hydrodynamics of active
fluids consisting of structured particles subjected to internal
torques (or couples). The system under consideration consists
of dumbbells immersed in a fluid and rotated by an equal and
opposite force perpendicular to the axis connecting the two
ends of the dumbbell. For such active fluids, we derive the asso-
ciated balances of mass, linear momentum, angular momen-
tum, moment of inertia, total energy, and internal energy by
systematically coarse-graining the microscopic equations of
motion governing the dynamics of the active particles. We fol-
low the Iriving-Kirkwood procedure,1 which was originally
used to derive the equations of hydrodynamics of simple fluids.

Our system falls under the general field of active mat-
ter,2–7 a term used to describe individual particles capable of
self-propelled motion. Active matter systems are known to
exhibit non-equilibrium phase behaviors with dynamic clus-
tering of active particles.8–17 Suspensions of active matter also
lead to anomalous thermal and mechanical properties with
enhanced diffusion18–20 and odd and vanishing viscosities21,22

among many others.23–29 Of particular recent interest is the
concept of pressure in these systems,30–39 where it is argued
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that pressure behaves as a state function only for the case of
spherical, torque-less active particles but not for general active
fluids.31

Pressure, being a fundamentally mechanical concept,
depends on the nature of the stress tensors arising out of the
balance of linear momentum. Mechanically, pressure can be
defined as the negative trace of the stress tensor, and much
microscopic understanding can be gained by knowing the
expressions for the stress tensor in terms of the molecular inter-
actions. Microscopic expressions for the stress tensors have
been developed for passive systems starting with Clausius,40

and finally with the theory proposed by Irving and Kirkwood.1

The latter work, in particular, obtained the expressions for the
stress tensor by deriving the equations of hydrodynamics using
the principles of classical statistical mechanics. These expres-
sions explicitly showed the role of intermolecular forces in the
stress tensor. Recently, there has been an attempt to extend
the theory of Irving and Kirkwood towards active systems
consisting of self-propelled Brownian particles,41,42 where the
derivations are restricted to the case of balances of mass and
linear momentum. However, one may think of active systems
consisting of particles with internal structure, the simplest
example being dumbbells rotated by force couples or inter-
nal torques. These systems introduce an additional concept of
spin resulting from the coarse-grained angular momentum of
the particles. The concept of spin requires development of the
balance of angular momentum with the presence of surface
couples and the associated couple stress tensor. In these cases,
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at least for passive particles, it is well known that both angu-
lar momentum and linear momentum relations are coupled to
each other.43–48 Analogous continuum theories have been used
to model active systems made up of particles driven by internal
torque.49–52 However, rigorous derivations for the expressions
of the stress and couple stress tensors in terms of molecular
variables are lacking for the case of active systems, and there-
fore there is an incomplete understanding of the role of active
forces. Moreover, equations concerning the balance of energy
have not been explored to understand the sources of heat and
heat fluxes at the continuum level in such active systems. Our
work extends the theory proposed by Irving and Kirkwood
to derive the equations of hydrodynamics for systems con-
sisting of active dumbbell particles with expressions for the
stress tensor, couple stress tensor, and heat fluxes in terms of
molecular variables, thereby providing a molecular basis for
understanding the generalized hydrodynamics of active polar
suspensions.

Our paper is organized as follows. In Sec. II A, we describe
the microscopic dynamics of the active dumbbell system, and
in Secs. II A–II G, we perform the coarse-graining proce-
dure to derive the balance laws for the active fluid. A concise
report of what has been done in this paper is presented in
Ref. 53.

II. IRVING-KIRKWOOD PROCEDURE

In this section, we derive the balances of mass, linear
momentum, angular momentum, moment of inertia, energy,
and internal energy for systems consisting of active rotating
dumbbells. As mentioned before, we follow the procedure
of Irving and Kirkwood,1 where equations of hydrodynamics
were derived in the absence of any internal rotation.

A. Microscopic equations of motion

Our model is a simple active matter system consisting
of underdamped dumbbell-like particles where the ‘atoms’
are tethered together harmonically52 (see Fig. 1). They move
according to the following equations of motion:

ẋαi = pαi /mi,

ṗαi = −ζ
pαi
mi

+
∑
j,β

Fαβij + fαi −
∂us(x1

i , x2
i )

∂xαi
+

√
2kBT ζ

dW
dt

,

(1)

where i refers to the molecule, α refers to the atom of a
molecule with α ∈ {1, 2}, xαi and pαi are the position and
momentum of atomα of molecule i, ζ is the drag coefficient, kB

is Boltzmann’s constant, T is the temperature of the bath, and
dW
dt is Gaussian white noise.54 The term us(x1

i , x2
i ) is the har-

monic spring energy connecting atoms 1 and 2 of molecule i.
Also, Fαβij is the force on atom α of molecule i due to atom

β of molecule j given by Fαβij = −
∂u2(xα

i ,xβ
j )

∂xα
i

, where u2(xαi , xβj )

is a pair potential that describes the interaction between atom
α of molecule i and atom β of molecule j. Finally, fαi is an

FIG. 1. Active dumbbell particles: (a) A schematic showing an active dumb-
bell particle with equal and opposite forces on the atoms of the dumbbell. It
is assumed that the forces f always act perpendicular to the bond connecting
the two atoms. (b) A schematic of a fluid consisting of many active dumbbell
particles.

active driving force acting on atom α of molecule i, which is
assumed to act in an equal and opposite manner on atoms 1
and 2 of molecule i, i.e., f1

i = −f2
i = f i. Here and in what

follows, ˙(·) = d
dt (·) denotes the total time derivative.

B. Microscopic-macroscopic relations

To write the balance equations for mass, linear momen-
tum, angular momentum, moment of inertia, and energy,
the relationships between microscopic and macroscopic vari-
ables need to be defined. In doing so, we follow the Irving-
Kirkwood procedure1 by proposing relations between the
extensive quantities. To this end, the mass density ρ(x, t)
at any macroscopic spatial point x and time t is defined
as

ρ(x, t) =
∑
i,α

mα
i ∆(x − xαi ), (2)

where ∆(x − xαi ) is a coarse-graining function that defines the
contribution of atom α of molecule i at the spatial point x.
Similarly, the linear momentum density ρ(x, t)v(x, t) is defined
as

ρ(x, t)v(x, t) =
∑
i,α

pαi ∆(x − xαi ), (3)

where v(x, t) is the velocity of the spatial point x. The angular
momentum density ρ(x, t)L(x, t) is defined to be

ρ(x, t)L(x, t) =
∑
i,α

xαi × pαi ∆(x − xαi ). (4)

The moment of inertia I(x, t) is defined as

I(x, t) =
∑
i,α

{
mα

i

[
(xαi − x) · (xαi − x)

]
i

−mα
i (xαi − x)⊗ (xαi − x)

}
∆(x − xαi )

=
∑
i,α

Iαi ∆(x − xαi ), (5)
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where

Iαi = mα
i

[
(xαi − x) · (xαi − x)

]
i −mα

i (xαi − x) ⊗ (xαi − x) (6)

and i is the identity tensor. In (5) and (6), the symbol
“ ⊗ " denotes the dyadic product or tensor outer product,
where a ⊗ b for any two vectors a and b yields a second
order tensor with elements aibj in Einstein’s indicial notation.
Finally, the total energy density ρ(x, t)e(x, t) is defined to
be

ρ(x, t)e(x, t) =
∑
i,α



pαi · p
α
i

2mα
i

+
1
2

∑
j,β

u2(xαi , xβj )


∆(x − xαi )

+
1
2

∑
i,α

us(x1
i , x2

i )∆(x − xαi ). (7)

The coarse-graining function ∆(x − xαi ) depends on the
scalar distance between the macroscopic point x and xαi and
satisfies the relation,

∂∆(x − xαi )

∂xαi
= −

∂∆(x − xαi )

∂x
, (8)

see Ref. 55 for properties of the coarse-graining functions.

C. Balance of mass

In this section, we derive the macroscopic balance of mass
using relation (2). Taking the time derivative of (2) yields

ρ̇ =
∑
i,α

mα
i

[
∂∆(x − xαi )

∂x
· v +

∂∆(x − xαi )

∂xαi
· vαi

]

=
∂

∂x



∑
i,α

mα
i ∆(x − xαi )


· v −

∂

∂x
·



∑
i,α

mα
i ∆(x − xαi )vαi


=
∂ρ

∂x
· v −

∂

∂x
· (ρv), (9)

where the second equality in (9) is obtained by using identity
(8) and the third equality is obtained by relation (3). Note
that the time derivative of the continuum position yields the
continuum velocity, i.e., ẋ = v(x, t). Also, “ ∂

∂x ·” in (9) denotes
the divergence operator. In (9) and in what follows, we omit
writing the explicit functional dependencies of the densities
for clarity. Upon further simplification, Eq. (9) reduces to the
local form of balance of mass at the macroscopic level given
by

ρ̇ + ρ
∂

∂x
· v = 0. (10)

D. Balance of linear momentum

In this section, we derive the balance of linear momentum
at the macroscopic level using the momentum relation (3). To
this end, following the same procedure as for the balance of
mass, taking the time derivate of both sides of Eq. (3), and
using the identity (8) yields

ρ̇v =
∑
i,α

ṗαi ∆(x − xαi ) +
∑
i,α

pαi

[
∂∆(x − xαi )

∂x
· v

]
−

∑
i,α

pαi

[
∂∆(x − xαi )

∂x
·

pαi
mα

i

]

=
∑
i,α

ṗαi ∆(x − xαi ) +



∂

∂x



∑
i,α

pαi ∆(x − xαi )






v −
∂

∂x
·



∑
i,α

pαi ⊗
pαi
mα

i

∆(x − xαi )



=
∑
i,α

ṗαi ∆(x − xαi ) +

[
∂

∂x
(ρv)

]
v −

∂

∂x
·



∑
i,α

mα
i

( pαi
mα

i

− v
)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )


−

∂

∂x
·
(
ρv ⊗ v

)
=

∑
i,α

ṗαi ∆(x − xαi ) − ρv
(
∂

∂x
· v

)
+
∂

∂x
· TK, (11)

where the third equality is obtained by using momentum
relation (3) and the tensor TK in (11) is given by

TK = −
∑
i,α

mα
i

(
pαi
mα

i

− v
)
⊗

(
pαi
mα

i

− v
)
∆(x − xαi ). (12)

Note that we have used the property ∂
∂x · (a ⊗ b) that yields

a vector with components ∂
∂xj

(aibj) in Einstein’s summation
convention. Expanding the time derivative on the left-hand
side of (11) and using the balance of mass (10) reduces (11) to

ρv̇ =
∑
i,α

ṗαi ∆(x − xαi ) +
∂

∂x
· TK. (13)

Using the equations of motion (1), the first term on the
right-hand side of (11) can be simplified as∑

i,α

ṗαi ∆(x − xαi ) =
∑
i,α

(
− ζ

pαi
mα

i

+
√

2kBT ζ
dW
dt

)
∆(x − xαi )

+
∑
i,α

[ ∑
j,β

Fαβij ∆(x − xαi ) −
∂us(x1

i , x2
i )

∂xαi

×∆(x − xαi ) + fαi ∆(x − xαi )

]
. (14)

In (14), the term
∑

i,α,j,β
Fαβij ∆(x − xαi ) arises due to the forces

between all the particles in the system and can be simplified
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as∑
i,α,j,β

Fαβij ∆(x − xαi )

= −
1
2

∑
i,α,j,β




∂u2(xαi , xβj )

∂xαi

[
∆(x − xαi ) − ∆(x − xβj )

] 


,

(15)

where use is made of the relation

∂u2(xαi , xβj )

∂xβj
= −

∂u2(xαi , xβj )

∂xαi
(16)

since the pair potential u2(xαi , xβj ) depends only on the dis-
tances between the corresponding pair of atoms. Equation (15)
can be simplified using Noll’s identity56,57 given by

∆(x − xαi ) − ∆(x − xβj ) = −
∂

∂x
· (xαβij bαβij ), (17)

where xαβij = xαi − xβj and bαβij is the bond function defined as

bαβij =

∫ 1

0
dλ ∆(x − λxαi + xαβij ). (18)

Using (17) and (18), the right-hand side of (15) can be rewritten
as ∑

i,α,j,β

Fαβij ∆(x − xαi ) = −
1
2

∑
i,j,α,β

Fαβij

∂

∂x
·
(
xαβij bαβij

)

= −
1
2
∂

∂x
·

*.
,

∑
i,j,α,β

Fαβij ⊗ xαβij bαβij
+/
-

=
1
2
∂

∂x
· TV, (19)

where the tensor TV is given by

TV = −
1
2

∑
i,j,α,β

Fαβij ⊗ xαβij bαβij . (20)

Next, the term
∑
i,α

∂us(x1
i , x2

i )

∂xαi
∆(x − xαi ) in (14) can be

rewritten as∑
i,α

−
∂us(x1

i , x2
i )

∂xαi
∆(x − xαi )

=
∑

i


−
∂us(x1

i , x2
i )

∂x1
i

∆(x − x1
i ) −

∂us(x1
i , x2

i )

∂x2
i

∆(x − x2
i )



= −
∑

i

∂us(x1
i , x2

i )

∂x1
i

[
∆(x − x1

i ) − ∆(x − x2
i )

]

=
∂

∂x
·



∑
i

∂us(x1
i , x2

i )

∂x1
i

⊗ x12
ii b12

ii



=
∂

∂x
· TS, (21)

where x12
ii = x1

i − x2
i and TS is given by

TS =
∑

i

∂us(x1
i , x2

i )

∂x1
i

⊗ x12
ii b12

ii . (22)

Finally, the remaining term in (14) due to the active driving
force can be simplified using the equal and opposite forces f i

acting on atoms 1 and 2 of molecule i to obtain∑
i,α

fαi ∆(x − xαi ) =
∑

i

f i

[
∆(x − x1

i ) − ∆(x − x2
i )

]

= −
∂

∂x
· *

,

∑
i

f i ⊗ x12
ii b12

ii
+
-

=
∂

∂x
· TA, (23)

where the tensor TA is defined as

TA = −
∑

i

f i ⊗ x12
ii b12

ii . (24)

Combining all the terms in (19), (21), and (23) and
substituting them into (14) reduces (14) to∑

i,α

ṗαi ∆(x − xαi ) =
∑
i,α

(
− ζ

pαi
mα

i

+
√

2kBT ζ
dW
dt

)
∆(x − xαi )

+
∂

∂x
· (TV + TS + TA). (25)

Using (25), Eq. (13) can be reduced to

ρv̇ =
∂

∂x
· T + ρb, (26)

where, T is the total stress tensor given by

T =
(
TK + TV + TA + TS

)
(27)

and ρb is the body force density given by

ρb =
∑
i,α

(
−ζ

pαi
mα

i

+
√

2kBT ζ
dW
dt

)
∆(x − xαi ). (28)

Equation (26) is a statement of the macroscopic balance
of linear momentum with the total stress tensor T given by
the sum of the stresses coming from kinetic terms TK, virial
terms that include the interatomic interactions from the pair
potentials TV, harmonic spring terms TS, and the active forces
TA. It can be seen that the kinetic stresses TK, virial stresses
TV, and harmonic stresses TS are symmetric in nature. How-
ever, the active stress TA is not symmetric. This asymme-
try is very particular to a system consisting of microscopic
couples as in the case of active dumbbells considered here.
Note that the stress tensor can contain non-symmetric parts
in the case of multi-body potentials,58,59 for example, in the
case of interactions consisting of three-body interactions,60

which are usually used to model systems such as water61,62

and silicon.60,63 Moreover, it should be noted that our work
deviates from the analysis in Ref. 64, where the stress ten-
sor is considered for systems that contain contributions from
active forces but still do not have an active rotational com-
ponent that can lead to the asymmetry of the stress tensor.
Specifically, in Ref. 64, it is found that the active forces
contribute to the deviatoric but still symmetric part of the
stress tensor. This is also the case in Ref. 49, where contri-
butions from the active forces still contain only symmetric
terms.
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Given the nature of the stress tensor T in (27), pressure
in the system at any macroscopic point x and time t can
be obtained as the negative of the trace of the stress tensor.
As can be seen from the expressions of the individual com-
ponents of the total stress tensor given by Eqs. (12), (20),
(22), and (24), pressure consists of contributions only from
kinetic and intermolecular forces and not the active forces.
This is due to the assumption in the microscopic dynam-
ics (1) that the active forces act always perpendicular to the
bond connecting the two atoms of the molecules thereby mak-
ing TA traceless. Hence, the active forces only contribute
the deviatoric components of the stress tensor. This should
be contrasted with the case of active Brownian particles,30,65

where the active forces contribute to the definition of the
pressure.

E. Balance of angular momentum

The asymmetric part of the stress tensor T drives a spin
angular momentum, and understanding spin requires deriva-
tion of the balance of angular momentum. The balance of angu-
lar momentum has been proposed as a law at the continuum
level by43 leading to the introduction of couple stress tensors
based on the application of the surface couples (see Fig. 2). In

FIG. 2. Stress and couples: A schematic showing the forces and couples act-
ing on an infinitesimal area ∆s at a point on the surface of a body. Here, ∆f
and ∆m are the surface forces and couples, related to the stress tensor and the
couple stress tensor by the relations lim

∆s→0

∆f
∆s = Tn and lim

∆s→0

∆m
∆s = Cn.

this section, we derive the balance of angular momentum from
the microscopic dynamics given by (1) and identify the expres-
sions for the couple stress tensor in terms of the microscopic
variables.

The balance of angular momentum can be derived at the
macroscopic level using the angular momentum relation (4)
and following a procedure similar to the derivation of balance
of linear momentum in Sec. II D. To this end, taking the time
derivate of both sides of (4) and employing the identity (8)
yields

ρ̇L =
∑
i,α

xαi × ṗαi ∆(x − xαi ) +
∑
i,α

xαi × pαi

[
∂∆(x − xαi )

∂x
· v

]
−

∑
i,α

xαi × pαi

(
∂∆(x − xαi )

∂x
·

pαi
mα

i

)

=
∑
i,α

xαi × ṗαi ∆(x − xαi ) +



∂

∂x



∑
i,α

xαi × pαi ∆(x − xαi )






v −
∂

∂x
·

[ ∑
i,α

(
xαi × pαi

)
⊗

pαi
mα

i

∆(x − xαi )
]

=
∑
i,α

xαi × ṗαi ∆(x − xαi ) +
[
∂

∂x
(
ρL

)]
v −

∂

∂x
·
(
ρL ⊗ v

)
−

∂

∂x
·

[ ∑
i,α

(
xαi × pαi

)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

]
, (29)

where the third equality is obtained using the definition of
macroscopic angular momentum (4). Expanding the time
derivative on the left-hand side of (29), using the balance of
mass (10) and the following identity

∂

∂x
·
(
ρL ⊗ v

)
=

(
ρ
∂

∂x
· v

)
L +

[
∂

∂x
(
ρL

)]
v, (30)

Equation (29) can be reduced to

ρL̇ =
∑
i,α

xαi × ṗαi ∆(x − xαi ) −
∂

∂x
·

[ ∑
i,α

(
xαi × pαi

)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

]
. (31)

The last term on the right-hand side of (31) can be
rewritten as

−
∂

∂x
·

[ ∑
i,α

(
xαi × pαi

)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

]

= −
∂

∂x
·

{∑
i,α

[
(xαi − x) × pαi

]
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

}

−
∂

∂x
·

[ ∑
i,α

(
x × pαi

)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

]

=
∂

∂x
·CK −

∂

∂x
·

[ ∑
i,α

(
x×pαi

)
⊗

( pαi
mα

i

− v
)
∆(x− xαi )

]
,

(32)

where the tensor CK is given by

CK = −

{∑
i,α

[
(xαi − x) × pαi

]
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

}
. (33)

The second term on the right-hand side of (32) can be
simplified using Einstein’s indicial notation techniques as
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∂

∂x
·

[ ∑
i,α

(
x × pαi

)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

]

=
∂

∂xo



∑
i,α

ε lmnxm(pαi )n

(
pαi
mα

i

− v
)

o

∆(x − xαi )



=
∑
i,α

ε lmnδmo(pαi )n

(
pαi
mα

i

− v
)

o

∆(x − xαi ) + ε lmnxm

∑
i,α

∂

∂xo

[
(pαi )n(

pαi
mα

i

− v)o∆(x − xαi )

]

=
∑
i,α

ε lmnmα
i

(
pαi
mα

i

− v
)

n

(
pαi
mα

i

− v
)

m

∆(x − xαi ) +
∑
i,α

ε lmnmα
i vn

(
pαi
mα

i

− v
)

m

∆(x − xαi )

+ ε lmnxm
∂

∂xo



∑
i,α

mα
i

(
pαi
mα

i

− v
)

n

(
pαi
mα

i

− v
)

o

∆(x − xαi )


+ ε lmnxm

∂

∂xo



∑
i,α

mα
i vn

(
pαi
mα

i

− v
)

o

∆(x − xαi )


, (34)

where ε lmn is the permutation tensor and δmn is the Kronecker
Delta. Noting that∑

i,α

mα
i vn

(
pαi
mα

i

− v
)

o

∆(x − xαi ) = 0, (35)

due to the linear momentum relation (3), Eq. (34) can be
reduced to

∂

∂x
·

[ ∑
i,α

(
x × pαi

)
⊗

( pαi
mα

i

− v
)
∆(x − xαi )

]

= −ε lmnTK
nm − ε lmnxm

∂

∂xo

(
TK

no

)
= −AK − x ×

∂

∂x
· TK, (36)

where TK
mn are the components of the kinetic part of the

stress tensor TK in the indicial notation and AK denotes
the vector formed from the anti-symmetric part of the
kinetic stress tensor with its components AK

l = ε lmnTK
nm.

Using Eqs. (32), (33), and (36), Eq. (31) can be simplified

to

ρL̇ =
∑
i,α

xαi × ṗαi ∆(x−xαi )+
∂

∂x
·CK +AK +x×

∂

∂x
·TK. (37)

The remaining term that can be reduced is the first term
on the right-hand side of Eq. (37), which upon using the
microscopic equations of motion (1) yields∑

i,α

xαi × ṗαi ∆(x − xαi ) =
∑
i,α

xαi ×
*.
,
−ζ

pαi
mi

+
∑
j,β

Fαβij + fαi

−
∂us(x1

i , x2
i )

∂xαi
+

√
2kBT ζ

dW
dt

+
-
.

(38)

In what follows, we manipulate the terms on the right-
hand side of (38) to derive the quantities in the balance of
angular momentum at the coarse-grained level. To this end, the
second term on the right-hand side of (38) can be manipulated
to yield

∑
i,α

xαi ×
∑
j,β

Fαβij =
∑

i,α,j,β

xαi ×
−∂u2(xαi , xβj )

∂xαi
∆(x − xαi )

= −
1
2

∑
i,α,j,β

[
xαi ∆(x − xαi ) − xβj ∆(x − xβj )

]
×
∂u2(xαi , xβj )

∂xαi

=
1
2

∑
i,α,j,β

[
−xαi

(
∂

∂x
· (xαβij bαβij )

)
+ xαβij ∆(x − xβj )

]
× Fαβij

= −
1
2
∂

∂x
·



∑
i,α,j,β

(xαi × Fαβij ) ⊗ xαβij bαβij


+

1
2

∑
i,α,j,β

xαβij × Fαβij ∆(x − xβj )

=
∂

∂x
·


−

1
2

∑
i,α,j,β

(xαi − x) × Fαβij ⊗ xαβij bαβij



+
∂

∂x
·


−

1
2

∑
i,α,j,β

(
x × Fαβij

)
⊗ xαβij bαβij


+

1
2

∑
i,α,j,β

xαβij × Fαβij ∆(x − xβj )

=
∂

∂x
· CV + AV + x ×

∂

∂x
· TV +

1
2

∑
i,α,j,β

xαβij × Fαβij ∆(x − xβj ), (39)
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where the tensor CV is given by

CV = −
1
2

*.
,

∑
i,α,j,β

(xαi − x) × Fαβij ⊗ xαβij bαβij
+/
-

, (40)

AV is the vector formed by the antisymmetric parts of the
virial stress tensor TV given by AV

l = +ε lmnTV
nm, and the last

equality in (39) is obtained by using the pair potential con-
tribution to the total stress tensor given in (20). The last term
on the right-hand side of (39) is identically zero for systems
modeled by pair potentials due to the fact that the force Fαβij

is proportional to xαβij .
Using a similar procedure to reduce the pair potential-

mediated forces in (39) and (40), the fourth term on the right-
hand side of (38) can be reduced to

∑
i,α

xαi × −
∂us(x1

i , x2
i )

∂xαi
=

∑
i


x1

i ×
*
,
−
∂us(x12

i )

∂x1
i

+
-
∆(x − x1

i )

+ x2
i ×

*
,
−
∂us(x12

i )

∂x2
i

+
-
∆(x − x2

i )


=
∂

∂x
· CS + AS + x ×

∂

∂x
· TS, (41)

where the tensor CS is given by

CS = −
1
2

∑
i

(x1
i − x) ×

−∂us(x1
i , x2

i )

∂x1
i

⊗ x12
ii b12

ii (42)

and AS is the vector formed from the anti-symmetric part of
the stress tensor TS.

Next, the third term on the right-hand side of (39) involving the active forces can be reduced to∑
i,α

xαi × fαi =
∑

i

[
x1

i ∆(x − x1
i ) − x1

i ∆(x − x2
i ) + x1

i ∆(x − x2
i ) − x2

i ∆(x − x2
i )

]
× f i

=
∑

i

x1
i

[
−
∂

∂x
· (x12

ii b12
ii )

]
× f i +

∑
i

x12
ii × f i∆(x − x2

i )

=
∂

∂x
·


−

∑
i

(x1
i × f i) ⊗ x12

ii b12
ii


+

∑
i

x12
ii × f i∆(x − x2

i )

=
∂

∂x
·


−

∑
i

(x1
i − x) × f i ⊗ x12

ii b12
ii


−

∂

∂x
·



∑
i

(x × f i) ⊗ x12
ii b12

ii


+

∑
i

x12
ii × f i∆(x − x2

i )

=
∂

∂x
· CA + AA + x ×

∂

∂x
· TA +

∑
i

x12
ii × f i∆(x − x2

i ), (43)

where the tensor CA is defined as

CA = −
∑

i

[(x1
i − x) × f i] ⊗ x12

ii b12
ii (44)

and AA is the vector formed by the anti-symmetric components
of the active part of the stress tensor TA similar to AK and
AV.

Finally, combining all the terms in Eqs. (39)–(43), the
resulting angular momentum balance given by (37) can be
reduced to∑
i,α

xαi × ṗαi ∆(x − xαi )

=
∑
i,α

xαi ×
(
−ζ

pαi
mi

+
√

2kBT ζ
dW
dt

)
+
∑

i

x12
ii × f i∆(x − x2

i )

+
∂

∂x
·
(
CK + CV + CS + CS

)
+ AK + AS + AV + AA

+ x ×
∂

∂x
·
(
TK + TV + TS + TA

)
=

∂

∂x
· C + ρG + x × ρb + A + x ×

∂

∂x
· T, (45)

where

ρG =
∑

i

x12
ii × f i ∆(x − x2

i ) +
∑
i,α

(
xαi − x

)
×

(
−ζ

pαi
mi

+
√

2kBT ζ
dW
dt

)
∆(x − xαi ), (46)

C = CK + CV + CS + CA, (47)

and
A = AK + AV + AS + AA. (48)

Substituting (45) in (37), the total balance of angular
momentum at the coarse-grained level can be obtained as

ρL̇ =
∂

∂x
· C + ρG + x × ρb + A + x ×

∂

∂x
· T. (49)

Equation (49) is a statement of the macroscopic balance of
angular momentum with the total couple stress tensor C given
by the sum of a contribution of the couple stresses coming from
kinetic CK, interatomic potential CV, harmonic spring CS, and
active forces CA, and ρG being the body torque at the coarse-
grained level. As can be seen from the form in (40), the couple
stress is the virial contribution from the torque created by a
force between the bond connecting the atoms {i, α} and {j, β}
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with respect to the center x of the coarse-graining volume. The
physical meaning of all the other terms CK, CS, and CA can
be understood in a similar way to CV. We note that the couple
stress tensor can also exist for liquid-crystal systems made up
of rod like molecules, which are similar to the rotary active
dumbbells considered in our work.66,67

The microscopic derivation of balance of angular momen-
tum has not been considered before by Irving and Kirkwood.
It is of interest to see that even though the stress tensor from
interaction potentials and kinetic terms lead to a symmetric
form for the stress tensor, the corresponding couple stresses
are not zero. Couple stresses are usually neglected or not con-
sidered in the case of mechanics of continuous media, even
in the case of passive particles.68 This assumption is satisfied
when the time scales associated with the relaxation of couple
stresses are small compared to that of the stress tensor in addi-
tion to no body torques.45 In this case, the change of angular
momentum and couple stresses can be ignored, and the bal-
ance of angular momentum (49) then imposes the symmetry of
the stress tensor. However, should the active forces driving the
dumbbell particles be non-zero, the active couple stresses CA

and the asymmetric part of the stress tensor from TA need not
be negligible. Moreover, the non-zero active forces also drive
the body torques ρG as can be seen from (46). Therefore, the
case of active dumbbells or any system consisting of micro-
scopically rotating particles presents a unique case where the
spin stresses and the non-symmetric part of the stress tensor
are not negligible, and the coupling between linear and angular
momentum should be considered. This can be seen explicitly
from the balance of spin that is considered in Sec. II E 1.

1. Balance of spin

In this section, we introduce the concept of spin and
derive the balance of spin. Following the work of Dahler and
Scriven,43 the total angular momentum can be divided without
loss of generality as

ρL = ρx × v + ρM, (50)

where ρx×v is moment of linear momentum (or orbital angular
momentum) and M is the internal spin, as shown in Fig. 3.

Taking the cross product of the local form of the balance
of linear momentum with x yields

x × ρv̇ = x ×
∂

∂x
· T + ρx × b. (51)

Making use of (50) and (51) in the local form of total angular
momentum (49) yields the equation for balance of spin as

ρṀ =
∂

∂x
· C + ρG + A. (52)

FIG. 3. A schematic showing the decomposition of the total angular momen-
tum into orbital angular momentum and spin.

F. Balance of moment of inertia

Since the particles in a fluid are continuously exchanged
in the neighborhood of the macroscopic point x, the moment of
inertia I is transported across the system requiring the balance
equation for moment of inertia. To this end, we derive the
associated macroscopic balance of moment of inertia using
relation (5). Taking the time derivative of both sides of (5)
yields

İ = 2
∑
i,α

[
mα

i

(
pαi
mα

i

− v
)
·
(
xαi − x

)]
i ∆(x − xαi )

−
∑
i,α

[ (
pαi
mα

i

− v
)
⊗

(
xαi − x

)
+

(
xαi − x

)
⊗

(
pαi
mα

i

− v
) ]

×mα
i ∆(x − xαi ) +

∑
i,α

Iαi

[
∂∆(x − xαi )

∂x
· v

−
∂∆(x − xαi )

∂x
·

pαi
mα

i

]
, (53)

where we have used identity (8). The last term on the right can
be simplified as∑

i,α

Iαi

[
∂∆(x − xαi )

∂x
· v −

∂∆(x − xαi )

∂x
·

pαi
mα

i

]

=
∂

∂x
·



∑
i,α

Iαi ⊗
(
v −

pαi
mα

i

)
∆(x − xαi )



− I
(
∂

∂x
· v

)
− 2

∑
i,α

[
mα

i (x − xαi ) ·

(
v −

pαi
mα

i

)]
i

−
∑
i,α

mα
i

[
(x − xαi ) ⊗

(
pαi
mα

i

− v
)

+

(
pαi
mα

i

− v
)
⊗ (x − xαi )

]
∆(x − xαi ), (54)

where the dyadic product is between a tensor and a vector,
which for any general tensor S and vector d yields a third
order tensor with the elements Sijbk in the indicial notation.
Using (54), the rate of change of moment of inertia in (53) can
be reduced to

İ + I
(
∂

∂x
· v

)
= −

∂

∂x
· Y, (55)

where Y is the moment of inertia flux tensor given

Y = −



∑
i,α

Iαi ⊗
(

pαi
mα

i

− v
)
∆(x − xαi )


. (56)

Note that the moment of inertia flux tensor Y is a third
order tensor owing to the second order nature of the tensor
I. Equation (55) is a statement of the macroscopic balance of
momentum of inertia of the system.

Finally, without loss of any generality, the spin can be
rewritten as

ρM = Iω(x, t), (57)

where ω is the rotational velocity of the macroscopic point.
Note that the definition of the moment of inertia I, and
thus ω, depends on the choice of the coordinate system.
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Using (57), (55), and (10), the balance of spin in (52) can
be written in terms of the rate of rotation as

Iω̇ =
(
∂

∂x
· Y

)
ω +

∂

∂x
· C + ρG + A. (58)

G. Balance of energy

In this section, we derive the balance of total energy to
identify the sources of heat and heat flux at the macroscopic

scale. We begin by decomposing the total energy into the
internal energy and translational kinetic and rotational kinetic
energies. We then derive the balance of total energy and use
the decomposition of the energy to finally derive the balance
of internal energy.

H. Decomposition of energy

We begin the decomposition of energy by rewriting the
total kinetic energy arising from the particles as

∑
i,α

pαi · p
α
i

2mα
i

∆(x − xαi ) =
∑
i,α

1
2

mα
i

(
pαi
mα

i

− v
)
·

(
pαi
mα

i

− v
)
∆(x − xαi ) +

ρv · v
2

=
∑
i,α

1
2

mα
i

[
pαi
mα

i

− v̂αi + ω × (xαi − x)

]
·

[
pαi
mα

i

− v̂αi + ω × (xαi − x)

]
∆(x − xαi ) +

ρv · v
2

=
1
2

∑
i,α

mα
i

(
pαi
mα

i

− v̂αi

)
·

(
pαi
mα

i

− v̂αi

)
∆(x − xαi ) +

∑
i,α

mα
i

[
ω × (xαi − x)

]
·

(
pαi
mα

i

− v
)
∆(x − xαi )

−
1
2

∑
i,α

mα
i

[
ω × (xαi − x)

]
·

[
ω × (xαi − x)

]
∆(x − xαi ) +

ρv · v
2

, (59)

where
v̂αi = v + ω × (xαi − x) (60)

is the rigid-body convective velocity of a particle that is trans-
lating and rotating with the continuum point x. The third term
on the right-hand side of the third equality in (59) can be
rewritten as

1
2

∑
i,α

mα
i

[
ω × (xαi − x)

]
·

[
ω × (xαi − x)

]
∆(x − xαi )

=
1
2

I : ω ⊗ ω =
1
2

Iω · ω, (61)

where “:” denotes the double contraction between two second
order tensors, which for any two general tensors, S and H
yield a scalar SijH ij with Einstein’s summation convention. In
obtaining (61), we have used the identity
[
ω × (xαi − x)

]
·

[
ω × (xαi − x)

]

=
{ [

(xαi − x) · (xαi − x)
]
i−

[
(xαi − x) ⊗ (xαi − x)

]}
:ω ⊗ω.

(62)

The second term on the right-hand side of the third equality in
(59) can be rewritten as∑

i,α

mα
i

[
ω × (xαi − x)

]
·

(
pαi
mα

i

− v
)
∆(x − xαi )

=
∑
i,α

mα
i

[
(xαi − x) ×

(
pαi
mα

i

− v
) ]
· ω∆(x − xαi )

= ρM · ω

= Iω · ω (63)

using the definition of spin angular momentum (57) and an
assumption that the continuum point x represents the center

of mass of particles in its neighborhood defined by the length
scale of averaging in the coarse-graining function, i.e.,

ρx =
∑
i,α

mα
i xαi ∆(x − xαi ). (64)

Making use of (61) and (63), the kinetic energy, in Eq. (59),
can be reduced to∑

i,α

pαi · p
α
i

2mα
i

∆(x − xαi )

=
1
2

∑
i,α

mα
i

(
pαi
mα

i

− v̂αi

)
·

(
pαi
mα

i

− v̂αi

)
∆(x − xαi )

+
ρv · v

2
+

Iω · ω
2

. (65)

Using (65), the total energy at macroscale (7) can be simplified
to

ρe =
1
2

∑
i,α,j,β

u2(xαi , xβj )∆(x − xαi ) +
1
2

∑
i,α

us(x1
i , x2

i )∆(x − xαi )

+
1
2

∑
i,α

mα
i (vαi − v̂αi ) · (vαi − v̂αi )∆(x − xαi )

+
ρv · v

2
+

Iω · ω
2

. (66)

Denoting the first three terms on the right-hand side of (66) as
the total internal energy ρ(x, t)ε(x, t) at the macroscopic point
x given by

ρε =
1
2

∑
i,α,j,β

u2(xαi , xβj )∆(x − xαi ) +
1
2

∑
i,α

us(x1
i , x2

i )∆(x − xαi )

+
1
2

∑
i,α

mα
i (vαi − v̂αi ) · (vαi − v̂αi )∆(x − xαi ), (67)
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the total energy (7) can be decomposed into internal energy and translational and rotational kinetic energies as

ρe = ρε +
ρv · v

2
+

Iω · ω
2

. (68)

1. Balance of total energy

Taking the time derivative of both sides of (7), we have

ρ̇e + ρė =
∑
i,α

pαi · ṗ
α
i

mα
i

∆(x − xαi ) +
∑
i,α

Eαi

[
∂∆(x − xαi )

∂x
·

(
v −

pαi
mα

i

)]
+

1
2

∑
i,α,j,β



∂u2(xαi , xβj )

∂xαi
·

pαi
mα

i

+
∂u2(xαi , xβj )

∂xβj
·

pβj

mβ
j



×∆(x − xαi ) +
1
2

∑
i,α



∂us(x1
i , x2

i )

∂x1
i

·
p1

i

m1
i

+
∂us(x1

i , x2
i )

∂x2
i

·
p2

i

m2
i


∆(x − xαi ), (69)

where Eαi is the total energy of each atom given by

Eαi =
pαi · p

α
i

2mα
i

+
1
2

∑
j,β

u2(xαi , xβj ) +
1
2

us(x1
i , x2

i ). (70)

Note that the interaction energy from the pair potential and the harmonic spring energy are equally divided between two interacting
particles. Using Eqs. (10) and (1), we can rewrite (69) as

ρė − ρ

(
∂

∂x
· v

)
e =

∑
i,α

pαi
mα

i

·


−ζ

pαi
mi

+
∑
j,β

Fαβij + fαi −
∂us(x1

i , x2
i )

∂xαi
+

√
2kBT ζ

dW
dt


∆(x − xαi )

+
∑
i,α

Eαi

[
∂∆(x − xαi )

∂x
·

(
v −

pαi
mα

i

)]
+

1
2

∑
i,α,j,β



∂u2(xαi , xβj )

∂xαi
·

pαi
mα

i

+
∂u2(xαi , xβj )

∂xβj
·

pβj

mβ
j


∆(x − xαi )

+
1
2

∑
i,α



∂us(x1
i , x2

i )

∂x1
i

·
p1

i

m1
i

+
∂us(x1

i , x2
i )

∂x2
i

·
p2

i

m2
i


∆(x − xαi ). (71)

We now simplify each term in (71). To this end, the second term on the right-hand side of (71) can be rewritten as∑
i,α

Eαi

[
∂∆(x − xαi )

∂x
·

(
v −

pαi
mα

i

)]
=

∂

∂x
*.
,

∑
i,α

Eαi ∆(x − xαi )+/
-
· v −

∂

∂x
·

*.
,

∑
i,α

Eαi
pαi
mα

i

∆(x − xαi )+/
-

= −ρ

(
∂

∂x
· v

)
e −

∂

∂x
·

*.
,

∑
i,α

Eαi

(
pαi
mα

i

− v
)
∆(x − xαi )+/

-
, (72)

where use is made of relation (7). Equation (72) can be further simplified by manipulating the kinetic energy part of the atomic
energy Eαi in (70) to yield∑

i,α

Eαi

[
∂∆(x − xαi )

∂x
·

(
v −

pαi
mα

i

)]
= −ρ

(
∂

∂x
· v

)
e −

∂

∂x
·

(∑
i,α

[ (pαi − mα
i v) · (pαi − mα

i v)

2mα
i

+
1
2

∑
j,β

u2(xαi , xβj )

+
1
2

us(x1
i , x2

i )
] (

pαi
mα

i

− v
)
∆(x − xαi )

)
+
∂

∂x
·

((
TK

)T
v
)
, (73)

where the last term represents the contribution from the kinetic part of stress tensor (12).
Next, the third term on the right-hand side of (71) can be rewritten as

1
2

∑
i,α,j,β



∂u2(xαi , xβj )

∂xαi
·

pαi
mα

i

+
∂u2(xαi , xβj )

∂xβj
·

pβj

mβ
j


∆(x − xαi )

= −
1
2

∑
i,α,j,β

(
Fαβij ·

pαi
mα

i

)
∆(x − xαi ) +

1
2

∑
i,α,j,β

*
,

∂u2(xαi , xβi )

∂xαi
·

pαi
mα

i

+
-

(
∆(x − xβj ) + ∆(x − xαi ) − ∆(x − xαi )

)
= −

∑
i,α,j,β

(
Fαβij ·

pαi
mα

i

)
∆(x − xαi ) −

1
2

∑
i,α,j,β

(
Fαβij ·

pαi
mα

i

) (
∂

∂x
·
(
xαβij bαβij

))

= −
∑

i,α,j,β

(
Fαβij ·

pαi
mα

i

)
∆(x − xαi ) −

∂

∂x
·

*.
,

1
2

∑
i,α,j,β

[
Fαβij ·

(
pαi
mi
− v

)]
xαβij bαβij

+/
-

+
∂

∂x
·

((
TV

)T
v
)
, (74)
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where TV is the virial stress in (20).
Employing similar procedures in deriving (74), the fourth term on the right-hand side of (71) can be modified to yield

1
2

∑
i,α

*
,

∂us(x1
i , x2

i )

∂x1
i

·
p1

i

m1
i

+
∂us(x1

i , x2
i )

∂x2
i

·
p2

i

m2
i

+
-
∆(x − xαi ) =

∑
i


*
,

∂us(x1
i , x2

i )

∂x1
i

·
p1

i

m1
i

+
-
∆(x − x1

i ) + *
,

∂us(x1
i , x2

i )

∂x2
i

·
p2

i

m2
i

+
-
∆(x − x2

i )


=
∂

∂x
· *

,

1
2

∑
i

*
,



∂us(x1
i , x2

i )

∂x1
i

· *
,

p1
i

mi
− v+

-


x12

ii b12
ii

+


∂us(x1
i , x2

i )

∂x2
i

· *
,

p2
i

mi
− v+

-


x21

ii b21
ii

+
-

+
-

+
∂

∂x
·

((
TS

)T
v
)
, (75)

where TS is the stress due to the harmonic spring terms given by (22).
The active forces term in (71) can be simplified as∑

i,α

pαi
mα

i

· fαi ∆(x − xαi ) =
∑

i

*
,

p1
i

m1
i

−
p2

i

m2
i

+
-
· f i∆(x − x1

i ) −
∂

∂x
· *

,

∑
i


f i · *

,

p2
i

m2
i

− v+
-


x12

ii b12
ii

+
-

+
∂

∂x
·

((
TA

)T
v
)
, (76)

where TA is the active stress in (24).
Combining the results from (72) to (76) and rearranging the terms, the total energy balance in (71) reduces to

ρė =
∑
i,α

pαi
mα

i

·

(
−ζ

pαi
mi

+
√

2kBT ζ
dW
dt

)
∆(x − xαi ) +

∂

∂x
·
(
TT v

)
+

∑
i

*
,

p1
i

m1
i

−
p2

i

m2
i

+
-
· f i∆(x − xαi )

−
∂

∂x
·

(∑
i,α

[ (pαi − mα
i v) · (pαi − mα

i v)

2mα
i

+
1
2

∑
j,β

u2(xαi , xβj ) +
1
2

us(x1
i , x2

i )
] (

pαi
mα

i

− v
)
∆(x − xαi )

)

−
∂

∂x
·

*.
,

1
2

∑
i,α,j,β

[
Fαβij ·

(
pαi
mi
− v

)]
xαβij bαβij

+/
-
−

∂

∂x
· *

,

∑
i


f i · *

,

p2
i

m2
i

− v+
-


x12

ii b12
ii

+
-

+
∂

∂x
· *

,

1
2

∑
i

*
,



∂us(x1
i , x2

i )

∂x1
i

· *
,

p1
i

mi
− v+

-


x12

ii b12
ii +



∂us(x1
i , x2

i )

∂x2
i

· *
,

p2
i

mi
− v+

-


x21

ii b21
ii

+
-

+
-
, (77)

where the last four terms contain divergence terms that are the fluxes of energy in the system.
At this stage, it can be seen that the second term on the right-hand side of the energy balance in (77) contains the rate of work

done due to the applied forces in terms of the stress tensor. What remains to be seen is the form for the rate of work performed
by the surface couples in the system. To this end, we modify each of the last four terms of (77) by subtracting the rotational parts
of the velocity from the individual atomic velocities. Beginning with the fifth term on the right-hand side of (77), it can be seen
that ∑

i,α,j,β

1
2

[
Fαβij ·

(
pαi
mα

i

− v
)]

xαβij bαβij =
∑

i,α,j,β

1
2

[
Fαβij ·

(
pαi
mα

i

− v̂αi

)]
xαβij bαβij +

∑
i,α,j,β

1
2

(
Fαβij ·

[
ω ×

(
xαi − x

)] )
xαβij bαβij

=
∑

i,α,j,β

1
2

[
Fαβij ·

(
pαi
mα

i

− v̂αi

)]
xαβij bαβij +

∑
i,α,j,β

[
1
2

xαβij ⊗
((

xαi − x
)
× Fαβij bαβij

)]
ω

= JV
q − (CV)

T
ω, (78)

where

JV
q =

∑
i,α,j,β

1
2

[
Fαβij ·

(
pαi
mα

i

− v̂αi

)]
xαβij bαβij (79)

and CV is the virial part of the couple stress given by (40).
Following similar procedures used to obtain Eqs. (78) and (79),
the last term on the right-hand side of (77) is reduced to

1
2

∑
i

*
,



∂us(x1
i , x2

i )

∂x1
i

· *
,

p1
i

mi
− v+

-


x12

ii b12
ii

+


∂us(x1
i , x2

i )

∂x2
i

· *
,

p2
i

mi
− v+

-


x21

ii b21
ii

+
-
= −JS

q − (CS)
T
ω,

(80)

where
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JS
q = −

∑
i



∂us(x1
i , x2

i )

∂x1
i

· *
,

p1
i

m1
i

− v̂1
i

+
-

x12
ii b12

ii +
∂us(x1

i , x2
i )

∂x2
i

· *
,

p2
i

m2
i

− v̂2
i

+
-

x21
ii b21

ii


(81)

and CS is the spring part of the couple stress given by (42).
Next, the active terms contained in the sixth term on the right-hand side of (77) can be reduced to∑

i


f i · *

,

p2
i

m2
i

− v+
-


x12

ii b12
ii =

∑
i


f i · *

,

p2
i

m2
i

− v̂2
i

+
-


x12

ii b12
ii +

∑
i

[
f i ·

(
ω × (x2

i − x)
)]

x12
ii b12

ii

= JA
q − (CA)

T
ω, (82)

where

JA
q =

∑
i


f i · *

,

p2
i

m2
i

− v̂2
i

+
-


x12

ii b12
ii (83)

and CA is the active part of the couple stress given by (44).
The fourth term on the right-hand side of (77) can be manipulated by subtracting and adding the rigid rotational components

of velocity ω × (xαi − x) from the relative kinetic energy term to yield∑
i,α

[ (pαi − mα
i v) · (pαi − mα

i v)

2mα
i

+
1
2

∑
j,β

u2(xαi , xβj ) +
1
2

us(x1
i , x2

i )
] (

pαi
mα

i

− v
)
∆(x − xαi )

=
∑
i,α


K̂
α
i +

1
2

∑
j,β

u2(xαi , xβj ) +
1
2

us(x1
i , x2

i ) − mα
i v ·

[
ω × (xαi − x)

]

(
pαi
mα

i

− v
)
∆(x − xαi )

+
∑
i,α

mα
i

( [
ω × (xαi − x)

]
·

pαi
mα

i

) (
pαi
mα

i

− v
)
∆(x − xαi ) −

1
2

∑
i,α

(
Iαi ω · ω

) (
pαi
mα

i

− v
)
∆(x − xαi )

= JK
q − (CK)

T
ω +

1
2

(Y : ω ⊗ ω), (84)

where

K̂
α
i =

1
2

mα
i

(
pαi
mα

i

− v̂αi

)
·

(
pαi
mα

i

− v̂αi

)
(85)

is the kinetic energy of the particle relative to the translational
and the rotational motion of the continuum point,

JK
q =

∑
i,α

*.
,
K̂
α
i +

1
2

∑
j,β

u2(xαi , xβj ) +
1
2

us(x1
i , x2

i )

−mα
i v · ω × (xαi − x)+/

-

(
pαi
mα

i

− v
)
∆(x − xαi ), (86)

and CK is the kinetic part of the couple stress given by (33).
With the manipulations from (78)–(86), the balance of

total energy at the macroscopic point in (77) is reduced to

ρė =
∑
i,α

pαi
mα

i

·

(
−ζ

pαi
mi

+
√

2kBT ζ
dW
dt

)
∆(x − xαi )

+
∑

i

*
,

p1
i

m1
i

−
p2

i

m2
i

+
-
· f i∆(x − xαi )

−
∂

∂x
·
(
Jq

)
+
∂

∂x
·
(
TT v

)
+
∂

∂x
·
(
CTω

)
−

1
2
∂

∂x
· (Y : ω ⊗ ω), (87)

where

Jq = JK
q + JV

q + JS
q + JA

q . (88)

We can further reduce the first term on the right-hand side of
(87) by adding and subtracting the terms corresponding to the
rotational velocity of the particle moving with the continuum
point ω × (xαi − x) to obtain

∑
i,α

pαi
mα

i

·

(
−ζ

pαi
mi

+
√

2kBT ζ
dW
dt

)
∆(x − xαi )

+
∑

i

*
,

p1
i

m1
i

−
p2

i

m2
i

+
-
· f i∆(x − xαi )

=
∑
i,α

(
pαi
mα

i

− v̂αi

)
·

(
−ζ

pαi
mα

i

+
√

2kBT ζ
dW
dt

)
∆(x − xαi )

+
∑

i

(
v̂1

i − v̂2
i

)
· f i∆(x − xαi ) + ρb · v + ρG · ω

= Λ + ρb · v + ρG · ω, (89)

where

Λ =
∑
i,α

[
pαi
mα

i

− v̂αi

]
·

(
−ζ

pαi
mi

+
√

2kBT ζ
dW
dt

)
∆(x − xαi )

+
∑
i,α

(
v̂1

i − v̂2
i

)
· f i∆(x − xαi ) (90)

and ρb and ρG are the body forces and the body torques given
by (28) and (46), respectively.
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Using (89) and (90), the total energy balance at macroscale
(87) can be obtained as

ρė = −
∂

∂x
· Jq +

∂

∂x
·
(
TT v

)
+
∂

∂x
·
(
CTω

)
−

1
2
∂

∂x
· (Y : ω ⊗ ω) + Λ + ρb · v + ρG · ω. (91)

Equation (91) can be considered as a generalization of the
balance of energy from microscopic dynamics as originally
conceived by Irving and Kirkwood,1 where only the effects of
linear momentum were considered. It can be seen from (91)
that the extension to include internal spin effects leads to addi-
tional terms corresponding to the rate of work or power from
spin stresses C and body torques G. Moreover, the effect of
transport of moment of inertia due to the existence of a moment
of inertia flux is explicit in the balance of energy, in addition
to being implicitly part of the definition of total energy ρe.
Importantly, the existence of spin affects the contributions to
the heat flux in comparison to the original expression for heat
flux derived by Irving and Kirkwood.1 One direct difference
is the way in which the convection of energy by interaction
forces and active forces occurs mainly by the momentum of the
particles relative to the convective translational and rotational
velocities of the continuum point x. However, it is interest-
ing to see that the convection of energy through kinetic and
potential energies is still affected by means of the momentum
relative to the translational velocity of the continuum point.
It is unclear to us at this moment physically why there exist
two distinct modes of convection for interaction and energetic
terms.

Lastly, the balance of energy (91) includes a term Λ that
can be interpreted as the source of heat with contributions
from both the friction from the bath and associated thermal
forces and the active torques. This term may be understood as
an extension of the concept of heat in the stochastic energet-
ics framework69,70 to extended continuous media and active
matter. This shows how the bath and the active rotations can
appear as internal sources of energy changes when viewed
from a coarse-grained perspective.

2. Balance of internal energy

In what follows, we use the decomposition of the total
energy given in (68) and derive the balance of internal energy.
We start by taking the time derivative of (68) which can be
written as

ρė = ρε̇ + ρv · v̇ +
1
2

(
İ + I

∂

∂x
· v

)
ω · ω + Iω · ω̇. (92)

Taking the dot product of the balance of linear momentum
with the velocity vector v, Eq. (26) yields

ρv · v̇ =
∂

∂x
·
(
TT v

)
− T : ∇v + ρb · v, (93)

where use is made of the identity(
∂

∂x
· A

)
· b =

∂

∂x
·
(
AT b

)
− A : ∇b, (94)

with A and b being any arbitrary tensor and vector, respec-
tively.

Taking the total time derivative of Eq. (57) corresponding
to the definition of the rotational velocity of the continuum
point yields

ρṀ − ρ
(
∂

∂x
· v

)
M = İω + Iω̇, (95)

where use is made of (9). Taking the dot product of (95) with
ω and rearranging the terms yields

ρṀ · ω =
(
İ + I

∂

∂x
· v

)
ω · ω + Iω · ω̇ (96)

using (57). Substituting (52) for the left-hand side of (96) yields(
İ + I

∂

∂x
· v

)
ω · ω + Iω · ω̇

=
∂

∂x
·
(
CTω

)
− C : ∇ω + ρG · ω + Aω. (97)

Combining (97), (55), and (91), yields the balance of internal
energy as

ρε̇ = −
∂

∂x
· Jq + T : ∇v + C : ∇ω − A · ω + Λ

−
Y : ∇(ω ⊗ ω)

2
, (98)

where we have used the following tensor calculus identity:

Y : ∇(ω ⊗ ω)
2

≡
1
2
∂

∂x
· (Y : ω ⊗ ω) +

1
2

(
∂

∂x
· Y

)
ω · ω.

(99)

III. CONCLUSION

The coarse-graining procedure presented in this paper can
be considered as a generalization of the Irving and Kirkwood
procedure to systems with internal rotational degrees of free-
dom. A summary of the balance equations is presented in
Table I. The expressions for the stress tensor, couple stress
tensor, and the heat flux vector, summarized in Table II, and
their dependence on the active forces (or torques) may lead
to a better understanding of the novel mechanical and rheo-
logical properties found in active matter systems. Specifically,
it is of interest to understand the effects of the active forces
on the resulting effective transport coefficients such as vis-
cosities and thermal conductivities. Having the expressions
for the stress, couple stress, and heat flux vectors in terms

TABLE I. Summary of balance equations.

Mass ρ̇ + ρ
∂

∂x
· v = 0

Linear momentum ρv̇ =
∂

∂x
· T + ρb

Angular momentum ρL̇ =
∂

∂x
· C + ρG + x × ρb + A + x ×

∂

∂x
· T

Spin ρṀ =
∂

∂x
· C + ρG + A

Moment of inertia İ + I
(
∂

∂x
· v

)
= −

∂

∂x
· Y

Total energy ρė = −
∂

∂x
· Jq +

∂

∂x
·
(
TT v

)
+
∂

∂x
·
(
CTω

)
−

1
2
∂

∂x
· (Y : ω ⊗ ω) + Λ + ρb · v + ρG ·ω
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TABLE II. Microscopic expressions for stress and couple stress tensors and heat flux vectors.

Linear momentum

Stress tensor T = TK + TV + TS + TA

(i) Kinetic TK = −
∑

i,α
mα

i

( pα
i

mα
i

− v
)
⊗

( pα
i

mα
i

− v
)
∆(x − xαi )

(ii) Virial TV = −
1
2

∑
i,j,α,β

Fαβ
ij ⊗ xαβ

ij bαβ
ij

(iii) Spring TS =
∑

i

∂us(x1
i , x2

i )

∂x1
i

⊗ x12
ii b12

ii

(iv) Active TA = −
∑

i
f i ⊗ x12

ii b12
ii

Body force ρb =
∑

i,α

(
−ζ

pα
i

mα
i

+
√

2kBTζ
dW
dt

)
∆(x − xαi )

Angular momentum

Couple stress tensor C = CK + CV + CS + CA

(i) Kinetic CK = −
∑

i,α

[
(xαi − x) × pα

i

]
⊗

( pα
i

mα
i

− v
)
∆(x − xαi )

(ii) Virial CV = −
1
2

∑
i,α,j,β

(xαi − x) × Fαβ
ij ⊗ xαβ

ij bαβ
ij

(iii) Spring CS = −
1
2

∑
i
(x1

i − x) ×
−∂us(x1

i , x2
i )

∂x1
i

⊗ x12
ii b12

ii

(iv) Active CA = −
∑

i
[(x1

i − x) × f i] ⊗ x12
ii b12

ii

Body torque ρG =
∑

i
x12

ii × f i ∆(x − x2
i ) +

∑
i,α

(
xαi − x

)
×

(
−ζ

pα
i

mi
+

√
2kBTζ

dW
dt

)
∆(x − xαi )

Energy

Heat flux vector Jq = JK
q + JV

q + JS
q + JA

q

(i) Kinetic JK
q =

∑
i,α

(
K̂

α
i +

1
2

∑
j,β

u2(xαi , xβj ) +
1
2

us(x1
i , x2

i )

−mα
i v ·ω × (xαi − x)

) ( pα
i

mα
i

− v
)
∆(x − xαi )

(ii) Virial JV
q =

∑
i,α,j,β

1
2

[
Fαβ

ij ·

( pα
i

mα
i

− v̂αi

)]
xαβ

ij bαβ
ij

(iii) Spring JS
q = −

∑
i



∂us(x1
i , x2

i )

∂x1
i

· *
,

p1
i

m1
i

− v̂1
i

+
-

x12
ii b12

ii +
∂us(x1

i , x2
i )

∂x2
i

· *
,

p2
i

m2
i

− v̂2
i

+
-

x21
ii b21

ii


(iv) Active JA

q =
∑

i


f i · *

,

p2
i

m2
i

− v̂2
i

+
-


x12

ii b12
ii

of the molecular variables may facilitate calculations of the
transport coefficients provided there exist Green-Kubo rela-
tions71 for these out of equilibrium systems. Finally, we note
that our coarse-graining procedure and equations are gener-
alizable to other active models such as self-propelled active
Brownian particles.
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27A. Kaiser and H. Löwen, “Unusual swelling of a polymer in a bacterial
bath,” J. Chem. Phys. 141, 044903 (2014).

28J. Harder, S. A. Mallory, C. Tung, C. Valeriani, and A. Cacciuto, “The role
of particle shape in active depletion,” J. Chem. Phys. 141, 194901 (2014).

29K. Dasbiswas, K. K. Mandadapu, and S. Vaikuntanathan, e-print
arXiv:1706.04526 (2017).

30S. C. Takatori, W. Yan, and J. F. Brady, “Swim pressure and stress generation
in active matter,” Phys. Rev. Lett. 113, 028103 (2014).

31A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and
J. Tailleur, “Pressure is not a state function for generic active fluids,” Nat.
Phys. 11, 673–678 (2015).

32R. G. Winkler, A. Wysocki, and G. Gompper, “Virial pressure in systems
of spherical active Brownian particles,” Soft Matter 11, 6680–6691 (2015).

33T. Speck and R. L. Jack, “Ideal bulk pressure of active Brownian particles,”
Phys. Rev. E 93, 062605 (2016).

34M. Joyeux and E. Bertin, “Pressure of a gas of underdamped active
dumbbells,” Phys. Rev. E 93, 032605 (2016).

35N. Nikola, A. P. Solon, Y. Kafri, M. Kardar, J. Tailleur, and R. Voituriez,
“Active particles with soft and curved walls: Equation of state, ratchets, and
instabilities,” Phys. Rev. Lett. 117, 098001 (2016).

36M. Joyeux, “Recovery of mechanical pressure in a gas of underdamped
active dumbbells with Brownian noise,” Phys. Rev. E. 95, 052603
(2017).

37U. M. B. Marconi, C. Maggi, and M. Paoluzzi, “Pressure in an exactly
solvable model of active fluid,” J. Chem. Phys. 147, 024903 (2017).

38Y. Fily, Y. Kafri, A. P. Solon, J. Tailleur, and A. Turner, “Mechani-
cal pressure and momentum conservation in dry active matter,” e-print
arXiv:1704.06499 (2017).

39C. Stanford, A. Grosberg, and J.-F. Joanny, “Pressure and flow of
exponentially self-correlated active particles,” e-print arXiv:1705.01631
(2017).

40R. Clausius, “On a mechanical theory applicable to heat,” Philos. Mag. 40,
122–127 (1870).

41S. Steffenoni, G. Falasco, and K. Kroy, “Microscopic derivation of the
hydrodynamics of active-Brownian-particle suspensions,” Phys. Rev. E 95,
052142 (2017).

42X. Yang, M. L. Manning, and M. C. Marchetti, “Aggregation and
segregation of confined active particles,” Soft Matter 10, 6477–6484
(2014).

43J. S. Dahler and L. E. Scriven, “Angular momentum of continua,” Nature
192, 36–37 (1961).

44J. S. Dahler and L. E. Scriven, “Theory of structured continua. I. General
consideration of angular momentum and polarization,” Proc. R. Soc. A 275,
504 (1963).

45S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics (Dover, New
York, 1984).

46V. K. Stokes, “Couple stresses in fluids,” Phys. Fluids 9, 1709 (1966).
47V. K. Stokes, Theories of Fluids with Microstructure (Springer-Verlag, New

York, 1984).
48A. J. M. Spencer, Continuum Mechanics (Dover, Mineola, New York,

2004).
49A. W. C. Lau and T. C. Lubensky, “Fluctuating hydrodynamics and

microrheology of a dilute suspension of swimming bacteria,” Phys. Rev.
E 80, 011917 (2009).

50H. Stark and T. C. Lubensky, “Poisson bracket approach to the dynamics of
nematic liquid crystals: The role of spin angular momentum,” Phys. Rev. E
72, 051714 (2005).

51J. C. Tsai, F. Ye, J. Rodriguez, J. P. Gollub, and T. C. Lubensky, “A chiral
granular gas,” Phys. Rev. Lett. 94, 214301 (2005).

52B. C. van Zuiden, J. Paulose, W. T. M. Irvine, D. Bartolo, and V. Vitelli, “Spa-
tiotemporal order and emergent edge currents in active spinner materials,”
Proc. Natl. Acad. Sci. U. S. A. 113, 12919–12924 (2016).

53D. Mandal, K. Klymko, and K. K. Mandadapu, “Generalized hydrodynam-
ics of active polar suspensions,” e-print arXiv:1706.02284 (2017).

54R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University
Press, 2001).

55K. K. Mandadapu, A. Sengupta, and P. Papadopoulos, “A homogenization
method for thermomechanical continua using extensive physical quantities,”
Proc. R. Soc. A 468, 1696–1715 (2012).

56R. B. Lehoucq and A. Von Lilienfeld-Toal, “Translation of Walter Noll’s
derivation of the fundamental equations of continuum thermodynamics from
statistical mechanics,” J. Elasticity 100, 5–24 (2010).

57W. Noll, Indiana Univ. Math. J. 4, 627–646 (1955).
58K. K. Mandadapu, R. E. Jones, and P. Papadopoulos, “Generalization of the

homogeneous non-equilibrium molecular dynamics method for calculating
thermal conductivity to multi-body potentials,” Phys. Rev. E 80, 047702
(2009).

59K. K. Mandadapu, “Homogeneous non-equilibrium molecular dynamics
methods for calculating the heat transport coefficient of solids and mixtures,”
University of California, Berkeley, 2011.

60F. H. Stillinger and T. A. Weber, “Computer-simulation of local order in
condensed phases of silicon,” Phys. Rev. B 31, 5262–5271 (1985).

61V. Molinero and E. B. Moore, “Water modeled as an intermediate ele-
ment between carbon and silicon,” J. Phys. Chem. B 113, 4008–4016
(2008).

62D. T. Limmer and D. Chandler, “The putative liquid-liquid transition is a
liquid-solid transition in atomistic models of water,” J. Chem. Phys. 135,
134503 (2011).

63K. K. Mandadapu, R. E. Jones, and P. Papadopoulos, “A homogeneous
non-equilibrium molecular dynamics method for calculating thermal con-
ductivity with the three-body potential,” J. Chem. Phys. 130, 204106
(2009).

64Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha, “Rheology of
active-particle suspensions,” Phys. Rev. Lett. 92, 118101 (2004).

65S. C. Takatori and J. F. Brady, “Towards a thermodynamics of active matter,”
Phys. Rev. E 91, 032117 (2015).

66B. Seguin and E. Fried, “Statistical foundations of liquid-crystal theory. I:
Discrete systems of rod-like molecules,” Arch. Ration. Mech. Anal. 206,
1039–1072 (2012).

https://doi.org/10.1103/physrevlett.108.235702
https://doi.org/10.1103/physrevlett.110.238301
https://doi.org/10.1103/physrevlett.110.055701
https://doi.org/10.1103/physrevlett.111.245702
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1063/1.4922324
https://doi.org/10.1063/1.4945365
https://doi.org/10.1063/1.4963191
https://doi.org/10.1063/1.4975812
https://doi.org/10.1103/physrevlett.84.3017
https://doi.org/10.1103/physrevlett.103.198103
https://doi.org/10.1063/1.4972010
http://arxiv.org/abs/1702.02393
https://doi.org/10.1103/physrevlett.115.028301
https://doi.org/10.1126/science.1140414
https://doi.org/10.1103/physrevlett.115.098301
https://doi.org/10.1103/physrevlett.112.158101
https://doi.org/10.1103/physreve.89.052303
https://doi.org/10.1063/1.4891095
https://doi.org/10.1063/1.4900720
http://arxiv.org/abs/1706.04526
https://doi.org/10.1103/physrevlett.113.028103
https://doi.org/10.1038/nphys3377
https://doi.org/10.1038/nphys3377
https://doi.org/10.1039/c5sm01412c
https://doi.org/10.1103/physreve.93.062605
https://doi.org/10.1103/physreve.93.032605
https://doi.org/10.1103/physrevlett.117.098001
https://doi.org/10.1103/physreve.95.052603
https://doi.org/10.1063/1.4991731
http://arxiv.org/abs/1704.06499
http://arxiv.org/abs/1705.01631
https://doi.org/10.1103/physreve.95.052142
https://doi.org/10.1039/c4sm00927d
https://doi.org/10.1038/192036a0
https://doi.org/10.1098/rspa.1963.0183
https://doi.org/10.1063/1.1761925
https://doi.org/10.1103/physreve.80.011917
https://doi.org/10.1103/physreve.80.011917
https://doi.org/10.1103/physreve.72.051714
https://doi.org/10.1103/physrevlett.94.214301
https://doi.org/10.1073/pnas.1609572113
http://arxiv.org/abs/1706.02284
https://doi.org/10.1098/rspa.2011.0578
https://doi.org/10.1007/s10659-010-9246-9
https://doi.org/10.1512/iumj.1955.4.54022
https://doi.org/10.1103/physreve.80.047702
https://doi.org/10.1103/physrevb.31.5262
https://doi.org/10.1021/jp805227c
https://doi.org/10.1063/1.3643333
https://doi.org/10.1063/1.3141982
https://doi.org/10.1103/physrevlett.92.118101
https://doi.org/10.1103/physreve.91.032117
https://doi.org/10.1007/s00205-012-0550-3


194109-16 Klymko, Mandal, and Mandadapu J. Chem. Phys. 147, 194109 (2017)

67B. Seguin and E. Fried, “Statistical foundations of liquid-crystal theory. II:
Macroscopic balance laws,” Arch. Ration. Mech. Anal. 207, 1–37 (2013).

68L. D. Landau, A. M. Kosevich, L. P. Pitaevskii, and E. M. Lifshitz, Theory
of Elasticity (Pergamon Press, 1986).

69K. Sekimoto, Stochastic Energetics (Springer, 2010).

70U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular
machines,” Rep. Prog. Phys. 75, 126001 (2012).

71A. Sharma and J. M. Brader, “Communication: Green-Kubo approach to
the average swim speed in active Brownian systems,” J. Chem. Phys. 145,
161101 (2016).

https://doi.org/10.1007/s00205-012-0551-2
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1063/1.4966153



