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RESEARCH ARTICLE

Metrics for Assessing Cytoskeletal
Orientational Correlations and Consistency
Nancy K. Drew1, Mackenzie A. Eagleson1,2, Danny B. Baldo Jr.1, Kevin Kit Parker2,
Anna Grosberg1,3*

1Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of
America, 2 School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts,
United States of America, 3Department of Chemical Engineering, University of California, Irvine, Irvine,
California, United States of America

* grosberg@uci.edu

Abstract
In biology, organization at multiple scales potentiates biological function. Current advances

in staining and imaging of biological tissues provide a wealth of data, but there are few met-

rics to quantitatively describe these findings. In particular there is a need for a metric that

would characterize the correlation and consistency of orientation of different biological con-

structs within a tissue. We aimed to create such a metric and to demonstrate its use with im-

ages of cardiac tissues. The co-orientational order parameter (COOP) was based on the

mathematical framework of a classical parameter, the orientational order parameter (OOP).

Theorems were proven to illustrate the properties and boundaries of the COOP, which was

then applied to both synthetic and experimental data. We showed the COOP to be useful

for quantifying the correlation of orientation of constructs such as actin filaments and sarco-

meric Z-lines. As expected, cardiac tissues showed perfect correlation between actin fila-

ments and Z-lines. We also demonstrated the use of COOP to quantify the consistency of

construct orientation within cells of the same shape. The COOP provides a quantitative tool

to characterize tissues beyond co-localization or single construct orientation distribution. In

the future, this new parameter could be used to represent the quantitative changes during

maturation of cardiac tissue, pathological malformation, and other processes.

Author Summary

Biological tissues are highly organized on multiple length scales. In tissue engineering, rec-
reating the in vivo architecture is an important aspect of in vitro experiments. An ability to
quantify organization of cellular constructs, specifically the correlation in their orienta-
tions, would greatly enhance both our understanding of the function of each construct and
provide a tool to evaluate engineered tissues. In this work, we have developed a parameter
to evaluate the correlation and consistency of construct orientation. We have extensively
characterized this co-orientational order parameter analytically, validated it using synthet-
ic data, and demonstrated its use with experimental data of Z-lines and actin fibrils archi-
tectures in engineered cardiac tissues. As long as the orientation angles and location of
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constructs are known, the parameter can quantify both orientational correlation and con-
sistency. Thus, the co-orientational order parameter has a wide scope of application both
in biology and potentially outside of it.

Introduction
The architecture and organization of the cytoskeleton components in cells, the cells in tissues,
and cellular ensembles in organs affect function at each of these physiological scales [1–4]. The
study of architecture is therefore key to understanding how the cellular microenvironment po-
tentiates function, and may provide new insights in the study of physiological mechanisms.
Furthermore, for proper function, different components of the cytoskeleton, cell, or tissue need
to co-localize and orient properly with respect to each other [5, 6]. Quantifying the degree of
orientation of cells and subcellular components, both relative to themselves and to other com-
ponents, is thus crucial for evaluating the quality of engineered tissues [7].

The problem of describing the organization of biological structures is twofold: first, the ori-
entation of the constructs needs to be quantified from the available images, and second, a met-
ric needs to be applied to summarize the overall organization. The quantification of orientation
from biological images is in principle straightforward and can be either done manually [8] or
with a variety of computational algorithms [6, 9–11]. As far as the second problem is con-
cerned, summarizing the overall organization after image analysis involves selecting a metric,
which is more controversial. As a result, a wide variety of metrics are utilized in the bio-imag-
ing field. For example, some assume that the parameter can be described as the standard devia-
tion of a truncated Gaussian, or normal, distribution [12]. Others use the von Mises circular
distribution [9, 10], which is a wrapped normal distribution. However, cellular and cytoskele-
ton distributions are often non-Gaussian, and their being non-Gaussian may be of crucial im-
portance [13].

An alternative metric, the Orientational Order Parameter (OOP), has been developed in the
field of liquid crystals. The OOP is a mathematical construct developed to quantify the degree
of order in anisotropic medias [14]. Mathematically, the OOP is equivalent to resultant vector
length from the circular distribution with a period of π [15]. In biology, the OOP has been suc-
cessfully employed to characterize organization of bacteria [16], fibroblasts [17], vascular
smooth muscle [18], actin fibrils alignment in valve endothelial cells [19], and Z-lines in cardi-
ac muscle [20]. However, there is a lack of a robust correlation metric that has been character-
ized for use with biological images. The suite of correlation parameters provided by circular
statistics are either too limited to be used with cytoskeleton organization or so complex the re-
sults are hard to connect back to biological phenotypes [21]. Other correlation metrics are also
not ideal for correlating orientations of the cytoskeleton components, and to date no metric
has been developed or specifically characterized for this purpose [22–24].

In this work, we develop a new parameter with similar mathematical framework as OOP
that will characterize both consistency of orientation of a single component and correlation of
orientation of two components. As an example, we apply this Co-Orientational Order Parame-
ter (COOP) to compare orientation of Z-lines and actin filaments in a neonatal rat ventricular
myocyte (NRVM) monolayer. Lastly, we show how the COOP can be used to measure the con-
sistency of building a cardiomyocyte on a triangular island of extracellular matrix (ECM).
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Results

Theoretical Results
One of the main goals of this work was to develop a metric to quantify the correlation between
the orientation of different biological constructs within the cell or tissue. In designing the new
metric, we aimed to overcome the challenge of analyzing orientation of multiple pseudo vec-
tors, i.e. the metric needed to be symmetric with the period of π for both vectors. The OOP was
designed to analyze the organization of pseudo vectors, and has become a standard parameter
for use in liquid crystals [20]. The OOP ranges from zero, for isotropic, to one, for aligned me-
diums (S1 Fig.), and it has been applied to various biological systems [14, 16, 20]. However, the
OOP was not designed to evaluate the correlation of orientation of coupled constructs such as
actin fibrils and Z-lines. The first step in creating the COOP was to formally define the prob-
lem. Let the first construct be P, a set of pseudo vectors ~pi , and the second construct be Q, a set
of pseudo vectors ~qi (Fig. 1A). The order tensor and OOP of each field is:

TK ¼ 2
ki;xki;x ki;xki;y

ki;xki;y ki;yki;y

2
4

3
5� I

* +
¼ fMean order tensorg; ð1Þ

OOPK ¼max eigenvalueðTKÞ½ � ¼ fOrientational order parameter of Kg; ð2Þ

where K = {P, Q}, ~ki ¼ f~pi ; ~qig, and I is the identity matrix. To construct the new metric, we

defined a new field F (a set of pseudo vectors~fi ):

fi;x ¼ ~pi � ~qi ¼ pi;xqi;x þ pi;yqi;y ¼ cos ðyÞ ; ð3Þ

fi;y ¼ j~pi � ~qi j ¼ pi;xqi;y � pi;yqi;x ¼ sin ðyÞ: ð4Þ

Physically, field F represent the angle (θ) between the two biological constructs, ~pi and ~qi . The
metric was then calculated similarly to the OOP:

TPQ ¼ 2
fi;xfi;x fi;xfi;y

fi;xfi;y fi;yfi;y

2
4

3
5� I

* +
¼ fMean tensor of the systemg: ð5Þ

COOPPQ ¼max eigenvalueðTPQÞ
� � ¼ Co�orientational order parameter of the systemf g: ð6Þ

The analytical solution of the COOP is:

COOPPQ ¼ 2 ~fi � n̂
n o2

� 1

� �
¼ 2 ~fi � n̂

n o2
� �

� 1 ¼ 2 ~fi � n̂
n o2
� �

� 1; ð7Þ

where n̂, the director, is the eigenvector associated with the maximum eigenvalue of mean ten-
sor TPQ. The director represents the mean angle between the two constructs. Alternatively, the
COOP can be written in the expended form:

COOPPQ ¼ h f 2i;xi þ h f 2i;yi � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h f 2i;xi � h f 2i;yi
� �2

þ 4h fi;xfi;yi2
r

: ð8Þ

The COOP was designed to range between zero and one. Here we present a series of theorems
that illustrate the various properties of the COOP.

Tissue Architecture Metrics
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Fig 1. Theoretical formulation of the co-orientational order parameter (COOP). (A) The parameter is based on two independent sets of pseudo-vectors
that are co-localized in space; (B) the COOP is symmetric to all permutations of 180° symmetry associated with the pseudo vectors; (C) the COOP remains
the same if every pseudo-vector in one of the fields is rotated by the same angle; (D) if two identical fields of pseudo-vectors are compared to each other,
COOP = 1; (E) The uncorrelated COOP graphically defined:~p and~q are completely independent of each other, thus a given~p does not place any limits on
the possible directions of~q; (F) Schematic example of two fields that are anti-correlated—parallel at the ends of the rectangle, yet perpendicular in the
middle; (G) The correlated COOP graphically defined: for any~p, there exists a range of angles within which the~q will be positioned; (H) The ultra-correlated
case is similar to the correlated case, but there is also a global organization where the vectors are co-localized maximal angle to minimal angle; (I) Ranges of
COOP and Normalized COOP defined on the top and bottom of the bar, respectively. The values of the uncorrelated and correlated COOP limits (sliders on
image) are fully defined by the values of OOPP and OOPQ. If the COOPu>0, the region between zero and COOPu corresponds to the anti-correlated
arrangements. If COOPc<1, the region between COOPc and one corresponds to the ultra-correlated arrangements; (J)(i) and (ii) COOPu and COOPc as a
function of the OOPP and OOPQ respectively; (iii) Maximal allowable error in the OOP for there to be a statistically significant (p<0.05) difference between
COOPu and COOPc if the sample size N = 4. (iv) The minimum sample size, for statistical significance, with OOP error of σOOP = 0.04.

doi:10.1371/journal.pcbi.1004190.g001
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Theorem 1: Demonstration of COOP symmetry. Symmetry is an important characteristic
of both the OOP and the COOP because it alleviates calculation errors that may arise when
there is a random choice of signs for the pseudo vectors (Fig. 1B). Symmetry can be easily
shown for OOP (S1 Supplemental Text). As can be seen from the anyaltical solution of the

COOP (Equation 7), it is only necessary to demonstrate the symmetry of ~fi � n̂
n o2

in π to dem-

onstrate the pseudo-symmetry of the COOP.
Table 1 shows the eight possible symmetry permutations. All of these can be reduced to the

same equation with no difference in sign, which proves pseudo-vector symmetry of the COOP.
We also demonstrated that the COOP is symmetric to the switch of P and Q:

f 0i;x ¼ qi;xpi;x þ qi;ypi;y ¼ fi;x and f 0i;y ¼ qi;xpi;y � qi;ypi;x ¼ �fi;y; ð9Þ

COOPQP ¼ hf 2x i þ hð�fyÞ2i � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf 2x i � hð�fyÞ2i
� �2

þ 4h�fxfyi2
r

¼ COOPPQ: ð10Þ

Symmetry also plays an important role in interpreting the COOP director. There are four valid
results for an angles between two pseudo-vectors: θ0, −θ0, π−θ0, θ0−π (Fig. 1B). For any symme-
try permutation the director will correspond to one of these four angles. However, it is essential
that the translation from n̂ to θ0 is handled with this symmetry in mind.

Theorem 2: Field rotation does not affect COOP. To verify that rotation of Q with respect
to P does not affect COOP (Fig. 1C), let

~pi ¼ cos ðaÞ; sin ðaÞ½ � and ~qi ¼ cos ðbÞ; sin ðbÞ½ �: ð11Þ

If each ~qi was rotated by angle ν, the rotated field Qrot would be defined by:

~qi;rot ¼ cos ðbþ nÞ; sin ðbþ nÞ½ �
¼ cos ðbÞcos ðnÞ � sin ðbÞsin ðnÞ; sin ðbÞcos ðnÞ þ cos ðbÞsin ðnÞ½ �: ð12Þ

Then the rotated field Frot is:

~f i;rot ¼ ½fi;xcos ðnÞ � fi;ysin ðnÞ; fi;ycos ðnÞ þ fi;xsin ðnÞ�: ð13Þ

Table 1. Symmetry permutations.

~pi ~qi n̂̂ f~fi � n̂̂g
2

+ + + {(pi,x qi,x+pi,y qi,y)nx+(pi,x qi,y−pi,y qi,x)ny}
2 =

+ + - {(pi,x qi,x+pi,y qi,y)(−nx)+(pi,x qi,y−pi,y qi,x)(−ny)}
2 =

+ - + {−(pi,x qi,x+pi,y qi,y)nx−(pi,x qi,y−pi,y qi,x)ny}
2 =

+ - - {−(pi,x qi,x+pi,y qi,y)(−nx)−(pi,x qi,y−pi,y qi,x)(−ny)}
2 =

- + + {−(pi,x qi,x+pi,y qi,y)nx−(pi,x qi,y−pi,y qi,x)ny}
2 =

- + - {−(pi,x qi,x+pi,y qi,y)(−nx)−(pi,x qi,y−pi,y qi,x)(−ny)}
2 =

- - + {(pi,x qi,x+pi,y qi,y)nx+(pi,x qi,y−pi,y qi,x)ny}
2 =

- - - {(pi,x qi,x+i,y qi,y)(−nx)+(pi,x qi,y−pi,y qi,x)(−ny)}
2 =

Result for All = {(pi,x qi,x+pi,y qi,y)nx+(pi,x qi,y−pi,y qi,x)ny}
2

doi:10.1371/journal.pcbi.1004190.t001
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As the angle ν is constant:

hfi;rot;xi ¼ hfi;xicos ðnÞ � hfi;yisin ðnÞ and

hfi;rot;yi ¼ hfi;yicos ðnÞ þ hfi;xisin ðnÞ:
ð14Þ

In combining Equation (13) and (8), all terms with ν cancel or are reduced to cos2(ν)+sin2(ν) =
1. As a result COOProt = COOP. Thus we have proven that field rotation does not affect COOP,
and without loosing generality we can assume n̂p ¼ n̂q ¼ ½1; 0�. This proves that the mean

angle between fibers cannot be used to evaluate the correlation of orientations.
Theorem 3: The same field compared to itself gives COOP of 1.We next proved that the

same field compared to itself would obtain a COOP of one (Fig. 1D). Imagine two sets of pseu-
do vectors distributed in a 2D space, ~pi and ~qi . Let

~pi ¼ cos ðaÞ; sin ðaÞ½ �; and ~qi ¼ cos ðaÞ; sin ðaÞ½ �: ð15Þ

Then, the field~fi of this system can be written as:

fi;x ¼ pi;xqi;x þ pi;yqi;y ¼ cos 2ðaÞ þ sin 2ðaÞ ¼ 1 and ð16Þ

fi;y ¼ pi;xqi;y � pi;yqi;x ¼ cos ðaÞsin ðaÞ � sin ðaÞcos ðaÞ ¼ 0: ð17Þ

The mean tensor:

TPQ ¼ 2
fi;xfi;x fi;xfi;y

fi;xfi;y fi;yfi;y

2
4

3
5� I

* +
¼ 2

1 0

0 0

" #
� I

* +
¼

1 0

0 �1

" #
: ð18Þ

Therefore, the COOP of constructs P and Q:

COOPPQ ¼max eigenvalue
1 0

0 �1

" # !" #
¼ 1: ð19Þ

We obtained a COOP of 1 thus constructs P and Q are a perfectly co-oriented system which is
expected as P = Q.

Theorem 4: Uncorrelated COOP limit. For any given pair of fields with OOPP and OOPQ
there is a range of possible COOP values, with a maximum range of zero to one. To aid in inter-
preting the meaning of the COOP, we derived the value for the COOP (COOPu) as a function
of the OOPs for the maximally uncorrelated system. For the COOP to be uncorrelated the two
fields needed to have no correlation between their orientations (Fig. 1E). If and only if ~pi and ~qi
are assumed independent and n̂p ¼ n̂q (Theorem 2), the analytical solution Equation (7) can

be re-written as:

COOPu ¼ 2ðpi;xqi;x þ pi;yqi;yÞ2 � 1
D E

¼ ð2p2i;x � 1Þð2q2i;x � 1Þ
D E

: ð20Þ

Using the classical probability distribution property:

COOPu ¼ ð2p2i;x � 1Þð2q2i;x � 1Þ
D E

¼ ð2p2i;x � 1Þ
D E

ð2q2i;x � 1Þ
D E

: ð21Þ

Based on the definition of the OOP the uncorrelated COOP is:

COOPu ¼ ð2p2i;x � 1Þ
D E

ð2q2i;x � 1Þ
D E

¼ OOPPOOPQ ¼ fUncorrelated COOPg: ð22Þ

Tissue Architecture Metrics
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COOPu is the lowest limit of the COOP if and only if the two constructs are independent.
However, if P and Q are correlated in multiple ways it is possible to achieve a smaller value of
COOP.

Theorem 5: Anti-correlated COOP. To prove that COOPu is not necessarily the minimum
COOP, we constructed an example where P was composed of ~p1 and ~p2 , and construct Q was
composed of ~q1 and ~q2 :

~p1 ¼ cos ðaÞ; sin ðaÞ½ � and ~p2 ¼ cos ð�aÞ; sin ð�aÞ½ �: ð23Þ

~q1 ¼ cos aþ p
2

� �
; sin aþ p

2

� �h i
and ~q2 ¼ cos ð�aÞ; sin ð�aÞ½ �: ð24Þ

Construct P has an OOPP = cos(2α) and construct Q has an OOPQ = jsin(2α)j. The vector~f is:
f1;x ¼ 0 ; f2;x ¼ 1 and f1;y ¼ 1 ; f2;y ¼ 0: ð25Þ

The mean tensor and COOP of this system are:

TPQ ¼
0 0

0 0

" #
and COOP ¼ 0: ð26Þ

Using Equation (22) we obtained:

COOPu ¼ OOPP � OOPQ ¼ cos ð2aÞ sin ð2aÞj j: ð27Þ

Unless, a 6¼ f0; p
4
; p
2
g � n for n = {1, 2, . . .}, COOPu>0. Thus, the COOP can be lower than

COOPu. Such a case can be graphically imagined if you have constructs correlated in two dif-
ferent ways in the same cell (Fig. 1F), similar to a single cardiomyocyte with punctate alpha-
actinin at the ends and well defined Z-lines in the middle. This demonstrates that, similarly to
the OOP, the COOP will not fully capture second order correlations (S1 Supplemental Text).

Theorem 6: Correlated COOP limit. For the upper limit, we derived the value of the
COOP as a function of the OOPs for the maximally correlated constructs. To determine the
correlated COOP (COOPc), we assumed the two fields, P and Q, were almost identical, except
that Q was rotated by a random noise angle θ (Fig. 1G). We can assume, without loosing gener-
ality, n̂p ¼ n̂q ¼ ½1; 0� (Theorem 2), and P is better organized (i.e. OOPP>OOPQ, Theorem 1).

Using the analytical solutions, the OOPP and COOP were rewritten as:

OOPP ¼ 2cos 2ðaÞ � 1h i and COOP ¼ 2cos 2ðyÞ � 1h i: ð28Þ

As θ was assumed to be random noise generated, θ and α are independent, and therefore:

OOPQ ¼ 2cos 2ða� yÞ � 1h i
¼ ð2cos 2ðaÞ � 1Þð2cos 2ðyÞ � 1Þ þ 4cos ðaÞsin ðaÞcos ðyÞsin ðyÞh i
¼ ð2cos 2ðaÞ � 1Þð2cos 2ðyÞ � 1Þh i þ 2cos ðaÞsin ðaÞh i 2cos ðyÞsin ðyÞh i
¼ ð2cos 2ðaÞ � 1Þh i ð2cos 2ðyÞ � 1Þh i þ sin ð2aÞh i sin ð2yÞh i
¼ OOPPCOOPc:

ð29Þ

Solving for COOPc and rewriting it in a more general form we obtained:

COOPc ¼
minðOOPP;OOPQÞ
maxðOOPP;OOPQÞ

: ð30Þ

This is the upper limit of COOP if the two constructs are correlated but are subject to random

Tissue Architecture Metrics
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biological variance (noise). This would not be the limit in a system where the variance is
not random.

Theorem 7: Ultra-correlated COOP.We also showed that the correlated COOP is not nec-
essarily the maximum. To prove this we defined P and Q as:

~pi ¼ cos ðaiÞ; sin ðaiÞ½ � and ~pnþi ¼ cos ð�aiÞ; sin ð�aiÞ½ � ð31Þ

~qi ¼ cos ðai þ yiÞ; sin ðai þ yiÞ½ � and ~qnþi ¼ cos ð�ai � yiÞ; sin ð�ai � yiÞ½ � ð32Þ

for i = {1, . . ., n}. Thus, each set of angles is paired in decreasing order (Fig. 1H). OOPP and
OOPQ are defined as:

OOPP ¼
1

n

Xn
i¼1

cos ð2aiÞ where ai :
Xn
i¼1

cos ð2aiÞ � 0 ð33Þ

OOPQ ¼ 1

n

Xn
i¼1

cos ð2ai þ 2yiÞ where ai; yi :
Xn
i¼1

cos ð2ai þ 2yiÞ � 0: ð34Þ

Assuming
Pn
i¼1

cosð2yiÞ � 0 the mean tensor is:

TPQ ¼

2

n

Xn
i¼1

cos 2ðyiÞ 0

0 � 1

n

Xn
i¼1

ð2cos 2ðyiÞ � 2Þ

2
666664

3
777775: ð35Þ

Knowing COOP ¼ 1
n

Pn
i¼1

cosð2yiÞ and the COOPc ¼ OOPQ
OOPP

:

COOP � COOPc ¼
1

n

Xn
i¼1

cos ð2yiÞ �

Xn
i¼1

cos ð2ai þ 2yiÞ
Xn
i¼1

cos ð2aiÞ
: ð36Þ

If the expression in Equation (36) is positive, then COOP� COOPc. An example of such a case
is when θ is constant and Equation (36) becomes:

COOP � COOPc ¼

Xn
i¼1

sin ð2aiÞsin ð2yiÞ
Xn
i¼1

cos ð2aiÞ
: ð37Þ

Based on conditions in Equation (33) and (34), 0 � ai � p
2
and 0 � yi � p

2
, which implies sin

(2αi)� 0, cos(2αi)� 0, and sin(2θi)� 0 for all i. Therefore, every term in Equation (37) is posi-
tive. If P is not perfectly aligned (i.e. αi 6¼ 0), and if P and Q are not identical (i.e. θi 6¼ 0), then
COOP>COOPc. Thus, there is an ultra-correlated COOP that can be greater than COOPc.
Qualitatively, the ultra-correlated system is similar to the correlated example, except the~q vec-
tors are not random within the noise, but are arranged maximum to minimum angles
(Fig. 1H).

Normalized COOP. Based on Theorems 4–7 we can divide the range of COOP into three
regions (Fig. 1I): anti-correlated, normal, and ultra-correlated. The boundaries of these regions
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(COOPu and COOPc) are determined by the organization of the two constructs (OOPp and
OOPq) and will slide along the overall range [0, 1]. Experimentally, it might be more relevant
to know how close the COOP is to the uncorrelated and correlated boundaries as these carry
biological implications. We therefore defined a Normalized COOP, which is a measure of how
close a parameter is to COOPu or COOPc:

Normalized COOP ¼ COOP � COOPu

COOPc � COOPu

: ð38Þ

The normalized COOP is negative when it is anti-correlated, zero when the system is uncorre-
lated, one when it is correlated, and greater than one when it is ultra-correlated (Fig. 1I). Any
parameter has limitations. For example, the OOP of the red line-segments in the anti-correlat-
ed schematic (Fig. 1F) would be equivalent to an isotropic organization (OOP* 0) even
though the red line-segments are well organized. Similarly, the COOP cannot be used to identi-
fy correlations in tissues that have very non-trivial spatially dependent correlations (more com-
plex than the ultra-correlated case (Fig. 1H)). We believe that most biological constructs for
which the COOP has been developed will never exhibit this behavior. However, if the COOP is
ever found to be statistically significantly greater than COOPc, it will be essential to re-evaluate
the applicability of the parameter.

Estimated maximum tolerable error and minimum sample size. To interpret the infor-
mation provided by the COOP, we would need to know which region our tissue falls under.
Our ability to do so will be limited by the error inherent in any measurement and the width of
the normal COOP range. COOPu approaches the maximum (COOPu = 1) as both OOPp and
OOPq approach one (Fig. 1J(i)). COOPc, however, approaches its maximum when the two
order parameters are close to being equal (Fig. 1J(ii)). This shows, for example, that if OOPp =
0 and OOPq = 0, then the normal region of the COOP ranges [0, 1]. However, if OOPp>0 and
OOPq = 0, the normal range does not exist and a COOP>0 would indicate an ultra-correlated
system. If the error in the system is so large that there is no statistically significant difference
between the boundaries (COOPu and COOPc), it would not be possible to differentiate between
the regions. Therefore, for the parameter to be useful, the maximum allowable error and mini-
mum sample size have to be experimentally realistic. To estimate the error and sample size, we
calculated the propagation of error in COOPu and COOPc, and used them in the student t-test
to calculate statistical significance.

Assuming OOPP and OOPQ are normally distributed with the standard deviation σOOPP
and

σOOPQ
, respectively, and OOPP and OOPQ are independent, then the variance:

s2
COOPu

¼ @COOPu

@OOPP

	 
2

s2
OOPP

þ @COOPu

@OOPQ

	 
2

s2
OOPQ

¼ OOP2
Qs

2
OOPP

þ OOP2
Ps

2
OOPQ

;

ð39Þ

and the standard deviation:

sCOOPu
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OOP2

Qs2
OOPP

þ OOP2
Ps2

OOPQ

q
: ð40Þ

Assuming OOPP>OOPQ, the variance for the correlated COOP:

s2
COOPc

¼ @COOPc

@OOPP

	 
2

s2
OOPP

þ @COOPc

@OOPQ

	 
2

s2
OOPQ

¼ OOPQ
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2

s2
OOPP

þ 1

OOPP

	 
2

s2
OOPQ

:

ð41Þ
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Note that @COOPc
@OOPP

and @COOPc
@OOPQ

2
do not exist when OOPP = OOPQ. However, using Theorem 1, we

formulated the estimate for the the standard deviation of COOPc:

sCOOPc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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vuut : OOPP < OOPQ:

ð42Þ

8>>>>>>><
>>>>>>>:

Then to estimate maximum allowable error, we assumed σOOPP
= σOOPQ

, and tested the null hy-
pothesis of COOPu = COOPc. We calculated the t-value and degrees of freedom to complete
the t-test. We assumed significance for a p-value less than 0.05 for the two sample t-test. There
are two variables that impact significance as a function of OOPs: the error (σOOP) and the sam-
ple size (N). For visualization, we calculated the maximum allowable experimental error (max
(σOOP)) at sample size of four (Fig. 1J(iii)). The maximal allowable error at N = 4 was at its
highest,max(σOOP) = 0.18, for OOPP = OOPQ = 0.60, which is greater than experimental error
reported for OOP organization [13]. While the maximal allowable error approaches zero as
OOP!0, it rapidly increases for OOP>0.

We also determined the minimum sample size that provides statistical significance
(p<0.05) as a function of construct organization for σOOP = 0.04. The minimum sample size
ranges from two to infinity (Fig. 1J(iv)). Naturally, when COOPc!COOPu, themin(N)!1
as it is not possible to find them significantly different. For σOOP = 0.04, the minimum sample
size is between two and five for most of the OOP values. For convenience, we also calculated
the minimum sample size for a range of higher experimental errors (S2 Fig.). Obviously higher
error would necessitate more samples to maintain significance. However, errors reported for
OOP experimentally correspond to normal requirements in sample size. The errors and sample
sizes were confirmed to be experimentally realistic, thus we next moved to testing the parame-
ter with synthetic and experimental data.

Synthetic Results
Limiting cases. The first step to validate the new parameter was to construct four limiting
cases that should lead to specific COOP values. We constructed a custom MatLab code that
could be interfaced with experimental or synthetic (computer generated) data. The code was
used to confirm the COOP for four synthetic limiting cases. The first test was to compare two
perfectly aligned constructs (Fig. 2A(i)). It was clear from the image that these two constructs
were perfectly correlated, and we therefore expected COOP = 1. We first confirmed that both
constructs were perfectly aligned with OOPP = OOPQ = 1 (Fig. 2A(ii)). Analytically, it is clear
that COOP = 1, by first applying Theorem 2 and then Theorem 3. When the synthetic data for
this condition was analyzed by the code, the COOP was confirmed to be one (Fig. 2A(iii)). It is
worthwhile to note that the director generated by the COOP code corresponds to the angle, θ0,
between the constructs.

For the second limiting condition, one construct was perfectly organized, while the second
was completely disorganized (Fig. 2B(i)). In this case, there was no correlation, and we ex-
pected COOP = 0. Analytically, even if we supposed that the two constructs were maximally
correlated (COOP = COOPc) and applied Theorem 6 based on OOPQ = 1 and OOPP = 0
(Fig. 2B(ii)), the COOP = 0. This was confirmed by the result of the synthetic case (Fig. 2B(iii)).
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The third case considered two isotropic constructs that are completely uncorrelated (Fig. 2C
(i)-(ii)). We expected the COOP for uncorrelated constructs to be zero, and analytically this
was confirmed by Theorem 4. These findings were also confirmed by the results of the synthet-
ic data (Fig. 2C(iii)).

The fourth, most intriguing case, was of two isotropic constructs, which were perfectly cor-
related (Fig. 2D(i)-(ii)). We expected the COOP to be one as there was perfect correlation, and
this was proven by Theorem 6. Synthetically we showed the COOP = 1, and again the director
gave the average angle, θ0, between constructs. The limiting conditions validated the parameter

Fig 2. Synthetic data for four limiting cases. A) Two perfectly organized samples are always perfectly
correlated; (B) A perfectly organized and an isotropic construct cannot be correlated; Two isotropic cases can
be (C) completely uncorrelated and (D) perfectly correlated. For (A-D) (i) Schematic of a small section of the
synthetic data; (ii) OOP and normalized occurrence for both constructs; (iii) COOP results with θ0 designating
the mean angle between constructs.

doi:10.1371/journal.pcbi.1004190.g002

Tissue Architecture Metrics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004190 April 7, 2015 11 / 22



for four simple cases. However, the interpretation of the COOP gets more complex when nei-
ther construct is perfectly aligned or isotropic.

COOPu and COOPc demonstrated with synthetic data. To understand the limits of the
COOP parameter, we constructed a series of cases with different organizations by truncation of
Gaussian distributions with specified standard deviations (Fig. 3A and 3B). We created syn-
thetic data for the uncorrelated case (dark blue Fig. 3C) by generating two separate random
number sets using the appropriate truncated Gaussian distribution for each. For the correlated
case (brown Fig. 3C), we generated the first, more organized, data set by the same method.
Then the noise was generated such that when it was added to the first data set, the new set
would have the target distribution. Both methods of creating P and Q data sets lead to the same
desired individual distributions (Fig. 3A and 3B). To visualize the results we constructed a slid-
er, sketched in Fig. 1I, for each case (Fig. 3C) color-coded to indicate the boundaries, COOPu
(dark blue) and COOPc (brown), as well as the three regions: anti-correlated (light blue), nor-
mal (ranging from dark blue to brown), and ultra-correlated (bright green). We expected that
when OOPP = 1 (Fig. 3A(i)), COOPu = COOPc = OOPQ for all OOPQ values, which was con-
firmed by the results of the synthetic data (Fig. 3C(i)-(iii)). Also, if one OOP = 0 (Fig. 3B(i))
and the other OOP 6¼ 0, the COOPu = COOPc = 0. This was also confirmed with synthetic re-
sults (Fig. 3C(i) and 3C(iv)). For a case where OOP 6¼ {0 or 1} the normal range of the COOP
was greater if the OOPs were smaller and closer to each other, which can be seen by comparing
Fig. 3C(v) and Fig. 3C(vi). These synthetic results confirm the results of Fig. 1, which showed
that the COOP parameter is best applied in situations where the correlation is not obviously
dictated by the organization of the individual constructs.

Fig 3. Boundaries of normal region of the COOP. (A and B) The orientation distribution for construct A and B respectively with both the standard deviation
of the truncated Gaussian distribution and OOP indicated for each case; (C) the distribution of the angles between the two constructs if they are independent
of each other (dark blue) and if the difference is dictated by a random noise (brown). For each case the boundaries, COOPu and COOPc, are indicated.
Sliders show this graphically with regions colored according to the legend.

doi:10.1371/journal.pcbi.1004190.g003
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Experimental Results
The COOP was designed as a tool to evaluate correlations of orientation in experimental sam-
ples. We used actin fibers and sarcomeric Z-lines in NRVMs to validate the parameter and
code. The tissues were stained for α-actinin and phalloidin to identify Z-line and actin fibril di-
rections, respectively (Fig. 4A). The program we used to identify the direction of the construct
was based on a finger-print identification code [6, 25, 26], and it assigned a direction to every
non-empty pixel in the image. However, computing correlation of constructs based on individ-
ual pixels introduced too many errors. Indeed, most images of cytoskeleton constructs are

Fig 4. Experimental applications of the COOP. (A) Stained isotropic monolayer of NRVMs; (B) the grid used to calculate average Z-line and actin fibrils
direction overlaid on the Z-line skeleton. (C) A section of the stained isotropic NRVMmonolayer shown at a higher magnification (corresponds to the dashed
box in A). Blue boxes point to some imperfections in the tissue and/or staining with clumps of α-actinin. (D) The skeletonized Z-lines from the image in (C)
overlaid with the direction of actin fibrils (green arrows) and sarcomere z disks (red arrows) for every grid-square. Note that arrows in blue boxes are not
perpendicular. (E) The image from (C) masked to only show noiseless tissue. (F) The actin fibril and Z-line directions overlaid on the Z-line skeleton from (E).
(G) COOPu, COOP, and COOPc for noiseless and raw images, (*) indicates statistical significance of p<0.001 between the raw COOP and raw COOPc. (H)
Normalized COOP and mean angle (clockwise from actin fibril to Z-line) for raw and noiseless images. (I) NRVMs cultured on identical FN islands. Each
image contains a histogram of COOP between that cell and all others (solid-Z-line, stripe-actin fibril). (J) The average COOP for consistency of Z-line (solid)
and actin fibril (stripe) organization. For (A), (C), (E), and (I) stains are: green—actin, red—α-actinin, and blue—nuclei. For (G), (H), and (J), error bars
represent standard deviation. The n indicates the number of cover-slips, with at least 10 field of view taken for each. Scale bars = 20μm.

doi:10.1371/journal.pcbi.1004190.g004
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obtained via immunostaining and imaging. The accuracy of the COOP will be a direct conse-
quence of image quality. If the images are of poor quality (poor contrast, dead cells, etc.), it will
not be possible to accurately extract the construct direction data, and thus, the COOP will not
be accurate. However, if it is possible to accurately extract directionality data, the COOP can be
used. The images we have collected for the proof-of-principle data set are representative of the
images normally used to study tissue architecture [6, 20]. The images may be resolvable to dif-
ferent degrees, and image acquisition procedures can introduce inaccuracies at smaller scales.
For example, during the collection of this data, it is customary to ensure that each channel re-
sults in sharp images of the corresponding construct, such as actin and Z-lines. This sometimes
requires focusing on slightly different planes, and as a result, the images of the same field-of-
view could be slightly off-set from each other. This along with other imaging inaccuracies lead
us to develop a procedure to average out these small errors by calculating the direction of each
construct within grid-squares. While any consistent small grid can be used for comparing re-
sults across multiple tissues, we recommend picking a grid size that would correspond to a nat-
ural biological unit. In this case, the image was partitioned into a grid (Fig. 4B), which was
chosen such that at minimum, two Z-lines could be expected to fit within each grid-square, en-
suring that at least one “sarcomere” complex is within each square (S3 Fig.). The spacing be-
tween Z-lines in NRVM tissues is 1.9–2.1 μm [27], thus we chose a grid size close to 4.2 μm (*
30 pixels). For each grid (i), we calculated the average direction for both constructs (i.e. Z-lines
or actin fibrils) (Fig. 4C). To account for varying densities and partial grid-squares at the edges
of the images, the area density (ρ) was calculated for each grid-square using the number of non
zero angles in the grid-square divided by its area. Each grid-square (i) was assigned a weight
(Wi) based on the OOP and density of constructs (ρ):

Wi ¼ OOPP;i � OOPQ;i � rP;i � rQ;i: ð43Þ

Thus, partial grids with low densities have small weight factors whereas full grids have high
weight factors (length of arrows in Fig. 4D). Additionally, grid-squares with better alignment
have higher weights than grid-squares with isotropic organization, which prevents loss
of consistency.

Z-lines and actin fibers were expected to be perfectly correlated within the sarcomeres of the
healthy cardiac muscle tissue. However, histological samples may not be perfect, with some ex-
ample imperfections identified in the zoomed-in image of Fig. 4C, which correspond to the
non-perpendicular arrows identified in Fig. 4D. Note that the lengths of the arrows correspond
to the weights assigned to each square, so these imperfections can significantly alter the result-
ing COOP. To test the parameter, we took four coverslips with 10 fields of view imaged for
each and identified noiseless regions with minimal imperfections (Fig. 4E-F). Before any angle
detection was done, ImageJ was used to merge fields of view containing Z-lines and actin fi-
brils, and regions with minimal imperfections were chosen by an experienced user. Only
merged images that contained four or more regions of minimal imperfections were used
(Fig. 4E). This was done prior to the organizational analysis to eliminate bias. The implementa-
tion of the code is summarized in a flow chart (S4 Fig.).

The OOPs for actin fibrils and Z-lines were essentially the same for both the raw and
masked images. We measured no significant difference in the values of COOPu or COOPc be-
tween the full and noiseless data sets (Fig. 4G). There was also no significant difference between
COOP and COOPc for the masked, noiseless images. In contrast there was a significant differ-
ence between COOP and COOPc (p<0.001) for the raw images. This is reflected in the Nor-
malized COOP which is 1 for the noiseless images and less than 0.5 for the full data (Fig. 4H).
This illustrates that while the parameter is capable of capturing the expected correlation in a
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sarcomere between actin fibril and Z-line orientation, cardiac tissues may have imperfections
that result in a lower value of COOP. The mean angle for the noiseless images also shows the
expected perpendicular correlation between orientations of sarcomere Z-lines and actin fibrils
with minimal error (Fig. 4H). While, they were also approximately perpendicular in the raw
images, the error was greater than for the noiseless images.

The COOP can also be used to evaluate the consistency of construct orientation within cells
of the same shape. As an example we seeded NRVMs on triangular islands, and stained the
samples for nucleus, Z-lines, actin fibrils, and fibronectin (Fig. 4I). For analysis we ensured that
the fibronectin islands lined up for all five cells (S5 Fig.). Then the Z-line (solid bars) or actin fi-
bril (dashed bars) images were compared in a pairwise manner (Tables 2 and 3). This showed
an additional experimental confirmation of Theorem 3: COOP = 1 for each cell when it was
compared with itself (Fig. 4I). The COOP was calculated for the same grid as in the isotropic
images. The results showed that although there is an overall consistency between cells, i.e.,
myofibrils were bundled along the edges of the triangle, the orientation was not fully consistent
at a smaller length scale (grid size). Indeed, the average COOP for ten pair-wise comparisons
(bold in Tables 2 and 3) of both Z-lines and actin fibrils is less than 0.5 (Fig. 4K). This demon-
strated another potential use of this parameter.

Discussion
Colocalization, a process that analyzes the spatial overlap between two biological constructs,
has been key in discovering cellular mechanisms that rely on the proximity of constructs [28,
29]. For example, second-order stereology has been used to analyze spatial arrangements of
constructs in images. Noorafshan et al. used second-order stereology to examine the correla-
tion between the spatial arrangements of cardiomyocytes and microvessels [22]. Their method
involved pair correlation and cross-correlation functions to determine positive or negative cor-
relation at different distances. However, neither simple colocalization nor second-order stere-
ology do not analyze the relative orientations of biological constructs.

Table 3. Pairwise comparison of actin fibrils consistency.

COOPactin Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 1 1.00 0.83 0.24 0.26 0.76

Cell 2 0.83 1.00 0.23 0.26 0.62

Cell 3 0.24 0.23 1.00 0.48 0.33

Cell 4 0.26 0.26 0.48 1.00 0.61

Cell 5 0.76 0.62 0.33 0.61 1.00

doi:10.1371/journal.pcbi.1004190.t003

Table 2. Pairwise comparison of sarcomeric Z-lines consistency.

COOPsarc Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Cell 1 1.00 0.37 0.33 0.56 0.30

Cell 2 0.37 1.00 0.20 0.05 0.55

Cell 3 0.33 0.20 1.00 0.21 0.09

Cell 4 0.56 0.05 0.21 1.00 0.34

Cell 5 0.30 0.55 0.09 0.34 1.00

doi:10.1371/journal.pcbi.1004190.t002
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In this work, we have developed a new parameter, COOP, to characterize how two tissue
components align with respect to each other. The COOP would allow for investigation of
mechanisms or functions that rely on not only spatial proximity, but also specific organization-
al schemes. To properly interpret the meaning of the parameter values, we characterized it
through a series of analytical theorems. As a result, we defined three regimes—normal, ultra-
correlated, and anti-correlated—that have biological implications. After validating the parame-
ter with synthetic data, we demonstrated its use with experimental images by showing that per-
fect portions of cardiac tissues have the expected correlation of the orientation between
sarcomeric z-discs and actin fibrils. The reduction in the COOP for un-masked (raw) data sug-
gests that the defects in the architecture will be distinguished by our new method (Fig. 4G-H).
The code we have developed can also be used to calculate the mean angle between constructs
thus allowing for tracking of mean angle changes as a function of experimental conditions. Fur-
thermore, the parameter can be used to calculate the consistency of orientational organization
to help evaluate the importance of orientational order.

To compare organization between different experimental conditions, it is necessary to have
a robust metric. The best metrics place the least number of constraints on the distribution of
orientations. For example, the standard deviation is not an appropriate metric for quantifying
orientation distribution of Z-lines as they are not distributed normally. The OOP works with
all types of distributions, and it has an additional benefit of being symmetric to pseudo-vectors
[14]. As the COOP was designed with similar math, it shares the same benefits as the OOP
such as pseudo-vector symmetry.

In general, there are multiple ways to use mathematical functions to analyze the properties
of images. For example, Feng et al. use normalized cross-correlation to compare two images
with a possible rotation or change in scale [23]. Their method involves identifying a relatively
small number of points of interest and matching the comparison based on them. The Feng
et al. method is insensitive to the rotation of the whole image (i.e. rotation plus translation),
while the COOP method is insensitive to the rotation of all vectors without translation. The
normalized cross-correlation is a powerful tool, but not appropriate whole cell architectural
metric, the COOP is therefore useful for comparing consistency in similarly shaped cells with
matching ECM islands, but cannot be used to identify the same cell that has been re-scaled and
rotated. Another example of mathematical tools for image analysis is a set of a non-parametric
circular statistics tests such as Watson’s U2

n test, which is designed to evaluate the probability
that a sample comes from a specific distribution or that two samples come from the same dis-
tribution. For instance, non-parametric circular statistics has been utilized to evaluate if a pat-
tern of migration of different objects is the same [30, 31]. However, these tests do not consider
the location of each sample pair, thus while the results can correspond to the COOP in very
special situations these parameters address fundamentally different questions. Thus, these cir-
cular statistics tests are not a good tool to evaluate orientational correlation of co-localized
pseudo-vectors.

There are specific cases where the COOP will correspond to other parameters. For example,
the OOP has been used to quantify the organization of the bacterial population in a channel
with respect to the channel direction [16]. Indeed, this is equivalent to a rudimentary case of
the COOP where one of the constructs, the channel, is perfectly organized (Fig. 3C(ii)-(iii)).
The COOP is more general in that it can be used when neither construct is perfectly organized.
Circular statistics tool-sets include some correlation metrics [24], such as the circular correla-
tion coefficient [21] which corresponds to the COOP in the same case. Specificically the circu-
lar correlation coefficient can only be used for uniform distributions (i.e. isotropic tissues). In
that special case, the circular correlation coefficient and the COOP converge to the same
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equation (S1 Supplemental Text). However, the more general vector formulation of the circular
correlation coefficient, while not constrained to a uniform distribution, is very complex, and
thus cannot be easily characterized the way we have done for the COOP. This circular correla-
tion coefficient would not be a convenient metric for cytoskeleton or cellular orientation quan-
tification. The COOP can be calculated so long as two sets of angular distributions and their
locations are known, and it has been extensively characterized. Thus, this new parameter can
be used with a multitude of biological systems.

In a healthy, properly functioning cell or tissue, the cytoskeleton needs to be organized in an
intricate manner. In disease, loss of this organization leads to reduction in function, such as the
myofibril organization changes in dilated cardiomyopathy [32–34]. However, proper organiza-
tion of one element in a cell or tissue is not sufficient. The multiple constructs have to be prop-
erly organized with respect to each other, and that organization can have biological
implications. This has been shown to occur during maturation of myocytes where the α-actinin
is initially punctate and parallel to actin fibrils, but, in mature cardiomyocytes, becomes part of
the newly formed sarcomeric Z-lines, which are perpendicular to actin fibrils [35]. In this case
the relative orientation of α-actinin staining and actin fibrils indicates the progressive matura-
tion of myofibrils. An additional example where orientation of different constructs affects each
other is when the organization of the extracellular matrix can be used to control the architec-
ture of cells [2, 13, 36]. Conversely, cells have been shown to change the orientation of the ex-
tracellular matrix fibrils [37]. Another instance of organization correlation can be found in the
different cell types and collagen fibrils within heart valves [38]. The common use of such met-
rics as the OOP and COOP for biological and medical sciences will allow for a quantitative
evaluation of tissue engineered substrates from a variety of cell sources. Combining such met-
rics with histology will create a universal evaluation metric between in vitro and in vivo systems
favorably impacting our ability to design replacement tissues, to create in vitro drug testing
platforms, and to evaluate pathological reports in the clinic.

Materials and Methods

Ethics Statement
All animals were treated according to the Institutional Animal Care and Use Committee of
UCI guidelines (Animal Experimentation Protocol permit number 2013-3093-0). This proto-
col met the guidelines for the use of vertebrate animals in research and teaching of the Faculty
of Arts and Sciences of UCI. It also followed recommendations of the NIH Guide for the Care
and Use of Laboratory Animals and was in accordance with existing federal (9 CFR Parts 1, 2
& 3), state, and city laws and regulations governing the use of animals in research and teaching.

Implementing COOP Calculation
To facilitate the calculation of the COOP we created a custom MATLAB code. The code was
designed to have an input of angles for P and Q organized such that the information of which
pseudo-vectors are paired was not lost. The code outputs were OOPP, OOPQ, COOP, COOPu,
COOPc, n̂, and θ.

Synthetic Data
Synthetic data of isotropic constructs for limiting conditions (Fig. 2) was generated using a ran-
dom number generator (rand) that provides a uniform distribution of at least 106 random val-
ues in MATLAB. Each construct used in testing COOPu and COOPc (Fig. 3) contained 10

8

random numbers (MATLAB function normrnd) that were normally distributed with the
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specified mean and standard deviation. We have included the codes to create synthetic data as
supporting codes (S1 Code and S2 Code).

Experimental Data
Microcontact printing and ECM patterns. To make the substrates 25 mm glass coverslips
were coated with PDMS (Ellsworth Adhesives, Germantown, WI) and cured for 12 hours in a
60°C oven. To create triangular myocytes we utilized a microcontact printing procedure similar
to that described by Tan et al [39]. A mask with the desired pattern was designed using Adobe
Illustrator (Adobe Systems Incorporated, San Jose, CA) and made by Front Range Photomask
(Palmer Lake, CO). The mask was used to make a silicone wafer (Integrated Nanosystems Re-
search Facility, Irvine, CA). A polydimethylsiloxane (PDMS) stamp, cast from a silicon master,
was used to contact transfer the extracellular matrix (ECM) protein fibronectin (FN) (Fisher
Scientific Company, Hanover Park, IL) onto a UV-sterilized (UVO, Jelight Company, Inc. Ir-
vine, CA) PDMS-coated coverslip. Fabricated substrates underwent one 10 minute pluronics
(250g of Pluronics F-127, Sigma-Aldrich, Inc., Saint Louis, MO) wash and three rinses of phos-
phate buffer-saline (PBS) (Life Technologies, Carlsbad, CA). To make isotropic substrates,
UV-sterilized PDMS-coated coverslip were coated with FN for 10 minutes and underwent
three PBS washes. The substrates were stored at 4°C prior to NRVM seeding.

Cardiomyocyte culture. Cell cultures of NRVMs were prepared from two-day old Sprague-
Dawley rats (Charles River Laboratories, Wilmington, MA). A mid-sternal incision was made
in order to expose the heart of the neonatal rat for dissection. Ventricular tissue was removed
and rinsed in a Hanks balanced salt solution buffer (Life Technologies, Carlsbad, CA) and
placed in 1 mg/mL trypsin solution (Sigma-Aldrich, Inc., Saint Louis, MO) to be shaken over-
night (12 hour incubation) at 4°C. The next day, isolated tissue was dissociated into individual
cells by treatment with four separate washes of 1 mg/mL collagenase type II (Worthington Bio-
chemical, Lakewood, NJ) for two minutes at 37°C. Isolated cardiomyocytes were resuspended
in M199 culture medium (Invitrogen, Carlsbad, CA) supplemented with 10% heat-inactivated
Fetal Bovine Serum, 10 mMHEPES, 20 mM glucose, 2 mM L-glutamine, 1.5 μM vitamin B-12
and 50 U/ml penicillin. The cell solution was filtered with a 40 μm filter (Thermo Fisher Scien-
tific, Waltham, MA), and the remaining cells were pre-plated multiple times to eliminate fibro-
blast contamination. Immediately after purification, myocytes were plated on substrates
(prepared as detailed above) at a density of 106 or 105 cells per well in a standard six-well plate
for confluent or sparse cultures, respectively. These were incubated at 37°C with a 5% CO2 at-
mosphere. Seeded cultures underwent a wash with PBS 24 hours after plating to remove unat-
tached and dead myocytes. They were then cultured in 10% serum media for another 24 hours
at which point the media was changed to 2% serum media. After a total of 72 hours in culture,
the samples were fixed and immunostained.

Fixing, immunostaining and imaging. After 3–4 days in culture, confluent monolayers of
cardiomyocytes were fixed with 4% paraformaldehyde (PFA) (VWR, Radnor, PA) with 0.01%
Triton X-100 (Sigma-Aldrich, Inc., Saint Louis, MO) for 10 min, and rinsed three times with
PBS in 5-min intervals. Cardiomyocytes were stained with nuclei acid-sensitive dye 4’, 6’-dia-
minodino-2-phenylinodole (DAPI) (Life Technologies, Carlsbad, CA) for chromatin, FITC-
phalloidin (Alexa Fluor 488 Phalloidin, Life Technologies, Carlsbad, CA) for actin, monoclonal
mouse sarcomeric anti-α-actinin (Sigma-Aldrich, St. Louis, MO), and polyclonal rabbit anti-
human fibronectin (Sigma-Aldrich, St. Louis, MO) and incubated for a total of 1–2 hours at
room temperature. Secondary staining was applied using tetramethylrhodamine-conjugated
goat anti-mouse IgG antibodies (Alexa Fluor 633 Goat anti-mouse, Life Technologies, Carls-
bad, CA) and goat anti-rabbit IgG antibodies (Alexa Fluor 750 goat anti-rabbit, Life
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Technologies, Carlsbad, CA) for a 1–2 hour incubation. After each incubation period, cover-
slips were rinsed three times with PBS for 5–10 min. Each coverslip was then mounted onto a
microscope slide preserved with prolong gold antifade reagent (Life Technologies, Carlsbad,
CA). The images were collected using an IX-83 inverted motorized microscope (Olympus
America, Center Valley, PA) with an UPLFLN 40x oil immersion objective (Olympus America,
Center Valley, PA) and a digital CCD camera ORCA-R2 C10600-10B (Hamamatsu Photonics,
Shizuoka Prefecture, Japan). For isotropic monolayers, at least ten fields of view were collected
for every sample.

‘Noiseless” image generation. Amacro was created in ImageJ that allows the user to select
regions without imperfections in an image. The regions that were not selected became masked,
resulting in a series of images with only regions of interest displayed in the new masked images
for every channel imaged (for example: DAPI, m-cherry, GFP)(Fig. 4). The masked images
could then be analyzed using the same codes used for raw images.

Calculating construct angles. To determine construct angles, we adapted a previous
MATLAB code that detects ridges of a fingerprint [20, 25, 26]. This code was used to detect Z-
lines and actin fibers in the images. In the code, a binary mask applied to the image determined
the constructs and a filter was applied to clean up the constructs that were identified in the im-
ages. The code took pixel information from the images and for every non-empty pixel in the
image, a pseudo-vector was calculated and used to determine the OOP for Z-lines and actin fi-
brils, as well as a new set of pseudo-vectors for each square in the grid (Fig. 4B, D) These new
pseudo-vectors were then utilized to calculate the COOP between two constructs (i.e. Z-lines
and actin fibrils) or two cells (Fig. 4).

Statistics. To calculate the average angle between the constructs (hθ0i) and the standard de-
viation of those angles (σθ0) across multiple conver-slips, it is essential to keep in mind that the
angle period is π. The simplest way, but not the only way, to generate hθ0i and σθ0 is to calculate
the director of the director pseudo-vectors n̂ALL of each cover-slip. Meaning that in Equation

(1) ~ki ¼ n̂i where i is the cover-slip, and the n̂ALL is the the eigenvector of the tensor from Equa-
tion (1) that corresponds to the eigenvalue from Equation (2). The angle for each cover-slip is
then determined as follows

y0;i ¼
arccosðn̂iÞ for

p
4
< arccosðn̂ALLÞ <

3p
4

arcsinðn̂iÞ for arccosðn̂ALLÞ >
3p
4

or arccosðn̂ALLÞ <
p
4
:

ð44Þ

8>><
>>:

The hθ0i and σθ0 are the average and standard deviation of θ0,i for all cover-silps. Obviously if
the COOP!0 then this procedure is useless as the angles will be inconsistent between the con-
structs. However, this procedure is a convenient way to determine the range in which it is most
convenient to report the angle (i.e. 0!π or� p

2
!p

2
). Additionally, there are two possible angles

that can be calculated (Fig. 1B). We chose to provide the clock-wise angle from~p to~q, but it is
also possible to calculate only the acute angle instead. To compare the COOP, COOPc, and
COOPu in the analysis of the experimental data, the one way ANOVA with the Student-New-
man-Keuls test was used.

Supporting Information
S1 Supplemental Text. The supporting text provides the reader with more information about
standard methods, such as the OOP, circular statistics, and circular correlation. This informa-
tion is provided in the same notation used for the manuscript.
(PDF)
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S1 Fig. Example of OOP using synthetic data. For (A-D) schematic of the construct is on the
left, and the orientation distribution with the OOP and standard deviation is on the right. (A)
Perfect alignment; (B) almost perfect organization; (C) somewhat anisotropic; (D)
perfectly isotropic.
(TIF)

S2 Fig. Minimum Sample Size. Statistical significance at p<0.05, with OOP error of σOOP =
0.1, σOOP = 0.3, and σOOP = 0.5.
(TIF)

S3 Fig. Schematic for grid size selection. For (A-D) schematic of square grids (dashed black
line outlines) on Z-lines(red). (A-B) Grid size equivalent to one sarcomere complex length.
(C-D) Grid size equivalent to two sarcomere complex length. (A, C) Grid by chance aligns with
Z-lines. (B, D) Grid does not align with Z-lines. we choose the grids shown in C-D because we
cannot control the alignment of grid to sarcomere complex.
(TIF)

S4 Fig. Implementation Flow Chart. Flow chart sketching the implementation of the new
method for experimental data. The additional steps for generating “noiseless” images with min-
imal imperfections is highlighted in blue.
(TIF)

S5 Fig. Fibronectin stains. Image of the fibronectin island for each cell in Fig. 4I were cropped
such that the triangular islands aligned with each other.
(TIF)

S1 Table. Variables and parameters. A table of definitions for all variables and parameters.
(PDF)

S1 Code. Code for synthetic data for four limiting cases. Code that creates synthetic data for
four limiting cases.
(M)

S2 Code. Code for boundaries of normal region of the COOP. Code that creates synthetic
data for boundaries of normal region of the COOP.
(M)
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