
Lawrence Berkeley National Laboratory
LBL Publications

Title
Interactive Supercomputing With Jupyter

Permalink
https://escholarship.org/uc/item/4dj2p0f0

Journal
Computing in Science & Engineering, 23(2)

ISSN
1521-9615

Authors
Thomas, Rollin
Cholia, Shreyas

Publication Date
2021-03-01

DOI
10.1109/mcse.2021.3059037
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dj2p0f0
https://escholarship.org
http://www.cdlib.org/


P
os

te
d

on
A

u
th

or
ea

2
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

23
05

18
.8

44
58

22
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Interactive Supercomputing with Jupyter

Rollin Thomas1 and Shreyas Cholia1

1Affiliation not available

February 2, 2021

Abstract

Rich user interfaces like Jupyter have the potential to make interacting with a supercomputer easier and more productive,

consequently attracting new kinds of users and helping to expand the application of supercomputing to new science domains.

For the scientist-user, the ideal rich user interface delivers a familiar, responsive, introspective, modular, and customizable

platform upon which to build, run, capture, document, re-run, and share analysis workflows. From the provider or system

administrator perspective, such a platform would also be easy to configure, deploy securely, update, customize, and support.

Jupyter checks most if not all of these boxes. But from the perspective of leadership computing organizations that provide

supercomputing power to users, such a platform should also make the unique features of a supercomputer center more accessible

to users and more composable with high performance computing (HPC) workflows. Project Jupyter’s core design philosophy of

extensibility, abstraction, and agnostic deployment, has allowed HPC centers like NERSC to bring in advanced supercomputing

capabilities that can extend the interactive notebook environment. This has enabled a rich scientific discovery platform,

particularly for experimental facility data analysis and machine learning problems.

Introduction

The National Energy Research Scientific Computing Center (NERSC), located at Berkeley Lab, is the prin-
cipal scientific computing facility for the US Department of Energy (DOE) Office of Science. More than 7,000
scientists, including many early-career scientists and students, use NERSC for basic non-classified research
that involves supercomputing and massive data: modeling Earth’s climate, studying properties of materials,
probing the evolution of the Universe, analyzing data from collisions of subatomic particles, understanding
protein structures, and more.

Evolution in NERSC’s workload over the past 5 years has been driven by the explosion of data in all of these
science areas. Experimental and observational science facilities (microscopes, telescopes, genome sequencers,
particle accelerators) increasingly need leadership computing to make sense of all the data they generate.
Artificial intelligence (AI) models designed to solve complex problems are trained using both massive data
sets and supercomputer simulations. Jupyter has become the de facto platform for data science and AI, so
it seems natural for data-intensive science users to expect Jupyter to work on a supercomputer.

In 2016, NERSC began exploring whether we could rely on Jupyter to provide a rich user interface to the
new Cori supercomputer alongside traditional command-line interface (CLI) and remote desktop (i.e., NX)
access modes. Today around 700 unique users per month are using Jupyter on Cori, a figure that has
tripled over the last three years. In a typical month about 3,000 unique users login into Cori via CLI or
NX, so in some sense, 20-25% of user interaction with Cori now goes through Jupyter. Jupyter has become
indispensable, a primary point of entry to Cori and other systems for a substantial fraction of all NERSC
users.

1

https://jupyter.org/about
https://www.nersc.gov/
https://www.lbl.gov/
https://www.energy.gov/about-us
https://www.energy.gov/science/about-office-science


P
os

te
d

on
A

u
th

or
ea

2
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

23
05

18
.8

44
58

22
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. How It Started and How It’s Going

In 2015, we observed with increasing regularity that users were trying to use SSH tunnels to launch and
connect to their own Jupyter notebooks on Edison, a previous generation supercomputer. One user even
published a blog post about how to do it. NERSC recognized that Jupyter notebooks and similar tools were
a part of the emerging data science ecosystem we would need to engage, understand, and support. Faced
with the challenge of how we would authenticate users and launch, manage, and proxy their notebooks,
we began discussions with our colleagues at U.C. Berkeley (Fernando Pérez, Min Ragan-Kelly, and others)
who were growing and expanding the Jupyter ecosystem to include institutional deployments. This led
us to JupyterHub, which had been released a few months earlier, to address just those issues. JupyterHub
provides a managed multi-user Jupyter service to enable access to computational environments and resources.
It has a highly extensible, deployment-agnostic design built on powerful high-level abstractions (spawners,
authenticators, services), and is developed by a robust, broad open-source community. From the perspective
of an organization taking on the challenge of supporting any platform for a diverse and demanding user base,
these characteristics represent potential strategic leverage.

Figure 1: NERSC’s JupyterHub provides a single point of entry to running Jupyter on a variety of HPC
systems with different configurations.

Our deployment has proceeded in overlapping phases with sometimes parallel configurations for different use
cases:

Phase 1: JupyterHub as science gateway. First, Jupyter provided users with the ability to run notebooks
and kernels that could access data on NERSC’s Global Filesystem (NGF), a collection of massive file systems
for project- or group-level storage and user home directories. The principal use cases were smaller-scale
analytics and visualization of data, limited by hardware resources. This phase leveraged repurposed hardware
external to the supercomputers and so could not provide access to platform storage or interact with batch
queues. But it was a start that signaled to users that Jupyter use was welcome.

Phase 2: Jupyter on a Cori login node. Through a custom JupyterHub spawner based on SSH, we
gave users a means to launch notebooks on Cori from an external hub. These notebooks could access Cori
platform storage, interact with batch queues, run Jupyter kernels based on user-customized containers, and
more. Networking adjustments enabled direct connections from login nodes to compute nodes for persistent
notebooks to interact with analytics (e.g., Spark, Dask) or visualization (e.g., yt) applications. This all helped
make Cori a much more data-science friendly supercomputer. Phases 1 and 2 overlapped, and for some period
of time two hubs were managed in parallel on reclaimed servers, a difficult-to-maintain situation that also
confused users.

Phase 3: Jupyter as interface to an HPC center. Moving JupyterHub to a Docker container-as-a-

2

https://zonca.dev/2015/09/ipython-jupyter-notebook-nersc-edison.html
https://spark.apache.org/
https://dask.org/
https://yt-project.org/


P
os

te
d

on
A

u
th

or
ea

2
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

23
05

18
.8

44
58

22
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

service platform at NERSC based on Rancher helped us address these issues, increased stability, and provided
a platform for continuous enhancement. Extending JupyterHub’s named-server support and leveraging com-
munity projects like wrapspawner and batchspawner has given us a paradigm for systematically expanding
access to more shared nodes and compute nodes on Cori, but also for integrating new hardware upon deliv-
ery: New supercomputers, smaller special-purpose clusters (e.g., GPU clusters), and staff-only test systems.
JupyterHub now serves as a single point of entry to Jupyter at NERSC for all users and staff (Figure 1).

Phase 4: JupyterLab as innovation platform. JupyterLab, introduced in 2018, addresses certain chal-
lenges that various software workflows face with notebooks alone. It enhances the Jupyter user experience
through a powerful, modular extension framework that enables text editors, terminals, file viewers for var-
ious data formats, other custom components side-by-side with the notebook in a tabbed workspace. We
have leveraged this framework to preserve core Jupyter user experience and functionality while providing
enhancements that expose HPC center features in a more user-friendly way. Example of integrations and
tools arising from our research partnership:

• File system navigation: HPC centers have large shared file systems with complex, sprawling folder
hierarchies. JupyterLab users at NERSC often “got lost” while navigating NGF via UI. To effectively
manage points of entry relevant to each user, we developed the jupyterlab-favorites and jupyterlab-
recents labextensions to bookmark or highlight commonly used files and directories (e.g., scratch di-
rectories, shared project directories).

• Batch queue: NERSC uses the Slurm Workload Manager to manage batch job allocations on Cori’s
compute nodes. We have created jupyterlab-slurm, a labextension that lets users monitor and submit
batch jobs directly from JupyterLab, creating a common interface to the interactive and batch com-
ponents of a supercomputing workflow. We are also developing integrations for the Dask distributed
framework to scale out notebook code on a set of worker nodes.

• Reusability and reproducibility: In team science with Jupyter it is common for a user to de-
velop a recipe or template notebook that captures a scientific workflow, along with its software
dependencies in a Jupyter kernel, and then share this with collaborators. We have developed
the clonenotebooks serverextension to allow users to clone and run such notebooks and kernels from
an nbviewer gallery. Users in a collaboration can then reproduce a given workflow and extend it to han-
dle new data sets and parameters. Creating a general pattern of reproducible Jupyter HPC workflows
with containers similar to Binder [1] is a topic of current work.

The early phases were organic with lessons learned and re-learned as we engaged the Jupyter ecosystem
and the ecosystem itself matured. From this experience, we have come to appreciate the strategic value of
Project Jupyter’s commitments to abstraction, extensibility, and deployment-agnostic design.

Jupyter + HPC = Science!

These innovations can best be illustrated through a set of real-world science use cases that leverage our
Jupyter HPC work.

Geophysical Subsurface Imaging

This use case involves running geophysical simulations and inversions for subsurface imaging. 1000 1D
inversions were run to each produce a layered model of subsurface conductivity; these were then stitched
together to create a 3D model to understand why the Murray River in Australia was becoming more saline.
Jupyter was used to combine simulations, data analysis, and machine learning with interactive visualization.
The initial workflow was developed on the user’s laptop environment and needed to be scaled up at NERSC.

Jupyter was run in a Docker container at NERSC with a pre-defined reproducible software environment.
Parallel computing workers were launched on Cori from Jupyter with Dask-jobqueue. Workers could be
scaled up or down on-demand. Jupyter farmed out parallel tasks to Dask; the results of these parallel runs

3

https://rancher.com/
https://github.com/jupyterhub/wrapspawner
https://github.com/jupyterhub/batchspawner
https://github.com/NERSC/jupyterlab-favorites
https://github.com/NERSC/jupyterlab-recents
https://github.com/NERSC/jupyterlab-recents
https://github.com/NERSC/jupyterlab-slurm
https://dask.org
https://github.com/NERSC/clonenotebooks
https://github.com/jupyter/nbviewer
https://jobqueue.dask.org/en/latest/


P
os

te
d

on
A

u
th

or
ea

2
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

23
05

18
.8

44
58

22
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

were pulled back into the notebook and visualized. A large batch of simulations was run to generate data
for a machine learning application.

Figure 2: Geophysics Inversion Notebook generating a 3D model using NERSC HPC resources

Several other projects make use of similar patterns including the National Center for Electron Microscopy
(NCEM) and the Advanced Light Source (ALS) [2] where image data are collected at an experimental
facility, and then processed and analyzed with these types of Jupyter-based workflows.

Electron Microscope Image Analysis

Scanning transmission electron microscopy (STEM) is used for spectroscopy, diffraction, and imaging of
materials. It is possible to determine many structural properties of materials using 4-dimensional STEM
images. “Bragg Disk” detection is an important part of this process and can require computationally
expensive image-processing steps.

Scientists at NCEM originally developed a serial version of the Bragg Disk detection algorithm using Python
and NumPy, running as a Jupyter notebook, where electron microscope image data were rendered for in-
spection and analysis. The image processing could be easily vectorized and was a good candidate for
parallelization with a tool like Dask. By enabling a parallel implementation for the Bragg Disk detection
code through Jupyter at NERSC, we were able to significantly improve run times for large data: processing
a 300GB dataset went from days to a few minutes. This workflow was scaled up to run on 40 Cori nodes
(1280 workers), with results collected and visualized in the Jupyter Notebook.

This type of scaling has opened the door for computational analyses that were previously impractical. One
of the benefits of the 4D-STEM technique is the ability to perform multi-scale data analysis, combining
atomic-scale spatial sampling with very large fields of view. Without a scaled parallel implementation, one
would need to give up either the spatial sampling or the field-of-view when analyzing larger datasets.

Advanced Light Source Tomography

Reproducibility and repeatability are very important for tomographic analyses at the ALS, where users need
to repeat an experimental run on their own data. Scientific facility users may have limited programming
skills, and often just need a pre-defined computational analysis that they can run and modify without having
to develop the code from scratch. Jupyter notebooks are a great way to enable this type of user: analysis

4



P
os

te
d

on
A

u
th

or
ea

2
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

23
05

18
.8

44
58

22
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

notebooks become recipes that can be minimally tweaked to run with different parameters or data. In our
work with the ALS, we enabled a common, shared software environment where users could run a set of
curated notebooks managed by the project [3]. The specialized software environment included tomography
software, along with custom Jupyter widgets to support interactive path selection and viewing of sinograms
or digital slices through 3D data - installing and maintaining this can be challenging for end users. Our
tool, clonenotebooks (based on nbviewer), enabled browsing of Jupyter notebooks in repositories such as
GitHub, and cloning them over to NERSC with a pointer to this managed execution environment.

Exploring parameter spaces is important in tomographic analysis, where one may need to experiment with
different combinations of parameters to determine the best fit for the data. Papermill (developed at Net-
flix) allow us to execute parameterized Jupyter notebooks, where certain variables can be replaced across
runs. We developed a Papermill-based workflow to enable interactive exploration of parameter spaces for
ALS users, where each parameter set can be applied to a common template notebook. Once a notebook
with an optimal parameter set is identified, this can then be applied to additional data sets. HPC scaling is
achieved through Dask, similarly to the earlier use cases.

Conclusion

Jupyter is proving to have a transformative impact on modern computational science by enabling a new
integrative mode of interactive supercomputing, where code, analysis, and data all come together under a
single visual interface that can seamlessly access powerful hardware resources.

The patterns illustrated in the above use cases are very flexible and can be applied to other science do-
mains as well. We see common themes around parallel execution, reproducible environments and interactive
visualization come up repeatedly in our work enabling Jupyter for science on HPC systems.

Jupyter is quickly becoming the entry point to HPC for a growing class of users. The ability to provi-
sion different resources, and integrate with HPC workload management systems through JupyterHub is an
important enabler of easy-to-use interactive supercomputing.

Because of mission, design, and technological trends, supercomputers and the HPC centers that run them
are still less homogeneous as a group than cloud providers. This means “one size fits all” solutions are
sometimes harder to come by. And while providers of supercomputing power want to increase ease of use,
they are not interested in homogenizing or concealing specialized capabilities from expert users. Developers
working on Jupyter projects that may intersect with HPC especially should avoid making assumptions about
HPC center policy (e.g., queue configuration, submit and run limits, privileged access) and seek input from
HPC developers on how to generalize those assumptions. As long as Jupyter developers remain committed
to extensibility, abstraction, and remaining agnostic about deployment options, developers at HPC centers
and their research partners can help fill the gaps.

There seems to be considerable momentum around Jupyter and HPC. We have built a network of contacts
at other HPC centers to collaborate with and learn from. In 2019, with the Berkeley Institute for Data
Science, we hosted a Jupyter Community Workshop on Jupyter at HPC and research facilities to kickstart
that process.

At NERSC our next step is to renew focus on supporting Jupyter at new scales and on new hardware. While
we do a good job of meeting the needs of several hundred users per month, we need to do more to ease the
barriers to entry to analytics cluster software and parallelized visualization tools. We look forward to this
work on the Perlmutter machine beginning this year.

5

https://github.com/NERSC/clonenotebooks
https://github.com/jupyter/nbviewer
https://papermill.readthedocs.io/
https://jupyter-workshop-2019.lbl.gov/


P
os

te
d

on
A

u
th

or
ea

2
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

23
05

18
.8

44
58

22
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Acknowledgments

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory,
operated under Contract No. DE-AC02-05CH11231. We would like to thank the core Jupyter team, and
especially our collaborators at U.C. Berkeley for technical guidance and support around the Jupyter and
JupyterHub ecosystem.

References

[1]S. Cholia et al., “Towards Interactive, Reproducible Analytics at Scale on HPC Systems”, IEEE/ACM
HPC for Urgent Decision Making (UrgentHPC), 2020.

[2]M. Henderson, W. Krinsman, S. Cholia, R. Thomas, and T. Slaton, “Accelerating Experimental Science
Using Jupyter and NERSC HPC”, in Communications in Computer and Information Science, Springer
International Publishing, 2020, pp. 145–163.

[3]D. Parkinson, H. Krishnan, D. Ushizima, M. Henderson, and S. Cholia, “Interactive Parallel Workflows
for Synchrotron Tomography”, in XLOOP 2020, 2020.

6




