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RESEARCH Open Access

Impacts of florfenicol on the microbiota
landscape and resistome as revealed by
metagenomic analysis
Qifan Zeng1,2, Chao Liao1,3, Jeffery Terhune4 and Luxin Wang1,3*

Abstract

Background: Drug-resistant fish pathogens can cause significant economic loss to fish farmers. Since 2012,
florfenicol has become an approved drug for treating both septicemia and columnaris diseases in freshwater fish.
Due to the limited drug options available for aquaculture, the impact of the therapeutical florfenicol treatment on
the microbiota landscape as well as the resistome present in the aquaculture farm environment needs to be evaluated.

Results: Time-series metagenomic analyses were conducted to the aquatic microbiota present in the tank-based
catfish production systems, in which catfish received standard therapeutic 10-day florfenicol treatment following the
federal veterinary regulations. Results showed that the florfenicol treatment shifted the structure of the microbiota and
reduced the biodiversity of it by acting as a strong stressor. Planctomycetes, Chloroflexi, and 13 other phyla were
susceptible to the florfenicol treatment and their abundance was inhibited by the treatment. In contrast, the abundance
of several bacteria belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia phyla increased.
These bacteria with increased abundance either harbor florfenicol-resistant genes (FRGs) or had beneficial mutations. The
florfenicol treatment promoted the proliferation of florfenicol-resistant genes. The copy number of phenicol-specific
resistance genes as well as multiple classes of antibiotic-resistant genes (ARGs) exhibited strong correlations across
different genetic exchange communities (p < 0.05), indicating the horizontal transfer of florfenicol-resistant genes among
these bacterial species or genera. Florfenicol treatment also induced mutation-driven resistance. Significant changes in
single-nucleotide polymorphism (SNP) allele frequencies were observed in membrane transporters, genes involved in
recombination, and in genes with primary functions of a resistance phenotype.

Conclusions: The therapeutical level of florfenicol treatment significantly altered the microbiome and resistome present
in catfish tanks. Both intra-population and inter-population horizontal ARG transfer was observed, with the intra-
population transfer being more common. The oxazolidinone/phenicol-resistant gene optrA was the most prevalent
transferred ARG. In addition to horizontal gene transfer, bacteria could also acquire florfenicol resistance by regulating the
innate efflux systems via mutations. The observations made by this study are of great importance for guiding the strategic
use of florfenicol, thus preventing the formation, persistence, and spreading of florfenicol-resistant bacteria and resistance
genes in aquaculture.

Keywords: Florfenicol, Catfish, Aquaculture, Antimicrobial resistance, Microbiome, Antibiotics, Horizontal gene transfer,
Mutation

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: lxwang@ucdavis.edu
1Department of Animal Sciences, Auburn University, Auburn, AL 36830, USA
3Department of Food Science and Technology, University of California Davis,
Davis, CA 95616, USA
Full list of author information is available at the end of the article

Zeng et al. Microbiome           (2019) 7:155 
https://doi.org/10.1186/s40168-019-0773-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-019-0773-8&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lxwang@ucdavis.edu


Introduction
The global seafood consumption increased from 9.9 kg per
capita in the 1960s to 20 kg in 2014, and it is expected to
continue increasing in the future [1]. Aquaculture has
grown dramatically over recent decades and become an im-
portant component of world fish production to satisfy the
consumption demands. The production of finfish is now
about three quarters of that from wild fisheries and reaches
over 73 million tons live weight [1]. Since antibiotics have
been widely applied to prevent severe loss due to infectious
disease, criticisms and concerns have arisen related to the
potential public health risks and environmental interfer-
ences caused by aquaculture effluents [2, 3]. As antibiotics
cannot be effectively metabolized by aquaculture animals,
more than 70% of antimicrobials used in aquaculture enter
the environment with intact activity [4, 5]. These antibiotic
residues impose selection pressures on aquatic microbes
and promote the spread of antibiotic-resistant (AR) bac-
teria, even at concentrations below the minimum inhibitory
concentration (MIC) of susceptible wild-type bacteria [6].
Studies have estimated that 90% of aquatic bacteria are re-
sistant to at least one antibiotic, and approximately 20% are
resistant to five or more [7]. In addition, a growing number
of microbes are being identified as carrying genes with
novel antibiotic-resistant mechanisms [8]. The genetic plas-
ticity of the microbial community enables antibiotic-
resistant genes (ARGs) to disseminate throughout aquatic
bacterial populations and communities, making aquacul-
ture systems that lack antibiotic restrictions suffer high risks
of ARG transmission [2]. Antibiotic residues, along with
ARGs and AR bacteria, are disseminated into the environ-
ment through aquaculture effluent, which could reduce the
therapeutic potential of antibiotics against pathogens and
alters the natural bacterial flora [9, 10]. Hence, there is an
urgent need to understand how AR pathways spread and
evolve in aquaculture systems.
Florfenicol is a fluorinated synthetic analog of chlor-

amphenicol that is exclusively used in veterinary medi-
cine [11]. It has broad-spectrum bacteriostatic activity
for a wide range of microorganisms by reversibly bind-
ing to the peptidyltransferase center at the 50S riboso-
mal subunit and thus inhibiting the bacterial protein
biosynthesis [12]. In the USA, it was approved by the
FDA for treating enteric septicemia of catfish in 2005,
coldwater disease in salmonids in 2007, furunculosis in
freshwater-reared salmonids in 2007, and the strepto-
coccal septicemia and the columnaris disease in
freshwater-reared finfish in 2012 [13]. Unfortunately,
the excessive use of florfenicol as an antimicrobial che-
motherapeutic agent in animal husbandry potentially
promotes the prevalence and abundance of FRGs in
surrounding environment [14].
Over the years, studies have revealed a number of

novel genes which enable microbials to mitigate the

inhibitory effects of florifenicol [15, 16]. The first florfe-
nicol resistant gene (floR) was derived from a transfer-
able R-plasmid in Pasteurella piscicida, a gram-negative
fish pathogen in 1996 [17]. Since then, it has been iden-
tified in the chromosome of multi-resistant Salmonella
Typhimurium DT104, Vibrio cholerae, E. coli, Bordetella
bronchiseptica, and Acinetobacter baumannii, or on the
plasmids of E. coli, Salmonella Newport, Klebsiella pneu-
moniae, Pasteurella multocida, Bibersteinia trehalosi,
Actinobacillus pleuropneumoniae, and Stenothrophomo-
nas maltophila [16, 18]. The comparisons of the nucleo-
tide and amino acid sequences of these genes revealed
limited homology with the known phenicol-resistant
determinants, suggesting that the presence and the di-
versity of florfenicol-resistant genes (FRGs) in the envir-
onment have yet to be adequately evaluated [18]. Other
FRGs, such as the exporter genes fexA [19], fexB [11],
and optrA [20], as well as the 23S rRNA methyltransfer-
ase gene cfr [21], have also been identified from different
bacterial isolates of various animal origin. Many of the
FRGs are located in mobile genetic elements, such as
plasmids, transposons, or gene cassettes [11, 20, 22, 23].
Therefore, whether the florfenicol therapy may lead to
the emergence of other resistance determinants for mul-
tiple drug classes and cause substantial impact on the
antibiotic resistome needs to be evaluated as well.
The metagenomic sequencing technology and its associ-

ated analysis methods and computational tools have pro-
vided new strategy for investigating the resistome of
agricultural and environmental microbiota. It has been used
for direct detection of ARGs in animal feeding facilities
[24], agricultural soils amended with manure [25], and ef-
fluent wastewater [26]. Our previous study has revealed that
aquaculture waste containing therapeutic antibiotics has a
substantial impact on aquatic microbial populations present
in the production system and causes selective pressures on
AR genes, especially efflux pumps [27]. Thus, to better ad-
dress the concerns and questions associated with the im-
pact of therapeutic florfenicol treatment on microbiome
populations and the resistome present in the aquaculture
farming environment, a time-series metagenomic analysis
was performed on a model tank-based catfish production
system. The aim of this study was to provide an in-depth
evaluation of the patterns and dynamics of the microbial
resistome in response to florfenicol treatment and illustrate
the impact of chemotherapeutic treatment on the aquacul-
ture environment.

Results
Microbial community analysis
Time-series metagenomic analyses were conducted to
investigate the changes of aquatic microbiota and
resistomes present in the tank-based catfish produc-
tion system before and after 10 consecutive days of

Zeng et al. Microbiome           (2019) 7:155 Page 2 of 13



therapeutic florfenicol treatment. Water samples were
collected from four replicate tanks on days 0, 10, and
25 (Table 1), and the total DNA was extracted from
these water samples for sequencing. A total of 580.04 mil-
lion reads with an average read length of 100 bp were gen-
erated from the 12 samples collected from the treatment
tanks. After trimming, a total of 544.51 million filtered
reads (93.87%) were retained, resulting in over 7 Gb se-
quencing data for each sample (Table 1). Taxonomic
analysis revealed that 47.83 million filtered reads of the
samples from day 0 were assigned to the genus level, ac-
counting for 25.45% of the filtered reads. For the samples
from day 10, 50.35 million reads (28.33%) were matched to
reference sequences at the genus rank. For samples
collected on day 25, 68.98 million reads (38.58%) were an-
notated at the genus rank. The microbial community com-
positions in all the samples were similar at the rank of
phylum. Over 99% of the total identified species were bac-
teria, while fewer than 1% were archaea. Proteobacteria was
the most abundant bacterial phylum in all the 12 samples,
accounting for approximately 50% of the total species. Pro-
teobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria,
Firmicutes, Planctomycetes, Verrucomicrobia, Acidobac-
teria, and Chloroflexi were the nine most abundant phyla.
These phyla jointly accounted for over 96% of the total bac-
teria across all the samples (Fig. 1).
The principal component analysis (PCA) confirmed

the relevance of the data: samples from the three groups
were separated by the first axis, which explained 48.27%
of the species abundance variability (Fig. 2a). Samples
from day 0 were separated from the other two groups.

The variance within sample groups explained 22.7% of
the species abundance variabilities, with the largest
within-group variance observed on day 25. The average
Shannon diversity index decreased in a time-dependent
manner, with the highest value observed on day 0 and
the lowest value observed on day 25 (Fig. 2b).
Pairwise comparisons were conducted to check the

microbial abundance differences using a zero-inflated
log-normal model implemented in the MetagenomeSeq
package (FDR-corrected p value < 0.05). Phylum Plancto-
mycetes, Acidobacteria, and Chloroflexi were significantly
reduced in samples for day 10 and day 25, whereas
phylum Proteobacteria, Bacteroidetes, and Verrucomicro-
bia were significantly increased on day 25 compared to
day 0 (Additional file 1: Table S1). No significant differ-
ence was observed between samples from day 10 and day
25 at phylum rank. At the rank of genus, a total of 1444
genera were identified across all the samples. Substantial
changes were observed on day 10 and day 25 when com-
pared to day 0 (Table 2). When comparing the abundance
of genera identified on day 10 with their corresponding
abundance on day 0, a total of 170 differentially abundant
genera were identified, including 70 genera with increased
abundance and 100 genera had decreased abundance
(Fig. 2c; Additional file 2: Table S2). When comparing the
day 25 with the day 0, the abundance of 165 genera was
significantly different from day 0, including 59 genera with
increased abundance and 106 genera with decreased
abundance (Fig. 2d; Additional file 3: Table S3). Together,
a total of 262 differentially abundant microbial genera
were identified. Despite that the abundance was similar at

Table 1 Summary of Illumina sequencing data and trimming

Sample Number of raw
reads (million)

Read length (bp) Number of reads
after trim (million)

Average length
after trim (bp)

Total bases
after trim (Gb)

Day 0

Tank 1 50.67 100 47.8 92.66 8.86

Tank 2 45.03 100 42.41 92.13 7.81

Tank 3 57.55 100 54.17 91.79 9.94

Tank 4 46.44 100 43.58 91.91 8.01

Day 10

Tank 1 44.15 100 41.29 91.84 7.58

Tank 2 44.73 100 41.87 91.84 7.69

Tank 3 54.67 100 51.25 91.98 9.43

Tank 4 46.16 100 43.34 92.32 8

Day 25

Tank 1 44.7 100 42.16 92.87 7.83

Tank 2 45.88 100 42.93 92.06 7.9

Tank 3 42.56 100 39.77 91.34 7.27

Tank 4 57.5 100 53.94 92.52 9.98

Total 580.04 – 544.51 – 100.3
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the phylum level, 36 genera of Firmicutes, 20 genera of
Actinobacteria, six genera of Verrucomicrobia, and four
genera of Cyanobacteria exhibited significant changes in
abundance. Only 15 differentially abundant archaeal gen-
era were identified, of which 14 Genera were significantly
decreased. Notably, microbial compositions of day 10 and
day 25 were found to be similar with no significantly al-
tered genus.

De novo metagenome assembly and phylogenetic
assignment
Bacterial genomes were reconstructed with the com-
bined assembly of filtered reads from all the samples. A
total of 2,221,395 contigs with N50 size of 2253 bp were
assembled from the pooled sequencing reads. Gene an-
notation was performed using the JGI pipeline, which
identified 763,897 genes from the metagenomics assem-
bly. The genes were functionally categorized using the
Pfam, KEGG, and COG databases.
Assembled contigs were organized into 626 genome

bins based on tetranucleotide sequence composition and
coverage patterns across the samples. After filtering low-
quality genome bins, phylogenetic analyses were con-
ducted for the 198 qualified genome bins. The phylogen-
etic tree revealed that they belonged to nine bacterial
phyla, including Candidatus, Saccharibacteria, Chloro-
flexi, Cyanobacteria, Actinobacteria, Verrucomicrobia,
Planctomycetes, Bacteroidetes, Acidobacteria, and Pro-
teobacteria (Fig. 3). As shown in Additional file 4: Table
S4, 43 genome bins were classified at the genus and

species level, 47 were classified at the family level, 29
were classified at the order level, 15 were classified at
the class level, and the remaining 64 were identified at
the phylum level because of the limitation of available
related reference genomes.

Analysis of gene frequency changes
To identify potential horizontal gene transfer of ARGs,
the patterns of gene copy number variations within
metagenomic populations were revealed by the time-
series analysis. The relative abundance of phenicol-
resistant genes in 59 genome bins was significantly in-
creased on days 10 and 25 compared to day 0 (Add-
itional file 8: Figure S1; Additional file 5: Table S5).
Comparison of gene frequency distributions could reveal
possible horizontal gene transfer events [28]. Therefore,
a co-occurrence network was construct employing the
gene frequency data to identify potential ARG transfers
involved in florfenicol treatment-stimulated resistome
alterations (Fig. 4). As shown in Fig. 4, significant corre-
lations were observed among ARGs that confer resist-
ance to multiple drug classes, including phenicol (cat,
cfr, cml, fexA, floR, optrA), aminoglycoside (AAC (2′)-Ia,
acrD, APH (3′)-IIa, smeR), penam (CARB-14, ACT-10,
ACT-37, mecI), fluoroquinolone (abeM, emrA, emrR,
evgA, mexH), tetracycline (tet (41), tet(A), adeF, mdfA),
glycylcycline (vanA, vanD, vanF, vanXM, vanXYC), car-
bapenem (BJP-1, cphA4, mecA, adeK,), diaminopyrimi-
dine (dfrA26, dfrA3, dfrD, dfrE), macrolide (EreB, macA,
AxyY, cmeB, mtrR), and rifamycin (efrA). Intra-

Fig. 1 Microbiome composition at the phylum level samples from tank 1 (T1), tank2 (T2), tank 3 (T3), and tank 4 (T4). The top nine phyla were
reported for each sample, and all other phyla were grouped into “Other”
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population correlations (indicated by blue edge) were
more common than inter-populations correlations which
were mainly observed in phenicol resistance genes (indi-
cated by red edge). The oxazolidinone/phenicol-resistant
gene optrA was identified as the most prevalent trans-
ferred ARGs, with the frequency expanded in 50 genome
bin populations.

SNP identification and genetic heterogeneity in
sequence-discrete populations
The intra-population genetic diversity of sequence-
discrete populations was examined by identifying SNPs
within genome bins. By mapping high-quality reads from
all time points to the metagenomic assembly, we identi-
fied different levels of SNP polymorphism in every
genome bin, ranging from 67 SNPs per Mbp in Bacteroi-
detes-262 to 19,090 SNPs per Mbp in Flavobacterium-
239 (Additional file 6: Table S6). Most genome bins had
> 1000 SNPs per Mbp, but seven genome bins had < 100
SNPs per Mbp, including Alcaligenaceae-300, Cyanobac-
teria-321, Methylophilaceae-222, and four genome bins
from phylum Bacteroidetes (Bacteroidetes-185, Bacteroi-
detes-203, Bacteroidetes-219, Bacteroidetes-262). Five of
the seven genome bins had relatively lower estimates of
genome completeness (> 75%), suggesting that genetic

Fig. 2 a PCA analysis of metagenomic samples. b Shannon diversity index of samples from three time points. c, d Comparisons of bacterial
genera abundance (c day 10 vs day 0; d day 25 vs day 0)

Table 2 Statistics of differentially abundant genera (FDR p
values < 0.05) of samples from day 10 and day 25 compared to
samples from day 0

Sample Increased Decreased Total

Bacteria Archaea Bacteria Archaea

Day 10 69 1 98 2 170

Day 25 59 0 92 14 165
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variations within these sequence-discrete populations
might be underestimated. However, completeness and
coverage depths alone could not account for the large
differences in SNP counts among populations. For ex-
ample, Flavobacterium-239 had approximately threefold
more SNPs than its closely related phylogenetic group
Flavobacterium-99, despite the fact that Flavobacterium-
99 had a higher level of genome completeness and
coverage.
Most of the SNPs (~ 91%) within the genome bin pop-

ulations were in genic regions, and the remaining ~ 9%
were located in intergenic regions. However, over 73% of
the SNPs were silent and did not result in amino-acid
substitutions, indicating that most of the genetic vari-
ation within the microbial populations may be neutral
and did not cause competitive exclusion among coexist-
ing genotypes. SNP mutations that generate premature
stop codons were observed in 181 of the total 198 gen-
ome bins. These mutations result in nonfunctional genes
and accounted for only ~ 0.1% of the total SNPs. A small
proportion of the identified SNPs (~ 18%) were missense

mutations, suggesting that negative selection caused
variations to accumulate in most of the microbial popu-
lations. By applying the quasibinomial GLMs, SNP al-
lele frequency differences were estimated over time in
all populations. The fraction of total SNPs dominated
by a single allele was low in most of the populations,
suggesting that the overall level of genetic heterogeneity
in most populations did not change dramatically. The
allele frequency of 4456 SNPs from 15 genome bins
shifted consistently when comparing samples from day
10 to samples from day 0. The most dramatic change
was observed in the Microbacteriaceae-290 population,
of which 1434 displayed consistent allele frequency dif-
ferences, indicating large changes in the relative abun-
dance of different genotypes within these sequence-
discrete populations. When comparing the samples
from day 25 to samples from day 0, only 645 SNPs ex-
hibited consistent difference across replicates. In spite
of the 20 SNPs from three genome bins, the remaining
625 SNPs were from contigs that could not be assigned
to genome bins.

Fig. 3 Phylogenetic assignment of assembled genome bins. The phylogenetic tree was obtained with PhyloPhlAn using 400 broadly conserved
proteins to extract the phylogenetic signal. Organisms are colored based on phyla
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To understand the effects of these substantial shifts
of alleles, genes covered by these SNPs were extracted
for functional module annotation and pathway analysis.
We found that these mutations were mainly related to
transmembrane transport and DNA recombination
(Additional file 9: Figure S2). Various transporters, in-
cluding MFS-family permease, ABC-type transport sys-
tem permease, drug/metabolite transporter (DMT)
superfamily permease, and phosphate-transport-system
permease, were identified with significant changes of al-
lele frequencies (Additional file 7: Table S7). Interest-
ingly, multiple key genes participating in homologous
recombination (e.g., single-strand DNA-binding proteins,
DNA recombinase, DNA polymerase, and ATP-dependent
DNA helicase) were covered by the significant SNPs
(Fig. 5).

Discussion
In the USA, only three drugs, including florfenicol, oxy-
tetracycline, and sulfadimethoxine/ormetoprim, have
been authorized for bacterial disease treatment in aqua-
culture [13]. Unfortunately, a few strains of E. ictaluri (a

fish pathogen that can cause Enteric Septicemia of catfish)
had been identified that are resistant to both Romet-30®
and Terramycin® 200 [29]. The emergence of these
antibiotic-resistant fish pathogens poses critical needs to
better understand the formation of resistance, the source
of the resistome, as well as the impact and involvement of
the aquaculture environment in the formation and trans-
fer of resistome. As an analog of chloramphenicol and
thiamphenicol, the C3 position of florfenicol is fluorinated
and cannot act as acceptor site for acetyl groups, making
florfenicol resistant to inactivation by CAT enzymes [30].
Bacterial resistance to florfenicol is conferred by two main
mechanisms, one is through reduced membrane perme-
ability and the other is based on the mutation of the 50S
ribosomal subunit. Many of these FRGs and 50S riboso-
mal mutations are not exclusive for florfenicol resistance;
they also confer resistance to phenicol and some structur-
ally unrelated antimicrobial groups, such as lincosamides,
oxazolidinones, and pleuromutilins [20, 21]. Therefore, it
is of great importance to understand the potential effects
of florfenicol on the microbiota landscape and resistome
of the farm environment.

Fig. 4 Co-occurrence networks of ARGs. The blue lines represent significant correlations of ARGs within a microbial genome bin, while the red
lines represent significant correlations of ARGs between different genome bin populations
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In this study, metagenomic analysis revealed that flor-
fenicol administration had a pronounced effect on the
composition of the bacterial community, with declining
bacterial diversity in treated samples (Fig. 2b). Studies
on antibiotic-induced perturbations in commensal mi-
crobes have revealed similar results [31–33]. In the
environmental microbiosphere, antibiotics produced by
natural organisms provide mutual inhibition for

competing neighbor organisms, which is vital for cell-to-
cell signaling networks and maintenance of healthy spe-
cies diversity [34]. The inhibitions created by naturally
produced antibiotics are not intended to kill competitive
bacterial, but rather to prevent undesirable overgrowth
and colonization in a shared ecosystem [34]. The pres-
ence of these anthropogenic antibiotics caused asymmet-
rical selection on different bacterial populations. As

Fig. 5 Recombination pathways covered by significant SNPs. Genes covered by SNPs with constant allele frequency changes are denoted by
red shading
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revealed by our study, Planctomycetes, Chloroflexi, and
13 other phyla were susceptible to florfenicol, as their
abundance decreased significantly after the treatment.
By contrast, Proteobacteria, Bacteroidetes, Actinobac-
teria, and Verrucomicrobia increased dramatically after
the florfenicol treatment. These results are consistent
with our previous study on microbial adaptation to
therapeutic oxytetracycline treatment [27], implying that
the evolutionary units were pushed toward unification
by antibiotic treatments. In aquaculture, a diverse and
stable microecosystem plays an important role in aqua-
culture animal health, growth, and diet [35]. The resi-
dent microbial population protects the host from
invading pathogens by competitive interaction or direct
inhibition. Although no evidence has been identified in
aquaculture, studies in humans have already revealed
that cycles of antibiotic treatment could lead to drastic-
ally reduced fecal microbiome diversity and recurrent
drug-resistant infections [36, 37]. In this study, the
microbiomes of samples collected on day 25 exhibited
drastic variations and reduced species diversity (Fig. 2a,
b). This disturbance resulted from the florfenicol treat-
ment may reduce microbiome-mediated colonization re-
sistance and increase the risk of infection.
Antibiotic treatments also introduce asymmetric selec-

tion on lower evolutionary units (e.g., mobile genetic ele-
ments, genes) by acting as a strong stressor [38]. Genetic
exchange communities sharing particular ARGs or bene-
ficial mutations possess enhanced dispersal and local
colonization capabilities. As revealed by this study, ex-
panded FRGs were usually observed within microbial
populations that increased dramatically after florfenicol
treatment, especially for Proteobacteria and Bacteroi-
detes (Fig. 4). OptrA was the most prevalent FRG shared
by over 50 microbial populations. This gene was first
identified on a conjugative plasmid in Enterococcus fae-
calis. It confers resistance not only to chloramphenicol
and florfenicol, but also to the oxazolidinones linezolid
and tedizolid [20]. The phenicol resistance genes (optrA,
floR, cfr, fexA, cml, and cat) usually coexist with mobile
genetic elements including plasmids, transposons, or
integrons [19, 21]. In this study, significant correlations
of ARG frequency distributions were identified within
and between Genome bin (GB) populations, implying
the horizontal gene transfer triggered by florfenicol
treatment. In addition to phenicol resistance genes, the
florfenicol treatment also induced the transmission and
evolvability of genes that confer resistance to multiple
drug classes, providing a resistome atlas for environmen-
tal microbials.
Frequency of mutations reflects the genetic adaption

and mutation rate of a population in the process of se-
lection [39]. In the case of antibiotic resistance, identifi-
cation of SNPs facilitates tracing the resistance-

conferring genes and the evolutionary counterpart of
antibiotic-resistant bacterial isolates [40, 41]. As revealed
by this study, overall SNP-based genetic heterogeneity
did not change extensively in most populations after
florfenicol treatments. Significant changes in SNP fre-
quencies, however, were observed in multiple membrane
transporters, including MFS-family permeases, ABC-
type transport system permeases, and drug/metabolite
transporter (DMT) superfamily permeases. Previous
studies have reported that multidrug transporter systems
from different permease families are involved in the ef-
flux of phenicol [42, 43]. For instance, several permeases
of the MFS family, such as Cmr and MdfA, have been
reported to export phenicols from E. coli [44, 45]. Multi-
drug permeases of the RND family, such as MexAB-
OprM [46] and AcrAB-TolC [47], also include phenicols
in their substrate spectrums. This study’s results demon-
strate that a prevalent approach to acquiring florfenicol
resistance in bacteria is to promote the regulation of the
microbe’s specific transmembrane transporter systems.
It is noteworthy that dramatic changes in SNP allele fre-
quencies are also observed in genes involved in genetic
recombination (Fig. 5). Recombination is a crucial ap-
proach employed by bacteria to uptake and integrate ex-
ogenous DNA into the host cell genome, which allows
microbes to circumvent environmental interventions or
adapt to selective pressures [48]. Genetic recombination
is of great importance in the development of antibiotic
resistance. Antibiotic usage may induce the transform-
ation and generation of competent cells in microbial
populations, facilitating the transfer of exogenous genes
that confer antibiotic resistance [49]. Studies have found
that recombination events are responsible for the mosaic
structure of multiple ARGs, such as genes encoding
penicillin-binding proteins (PBP) in S. pneumoniae [50],
ribosomal protection proteins (RBP) in Megasphaera els-
denii [51], and aph (3′)-IIa in P. aeruginosa [52]. Several
epidemiological studies have reported that recombin-
ation mediates the distribution of transposons and inte-
grative conjugative elements (ICEs) that carry antibiotic-
resistant determinants [53, 54]. In this study, key genes
involved in the RecFOR and RecBC pathway were cov-
ered by significantly changed SNPs, suggesting that vari-
ations in recombination systems may facilitate the influx
of ARGs as well as the accumulation of beneficial muta-
tions in genotypically cohesive populations.

Conclusion
In conclusion, this study provides an in-depth under-
standing of the substantial impact of florfenicol treat-
ment on microbiota in the aquaculture environment.
Florfenicol treatment shifts the microbial population
structure in the environmental resistome by asymmet-
rical selection on genes and mutations with a resistance
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phenotype. The comprehensive metagenomic analyses
revealed the patterns and dynamics of microbial resis-
tome and provided insight into the genetic adaptations
of aquatic microbial communities after the application
of antibiotics. Ultimately, information present in this
study will directly help with the development of guid-
ance for the strategic use of florfenicol.

Materials and methods
Catfish experimental trial setup
In this study, four 300-L aquaria were set up at Auburn
University’s E.W. Shell Fisheries Research Center in
Auburn, Alabama. The aquaria were filled with water
and bottom sediment from a watershed reservoir and
were supplied with aeration at a rate of approximately
6 ppm. To evaluate the impact of florfenicol on microbial
communities in the production system, channel catfish
(Ictalurus punctatus) of ~ 100 g per individual were stocked
at a density of 25 fish per aquaria. Prior to the addition of
florfenicol, catfish were fed at a typical feeding rate (~ 2.5%
of body weight per day) for 2 weeks with a water flow rate
of ~ 60mL/min to establish and stabilize the microbial
communities in the system. Uneaten floating feed was re-
moved from the aquaria 30 min after feeding to avoid spoil-
age. Daily care and operation of the experimental system
was performed as outlined in the SOP 2015-2705 which
has been approved by the Institutional Animal Care and
Use Committee (IACUC) at Auburn University. Commer-
cially available antibiotic florfenicol (Aquaflor 50% Type A
Medicated Article, Intervet/Schering-Plough Animal
Health) was incorporated with the dry ground feed at a
concentration of 2 g medicated article per kilogram prior to
extrusion. Catfish received florfenicol treatment at a level of
10mg/kg body weight and fed at a 1% body weight per day
for a period of 10 days. In order to mimic an enclosed cat-
fish pond production system, no water exchange was per-
formed during or after the florfenicol treatment. The
treatment procedure was approved by the IACUC commit-
tee at Auburn University (IACUC number: 2016-2960).
After the 10-day treatment period, fish received non-
medicated feed at the typical feeding level (~ 2.5% of body
weight per day) for an additional 3 weeks. Water quality
was measured daily (4–5 pm) throughout the experimental
trial. Water temperature was 21.6 ± 2.8 °C, the pH ranged
from 6.8–7.8, and the total ammonia nitrogen (TAN) con-
centration ranged from 0.5–3mg/L. The un-ionized am-
monia (the toxic version of ammonia that is harmful to
fish) concentration was less than 0.1mg/L, which are levels
considered safe for catfish [55–57].

Sample collection, DNA isolation, library construction,
and sequencing
Water samples (1 L each) were collected from each
aquarium at day 0, day 10, and day 25 after florfenicol

treatment and were filtered through 0.2 um filters (EMD
Millipore, Temecula, CA). The filtered membranes were
then cut with scissors into small pieces for DNA extrac-
tion using a PowerSoil® DNA isolation kit (MoBio Labora-
tories, Carlsbad, CA) according to the manufacturer’s
instructions. The library construction and sequencing
were conducted at the HudsonAlpha Genomic Services
Lab (Huntsville, AL, USA). Genomic libraries were pre-
pared with the Paired-end Sequencing Sample Preparation
Kit (Illumina, San Diego, CA) according to the manufac-
turer’s instructions. The 12 DNA libraries were sequenced
on two lanes of the Illumina HiSeq 2000 platform for 100-
bp paired-end reads. All the sequencing data were depos-
ited at the NCBI BioProject repository under accession
number PRJNA408155.

Taxonomy classification and differential abundance
analysis
Taxonomy classification of sequencing reads by Kaiju
(version 1.4) was applied after reads trimming. Briefly,
FastQC (version 0.11.5) was used to visualize the overall
data quality and identify potential problems with the
data. Raw reads were trimmed by removing ambiguous
nucleotides (N’s), extreme short reads (< 25 bp), and
low-quality bases using Trimmomatic (version 0.36).
The clean reads were subjected to taxonomy classifica-
tion with the representative bacterial and archaeal ge-
nomes from the proGenomes database. The abundance
matrix was imported into MetagenomeSeq (version 1.6)
to evaluate the sample-to-sample distances, the Shannon
diversity, and the genera that are differentially abundant
among samples.

De novo metagenome assembly and gene annotation
Filtered reads from all the samples were pooled together
and assembled using Megahit (version 1.1) with k-mer
sizes from 27 to 99 with a step of 10. Contigs with a
length over 2.5 kbp were organized into genome bins
using MetaBat (version 0.32.4) according to the tetranu-
cleotide sequence composition and overall contig cover-
age patterns retrieved from backtrack alignment files.
The reads from each sample were mapped to the assem-
bly with at least 95% sequence identity using the
Burrows-Wheeler aligner (BWA)-backtrack alignment
algorithm [58]. To assess the completeness of genome
bins and mitigate incorrectly binning contigs from dif-
ferent organisms, collocated sets of ubiquitous and
single-copy genes within a phylogenetic lineage were es-
timated in each genome bin by using CheckM (version
1.0.6). Genome bins with less than 50% completeness or
more than 20% contamination were excluded from
phylogenetic analysis.
The DOE Joint Genome Institute’s Integrated Micro-

bial Genome database tool (version 4.15.1) was used to
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annotate metagenomic reconstructions. Briefly, open
reading frames were predicted by Prodigal and Gene-
Mark. Conserved protein families and domains were
identified using BLASTP search against COG, Pfam, EC,
and KEGG Orthology (KO) databases with an e value
cutoff of 1e−10. Antibiotic-resistant genes (ARGs) were
identified using the strict paradigm of Resistance Gene
Identifier (version 3.2.1) which is based on the protein
homolog model type sequences of the CARD database
(version 1.2.0). Resistance functions of the annotated
genes were also predicted according to Resfams (version
1.2) using HMMER (version 3.1b1).

Phylogenetic analysis and taxonomic analysis of
metagenomic assemblies
The taxonomic identities of identified genome bins
(GBs) and their evolutionary relationships with 3171
known microbial genomes were determined using the
PhyloPhlAn pipeline (version 0.99). GBs were assigned
to the finest taxonomic level upon which all marker
genes agreed, ranging from the phylum level for some
GBs to the genus level for others. Predicted genes within
each genome bin were also checked by sequence similar-
ity to the non-redundant (NR) database using BLASTN.
The taxonomic assignment of the best match generated
by BLASTN was retrieved for validating results obtained
from PhyloPhlAn.

Identifying SNPs and allele frequency differences
The clean reads were mapped to the reference genomes
using BWA with at least 95% identity. SNPs were identi-
fied using Varscan (version 2.3.7) with the thresholds of
minor allele frequency being greater than 0.05, mini-
mum read base quality of 20, strand-filter of 90%, and
minimum read depth of 10. Allele frequencies were
calculated based on the number of reads observed for
the reference or alternate allele. Consistent allele fre-
quency differences among the three sample groups were
identified using Generalized Linear Models (GLMs) with
quasibinomial error structure as described by Wiberg
et al.’s study [59].

Gene gain and loss
To identify genes with significantly changed relative
abundance in the population over the course of this
study, pairwise comparisons of gene coverage were con-
ducted following the procedures used by Bendall et al.
[60]. Briefly, gene coverage was estimated by normalizing
the number of mapped reads by the gene length. Gene
frequency was determined for each gene by dividing its
coverage by the median coverage of all genes within a
GB, which implies the copy number of each gene per
cell within a microbial population. Genes were consid-
ered as gained or lost once their copy number changed

by a magnitude of greater than 0.4, with a false discovery
rate of less than 0.01 detected via the Metastats test [61].
The correlations of frequency changes were detected via
WGCNA. Significantly correlated ARGs were clustered
to construct a co-occurrence network based on the dis-
similarity measure of topological overlaps [62].
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