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Purpose: The purpose of this study is to determine the optimal representative reconstruction and
quantitative image feature set for a computer-aided diagnosis (CADx) scheme for dedicated breast
computer tomography (bCT).
Method: We used 93 bCT scans that contain 102 breast lesions (62 malignant, 40 benign). Using an
iterative image reconstruction (IIR) algorithm, we created 37 reconstructions with different image
appearances for each case. In addition, we added a clinical reconstruction for comparison purposes.
We used image sharpness, determined by the gradient of gray value in a parenchymal portion of the
reconstructed breast, as a surrogate measure of the image qualities/appearances for the 38 reconstruc-
tions. After segmentation of the breast lesion, we extracted 23 quantitative image features. Using
leave-one-out-cross-validation (LOOCV), we conducted the feature selection, classifier training, and
testing. For this study, we used the linear discriminant analysis classifier. Then, we selected the repre-
sentative reconstruction and feature set for the classifier with the best diagnostic performance among
all reconstructions and feature sets. Then, we conducted an observer study with six radiologists using
a subset of breast lesions (N = 50). Using 1000 bootstrap samples, we compared the diagnostic per-
formance of the trained classifier to those of the radiologists.
Result: The diagnostic performance of the trained classifier increased as the image sharpness of a
given reconstruction increased. Among combinations of reconstructions and quantitative image fea-
ture sets, we selected one of the sharp reconstructions and three quantitative image feature sets with
the first three highest diagnostic performances under LOOCV as the representative reconstruction
and feature set for the classifier. The classifier on the representative reconstruction and feature set
achieved better diagnostic performance with an area under the ROC curve (AUC) of 0.94 (95%
CI = [0.81, 0.98]) than those of the radiologists, where their maximum AUC was 0.78 (95%
CI = [0.63, 0.90]). Moreover, the partial AUC, at 90% sensitivity or higher, of the classifier
(pAUC = 0.085 with 95% CI = [0.063, 0.094]) was statistically better (P-value < 0.0001) than those
of the radiologists (maximum pAUC = 0.009 with 95% CI = [0.003, 0.024]).
Conclusion: We found that image sharpness measure can be a good candidate to estimate the diag-
nostic performance of a given CADx algorithm. In addition, we found that there exists a reconstruc-
tion (i.e., sharp reconstruction) and a feature set that maximizes the diagnostic performance of a
CADx algorithm. On this optimal representative reconstruction and feature set, the CADx algorithm
outperformed radiologists. © 2017 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.12214]
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1. INTRODUCTION

Investigators are developing dedicated breast Computed
Tomography (bCT) systems to improve breast cancer detec-
tion and diagnosis. Dedicated bCT allows radiologists to
access full 3D volumetric views of breast lesions, which may
improve radiologists’ performances when determining the
malignancy of given lesions.1

To help radiologists achieve better diagnostic perfor-
mance, researchers are also developing computer-aided

diagnosis (CADx) schemes to act as a second reader for vari-
ous imaging modalities, including mammography,2–4 ultra-
sound,5 and breast magnetic resonance imaging (MRI).6

Since bCT is a relatively new imaging modality, there
are only a few preliminary studies on CADx algorithms for
bCT.7–11 Ray et al.7 trained and tested artificial neural net-
works (ANN) using morphologic and texture features extracted
from lesions in pre- and postcontrasted bCT images. In addi-
tion, Kuo et al.9 introduced a 3D spiculation feature that was
able to improve the classification performance of a linear
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discriminant analysis (LDA) classifier by combining it with
other traditional quantitative image features. Recently, we
introduced novel quantitative image features utilizing the 3D
surface information of breast lesions in bCT images.11 These
features were total, mean, and Gaussian curvatures summariz-
ing the location variations of the 3D surface curvature of breast
lesions. We showed that total curvature holds sufficient infor-
mation for breast lesion classification such that it can signifi-
cantly reduce the number of features for a classifier without
loss of classification power. All these previous studies showed
good performance for classifying malignant and benign breast
lesions. However, these studies are limited to one preselected
reconstruction and trained and tested their models on images
reconstructed by one specific algorithm, e.g., Feldkamp-Davis-
Kress (FDK) reconstruction.12 It is possible that there are other
CT reconstruction algorithms that CADx algorithms work
better on than other reconstructions.

In this paper, we investigated various reconstruction algo-
rithms that resulted in various image quality/appearance and
evaluated which reconstructions and quantitative image fea-
tures yielded optimal performance for CADx algorithms in
classifying lesions in bCT cases. Using an iterative image
reconstruction (IIR) algorithm and changing its variables, we
prepared bCT images with different image appearances (or
qualities). After that, we segmented the breast lesions in bCT
images using an existing algorithm and extracted 23 quantita-
tive image features from the resulting segmentation. Then,
we trained and tested a linear discriminant analysis (LDA)

classifier for each image appearance to determine the optimal
representative reconstruction and quantitative image features
for the CADx scheme on bCT images. Then, we compared
the performance of the resulting classifier for the selected
representative reconstruction to those of radiologists.

2. METHODS

2.A. Dataset

This study utilized an image dataset of 137 biopsy proven
breast lesions (90 malignant, 47 benign) in 122 noncontrast
bCT images of women aged 18 or older at the University of
California Davis. Under an institutional review board (IRB)
approved protocol, the prototype dedicated bCT system at the
University of California at Davis1 was used to acquire bCT
images. Table I summarizes the characteristics of the dataset.
The image specification was as follows: coronal slice spacing
ranged from 200 to 770 lm, and the voxel size in each coro-
nal slice varied from 190 by 190 to 430 by 430 lm, depend-
ing on the size of the breast. Figure 1 shows an example of
benign and malignant lesions in the dataset.

2.B. Image reconstructions and quantification of
reconstructed image qualities

Different image reconstructions produced different image
appearances and therefore affected the segmentation and

TABLE I. Characteristics of breast CT dataset.

All Selected for train/test the classifier Selected for the reader study

Subject age [years] Mean [min, max] 55.6 [35, 82] 55 [35, 82] 54.6 [37, 82]

Lesion diameter [mm] Mean [min, max] 13.5 [2.3, 35] 13.4 [2.3, 32.1] 13.3 [4.3, 29.2]

Breast density 1 16 11 5

2 51 36 20

3 51 38 17

4 19 17 8

Diagnosisa

All lesions Total 137 102 50

Malignant IDC 61 41 18

IMC 13 10 5

ILC 8 6 1

DCIS 7 5 1

Lymphoma 1 0 0

Total 90 62 25

Benign FA 20 17 11

FC 7 4 3

FCC 4 4 1

PASH 2 2 2

CAPPS 2 2 2

Other benign lesions such
as sclerosing adenosis and cyst

12 11 6

Total 47 40 25

aIDC; Invasive Ductal Carcinoma, IMC; Invasive Mammary Carcinoma, ILC; Invasive Lobular Carcinoma, DCIS; Ductal Carcinoma In Situ, FA; Fibroadenoma, FC;
Fibrocystic, FCC; Fibrocystic changes, PASH; Pseudoangiomatous stromal hyperplasia, CAPPS; columnar alteration with prominent apical snouts and secretions.
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classification performance of automated algorithms.13 It is
possible that there exists a certain image appearance that
allows a given CADx algorithm to work better than others.
Thus, we utilized an iterative image reconstruction (IIR) algo-
rithm14 to create a set of reconstructed images upon which we
determined the performance of the CADx algorithm. We also
included a clinical reconstruction, i.e., Feldkamp-Davis-
Kress (FDK) reconstruction,12 for comparison purposes.

Briefly, the IIR algorithm14 we used in this study consisted
of two sub reconstruction algorithms; one algorithm recon-
structs an image holding the gray-scale information, while
another algorithm reconstructs the same image holding the
edge information. By combining the resulting reconstructions
from the two sub-algorithms with different weights, we
obtained reconstructed images with different appearances (or
qualities).

We reconstructed 37 versions of CT images using the
above IIR algorithm, and using the FDK reconstruction we
had a total of 38 versions of CT images. The left figure of
Fig. 2 shows an example of the coronal views of a breast for
the 38 different reconstructions.

To quantify the appearance/quality of each reconstruction,
we used the standard deviation of a homogeneous portion
(rsig) of an example breast in each reconstruction and the gra-
dient of a parenchymal portion (∇sig) of the same example
breast in each reconstruction as an estimate of noise and sharp-
ness of each reconstruction, respectively. Specifically, we man-
ually selected one fatty area in an example breast as the region
of interest (ROI) for the image noise statistic and computed the
image noise using a cube with a 10 mm edge length. Likewise,
using the same size cube and same example breast, we selected
one breast fibroglandular area as the ROI to compute the
image sharpness statistic. We repeated this process for all 38
reconstructions using the same selected fatty and

fibroglandular areas of the same breast to compute image
statistics for all 38 reconstructions. The image noise values for
all reconstructions ranged from 0.01 to 0.024 (1/cm), while the
image sharpness values ranged from 0.002 to 0.015 (1/cm2).
The right figure of Fig. 2 shows the scatter plot of image noise
and image sharpness of each reconstruction considered in this
study. We found that there was a strong positive correlation
between the image noise and sharpness (rho = 0.98). Thus, we
selected the image sharpness as a surrogate measure of image
appearance/quality for each reconstruction.

2.C. Segmentation of breast lesions

We utilized a semi-automated segmentation algorithm15,16

to segment breast lesions in all reconstructions. The algorithm
needed a seed point (i.e., lesion center) to segment a given
lesion. Therefore, a research specialist, with over 15 yr of
experience in mammography, provided the seed point for the
algorithm. Note that we repeated the lesion segmentation pro-
cess using the above algorithm for all 38 reconstruction cases.
Thus, the resulting segmentation outcomes were similar, but
different from one reconstruction to another reconstruction.

As poor segmentation can affect the classification perfor-
mance of a classifier, we evaluated the segmentation outcomes
for all lesion cases in all 38 reconstructions and removed any
lesions with poor segmentation outcomes. If one lesion in one
reconstruction showed poor segmentation quality, we removed
that lesion for all 38 reconstructions. We used the DICE coeffi-
cient17 to evaluate the segmentation results by comparing the
algorithm’s output to that of the above research specialist. Pre-
vious studies reported that segmentations with a DICE coeffi-
cient of 0.7 or higher show good quality.18 Among 137 lesions,
we removed a total of 35 lesions (29 bCT images) with poor
segmentation outcome (N = 21 lesions with DICE coefficient

FIG. 1. This figure shows example breast volumes for malignant (top row) and benign (bottom row) lesion cases with expert’s manual outlines overlaid.
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less than 0.7) or missing data/information (N = 14 lesions,
missing seed point or manual segmentation outline data for
either IIR or FDK reconstructions). Thus, this study used 102
breast lesions (62 malignant, 40 benign) from 93 bCT images
for developing a breast CADx algorithm (Table I).

2.D. Quantitative image features for breast tumor
classification

We extracted a total of 23 quantitative image features from
the segmentation results (Table II). These image features have
been used in previous studies for lesion detection and classifi-
cation.7–11 The 23 quantitative image features describe various
types of information of the segmented lesions that include four
histogram, seven shape, five margin, four texture, and three
surface curvature descriptors. Histogram descriptors7,8 mainly
summarize the gray value variations between the lesion and
the background. Shape and margin descriptors7,8 characterize
the morphological variations in the whole lesion volume and
the margin, respectively. The texture descriptors10 (3D version
of gray-level co-occurrence) quantify lesion texture. In addi-
tion, the surface curvature descriptors11 summarize the varia-
tions over the given lesion surface. Note that surface curvature
descriptors are based on the 3D surface representation (i.e.,
shallow shell covering the lesion) of a given lesion, while mar-
gin descriptors are based on the volumetric representation (i.e.,
margin with depth) of a given lesion.

2.E. Feature selection, classifier training and
testing

We used leave-one-out-cross-validation (LOOCV) to
select features, train a classifier, and test the resulting

classifier. As there are 38 reconstructions for each bCT exam,
we repeated the method described below for all 38 recon-
structions.

Among the 23 features, we used a feature selection tech-
nique (sequentialfs in MATLAB) to select a few features with
the most diagnostic information to classify breast lesions.
Note that there may be a few set of features that are correlated
to each other by definition, e.g., average radial gradient (F12)
and radial gradient index (F13). Sequentialfs function utilizes
10-fold cross-validation by default to include only meaning-
ful features to classify breast lesions. Thus, the sequentialfs
function can remove any redundant or highly correlated fea-
tures for the subsequent step, i.e., training an LDA classifier.
In addition, the feature selection algorithm stopped selecting
features when the sum squared error (SSE) was less than the
predefined criteria, which we set as f(x = 0.95, degree of
freedom = 1) = 3.84, where f is a Chi-square inverse cumu-
lative distribution function. The number of selected features
for training a classifier under each LOOCV training samples
typically ranged from two to five. Then, within the same
LOOCV training samples, we trained an LDA classifier. We
set the biopsy results of each lesion and the corresponding
selected image features as dependent variables and indepen-
dent variables for the LDA classifier, respectively. Then, we
evaluated the classification performances of the resulting
LDA classifier on a held-out sample. We utilized the area
under the receiver operating characteristic curve (AUC) as a
figure of merit.

We evaluated the performance of the resulting classifiers
on 38 reconstructions in terms of the image quality, i.e.,
image sharpness of 38 reconstructions. Specifically, we
investigated which features were selected for various image
qualities and their corresponding classifiers’ AUCs to

FIG. 2. The left side shows an example of the coronal views of a breast for the 38 different reconstructions used in this study. We ordered the views in terms of
their sharpness values (from left to right and from top to bottom, the image sharpness increases). The right side shows the scatter plot of image appearance values
(i.e., noise and sharpness) for all 38 reconstructions. IIR1–3 and FDK refer to IIR and FDK reconstruction cases used for the observer study. IIROP indicates a
candidate reconstruction we found in this study for a CADx algorithm.
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determine optimal representative reconstruction and quantita-
tive image features for CADx on bCT images.

2.F. Observer study

In our previous study, we investigated radiologists’ diag-
nostic performances on different breast CT image appear-
ances.19 We utilized this observer study data to compare the

performance of the CADx algorithm on the optimal represen-
tative reconstruction to those of the radiologists. Briefly, we
recruited a total of six MQSA radiologists (with at least 15 yr
in practice) in specialized in breast imaging for the observer
study. We selected four reconstructions (three IIRs and FDK)
that spanned a range of smooth to sharp image appearances
(Fig. 2). We refer to these reconstructions as IIR1, IIR2,
IIR3, and FDK. We also sampled 50 lesions (25 malignant,
25 benign) for the observer study to reduce the burden of
radiologists reading 408 cases (102 lesions in four different
reconstructions) to 200 cases (50 lesions in four different
reconstructions). We divided 200 cases into four study ses-
sions; each session consisted of 50 randomly presented
lesions and four selected reconstructions. Radiologists were
able to complete up to two sessions during each study visit.
However, to reduce the memory effect, we asked radiologists
to come back at least one week after their last study visit. We
provided entire breast volume per case such that radiologists
were able to dynamically move through the slices in sagittal,
transverse, and coronal planes. We highlighted and centered
target lesions in the viewer center. In addition, radiologists
were able to zoom in and out, adjusting contrast level of the
displayed breast volume. Each radiologist provided the prob-
ability of malignancy with a scale of [0, 100], where 0 indi-
cates absolutely benign and 100 indicates absolutely
malignant, for each displayed lesion. We evaluated each radi-
ologist’s diagnostic performance on different image appear-
ances (i.e., smooth to sharp appearance, IIR1 to FDK) using
the AUC values.

For the 50 cases, the AUC of the six radiologists ranged
from 0.73 to 0.86 for the IIR1–3 and FDK reconstructions
(Table III). The purpose of this study was to determine opti-
mal reconstructions and feature sets, and to compare the
trained CADx algorithm on the optimal reconstruction and
feature set against a pool of radiologists. Thus, we averaged
radiologists’ diagnostic performances for each of four
selected reconstructions (IIR1-3 and FDK) and treated them
as surrogates from a population of radiologists’ diagnostic
performances for those selected reconstructions. To reduce
individual radiologist’s variations in diagnostic tasks, we
used the nonparametric method20 to average radiologists’
ROC curves.

2.G. Comparing CADx and radiologists diagnostic
performances

It may not be possible to directly compare the performance
of the CADx algorithm on the optimal representative recon-
struction to that of the radiologists in the current setup, as we
sub-sampled the cases (N = 50) for the observer study,
instead of using all cases (N = 102), which we used to
develop the classifier.

To properly compare the performance of the CADx and
that of the radiologists, we used the .632+ bootstrap to train
and test the classifier21 and compare its performance to the
consolidated performance of the radiologists. Briefly, N
lesion cases are sampled with replacement, and then one can

TABLE II. List of image features used in this study.

Histogram descriptors Definitiona

F1. Average region gray value [HU] l (Gray value in V)

F2. Region contrast [HU] F1–l (Gray value outside of V)

F3. Region gray value variation [HU] r (Gray value in V)

F4. Margin gray value variation [HU] r (Gray value in M)

Shape descriptors

F5. Irregularity 2.2 9 V1/3/M1/2

F6. Compactness % of volume of V included in SP

F7. Ellipsoid axes min-to-max ratio Min-to-max ratio of semi-axes
of the ellipsoid fitted to V

F8. Margin distance variation [mm] r (distances from the center of
V to the margin of V)

F9. Relative margin distance variation F8/l (distances from the
center of V to the margin of V)

F10. Average gradient direction l (gradient direction of each
voxel in M)

F11. Margin volume [mm3] Σ (voxels in M)

Margin descriptors

F12. Average radial gradient [HU] l (radial gradient of each voxel
in M)

F13. Radial gradient index (RGI) F12/l (magnitude of image
gradient of each voxel in M)

F14. Margin strength 1 l (magnitude of image gradient
of each voxel in M)/F2

F15. Margin strength 2 r (magnitude of image gradient
of each voxel in M)/F2

F16. Radial gradient variation r (radial gradient of each
voxel in M)

Texture descriptors

F17. GLCM|Energy 3D version of 2D gray-level
co-occurrence | Energy

F18. GLCM|Contrast 3D version of 2D gray-level
co-occurrence | Contrast

F19. GLCM|Correlation 3D version of 2D gray-level
co-occurrence | Correlation

F20. GLCM|Homogeneity 3D version of 2D gray-level
co-occurrence | Homogeneity

Surface curvature descriptors

F21. Total curvature l (|p1| + |p2| over S)/r (|p1| +
|p2| over S)

F22. Mean curvature l (0.5(p1 + p2) over S)/r
(0.5(p1 + p2) over S)

F23. Gaussian curvature l (p1 9 p2 over S)/r (p1 9 p2
over S)

aV refers to the segmented lesion volume. M refers to the margin of the lesion vol-
ume. SP refers to the minimum sphere including V. S refers to the surface of V. p1
and p2 refer to the first and second principal component of S. l and r indicate
mean and standard deviation.
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observe 0.632N unique cases and 0.368N redundant cases on
average from each bootstrap sample. In this setup, we used
the first 0.632N unique cases for training the classifier and
used the other remaining 0.368N cases for testing it. Among
0.368N test cases, we matched the cases that were used for
the observer study, which were 0.184N test cases on average.
We compared the performance between the classifier and the
radiologists on these unique 0.184N test cases. For each
0.184N test cases, we conducted ROC analysis on the classi-
fier and the radiologists and estimated their AUC values fol-
lowing the method described in the .632+ bootstrap.21 We
repeated this for 1000 bootstrap samples. Figure 3 shows the
diagram illustrating how we divided each bootstrap sample
for training and testing the classifier.

3. RESULTS

3.A. Optimal reconstruction and quantitative image
features for the classifier

Under the LOOCV, we performed feature selection and
classifier training on the training set and tested the resulting
classifier on the hold-out data. This process was repeated for
all 38 reconstructions. The diagnostic performance of the
trained classifiers in terms of AUC ranged from 0.64 to 0.88
[Fig. 4(a)].

As an image became sharper, the diagnostic performance
of the classifier improved, although the improvement became
saturated (or plateaued) at very sharp reconstructions, as
shown in Figs. 4(a) and 4(b). Among all reconstructions,
reconstruction #34 achieved the highest diagnostic perfor-
mance (AUC = 0.88), followed by reconstruction #15
(AUC = 0.85) and #30 (AUC = 0.82).

For each reconstruction, different sets of features were
selected to train the classifier. The feature selection chose the
total curvature feature (F21 in Table II) for all reconstruction
cases except the smoothest reconstruction (i.e., reconstruction
#1, in Fig. 4(b)). Thus, we concluded that the total curvature
feature is the most important feature for the classifier with the
best diagnostic information for all reconstructions.

The feature selection frequently selected shape descriptors
(F5–F11) and margin descriptors (F12–F16) for smooth
reconstructions (reconstruction #1–#19), and histogram (F1–

F4) and margin descriptors for sharp reconstructions (recon-
struction #20–#38). However, the classifier performed better
on sharper reconstructions than on smoother reconstructions.
Thus, this trend indicates that more diagnostic information
can be obtained as the image gets sharper, and that histogram
and margin descriptors contain more relevant information for
classification.

In general, the trained classifier performed better when the
number of selected features was small (N < 5); the trained
classifier for reconstructions #15, #26, and #34 held only 2–4
features and achieved high AUC values (0.85 or higher). In
addition, we can observe that there was a performance drop
(e.g., from reconstruction #15 to #16, and from reconstruc-
tion #26 to #27) when the classifier held more weak features.
In fact, the classifiers with low AUC values (e.g., reconstruc-
tion #6, #26, #27) tended to have high variations in selected
features during the feature selection step in LOOCV, while
the selection step selected consistently a few strong or robust
features for the classifiers with high AUC values (e.g., recon-
struction #15, #30, #34).

In addition, we observed a few set of features were oscil-
lating across reconstructions, e.g., margin strength 1 (F14)
and margin strength 2 (F15) for smooth reconstructions (re-
construction #1–#10), region gray value variation (F3) and
margin gray value variation (F4) for sharper reconstructions
(reconstruction #17–#38). By definition, there is a correlation
between these features (Table II), and they were indeed
highly correlated in our dataset (Pearson’s rho > 0.7). How-
ever, as we mentioned previously, the feature selection algo-
rithm we used for this study utilizes 10 fold cross-validation
to remove highly correlated features. Thus, only a few of
those highly correlated features were selected within each
reconstruction case (i.e., each column in Fig. 4(c)). For
instance, only margin strength 1 (F14) was frequently
selected over margin strength 2 (F15) for reconstructions #1,
#3, and #5, while we observed a completely opposite trend
for reconstructions #2, #4, and #6.

TABLE III. The diagnostic performances (AUC) of radiologists on each
reconstruction.

Reconstruction IIR #1 IIR #2 IIR #3 FDK
Image sharpness Low ? High

Radiologist #1 0.74 0.79 0.73 0.81

Radiologist #2 0.81 0.78 0.79 0.80

Radiologist #3 0.72 0.70 0.74 0.76

Radiologist #4 0.82 0.84 0.81 0.89

Radiologist #5 0.86 0.77 0.85 0.78

Radiologist #6 0.80 0.71 0.75 0.70

Averaged 0.78 0.76 0.77 0.77

FIG. 3. Diagram shows how we divided each bootstrap sample (a total of
1000 samples) to train and test the classifier, and compare the performance of
the classifier to that of radiologists.
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Reconstruction #34 used margin gray value variation (F4),
average radial gradient (F12), and total curvature (F21) fea-
tures, and achieved an AUC of 0.88. Reconstruction #15 used
average gradient direction (F10), average radial gradient
(F12), radial gradient variation (F16), and total curvature
(F21) features, and achieved an AUC of 0.85. Reconstruction
#30 used radial gradient index (F13) and total curvature
(F21) features, and achieved an AUC of 0.82. We concluded
that these reconstructions and feature sets are possible candi-
dates for the optimal reconstruction and feature set for CADx

algorithms. Thus, we re-evaluated the diagnostic performance
of the classifier with the above feature sets and reconstruc-
tions to select the optimal feature sets and reconstructions for
CADx algorithms. Note that we fixed the features of the clas-
sifier to be trained on one of the above three feature sets in
this subsequent analysis.

Among the candidate feature sets and reconstructions, the
feature set of margin gray value variation (F4), average radial
gradient (F12), and total curvature (F21) on reconstruction
#34 showed the highest AUC values than others (Table IV).

FIG. 4. This figure shows the selected features for the classifier and its diagnostic performances on each reconstruction. (a) shows the AUC of the classifier on
each reconstruction. (b) shows the sharpness of each reconstruction. (c) shows the selection frequency of each feature in the classifier for each reconstruction.
Feature #1–#4, #5–#11, #12–#16, #17–#20, and #21–#23 represent histogram, shape, margin, texture, and curvature features, respectively. As sharpness
increased, the diagnostic performance of the classifier improved (a and b). Overall, the total curvature feature (feature #21) was selected 100% for all reconstruc-
tions except the smoothest reconstruction. For smooth reconstruction, the classifier frequently used the shape and margin descriptors. For sharp reconstruction,
the classifier frequently used the margin and histogram descriptors. As images got sharper, the type and the number of selected features were reduced and stabi-
lized. [Color figure can be viewed at wileyonlinelibrary.com]
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Thus, we selected reconstruction #34 and the feature set of
margin gray value variation (F4), average radial gradient
(F12), and total curvature (F21) as the representative recon-
struction and feature set and compared its diagnostic perfor-
mance to that of radiologists in the following section. We
refer to the selected reconstruction #34 as IIROP.

Figure 5 shows the distributions of benign and malignant
lesions in the space spanned by the above three features
selected for the classifier on the IIROP. Malignant lesions
tended to have higher margin gray value variation (F4) and
total curvature (F21) values and lower average radial gradient
(F12) values than benign lesions. Note that there was one
malignant lesion with a low total curvature value (left upper
corner in Fig. 5). Using total curvature (F21) only, this lesion
fell into the benign lesion category. However, this lesion had
a high value for F4, making it fall into the malignant lesion
category.

3.B. Performance comparison between the
classifier and radiologists

As previously explained, we used the entire dataset
(N = 102) to develop classifiers and used a subset (N = 50)
for the observer study. We used the .632+ bootstrap sampling
method21 with 1000 bootstrap samples to compare the diag-
nostic performance of the classifiers from the previous sec-
tion and those of the radiologists.

CADx performance on the optimal reconstruction and
with the optimal feature set reached an AUC of 0.94 (95%
CI: [0.81, 0.98]), while the AUCs for the radiologists ranged
from 0.76 to 0.78 (Table V and Fig. 6). As we repeated the
comparisons between CADx and radiologists, we corrected
the significance level using the Bonferroni correction; the
corrected significance level was 0.05/4 = 0.0125. For all
cases, the 95% confidence intervals of the differences in
diagnostic performance between the CADx algorithm and
radiologists were positive (0.03–0.34). However, they were
not statistically significant, as their P-values were higher than
the corrected significance level 0.0125.

In clinical practice, both CADx and radiologists rarely
operate at a low sensitivity level for classifying the malig-
nancy of lesions. In this respect, comparing the partial AUC
with the sensitivity level above the preselected threshold is
more desirable.22–24 Thus, we computed the partial AUC at
90% sensitivity or higher for both CADx and radiologists.
Note that the maximum value for the partial AUC for this sce-
nario is 0.1. The partial AUC at 90% sensitivity or higher for
the CADx algorithm was 0.085 (95% CI: [0.063, 0.094]) and
it was higher than the radiologists (Table VI and Fig. 6). The
difference between the partial AUCs of the radiologists and
the CADx was statistically significant (P-values < 0.0001).

4. DISCUSSION

In this study, we searched for the best reconstruction algo-
rithm and feature set for a CADx tool for dedicated bCT over
a wide range of reconstructions. We found that sharper

reconstructions yielded better diagnostic performance for a
CADx classifier than smoother reconstructions. This shows
that image sharpness is a good indicator to estimate the diag-
nostic performance of a CADx algorithm for this particular
task. In addition, we found that total curvature, which is a sur-
face descriptor of lesions, holds the most diagnostic informa-
tion compared to the other features. By combining the total
curvature feature with a few histogram and margin descrip-
tors, the resulting CADx algorithm achieved an AUC of 0.88
for one of many sharp reconstructions under the LOOCV.
Then, we compared the diagnostic performance of the result-
ing CADx algorithm on the representative reconstruction and
feature set to those of radiologists. We found that the CADx
algorithm performed better than the radiologists, especially
for the case when comparing the partial AUC at 90% sensi-
tivity or higher.

Our data clearly showed that a CADx algorithm should
be operated at sharp reconstructions to achieve its best
diagnostic performance, while the radiologists performed
similarly for smooth to sharp reconstructions. If we set the
operating point for the CADx scheme at 90% sensitivity,
the resulting specificity of the classifier will be approxi-
mately 82%, while radiologists will have a specificity of
approximately 30–36% at the same sensitivity level
(Fig. 6). From this, we can expect that radiologists would
recommend biopsies for more benign lesions than the
CADx scheme on the representative reconstruction and fea-
ture set. Unnecessary biopsies can cause adverse effects on
patients, such as anxiety and discomfort/pain. As the classi-
fier showed the better specificity, we may expect that the
CADx tool may help radiologists to reduce unnecessary
biopsies for benign breast disease.

We showed that image sharpness is a good predictor to
estimate the diagnostic performance of a given CADx algo-
rithm on a given reconstruction. However, one needs to note
that there may be more image quality/appearance descriptors
available. As shown Fig. 4(a), we can see that there were per-
formance drops of the trained classifier from reconstruction
#15 to reconstruction #16, and from reconstruction #26 to
reconstruction #27. The image sharpness alone cannot

TABLE IV. Performance of the classifier on selected feature sets and recon-
structions.

Classifier diagnostic performance (AUC) under LOOCV

Fixed feature sets

Reconstruction #

#34 #15 #30

Margin gray value variation
(F4), Average radial gradient
(F12), Total curvature (F21)

0.9 0.85 0.77

Average gradient direction (F10),
Average radial gradient (F12),
Radial gradient variation (F16),
Total curvature (F21)

0.88 0.87 0.8

Radial gradient index (F13),
Total curvature (F21)

0.87 0.85 0.82
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explain these performance drops. Finding other image qual-
ity/appearance descriptors that can explain these performance
drops would be good follow-up research of this study.

We showed that the optimal feature set for the CADx algo-
rithm included features F4, F12, and F21, which are margin
gray value variation, average radial gradient, and total curva-
ture, respectively (Table II). As the value of the mean total
curvature and the margin gray value variation increases,
while the value of average radial gradient decreases, the prob-
ability of a lesion being malignant increases (Fig. 5). The
margin gray value variation is defined as the standard devia-
tion of gray level voxel values around the lesion margin
(Table II). In addition, the total curvature is defined as the
averaged and normalized absolute sum of two principal cur-
vatures over the segmented three-dimensional lesion sur-
face.11 As the value of total curvature increases, the lesion
surface becomes more curved (or bumpy). Moreover, the
average radial gradient is defined as the mean value of radial
gradient over a segmented lesion margin.25 If the lesion is a
perfect sphere, the value of the average radial gradient is max-
imized. Therefore, as the average radial gradient value

decreases, the more the morphological shape of the seg-
mented lesion deviates from the shape of a sphere. Thus,
malignant lesions tend to show higher gray value variation in
their margin (F4), tend to have a more curved (or bumpy) sur-
face (F21), and tend to be more deviated from the shape of a
sphere (F12) than benign lesions. Figure 5 clearly shows this
trend as well; malignant lesions tended to have lower F12 val-
ues and higher F4 and F21 values.

One may raise the question whether there was possible
sampling bias due to the nature of the subsampled bCT cases
for the observer study. To check if the selection of 50 cases
out of 102 cases biased the diagnostic performance of the
classifier and the radiologists, we conducted correlation anal-
ysis on the AUC values between each group of radiologists
and the classifier on the 0.184N test samples. If the AUC val-
ues of the classifier and the radiologists are not correlated,
then we can conclude that the selected 50 cases did not intro-
duce meaningful bias to the classifier. Even if they are posi-
tively correlated, then we can conclude that there exists a
positive bias on the AUC, but both the radiologists and the
classifier gained the same advantage. If they have a strong

FIG. 5. This figure shows the scatter plots of the selected features (F4, F12, and F21) for the classifier on the reconstruction #34. Malignant lesions tended to
have higher Margin gray value variation (F4) and Total curvature (F21) values and lower Average radial gradient (F12) values than benign lesions.

TABLE V. Diagnostic performance comparison in AUC between the classifier and the radiologists.

Performance Comparison (AUC) Difference in AUC
Radiologists

AUCL–AUCR [95% CI] P-valueCADx AUCL [95% CI] Reconstructions AUCR [95% CI]

0.94 [0.81, 0.98] IIR1 0.78 [0.63, 0.90] 0.16 [0.03, 0.33] 0.034

IIR2 0.76 [0.62, 0.88] 0.18 [0.04, 0.34] 0.019

IIR3 0.77 [0.63, 0.89] 0.17 [0.04, 0.32] 0.016

FDK 0.77 [0.64, 0.89] 0.17 [0.04, 0.31] 0.019
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negative correlation (i.e., large correlation coefficient value),
then we can conclude that the comparison in the AUC values
between the radiologists and the classifier are unfair, as only
the classifier gained the advantage due to the sub-sampling of
the 50 cases. We used a Bonferroni correction to correct sig-
nificant level to account for repeated comparisons. The cor-
rected significance level was 0.05/4 = 0.0125.

For all cases, we found that there was a positive or no cor-
relation in the diagnostic performances (in terms of AUC)
between the CADx algorithm and each group of radiologists
(Table VII). Thus, we can conclude that there was no mean-
ingful sampling bias that made the comparison in the diag-
nostic performance between the radiologists and the CADx
algorithm to be unfair.

However, there still exists a chance that the CADx perfor-
mance on the 50 lesions was optimistically biased, such that
the remaining 52 breast lesions may degrade the performance
of the CADx algorithm. To prove or refute this, future obser-
ver studies with matched samples for both radiologists and
the CADx tool will be required. Of course, this future study
can be combined with the above follow-up study with larger
and independent datasets.

Another possible limitation of our study is that we studied
only a subset of all possible image reconstructions. It is possi-
ble that some other reconstruction would give either higher
performance or select a different optimal feature set, or both.
However, the main conclusion that a given CADx algorithm
performs better on sharper images would still be valid. A
future study with additional reconstructions will be required
to confirm this.

In addition, it is possible that we may have introduced a
bias on CADx performances when we removed the breast
lesion cases with poor computer segmentation outcomes.
Note that we utilized one specific computer algorithm to seg-
ment breast lesions for the CADx development. As research
on developing better computer segmentation algorithms for
bCT is ongoing, new and improved computer segmentation
algorithms for bCT will be available in future. With the
improved algorithms, we may be able to reduce the number
of lesions with poor segmentation outcomes, such that we
can reduce the possible bias on subsequent CADx diagnostic
performances. Searching improved computer segmentation
algorithms and conducting follow-up analysis using those
algorithms is a potential future study.

An additional limitation of our study is that we treated
only cases as a random effect, while we treated the

TABLE VI. Diagnostic performance comparison in AUC between the classifier and the radiologists over sensitivity 90 or higher.

Performance Comparison (AUC) over sensitivity 90 or higher Difference in AUC
Radiologists

AUCL–AUCR [95% CI] P-valueCADx AUCL [95% CI] Reconstructions AUCR [95% CI]

0.085 [0.063, 0.094] IIR1 0.003 [0, 0.015] 0.061 [0.04, 0.086] < 0.0001a

IIR2 0.006 [0, 0.026] 0.069 [0.041, 0.089] < 0.0001a

IIR3 0.009 [0.003, 0.024] 0.085 [0.063, 0.094] < 0.0001a

FDK 0.004 [0, 0.031] 0.034 [0.013, 0.063] < 0.0001a

aStatistically significant (P-value < 0.0125).

FIG. 6. This figure shows the averaged empirical ROC curves of the CADx
and for the six radiologists. The CADx achieved an average AUC of 0.94,
which was higher than the radiologists for all four reconstructions (IIR1–3
and FDK with AUC of 0.76–0.78). The differences did not reach statistical
significance after correcting for multiple comparisons. For the partial AUC at
90% sensitivity or higher, i.e., the area between the ROC curve and the
dashed line in the figures, CADx showed a statistically better performance
than the radiologists on all reconstructions.

TABLE VII. Correlation in AUC between radiologists and CADx among
bootstrap samples.

Reconstructions Correlation coefficient P-value

IIR #1 0.0725 0.022

IIR #2 0.0695 0.028

IIR #3 0.1167 0.0002a

FDK 0.1462 < 0.0001a

aStatistically significant (P-value < 0.0125).
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radiologists as a fixed effect in our statistical analysis. The
proper way to compare the diagnostic performance of a
CADx algorithm and that of radiologists would be to treat
both cases and radiologists as random effects; however, there
is currently no published method available for such compari-
son. Once the method is established, we will be able to con-
firm our finding.

Although we found the optimal reconstruction and feature
set for a CADx algorithm for bCT cases, the methodologies
described in this manuscript can be extended to other imag-
ing modalities, such as breast MRI or chest CT, where active
research is ongoing for developing CADx algorithms. Addi-
tional future direction of this research will include exploring
the best reconstruction and feature sets for CADx algorithms
for those imaging modalities.

In conclusion, this study found that image sharpness mea-
sure can be a good candidate to estimate the diagnostic per-
formance of a given CADx algorithm. In addition, we found
that there exists a certain reconstruction (i.e., sharp recon-
struction) and feature set (margin gray value variation, aver-
age radial gradient, and total curvature features in Table II)
that maximizes the diagnostic performance of a CADx algo-
rithm. On this optimal representative reconstruction and fea-
ture set, the CADx algorithm performed better than the
radiologists.
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