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ABSTRACT OF THE THESIS

Bioinformatics Analysis of the MACPF Superfamily

by

Bennett Vitug
Master of Science in Biology
University of California, San Diego, 2012

Professor Milton H. Saier, Jr., Chair

The Membrane Attack Complex/Perforin (MACPF) superfamily consists of
a diverse group of proteins from three families involved in eukaryotic immunity,
embryonic development, neural migration and bacterial pathogenesis.
Characterization of the MACPF family involved recognition of possible orthology
and horizontal gene transfer. Phylogenetic analysis of MACPF homologues using
bioinformatics methods revealed a remarkably diverse range of proteins
spanning both bacterial and eukaryotic kingdoms, with significant variations in

the topological, hydrophobic and amphipathic characteristics of their sequences.

The MACPF superfamily was expanded through the addition of the
Cholesterol-Dependent Cytolysin (CDC) family. Comparison of the primary and
tertiary structures of homologues from these two families revealed sequence

similarity in the transmembrane regions of both families. Phylogenetic analysis



demonstrated exclusive clustering of the CDC homologues, thereby identifying it

as the second family within the MACPF superfamily.

The third family to be included in the MACPF family was the Pleurotolysin
(Pleurotolysin) family. Comparison of Pleurotolysin homologues from TCDB with
the homologues obtained from the MACPF and CDC families revealed 15 pairs
of proteins with comparison scores greater than 12 S.D. in their respective
transmembrane domains. Addition of the pleurotolysin proteins to the
phylogenetic tree containing MACPF and CDC homologues showed clustering of

the maijority of pleurotolysins.



Introduction

Throughout the past two decades, our bioinformatics laboratory has been
involved in the identification of over six hundred families of transport proteins
while expanding the Transporter Classification Database, TCDB (Saier et al.
2006; Saier et al. 2009). Although similar to the Enzyme Commission (EC)
system for classifying enzymes, the TC system incorporates functional and
phylogenetic information which provides the basis for family classification. The
classification of transport protein systems is thus based on structural, functional

and evolutionary characteristics (Saier et al. 2000; Busch & Saier et al. 2002).

As discussed in this thesis, the MACPF superfamily consists of pore-
forming, cytolytic proteins that are important in both mammalian immunity,
embryonic development, neural migration, tumor suppression and prokaryotic
toxicity (Anderluh & Lakey, 2008; Estévez-Calvar et al. 2011). As shown here,
three families compose the MACPF superfamily: the Membrane Attack
Complex/Perforin (MACPF) Family (TC# 1.C.39), the Cholesterol-Dependent
Cytolysin (CDC) Family (TC# 1.C.12) and the Pleurotolysin Pore-Forming
(Pleurotolysin) Family (TC# 1.C.97). Using a common MACPF domain, proteins
associated with the membrane attack complex (MAC) and the protein perforin
control microbial invasion of the host through pathogen lysis via formation of a
C5b-9 pore complex, a process known as C3-mediated opsonization (Wang et al,
2000). Other apextrin-like proteins containing the MAC domain are known to play

a role in the larval development of eukaryotic organisms, such as the sea urchin,



Heliocidaris erhthrogramma, and the Mediterranean mussel, Mytilus
galloprovincialis (Haag et al. 1999; Estévez-Calvar et al. 2011). Furthermore, the
MACPF proteins, DBCCR-1 and BRINP-1, are believed to function in both tumor

suppression and neural development (Kawano et al. 2004; Wright et al. 2004).

X-ray structure analysis of the MACPF domain for complement C8a and
Plu-MACPF from Photorhabdus luminescens showed structural similarity with the
bacterial, pore-forming, cholesterol-dependent cytolysins (CDCs) (Hadders et al.
2007; Rosado et al. 2007). Both families share a common mechanism of
membrane insertion as two regions refold into transmembrane 3 hairpins to form
the lining of the barrel pore (Xu et al. 2010). Thus, it has been suggested that
lytic MACPF proteins may share a mechanism similar to CDCs in forming pores
and disrupting cell membranes (Law et al. 2010; Rossi et al. 2010). However, the
authors of the papers describing the 3-D structures of these proteins claimed that

CDC and MACPF show no detectible similarity at the primary sequence level.

Members of the Pleurotolysin Pore-Forming Family have been shown to
exhibit cytolytic activity through pore formation in human erythrocytes (Sakurai et
al. 2004). Pleurotolysins are two-component hemolysins which require the
interaction of both non-associated components to exhibit strong cytolytic activity
(Shibata et al. 2010). Cooperative pore formation causes leakage of potassium
ions from cells and subsequent colloid-osmotic hemolysis (Tomita et al. 2004).
Although the longer Pleurotolysin B protein exhibits similar three-dimensional

folds with members of the MACPF superfamily, NCBI BLAST results suggest that



Pleurotolysin A is a member of the Aegerolysin superfamily and may be distantly

related to members of the Equitoxin family, TC #1.C.38 (Shogomori et al. 2008).

Our study seeks to expand the MACPF family and to demonstrate
sequence similarity between the active pore-forming regions of the MACPF, CDC
and Pleurotolysin families. The advent of three technological improvements have
made it possible to identify increasingly distance homologues using sequence
similarity as the primary means. We first found representatives of the major
phylogenetic clusters in each family. Second, we identified proteins that may
represent ancestral links between these families. Third, we increased the
numbers of homologues available for analysis, which allowed us to broaden the
scope of sequence diversity due to the availability of ever increasing amounts of
genomic sequence data. Fourth, the availability of increasingly sensitive software
allowed us to compare more distant homologs of each family. Finally, application
of the superfamily principle allowed us to demonstrate homology between each

family using "missing link" homologues.

The superfamily principle was originally used to establish homology
between distantly related members of extensive superfamilies (Doolittle, 1981).
In our study, the superfamily principle was carried out by first establishing
sequence similarity throughout the length of proteins or relevant protein domains
within a single family. The transmembrane sequences of proteins belonging to
different families were statistically compared. If two proteins from two different

families showed homology in their transmembrane regions, then it is not



necessary to establish homology for the transmembrane sequences of every

protein in the two families.

Although structural studies have shown the MACPF and CDC families to
be functionally and structurally similar, sequence similarity between
transmembrane regions had never previously been established. The current
dogma is that one can detect homology (common ancestry) more reliably using
tertiary structure rather than primary structure. We conducted these studies in an
attempt to disprove this dogma by showing that while others may not have been
able to find sequence similarity, it does in fact exist using the approach detailed

above.

It is well known that many proteins can exist in more than one highly
dissimilar conformational states. Sometimes these divergent conformations are
unrecognizable at the three-dimensional level. For example, prion proteins can
typically exist in "native" a-states but can also assume cleaved B-states (Mangé
et al. 2004). Several soluble proteins with recognized catalytic and structural
properties can insert in membranes, forming ion-conducting channels (Anderson
& Blaustein, 2008). Toxins are often made in a soluble state, which can then
insert within the membranes of target organisms forming pores that result in
cytoplasmic leakage and cell death (Czajkowsky et al. 2004). In all such cases,
massive conformational changes occur. It is therefore clear that reliance on three
dimensional (X-ray and NMR) data cannot be considered the preferred approach

to establishing homology. Statistical approaches using primary sequence data



may still be the most reliable means to establish the common origin of distantly

related macromolecules including proteins and nucleic acids.

Our study establishes homology between the transmembrane regions of
these families. It establishes the Pleurotolysin Pore-Forming family to be the third
member of the MACPF superfamily. Statistical and phylogenetic analyses,
multiple alignments, and hydropathy plots of the three families have revealed the

diversity of the MACPF superfamily.



Methods

Representatives of the MACPF superfamily (TCID 1.C.39) were compiled
from the Transporter Classification Database (www.tcdb.org). In order to study
the distant members of the superfamily, the compilation of MACPF
representative proteins was expanded with putative members of the MACPF
superfamily proteins by performing Position-Specific lterated BLAST (PSI-
BLAST) searches against NCBI's non-redundant (NR) protein database. Our lab
has established that performing a protein PSI-BLAST with a cut-off value of e
and a subsequent iteration with a cut-off value of e consistently retrieves
homologues with few false positives. Data from the BLAST searches were
organized based on abbreviation of the protein name, description, sequence
length, gi number, organismal source and phylum by running the resultant
TinySeq XML files through the MakeTable5 program. A file containing the FASTA
formatted sequences of all putative MACPF superfamily proteins and 16S/18S
rRNA sequences for most genera were also obtained. Additional rRNA
sequences were obtained using the NCBI Nucleotide Database. Only full-length
proteins were kept, and protein redundancies and close sequences were
minimized using the CD-HIT program with a cut-off value of 70%. The proteins
included in this study are listed in Tables 1-3 for the MACPF, CDC and

Pleurotolysin families, respectively.

Throughout this study, multiple alignments for each family and individual

protein clusters were generated using the ClustalX program (Thompson et. al.,



1997). Multiple alignments and their corresponding phylogenetic trees allowed us
to elucidate the existence of possible fused domains within exceptionally long
protein sequences. By using protein BLAST to analyze the unaligned regions, we
were able to determine if additional domains were accountable for the length of

these sequences.

Phylogenetic trees corresponding to the multiple alignments for each
family or cluster were created using ClustalX and viewed using the TreeView or
FigTree program (Zhai & Saier, 2002). Phylogenetic trees allowed us to identify
specific clusters in each family, and the subsequent analysis of each cluster
revealed the similarities between members of each cluster in terms of organismal
source and sequence length. Furthermore, analysis of the phylogenetic tree
created using the 16S and 18S rRNA sequences of all genera in Table 1 allowed
us to identify possible horizontal gene transfer and orthologs between our

MACPF proteins.

The multiple alignments generated with ClustalX were used in the
Average Hydropathy, Amphipathicity and Similarity (AveHAS) program to
generate an averaged hydropathy plot for multiple related proteins. The Web-
based Hydropathy, Amphipathicity and Topology (WHAT) program was used to
generate a hydropathy plot for single proteins (Zhai & Saier, 2001). Both
programs provide graphical depictions of hydrophobic, hydrophilic and

amphipathic regions throughout the length of the protein. Furthermore, both



programs predict any transmembrane segments (TMS) that may be present

within the protein.

To determine homology between the three families, the collection of
proteins from the MACPF, CDC and Pleurotolysin families was statistically
compared to each other using the SSearch program. The SSearch program
analyzes two lists of proteins, indicates regions of similarity and provides the
corresponding comparison scores expressed in standard deviations (S.D.).
Sequences with scores of 7 standard deviations or greater were confirmed and
optimized by first isolating the regions of the sequences that were found to be
similar by SSearch and subsequently running them on GAP with 500 random
shuffles to ensure the reliability of the scores. A value of 10 standard deviations

using GAP was considered sufficient for establishing homology.

Sequence similarity between the MACPF and CDC families was further
optimized by analyzing the three-dimensional structures of the proteins that
exhibited high standard deviation values from SSearch. The homologous
sequences were visualized in the program, PyMOL, using representative PDB
files from the Protein Data Bank (PDB) to confirm that the homologous
sequences were positioned in the transmembrane regions of the respective
proteins. ClustalX and GAP were again used to generate alignments of the
representative PDB sequences with the sequences of interest from SSearch and
its homologues. The CDC protein from each MACPF-CDC pair was compared

with the sequence of the PDB protein model, PDB# 1PFO (Rossjohn et al. 1997).



The region where the CDC aligned with both the MACPF protein and 1PFO
sequence was colored in PyMOL, thereby showing whether the residues
compared were included in the transmembrane region. The same method was
utilized using the PDB protein model, PDB #2RD7 (Slade et al. 2008), for each

MACPF protein in each MACPF-CDC pair.

The binary alignment from GAP was also superimposed on the PDB
protein model using the program, ConSurf. ConSurf calculates the amino acid
conservation scores through the empirical Bayesian or the Maximum Likelihood
method along different sites of the protein and visually modifies the original
protein model to reflect the varying degrees of conservation (Mayrose et al. 2004,

Landau et al. 2005, Glaser et al. 2003).

The SuperfamilyTree program (SFT) was used as the final step in the
phylogenetic analysis of the MACPF, CDC, and Pleurotolysin families. Similar to
our use of ClustalX and the FigTree program, this program can determine the
phylogenetic relationships between families, subfamilies, and individual proteins
through BLAST bit-scores and larger protein samplings (Chen et al. 2011, Yen et
al. 2009, Yen et al. 2010). This program was used to confirm whether clear
segregation of these families occurred as predicted in our phylogenetic trees
generated from multiple alignments. Representative proteins from each family in

TCDB were used to generate a final MACPF superfamily tree.



Chapter 1: Characterization of the MACPF Family

Extraction of MACPF Homologues

A systematic method was employed for compiling a list of homologues for
each MACPF representative in the Transporter Classification Database
(www.tcdb.org) (Table 1). The FASTA formatted sequence of a MACPF
representative, such as Complement Protein C9 (TC# 1.C.97.1.1) was first
obtained from TCDB, and a subsequent protein PSI-BLAST was performed on
the NCBI NR protein database. A second iteration was performed for proteins
with e-values of less than e™, and a list of potential homologues was compiled in
FASTA format. This process was done for each MACPF representative in TCDB,
and the lists of FASTA sequences were combined. Fragmented and redundant
sequences were eliminated using the CD-HIT program with a cutoff of 70%. A
multiple alignment of the combined list of proteins was then made using the

Clustal X program, and a phylogenetic tree was generated (Figure 1).
Phylogenetic Tree Analysis by Cluster

The phylogenetic tree that was generated based on the multiple alignment
allowed us to analyze the putative homologues by cluster and expand the
MACPF family in TCDB using a representative protein from each cluster. The
average sequence length and its standard deviation value was recorded for each
cluster without omitting proteins with fused domains and especially long

sequences. The phylum and domain of each protein's respective organism was

10
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also recorded. Furthermore, large proteins in each cluster were analyzed in

terms of additional protein domains (Table 4).

Clusters were also analyzed using the AveHAS program. Although the
program predicted potential transmembrane sequences, the predicted regions
usually corresponded with hydrophobic peaks outside of the MACPF domain and
sometimes with little conservation for the proteins in an individual cluster. Studies
of MACPF and perforin proteins, however, suggested that helical conformations
of specific regions in the MACPF domain could insert into the bilayer membrane.
The AveHAS plot (Figures 6 to 19) revealed that the MACPF domains for each
cluster were highly conserved and significantly more amphipathic than other
regions, leading us to believe that the transmembrane region for each cluster is

actually present in the MACPF domain.

Cluster 1:

Cluster 1 contained MACPF homologues with an average sequence
length of 583 £ 100 residues. All proteins in Cluster 1 belong to metazoans.
Although some proteins were either unnamed or predicted, the majority of the
proteins were alpha or beta subunits of complement component 8. The proteins
in this cluster were shown to be homologous to the MACPF representative with

TC# 1.C.39.3.1 in the Transporter Classification Database (www.tcdb.org).

Analysis of the Average Hydropathy, Amphipathicity and Similarity

(AveHAS) plot of Cluster 1 revealed relatively higher conservation from positions
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275 to 710 and from positions 875 to 1040 of the multiple alignment (Figure 5).
Analysis of the plot also revealed that the majority of proteins in Cluster 1 were
amphipathic throughout much of the alignment. Hydrophobicity varied throughout
the alignment, although two poorly conserved hydrophobic regions were
identified from positions 25 to 60 and positions 240 to 298 of the multiple

alignment.

Tgub (GI# 224058308) was the longest protein in Cluster 1 with a
sequence length of 972 amino acids. Analysis of the protein revealed additional
domains not found in other members of the cluster. Residues 1 to 71 were shown
to be homologous to the conserved domain, Topoisomerase ll-associated protein
PAT1 (CDD# pfam09770), which is necessary for accurate chromosome
transmission during cell division (Wang et al, 1996). Residues 719 to 902 were

shown to be an adjacent repeat of the MACPF domain (CDD# pfam01823).

Cluster 2:

The MACPF homologues from cluster 2 had an average sequence length
of 731 + 258 amino acids. All proteins in cluster 2 belong to metazoans. The
majority of these proteins were either hypothetical proteins or predicted to be
similar to complement component 6. BLAST searches against the TCDB
database showed that the proteins in this cluster were most similar to the

MACPF subfamilies, TC# 1.C.39.1 and 1.C.39.3.
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The AveHAS program predicted two well conserved transmembrane
regions from positions 5 to 25 and positions 40 to 60 (Figure 6). Most of the
proteins in cluster 2 were characteristically amphipathic throughout their
sequences, although a well conserved peak of hydrophobicity was found that
corresponded to the first predicted TMS, positions 5 to 25. A second hydrophobic
peak was found from positions 675 to 705, which corresponded to a third poorly
conserved predicted transmembrane sequence for hypothetical proteins that
belonged to the organism Branchiostoma floridae (Gl# 219503573, 219409896,

219443754, 219492604).

Analysis of a protein belonging to the organism, Branchiostoma floridae,
revealed a possible fused region at the C-termini of Bfl30 (Gl# 219431797). A
protein BLAST of this region showed it to be homologous to the conserved
domain, DNA Polymerase Ill subunits gamma and tau (CDD# PRK12323) from

residues 723 to 1264.

Two large proteins from Ciona intestinalis, Cin5 (Gl# 198417017) and
Cin7 (GI# 198419275), were also found to contain six additional Thrombospondin
Type-1 Repeat domains (CDD# smart00209). This domain is known to bind and
activate TGF- B (Transforming Growth Factor 3), which plays a role cell
proliferation and differentiation (Casalena et al. 2012). Abnormalities with
activation of TGF-f3 is known to underlie various developmental disorders and

pathologies including cancer and autoimmune diseases (Casalena et al. 2012).

Cluster 3:
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Cluster 3 contains MACPF homologues with an average sequence length
of 567 £ 53 amino acids. All proteins contained within this cluster were from
metazoans and most similar to complement component 9. BLAST searches
were performed against the TCDB database and showed that these proteins

were similar to the MACPF subfamilies, TC# 1.C.39.1.

The AveHAS program revealed a sharp peak of hydrophobicity at
positions 25 to 50 of the multiple alignment, which was conserved throughout half
of the proteins in cluster 3 (Figure 7). This hydrophobic peak corresponds to the

only transmembrane region that was predicted by the program.

Cluster 4:

The MACPF homologues in cluster 4 were shown to have an average
sequence length of 960 + 355 amino acids. All proteins in this cluster belong to
metazoans and are similar to complement component 6 (TC# 1.C.39.3.2). An
exception to this was the hypothetical protein, Oan 1 (Gl# 149634247), which
appeared to be most similar to the MACPF representative with TC# 1.C.39.1.1

using TC-BLAST.

AveHAS analysis of this cluster revealed substantial hydrophobicity from
positions 1 to 25 and 480 to 510 in the multiple alignment (Figure 8). The
predicted TMS of the cluster corresponded to the first hydrophobic peak at the N-

termini of the proteins.
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The significant variation in length of the protein, Clu1 (GI# 73954287),
suggested fusion of an extra domain. A protein BLAST search against the NCBI
database was performed, and the extra region at the C-terminus of the protein
was found to be homologous to the protein isoform hCG1993037: CRA_F of

Homo sapiens (Gl# 119602545).

Cluster 5:

The MACPF homologues in cluster 5 were found to have an average
length of 753 £ 5 amino acids. Proteins in this cluster belong to metazoans and

resemble complement component 7 (TC# 1.C.39.3.2).

AveHAS analysis revealed the proteins in this cluster to be largely
amphipathic throughout most of their lengths (Figure 9). A sharp hydrophobic
peak was predicted from residues 60 to 100 of the multiple alignment and
corresponded with the putative TMS of the cluster. This predicted TMS, however,

was shown to be conserved only amongst half of the proteins in the cluster.

Cluster 6:

Cluster 6 consists of two metazoan proteins with an average length of 559
+ 5 amino acids. Both proteins were described as complement components and

were similar to the MACPF representative with TC# 1.C.39.3.1.

AveHAS analysis of the cluster revealed two significant hydrophobic

regions at the N- and C-termini of the proteins. The program predicted the TMS
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for this cluster to correspond with the hydrophobic peak at the C-terminus of both

proteins.

Cluster 7:

Cluster 7 contained MACPF homologues with an average sequence
length of 572 £ 133 residues. All proteins in this cluster belong to metazoans and
were similar to the lymphocyte pore-forming protein, perforin 1. Proteins in this
cluster were found to be similar to the MACPF representative with TC#

1.C.39.2.1in TCDB.

AveHAS plot analysis of the cluster showed a hydrophobic peak that was
highly conserved at the N-terminus of each protein (positions 60 to 85) (Figure
10). This peak corresponded to the predicted TMS for the cluster. A second
poorly conserved hydrophobic peak from residue 1 to 25 was found only in Tni9

(Gl# 47218949).

The significantly larger length of Tni9 (GI# 47218949) and the gaps in the
multiple alignment suggested the presence of additional domains. Following a
protein BLAST of the sequence against the NCBI database, the protein was
found to contain two conserved tryptophan domains (CDD# cd00201)from
positions 8 to 38 and a PPIC-type PPlase rotamase domain from positions 52 to
131 (CDD# pfam00639). The two conserved tryptophan domains are known to
bind proline-rich motifs and are important in various cytoplasmic signal

transduction proteins and structural proteins (Ermekova et al. 1997). Rotamases
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encoded by the PPIA gene in humans and are known to accelerate the rate of
protein folding by catalyzing cis-trans isomerization (Haendler & Hofer 1990;
Holzman et al. 1991). Analysis of the unaligned region at the C-terminus of Tni9

with CDD did not reveal additional conserved domains.

Cluster 8:

Cluster 8 consisted of only two MACPF homologues from fungi with no
known functions. A protein from Emericella nidulans, Eni1 (GI# 168091), was the
product of the gene, SpoC-C1C, which has been used for DNA hybridization
experiments (Stephens et al. 1999). Although the gene had no known function, it
was predicted that it may play a role in transcriptional regulation in dormant
spores (Stephens et al. 1999). The two proteins had an average sequence length
of 612 + 235 residues. A protein BLAST against the TCDB database showed that

both proteins belong to the MACPF subfamily, TC# 1.C.39.9.

Analysis of the AveHAS graph revealed a high degree of conservation of
the MACPF domain from positions 350 to 750 in the multiple alignment. The
program predicted three possible TMSs from position 110 to 190 of the multiple
alignment. These predicted TMSs, however, were only present in Ani1 (Gl#

67537830).

Cluster 9:

The MACPF homologues in cluster 9 have an average sequence length of

609 * 5 residues. All proteins in this cluster originated from organisms in the
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phylum, Viridiplantae. Protein BLAST searches against the TCDB database
showed low similarity scores with the MACPF representatives, TC# 1.C.39.6.1,
1.C.39.1.2, and 1.C.39.10.1. These proteins were thus incorporated into a new

subfamily, TC# 1.C.39.11.

The AveHAS plot for cluster 9 revealed multiple hydrophobic peaks, with
the most distinct peak occurring between positions 300 and 310 of the multiple
alignment (Figure 11). Despite multiple peaks of hydrophobicity, the program did
not predict transmembrane regions. Proteins from this cluster showed moderate
peaks of amphipathicity throughout the lengths of their sequences with high

conservation.

Cluster 10:

Cluster 10 consists of only two bacterial MACPF homologues; a
hemopexin-like protein from Plesiocystis pacific SIR-1 and a complement-like
protein from Beggiatoa sp. PS. The average sequence length of the two proteins
in this cluster was 521 * 7 residues. Domain analysis showed that the MACPF
domain spans the proteins from positions 160 to 305 while Hemopexin-like
repeats occurs from positions 317 to 512. Together, the two proteins compose

the TCDB subfamily, 1.C.39.8.

AveHAS plot analysis of the cluster did not reveal putative transmembrane
regions. No significant peaks of hydrophobicity were detected, although three

moderate peaks were found between positions 200 and 325 of the binary
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alignment. The plot shows a sharp peak of amphipathicity at alignment position
250. This peak of amphipathicity corresponds to the putative transmembrane

region of the MACPF domain.

Cluster 11:

Cluster 11 contains MACPF homologues with an average sequence
length of 1183 £ 417 residues. The protein, Bfl1 (Gl# 219460616), is
recognizably longer than the other proteins in this cluster with a length of 2433
amino acids. The longer length is attributed to the addition of a C-type lectin
domain at the C-terminus (CDD# cd00037), a GCC2 and GCC3 domain (CDD#
pfam07699), an eel-Fucolectin Tachylectin-4 Pentaxtrin-1 domain (CDD#
smart00607), a scavenger receptor Cys-rich domain (CDD# smart00202), and
furin-like repeats (CDD# cd00064). The eel-Fucolectin Tachylectin-4 Pentaxtrin-1
domain binds to cell-surface carbohydrates and are known to play a role in innate
immunity (Honda et al. 2000). The GCC2_GCC3 domain is found in a variety of
extracellular proteins, however, the function is unknown (Araki et al. 2011). The
scavenger receptor Cys-rich domain is involved with the recognition of low-
density lipoproteins, and is usually expressed in membrane-bound secreted
proteins of the immune system (Holm et al. 2012). The furin-like repeats domain
is a part of a family that contains endoproteases and cell-surface receptors
(Molloy et al. 1999). Furin is a calcium-dependent serine endoprotease that
cleaves and catalyzes the maturation of various proprotein subtrates, such as

growth factors, receptors and pathogen proteins (Molloy et al. 1999). The C-type
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lectin domain requires calcium to bind carbohydrates and is involved in cell to cell
adhesion, immune response to pathogens and apoptosis (Elgavish & Shaanan,
1997; Holmskov et al. 1994). All of the proteins in cluster 11 were derived from
metazoans. BLAST searches against the TCDB database showed that these

proteins belong to the MACPF subfamily, TC# 1.C.39.5.

Analysis of the AveHAS plot revealed variable degrees of hydrophobicity
and amphipathicity (Figure 12). A sharp peak of hydrophobicity that was
conserved among half of the cluster 11 proteins occurred from alignment
positions 75 to 90. A second better conserved hydrophobic peak occurred from
positions 1190 to 1210. Amphipathicity was highly variable, with the sharpest well
conserved peaks occurring around positions 175, 340, 850 and 925. The
program predicted two clear TMSs, the first at positions 75 to 90, and the second

at positions 450 to 485.

Cluster 12:

The MACPF homologues in cluster 12 had an average sequence length of
675 £ 290 residues. Proteins in this cluster originate from protists. TC-BLAST

showed that these proteins belong to the MACPF subfamily, TC# 1.C.39.6.

AveHAS analysis of the cluster revealed significant hydrophobic peaks
from alignment positions 1 to 25 and positions 780 to 800 (Figure 13). The

predicted transmembrane regions correspond to the hydrophobic peaks from
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positions 5 to 25 and positions 220 to 255. The MACPF domain, which

encompasses residues 124 to 329, is relatively amphipathic.

Tan1 (Gl# 85001526) is significantly longer than the other proteins in this
cluster. Observation of conserved domains in this protein revealed the presence
of three full length MACPF domains that span the protein from residues 172 to

304, 438 to 652 and 990 to 1212.

Cluster 13:

The MACPF homologues in cluster 13 had an average sequence length of
558 * 77 residues. Proteins in this cluster are from metazoans and are described
as being similar to apextrin. TC-BLAST searches showed that these proteins

belong to the MACPF subfamily, TC# 1.C.39.7.

AveHAS analysis of the cluster revealed only one significant hydrophobic
peak from positions 1 to 25 in the multiple alignment (Figure 14). The program
predicted a transmembrane region that corresponded with this hydrophobic peak.

Amphipathicity was fairly high for these proteins.

Cluster 14:

Cluster 14 contained MACPF homologues with an average sequence
length of 793 + 538 residues. The majority of the proteins in this cluster are from
the protist, Oligohymenophorea, although one protein, Ami1 (Gl# 118153966), is
from a metazoan. BLAST searches against the TCDB database demonstrated

that these proteins belong to the MACPF subfamily, TC# 1.C.39.7.
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AveHAS analysis of cluster 14 revealed one significant hydrophobic peak
from positions 1 to 25 (Figure 15). The program predicted a transmembrane
region that corresponds to this hydrophobic peak. The MACPF domain, which
encompasses residues 144 to 328, is more amphipathic than the rest of the

protein.

Tth5 (GI# 118371656) is significantly longer than other members of cluster
14. Domain analysis using the Conserved Domain Database revealed the
presence of a discontinuous P-Type ATPase-V domain (CDD# TIGR01657) from
residue 562 to 1370 and residue 1521 to 1809 on TthS5. The function of this
domain is unknown, however, it is found in many eukaryotes and is believed to
be involved in cation transport in the endoplasmic reticulum (Axelsen &
Palmgren, 1998). Further analysis showed the presence of an E1-E2_ATPase

domain (pfam00122) from residues 745 to 1007.

Cluster 15:

Cluster 15 contains two bacterial MACPF homologues from Chlamydiae
with an average sequence length of 610 + 281 residues. A BLAST search
against TCDB showed relatively low similarity with 1.C.39.10.1 and 1.C.39.6.1.
These proteins were thus incorporated into a new MACPF subfamily, TC#
1.C.39.12. Both proteins were shown to contain a MAC/perforin domain unique to

members of the Chlamydiae phylum.
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AveHAS analysis of the cluster revealed relatively high peaks of
amphipathicity throughout the lengths of both proteins with varying degrees of
hydrophobicity. The largest peak of hydrophobicity, shared between the two
proteins, occurs at alignment positions 575 to 600. The program did not predict

transmembrane regions.

The MACPF domain in both proteins spanned 195 residues. A BLAST
search of the longer protein, Cmu1 (Gl# 15835049), did not show additional
domains. Cpn1 (GI# 15618100), however, showed an additional domain, MIR
(CDD# smart00472), near the C -terminus from residues 366 to 409. This domain
may function as a ligand transferase, and is present in ryanodine receptors,
inositol triphosphate receptors and in protein O-mannosyltransferases (Ponting et

al. 2000).

Cluster 16:

The bacterial MACPF homologues in cluster 16 had an average sequence
length of 480 + 85 residues. Proteins in this cluster are from Bacteroides.
Analysis of the MACPF domain of each protein revealed low similarity scores to
the MACPF representatives, TC# 1.C.39.3.2, 1.C.39.4.1, 1.C.39.5.1, and
1.C.39.11.1. These proteins were thus incorporated into a new MACPF

subfamily, TC# 1.C.39.13.

AveHAS analysis of the cluster revealed one well-conserved peak of

hydrophobicity occurring at alignment positions 20 to 30 (Figure 16).
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Amphipathicity varied throughout the lengths of the sequences, although the
protein, Bun1 (Gl# 160888542) showed a significant peak of hydrophobicity that

occurred at positions 640 to 660.

Cluster 17:

Cluster 17 contains MACPF homologues from both eukaryotic and
bacterial domains. The cluster consists of proteins from fungi, y-proteobacteria
and actinobacteria. The average sequence length of these proteins is 563 + 148
residues. A BLAST search against TCDB revealed that bacterial proteins in this
cluster are most similar to the MACPF subfamily, TC# 1.C.39.4. The single

protein from fungi was incorporated into a new TCDB subfamily, TC# 1.C.39.14.

AveHAS analysis of the cluster revealed no significant peaks of
hydrophobicity (Figure 17). A well-conserved peak of amphipathicity occurred at
alignment position 660. The transmembrane region was predicted to be from
positions 175 to 200, corresponding to a single peak of hydrophobicity and one of

amphipathicity.

Cluster 18:

The MACPF homologues from cluster 18 are from a diverse range of
organisms from both the bacterial and eukaryotic domains. Proteins in this
cluster originate from fungi, mycetozoa, y-proteobacteria and cyanobacteria.
Surprisingly, protein BLAST against TCDB revealed the bacterial proteins, Ter1

and Msp1, to be most similar to the MACPF subfamily, TC# 1.C.39.4, while the
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eukaryotic proteins are more similar to members of the Pleurotolysin family, TC#
1.C.97.2.1 and 1.C.97.3.1. Proteins in this cluster were found to have an average

sequence length of 623 + 168 residues.

AveHAS analysis of this cluster revealed two significant peaks of
hydrophobicity that were centered at positions 250 and 350 in the multiple
alignment (Figure 18). A single well-conserved peak of amphipathicity was found

at position 590. No transmembrane region was predicted.



Chapter 1.1: Orthology, Paralogy, and Horizontal Gene Transfer Among

MACPF Family Proteins

A tree (Figure 5) was constructed using the complete 16S and 18S rRNA
sequences of all genera in our list of MACPF homologues (Table 1). This
unrooted tree was produced from a ClustalX multiple alignment using the
neighbor-joining method and the FigTree program. Distinct clustering of
eukaryotic and bacterial genera is apparent and shows clear segregation of
genera based on phylum. The largest cluster consists of 18S rRNA sequences
from metazoans. This cluster segregates and forms its own branch opposite the
eukaryotic phyla Viridiplantae, Fungi, Oligohymenophorea, Mycetozoa, and
Apicomplexa. The eukaryotic genera omitted from the rRNA tree due to the
unavailability of complete 18S rRNA sequences include: Pongo, Macaca, Canis,
Felis,Tetraodon, Oryctolagus, Ginglymyostoma, Takifugu, Ctenopharyngodon,
and Acropora. Proteins from these genera were not considered in predicting

orthology within each of the clusters.

Observation of the smaller bacterial branch of the 16S/18S rRNA tree also
shows clustering based on phylum. The phyla represented in this branch consists
of Bacteroidetes, Actinobacteria, Chlamydiae, Cyanobacteria, y-proteobacteria,
and &-proteobacteria. Genera from the y-proteobacteria phylum compose the
largest cluster, which is adjacent to both a d-proteobacterium and a cluster

containing Cyanobacteria, Chlamydiae, and Actinobacteria.
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Orthology and evidence of horizontal gene transfer were identified by
comparing clustering patterns in the 16S/18S rRNA tree and the MACPF family
protein tree. Potential horizontal gene transfer events were more common in
clusters containing bacterial proteins, and thus, orthologous relationships were

observed less frequently.

Cluster 1 consists of a large and complex group of Metazoan proteins that
can be divided into two sub-clusters. Like Cluster 4, Cluster 1 contains orthologs
of Xenopus: Xla4 (Gl# 147901003) from Xenopus laevis and Orf3 (Gl#
53749700) from Xenopus (Silurana) tropicalis. Two MACPF homologs from
Homo sapiens are present in one of the sub-clusters and are likely paralogs.
Three homologs from Mus musculus are present in this cluster. Two of these
proteins branch closely together in one sub-cluster, consistent with paralogy. The
proteins in this sub-cluster correspond to the order of genera in the 16S/18S
rRNA tree, consistent with orthology. The third Mus protein is positioned in the
other sub-cluster, which also contains proteins from genera that corresponds to
the Metazoan cluster in the 16S/18S rRNA tree. The genera, Ginglymostoma and
Canis, were excluded from our rRNA tree, and thus, the assumption that these

proteins are orthologous cannot be made with certainty.

Cluster 2 can be divided into two sub-clusters. One sub-cluster consists of
twelve paralogs from Ciona intestinalis while the other contains seven paralogs
of the genus, Branchiostoma. The majority of proteins in the Branchiostoma sub-

cluster come from the species, Branchiostoma floridae. One protein in the sub-
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cluster, however, belongs to Branchiostoma belcheri, suggesting orthology
between this protein and one of the B. floridae proteins in this sub-cluster.
Comparison of the two genera in this cluster with the 16S/18S rRNA tree shows
that these proteins may be orthologous as they are situated close to each other

in both trees.

Cluster 3 contains the proteins Orf1 (Gl# 166796971) and Xla2 (Gl#
148233806) from Xenopus (Silurana) tropicalis and Xenopus laevis, respectively.
These two proteins cluster closely together in the phylogenetic protein tree and
are possibly orthologous. The remaining proteins in this cluster appear to be
orthologous as well with the exception of proteins from the genera Takifugu,
Tetraodon, Ctenopharyngodon, Canis, and Macaca, which were excluded from

the 16S/18S rRNA tree.

Cluster 4 contains two paralogous proteins from Xenopus laevis, which
form a branch at a point after divergence from other protein branches. The
cluster also contains two non-adjacent paralogs from Canis lupus. The proteins
in this cluster, with the exception of those from Canis lupus, appear to be
orthologous since the genera in this cluster correspond with the order that was

found in the 16S/18S rRNA tree.

Cluster 5 contains proteins from various Metazoans. Two proteins from
Mus musculus, two from Danio rerio, two from Tetraodon nigroviridis, and three
from Rattus norvegicus cluster closely together and are likely to be paralogs.

The proteins Bta2 (GI# 114051808) from Bos taurus, Ssc1 (Gl# 47523630) from
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Sus scrofa, Eca4 (GI# 194223929) from Equus caballus, and Hsa2 (Gl#
194389200) from Homo sapiens were found to cluster together in the protein
tree, and their genera corresponded with the order of the 16S/18S rRNA tree,
suggesting that these proteins are orthologous. Similarly, the two proteins, Pol2
(Gl# 6682831) from Paralicthys olivaceus and Omy7 (Gl# 185133218) from

Oncorhynchus mykiss, cluster together in both trees, again suggesting orthology.

Cluster 6 contains only two proteins from Metazoa, Cin4 (Gl# 198433282)
from Ciona intestinalis and Hro1 (Gl# 224176461) from Halocynthia roretzi. The
close clustering of these two proteins in the protein tree and the adjacent
branches of their respective genera in the 16S/18S rRNA tree suggest that these

two proteins are orthologous.

Cluster 7 is a more complex group of proteins from various Metazoans.
Seven proteins from Danio rerio are present in this cluster, suggesting paralogy.
Five proteins from Tetraodon nigroviridis are also present, suggesting paralogy
between these proteins as well. The proteins, Xla3 (Gl# 148237294) from the
genus Xenopus, Oan6 (Gl# 149472392) from Ornithorhynchus, and Gga2 (Gl#
118099091) from Gallus are located in close proximity to each other,
corresponding to their positions on the 16S/18S rRNA tree and suggesting
orthology. The proteins, Pol4 (GI# 30519828) from Paralichthys and Omy4 (Gl#
198442831) from Oncorhynchus, may also be orthologous to each other due to
their adjacent positions in both the protein and 16S/18S rRNA tree. A final set of

potential orthologous proteins, Cja1 (GlI# 197112111) from Callithrix, Bta1 (GI#
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219522060) from Bos, Ssc2 (Gl# 194042762) from Sus, Eca6 (Gl# 194205976)
from Equus, Mmu3 (Gl# 200290) from Mus, and Rno3 (Gl# 149038739) from

Rattus, are also located in this cluster.

Cluster 8 contains only two proteins from fungi, Ani1 (Gl# 67537830) from
Aspergillus nidulans and Eni1 (Gl# 168091) from Emericella nidulans. These
proteins cluster tightly in our phylogenetic protein tree, corresponding to the
branches for Emericella and Aspergillus in the 16S/18S rRNA tree. Thus, these

proteins are likely orthologs.

Cluster 9 consists of proteins from the phylum, Viridiplantae. Two proteins
from Vitis vinifera are likely to be paralogs. Divergence of the Vitis protein, Vvi1
(Gl# 157358723) from the Medicago protein, Mtr1 (Gl# 92870237), occurs after
the gene duplication event that resulted in the Vitis paralog, Vvi2 (157354261).
Thus, Vvi2 is excluded from the orthologous relationship shared Mtr1 and Vvi1.
Ptr1 (GI# 224069581) from Populus, however, is orthologous to both Vitis
proteins and Mtr1, since divergence occurs prior to the gene duplication event

that gave rise to both Vitis paralogs and the species divergence of Medicago.

Cluster 10 consists of two proteins from the y-proteobacteria, Beggiatoa
sp. PS, and the d-proteobacteria, Plesiocystis pacifica SIR-1. These two proteins
cluster tightly together in the phylogenetic protein tree, but are distantly related in
the 16S/18S rRNA tree, thereby suggesting that these proteins arose due to

horizontal gene transfer.
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Cluster 11 contains multiple paralogs from the organism, Branchiostoma
floridae, and three paralogs from Nematostella vectensis. Early divergence of the
branches that show the relationships of these paralogs from Nematostella and
Branchiostoma and the distance between these two organisms in our 16S/18S
rRNA tree suggest that some of these proteins may have resulted from an early

horizontal gene transfer event.

Cluster 12 consists of seven proteins from the phylum, Apicomplexa, and
another three proteins from Oligohymenophorea, suggesting trans-phylum
horizontal gene transfer. A closer look at the cluster reveals tight clustering of the
proteins, Tth1 (GI# 118368397), Tth2 (Gl# 118369627), and Tth4 (118366533),
from Tetrahymena, indicative of paralogy. Four proteins, Pfa1 (Gl# 124505319),
Pbe1 (Gl# 56805561), Pkn1 (Gl# 221052646), and Pvi1 (Gl# 156094597) from
Plasmodial species may also be orthologous. These these four proteins divide
into their respective branches from a point after divergence from other
Apicomplexa proteins and the branching patterns correspond closely to the
16S/18S rRNA tree. This may therefore indicate orthology between the proteins

from Babesia, Theileria, and Plasmodium in this cluster.

Cluster 13 contains a tight cluster of seven apextrin-like proteins from the
organism, Strongylocentrotus purpuratus. The diversity of these proteins are

likely to be a product of late gene duplication events, giving rise to paralogues.

Cluster 14 contains proteins from the genera, Tetrahymena, Acropora,

and Paramecium. Five proteins from the organism, Tetrahymena thermophila
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SB210, show tight clustering and are probable paralogs. A single protein from
Paramecium tetraurelia strain d4-2 branches out near the center of the tree and
is surprisingly distant from the Tetrahymena proteins. The branching pattern
suggests closer phylogenetic similarity between this Paramecium protein, Pte1
(Gl# 145475565), and a protein from a Metazoa, Ami1 (Gl# 118153966), which
suggests the lack of orthology for these homologues. Furthermore, the presence
of a single Metazoan protein among proteins from Oligohymenophorea suggest

trans-phylum horizontal gene transfer.

Cluster 15 shows two proteins from the bacterial phylum, Chlamydiae. The
genera, Chlamydia and Chlamydophila, branch closely together in both protein

and 16S/18S rRNA trees, thereby suggesting orthology.

Cluster 16 contains eight proteins from the genus, Bacteroides. The
clustering of three proteins from Bacteroides fragilis and two from Bacteroides
cellulosilyticus suggests paralogy within this cluster. Bfr2 (Gl# 53712858) and
Bfr3 (Gl# 53713977) form a branch prior to Bce1 (Gl# 224536709) showing, that
these three proteins are not orthologous. The five remaining proteins in this

cluster are likely to be orthologs.

Cluster 17 also displays a potential horizontal gene transfer event as a
distant branch of the fungal protein, Pma1 (Gl# 212532427), is present among

proteins from y-proteobacteria and Actinobacteria.
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Cluster 18 consists mostly of distantly related proteins from fungi. The
presence of the Cyanobacterial homologue, Ter1 (GI# 113474643), and the y-
proteobacterium, Msp1 (GI# 87122061), in this cluster may be evidence of
horizontal gene transfer. Similarly, a protein derivative of Mycetozoa, Ddi1 (Gl#
66805335), is present in this cluster and may have resulted from an early

horizontal gene transfer event.



Chapter 2: Homology Between the MACPF Family and Cholesterol-

Dependent Cytolysin (CDC) Family

Members of the MACPF and CDC families contain structurally similar
transmembrane domains in the form of two a-helices with amphipathic character
(Rosado et al. 2008). Inclusion of the CDC family into the MACPF superfamily
was dependent upon showing sequence similarity between the transmembrane
domains of both families. A list of CDC (Table 2) and MACPF homologues was
screened for similarities with SSearch. Many pairs of MACPF and CDC
homologues were found to be similar within their respective domains and were
further analyzed with GAP (Figures 22 to 30). GAP comparisons showed these
pairs to have comparison scores as high as 14.4 standard deviations, which by
our criteria is sufficient to establish homology (Table 5). The three highest
comparison scores in our study came from the following MACPF-CDC pairs:
Rno6 & Cte1 (123 residues compared with a comparison score of 14.4 S.D.),
Clu7 & Cbo5 (272 residues compared with a comparison score of 13.3 S.D.), and

Ami1 & Bbr1 (214 residues compared with a comparison score of 12.9 S.D.).

These pairs were then analyzed in terms of sequence similarity within the
regions that comprise the transmembrane alpha helices. Structural data were
necessary to determine whether the sequences of the MACPF and CDC pairs
corresponded to their respective transmembrane domains. The protein

structures, PDB# 2RD7 for a MACPF homologue and PDB# 1PFO for a CDC,
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were utilized as previous research efforts had revealed the putative

transmembrane region for these proteins.

Three-dimensional visualization suggested the MACPF and CDC pairs to
be homologous within the sequences of their transmembrane domains. BLAST2
and GAP results for the MACPF homologues versus the sequences of their
respective PDB model revealed that four of the ten pairs listed in Table 4 could

be further analyzed.

Superimposing and color coding the GAP alignments on the 1PFO and
2RD7 models revealed that all four pairs of MACPF and CDC homologues were
similar in regions that either fully or partially encompassed one of two
transmembrane helices (Table 7). Comparison of the MACPF protein, Omy3,
with the CDC proteins, Cbo2 and Cno1, showed that TMH1 in the MACPF
structure, 2RD7, is similar to TMH2 in the CDC protein structure, 1PFO (Figures
31, 32, 35 and 36). The comparison of the MACPF protein, Tth1, with the CDC
protein, Cte1, also showed that TMH1 in 2RD7 is similar to TMH2 in 1PFO
(Figures 34 and 38). Conversely TMH2 on 2RD?7 is also similar to TMH1 in 1PFO
in our comparison of the MACPF protein, Spu6, with the CDC protein, Cno2

(Figures 33 and 37).

Use of the ConSurf program further demonstrated the degree of
conservation between the MACPF and CDC superfamilies. The program utilized
the multiple sequence alignments of the previous pairs of MACPF and CDC

homologues to construct a phylogenetic tree. From the phylogenetic tree,
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position-specific conservation scores were calculated through the program’s
empirical Bayesian algorithm. The resultant scores were then visualized in the
1PFO protein model. Moderate to high conservation of the amino acid sequence
was observed along the transmembrane helices shared between the MACPF

and CDC pairs: Omy3 & Cbo2 and Omy3 & Cno1 (Figures 39 and 40).



Chapter 2.1: Expanding the MACPFE Phylogenetic Tree with the Cholesterol-

Dependent Cytolysin (CDC) Family

Once sequence similarity between transmembrane regions of CDC and
MACPF proteins was established through use of a combination of SSearch, GAP
and three-dimensional visualization, we made certain that the CDC proteins
formed a specific branch on our phylogenetic tree. Our CDC proteins (Tables 2)
were added to the original list of MACPF proteins (Tables 1) and a multiple
sequence alignment was obtained. The alignment was then used to formulate a

new phylogenetic tree (Figure 2).

The CDC cluster contained proteins with an average sequence length of
532 * 47 residues. All proteins belong to Gram-positive and Gram-negative
bacteria from the phyla Firmicutes, Actinobacteria, Bacteroides, and [3-
proteobacteria. All proteins in this cluster are exotoxins that require the presence
of cholesterol for pore formation. Furthermore, these proteins fall within the

1.C.12.1 sub-family.

An AveHAS plot of the CDC proteins was generated using the multiple
alignment (Figure 20). A poorly conserved peak of hydrophobicity was present at
alignment position 20 to 50. The multiple alignment showed that this peak was
only present in one protein; the human platelet aggregation factor, Smi1 (GIl#
84579714). Further analysis of the sequence using NCBI's CDD showed that
residues 53 to 178 of Smi1 were similar to the F5/8 Type C domain (pfam00754),

which is also known as the discoidin (DS) domain family. This conserved domain
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is a coagulation factor that is a part of the FA58C superfamily. The FA58C
superfamily consists of cell surface-attached carbohydrate-binding domains that
may have been horizontally transferred from eukaryotes to eubacterial genomes

(Baumgartner et al. 1998).

The highest degree of conservation between the CDC proteins in our
phylogenetic tree occurred from alignment position 280 to position 765. Further
analysis of this region using CDD showed that the cholesterol-binding thiol-

cytolysin (pfam01289) domain was highly conserved throughout these proteins.



Chapter 3: Homology between the MACPF, CDC, and Pleurotolysin Families

Members of the Pleurotolysin family consist of two-component hemolytic
proteins that cooperatively assemble into a membrane pore on human
erythrocytes (Sakurai et al. 2004, Bernheimer & Avigad et al. 1979). PSI-BLAST
searches of representative Pleurotolysin proteins in TCDB showed that the
Pleurotolysin A components belong to the Aegerolysin superfamily. The
Pleurotolysin B components and other pleurotolysin-like representative proteins
in TCDB were shown to be members of the MACPF superfamily through use of

SSearch.

TCDB representative proteins for the Pleurotolysin family were used in the
comparison (Table 3). SSearch standard deviation values greater than 12 S.D. in
regions with 60 amino acid residues or more that corresponded with the MACPF
or CDC domain demonstrated the inclusion of the Pleurotolysin Family in the
MACPF superfamily. 68 pairs of MACPF and pleurotolysin proteins were found to
have comparison scores greater than 12 S.D. (Table 8). The SSearch
comparison scores between CDCs and Pleurotolysins showed that 30 pairs had
scores greater than 12 S.D. (Table 9). Furthermore, high identities were
observed between Pkn1 (Gl# 221052646) of the Pleurotolysin family and
members of the MACPF family. Fps1 (Gl# 150024210) and Nsp1 (Gl#
17228824) also showed high identities with the CDC family, suggesting possible

revision of the TCDB representative proteins for the MACPF superfamily.

39



40

The MACPF proteins, Nfi1 (Gl# 119499704), Afl2 (GI# 220689182), Gze1
(Gl# 46126573), Afl1 (Gl# 220688529), and Afl3 (GI# 220693297) also showed
high identities with the Pleurotolysin proteins, Pos1 (GI# 54312024), Per1 (Gl#
261857452), Cgl1 (Gl# 116202857), Cli1 (189345610), and Dis1 (Gl#
66805335), respectively. This suggested that these MACPF proteins, which were
obtained through a PSI-BLAST search of MACPF representative proteins from
TCDB against the NCBI protein database, may actually be members of the

Pleurotolysin family.

A phylogenetic tree containing the MACPF, CDC and Pleurotolysin
families was used to determine whether these three putative protein families
actually represented three distinct branches on the tree and to determine
whether revision of TCDB representative proteins was necessary based on the
Pleurotolysin SSearch data. The resultant tree (Figure 3) showed Pkn1 clustering
with the MACPF family's Group 12 homologues, corresponding to the high
comparison scores from SSearch. Fps1 and Nsp1 also showed clustering with
the CDC family as predicted by the high comparison scores obtained using
SSearch. Pkn1 was thus reassigned as the MACPF family, 1.C.39.6.1, while
Fps1 and Nsp1 were reassigned as CDC representative proteins (1.C.12.2.1 and

1.C.12.3.1, respectively).

The phylogenetic tree also showed the clustering patterns of the MACPF
proteins, Nfi1, Afl2, Gze1, Afl1 and Afl3 to be consistent with the SSearch data.

These proteins were shown to form a cluster with the Pleurotolysin family, while
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the remaining proteins that formed Group 18 of our MACPF protein list (Table 1)
formed clusters with other members of the MACPF family. As a result, only
seventeen out of the original eighteen MACPF protein clusters can be observed

with the addition of the Pleurotolysin family to our phylogenetic tree.

SSearch comparison scores between the revised lists of MACPF, CDC
and Pleurotolysin homologues showed 15 pairs of MACPF and Pleurotolysin
homologues with comparison scores greater than 12 S.D. in regions greater than
50 residues that contain the MACPF domain (Table 10). Comparison scores
greater than 12 S.D. between the smaller sampling of Pleurotolysin and CDC

homologues were not observed.

Phylogenetic analysis of the MACPF superfamily was continued using the
SuperfamilyTree program (SFT). Using the revised MACPF, CDC, and
Pleurotolysin representative proteins from each subfamily in TCDB, a new
phylogenetic tree (Figure 4) was generated based on BLAST comparison scores
rather than multiple alignments. The tree showed distinct branching of the
MACPF, CDC, and Pleurotolysin proteins, confirming segregation between the
three families that constitute the MACPF superfamily. Gze1 was included as a
representative of the five MACPF proteins that were found to cluster with other
Pleurotolysin proteins in our previous tree to confirm its reassignment as a
Pleurotolysin protein. The new tree obtained from SFT showed Gze1 clustering
with the pleurotolysin representative protein, 1.C.97.2, thus confirming its

inclusion in the Pleurotolysin family.
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The pleurotolysin cluster consisted of proteins with an average sequence
length of 612 £ 237 residues. The five proteins that formed the pleurotolysin
branch in our phylogenetic tree belong to fungi and mycetozoa from the
eukaryotic domain and chlorobia from bacteria. Pkn1, which was reassigned as a
MACPF family protein, belongs to the phylum, apicomplexa, from the eukaryotic
domain while Fps1 and Nsp1, which were reassigned as CDC proteins, are from
bacteroidetes and cyanobacteria, respectively, from the bacterial domain. A TC-
BLAST of the five pleurotolysin proteins show that they are most similar to the

1.C.97.1,1.C.97.2,1.C.97.3, 1.C.97.5, and 1.C.97.6 subfamilies.

An AveHAS plot was generated using a multiple alignment of the five
pleurotolysin proteins (Figure 21). The highest degree of similarity between these
five proteins occurred from alignment positions 345 to 640, 668 to 698, 738 to
794, and 825 to 863. A peak of both hydrophobicity and amphipathicity occurred
from positions 700 to 735. However, this was only present in one protein, Cli1
(Gl# 189345610). Another peak of hydrophobicity occurred from positions 50 to
70, which was present only in the protein, Cgl1 (Gl# 116202857). A third peak of
hydrophobicity occurred from positions 960 to 1000 and was present in both Cli1
and Cgl1. Peaks of amphipathicity occurred from positions 200 to 240, 420 to

425, and 450 to 470.



Discussion

In this paper, we have characterized the MACPF superfamily by analyzing
three families, and their sequence similarities with one another have been
evaluated. The MACPF family was expanded through the collection of
homologues from NCBI, and the diversity of the family was defined through the
creation of multiple alignments and phylogenetic trees. Eighteen clusters were
analyzed based on the phylogenetic tree that was generated from the multiple
alignment of our compiled list of MACPF proteins. As a result, multiple
subfamilies were added to the MACPF entry in TCDB based on the data
gathered from clustering patterns in our phylogenetic tree and data from our
comparison of MACPF transmembrane sequences using SSearch and GAP.
Further analysis using a 16S/18S rRNA tree, based on the genera from which
our proteins were obtained, showed that horizontal gene transfer was more
widespread in the bacterial proteins while orthology was common among the

eukaryotic proteins.

The Cholesterol-Dependent Cytolysin (CDC) family was compared with
the MACPF family by analyzing sequence similarity through a combination of
SSearch and GAP. The comparison scores from SSearch of ten MACPF and
CDC protein pairs was optimized using GAP, yielding scores as high as 14.4
standard deviations. This was sufficient in establishing homology between the
MACPF and CDC families. The phylogenetic tree that was generated using our

original list of MACPF proteins and our list of CDC proteins was analyzed for the
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clustering patterns of the CDCs, which confirmed their identity as a separate
family. Based on sequence similarity between the TMSs and clustering in the
phylogenetic tree, the CDC family was added to the MACPF superfamily entry in

TCDB.

Analysis of the CDC family was continued by comparing the primary and
tertiary structures of the MACPF and CDC proteins that were analyzed using
SSearch and GAP. Many of the pairs with high comparison scores partially
contained the MACPF/CDC domain, and it was therefore necessary to confirm
that the compared sequences contained their respective transmembrane regions.
Four MACPF and CDC protein pairs were analyzed using PyMOL and ConSurf.
We found that each pair is similar in one of two transmembrane helices. The
comparison of Omy3 with Cbo2, Omy3 with Cno1, and Tth1 with Cte1 showed
that TMH1 in the MACPF protein is similar to TMH2 in the CDC protein.
Conversely, the comparison of Spu6 with Cno2 showed that TMH2 in the
MACPF protein is similar to TMH1 in the CDC protein. Through our study of
primary structure, we determined that the MACPF and CDC families share not
only structural similarity, but also sequence similarity in their transmembrane

regions.

The Pleurotolysins were the final family to be analyzed in our study of the
MACPF superfamily. Although the functional Pleurotolysin pore-forming complex
consists of two components, only the B component was compared with the CDC

and MACPF families. The smaller A component was found to be a part of the
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Aerogolysin superfamily through a protein PSI-BLAST search on NCBI. SSearch
was again used to compare the Pleurotolysin proteins with our list of MACPF and
CDC proteins. We found 68 MACPF/Pleurotolysin pairs and 30
CDC/Pleurotolysin pairs with comparison scores greater than 12 S.D.. The
significantly high comparison scores of Pkn1, Fps1, and Nsp1 suggested
possible reassignment of these proteins as members of the MACPF or CDC
families in TCDB. This was confirmed by generating a phylogenetic tree based
on a multiple alignment of all three MACPF families. Pkn1 was found to form a
cluster with the MACPF family while Fps1 and Nsp1 formed a cluster with the
CDC family. Pkn1, Fps1 and Nsp1 were therefore assigned the TC numbers
1.C.39.6.1, 1.C.12.2.1, and 1.C.12.3.1, respectively. Comparison of the revised
list of MACPF, CDC and Pleurotolysin homologues showed 15 pairs of
MACPF/Pleurotolysin proteins with comparison scores greater than 12 S.D. in

regions that spanned more than 50 residues and contained the MACPF domain.

Phylogenetic analysis of the MACPFs, CDCs and Pleurotolysins was
continued in order to confirm their identity as three distinct families. Using a tree
generated from the SuperfamilyTree program, we were able to identify distinctive
branching and clear clustering of the proteins in each family. Furthermore, we
confirmed the reassignment of five proteins (Nfi1, Afl2, Gze1, Afl1, and Afl3) from
our original list of MACPF homologues to the Pleurotolysin family by utilizing
Gze1 as a representative protein and observing its clustering patterns with

1.C.97.2 of the Pleurotolysin family.
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It is interesting to note that the MACPF superfamily is well represented in
the bacterial and eukaryotic domains, but not a single member has so far been
found in archaea. This fact correlates that pathogenic archaea seem not to exist,
or may be extremely rare. The reason for this surprising observation has yet to

be clarified.



Appendix

Table 1. All homologues from the MACPF family that were included in our study
are listed by the clock-wise order in which they appear on our phylogenetic tree.
These homologues were obtained by a PSI-BLAST search with the TCDB
representative protein, 1.C.12.1.1 as the query sequence with two iterations. The
proteins are organized by cluster, and their abbreviations, protein descriptions,
organismal sources, sequence lengths, Genlinfo Identifier (Gl) numbers, phyla,
domains, and TCDB sub-families are provided.
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MACPF Family Homologues
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Table 1. continued
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Table1, continued
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Table 1, continued
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Table 2. All homologues of the CDC family that were included in our study are
listed. These proteins were obtained by a PSI-BLAST search using the TCDB
representative protein, 1.C.12.1.1 as the query sequence with two iterations. The
proteins are organized by cluster, and the abbreviations, protein descriptions,
organismal sources, sequence lengths, Genlinfo Identifier (Gl) numbers, phyla,
domains, and TCDB sub-family of each protein are provided.
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Table 3. All homologues that were initially present in the TCDB entry for the
Pleurotolysin family are listed. The proteins are organized by cluster, and the
abbreviations, protein descriptions, organismal sources, sequence lengths,
Genlnfo Identifier (Gl) numbers, phyla, domains, and TCDB sub-family of each
protein are provided.
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Table 5. SSearch Comparison Scores Between CDC and MACPF Homologues.
Regions which contained their respective CDC or MACPF domain were further
analyzed with GAP and listed in Table 5.

MACPF (Residues CDC (Residues Average Score Expressed

Compared) Compared) in S.D. (SSearch Program)

Bfl1 (922 - 1062) Smi1 (48 - 186) 25.3
Bfl5 (1239 - 1407) Smi1 (48 - 217) 28.6
Bf6 (959 - 1102) Smi1 (48 - 188) 30.1
Bfl9 (766 - 899) Smi1 (48 - 181) 24.1
Bfl16 (1080 - 1212) Smi1 (48 - 181) 39.8
Bfl23 (1184 - 1325) Smi1 (48 - 181) 23.6
Bfl34 (1196 - 1350) Smi1 (44 - 201) 31.2
Omy3 (148-283) Cbo2 (388-522) 6.5
Omy3 (148-336) Cno1 (347-538) 7.3
Spub (199-293) Cno2 (169-255) 5.5
Tth1 (203-340) Cte1 (293-425) 5.7
Ami1 (474-686) Bbr1 (225-439) 6.8
Eca2 (316-409) Cbo5 (381-476) 6.3
Clu7 (338-425) Cte1 (386-474) 6.9
Rno6 (307-426) Cte1 (362-485) 8.0
Clu7 (168-434) Cbo5 (204-476) 5.2
Rno6 (328-426) Cbob5 (378-477) 5.5

Table 6. GAP Comparison Scores Between CDC and MACPF Homologues

MACPF (Residues CDC (Residues Average Score Expressed
Compared) Compared) in S.D. (GAP Program)
Omy3 (148-283) Cbo2 (388-522) 10.8
Omy3 (148-336) Cno1 (347-538) 10.9
Spub (199-293) Cno2 (169-255) 12.5
Tth1 (203-340) Cte1 (293-425) 10.9
Ami1 (474-686) Bbr1 (225-439) 12.9
Eca2 (316-409) Cbo5 (381-476) 11.0
Clu7 (338-425) Cte1 (386-474) 12.4
Rno6 (307-426) Cte1 (362-485) 14.4
Clu7 (168-434) Cbo5 (204-476) 13.3
Rno6 (328-426) Cbo5 (378-477) 10.2
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Table 7. Comparison of MACPF and CDC TMHs. The GAP alignments in Table
5 were superimposed on the MACPF structure, PDB# 2RD7, and the CDC
structure, PDB# 1PFO, and the TMH included in each alignment was observed.

Omy3/Cbo2 | Omy3/Cnol | Spu6/Cno2 | Tth1/Ctel
2RD7 TMH1 TMH1 TMH2 TMH1
1PFO TMH2 TMH2 TMH1 TMH2

Table 8. Comparison Scores Between Pleurotolysin and MACPF Homologues

Average Score

MACPF (Residues Pleurotolysin (Residues | Expressed in S.D.

Compared) Compared) (SSearch Program)
Cmi1 (1302 - 2058) Pkn1 (292 - 593) 12.0
Nve1 (1479 - 2108) Pkn1 (368 - 611) 124
Nve3 (1471 - 2056) Cgl1 (364 - 591) 13.8
Bfl5 (838 - 2102) Pkn1 (134 - 607) 12.7
Bfl24 (842 - 2102) Pkn1 (129 - 607) 13.0
Bfl12 (1725 - 2102) Pkn1 (482 - 607) 12.2
Tth4 (1120 - 2245) Pkn1 (294 - 624) 18.4
Tth1 (1372 - 2252) Pkn1 (331 - 632) 16.1
Pkn1 (2424 - 2556) Pkn1 (480 - 625) 13.2
Pvi1 (2417 - 2556) Dis1 (474 - 625) 16.3
Tpat (1137 - 2255) Pkn1 (295-622) 23.7
Tan1 (2853 - 3175) Pkn1 (294 - 622) 64.9
Spu3 (1139 - 2054) Pkn1 (290 - 565) 16.9
Spu4 (1305 - 2054) Pkn1 (295 - 581) 12.1
Spu6 (1308 - 2054) Pkn1 (298 - 581) 12.0
Tth3 (1124 - 2099) Pkn1 (274 - 604) 30.1
Tth5 (1140 - 2097) Pkn1 (290 - 602) 22.7
Tth6 (1138 - 2236) Pkn1 (288 - 629) 30.1
Tth8 (1123 - 2096) Pkn1 (271 - 601) 29.4
Tth7 (1132 - 2095) Pkn1 (280 - 600) 19.9
Cmu1 (1725 - 2248) Pkn1 (482 - 652) 15.1
Cpn1 (1706 - 2247) Pkn1 (465 - 652) 12.7
Mmu3 (1720 - 2513) Pkn1 (477 - 874) 13.8
Mdo2 (1720 - 2110) Pkn1 (476 - 608) 13.2
Tni3 (1696 - 2191) Pkn1 (447 - 622) 12.4
Tni1 (1728 - 2191) Pkn1 (485 - 622) 13.3
Dre7 (1721 - 2104) Pkn1 (478 - 602) 12.7




Table 8, continued

Cin2 (1326 - 2195) Pkn1 (254 - 626) 22.8
Cin10 (1332 - 2197) Pkn1 (262 - 628) 27.0
Cin11 (1332 - 2256) Pkn1 (262 - 677) 17.7
Cin3 (1729 - 2198) Pkn1 (486 - 629) 14.0
Cin7 (1729 - 2198) Pkn1 (486 - 629) 18.1
Cin13 (1729 - 2198) Pkn1 (486 - 629) 15.4
Cin5 (1722 - 2195) Pkn1 (479 - 626) 12.1
Cin12 (1704 - 2120) Pkn1 (471 - 618) 12.3
Bfl14 (1491 - 2108) Dis1 (368 - 609) 12.9
Bbo1 (1395 - 2202) Pkn1 (294 - 638) 65.4
Ami1 (1426 - 2123) Pkn1 (291 - 625) 16.6
Pma1 (1390 - 2111) Pkn1 (261 - 609) 16.2
Ddi1 (1457 - 2108) Pos1 (382 - 609) 22.2
Ddi1 (1457 - 2108) Per1 (382 - 609) 19.4
Ddi1 (1420 - 2110) Cgl1 (400-611) 15.5
Ddi1 (1465 - 2100) Cli1 (410 - 600) 13.3
Ddi1 (1723 - 2118) Pkn1 (480 - 617) 12.4
Nfi1 (1748 - 2409) Pos1 (317 - 609) 13.8
Nfi1 (1752 - 2409) Per1 (321 - 609) 12.1
Nfi1 (1731 -2438) Cgl1 (327 - 637) 59.9
Nfi1 (1782 - 2410) Cli1 (383 - 610) 19.8
Nfi1 (1772 - 2424) Dis1 (363 -631) 16.3
Afl2 (1468 - 2108) Pos1 (317 - 609) 17.5
Afl2 (1481 -2108) Per1 (357 - 609) 16.7
Afl2 (1418 - 2117) Cgl1 (319 - 618) 61.7
Afl2 (1475 - 2101) Cli1 (369 - 602) 27.0
Afl2 (1505 - 2230) Dis1 (374 - 660) 20.5
Gze1 (1474 - 2111) Cgl1 (349 - 612) 41.0
Gze1 (1662 - 2049) Cli1 (410 - 594) 16.0
Afl1 (1661 - 2424) Pos1 (402 - 722) 15.2
Afl1 (1465 - 2193) Cgl1 (326 - 631) 57.8
Afl1 (1402 - 2109) Cli1 (296 - 610) 22.5
Afl3 (1477 - 2109) Pos1 (353 - 616) 27.4
Afl3 (1477 - 2109) Per1 (353 - 616) 22.5
Afl3 (1390 - 2231) Cgl1 (281 - 665) 84.5
Afl3 (1372 - 2062) Cli1 (264 - 597) 28.6
Pkn1 (1098 - 2961) Pkn1 (1 - 996) 639.5
Pvi1 (1098 - 2961) Pkn1 (1 - 996) 569.1
Pbe1 (1098 - 2960) Pkn1 (1 - 995) 458.6
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Table 8, continued
Pfa1 (1112 - 2961)

Pkn1 (15 - 996)

369.3

Ddi1 (1400 - 2481)

Dis1 (354 - 863)

298.3

Table 9. Comparison Scores Between Pleurotolysin and CDC Homologues

Average Score

CDC (Residues Pleurotolysin (Residues | Expressed in S.D.
Compared) Compared) (SSearch Program)
Gva1 (313 - 633) Fps1 (410 - 858) 28.3
Smi1 (282 - 639) Fps1 (378 - 864) 24.8
Sin1 (339 - 634) Fps1 (444 - 859) 33.6
Spn1 (320 - 633) Fps1 (423 - 858) 16.3
Ssu1 (349 - 638) Fps1 (464 - 863) 33.0
Lmo1 (352 - 633) Fps1 (467 - 858) 20.0
Lse1 (655 - 743) Fps1 (422 - 858) 27.3
Liv1 (317 - 633) Fps1 (422 - 858) 23.1
Orf1 (517 - 633) Fps1 (663 - 858) 15.9
Cte1 (322 - 649) Fps1 (419 - 872) 22.3
Cbo4 (349 - 649) Fps1 (464 - 872) 22.9
Cbo1 (349 - 649) Fps1 (464 - 872) 21.9
Cno1 (322 - 649) Fps1 (419 - 872) 23.6
Cbo2 (322 - 649) Fps1 (419 - 872) 23.6
Cbo3 (349 - 649) Fps1 (464 - 872) 21.7
Cno2 (349 - 649) Fps1 (464 - 872) 23.0
Cbo5 (349 - 649) Fps1 (627 - 879) 24.7
Bth1 (286 - 638) Fps1 (383 - 863) 18.6
Bcel (171 - 638) Fps1 (364 - 863) 20.9
Lsp1 (330 - 649) Fps1 (437 - 872) 19.5
Bbr1 (330 - 649) Fps1 (437 - 872) 23.1
Pal1 (139 - 634) Fps1 (354 - 859) 21.4
Cpe1 (330 - 649) Fps1 (437 - 872) 24.2
Cbu1 (318 - 649) Fps1 (420 - 872) 32.3
Sdy1 (245 - 649) Fps1 (373 - 872) 21.5
Apy1 (347 - 640) Fps1 (462 - 865) 29.9
Apy1 (655 - 763) Nsp1 (728 - 899) 16.0
Ofo1 (318 - 641) Fps1 (422 - 869) 15.3
Ofo1 (655 - 770) Nsp1 (728 - 906) 25.4
Nsp1 (354 - 648) Fps1 (469 - 871) 14.3
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Table 10: Comparison Scores Between Revised List of Pleurotolysin and
MACPF Homologues.

Location of the
Pleurotolysin Average Score MACPF Domain
MACPF (Residues (Residues Expressed in S.D. on the MACPF
Compared) Compared) (SSearch Program) | Protein
Nve3 (192-372) Afl2 (149-354) 13.6 222-417
Nve3 (194-401) Cgl1 (332-537) 13.6 222-417
BfI33 (547-725) Afl2 (149-334) 12.8 585-760
Bfl32 (244-421) Afl2 (149-334) 13.0 357-466
Bfl24 (859-1019) Afl2 (166-334) 12.1 885-1054
Pvi1 (428-572) Cli1 (350-489) 12.1 341-567
Clu6 (246-451) Cgl1 (344-540) 12.2 292-497
Bfl4 (258-467) Afl2 (132-333) 12.2 316-531
Ddi1 (22-208) Pos1 (131-333) 18.7 30-220
Ddi1 (22-208) Per1 (130-332) 17.9 30-220
Ddi1 (30-200) Cli1 (288-463) 14.8 30-220
Ddi1 (10-224) Nfi1 (334-555) 13.7 30-220
Ddi1 (21-239) Afl2 (176-408) 19.6 30-220
Ddi1 (8-223) Gze1 (296-540) 12.9 30-220
Ddi1 (21-210) Cgl1 (357-557) 14.7 30-220
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Membrane
Attack/Protein Perforin
(MACPF) Family
Groups 1-18
TC#1.C.39

Figure 1. The phylogenetic tree containing all 234 MACPF homologues as listed
in Table 1-1. The tree was generated using the ClustalX and FigTree programs
and was subdivided into 18 clusters based on branching and clustering patterns
as indicated.
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Membrane
Attack/Protein Perforin
(MACPF) Family
Groups 1-18
TC#1.C.39

Cholesterol-
Dependent
Cytolysin (CDC)
Family
TC#1.C12

15

Figure 2. The phylogenetic tree generated by the addition of the Cholesterol-
Dependent Cytolysin (CDC) family homologues to the MACPF homologues in
Figure 1-1. The tree shows exclusive clustering of all 28 CDC homologues.
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Membrane
Attack/Protein Perforin
(MACPF) Family

Groups 1-17
TC#1.C.39

Cholesterol-Dependent
Cytolysin (CDC) Family
TC#1.C.12

\ \\ “

W\ \ \ /Pleurotolysm

(Pleurotolysins)
Family
TC#1.C.97

Figure 3. The phylogenetic tree generated by the addition of the 8 Pleurotolysin
representatives from TCDB to the phylogenetic tree containing the CDC and
MACPF homologues. The Pleurotolysin protein, Pkn1 (Gl# 221052646), was
shown to cluster with the MACPF family's Group 12 homologues. The
Pleurotolysin proteins, Fps1 (Gl# 150024210) and Nsp1 (Gl# 17228824), were
shown to cluster with the CDC homologues. The MACPF proteins, Nfi1 (Gl#
119499704), Afl2 (GI# 220689182), Gze1 (GlI# 46126573), Afl1 (GI#
220688529), and AfI3 (GI# 220693297) were shown to cluster with the
Pleurotolysin proteins. These proteins have been resassigned different TC
numbers according to the family with which they associate.
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Pleurotolysin 1ea2 Cholesterol-
(Pleurotolysins) : 5 Dependent
Cytolysin (CDC)

Family Gzat .
Famil
TCH 1.C.97 / (Gi#46128573) y
C9 TC#1.C12

Membrane
Afttack/Proisin
Parforin
(MACPF) Family
TC#1.C.39

Figure 4. MACPF Superfamily Tree Generated from SFT. Clustering of Gze1
(originally a MACPF homologue collected from NCBI) with 1.C.97.2 confirmed its
inclusion in the Pleurotolysin family.
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Branchiostoma
Perca
Paralichthys
Oncorhynchus
Salmo
Fundulus
Danio
Xenopus
Gallus
Ornithorhynchus
Monodelphis
Mus

Rattus

Equus

Sus

Bos

Homo

Cyanobacteria

Bacteria

Clavibacter =

Plesiocystis

5-protecbacteria

Serratia
Photorhabdus
Marinomonas
Beggiatoa

y-protebacteria

Figure 5.

Mycetozoa .
Dictyolstelium 7
Tetrahymena
Paramecium

Oligohymenophoria

Callithrix
Strongylocentrotus)
Halocynthia
Ciona
Mematostella

Metazoa

Aspergillus
Neosartorya
Penicillium
Emericella
Gibberella

Viridiplant Fungi

Eabesia
Theileria
Flasmodium

Apicomplexa

MACPF Family 16S/18S rRNA Gene Tree. Most genera from which

our MACPF proteins were derived are included in this phylogenetic tree and are
listed in clockwise order. The eukaryotic genera omitted from the rRNA tree due
to the unavailability of complete 18S rRNA sequences include: Pongo, Macaca,
Canis, Felis, Tetraodon, Oryctolagus, Ginglymyostoma, Takifugu,
Ctenopharyngodon, and Acropora. The right-hand section of the tree shows
exclusive clustering of eukaryotic organisms while the left-hand portion shows
distinct clustering of bacteria. No archaeal homologues were identified.
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Figure 6. AveHAS plot of MACPF Family Cluster 1
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Figure 15. AveHAS Plot of MACPF Family Cluster 13
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Figure 17. AveHAS Plot of MACPF Family Cluster 16
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Figure 18. AveHAS Plot of MACPF Family Cluster 17
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Figure 21. AveHAS Plot of Pleurotolysin Homologues

Cho2 1 DSVTLKELKAKGLNKDNPPAYVSNVAYG. . RTIYVKLETTSKSLNVEKAAF 48

UL L I - A | .
Omy3 1 DAVTGKQ.RGSVINTKSYGGQCRTVLSGDNKVIY.RLPQSTLRYNFEVKV 48

Cbo2 49 KALIKNQDISGNMEY.KDILNQSSFTATVLGGGAKEHNKVITKNFDEIRE 97

. P = - ibsk: G . .
Omy3 49 QNDFSDEFYTSSWSYAKDIVKRETTTGTTTGFNNYDLHQTEEKNRNNHLL 98

Cho2 98 WIKNN...AEYSPONPAYPISYTTTFLKDNAVATINSKTDY 135

T LU - U O A I e N
Omy3 99 VVKNNVEVAQFQNQAPGY. LSLSEEFWK. . VLATLPTVYDY 136

Figure 22. GAP Optimization Alignment of Omy3 & Cbo2. GAP alignment of
the residues compared in SSearch showed a percent identity of 27.0%, 36.2%
similarity, and a comparison score of 10.8 S.D.



Cnol 1 DSVTLKQLKAKGLNKDNPPAYVSNVAYG. .RTIYVKLETTSKSLNVKAAF 48
LB L T |
Omy3 1 DAVTGKQ.RGSVINTKSYGGQCRTVLSGDNKVIY.RLPQSTLRYNFEVKV 48

Cnol 49 KALIHNQDISGNTEY HDILNQS5FTATVLGGGAKEHNHVITKNFDEIRE o7

I
Omy3 49 QNDFSDEFYTSSWSYAKDIVKREIIIGIIIGFNNYDLHQTEEKNRNNHLL 9B

Cnol 98 VIKNN. AEYSPRNPGYPIS?IIIFLKDNAVATINSKTDY ...... IET 138

LU L L L. 3
Omy3 99 VVKNNVEVAQFQNQAPGY.LSLSEEFWK. . VLATLPTVYDYATYRMVVER 145

Cnoi 139 TATEY.TNGHLVLDHKGGYVAQYDISWDEvNYDHNGKEIVTHKTWDGNYK 187

1. 1 L1 =1 | 1.
Omy3 146 FGTHYLSEGTL..... GGYF.QALLSIDQETATQMAK. . . . . VTWKYNEC 184

Cno1 188 DRTSH 192
I
Omy3 185 TKTKH 189

Figure 23. GAP Optimization Alignment of Omy3 & Cno1. GAP alignment of
the residues compared in SSearch showed a percent identity of 30.1%, 38.6%
similarity, and a comparison score of 10.9 S.D.

Cno2 1 KAGIDSLLNKWNSHYSSIYSIPTR..FSYSDS....MVYSKSQLSAKLGC 44

- | 1. SR S AN
Spuf 1 EAAYMQFLNAWGTHIVIEVDLGTREGTNYEESRSSFVEYASTQVSASLSA 50

Cno2 45 .. NFKALNKALDIDFDSIYKGQKKVMLLAYKQIFYTVNVDAPNHP 87

L L 11
Spu 51 AGSYGGFSASLAVDMDSFESGMESGSSFGSTYSSYTVGSDDLNEP 95

Figure 24. GAP Optimization Alignment of Spu6 & Cno2. GAP alignment of
the residues compared in SSearch showed a percent identity of 28.7%, 33.3%
similarity, and a comparison score of 12.5 S.D.



Cte1 1
Tthi 1
Ctel 47
Tth1 51
Ctelt 95
Tth1 100
Figure 25.
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YWENVAYGRT. . IVVKLETTSKSSHVEKAAFKALTINNG. . DISSNAEYKDI 46

T T I o L L L
YVSSIVMGGTAKILTLLNTTYVETHDFQEVKNQVNLEVNYIMSNLNFDAS 50

LMOQSSFTATVLGGGAQEHNKITITKDFDEIRNITKNNSYYS. . PONPGYPI 94

e 1. : : co LD
FNQTENTTSVVYQKDAENYIFFTPDLSHSKEEKAWDAWE SRVPQNP. QPV 99

SYTTTFLEDNSTASVNNKTEYIETTATEY. TNGKIVLDHS 1332

A I I S-S N R - B
NITVSYLSDLA. SSYKEVQQHLRDTIEYYLKNGDVPRDPS 138

GAP Optimization Alignment of Tth1 & Cte1. GAP alignment of the

residues compared in SSearch showed a percent identity of 29.0%, 37.4%
similarity, and a comparison score of 10.9 S.D.



Bbr1 1
Ami 1
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Ami1 48
Bbr1  9&

Amil 98
Bbri 12e
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Amil 193

Figure 26.

residues compared in SSearch showed a percent identity of 23.1%, 32.9%

ANGEREVHMVALYEQIFYTVNAELFNDESDLFDDSVIFE . DLEREGVSDQS

I . I 111 T3 D I N
ADGSANTWASQT SOQTPMPINIEL. TS5ISELLTD. . TFETDLDEEQIDYET

PEVMVSNVAYGRTIYVELETTSKSKDVEAAFKALLQN . . . TANVETNAE .
|| - | <1 . M
. . LRPEKLVEYLTRYCQQLVDENKAKDCMPPTEFATNGPGPTAWIDTDTDV

YKDIFEDSSFTAVVLGGDSQEHNKVVIKDFSEIRNI IKDNAEFSLENPAY
R I R P I
FQDML . DEHFMALVYGSTONEFTLEILKDKEKTFSQVIERGNYVMDVTAC

PISYTSVELEDNALAAVANN T DY IETTATEY SEGEISLGHYGWYVAQEFDWV

I e s I =1 1 I
PGREKRFGVLHCNLVSWAYIQMYDVDDSGKATAGLQLKLODFG. . VGFEDV

SWDEVSYDENGEE . VLTHETIW 215

[1- 11 . . | |
SWHALSYSEEYEGFLLVERLW 213

453

47

=

95

145

144

135

132
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GAP Optimization Alignment of Ami1 & Bbr1. GAP alignment of the

similarity, and a comparison score of 12.9 S.D.
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Chot 1 TTTFLEN.NGIATVHMNEIDYI...ETTATEY.THGELVLDHSGAYVAQFN 45

L - 2 IR A L ||
Eca2 1 TTTFLDDIKALPTAYEKGEYIAFLETYGTHYSSS5GSL....GGLY..ELI 44

Chob 4& ITWDEVSYDEEGNEIVEHEAWSGHNNEDRTAHFNTEIYLEGNSENICIERE 95

O T I B A e 0 =1 0sd
Eca? 45 YVLDEKASMDQEGVELRDIQRCLGFNLDLSLKDKYEVTAK.IDEKNDCLKRN 93

Chobh %& E %96

Eca2 94 E 94

Figure 27. GAP Optimization Alignment of Eca2 & Cbo5. GAP alignment of
the residues compared in SSearch showed a percent identity of 36.0%, 44.9%
similarity, and a comparison score of 11.0 S.D.

Cte1 1 ISYTITFLED.NS5IASVHNNETEY...IETTATEYTHNGEIVLDHSGAYVAD 46

Lrrer ro-:01 | 11 1. . | |
Cluv 1 VMLTTTFLDDIKALPSTYEEGEYFAFLETYGTHYS55G5L. . . .GGYYEL 46

Ctel 47 FQVIWDEVSYDEEGHEIVEHFAWEGHNRDETAHFNTEIYLEGH &

[ N B N I I I O 111
Clu7 47 IYVL.DEASMEEEGVELRDVQRCLGFNLDFSLEAGVEISGELN !

LG

[}
[8E}

Figure 28. GAP Optimization Alignment of Clu7 & Cte1. GAP alignment of the
residues compared in SSearch showed a percent identity of 35.7%, 42.9%
similarity, and a comparison score of 12.4 S.D.



Cluv

1

Chod 1

Clu7

46

Chob 48

Clu7

94

Chob 98

Figure 29.

90

VMLTTTFL.DDIEALPSTYEEGEYFAFLETYGTHY S55G5L.. . . . . GGYYE 45

NENNI P | = 1 I I B ||
ISYTTTFLEN.NGIATVNNKTDY. . .IETTATEY . TNGKLVLDHSGAYVA 45

LIYVL. DEASMEEEGVELRDVQRCLGFNLDFSLEAGVEISGRLN . KDDCL. 83

I I T e 1 I B B
QFHITWDEVSYDEEGNEIVEHEAWNSGHNNEDRTAHFNTEIYLEGHSENICTI S5

KRGE 87

||
FLFE 939

GAP Optimization Alignment of Clu7 & Cbo5. GAP alignment of the

residues compared in SSearch showed a percent identity of 32.6%, 43.5%
similarity, and a comparison score of 13.3 S.D.

RnoG

Chob

RnoG

Chob

RnoG

Chob

45

46

95

36

Figure 30.
the residues compared in SSearch showed a percent identity of 29.8%, 41.5%
similarity, and a comparison score of 10.2 S.D.

VMLITTFLDDVEALPVSYERGEYFGFLETYGTHYS55G5L. . . .GGLY. . 44

Ler . : | =1 I I B ||
ISYTTTFLEN.NGIATVNNKIDY. . .IETTATEY . TNGKLVLDHSGAYVA 45

ELIYVLDEASMEERGVELSDVERCLGFNLDVSLYTPLOTTLEGFSLTANY 54

JCU Y I A R I O e Y
QFHITWDEVSYDEEGNE IVEHKAWSGNNRDRTAHFNTETYLEGHNSENICT 85

HH5DC 95

2
FAFEC 100

GAP Optimization Alignment of Rno6 & Cbo5. GAP alignment of
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Figure 31. GAP Comparison of Omy3 & Cbo2 Superimposed on 1PFO. Green
indicates the Perfringolysin O chain that was not included in the alignment.
Yellow indicates where the CDC protein, Cbo2, aligned with both Omy3 and the
1PFO protein using GAP.
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Figure 32. GAP Comparison of Omy3 & Cno1 Superimposed on 1PFO. Green
indicates the Perfringolysin O chain that was not included in the alignment.
Yellow indicates where the CDC protein, Cno1, aligned with both Omy3 and the
1PFO protein using GAP.
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Figure 33. GAP Comparison of Spu6 & Cno2 Superimposed on 1PFO. Green
indicates the Perfringolysin O chain that was not included in the alignment.
Yellow indicates where the CDC protein, Cno2, aligned with both Spu6 and the
1PFO protein using GAP.



Figure 34. GAP Comparison of Tth1 & Cte1 Superimposed on 1PFO. Green
indicates the Perfringolysin O chain that was not included in the alignment.
Yellow indicates where the CDC protein, Cte1, aligned with both Tth1 and the
1PFO protein using GAP.

94
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Figure 35. GAP Comparison of Omy3 & Cbo2 Superimposed on 2RD7. Red
indicates the complement component C8 alpha chain. Green indicates the
complement component C8 gamma chain. Yellow indicates the residues where
Omy3 was found to align with both Cbo2 and the 2RD7 protein using GAP.
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Figure 36. GAP Comparison of Omy3 & Cno1 Superimposed on 2RD7. Red
indicates the complement component C8 alpha chain. Green indicates the
complement component C8 gamma chain. Yellow indicates the residues where
Omy3 was found to align with both Cno1 and the 2RD7 protein using GAP.
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Figure 37. GAP Comparison of Spu6 & Cno2 Superimposed on 2RD7. Red
indicates the complement component C8 alpha chain. Green indicates the
complement component C8 gamma chain. Yellow indicates the residues where
Spu6 was found to align with both Cno2 and the 2RD7 protein using GAP.
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Figure 38. GAP Comparison of Tth1 & Cte1 Superimposed on 2RD7. Red
indicates the complement component C8 alpha chain. Green indicates the
complement component C8 gamma chain. Yellow indicates the residues where
Tth1 was found to align with both Cte1 and the 2RD7 protein using GAP.
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B[00 7 =T

Figure 39. ConSurf Coloring of Omy3 & Cbo2 on 1PFO. Highly conserved
residues are indicated with colors closer to 9 in the color key. Poorly conserved
residues are indicated with colors closer to 1 in the color key. Light yellow
indicates residues that were not aligned.
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Figure 40. ConSurf Coloring of Omy3 & Cno1 on 1PFO. Highly conserved
residues are indicated with colors closer to 9 in the color key. Poorly conserved
residues are indicated with colors closer to 1 in the color key. Light yellow
indicates residues that were not aligned.
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