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ABSTRACT OF THE DISSERTATION

Symmetry Breaking and Synchronization
at Small Scales

by

Gwynn J. Elfring

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2012

Professor Eric Lauga, Chair

This thesis is devoted to the theoretical description of two experimentally

observed phenomena which occur at small scales.

We first address the synchronization of swimming microorganisms. Motile

microorganisms swim in a fluid regime where inertia is unimportant and viscous

stresses dominate. In this limit the flow field due to a swimmer affects the motility

of nearby cells, a fact which is biologically important as microorganisms such as

spermatozoa are often found in high-density suspensions. A particular consequence

of these fluid-based interactions is the synchronization of the flagella of some mi-

croorganisms, and in particular spermatozoa, observed to occur when these cells

are swimming in close proximity. Using theoretical analysis it is demonstrated that

xiv



two infinite sheets passing waves of a prescribed shape, will not synchronize in a

Newtonian fluid if the shape of the waveforms has sufficient symmetry because of

the kinematic reversibility of the Stokes equations. The sinusoidal waveforms of

Taylor’s swimming sheet fall into this category, and will thus not dynamically syn-

chronize in a Newtonian fluid. It has been observed that excess symmetry similarly

curbs synchronization in other models. For a sinusoidal sheet, a geometric pertur-

bation must therefore be added to break the necessary front/back symmetry, and

give rise to a time-evolution of phase toward the synchronized state. Alternatively,

instead of a geometric symmetry-breaking, it is also shown that synchronization

can occur if the kinematic reversibility of the field equations is removed, as is the

case for a viscoelastic fluid. In such a scenario the phase always evolves to a stable

in-phase conformation where the energy dissipated by the swimmers is minimized.

Finally it is shown that finite size effects act to bring swimmers closer together

and then we show in this regime that elastic deformations caused by fluid structure

interactions play a dominant role in synchronization dynamics.

Additionally, motivated by recent experiments, we consider theoretically

the compression of droplets pinned at the bottom on a surface of finite area. We

show that if the droplet is sufficiently compressed at the top by a surface, it will

always develop a shape instability at a critical compression. When the top surface

is flat, the shape instability occurs precisely when the apparent contact angle of

the droplet at the pinned surface is π, regardless of the contact angle of the upper

surface, reminiscent of past work on liquid bridges and sessile droplets as first

observed by Plateau. Past the critical compression, the droplet transitions from a

symmetric to an asymmetric shape. The force required to deform the droplet peaks

at the critical point then progressively decreases indicative of catastrophic buckling.

We characterize the transition in droplet shape using illustrative examples in two

dimensions followed by perturbative analysis as well as numerical simulation in

three dimensions. When the upper surface is not flat, the simple apparent contact

angle criterion no longer holds, and a detailed stability analysis is carried out to

predict the critical compression.
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Chapter 1

Introduction

As the title of this dissertation suggests we investigate here two beautiful

physical events, synchronization and symmetry breaking, in fluids at small scales,

and demonstrate how they can be intimately correlated.

1.1 Why?

An often observed yet surprising physical phenomenon is the synchroniza-

tion of the pendulums of grandfather clocks. When two such clocks are located in

close proximity, forces transmitted through a medium connecting the two clocks

can lead to their beating in perfect synchrony [1]. Similar synchronization can

easily be obtained at home using two connected metronomes, with spectacular re-

sults. Still more fascinating are the many examples of synchrony which occur in

the natural world, from pacemaker cells in a heart [2] to synchronously flashing

fireflies [3].

One particularly interesting example of synchronization occurring in nature

is the observed phase locking of the flagella of swimming eukaryotes such as sper-

matozoa [5, 6, 7, 4]. These cells, typically tens of microns long, actuate slender

flagella beating periodically in order to propel themselves in viscous fluids [8, 9, 10].

As illustrated in Fig. 1.1 in the case of two bull spermatozoa, when two such cells

swim in close proximity, their flagella are often observed to beat in synchrony –

so much so that in Fig. 1.1C the two flagella cannot even be distinguished [4].

1
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that bends on one side of the flagellum were slightly out of focus,
i.e. they tilted away from the cover slip. A correction was made to
obtain the true length of such bends. This involved: (1) obtaining
the regression coefficient of the true z-axis displacement of the bend
crests, on image width, using through-focus images of immotile
flagella (Woolley, 1981); and then (2) correcting for the change
from an arc-to-elliptical curve produced by the projection of the
out-of-focus region of the flagellum. This latter correction factor
was obtained for bends of varying angles by simple optical projection
experiments rather than by calculation.

The subject of the present study, the flagellar synchronisations,
resulted from chance contacts between individual spermatozoa.
These events will be called ‘conjunctions’. In a few instances, the
two spermatozoa separated again after a period of conjunction and
they resumed the swimming speeds and beat frequencies that they
had shown before the conjunction. Therefore, it was decided to
include in the present study conjoined pairs that happened to be
conjoined when they were first seen and which were observed to
separate. ‘Conjunctions’ and ‘separations’ will not be distinguished
in the displayed data, because it is believed they are equally
meaningful in terms of the effects of synchronisation.

The data for all the conjoined spermatozoa were recorded at times
when their alignment was optimal and the synchronisation was most
exact.

To assist interpretation, data were also gathered for singleton
spermatozoa not involved in conjunctions. Some of these were
observed on the rare occasions that they became stuck to the cover
slip (by the head or by the tip of the tail) and then broke free again.

RESULTS
A description of spermatozoan conjunction and flagellar

synchronisation
We observed spermatozoa swimming just beneath the cover slip in
a viscous saline. The spermatozoa had swum there from an adjacent
aliquot of diluted semen. Not infrequently, conjointly paired
spermatozoa were seen, swimming faster than the singletons, with
their flagella synchronised (Fig. 1A). More rarely, triple and
quadruple assemblies were seen, with variable degrees of flagellar
synchrony (Fig.1B). The proportion of conjoined spermatozoa seen
was probably greater than would have existed in the original semen
because of their superior swimming ability. (In our unpublished work
with salines of more extreme viscosity, only paired spermatozoa or
multiple assemblies could penetrate.) However, some paired
spermatozoa were found, by phase-contrast microscopy, in very thin
preparations of the original diluted semen. No paired spermatozoa
were seen in supra-vitally stained smears of diluted semen
(nigrosin/eosin method). This meant that the conjunctions were
impermanent. The smears also showed that no pathologically
biflagellate spermatozoa were present to cause confusion.

Our present study was based on ‘conjunction events’ and
‘separation events’. Conjunction became possible when the paths
of two spermatozoa, having fairly similar velocities, intersected at
a shallow angle (Fig.2A–C). Varying degrees of head-to-head
adhesion might then occur. Only when the heads became rigidly
fixed together did the flagella synchronise. Bends were then initiated
simultaneously on the two flagella and synchronisation spread
distally to become complete with one transit of the flagellum (see
Movie 1 in supplementary material). Perfect superposition of the
heads gave the most exact and lasting synchrony. Often, such heads
had a changed appearance (narrower and less evenly illuminated as
seen in Fig.1A) – see later sections of this paper. Rigid, side-by-
side attachment of the heads also gave synchronisation, as did rigid

attachment with some fore-and-aft displacement of the heads.
However, whenever the adhesion was weak, and there was some
rotatory motion between the spermatozoan heads, the two flagella
failed to synchronise (Fig. 3A,B). ‘Separation events’ usually
followed collision of the conjoint pair with other flagella or with
debris.

The effects of flagellar synchronisation
Flagellar movement and swimming behaviour were compared
before and during synchronisation (in 21 conjunctions) and during
and after synchronisation (in 11 separations). Thirty of the 32 events
yielded complete sets of data. In all, about 24h of video-recordings
were searched.

Flagellar synchronisation immediately produced a characteristic
set of changes. These were: (1) an increase in the f to above that of
the mean of the two singleton spermatozoa (in 31/32 instances); (2)
an increase in the arcvw, likewise (in 30/30 instances); (3) an increase
in the Uc, likewise (in 30/31 instances); (4) a tendency, only, for
the calculated bend length (nominally λ/2) to increase (20/32
instances). The data are shown graphically in Fig.4A–D. The length
of the wave, which was used as an indicator of wave amplitude,
did not change in a consistent direction (data not presented).
Statistical analyses of the data in Fig.4 are given in tabulated form
as a supplementary information file (see TableS1 in supplementary
material).

In attempting to account for the enhancement of f, bearing in
mind that f=arcvw/arcλ, it was shown that the change in frequency

Fig. 1. Video-fields depicting conjoined spermatozoa. A !100 objective lens
was used. Scale bar, 10µm. (A) A pair of spermatozoa, with flagella
synchronised, swimming progressively. This example was found as such,
which means that the conjunction could have occurred in the native semen
or in the male reproductive tract. It was typical that the spermatozoan
heads appeared unevenly illuminated. (B) An example of a triple
conjunction, fully synchronised and swimming progressively. This
conjunction also was already established when first observed.

Fig. 2. (A–C) Three video-fields from a sequence to show the process of
conjunction and synchronisation. A !25 objective lens was used to provide
a sufficient field of view. Scale bar, 25µm.

Figure 1.1: (A to C) Time-sequence showing the synchronization of two swimming
bull spermatozoa. Scale bar is 25µm. Reproduced / adapted with permission from
Woolley et al. [4].

This synchronization is biologically significant because it is observed to lead to an

increased swimming speed for the co-moving cells, thereby providing a competi-

tive advantage over cells which are not synchronized [11, 4]. This behavior can

arise purely passively, as is the case with the pendulums, but here the medium

transmitting the forces is the fluid between the cells.

This interaction between the two cells through the fluid is a very rich event.

In particular, what we demonstrate is how symmetry in the shapes of the swimmers

is intimately correlated with the evolution of the system to a synchronized state.

Too much symmetry and no relative motion can occur at all. Yet nature provides

many intrinsic symmetry breaking mechanisms which we investigate here, from

the front/back asymmetry provided by the genetic payload, to memory effects of

polymers in the fluid.

Finally we conclude this dissertation by investigating how droplets, which

we very often find with rotational symmetry, can become asymmetric when com-

pressed. The fascinating result is that the mechanical properties of the droplet

can be completely altered by such a symmetry-breaking transition and, in cases of

squeezed droplets, can lead to buckling type events.

1.2 How?

This dissertation is divided between the study of the synchronization of

swimming microorganisms in chapters 2–7, while symmetry breaking and buckling
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of droplets is discussed in chapter 8.

The section on sychronization is organized as follows:

• In chapter 2, we present a brief introduction to the fundamentals of Stokes

flow used throughout the rest of this thesis.

• In chapter 3, using a simplified model (two infinite, parallel, two-dimensional

waving sheets), we show that phase-locking arises from hydrodynamic forces

alone, and has its origin in the front-back asymmetry of the geometry of their

flagellar waveform. The time-evolution of the phase difference between co-

swimming cells depends only on the nature of this geometrical asymmetry,

and microorganisms can phase-lock into conformations which minimize or

maximize energy dissipation.

• In chapter 4 we explore finite size effects by introducing a three-dimensional

model for swimming microorganisms. Finite size effects are shown to yield

synchronizing fields. However, we find that attractive dipole interactions

dominate the dynamics and force the organisms together on time scales much

faster than the evolution of the phase.

• In chapter 5 we inquire about a physical mechanism responsible for symmetry-

breaking in nature. Returning to a two-dimensional model, we demonstrate

that flexible sheets with symmetric internal forcing deform when interacting

with each other via a thin fluid layer in such a way as to systematically break

the overall waveform symmetry, thereby always evolving to an in-phase con-

formation where energy dissipation is minimized. This dynamics is shown

to be mathematically equivalent to that obtained for prescribed waveforms

in viscoelastic fluids, emphasizing the crucial role of elasticity in symmetry-

breaking and synchronization.

• Motivated by the fact that most biological fluids possess a polymeric mi-

crostructure, chapter 6 serves to introduce non-Newtonianian fluids and

presents a few extensions to established results for swimming in viscoelastic

fluids.
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• In chapter 7 we address synchronization in a viscoelastic fluid analytically.

Using a two-dimensional infinite sheet model we show that the presence of

polymeric stresses removes the geometrical asymmetry constraint, and there-

fore even symmetric swimmers synchronize. Such synchronization occurs on

asymptotically faster time scales than in a Newtonian fluid, and the swim-

mers are seen to be driven into a stable in-phase conformation minimizing

the energy dissipated in the surrounding fluid.

Finally we conclude the dissertation with a brief foray into the world of

small droplets.

• In chapter 8, we address theoretically the experimentally observed buckling

instability of pinned droplets. We demonstrate that a pinned droplet com-

pressed by a flat surface will always develop a shape instability if sufficiently

compressed, regardless of the contact angle of the upper surface. The tran-

sition from axisymmetry to asymmetry is also shown to yield the onset of a

catastrophic buckling instability.



Chapter 2

Stokes flow

Everything in this dissertation can be considered very small. We are con-

cerned with swimming microorganisms whose length scales are typically on the

order of microns, in a regime where inertia plays no role and likewise we are inter-

ested in droplets small enough that gravity plays no role.

If we non-dimensionalize the Navier-Stokes equations by a typical length

scale L, and velocity scale U , we obtain

Re
Du∗

Dt∗
= − L

µU
∇∗p+∇∗2u∗, (2.1)

where u is the velocity field p is the pressure field. The Reynolds number Re =

ρUL/µ is the ratio of the inertial terms to the viscous terms (*’s indicate dimension-

less terms). When the length scale is very small (and typically for microogranisms

the swimming speed is roughly on the order of a body length per second and so

also very small) a vanishing Reynolds number indicates the lack of import of the

inertial terms. In the zero Reynolds number limit we have hence no inertial terms.

To gain further insight we look at the Green’s function for Stokes flow. For

a singularly forced flow we may write

∇ · σ = −∇p+ µ∇2u = −Fe · δ(x), (2.2)

where σ is the stress tensor, Fe is a force on the fluid (conveniently centered at the

origin, else x → (x − x0)). We use here an e to denote force on the fluid as later

we will use F to denote fluid force on a body. Finally we mention that we will use

5
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lower case to denote force density while upper case for force, related by F =
∫
S

fdS.

The resulting flow field from (2.2) is

u =
1

8πµ
G · Fe (2.3)

where the tensor G is known as the Stokeslet and given by

G(x) =
I

|x| +
xx

|x|3
· (2.4)

Another singular solution is obtained by taking the Laplacian of the Stokeslet. We

obtain D = 1
2
∇2G which is a potential dipole and

D(x) =
I

|x|3
− 3

xx

|x|5
, (2.5)

and u = D · Γ/8πµ is the flow due to the potential dipole of strength Γ.

The sum of a Stokeslet and a potential dipole occurs frequently. Hence we

write

S(x; β) = G(x) + βD(x). (2.6)

The flow due to a sphere of radius a centered at x0 pulled by an external force Fe

through an otherwise quiescent field is given by u = 1
8πµ

S(x− x0,
a2

3
) · Fe.

One might also be tempted to take the curl of the Stokeslet. If we do so we

obtain the rotlet Ω = 1
2
∇×G = εijkxkr

−3. We note the following relation

Ω ·Te = Te × x

|x|3
. (2.7)

The flow u = Ω · Te/8πµ is that which results in a point torque of strength Te

at the origin. Note that ∇ ×D = 1
2
∇2∇ ×G = ∇2Ω = 0 because the vorticity

field of a Stokes flow is harmonic and ∇2D = 1
2
∇4G = 0 because the velocity field

is biharmonic. Finally note that ∇×Ω = 1
2
∇×∇×G = 1

2
∇∇·G− 1

2
∇2G = −D.



Chapter 3

Synchronization of swimming

sheets

3.1 Introduction

Large systems of many interacting bodies are often too complicated to ad-

dress rigorously, and idealizations such as the Kuramoto model [12] must be em-

ployed from the start. In contrast, in this chapter we investigate a very simple

model for a pair of co-swimming cells. Namely we consider them to be two-

dimensional and infinite sheets. The simplicity of the model allows us to solve

for the interactions via the fluid field exactly, both analytically and numerically.

We ultimately find the occurrence of passive hydrodynamic synchronization for all

but the most symmetric flagellar waveforms.

G.I. Taylor first studied synchronizing flagellated cells by modeling them

as two-dimensional sheets propagating sinusoidal waves of transverse displacement

[13]. With this model, he found that, for a given swimming gait, swimming in-

phase synchronously is the conformation in which the cells swim while doing the

least amount of work against the surrounding fluid. Left open was the question

of whether the synchronization would occur passively from a random initial phase

shift between co-swimming cells. Subsequent numerical works using an immersed

boundary method and multiparticle collision dynamics seem to indicate that indeed

7
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synchronization could occur due to hydrodynamic forces alone [14, 15, 7].

The phase locking of flagellated microorganisms is closely related to another

important observed synchrony in nature, that of eukaryotic cilia. Cilia are short

flagella typically lining the surface of a larger body and are found to beat in unison

with a small constant phase difference giving rise to a collective motion described

as metachronal waves [9]. This motion provides various biological functionality

including fluid transport and locomotion [16]. Several models with varying com-

plexity have indicated that the synchronization which manifests as metachronal

beating can occur due to fluid forces alone [17, 18, 19, 20] although, since individ-

ual cilia are not free-swimming but are attached to a substrate, synchronization

can only occur with a load-dependent force generation. Similarly to cilia, there is

an observed synchronization of the pairs of flagella used for propulsion on the alga

Chlamydomonas [21]. Beyond eukaryotic flagella and cilia, hydrodynamic inter-

actions in bacterial flagella lead to the creation of flagella bundles propelling the

cells forward as they swim, as well as the disruption of such bundles when the cells

change their swimming direction [22, 23, 24].

In this chapter we return to the two dimensional model first proposed by

Taylor (detailed in Sec. 3.2), to describe the phase locking of swimming flagellated

cells. The simplicity of such a model allows one to address the problem analyti-

cally, to extract the relevant properties that such waves must possess in order to

give rise to synchronization, and to determine precisely what states of dynamic

equilibrium will occur. We first present geometrical arguments which show that

Taylor’s purely sinusoidal sheet cannot dynamically synchronize due to an excess

of symmetry which, when coupled with the kinematic reversibility of the Stokes

equations, prevents any relative motion between free-swimming cells (Sec 3.3).

Real flagella possess a front-back asymmetry and we show that this feature leads

to the occurrence of synchronization. We accomplish this by allowing the sheets

to pass completely general waveforms in our model. We then solve the problem

analytically for two asymptotic limits, first when the amplitude of the waves is

much smaller than their wavelength (Taylor’s limit, Sec. 3.4), and then when the

mean distance between the waves is much smaller than the wavelength (lubrica-
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tion limit, Sec. 3.5). We also solve the problem numerically using the boundary

integral formulation of the Stokes equations to demonstrate the validity of the an-

alytic formulae and to address the synchronization of large-amplitude waveforms

(Sec. 3.6).

Our results show precisely how the geometry of the waveforms governs the

synchronizing dynamics of the system (Sec. 3.7). We obtain simple formulae that

dictate the time-evolution of the phase and the energy dissipation, and which

indicate that while swimming in-phase results in a minimum of viscous dissipation

it does not necessarily coincide with an equilibrium state, and indeed a dynamically

stable state may maximize energy dissipation. In addition to the geometry of the

waveforms, we demonstrate the importance of the separation of the sheets on the

dynamics of the system. We show that the stable conformations (and the number

of them) may change with the distance between the cells. Notably, swimming

cells with front-back asymmetry are shown to synchronize into either a stable in-

phase or opposite-phase conformation when in close proximity, while some cells

when further apart are shown to synchronize with a fixed finite phase difference,

reminiscent of ciliary phase locking. A discussion and summary of these results is

offered in Sec. 3.8.

3.2 Setup

Our system, as illustrated in Fig. 3.1, consists of two parallel and identical

infinite sheets, which we will call swimmers, separated by a mean distance h̄. The

sheets both propagate waves of transverse displacement in the positive z direction,

with amplitude a and speed c = ω/k, where ω is the wave frequency and k is

the wavenumber, and have an initial phase difference φ0 = k∆z0 (denoted positive

when the bottom sheet is shifted by φ0 along the positive z direction with respect

to the top sheet). By passing these waves the swimmers propel themselves in the

−z direction [13]. We consider the frame of reference moving with the bottom

sheet, at speed U , and write the relative speed of the top sheet in the z direction

as U∆.
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c

c

φ/k

h̄

U∆

z

y
φ = 0 in-phase

φ = π opposite-phase

Figure 3.1: System of parallel and identical two-dimensional infinite sheets in a
frame moving with the lower sheet. The sheets are separated vertically by a mean
distance h̄. The top sheet, behind the bottom sheet by a phase φ as measured
along the z axis, moves to the right with a relative velocity U∆.

The instantaneous positions of the bottom (y1) and top (y2) sheets are thus

given by

y1 = ag
(
k[x− ct]

)
, (3.1)

y2 = h̄+ ag

(
k

[
x− ct+∆z0 −

∫ t

0

U∆(t′)dt′
])

, (3.2)

where g a function describing the arbitrary waveform of the swimmers, and z is

the axial coordinate in a frame moving with the lower sheet. We use the following

dimensionless variables x∗ = xk, t∗ = tω, u∗ = u/c, v = v/εc, with the ratio of

the amplitude of the waves to their wavelength given by ε = ak. For convenience

we use the wave variable z∗ = x∗ − t∗ and the instantaneous phase difference

φ = φ0 − k
∫ t∗

0
U∗∆(t′)dt′. Consequently the positions of the sheets in the moving

frame are given simply by

y∗1 = εg(z∗), (3.3)

y∗2 = h̄∗ + εg(z∗ + φ), (3.4)

where the arbitrary 2π-periodic function g can be written using Fourier series as

g(z∗) =
∞∑
n=1

αn cos(nz∗) +
∞∑
n=1

βn sin(nx∗). (3.5)

Since we are concerned with the synchronization of microorganisms, we are

in a low Reynolds number regime (Re ∼ 10−4 for the bull spermatozoa in Fig. 1.1)



11

where the fluid between the sheets is inertia free, and thus mechanical equilibrium

for the stress tensor, σ∗, is written as ∇ · σ∗ = 0. Assuming an incompressible

Newtonian flow we obtain the Stokes equations for the dimensionless velocity field,

u∗ = (u∗, v∗), and dynamic pressure, p∗ = pε2/µω, as

∇2u∗ = ∇p∗, (3.6)

∇ · u∗ = 0. (3.7)

Physically, if the sheets are not permitted to move relative to one another,

i.e. if we set U∗∆ = 0, then there may arise a horizontal hydrodynamic force Fx

acting on the swimmers. Conversely, if we let the sheets move freely under the

constraint that they are force free then there may be a nonzero evolution of the

phase in time, given geometrically as U∗∆ = −dφ/dt. These two problems are of

course related, as we will see, by the mobility M, as U∆ = MFx. In the case of

a purely sinusoidal swimmer (i.e. β1 = 1, βn = 0 n > 1 and αn = 0 ∀n), G.I.

Taylor [13] derived the swimming speed of a single sheet (the outer problem) and

obtained

U∗ = −1

2
ε2
(

1− 19

16
ε2
)

+O(ε6). (3.8)

In the rest of the chapter we drop the ∗ notation for convenience.

3.3 Symmetry

Before calculating the hydrodynamic forces between the swimmers, it is

insightful first to consider the various symmetry properties of the problem, and

their consequences on force generation and synchronization.

Suppose first that we have two swimmers, g1 and g2, whose shapes are

such that g2 is obtained from g1 by a vertical axis reflection plus a horizontal axis

reflection and a phase shift θ (which depends on the location of the vertical axis),

i.e. g2(x) = −g1(−x + θ). In that case there can be no horizontal hydrodynamic

force acting between the swimmers, and Fx = 0. To prove this result, let us assume

that a force F acts on the top sheet with U∆ = 0 (since ∇ ·σ = 0 the force on the
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Figure 3.2: A system of two identical and parallel swimmers which has a stabi-
lizing force (top left) becomes destabilizing (bottom left), under two reflections –
first about the vertical axis (Rv) then about the horizontal axis (Rh) – combined
with an application of kinematic reversibility (KR), yet the boundary conditions
remain identical, hence the force must be zero. Symmetric waveforms can thus not
synchronize.

bottom sheet must be equal and opposite in sign). We then perform a reflection

of the entire conformation about the vertical axis then horizontal axis, followed by

a reversal of the kinematics (see Fig. 3.2 for an example). The resulting system is

identical except the sign of the force has reversed, F→ −F, a contradiction unless

F = 0 (then Fx = 0). In particular, if the sheets are identical, then there can be no

synchronization if the identical shapes of the waveforms satisfy g(x) = −g(−x+θ).

A subset of these shapes are sheets that are invariant under both vertical axis

reflection g(x) = g(−x + θ) and horizontal axis reflection g(x) = −g(x + π);

the simplest example of such shape is a pure sinewave (β1 = 1, βn = 0 n > 1 and

αn = 0 ∀n), which is Taylor’s original geometry [13, 14]. Since such an arrangement

has both vertical and horizontal axis symmetry it will not passively synchronize

in a Stokesian flow [25]. Similar excessive geometrical symmetries have also been

observed to curb any phase-locking in other swimmer models [26, 27, 28].

A further generalization of the argument may be obtained by noting that

in two dimensions the outer problem can balance no force and hence each side of

the swimmer must be force free. This decoupling of the inner and outer problem

means that it is only the fluid between the two sheets that drives synchronization,
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if any. Thus if two swimmers do not phase-lock, a similar arrangement of more

than two swimmers will not either – a result that cannot be obtained by symmetry

alone.

In order to possibly obtain a passive synchronization between the swimmers

we must therefore either (1) have a geometry such that g(x) 6= −g(−x + θ), or

(2) remove the kinematic reversibility of the flow equations. Since we are consid-

ering here microorganisms in a Newtonian fluid, the latter is a property of the

problem that we cannot escape. If our model were at finite Reynolds number, or

in a viscoelastic fluid, then this constraint would naturally be removed and sym-

metric swimmers could synchronize [29]. In a Stokesian flow we must thus have a

geometrical asymmetry.

Most swimming microorganisms, such as spermatozoa, possess a cell body

and thus have a very natural front-back asymmetry. In addition, some spermatozoa

pass waves along their flagella which increase in amplitude from head to tail,

leading to another type of front-back asymmetry [30]. In contrast, swimmers

whose flagellar waveforms or body is asymmetric with respect to the horizontal

axis experience viscous torques, and thus cannot swim straight. It is therefore

natural for us to focus on waveforms which are symmetric about the horizontal axis,

but not the vertical. As a result of this horizontal axis symmetry, the horizontal

component of a force between the swimmers must be an odd function of the phase

φ, Fx(−φ) = −Fx(φ), and thus there must always be a fixed point at φ = 0, i.e.

Fx(0) = 0. In addition, because the force is 2π-periodic, then φ = π must also be

another fixed point, i.e. Fx(π) = 0.

As a side note, we observe that because of the kinematic reversibility of the

Stokes equations, a change in the direction of wave propagation yields a reversal

of forces F → −F. Reversing the direction of wave propagation is geometrically

equivalent to reversing the front-back asymmetry of the waveforms which must

therefore also reverse the forces on the swimmer.

In order to gain physical intuition in the synchronization process, we now

characterize the force generation and subsequent synchronization between the two

sheets analytically by focusing on two asymptotic limits. We first consider in
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Sec. 3.4 the limit in which the amplitude of the traveling waves is much smaller

than their wavelength. The limit in which the distance between the swimmers is

much smaller than their wavelength will then be considered in Sec. 3.5. Addition-

ally we solve the problem numerically using the boundary integral formulation of

the Stokes equations in Sec. 3.6 to validate our asymptotics and address large-

amplitude swimming.

3.4 Small amplitude expansion

Because the model is two dimensional we may introduce the stream function

formulation and write u = {∂ψ/∂y,−∂ψ/∂x}. In this manner the continuity

equation is automatically satisfied and the Stokes equations reduce to a biharmonic

equation in the stream function

∇4ψ = 0. (3.9)

We assume in this section that the amplitude of the traveling wave is much

smaller than their wavelength, ε � 1, and look to solve this problem by seeking

a regular perturbation expansion in powers of ε, ψ =
∑
εmψm. Because of the

symmetry of the problem there is no difference in the boundary conditions if we

change ε → −ε as this is equivalent to taking x → x + π. This then naturally

precludes the possibility of a synchronizing force appearing at all odd powers in ε.

3.4.1 Boundary conditions

We wish to prescribe a wave of transverse displacement to each sheet. How-

ever, doing so requires the material composing the sheets to be extensible as ma-

terial points will accelerate relative one another. If we wish to forbid this relative

motion, we may require the sheet to pass waves in an inextensible fashion. This

may be visualized as material points moving along a conveyor of static shape, when

observing the sheet in the wave frame [31, 32].

For extensible sheets the boundary conditions are given simply by the time
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derivatives of the waveforms namely

u |y=y1 = 0, (3.10a)

v |y=y1 = Dy1/Dt, (3.10b)

u |y=y2 = 0, (3.10c)

v |y=y2 = Dy2/Dt. (3.10d)

For inextensible inextensible sheets the boundary conditions are given by

u |y=y1 = 1− α cos θ |y=y1 , (3.11a)

v |y=y1 = −α sin θ |y=y1 , (3.11b)

u |y=y2 = 1− α cos θ |y=y2 +U∆, (3.11c)

v |y=y2 = −α sin θ |y=y2 . (3.11d)

where the angle, θ, is defined by tan θ = ∂y/∂x hence

cos θ =
1√

1 + (y′)2
, (3.12)

sin θ = y′ cos θ, (3.13)

and the material velocity (in the wave frame), α, is ratio of the length of the sheet

to its wavelength multiplied by the wave speed, or

α =
1

2π

∫ 2π

0

√
1 +

(
∂y

∂x

)2

dx. (3.14)

3.4.2 Expansion

Since we know that an expansion can yield a synchronizing force only at

even powers in amplitude one would hope to see a relative force generated at order

ε2. We actually show below that for any waveform g(x), the force is zero at order

ε2, and hence a perturbation expansion must carried out to order ε4 in order to

obtain the synchronizing dynamics.

The solution at each order m in the expansion (O(εm)) is given generally

by

ψm = am,0(y) +
∞∑
n=1

[
am,n(y) cos(nz) + bm,n(y) sin(nz)

]
. (3.15)
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The mean is given by

am0(y) = yum0 + Dm,0y
3

+
y2
(
U∆m − 3Dm,0h̄

2 + umh − um0

)
2h̄

, (3.16)

where Dm,0 is an unknown constant and where we define

um0 =
1

2π

∫ 2π

0

∂ψm
∂y
|y=0 dx, (3.17a)

umh + U∆m =
1

2π

∫ 2π

0

∂ψm
∂y
|y=h̄ dx, (3.17b)

as the mean components of the horizontal boundary conditions. The vertical

boundary conditions cannot have a mean component and therefore do not con-

tribute to the zeroth Fourier mode of the solution. The mean component is of

particular interest as it is the only mode at any given order to contribute to the

dynamics and in turn in order to solve for Dm,0 we must employ dynamical con-

siderations.

To compute the force on the bottom sheet we note that we are free to move

the integral along the surface of the sheet S, to any surface parallel to the x axis.

This can be shown by integrating ∇ · σ = 0 over the area between the sheet and

any such surface and using the periodicity of the problem. Alternatively, this can

be shown by expanding as follows

Fx = ex ·
∫
S

σ · ndS

=

∫ 2π

0

[
σxy − εg′(x)σxx

]
y=y1

dx

=

∫ 2π

0

[
σxy +

∞∑
n=1

εn
∂

∂x

(
n− 1

n!
gn
∂n−1σxx
∂yn−1

)]
y=0

dx

=

∫ 2π

0

σxy |y=0 dx. (3.18)

We will use the result given by Eq. (3.18) repeatedly throughout this chapter. We

also note that due to functional dependence of g(z) spatial integration is invariant

in time.
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Using the above we find that the force on the bottom sheet of O(εm) is

Fmx |y=y1 =

∫ 2π

0

(
∂2ψm
∂y2

− ∂2ψm
∂x2

)
|y=0 dx

= 2πa′′m,0(0)

= −6πh̄Dm0 +
2π

h̄
(U∆m + umh − um0), (3.19)

while the force on the upper sheet is similarly

Fmx |y=y2 = −2πa′′m,0(h̄)

= −6πh̄Dm0 −
2π

h̄
(U∆m + umh − um0). (3.20)

Hence we see that only the second derivative of the zeroth Fourier mode contributes

to the force.

Finally, integrating mechanical equilibrium, ∇ · σ = 0, between the two

sheets leads to the equality

F |y=y1 +F |y=y2= 0 (3.21)

where F =
∫
S
σ · ndS. Taking the x-component we find Fmx |y=y1= −Fmx |y=y2 at

all orders and in order to satisfy this relationship we must have Dm,0 = 0.

The force on the upper sheet is then

Fmx =
2π

h̄
(um0 − umh − U∆m). (3.22)

Setting U∆ = 0 gives rise to a phase-locking force in the static case, F s
x (we use the

superscript s to avoid confusion). We show in Appendix A.1 that leading order

contribution to the force arises at fourth order in amplitude and hence the static

force is given by

F s
x = ε4

2π

h̄
(u40 − u4h) +O(ε6). (3.23)

For free-swimming we thus see that the relative swimming sped is given by

U∆ =
h̄

2π
F s
x . (3.24)
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Noting that dφ/dt = −U∆ we therefore get an equation for the time-evolution of

the phase as

dφ

dt
= − h̄

2π
F s
x = ε4(u4h − u40) +O(ε6). (3.25)

In Sec. 3.7 these analytical results for both the phase locking force and the dy-

namical problem are compared with a full numerical solution using the boundary

integral formulation.

3.4.3 Energy dissipation

The energy dissipation rate between two sinusoidal sheets was originally

computed by Taylor at leading order in the wave amplitude [13]. Here we restate

his results for a general traveling wave. The energy dissipation per unit width in

the fluid is equal to the rate of work of the sheets against the fluid

Ė = −
∫
S

(u · σ · n) |y=y1 dS −
∫
S

(u · σ · n) |y=y2 dS. (3.26)

Expanding the integral in ε we find to leading order

Ė = ε2
∫ 2π

0

g′(x)

(
−p1 + 2

∂v1

∂y

)
|y=0 dx

− ε2
∫ 2π

0

g′(x+ φ)

(
−p1 + 2

∂v1

∂y

)
|y=h̄ dx. (3.27)

Expressing the pressure in terms of the stream function and integrating by parts

yields

Ė = −ε2
∫ 2π

0

g(x)
∂3ψ1

∂y3
|y=0 dx

+ ε2
∫ 2π

0

g(x+ φ)
∂3ψ1

∂y3
|y=h̄ dx. (3.28)

We already know the form of these integrals (indeed they are equal) from the

analysis of the force at O(ε2), and we find

Ė = πε2
∞∑
n=1

(α2
n + β2

n)

×
[
Q′′′n (0)− 2P ′′′n (h)− cos(nφ) (Q′′′n (h)− 2P ′′′n (0))

]
, (3.29)
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which we can evaluate to get

Ė = 2πε2
∞∑
n=1

n3(α2
n + β2

n)
[
A(nh̄)− cos(nφ)B(nh̄)

]
, (3.30)

where

A(ξ) =
2ξ + sinh 2ξ

sinh2 ξ − ξ2
, (3.31a)

B(ξ) =
2ξ cosh ξ + 2 sinh ξ

sinh2 ξ − ξ2
. (3.31b)

Setting β1 = 1 and all other coefficients to zero in the above yields Taylor’s result

for pure sinewaves [13].

In the limit ξ →∞, we see that A→ 2, B → 0, and the ratio B/A decays

exponentially. This tells us what we intuitively expect: When h̄ is large, the phase

difference has little effect on the energy dissipation, and also the phase difference

has a weaker effect on the energy dissipated by higher Fourier modes. Conversely,

we expect that when the separation is small, the phase angle would have an large

influence on the rate of working of the swimmers, and indeed when ξ → 0, we zee

B/A→ 1 as both A,B → 12ξ−3 (keeping in mind that we have implicitly assumed

ε� h̄).

Importantly, because A and B are both positive and monotonically decaying

functions with ξ, we know that in-phase swimming, φ = 0, is a global minimum for

the energy dissipated in the fluid. In addition, given that we have the symmetry

g(x + π) = −g(x), this restricts us to odd Fourier modes, and thus the out-of-

phase configuration, φ = π, is a global maximum. Taylor’s dissipation argument

[13] extends thus to arbitrary waveforms.

3.5 Lubrication limit

A second insightful limit to consider is the one in which the sheets are so

close together that their mean separation is much smaller than the wavelength

of the oscillations, h̄ � λ. In this lubrication limit the Stokes equations are

substantially simplified, permitting analytical solutions. The main results of this

section were previously summarized in a letter by the authors [25].
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3.5.1 Lubrication equations

In order to facilitate this limit we must rescale the governing equations.

We nondimensionalize vertical distances by y∗ = y/h̄, and horizontal distances

x∗ = kx, while assuming that δ = kh̄ � 1. The instantaneous position of the

sheets is therefore given by y∗1 = a∗g(z∗) and y∗2 = 1 + a∗g(z∗+φ), where a∗ = a/h

and again x∗ = z∗ − t∗ is the wave variable. Nondimensionalizing the continuity

equation we find that if the horizontal velocity is given by u = cu∗ then the

vertical velocity must be v = δcv∗. The Stokes equations then yield the lubrication

equations to leading order in δ:

∂u∗

∂x∗
= −∂v

∗

∂y∗
, (3.32)

∂p∗

∂y∗
= 0, (3.33)

dp∗

dx∗
=
∂2u∗

∂y∗2
, (3.34)

where p∗ = δ2p/µω. Forces (per unit depth) are nondimensionalized as F ∗ =

Fδ/µc, while energy dissipation rate per unit depth is Ė∗ = δ2Ė/µωch̄. We note

that if g approaches a singular geometry we would leave the realm of validity of the

lubrication approximation [33, 34]. We now drop the ∗ notation for convenience.

We look to solve this problem in a frame moving with the wave speed of

the bottom sheet. The boundary conditions in the lubrication limit are then given

by

u(x, y = y1) = −1, (3.35a)

v(x, y = y1) = −y′1(z), (3.35b)

u(x, y = y2) = U∆ − 1, (3.35c)

v(x, y = y2) = −y′2(z). (3.35d)

Hence we see that in the lubrication limit the boundary conditions are identical to

those of an extensible sheet. The full problem, regardless of whether extensible or

inextensible boundary conditions are used, will collapse to the following lubrication

results in the limit δ � 1.
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Given the above boundary conditions, the solution for the velocity field is

found to be

u(z, y) =
1

2

dp

dx
(y − y1)(y − y2) + U∆

y − y1

y2 − y1

− 1. (3.36)

If one integrates the continuity equation one finds∫ y2

y1

∂u

∂x
dy = y′2 − y′1, (3.37)

which then gives

dQ

dx
= U∆

dy2

dx
· (3.38)

With no relative motion, U∆ = 0, then the flow rate Q between the sheets is

constant.

3.5.2 Hydrodynamic force

We first characterize the force generated when U∆ = 0 in order to determine

the location and nature of the fixed points for the phase difference between the

swimmers. With U∆ = 0, Q = const., and we find

Q =

∫ y2

y1

udy = − 1

12

dp

dx
h3 − h, (3.39)

where h = y2 − y1. We now exploit the periodicity of the system to obtain the

value of Q by noting that∫ 2π

0

dp

dx
dx = −12

∫ 2π

0

1

h2
dx− 12Q

∫ 2π

0

1

h3
dx = 0. (3.40)

We thus have

Q = −I2

I3

, (3.41)

where

Ij =

∫ 2π

0

h−jdx. (3.42)
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The pressure gradient is therefore given by

dp

dx
= 12

(
I2

h3I3

− 1

h2

)
· (3.43)

The force per unit depth on the upper sheet is given by

Fx = ex ·
∫
S

σ · ndS, (3.44)

where the curve S is defined by y = y2. Evaluating Eq. (3.44) gives

Fx =

∫ 2π

0

[
dy2

dx

(
−p+ 2δ2∂u

∂x

)
−
(
∂u

∂y
+ δ2 ∂v

∂x

)]
y=y2

dx. (3.45)

We keep only the O(1) terms in the lubrication limit δ � 1 which yields

Fx = −
∫ 2π

0

[
dy2

dx
p+

∂u

∂y

]
y=y2

dx. (3.46)

Exploiting the periodicity of the problem through integration by parts [35] allows

us to recast the force as

Fx =

∫ 2π

0

(
y2
dp

dx
− ∂u

∂y

)
|y=y2 dx. (3.47)

Substituting in Eq. (3.36) and Eq. (3.43), and noting any constant multiplying the

pressure gradient may be discarded, we find the force to be given by

Fx = 6a

∫ 2π

0

(
I2

h3I3

− 1

h2

)[
g(x+ φ) + g(x)

]
dx. (3.48)

3.5.3 Fixed points

By symmetry, we found earlier that there are always fixed points at φ = 0, π.

This is easily confirmed by evaluating Eq. (3.48). For φ = 0, h is constant, and

thus I2/h
3I3− 1/h2 = 0, leading to Fx = 0; for φ = π, we have g(x+π) + g(x) = 0

by symmetry, and again Fx = 0.

In order to determine their stability, we can expand the force, Eq. (3.48),

about these fixed points. Letting φ = φ0 + φ′ where φ′ � 1 we obtain near the

in-phase fixed point, φ0 = 0,

Fx0 = −72a4φ′3
∫ 2π

0

g(x)g′(x)3dx+O(φ′4). (3.49)
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In contrast, near the opposite-phase fixed point, φ0 = π, we get

Fxπ = 6a3φ′3
∫ 2π

0

g′(x)3

(1− 2ag(x))4

(
1

(1− 2ag(x))

J2

J3

)
dx

+O(φ′4), (3.50)

where we have defined

Jn =

∫ 2π

0

(1− 2ag(x))−ndx. (3.51)

If we then assume a� 1 then Eq. (3.50) reduces to

Fxπ ≈ 72a4φ′3
∫ 2π

0

g(x)g′(x)3dx+O(φ′4). (3.52)

We see then that for small amplitude waves, and small deviations in phase about

the fixed points, the force about the in-phase configuration (φ0 = 0) is equal and

opposite to the force about the out-of-phase configuration (φ = π). Unless both of

them are neutrally stable (which is the case if the waveforms are too symmetric, see

Sec. 3.3) we therefore obtain the important result that, for a given waveform, one

fixed point will always be stable, while the other one will always be unstable. To

determine which one is the stable point, one has to evaluate the geometric integral,

A =
∫ 2π

0
gg′3dx. If A < 0 then the fixed point at φ = 0 is stable, while it is the one

at φ = π in the case A > 0. Stable passive hydrodynamic synchronization thus

always takes place for swimmers with asymmetric waveforms.

As a side note, we can also expand the force (3.48) in powers of a� 1, and

we see that the leading order contribution is fourth order in amplitude, given for

general φ as

Fx ≈ −36a4

∫ 2π

0

(
g(x+ φ) + g(x)

)(
g(x+ φ)− g(x)

)3

dx, (3.53)

plus terms at O(a6). We see that in the small amplitude limit there are only two

fixed points for nontrivial waveforms g. The fourth-order scaling of the hydrody-

namic force, Eqs. (3.49), (3.52) and (3.53), is reminiscent of the small-amplitude

calculations from Sec. 3.4 showing that no force can occur at second order in the

wave amplitude, but a nonzero force does come at fourth order.
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3.5.4 Energy dissipation

The energy dissipated by viscous stress in the volume V of fluid between

the sheets by is given by

Ė =

∫
V

σ : ∇u dV. (3.54)

In the lubrication limit, assuming unit width, the energy dissipation over one

wavelength is then

Ė =

∫ 2π

0

∫ y2

y1

(
∂u

∂y

)2

dydx, (3.55)

and given Eq. (5.6) we have

Ė =
1

12

∫ 2π

0

h3

(
dp

dx

)2

dx, (3.56)

which is explicitly

Ė = 12

∫ 2π

0

1

h

(
I2

I3h
− 1

)2

dx. (3.57)

We see the energy dissipation is non-negative and identically zero when φ = 0 (i.e.

when h is constant) and hence this must be a global minimum.

If we let φ = φ0 +φ′ where φ′ � 1, we find near the in-phase conformation,

φ0 = 0

Ė0 = 12a2φ′2
∫ 2π

0

g′(x)2dx+O(φ′4), (3.58)

and the energy increases quadratically with the slope of the wave from zero when

φ = 0. Near the opposite-phase conformation, φ0 = π, we get

Ėπ = 12

(
J1 −

J2
2

J3

)
− 12φ′2

∫ 2π

0

{
g′(x)2

(1− 2ag(x))3

×
[
1 +

6

(1− 2ag(x))

J2

J3

(
1

(1− 2ag(x))

J2

J3

− 1

)]
dx

}
+O(φ′4). (3.59)
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If we further assume that a� 1 we see that

Ėπ ≈ 12a2

∫ 2π

0

[
4g(x)2 − g′(x)2φ′2

]
dx. (3.60)

Hence for any waveform g(x) the energy dissipated between the sheets is maximum

in the opposite-phase conformation, φ = π.

Finally, if we expand the energy dissipation, Eq. (3.57), in small amplitude

for general φ, we find

Ė = 12a2

∫ 2π

0

[
g(x+ φ)− g(x)

]2
dx+O(a3). (3.61)

We can see clearly again that the energy dissipation is a global minimum when

φ = 0 and maximum when φ = π due to the g(x + π) → −g(x) symmetry of

the waveform; this is in agreement with the previous small amplitude results for

arbitrary separation.

An important consequence of the previous results is that, although the

nature of the fixed points depends on the swimmer waveform, the location of the

minimum of energy dissipation does not. The conformation of minimum energy

dissipation is not necessarily stable: depending on the waveform geometry, the

opposite-phase conformation, φ = π, may be stable (specifically, when A > 0) yet

it is the one corresponding to a maximum of energy dissipation.

Experimental evidence shows that spermatozoa cells synchronize at the

in-phase conformation (and indeed A < 0 for the linearly increasing sine waves

indicated by Rikmenspoel [30]). However, we find at least one instance, in the

figures in Ref. [11], which show spermatozoa flagella seemingly synchronized in

opposite-phase (although no mention of phase difference is reported in the text).

3.5.5 Dynamics

After calculating the hydrodynamic force, we now look to solve for the time-

evolution of the phase. We thus assume that the sheets are force free, Fx = 0, and

find the corresponding value of U∆. From Eq. (5.7) we know

∂

∂x

∫ y2

y1

udy = U∆
dy2

dx
· (3.62)
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Integrating in x and evaluating the integral in y gives an expression for the pressure

gradient as

dp

dx
=

6U∆ − 12

h2
− 12U∆y2 + C

h3
, (3.63)

where C is a constant of integration. We find this constant by exploiting the

periodicity of the pressure field, leading to

C =
(

6U∆(I2 − 2K)− 12I2

)
/I3, (3.64)

where K =
∫ 2π

0
y2h

−3dx.

The force on the upper sheet is given by

Fx =

∫ 2π

0

(
1

2

dp

dx
(y2 + y1)− U∆

h

)
dx. (3.65)

We then solve for U∆ by enforcing that the sheets are force free. It is worth noting

that when we set U∆ = 0, we retrieve the force from the static case given by

Eq. (3.48), which we label here F s
x to avoid confusion. Now since U∆ = −dφ/dt

we find that the phase evolves in time according to

dφ

dt
= −MF s

x , (3.66)

where the mobility, M, is given by

M−1 =

∫ 2π

0

{
1

h
−
[

1

h2
− 1

h3

(
2y2 +

I2 − 2K

I3

)]
× 3(y2 + y1)

}
dx. (3.67)

As physically expected, the rate at which the phase changes, Eq. (3.66), is pro-

portional to the static force, F s
x , which would be applied if the sheets where not

permitted to move. The result is a first-order integro-differential equation for φ.

Expanding Eq. (3.66) for small amplitude, a� 1, we find

dφ

dt
≈ 36a4

2π

∫ 2π

0

(
g(x+ φ) + g(x)

)(
g(x+ φ)− g(x)

)3

dx, (3.68)

plus terms at order a6. We thus see that dφ/dt ∼ −F s
x/2π for small amplitude,

and hence the mobility becomes 1/2π in this limit. Notably, the result given by
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Eq. (3.68) is the same as the one given by Eq. (3.25) after proper dimensional

rescaling.

We now expand near the fixed points by letting φ = φ0 + φ′ and obtain

dφ′

dt
∼ ±36

π
a4Aφ′3, (3.69)

with a positive sign for φ0 = 0, and negative φ0 = π. Solving this differential

equation gives the exact phase dynamics for small times as

φ′ =
sgn(φ′i)√

φ
′−2
i ∓ 72a4At/π

, (3.70)

where φ′(t = 0) = φ′i. In the case of a stable fixed point, we thus get that the typical

time for synchronization scales as t ∼ 1/a4|A|, and thus the phase-locked state is

reached faster for waves of larger amplitude (a increases), and larger asymmetry

(|A| increases). Note that, as a difference, the typical time for synchronization in

a viscoelastic fluids scales as the inverse square of the wave amplitude [29].

3.6 Boundary integral formulation

The boundary integral method may be used to address numerically the

synchronization between the swimmers for shapes of arbitrary amplitude, as well

as confirm our asymptotic results. We present in this section the principle of

the method and our implementation of it, which is quite similar to that given

by Pozrikidis in his study of peristaltic pumping [36], and hence will be brief.

The equations in the section are nondimensionalized similarly to the procedure of

Sec. 3.2.

Consider any two solutions to the Stokes equations, {u,σ} and {ũ, σ̃} with

no associated body forces for any closed surface S of outward normal n. The

Lorentz reciprocal theorem [37] gives the equality∫
S

(u · σ̃ − ũ · σ) · n dS = 0. (3.71)

If we take for ũ and σ̃ in Eq. (3.71) the fundamental solutions for two-dimensional
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Stokes flow

ũ(x) =
1

4π
G(x̂) · f̃(x0), (3.72)

σ̃(x) =
1

4π
T(x̂) · f̃(x0), (3.73)

for the velocity and the stress at the field point x, due to the point force f̃ at x0,

where x̂ = x− x0 and the two-dimensional Stokeslet G and stresslet T are given

by

G = −I ln(|x̂|) +
x̂x̂

|x̂|2
, (3.74)

T = −4
x̂x̂x̂

|x̂|4
, (3.75)

then one obtains the boundary integral formulation of the two-dimensional Stokes

equations for the velocity field within the fluid domain, V , and on the boundary,

S, respectively,

u(x0)|x0∈V =
1

4π

∫
S

(u(x) ·T(x̂) · n− f(x) ·G(x̂)) dS(x), (3.76)

u(x0)|x0∈S =
1

2π

∫
S

(u(x) ·T(x̂) · n− f(x) ·G(x̂)) dS(x), (3.77)

where we have used f = σ · n.

Since the problem we consider is 2π-periodic, we can reduce the domain

of integration S to a single period by using an infinite sum of periodically placed

Stokeslets and stresslets,

Gp =
∞∑

n=−∞

−I ln(|x̂n|) +
x̂nx̂n

|x̂n|2
, (3.78)

Tp =
∞∑

n=−∞

−4
x̂nx̂nx̂n

|x̂n|4
, (3.79)

where x̂n = {x̂0 + 2πn, ŷ0} [38]. As shown in [39] these may be expressed in closed

form by using the summation formula

B =
∞∑

n=−∞

ln(|x̂n|) =
1

2
ln [2 cosh(ŷ0)− 2 cos(x̂0)] . (3.80)
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We can then construct the elements of Gp and Tp using B and its derivatives as

follows:

Gp
xx = −B − ∂yB + 1,

Gp
xy = y∂xB,

Gp
yy = −B + y∂yB,

T pxxx = −2(2∂xB + y∂xyB),

T pxxy = −2(∂yB + y∂yyB),

T pxyy = 2y∂xyB,

T pyyy = −2(∂yB − y∂yyB), (3.81)

where the Stokeslet and stresslet are invariant under permutation of its indices

[38].

Following the approach outlined by Higdon [40], the boundary S (the sur-

face of each sheet as the sides cancel) is discretized into 2N straight line elements

Sn. We assume the stress f and the velocity u are linear functions over a partic-

ular interval (f → fn, u→ un) and then collocate x0 at each of the 2N segments,

x0 → xm, to obtain a system of N equations with N unknowns. The periodic

Stokeslet and stresslet are regularized by subtracting off from them their non-

periodic counterparts and then adding back the difference; the two-dimensional

Stokeslet and stresslet are then integrated analytically. We hence have

u(xm) =
1

2π

2N∑
n=1

[∫
Sn

un · (Tp −T) · nndSn

−
∫
Sn

fn · (Gp −G) dSn

+

∫
Sn

un ·T · nndSn −
∫
Sn

fn ·GdSn

]
. (3.82)

The regularized integrals have a removable singularity at x = xm which is obtained

by Taylor expansion. The boundary integral formulation is thereby reduced to a

linear system that can be inverted using standard techniques to obtain the stress
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Figure 3.3: Illustration of the waveform g(x) = sinx+ γ cos 3x for varying asym-
metry. The dashed line corresponds to γ = 0.05, solid line γ = 0.1, and dash-dot
line γ = 0.2.

b. The force on the top sheet is then given by integrating the stress

Fx =
2N∑

n=N+1

[
ex ·

∫
Sn

fndSn

]
. (3.83)

In order to solve for the dynamical problem we let the boundary condition

be represented by a sum of a surface deformations and an unknown rigid body

motion, u → un + U∆ex, on the upper sheet. The additional unknown, U∆, is

found by enforcing that the sheets are force free, Fx = 0.

The numerical procedure was validated through convergence tests and by

reproducing previous results for shear flow over sinusoidal surfaces [39]. A large

number of elements (2N) is needed when the sheets are close together or if they

are far apart and the amplitude is small but in both these regimes in which we

have asymptotic formulae from the previous sections as further verification.
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3.7 Results

We now present in this section the results of both our asymptotic and

numerical calculations to address the synchronization of specific waveforms. For

illustrative purposes we restrict ourselves here to the family of waveforms described

by the function,

g(x) = sin x+ γ cos 3x, (3.84)

i.e. β1 = 1, α3 = γ, and all other modes equal to zero, as illustrated in Fig. 5.2.

In essence these shapes are geometric perturbations (small for small γ) to Taylor’s

sinusoidal swimming sheet. They have a broken front-back symmetry when γ is

nonzero. Reversing the sign of γ is equivalent to reflecting the geometry of each

wave about the vertical axis, {γ → −γ} = {x→ −x+π}, which itself is equivalent

to reversing the kinematics of the problem. In other words, changing the sign of

γ changes the sign of the forces on the sheets which leads to stable fixed points

becoming unstable, and vice versa. In addition, the simple form of g(x) allows us

to obtain some explicit formulae from the general theory presented in Secs. 3.4 and

3.5.

In the lubrication limit, the geometric parameter A =
∫ 2π

0
gg′3dx = −2πγ

controls the evolution of the phase near fixed points. We see that γ > 0 gives

A < 0, which leads a stable fixed point at φ = 0 and unstable at φ = π. By

symmetry, γ < 0 necessarily gives A > 0, and thereby exchanges the location of

the stable and unstable fixed points. In addition, from Eq. (3.53), we have that

when a� 1 the phase locking force is given by

Fx = 144πa4γ sin3 φ, (3.85)

which is linear in the asymmetry and quartic in the amplitude, and leads to a

time-evolution of the phase as

dφ

dt
= −72a4γ sin3 φ. (3.86)

The energy dissipation in the lubrication limit, for a� 1, Eq. (3.61), is

Ė ≈ 24πa2
[
1− cosφ+ γ2(1− cos 3φ)

]
. (3.87)
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Similarly, in the small amplitude limit, Eq. (3.30) yields

Ė ≈ 2πε2
[
A(h̄)−B(h̄) cosφ

+ 33γ2
(
A(3h̄)−B(3h̄) cos 3φ

)]
, (3.88)

where the functions A and B, given by Eq. (3.31), introduce a dependance on the

separation h, and Eq. (3.88) reduces to Eq. (3.87) when h̄ is small (after accounting

for the separate scalings).

We see clearly that the energy dissipation rate is invariant under γ → −γ
and further, when we are assuming that γ is a small, the change in the energy

dissipation due to the asymmetry is also small, O(γ2).

3.7.1 Comparison between asymptotic and numerical meth-

ods

In the small amplitude limit (3.4) we have explicitly assumed that ε � 1,

and also implicitly that ε � h̄. The lubrication limit (3.5) effectively captures

the physics of the problem when the sheets are quite close together, i.e. the limit

h̄ � 2π. If we want in addition the phase, φ, to be able to span the range of all

possible values then we also get the geometrical constraint ε < h̄/2 (or, in terms

of lubrication variables, a < 1/2). There exists therefore a regime in which both

asymptotic approaches are valid, namely the limit ε� h� 1.

As a validation of our methods we plot the analytical results from both

asymptotic limits, together with the numerical results, for such a regime in Fig. 3.4

(top). The static force on the top sheet, F s
x , is shown for the waveform of Eq. (3.84)

with an asymmetry of γ = 0.1 and wave amplitude ε = 0.01 (in this plot the forces

have been scaled for display purposes only, see caption). The solid lines represent

the small amplitude limit, dashed lines the lubrication limit, and symbols are for

the numerical data obtained from the boundary integral method. The results from

all three methods agree quantitatively for small swimmer-swimmer separation, h̄.

As the value of h̄ increases, the lubrication results start to deviate, but the small

amplitude results remains accurate (recall that ε� 1 in all cases).
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Figure 3.4: Force, Fx, vs. phase difference, φ, for an asymmetry of γ = 0.1, in
the lubrication limit (dashed lines, top figure only), small amplitude limit (solid
lines, both figures), and using the boundary integral method (symbols, both fig-
ures). Top: fixed amplitude, ε = 0.01, and varying swimmer-swimmer distances,
h̄; circles: Fx, h̄ = 0.2; squares: 10Fx, h̄ = 0.4; diamonds: Fx/ε, h̄ = 0.6; triangles:
2Fx/ε, h̄ = 0.8. Bottom: Fixed separation distance h̄ = 1 and varying waveform
amplitudes; circles: πFx/ε, ε = 0.1; squares: πFx with ε = 0.2; diamonds: Fx,
ε = 0.4. We observe a gradual breakdown of the lubrication approximation for
increased separation, h̄ (top), and of the small amplitude expansion for increased
amplitude ε (bottom). Note that forces have been scaled for display purposes.



34

For larger values of the separation distance between the swimmers, the lubri-

cation results cannot be applied, but the small-amplitude asymptotics, Eq. (3.23),

remain valid as long as the wave amplitude is small. The value of the static force

is compared to the numerical results in Fig. 3.4 (bottom) for large separation,

h̄ = 1, and as function of the wave amplitude, ε. The agreement between the two

is excellent for ε = 0.1, but they deviate quantitatively for larger wave amplitudes

(although the correct order of magnitude, and dependence on φ, is obtained).

3.7.2 Stability

When we introduce a variable separation between the swimmers, h̄, and

thus go beyond the small h̄ limit from the lubrication approximation, we find that

the number of fixed points and their nature does not depend solely on the waveform

geometry, but actually also on the swimmer-swimmer distance. In Fig. 3.5 (top)

we show the dependence of the static force on the phase, for an amplitude ε = 0.1

and an asymmetry γ = 0.1, as we vary the separation between the swimmers h̄

(line: small-amplitude asymptotics; symbols: boundary integral computations).

A fixed point is a conformation with phase difference φ such that Fx(φ) = 0; if

the slope of the force is positive the fixed point is stable, while a negative slope

indicates an unstable fixed point. What we see in Fig. 3.5 (top) is that increasing

the separation between the sheets from the small h̄ values in the lubrication limit

gives rise to an additional fixed point. In the case illustrated in Fig. 3.5 (top), this

new fixed point is always unstable. It first appears near φ = π (leading to the

fixed point at φ = π becoming stable), moves toward φ = 0 when the separation

distance between the swimmers increases, and eventually merges with φ = 0, which

then turns to an unstable point, at a critical value of h̄.

In Fig. 8.6 we display the location of the fixed points explicitly as a function

of h̄ in the small amplitude limit for γ > 0. In this limit, the force is linear in the

asymmetry, γ, therefore the location of the fixed points is invariant under a linear

scaling of the asymmetry, γ → bγ where b > 0, while the nature of the fixed points

changes with a change of the sign of γ. The appearance of a new fixed point,

described in the previous paragraph, is apparent. As h̄ tends asymptotically to
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Figure 3.5: Dependence of the force, Fx, on the phase φ for varying separation
h̄ with an asymmetry γ = 0.1. Top: small dimensionless amplitude, ε = 0.1. The
solid lines are obtained in the small amplitude limit while symbols are for boundary
integral computations; circles: εFx, h̄ = 1; squares: 2Fx, h̄ = 2; diamonds: πFx/2ε,
h̄ = 3; down triangles: Fx/ε

2, h̄ = 4; up triangles: Fx/ε
3, h̄ = 5; stars: Fx/πε

4,
h̄ = 6. Increasing the distance between the sheets introduces an additional fixed
point not present in the lubrication limit, and its position moves with h̄. Bottom:
numerical results using the boundary integral method (solid line and symbols) in
the case of high amplitude waves, ε = 1. triangles : Fx, h̄ = 3; diamonds: 2πFx,
h̄ = 4; squares: 10πFx, h̄ = 5; circles: 100Fx, h̄ = 6. Forces have been scaled for
display purposes.
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Figure 3.6: Location of the fixed points (value of the phase φ such that Fx(φ) = 0)
as a function of h̄ as obtained in the small amplitude limit for γ > 0. The solid
lines indicate a stable fixed point whereas the dashed line indicates an unstable
fixed point. The position of the unstable fixed point moves with h̄: it is created
for small values of h̄ near φ = π, migrates to the left, and merges with φ = 0 at the
critical value h̄ ≈ 5.65. In the opposite case where γ < 0, the stable fixed points
become unstable and vice versa.
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zero, φ = 0 is stable (blue solid line) while φ = π is unstable (red dashed line),

which is the lubrication result. For intermediate values of h̄, both 0 and π are

stable, and the new fixed point moves from π to 0 as h̄ increases. It merges

with φ = 0 for a critical distance between the swimmers (h̄ ≈ 5.65 for our choice

of waveform), at which point φ = 0 becomes unstable, and remains so for larger

values of h̄. As expected, upon a reversing the sign of γ, stable fixed points become

unstable and vice versa.

Further analysis of the equations of motion shows that the additional fixed

point that arises when h̄ is past the lubrication limit is a direct consequence of the

inextensible boundary conditions. In the lubrication limit, the boundary conditions

are extensible insofar as the there is only a vertical component. However away

from this limit there arises horizontal motion to maintain inextensibility, and it is

precisely this horizontal motion which leads to the additional dynamic complexity.

Conversely for extensible boundary conditions, Eq. (3.10), the fixed points remain

unchanged from those in the lubrication limit.

Using the boundary integral formulation it is possible to extend these results

to large amplitude waves. In Fig. 3.5 (bottom) we show the horizontal force on

the upper sheet as a function of the phase between the swimmers for various mean

swimmer-swimmer separation but now with ε = 1. The results are qualitatively

similar to those obtained in the small amplitude limit, with the occurrence of a new

fixed point, unstable, and moving from φ = π to φ = 0 as the separation increases.

A difference we do observe between small and large amplitude is that the location

of the fixed point is no longer invariant under a change in the asymmetry factor,

γ. In Fig. 3.7 (top) we show that an increase in the asymmetry factor leads to a

small, but nonzero, migration of the mobile fixed point toward π. A similar drift

is obtained with an increase in the waveform amplitude (Fig. 3.7, bottom).
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Figure 3.7: Plot of the force on the top swimmer, Fx, as a function of the phase
difference, φ, using the boundary integral method with h̄ = 4. Top: ε = 1 for
varying asymmetry; blue circles: γ = 0.05; green squares: γ = 0.1; red diamonds:
γ = 0.2; black triangles γ = 0.3. We see that for large amplitude waves the force
is no longer linear with asymmetry as evidenced by the moving of the middle fixed
point. Bottom: γ = 0.1 for varying large amplitude waves; blue diamonds: 10πFx,
ε = 0.5; green squares: 2πFx, ε = 1; red circles: Fx, ε = 1.5. We see that for ε ≤ 1
the location of the middle fixed point remains close to the small amplitude limit,
while it has drifted significantly for ε = 1.5. Forces have been scaled for display
purposes.
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Figure 3.8: Time-evolution of the phase, from φ0 = π/2, in the lubrication limit
with δ = 0.1. The dashed line indicates γ = 0 while the solid line indicates
γ = ±0.1, a = 1/4. The dashed line has γ = 0.05, a = 1/4 and the dash-dot line
has γ = 0.1, a = 1/8.

3.7.3 Dynamics

The time-evolution of the phase is given in general by the integro-differential

equation

dφ

dt
= −M(φ)F s

x(φ). (3.89)

As noted above, in the small amplitude limit the mobility becomes independent of

the phase, M = h̄/2π, hence in that case the dynamics is completely set by the

static force. Note that the mobility is never zero so no additional fixed points arise

from Eq. (3.89).

In the lubrication limit we know that there exist only two fixed points, and

the location of the stable fixed point depends only on the waveform asymmetry.

In Fig. 3.8 we plot the time-evolution of the phase in this limit. We see that if

the system is symmetric (γ = 0), indicated by the black solid line, then the phase

remains constant in time. This corresponds to the no-synchronization situation

discussed in Sec. 3.3. When we introduce an asymmetry, γ 6= 0, then the two

swimmers phase lock over time. When γ > 0 then A < 0 and the system evolves

to a stable in-phase conformation, and opposite-phase for the converse. Given
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Figure 3.9: Time-evolution of the phase, from the initial condition φ0 = 3π/4,
for h̄ = [1 → 4] in the small amplitude limit with ε = 0.1. A solid line indicates
γ = 0.1 while a dashed line indicates γ = 0.2.

that the amplitude, a, is reasonably small for all curves (we have the geometrical

constraint a < 1/2), we observe roughly the same dependance of the typical time

scale for phase locking, t, on the wave asymmetry and amplitude as in the small-

amplitude limit (for which t ∼ a−4γ−1, see Eq. 3.69).

We have seen above that with an increase in h̄ comes additional fixed point,

and thus we expect the phase dynamics to depend similarly on h̄. In Fig. 3.9 we

plot the time-evolution of the phase in the small amplitude limit for various values

of the swimmer-swimmer distance in the case where γ > 0. Given that the phase

mobility, M, is independent of the asymmetry, and that the force is linear in

γ, we find that the time scale for synchronization scales with the inverse of the

asymmetry factor, i.e. t ∼ γ−1, as it does when h̄� 1. The final stable swimmer-

swimmer conformation can be understood simply by recalling the force plot in

Fig. 8.6. If the initial conformation is to the left of the moving unstable point,

then the sheets evolve to φ = 0, while they start to the right they evolve to φ = π.

If we reverse the asymmetry of the waveforms, γ < 0, then the converse is true, the

fixed point which varies with separation represents the only stable conformation

for intermediate values of h̄ and we obtain synchronization to a fixed finite phase
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Figure 3.10: Time-evolution of the phase, from φ0 = 3π/4, for large amplitude
waves using the boundary integral method. The circles indicate h̄ = 4, γ = 0.1,
ε = 1.5; squares: h̄ = 4, γ = 0.1, ε = 1; diamonds: h̄ = 4, γ = 0.05, ε = 1 and
triangles: h̄ = 2.4, γ = 0.1 and ε = 1.

difference, 0 < φ < π, as is observed in the metachronal beating of cilia.

A similar plot is shown in Fig. 3.10 in the case of large amplitude waves,

using the boundary integral method, starting from an initial relative phase of

φ = 3π/4 and with a positive asymmetry, γ > 0. Again the essential physics is

well captured by the small amplitude expansion: there exists a critical swimmer-

swimmer separation below which the sheets evolve to the in-phase conformation.

This is seen in Fig. 3.10 where with h̄ = 2.4, ε = 1 and γ = 0.1 the sheets

evolve to φ = 0 (in phase) whereas when the distance is increased to h̄ = 4 the

sheets evolve to φ = π (opposite phase). A waveform with a larger amplitude,

ε = 1.5, leads to a faster evolution of the phase than for ε = 1 for equal asymmetry

(γ = 0.1), which in turn evolves faster than for equal amplitude, ε = 1, but lower

asymmetry γ = 0.05. We note however that for large amplitude waves, the effect

of increasing the amplitude on the rate of phase change is drastically reduced; in

the small-amplitude limit the rate of evolution is quartic with the wave amplitude

and here we see an effect which is less than cubic. Despite the reduction, the effect

of amplitude is still strong and we observe drastically faster synchronization for

order one amplitudes.
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Figure 3.11: Illustration of the flow field during synchronization for ε = 1, γ = 0.1
and h̄ = 4 using boundary integral computations; (a) flow vorticity; (b) iso values
of |u|2. Darker regions correspond to higher velocity and vorticity, and arrows
indicate instantaneous velocity vector field. The two sheets start from the initial
condition φ0 = 3π/4 (top panel). Time increases top to bottom with the phase φ
being equal to {3π/4, π/2, π/4, 0} in the four panels.
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To illustrate the flow driving the synchronizing dynamics shown in Fig. 3.10,

we produce snapshots of the flow field for the h̄ = 2.4, ε = 1, γ = 0.1 conformation

in Fig. 3.11. We display the out-of-plane vorticity, ω, in Fig. 3.11a and the squared

velocity field, |u|2, in Fig. 3.11b. Both plots are overlaid with arrows indicating

the velocity vector field. The darker regions indicate higher vorticity and velocity

in each plot respectively. Time increases from top to bottom, and we show the

instances where the phase angle is given by φ = {3π/4, π/2, π/4, 0}, corresponding

to relative velocity of the sheets, U∆ = {0.0325, 0.1223, 0.1097, 0}.

3.8 Conclusion

3.8.1 Summary of results

In this chapter we have considered, as a model for the synchronization of

flagellated cells, the relative motion of two free-swimming planar parallel sheets

propagating waves of transverse displacement. We showed that due to the kine-

matic reversibility of the Stokes equations, waveform conformations with both ver-

tical and horizontal axis symmetry could not yield synchronizing dynamics. When

we break vertical axis symmetry, the phase of the system evolves to stable dy-

namic equilibria whose position is entirely dependent on the geometry of flagellar

waveforms, and the distance between them.

When the swimmers are close together we are able to make use of the

lubrication equations and find two fixed points, in-phase and opposite-phase. The

location of the stable point depends on the nature of the asymmetry, which is

measured by an integral over the waveform geometry. If the front-back asymmetry

of the geometry is reversed thus is equivalent to reversing the kinematics of the

problem which yields a reversal of forces. In other words, stable points become

unstable and vice versa. In contrast, the energy dissipation is always a minimum

for the in-phase conformation, and indicates the possibility of phase-locking into

a conformation of maximum energy dissipation.

An expansion in small amplitude is utilized to introduce inextensible bound-

ary conditions and order one distances between the organisms. In this case there
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arise additional fixed points, whose location and nature depends on the cells ge-

ometry and separation. Among the possibilities is synchronization at a stable

intermediate phase between in-phase and opposite-phase.

Finally, we presented numerical results for large-amplitude waves using the

boundary integral method. The computational results indicate that between the

lubrication limit and the small amplitude expansion, all the relevant physics can be

captured analytically. However, since the phase locking force depends so strongly

on waveform amplitude, we observe much faster synchronization for large ampli-

tudes, as might be expected.

3.8.2 Two-dimensional modeling and collective locomotion

The two dimensional model used here is admittedly too simple to provide

quantitative predictions for real microorganisms. However the simplicity allows

analytic formulae to be derived and a mathematical structure elucidating the in-

teraction between the bodies due to the Stokesian flow to be obtained, and gives

an explicit description of the effect of symmetry breaking. The intuition garnered

here may then be useful for more complex models, with finite three-dimensional

bodies, that must be solved entirely numerically.

We first note that, as a result of the two-dimensional approach, the viscous

mobility of the cells in the direction perpendicular to that of the wave propagation

is strictly equal to zero. Additionally there is no dynamic component to the vertical

force (see Appendix A.2). For real microorganisms, however, this is not the case

and hence fluid forces will determine the separation between the swimmers dynam-

ically. Since swimming cells are force-free, the far-field velocity is typically a force

dipole. In particular spermatozoa have a positive force dipole (so-called pushers

[10]). Far-field interactions between pushers tend to both align the major axis of

pushers drive them together. Accordingly experimental evidence suggests that as

spermatozoa synchronize they come together very tightly [4] (see also Fig. 1.1). In

light of this, the lubrication limit is perhaps the relevant physical limit to consider

for the phase locking of swimming cells. In contrast, eukaryotic cilia are attached

to a substrate at a fixed distance which is varies depending on the organism [9].
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In addition, the two-dimensional limit offers one particularity, which is that

the fluid between the swimmers (inner problem) does not communicate with that

outside the swimmers (outer problem). The outer problem, that addressed by

Taylor, is purely kinematic, in the sense that the speed of the sheet relative to

the flow at infinity is uniquely determined without resorting to a balance of forces,

unlike the inner problem. Further to this, because the outer problem cannot impose

a force on the outer surface of the sheet, the forces are individually zero for the inner

problem and therefore the inner problem (or even arbitrarily many inner problems)

may be solved separately because a balance with the outer problem is not required.

Now if a rigid body motion U = U∆ex (due to the inner problem) is added to the

surface deformations of the outer problem it has the sole effect of adding a plug

flow solution to the swimming problem: in the zero Reynolds number limit a rigid

body motion of two dimensional surface diffuses to infinity instantaneously. An

interesting consequence of this is that when there arises a nonzero relative velocity,

the idea of collective motion loses meaning, even for identical sheets, as in the

frame moving with lower sheet (see Fig. 7.1) we find different values for the flow

at infinity, U when y → −∞ and U + U∆ when y →∞. Further, if the sheets are

different, then even if the inner problem demands U∆ = 0, the outer problem on

either side produces flows at infinity (in the frame moving with the sheets) which

are distinct. However, even in the three dimensional case when the swimmers are

the same, synchronization is clearly driven by the forces between the bodies and

those forces will dominate when the cells are close; because of this we expect to

garner the leading order behavior from analysis of the inner problem.

Chapter 3, in part, is a reprint of the material as it appears in Physical

Review Letters 2009. Elfring, Gwynn J.; Lauga, Eric, the American Physical

Society, 2009. The dissertation author was the primary investigator and author of

this paper.

Chapter 3, in part, is a reprint of the material as it appears in Physics of

Fluids 2011. Elfring, Gwynn J.; Lauga, Eric, the American Institute of Physics,

2011. The dissertation author was the primary investigator and author of this

paper.



Chapter 4

Finite size effects

4.1 Introduction

In the previous chapter we observed that if the shape of the swimmers

was too symmetric then the kinematic reversibility of the field equations, coupled

with that symmetry, would permit no evolution of the phase difference between

two swimmers. Now if the swimmers are finite, swimmers propagating sinusoidal

waves will, except for brief instances in time, always have a front/back asymmetry.

Furthermore that asymmetry is not stationary but is time dependent as the swim-

mer actuates itself. It is therefore critical in understanding the nature of two-body

interactions to develop a finite model and to study its properties.

In this chapter we develop a three dimensional, finite-size model using slen-

derbody theory hydrodynamics to describe the thin flagella. Additionally, we

include a spherical head for each swimmer and include hydrodynamic interactions

between each swimmer using Faxén relations. We first constrain the dynamics of

the swimmers to include only relative (horizontal) translation, mimicking the two-

dimensional problem from the previous chapter but here with slender filaments,

to observe that finite-size effects present sufficient asymmetry (even for headless,

symmetric swimmers) to produce synchronizing flow fields. When attraction and

rotations are introduced we find that swimmers with heads display strong dipole-

dipole interactions which lead to attraction of the swimmers on a timescale much

faster than synchronization.

46
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4.2 Kinematics

We have two swimmers, labeled 1 and 2. These swimmers are coplanar

meaning that their flagella both propagate waves of transverse oscillations which

are in the same plane. We note that this assumption is quite strong since swim-

mers certainly are less likely than not both to be propagating waves in the plane

spanned by their two velocity vectors. Nevertheless, since we seek a course-grained

understanding of the natural physics, we presume the approximation is reasonable

as a first step. The kinematics of the swimmers are described by time depen-

dent position vectors X1(s − ct) and X2(s − ct) where X(s) = [X(s), Y (s)] and

s ∈ [−L,L] is the arclength along the flagellum yielding a total length of 2L for

each one of the swimmers. As mentioned we have two such organisms but we do

not distinguish between them below as the same formulation will be used for both.

If we define the head of the organism as xh(t) then the only difference is that

we take xh1(0) = 0 for convenience while xh2(0) = ∆xh(0), i.e. some position for

example ∆xh(0) = hey if one is directly above the other. Given that the flagella

pass periodic traveling waves they satisfy

X(s+ λ/α) = X(s) + λ, Y (s+ λ/α) = Y (s), (4.1)

where λ is the wavelength and λ/α is the distance along the flagella between

wavelengths. Note that here c is the wave speed along the arclength s while αc is

the wave speed along X. We stipulate that the center of the head is in line with

the tangent vector of the flagellum at the point where the flagellum meets the head

(s = 0). Following [41], the entire centerline may be written as

x(s, t) = xh(t) + Θ(t) ·R(s, t), (4.2)

where R = RhXs(−L− ct) + X(s− ct)−X(−L− ct) and Rh is the radius of the

head. The two-dimensional rotation operator is defined

Θ(t) =

[
cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

]
. (4.3)

At t = 0 the rotation operator is the identity tensor Θ = I.
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Figure 2-3: Elastic tail with tail base at the origin. The tail is parametrized by
arclength s and has a tail shape given by the position vector r(s). Inset: tail element
with length ds, local angle ψ, unit normal n̂, unit tangent t̂. Additionally there is
a local tension τ(s) acting on the cross section and defined positive outwards (not
shown).

on the tail is defined by its position vector r, as shown in Fig. 2-3, and has a velocity

rt, where the subscript t denotes a time derivative. In a quiescent fluid, the relative

velocity of the fluid would be −rt; thus, the total velocity is simply u − rt, where u

is the velocity of the fluid in the fixed frame. Now the drag force per unit length of

the rod can be expressed as

fd = −[ξ⊥n̂n̂ + ξ�t̂t̂] · (rt − u), (2.6)

where n̂ and t̂ are the unit normal and tangent to the filament, respectively. We

consider a planar actuation of the rod, so that n̂ is defined without ambiguities to

remain in this plane. Note that Eq. (2.6) is simply a vector expression for Eqs (2.4a)

and (2.4b) with an additional transformation from the normal and tangent coordinates

into a fixed coordinate system.

2.3 Elastic Forces

The elastic tail, with an arc length coordinate s, can be described by the position

vector r(s), local angle ψ(s), unit normal n̂(s), and unit tangent t̂(s), as shown in

Fig. 2-3. The unit normal is described as “inward pointing” such that it points

24

Rh

−

Figure 4.1: Figure for a single filament adapted from Yu et al. [42]. There is a
second swimmer whose head is located at ∆xh.

Now if we differentiate the position we obtain

u(s, t) = ẋh(t) + Θ · Ṙ + θ̇Θ ·R⊥. (4.4)

We can write Ṙ = −cRhXss(−L−ct)−cXs(s−ct)+cXs(−L−ct) by exploiting the

functional dependence to exchange derivatives. Furthermore our position vectors

are in the plane, X = [X, Y ] and X⊥ = ez ×X = [−Y,X]. Written compactly we

have

u(s, t) = ẋh + θ̇r⊥ + ṙ, (4.5)

where

r⊥ = Θ ·
{
RhX⊥s (−L− ct) + X⊥(s− ct)−X⊥(−L− ct)

}
, (4.6)

ṙ = cΘ ·
{
−RhXss(−L− ct) + Xs(−L− ct)−Xs(s− ct)

}
. (4.7)

Here we use the convention that the lower case vectors are in the lab frame and

so we write, for example, the tangent vector to the flagella in the lab frame is

t = rs = Θ ·Xs while the normal n = t⊥. We see the motion of the swimmer is

comprised of three components: the translation of the head ẋh, the rotation of the

swimmer relative to the center of the head θ̇r⊥ and the swimming gait ṙ.
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We define the shape of the swimmer by specifying the tangent angle, ψ(s, t),

made with the X-axis

ψ1(s) = arctan

[
Ys
Xs

]
. (4.8)

In other words Xs = [cosψ, sinψ]. We see also from this definition that Xss =

X⊥s ψs.

We then integrate these ode’s to obtain

R = RhXs(−L− ct) +

∫ s

−L
Xsds. (4.9)

We prescribe the tangent angle to be composed in terms of a Fourier basis

ψ(s, t) =
∑

an cos
[
n
π

L
(s− ct)

]
. (4.10)

4.2.1 Head kinematics

The vector pointing from the center of the sphere to the point where the

flagellum meets the sphere rh ≡ r(−L, t) may be written

rh = x(−L, t)− xh = RhΘ ·Xs(−L, t). (4.11)

The evolution of this vector in time is

∂rh

∂t
= (θ̇ + ψ̇h)RhΘ ·X⊥s (−L, t),

= (θ̇ + ψ̇h)ez ×RhΘ ·Xs(−L, t),
= ωh × rh, (4.12)

where ψh ≡ ψ(−L, t). So we see that by prescribing the kinematics as we have,

the rotation of the head ωh = (θ̇ + ψ̇h)ez consists of two components, a rigid

body rotation of the entire body, θ̇, along with a rotation of the head due to the

prescribed gait, ψ̇h.
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4.3 Hydrodynamics

4.3.1 Slender body theory

As we saw in chapter 3 the flow field in the zero Reynolds number limit

may be represented exactly by an integral of single and double layer kernels over

the surface of a body. However, when the body is slender one may replace the

surface distribution of singularities with a line distribution along the slender body’s

centerline for a formulation which is asymptotically valid with accuracy dependent

on the formulation and ultimately the slenderness. There have been many many

derivations of the slender body equations with varying asymptotic validity [43, 44,

31, 45, 46, 47]. We follow here the formal approach developed by Götz [47] which

includes a complete spectral theory for the integral operator. The force (density)

on a flagella f1 at position x1(s), parameterized by the arclength, s, of a slender

body (as shown in Fig. 4.1) may be described asymptotically (using the notation

of Tornberg and Gustavsson [48]) as

u1(x1) = L1[f1](s) +K1[f1](s) + u→1f [F1,F2, f2](s) +O(ε), (4.13)

where the slenderness parameter ε = a/2L is a ratio of the radius of the flagella a

to its total length 2L. Note that the term u→1f is our notation for the flow acting

on flagellum 1. The local term is given by

L1[f1](s) = − 1

8πµ

[
(I + t1(s)t1(s)) ln(ε−2) + I− 3t1(s)t1(s)

]
· f1(s), (4.14)

where t(s) is the local tangent to the filament. We note this operator represents

resistive force theory in the limit ε→ 0.

The flagellum also interacts with its own flow field. This term is given by

the nonlocal operator

K1[f1](s) = − 1

8πµ

∫ L1

−L1

[
G (x1(s)− x1(s′)) · f1(s′)−

(
I + t1t1

|s− s′|

)
· f1(s)

]
ds′.

(4.15)

For a single swimmer this formulation is accurate to O(ε2 ln ε), where it has been

assumed the radius of the flagella is given by ρ(s) = 2ε
√
s(L− s) [46]; however,
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since we will ultimately include only the leading order interaction with the back-

ground flow in the method of reflections the accuracy of the overall scheme is

reduced to O(ε) [48].

The flow field due the the flagellum at some field point x which is not on

the body is given simply by a distribution of Stokeslets and potential dipoles

u1f = − 1

8πµ

∫ L1

−L1

Sf (x− x1(s′)) · f1(s′)ds′, (4.16)

where Sf (x) = S(x; a
2

2
). We note that the relevance of the potential dipole term

is very small for distances much larger than a from the flagellum.

4.3.2 Heads

The translational motion of a sphere in Stokes flow is given by the equation

ẋh1 = −Mt
1F1 + F t1u→1h +O

(
Rh∣∣xh1 − x

∣∣
)4

. (4.17)

The translational mobility for a sphere is simply Mt
1 = [6πµRh

1 ]−1 and the trans-

lational Faxén operator for a sphere is F t1 =
(
1 + 1

6
(Rh

1)2∇2
)
. Here F1 is the

hydrodynamic force on the head. The hydrodynamic interactions are included

up to the first reflection via the Faxén laws. The notation u→1h indicates the

background flow field acting on the head of the first swimmer.

The rotational motion of a sphere is given by

(
θ̇1 + ψ̇1

)
= −Mθ

1T1 +
(
F θ1 u→1h

)
· ez +O

(
Rh∣∣xh1 − x

∣∣
)7

. (4.18)

The rotational mobility for a sphere is simply Mθ
1 = [8πµ(Rh

1)3]−1 while the ro-

tational Faxén operator for a sphere is F θ1 = 1
2
∇×. The hydrodynamic torque

on the spherical head is T1ez (if this is zero then the sphere rotates with half the

vorticity of the flow).

One might wonder about the effect of the hydrodynamic interactions where

the tail meets the head. In this region the dropped terms, while decaying very
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rapidly are still order one (not diverging). However this region is small hence on

average the tail is far from the head.

The flow field created by each head (individually) is given exactly by

u1h = − 1

8πµ

(
1 +

(Rh)2

6
∇2

)
G(x− xh1) · F1 −

1

8πµ
T1ez ×

x

|x|3
, (4.19)

= − 1

8πµ

[
Sh(x− xh1) · F1 + v(x− xh1)T1

]
. (4.20)

where Sh(x) = S(x; (Rh)2

3
). The rotlet in this problem has only one relevant com-

ponent, ez ·Ω = −v(x), where

v(x) =
x⊥

|x|3
. (4.21)

4.3.3 Hydrodynamic interactions

The leading order component of the background flow felt by the flagellum is

the flow generated by its head as well as the head and flagellum of the neighboring

swimmer. Conversely the flow felt by the head stems from its own flagellum along

with the flow generated by the other swimmer:

u→1f [F1,F2, f2](x1(s)) = u1h[F1](s) + u2h[F2](s) + u2f [f2](s), (4.22)

u→1h[f1, f2,F2](xh1) = u1f [f1] + u2f [f2] + u2h[F2]. (4.23)

This flow satisfies no boundary conditions in general but the reflections produce

higher order effects as indicated above.

In summary the equations which govern the dynamics of each swimmer are

ẋh1 + θ̇1r
⊥
1 (s) + ṙ1(s) = L1[f1](s) +K1[f1](s) + u1h[F1](s) + u2h[F2](s) + u2f [f2](s),

(4.24)

ẋh1 = −MtF1 + F t1(u1f [f1] + u2f [f2] + u2h[F2]), (4.25)

θ̇1 + ψ̇h1 = −MθT1 + F θ1 (u1f [f1] + u2f [f2] + u2h[F2]) · ez. (4.26)

and the equations for the second swimmer follow by exchanging 1↔ 2. The exact

expression of the Faxén operators on each component of the background flow is
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given in the following section. These equations are closed by stipulating that both

swimmers are force and torque free∫ L1

−L1

f1(s)ds = −F1, (4.27)∫ L1

−L1

r̃⊥1 (s) · f1(s)ds = −T1. (4.28)

4.3.4 Background flow terms

To compute the effects of the background flow terms the following formulae

are useful and follow directly from the identities given earlier, ∇2Sf = 2D, ∇2Sh =

2D, ∇× Sf = 2Ω and ∇× Sh = 2Ω.

For the heads we have

F t1u1f [f1] = − 1

8πµ

(
1 +

(Rh
1)2

6
∇2

)∫ L1

−L1

Sf (x− x1(s′)) · f1(s′)ds′
∣∣∣∣
x=xh1

,

= − 1

8πµ

∫ L1

−L1

Shf (x
h
1 − x1(s′)) · f1(s′)ds′, (4.29)

where Shf (x) = S
(
x; 1

6

(
2(Rh

1)2 + 3a2
))

.

Similarly

F t1u2f [f2] = − 1

8πµ

∫ L2

−L2

Shf (x
h
1 − x2(s′)) · f2(s′)ds′, (4.30)

while

F t1u2h[F2, T2] = − 1

8πµ

(
1 +

(Rh
1)2

6
∇2

)[
Sh(x− xh2) · F2 + T2Ω(x− xh2) · ez

]∣∣∣∣
x=xh1

,

= − 1

8πµ

[
Shh(x

h
1 − xh2) · F2 + v(xh1 − xh2)T2

]
, (4.31)

where Shh(x) = S
(
x; 1

3

[
(Rh

1)2 + (Rh
2)2
])

.
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The rotational terms are

F θ1 u1f [f1] · ez = − 1

2(8πµ)
∇×

∫ L1

−L1

Sf (x− x1(s′)) · f1(s′)ds′ · ez
∣∣∣∣
x=xh1

,

=
1

8πµ

∫ L1

−L1

v(xh1 − x1(s′)) · f1(s′)ds′, (4.32)

while similarly

F θ1 u2f [f2] · ez =
1

8πµ

∫ L2

−L2

v(xh1 − x2(s′)) · f2(s′)ds′, (4.33)

and finally

F θ1 u2h[F2, T2] · ez = − 1

2(8πµ)
∇×

[
Sh(x− xh2) · F2 + T2Ω(x− xh2) · ez

]
· ez
∣∣∣∣
x=xh1

,

=
1

8πµ

[
v(xh1 − xh2) · F2 −

1

2

∣∣xh1 − xh2
∣∣−3

T2

]
. (4.34)

4.3.5 Non-dimensionalizing

First we wish to make the swimmers similar in the sense they have the same

shape hence Rh
1 = Rh

2 = Rh and L1 = L2 = L. We then rescale all lengths by

L. Times are non-dimensionalized by L/c and forces by µc/L hence the preceding

equations are modified by the maps a→ 2ε, L1 → 1 and µ→ 1. It follows that

Sf (x) = S(x; 2ε2), (4.35)

Sh(x) = S(x;
1

3
(Rh)2), (4.36)

Shf (x) = S(x;
1

3

(
(Rh)2 + 6ε2

)
), (4.37)

Shh(x) = S(x,
2

3
(Rh)2). (4.38)

(4.39)

4.4 Numerical implementation

To solve the equations of motion we project the integral equations for the

motion of the flagellum onto a Legendre basis. The reason for this approach is
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because the Legendre polynomials Pi are eigenfunctions of the singular part of the

non-local operator and a spectral theory exists which guarantees convergence [47].

Projecting the governing equations for the first swimmer onto the ith polynomial

yields

〈L1[f1]Pi〉+ 〈K1[f1]Pi〉+ 〈u1h[F1]Pi〉+ 〈u2h[F2]Pi〉 , (4.40)

+ 〈u2f [f2]Pi〉 −
〈
ẋh1Pi

〉
−
〈
θ̇1r
⊥
1 Pi

〉
= 〈ṙ1Pi〉 , (4.41)

−MtF1 + F t(u1f [f1] + u2f [f2] + u2h[F2])− ẋh1 = 0, (4.42)

−MθT1 + F θ1 (u1f [f1] + u2f [f2] + u2h[F2]) · ez − θ̇1 = ψ̇h1 , (4.43)

〈f1(s)〉+ F1 = 0, (4.44)〈
r̃⊥1 (s) · f1(s)

〉
+ T1 = 0. (4.45)

Similarly for the second swimmer we have

〈L2[f2]Pi〉+ 〈K2[f2]Pi〉+ 〈u2h[F2]Pi〉+ 〈u1h[F1]Pi〉 , (4.46)

+ 〈u1f [f1]Pi〉 −
〈
ẋh2Pi

〉
−
〈
θ̇2r
⊥
2 Pi

〉
= 〈ṙ2Pi〉 , (4.47)

−MtF2 + F t(u2f [f2] + u1f [f1] + u1h[F1])− ẋh2 = 0, (4.48)

−MθT2 + F θ (u2f [f2] + u1f [f1] + u1h[F1]) · ez − θ̇2 = ψ̇h2 , (4.49)

〈f2(s)〉+ F2 = 0, (4.50)〈
r̃⊥2 (s) · f2(s)

〉
+ T2 = 0. (4.51)

We use short-hand notation for the integration, 〈g〉 ≡
∫ 1

−1
gds. The unknowns are

Fn, Tn, ẋhn and θ̇n and fn which is decomposed into a Legendre basis

fn =
N−1∑
j=0

ajPj(s). (4.52)

With the above in the previous equations, and taking i ∈ [0, N − 1], we end up

with 4N + 12 equations for the unknowns.

These equations constitute a linear system of the form A · a = b where a
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and b are 4N + 12 vectors, as shown below

a =



a10

:

a1N−1

F1

T1

ẋh1

θ̇1

a20

:

a2N−1

F2

T2

ẋh2

θ̇2



, b =



〈ṙ1P0〉
:

〈ṙ1PN−1〉
0

ψ̇h1

0

0

〈ṙ2P0〉
:

〈ṙ2PN−1〉
0

ψ̇h2

0

0



. (4.53)

The linear operator A is comprised of the following terms: L local flagella

hydrodynamic effects, K non-local hydrodynamic interactions, Sf flagella-flagella

hydrodynamic interactions, Sh head on flagella interactions, Uf flagella rigid body

motion, Hf flagella on head interactions, Hh head-head interactions, Uh head rigid

body motion, F force and torque free equations. Hence

A · a = (L+K + T + Sf + Sh + Uf +Hf +Hh + Uh + F ) · a = b. (4.54)

In practice we also construct each individual term as a separate matrix which allows

flexibility and clarity in implementation at the expense of memory. Details on the

construction of each of these terms is provided in Appendix B. Our unknown

coefficients are found by solution of the linear system.
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4.4.1 Discontinuity

The non-local operator K contains a jump discontinuity when s = s′. To

ensure we don’t integrate a slope through this point we split the integration at s,∫ 1

−1

ds′ →
∫ s

−1

ds′ +

∫ 1

s

ds′, (4.55)

and then choose a integration scheme which does not sample that point such as

Gauss-Legendre quadrature. The main problem with this is that since we are also

ultimately integrating over s to project the equation we will have to change the

Gauss-Legendre weights N times, but we do this ahead of time outside the time

loop.

4.4.2 Time stepping

At each point in time we will compute the unknowns f , F, T , ẋh and θ̇.

We then integrate the position forward in time to obtain the new position. Note

the time scale for a half cycle is T = L/c so our time steps ∆t should be such that

∆t� T/n where n is the number of Fourier modes used to represent the tangent

angle of the flagellum. We must integrate in time explicitly, since we store the

solution vectors for all time we can use use the multistep scheme used by Tornberg

and Gustavsson [48] at no extra expense over a single-step scheme. The integration

of position is given as follows

xhi+1 =
1

3

[
2∆t(2ẋhi − ẋhi−1) + 4xhi − xhi−1

]
. (4.56)

We do similarly for θi+1, and then we can compute Θi+1 while Ri+1 is known hence

we have the new position in the lab frame xi+1 from (4.2), and the new tangent

ti+1 = Θi+1 ·Xs(s− cti+1).

4.5 Numerical validation

4.5.1 Convergence

We set the number of integration points to be twice the number of Legendre

modes Nint = 2Nl so that the Nyquist-Shannon theorem is satisfied. In general if
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Figure 4.2: Figure illustrates the exponential decay of the Legendre polynomials
when the swimmers are far apart.

the swimmers are not too close (say not within Rh for instance) then the Legendre

modes decay exponentially and Nl < 50 is sufficient to ensure the highest modes

are vanishing, say |aNl | < 10−4 as illustrated in Fig. 4.2. However, if the swimmers

are near each other our asymptotic expansions may cease to be well ordered and

the Legendre polynomial coefficients may not decay at all. In such a scenario

we can no longer describe the interactions as our numerical method ceases to be

accurate.

4.5.2 Comparison with theory

It’s safe to say that there are no analytical models to which we can rea-

sonably compare the full scope of the theory presented above. We can however

take a single filament and provided we use a high wavenumber, the pitching due

to the finite size can be suppressed so that we can use the approximation of a

swimming filament which has a swimming speed that scales quadratically with

amplitude much like the swimming sheet for comparison. Furthermore, we may

compare the swimming speed of a filament with that computed using Stokesian

Dynamics simulations in which the filament is composed of small spheres [49, 50].
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A simple check that may be performed is to observe whether symmetries

which restrict dynamics are observed in the numerical simulation. If an individual

swimmer is instantaneously symmetric under a 180◦ rotation, then such a swim-

mer must have zero rotational velocity at that instant. Furthermore, for pairs of

swimmers, if the system possesses instantaneous 180◦ rotational symmetry there

can be no phase dynamics, nor can the swimmers undergo relative rotations, or

collective rotations. In all these examples our numerical simulations conform to

expectation.

4.6 Results

When the swimmers are of finite size they will experience rotation. Fur-

thermore hydrodynamic interaction will cause attraction or repulsion between the

swimmers. This added dynamical complexity can make it significantly more dif-

ficult to tease out the relevant nature of the interactions and therefore, to gain

a foothold we first look at a simple case where swimmers can only translate

horizontally before exploring the more complex effects of rotation and attrac-

tion/repulsion.

4.6.1 Swimmers on a rail

In order to discern whether a sinusoidal swimmer, simply by being finite

in nature ,will present sufficient asymmetry to observe synchronization, we first

look at an idealization in which the swimmers were only permitted to translate

relative to one another (mimicking the two dimensional problem), while attraction

and rotation were eliminated, as if the swimmers were confined to a rail. This

significantly simplifies the dynamical scenario while addressing the question of

whether or not the flow fields generated by finite swimmers do indeed have a

synchronizing component that would be lost if those swimmers were periodic.

The expectation was initially that finite sinusoidal swimmers without a

head would have very weak interaction and might not synchronize, while the in-

troduction of a head would produce highly asymmetric flow fields yielding strong
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interactions and synchronization (or faster synchronization). What we find is that

sinusoidal swimmers, both those with heads and those without, synchronize to an

in-phase configuration. This means that the finite-size symmetry-breaking effect

does indeed produce a flow field which drives the swimmers together, but unlike

the infinite case, where the asymmetry had to be prescribed to the waveforms, here

for these swimmers propagating symmetric sinusoidal waves, there is no condition

under which the swimmers synchronize to an opposite phase conformation. The

surprising result is that the swimmers without heads synchronize on a faster time

scale as illustrated in Fig. 4.3. What we see is that the headless swimmers syn-

chronize on a timescale that is here a factor of four faster than the swimmers with

heads. We note that we maintain identical kinematics for both swimmers. The

headless swimmers move as if they had a head but the pertinent hydrodynamics

are simply eliminated.

A reasonable explanation of this phenomenon could be that while the heads

produce a more asymmetric flow there is an increased hydrodynamic drag prevent-

ing horizontal translation. Yet this explanation is contradicted by the fact that

the headless swimmers travel only about one percent further than swimmers with

heads which indicates that perhaps there is something deeper at play. We point

out that the hydrodynamic interaction due to the heads seems to drive a large os-

cillatory component in the relative position of the two swimmers with a timescale

of the gait itself, oscillations which are much larger than those present in the dy-

namics of the headless swimmers. So it appears that the asymmetric flow fields

produced by the heads do indeed drive larger phase dynamics but that relative mo-

tion is oscillatory and does not enhance, but rather hinders, a coherent evolution

of the phase to a synchronized state.

Offset synchronization

When the swimmers are finite, there is the possibility that the swimmers

could become phase-locked with a phase difference which is an integer multiple of

2π. We refer to this as offset synchronization because the position of the heads is

offset. In our simulations we do not observe offset synchronization and there does
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Figure 4.3: a) Shows the synchronization of headless sinusoidal swimmers, while
b) shows swimmers with heads. In both cases the swimmers are only permitted
to translate horizontally. We see that the time required for synchronization with
heads is longer than without. The insets contain illustrations of each pair of
swimmers, here n = 1.5 and ∆xh(t = 0) = {1/8, 1/4} apart while Rh = 0.04 and
ε = 0.01.

not appear to be a true fixed point for these configurations. We find that the phase

evolution is slower but non-zero near points where the swimmers are in phase but

offset.

4.6.2 Long range dynamics

Swimmers with heads

When rotations and attraction/repulsion are introduced the dynamics of

the two-body interactions is much more complicated. It is hence insightful first

to consider what we might expect from the leading order far field interactions. A

flagellated swimmer with a head is a dipole to leading order in the far field. Each

swimmer is force free and so the leading order term in an expansion of the boundary

integral equations must necessarily be free of the Stokeslet term which integrates

to give the net force on the body. The next term is a dipole, and here the dipole

is apparent as the swimmer has a head with large drag which pushes fluid out of

the way and the drag on the head is balanced by the thrust of the flagellum. In

the far field this is seen as a dipole oriented in the direction of the velocity vector

with a positive sign indicating the swimmer is pushing flow outwards (known as a
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pusher).

The dynamics of dipole-dipole interactions as a model for swimming mi-

croorganisms was first studied by Guell et al. [51]. It was shown that for two

pushers, each swimmer will be reoriented by the flow field generated by its neigh-

bor so as to align their velocity vectors. This reorientation occurs on a time scale

set by the separation ∆θ̇ ∼ UL(Rh)2/h3∆θ where U is the (dimensional) swim-

ming speed of the microorganisms and h the distance between them. This is clearly

beneficial for synchronization as if the swimmers are slightly misaligned their flow

fields will act to align the swimmers so that they don’t swim away from each other,

preventing any synchronizing dynamics from taking place. Additionally, the flow

fields act to attract the swimmers with a speed Uattract ∼ ULRh/h2. This attrac-

tion then reduces the separation which in turn accelerates both the attraction and

the reorientation.

Our model contains a much more detailed account of the hydrodynamic

interactions between two pushers but on the surface we find the dipole-dipole

model to give a very good account of the interactions when the swimmers are not

unreasonably close together.

Our simulations find, in accordance with the simple dipole model, that if the

swimmers start with an initial angle separating their velocity vectors hydrodynamic

interactions will realign the swimmers. The space of stable angles depends on

the the size of the head, the length of the flagellum, the separation between the

swimmers and the swimming speed (and hence the wave speed and amplitude).

We leave the cataloguing of this parameter space to a subsequent paper.

We also find the swimmers attract one another as predicted by the simple

dipole-dipole model as shown in Fig. 4.4. Indeed given the simple scaling of the

dipole model one would expect the swimmers to attract each other initially with a

speed an order of magnitude slower than the speed of the swimmer in this instance

and this is indeed precisely what we find. Of course in that approximation the

rate of attraction is divergent as the swimmers get close, and in our simulations

the rate of attraction does not grow unbounded (it increases roughly linearly in

time see Fig. 4.4c). This rate of attraction is however between one and two orders
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Figure 4.4: This figure illustrates that the dipole-dipole attraction of the two
swimming microorganisms occurs on a much faster time-scale than the synchro-
nization observed in the previous section. Here a) shows distance between the
heads and b) and c) show the x and y components respectively. We see a numeri-
cal collision event prior to ten periods as the organisms approach and the singular
interaction causes a discontinuity in their relative position. Here again n = 1.5
and ∆xh(t = 0) = {1/8, 1/2} while Rh = 0.04 and ε = 0.01.

of magnitude faster than the rate of synchronization we observed in simulations

above in Fig. 4.3b). This is problematic in our simulation as the model is only

valid when the distance between the swimmers is large. In Fig. 4.4 we see that

the swimmers quickly close the distance between them and as a result we have a

numerical ‘collision’ event prior to ten periods elapsing as we attempt to integrate

diverging integrals. Here the simulation is completely inaccurate and we see a

discontinuity in the velocity.

We see that attraction occurs on much faster time scales than synchro-

nization for finite swimmers with heads. In this scenario far field approximations

break down as the organisms get close before synchronization occurs. To accurately

model the full synchronization dynamics for finite swimmers it would be necessary

to include the physics of lubrication interactions and possibly steric interactions.

The Stokesian Dynamics method [49], initially developed for numerical simula-

tion of colloidal suspensions, was recently adapted to model swimming problems

[50]. This method, which models swimmers as a collection of spherical particles
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and includes both far field dynamics by the method of reflections and near field

interactions with lubrication theory, may be robust enough to model the entire

synchronization event.

We point out that here and in the previous chapter we modeled the swim-

mers by prescribing their kinematics, and while this may be a reasonable approach

in the far field, as the swimmers approach each other the hydrodynamic interac-

tions between the swimmers become much stronger, the pressure diverges with the

square of the separation and it becomes unrealistic to assume that the flagella of

the swimmers will not be significantly deformed by the flows. In light of this in

the next chapter we will proceed to model the swimmers as elastic sheets in the

lubrication limit and will find that elastic deformations present a significant avenue

for symmetry breaking and synchronization.

Headless swimmers

The heads of spermatozoa carry the genetic payload and so it is perhaps

unphysical to consider the behavior of headless swimmers. Nevertheless, it is an

interesting scenario because swimmers without heads do not possess a very clear

dipole which arises from the drag of a large head balancing the thrust of the

flagella. The configuration is much more uniform and hence we expect the far-field

dipole model to be much less representative. In Fig. 4.5 illustrate the interactions

between two headless microorganisms.

The results are somewhat surprising. Initially we see that the organisms

begin to synchronize and are attracted together, on a somewhat slower time scale

than for the swimmers with heads. But as they approach each other they are

reoriented by the flow and consequently swim apart and move back out of phase.

The accuracy of the interaction when the organisms approach can be regarded as

questionable as near-field effects will certainly play a role, but given the perfect

periodicity of the interactions it is perhaps reasonable to assume the far-field effects

are being captured accurately.

An interesting question to address is how accurately does a dipole-dipole

model capture these interactions both for swimmers with heads and without, a
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Figure 4.5: This figure illustrates that the periodic attraction of the two swim-
ming headless microorganisms. Here a) shows distance between the ‘head’ and b)
and c) show the x and y components respectively. We see that the microorganisms
start to synchronize and come together but upon reaching a threshold there is a
reorientation and the organisms start swimming apart and this occurs on period-
ically. Here again n = 1.5 and ∆xh(t = 0) = {1/8, 1/2} while Rh = 0.04 and
ε = 0.01.

goal of future work.

4.7 Conclusion

In this chapter we observed that symmetry breaking due to the finite size

of real microorganims is a mechanism by which these swimmers may become syn-

chronized and that surprisingly, swimmers without heads synchronized faster when

confined to a rail than those with heads. We observed that for swimmers with

heads, the full far-field dynamics of their interactions seem well represented by

long range dipole-dipole fields. We saw that those hydrodynamic interactions

serve to align swimmers so that they are parallel and attract the swimmers to-

gether. This attraction occurs on a faster time scale than synchronization. This

leads to a break-down of numerical methods which rely on far field expansions but

also prompts the exploration of elastic effects which may become important as the

organisms are attracted together.



Chapter 5

Elastic effects

5.1 Introduction

In this chapter we investigate a physical mechanism responsible for symmetry-

breaking in real biological cells. Instead of delineating a fixed waveform for the

swimming sheets, we take the more realistic modeling approach of passing internal

waves of bending as produced by a flagellum’s internal structure (or axoneme) [52].

In the case of a single sheet, similar models have been employed to study swimming

[53, 54] and peeling [55]. We use this model to show that elastic deformation due

to fluid body interactions, with purely sinusoidal forcing, always leads to in-phase

synchronization.

Flexibility has long been considered as an avenue for symmetry breaking in

Stokes flow. Purcell, in his celebrated talk and paper [56], asserted that while a stiff

oar undergoing reciprocal motion would produce no net motion, due to the scallop

theorem, a flexible oar would escape this conundrum because of a broken symmetry

between forward and reverse strokes. This was first investigated analytically by

Machin [57] while more recently a number of theoretical and experimental studies

have further elucidated the effect of flexibility quantitively, both for boundary-

driven [58, 42, 59] and internally-driven filaments [60, 61, 62].

Recently, the analysis of a pair rotating helices as model for bacterial flag-

ella has shown flexibility to be a crucial ingredient for synchronization [63], as was

similarly shown for a minimal model of interacting cilia [64]. Additionally flexibil-

66
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ity has been found to be requisite for the synchronization of paddles that would

otherwise be too symmetric to yield stable fixed points [65]. In these models and

experiments, the bodies are rigid, but permitted to deviate from their trajectories,

in an elastic manner in response to fluid forces. In contrast, here we allow the

bodies themselves to deform due to fluid stresses induced by the other swimmer.

Our approach is organized as follows. For a pair of two-dimensional sheets

in the lubrication limit, we derive a system of nonlinear equations governing both

the fluid stresses and the resulting swimmer shapes. We linearize these equations

to produce analytical solutions, and then solve the nonlinear equations numeri-

cally. We show that flexible sheets with symmetric sinusoidal forcing will deform

when interacting with each other via a thin fluid layer in such a way as to break

geometrical symmetry, and to evolve to an in-phase conformation where energy

dissipation is minimized. Further, this evolution of phase is shown to be function-

ally equivalent to that found for prescribed waveforms in viscoelastic fluids [29],

illuminating the role of elasticity in symmetry-breaking and synchronization.

5.2 Model system

We consider the dynamics of two infinite two-dimensional elastic sheets

which are separated by a fluid layer of mean distance h̄ (see Fig. 7.1). The sheets

deform due to a balance between an active moment m, passive bending (elastic)

resistance, and fluid stresses. The positions of the sheets are given by y1 = η1(x, t)

for the bottom sheet and y2 = h̄+ η2(x, t) for the top sheet. We seek to solve this

problem in the limit that the fluid layer is thin compared to the wavelength of the

sheets, kh̄ � 1, to make use of Reynolds’ lubrication approximation for the fluid

field equations [66].

An infinitesimal element along one sheet is subject to tension, T , normal

force, N and moment, M (shown in Fig. 7.1). Since the fluid layer is thin and

lubrication forces are singular with the gap thickness, forces from the outer flow

are safely ignored [54]. To capture the active bending of the sheet we use a model

for the flagella of eukaryotes introduced by Jülicher and co-workers [61, 52] where
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Figure 5.1: System of two infinite two-dimensional sheets, of shape described
by the functions η1 and η2, which are separated by a fluid layer of thickness h
(mean value, h̄), have a relative phase φ, and may move relative to each other
with a velocity U∆. An infinitesimal material element on the top sheet is subject
to fluid pressure p, normal force N , tension T and moment M . Inset: schematic
representation of in-phase and opposite-phase configurations.

the bending of an elastic filament (flagellum) is caused by the constrained slid-

ing of microtubule doublets; the effect of the internal forces which induce sliding

are here represented by an active moment density m. Given that we are in an

over-damped limit we take the equilibrium shapes to arise instantaneously [55].

Assuming reasonably small deflections such that the swimmers are linearly elastic

[67], force (F) and moment (M) balances on the top sheet yield, respectively,

∂F

∂x
= −n · σ, ∂M

∂x
= −N +m, (5.1)

where n is the unit normal and σ is the fluid stress tensor. The relation between

the moment and the sheet curvature is given by the constitutive relation M =

B∂2η/∂x2, where B is the sheet bending stiffness. Combining with (5.1) we obtain

the equations governing the shape of the sheets

B
∂4η

∂x4
=
∂m

∂x
∓ n · σ · n, (5.2)
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where ∓ are for the top and bottom sheets respectively. If resistive force theory is

used for the fluid forces then we obtain the governing equation used by [52] for a

single filament.

The internal forcing on the sheets is assumed to take the form m(x, t) =

Ag(kx− kct) where k is the wavenumber, c is the wave speed, A is the amplitude

of the moment and g is an arbitrary but 2π-periodic function. Because the forcing

is periodic, we will assume the shape η also to be periodic. We nondimensionalize

vertical distances by y∗ = y/h̄ and horizontal distances by x∗ = kx (∗ indicates

a dimensionless quantity). Nondimensionalizing the continuity equation we find

that if the horizontal velocity is given by u = cu∗ then the vertical velocity must be

v = εcv∗ where ε = kh̄. The Stokes equations then yield the lubrication equations

to leading order in ε

∂p∗

∂x∗
=
∂2u∗

∂y∗2
,

∂p∗

∂y∗
= 0, (5.3)

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0. (5.4)

where p∗ = ε2p/µω. Forces (per unit depth) are nondimensionalized as f ∗ = fε/µc,

while energy dissipation rate per unit depth is Ė∗ = ε2Ė/µωch̄.

In the lubrication limit, ε� 1, the normal force due to the fluid on the beam

is to leading order merely the pressure, −n · σ · n = p. Since the field equations

for the fluid yield the pressure gradient, we differentiate (5.2), and recasting the

equation in dimensionless form we obtain

B∗
∂5η∗

∂x∗5
= A∗

∂2g

∂x∗2
± dp∗

dx∗
, (5.5)

where B∗ = Bε3k3/µω is the dimensionless bending stiffness and A∗ = Aε2k2/µω is

the dimensionless amplitude of the active bending moment. This equation allows

us to solve for the shape of the sheets, η1,2, and is coupled to the fluid field equations

through the pressure gradient. We now drop the ∗ for convenience.

5.3 Analysis

Given the form of the forcing we expect post-transient solutions which are

functions of a wave variable z = x − t and thus we write η = η(z). The top
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sheet may move relative to the bottom sheet with a horizontal velocity u = U∆,

hence the boundary conditions for the fluid equations (5.4), in a frame moving

with waveform are given by u(x, y1) = −1, v(x, y1) = −η′1, u(x, y2) = U∆ − 1 and

v(x, y2) = −η′2. Given the above boundary conditions the solution for the velocity

field is found to be

u(x, y) =
1

2

dp

dx
(y − y1)(y − y2) + U∆

y − y1

y2 − y1

− 1. (5.6)

If one integrates the continuity equation one finds

∂

∂x

∫ y2

y1

udy = U∆
dη2

dx
· (5.7)

If U∆ = 0 then the flow rate between the sheets is constant. Integrating (5.7)

and exploiting the periodicity of the pressure [25], we obtain the equation for the

pressure gradient

dp

dx
=

6U∆ − 12

h2
− 12U∆y2

h3
− (6U∆ − 12)I2 − 12U∆J3

I3h3
, (5.8)

where the distance between the two sheets is given h = 1 + η2 − η1 and Ij =∫ 2π

0
h−jdx and J3 =

∫ 2π

0
y2h

−3dx. Then the force on the top sheet is given by

Fx =

∫ 2π

0

(
y2
dp

dx
− ∂u

∂y

)∣∣∣∣
y=y2

dx =

∫ 2π

0

(
1

2

dp

dx
(η2 + η1)− U∆

1 + η2 − η1

)
dx. (5.9)

5.3.1 Linear regime: statics

We first look at the case where we enforce U∆ = 0 (i.e. we fix the top sheet

with respect to the bottom sheet) in order to determine under which condition a

nonzero synchronization force will arise.

If we assume the dimensionless amplitude of the forcing A to be small, and

the dimensionless bending stiffness B to be large, then the shape amplitude (or

maximum value of the shape) ‖η‖∞ is expected also to be small. Linearizing the

pressure gradient for small η, with U∆ = 0 gives

dp

dx
≈ −12(η2 − η1), (5.10)

where we have invoked an integrated conservation of mass, 〈η2 − η1〉 = 0 (angle

brackets 〈〉, denote the average over a period). Our goal is now to determine
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whether two sheets which are equally and symmetrically forced but with a phase

shift φ will synchronize in time. With this in mind we let g2 = g1(z + φ) with

g1(z) = cos(z), and we set equal for both sheets the bending stiffness B and the

forcing amplitude A. The linearized governing equations are then given by

B
d5η1

dz5
− 12(η2 − η1) = −A cos(z),

B
d5η2

dz5
+ 12(η2 − η1) = −A cos(z + φ). (5.11)

To solve these equations we apply periodic boundary conditions. The solution of

this system of equations with the linearized pressure gradient (5.10), can be found

analytically to be

η1(z) = A
12B

[
cos(z + φ)− cos z

]
−
[

(288 +B2) sin z + 288 sin(z + φ)
]

B (576 +B2)
+ C,

η2(z) = A
12B [cos z − cos(z + φ)]− [288 sin z + (288 +B2) sin(z + φ)]

B (576 +B2)
+ C.

(5.12)

Note that nothing prevents the solution from including a uniform shift C(A,B);

however, the relevant physics of the problem are invariant under such a shift hence

and hence the value of C is irrelevant (equivalently, we place our z-axis at 〈η1〉 = 0).

Both shapes in (5.12) are delineated by the competition between bending

rigidity, the pressure gradient in the fluid, and the internal forcing (with φ de-

pendence). In this linear limit we note that the sheets are linear in the forcing

amplitude A, and when A = 0 then as expected they become straight, i.e. η = 0.

In the limit where rigidity dominates, B → ∞, then the sheets also tend to be-

come straight, η → 0. If the rigidity and forcing amplitude are both very large

(A,B � 1) then we can scale out the contribution from the fluid forces in (5.11)

and we are left with η1 ≈ −(A/B) sin z and η2 ≈ −(A/B) sin(z + φ) as might be

expected. Note finally that the solutions in (5.12) are only valid when B � A as

otherwise unphysical solutions may arise with the sheets overlapping; this is pre-

vented when the full nonlinear form of the pressure gradient is kept, as it diverges

when h→ 0.

Solutions to (5.12) for A = 1, B = 10, and three values of the phase

difference (φ = π/4, π/2, 3π/4) are plotted in Fig. 5.2 (left). We observe that the
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Figure 5.2: Left: Solution shapes, (5.12), for various phase differences φ = π/4
(solid lines), π/2 (dashed lines), and 3π/4 (dash-dot lines), with A = 1 and B = 10.
We observe that the amplitude is not evenly affected by the pressure (the plot is
shown here with h̄ = 0.2 rather than h̄ = 1 for display purposes only). Right:
Shape amplitude, ‖η‖∞, vs. phase difference, φ (bottom sheet: solid line; top
sheet: dashed line). Lines are reversed upon the change φ→ −φ.

shapes are sinusoidal and hence individually remain symmetric both about the

vertical axis and the horizontal axis. The global asymmetry that arises however

is that the amplitudes of the two waveforms are not equally modulated by the

fluid pressure, as shown in Fig. 5.2 (right). We see indeed that the top sheet has

smaller amplitude for positive φ (and by symmetry, this is reversed upon changing

φ→ −φ).

The phase locking force on the top sheet is, at leading order, given by

Fx = −6

∫ 2π

0

(η2 − η1)(η2 + η1)dx = 2πα sinφ. (5.13)

where α = 144A2/(576B+B3). Equation (5.13) is the main result of this chapter.

The phase locking force is proportional to the sine of the phase, meaning that

the only stable fixed point is expected to occur at φ = 0, and hence all initial

conformations will evolve to the stable in-phase conformation. We thus see that

the elasticity of the swimmers, and thus fluid-structure interactions, can introduce

the geometrical symmetry-breaking necessary to develop a nonzero phase locking

force. The force is found to be quadratic in amplitude, reminiscent of viscoelastic

symmetry-breaking [29] (and discussed here in Chapter 7); by comparison, the

phase-locking force arises at fourth order in amplitude for prescribed asymmetric



73

waveforms in a Newtonian fluid. The reason for the difference is that with elastic

deformation, the sheets are ultimately not the same shape, despite having identical

mechanical properties, and hence 〈η2
1〉 6= 〈η2

2〉; for prescribed waveforms this is

different as the same waveform is prescribed for both sheets, and the quadratic

term of the force vanishes.

The energy dissipated by the fluid between the two swimming cells to lead-

ing order is

Ė = 12

∫ 2π

0

(η2 − η1)2 dx =
24πA2

576 +B2
(1− cosφ). (5.14)

We see that the energy dissipation is a global minimum when φ = 0 and global

maximum when φ = π. It follows then that the cells will always evolve to a

state of minimum energy dissipation. We observe that the form of the energy

dissipation is precisely the same as that for fixed shapes (and taking the fixed

wave amplitude A2
fixed = A2/(576 + B2) they are equal) [68]. It is important to

note that waveforms with a prescribed broken symmetry may evolve to either the

in-phase or opposite-phase conformation [25]; in contrast, the natural symmetry-

breaking due to elasticity of the bodies, or in the fluid, leads to a conformation of

minimum energy dissipation.

5.3.2 Linear regime: dynamics

When the sheets are permitted to evolve in time in force-free swimming, the

relative velocity U∆ will thus be nonzero. In order to determine the leading order

component of the pressure field we must first find out how the relative velocity

scales with the sheet amplitudes. Given that the net force on the sheets in the

dynamic case must now be zero, we obtain at leading order the relative speed as

given by

U∆ = − 3

π

∫ 2π

0

(η2 − η1)(η2 + η1)dx. (5.15)

We see that the velocity is quadratic in amplitude and indeed is proportional to

the static force U∆ = F s
x/2π (we use here the superscript s to indicate the static

force given by (5.13) to avoid confusion). With this we thus know that at leading



74

order the pressure field (for a given φ) is invariant between the static and dynamic

case, and since the beam equation couples via the pressure field, our instantaneous

shapes are found to be the same. The only difference is that now the phase

difference changes in time (geometrically) due to the presence of a nonzero relative

velocity, according to dφ/dt = −U∆. Using (5.15), we find the rate of change of

the phase at leading order to be given by

dφ

dt
= −α sinφ. (5.16)

Equation (5.16) can be integrated analytically, leading to a time-evolution of the

phase given by

φ(t) = 2 tan−1

[
tan

(
φ0

2

)
e−αt

]
. (5.17)

All initial conformations, φ0, decay in time to the stable in-phase conformation, φ =

0. Notably, the time-evolution of the phase for a sinusoidally forced elastic sheet we

obtain here is mathematically similar to that for a fixed sinusoidal waveform in a

viscoelastic fluid [29] and for rigid bodies with flexible trajectories [64], emphasizing

therefore the crucial role of elasticity in synchronization.

Finally, if we allow a small difference in the wavespeeds of the sheets, ∆ω,

then to leading order we have the same evolution of phase, (5.16) and (5.17), but

now the rate of change of phase is defined as φ̇ = −U∆ −∆ω and hence we see a

synchronization of shape but not of material points.

5.3.3 Nonlinear case

To move beyond the linear regime, we now solve the nonlinear equations for

the shapes (5.5) numerically, together with (5.8), using Matlab’s boundary value

problem solver bvp4c, both for the static case, U∆ = 0, and the force free case,

Fx = 0 using (5.9).

We find the linearized pressure gradient to be a capable approximation,

particularly when the bending is of the same order as the pressure B ∼ 1 and the

phase difference is small; however, when A,B � 1 the linearized pressure may

lead to unphysical solutions particularly if the sheets are near opposite-phase as
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Figure 5.3: Top: solution shapes, η1 and η2, for bending stiffness B = 10, phase
difference φ = 3π/4, and amplitudes A = {1, 5, 10} (left: U∆ = 0; right Fx = 0);
linearized pressure approximation: solid lines; full pressure gradient: dashed lines.
Bottom left: phase locking force, Fx/A

2, vs. phase difference, φ, when U∆ = 0;
bottom right: relative velocity, U∆/A

2, vs. φ, when Fx = 0. Both plots are for
numerical solutions of the nonlinear equations with B = 10 and A = 1 (circles), 5
(squares), and 10 (diamonds); linearized solutions are shown as solid lines. Away
from the linear regime, the rate of change of the phase is affected while the forces
are not.
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Figure 5.4: Time-evolution of the phase difference, φ, in the nonlinear problem
for B = 10 starting from an initial angle of φ/π = .99 and with forcing amplitude
A = 1 (circles), 5 (squares) and 10 (diamonds); the linear estimate is solid. As
the forcing amplitude increases, the linear solution increasingly underestimates the
time scale to synchronize.

the divergent nature of the full form of the pressure gradient is required to deform

the sheets from contact.

In Fig. 5.3 we illustrate the breakdown of the linear regime. We plot the

static shapes (U∆ = 0, top left), and dynamic shapes (Fx = 0, top right), both with

a phase difference of φ = 3π/4, bending stiffness B = 10, and with forcing ampli-

tudes A = {1, 5, 10}. We see that for increasing amplitude the shapes predicted

by linearized equations (solid) and nonlinear equations (dashed) begin to diverge.

In particular the nonlinear equations lead to a pronounced left-right asymmetry in

the individual shape. In the lower left plot of Fig. 5.3 we display the phase locking

force vs. phase, while in the lower right plot we show the relative velocity vs. phase,

both with B = 10 and A = {1, 5, 10} (circles, squares and diamonds respectively)

for the numerical solutions to the nonlinear equations; the analytical solutions for

the linear equations are shown solid. The synchronizing hydrodynamic force, Fx,

found by either method remains remarkably consistent even for very large forcing

amplitude, A. In contrast, the rate of change of the phase decreases markedly

from the linear approximation for large amplitude waves. Because the force is vir-

tually unaffected we know therefore that the resistance to motion is dramatically

increased by the change in shape.

In Fig. 5.4 we integrate the instantaneous relative velocity to obtain the
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evolution of the phase in time. We show solution to both the linear equations

(solid) and nonlinear equations (dashed) for B = 10 and A = {1, 5, 10} starting

from an initial phase difference of just less than π. We see that, as the forcing

amplitude increases, the nonlinear equations yield an increasingly slower evolution

to a synchronized conformation than that predicted by the linear regime; however,

the general behavior remains qualitatively unchanged.

5.4 Conclusion

In this chapter we inquired about a physical mechanism responsible for

symmetry-breaking and synchronization in the flagella of biological cells such as

spermatozoa. In a Newtonian fluid, two swimming sheets passing waveforms of

a prescribed sinusoidal shape will not synchronize due to an excess of symmetry;

however, here we have demonstrated that identical flexible sheets with symmetric

sinusoidal forcing will deform, when interacting with each other via a thin fluid

layer, in such a way as to systematically break the overall geometrical symmetry.

This system will always evolve to an in-phase conformation in which energy dissi-

pation is minimized, in contrast to a prescribed asymmetry, which may maximize

energy dissipation. In addition, this time-evolution of the relative phase is shown

to be equivalent to that obtained for prescribed waveforms in viscoelastic fluids

in Chapter 7, emphasizing the crucial role of elasticity in symmetry-breaking and

synchronization – be it that of the fluid, or the swimmers themselves.

Chapter 5, in part, is a reprint of the material as it appears in the Journal

of Fluid Mechanics 2011. Elfring, Gwynn J.; Lauga, Eric, Cambridge University

Press, 2011. The dissertation author was the primary investigator and author of

this paper.



Chapter 6

Non-Newtonian swimming

In the previous chapters our swimming microorganisms, representing in

particular spermatozoa, were immersed in Newtonian fluids. However, many bi-

ological fluids involved in mammalian reproduction are non-Newtonian. As these

spermatozoa make their journey through the female reproductive tract they en-

counter several complex fluids, including glycoprotein-based cervical mucus in the

cervix, mucosal epithelium inside the fallopian tubes, and actin-based viscoelas-

tic gel outside the ovum [69, 70]. In a viscoelastic fluid, kinematic reversibility,

restated in Purcell’s scallop theorem [56], breaks down due to the presence of nor-

mal stresses and shear-dependent material functions, fundamentally altering the

governing flow physics [10]. The waveform, structure, and swimming path of sper-

matozoa have been experimentally observed to be modified in viscoelastic fluids

[71]. Locomotion in complex fluids has been studied analytically [72, 73, 74], and

it has been shown that microorganisms which propel themselves by propagating

waves along their flagella have a lower swimming speed in a viscoelastic fluid than

in a Newtonian fluid [59, 75].

In this chapter we briefly introduce swimming in viscoelastic fluids and

present some simple results which show how the presence of polymeric stresses can

alter the dynamics of an organism.

78
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6.1 Fundamentals

We consider here a viscoelastic fluid which is, as with everything in this

thesis, forced by a very small relevant length scale which leads to a low Reynolds

number, meaning that mechanical equilibrium is given by

∇p = ∇ · τ (6.1)

where p is the pressure and τ is the deviatoric part of the stress tensor.

In a Newtonian fluid the constitutive relationship between stress and strain-

rate was a simple linear one, τ = µγ̇ where γ̇ = ∇u+∇uT is the strain-rate tensor.

However, the biological viscoelastic fluids under consideration are polymeric sus-

pensions and there are contributions to the stress both from the entropic polymers

and the fluid in which they are suspended.

To relate the stress to the strain-rate, in this chapter and the next, we use

the simplest polymeric constitutive equation derived from a microscopic theory,

namely the Oldroyd-B model [76, 77]. In this model the stress is split into a

contribution from the polymer and from the solvent, τ = τ p +τ s. The viscosity is

similarly split µ = µp + µs. The solvent is taken to be Newtonian τ s = µsγ̇ while

the polymeric contribution to the stress is given by an upper-convected Maxwell

model

τ p + λ1

O
τ p= µpγ̇, (6.2)

where λ1 is the relaxation time of the polymer. The upper convected derivative

is defined for a general tensor A as
O
A= ∂A/∂t + u ·∇A− (∇uT ·A + A ·∇u).

Combining the above we can write the constitutive relation

τ + λ1
O
τ= µ

[
γ̇ + λ2

O
γ̇

]
, (6.3)

where λ2 = λ1µs/(µs + µp) = λ1β is the retardation time of the polymer [77], and

β is the ratio of the solvent viscosity to the total viscosity. Rheological studies

have shown the relaxation time of cervical mucus to be between 1 and 10 seconds

[78].



80

6.2 Boundary conditions

As in the previous chapters we model the swimming microorganism as a

two dimensional swimming sheet. The shape of this sheet, in a frame moving with

the sheet, can in general be represented by y = εg(z) where

g(z) = c̃ne
inz, (6.4)

where z = kx − ωt. It proves to be convenient in this chapter to use complex

notation but of course =[c̃0] = 0 and c̃−n = c̃∗n so that the function is real. We

use the following dimensionless variables x∗ = xk, t∗ = tω, u∗ = u/c. We also

define two Deborah numbers, De1 = λ1ω and De2 = λ2ω. Given that the flagella

of spermatozoa typically beat at a frequency between 20 and 50 Hz [9] we might

expect a range of Deborah numbers De1 = 102−103, and in most practical instances

De1 � De2 [77]. We now drop the (∗) notation and refer only to dimensionless

variables below.

6.3 Biharmonic solution

In this chapter, we will repeatedly refer to the general solution to the bihar-

monic equation ∇4ψ(x, y) = 0 which, when bounded at positive infinity, is given

by the complex form

ψ(x, y) =
∞∑

n=−∞

(an + ybn)e−|n|yeinx. (6.5)

We will also in this section use a different symbol Ψ(x, y, t) to refer the stream

function whose time dependence may arise from the field equations (not necessarily

merely a parametric dependence).

6.4 Expansion

As in previous chapters, we take the approach that the amplitude of trans-

verse oscillations of the sheet, ε, is small and hence proceed to solve for all fields
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perturbatively, e.g. γ̇ = εγ̇1 +ε2γ̇2 + .... The relationship between stress and strain

at jth order is hence given by(
1 + De1

∂

∂t

)
τ j −

(
1 + De2

∂

∂t

)
γ̇j =

j−1∑
m=1

[
De1

(
∇uT

j−m · τm + τm ·∇uj−m − uj−m ·∇τm
)

−De2

(
∇uT

j−m · γ̇m + γ̇m ·∇uj−m − uj−m ·∇γ̇m
) ]
. (6.6)

6.5 Transient response

Because the field equations in a viscoelastic fluid have an explicit time

dependence, the flow resulting from the actuation of a boundary will now have a

transient response to this actuation.

6.5.1 First order

The Oldroyd-B equation to first order is

τ 1 + De1
∂τ 1

∂t
= γ̇1 + De2

∂γ̇1

∂t
. (6.7)

Taking the divergence and the curl we obtain(
1 + De2

∂

∂t

)
∇4Ψ1 = 0, (6.8)

and in the Laplace domain this yields

(1 + sDe2)∇4Ψ̄1 = De2∇4Ψ1(t = 0). (6.9)

where the overbar represents a function in the Laplace domain. If we take the

initial condition to be Newtonian then the right-hand side vanishes and we are left

with a biharmonic equation for Ψ̄1.

The boundary conditions are

∇Ψ
(n)
1

∣∣∣
y=0

= ∇g(z) = nicne
nizex, (6.10)
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which in the Laplace domain yield

∇Ψ̄
(n)
1

∣∣∣
y=0

=
nicn
in+ s

einxex. (6.11)

From the general solution to the biharmonic equation we obtain

∇Ψ̄
(n)
1

∣∣∣
y=0

= [inanex + (− |n| an + bn)ey] e
inx. (6.12)

Hence an = cn/(in+ s) and bn = |n| an leaving

Ψ1 =
∞∑

n=−∞

cn(1 + |n| y)e−|n|yeinz. (6.13)

In the case of Taylor’s sinusoidal swimming sheet we have c1 = −i/2 and hence

Ψ1 = −i(1 + y)e−yeiz + c.c., (6.14)

which is precisely the same as the Newtonian case. We see then that viscoelastic

effects do not affect the flow field at linear order in ε.

Now it is important to note that while the first order stream function is

strictly Newtonian, and hence u1 and γ̇1 are Newtonian, the first order stress field

τ 1 is not, as a Laplace transform of the first order constitutive relation reveals,

τ̄ 1 =
1 + De2s

1 + De1s
¯̇γ +

De1 −De2

1 + De1s
γ̇(t = 0). (6.15)

The right-hand side is entirely known and then from an inverse transform we can

obtain τ 1.

6.5.2 Second order

For the swimming speed at second order the boundary conditions are

∇Ψ2|y=0 = −g(z)∇∂Ψ1

∂y
+

ey
2

[
g′(z)2 −

〈
g′(z)2

〉]
,

∇Ψ2|y→∞ = −U2ey (6.16)
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We are really only interested in the mean term, in x, as that yields the swimming

speed and thus we extract it from

∂Ψ
(0)
2

∂y

∣∣∣∣∣
y=0

= −
〈
g(z)

∂2Ψ1

∂y2

∣∣∣∣
y=0

〉
,

= −
〈∑

n

cne
inz
∑
m

−m2cme
imz

〉
,

=
∑
n

n2cnc
∗
n, (6.17)

which in the Laplace domain is

∇Ψ̄
(0)
2

∣∣∣
y=0

=
1

s

∑
n

n2cnc
∗
n. (6.18)

The second order constitutive relation yields(
1 + De1

∂

∂t

)
τ 2−

(
1 + De2

∂

∂t

)
γ̇2 =[

De1

(
∇uT

1 · τ 1 + τ 1 ·∇u1 − u1 ·∇τ 1

)
−De2

(
∇uT

1 · γ̇1 + γ̇1 ·∇u1 − u1 ·∇γ̇1

) ]
. (6.19)

At this point the calculation becomes too laborious to continue for general wave-

forms and we proceed only with Taylor’s sinusoidal sheet c̃1 = −i/2. Substituting

into (6.19) and taking the divergence and the curl we obtain(
1 + De2

∂

∂t

)
∇4Ψ2 =

8De1(De1 −De2)

1 + De2
1

(
1− 3y + y2

)
e−2y

×
[
1 + (De1 sin t− cos t)e

− t
De1

]
. (6.20)

Here we see a distinct transient forcing term on the right-hand side. Upon a

Laplace transform, again taking the initial condition to be Newtonian, we are left

with

(1 + sDe2)∇4Ψ̄2 =
8De1(De1 −De2)

1 + De2
1

(
1− 3y + y2

)
e−2y

×
[ (

1 + De2
1

)
(1 + De1s)

s (1 + De1 (De1 + 2s+ De1s2))

]
. (6.21)
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The particular solution in the Laplace domain may be obtained directly by inte-

gration

Ψ̄2p =
De1(De1 −De2)e−2y (y + y2) (1 + De1s)

2s (1 + De1 (De1 + 2s+ De1s2)) (1 + sDe2)
. (6.22)

We care only about the zeroth term in the general solution, as this gives the

swimming speed, and hence we find

b̃0 =
1

2s
− De1(De1 −De2)(1 + De1s)

2s (1 + De1 (De1 + 2s+ De1s2)) (1 + sDe2)
. (6.23)

Now taking De1 = De and De2 = βDe we obtain for the swimming speed

of the sheet

U = −1

2

[
1 + βDe2(
1 + De2

)− βDe2(1− β)2

(1− β)2 + β2De2
e−

t
βDe

+
De2(β − 1)eit

2 (1− iDe + (i+ De)2β)
e−

t
De + c.c.

]
. (6.24)

We see that the swimming speed has three distinct components: a steady state

swimming speed and two transient responses. One transient response is oscillatory

and decays on the relaxation time scale of the polymer while the other term is a

steady decay on the retardation time-scale of the fluid. In Fig. 6.1 we plot the

transient swimming response from a Newtonian initial condition and we see there

exist scenarios in which the transient swimming speed can far surpass the steady

state swimming speed (and even the initial swimming speed), which raises the

question of whether or not microorganisms can utilize the transient response of

the polymeric fluid for ‘rapid’ maneuvering.

6.6 Steady state

When we are only concerned with the steady state swimming speed it is far

easier simply to focus on the post transient field from the start, as we demonstrate

in this section.
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Figure 6.1: The ratio of transient swimming speed in a viscoelastic fluid to
Newtonian swimming speed. We see that for certain choices of parameters we can
obtain an enhanced speed on transient time scales.

6.6.1 Time

We stipulate that all fields are time-periodic

Ψ(x, y, t) =
∞∑

n=−∞

ψ̃(n)(x, y)e−nit. (6.25)

By writing that the fields may be decomposed into purely harmonic components in

time we are hence looking at post transient behavior, with the Fourier modes dic-

tated by the boundary conditions. Indeed we will see that the t and x dependency

can be written entirely in terms of a wave variable z = x− t.

6.6.2 Fourier modes

We decompose (6.6) into its Fourier modes in time at each order in the

expansion. For example at second order we obtain

τ
(0)
2 − γ̇(0)

2 =
1

2
Re

[
De1 −De2

1− iDe1

(
∇ũ

(1)T
1 · ˜̇γ(1)∗

1 + ˜̇γ
(1)∗
1 ·∇ũ

(1)
1 − ũ

(1)
1 ·∇˜̇γ

(1)∗
1

)]
(6.26)

and

(1− 2iDe1)τ̃
(2)
2 − (1− 2iDe2)˜̇γ

(2)
2 =

1

2

De1 −De2

1− iDe1

(
∇ũ

(1)T
1 · ˜̇γ(1)

1 + ˜̇γ
(1)
1 ·∇ũ

(1)
1 − ũ

(1)
1 ·∇˜̇γ

(1)
1

)
(6.27)
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For convenience, we label the right-hand side of the above Ã
(0)
2 and Ã

(2)
2 respec-

tively. In general the constitutive relations at order j for the n Fourier mode are

given by

(1− niDe1)τ̃
(n)
j − (1− niDe2)˜̇γ

(n)
j = Ã

(n)
j (6.28)

If j is even then n is even and n ∈ [1, j]. Conversely for odd j then n is odd and

n ∈ [1, j]. Upon taking the divergence and the curl of each equation we obtain a

forced biharmonic equation for the stream function

ez∇4Ψ̃
(n)
j =

1

(1− niDe2)
∇×∇ · Ã(n)

j (6.29)

Given that the zeroth mode has no x dependence we simply obtain

∇4Ψ
(0)
j = − d2

dy2
Ã

(0)
j [1, 2] (6.30)

6.6.3 First order

The Oldroyd-B equation to first order is

τ 1 + De1
∂τ 1

∂t
= γ1 + De2

∂γ1

∂t
, (6.31)

and hence for each Fourier mode we have

τ̃
(n)
1 =

1− niDe2

1− niDe1

˜̇γ
(n)
1 (6.32)

The boundary conditions are

∇ψ̃
(n)
1

∣∣∣
y=0

= ∇g(z) = nic̃ne
nizex. (6.33)

From the general solution we obtain

∇ψ̃
(n)
1

∣∣∣
y=0

=
[
inãnex + (− |n| ãn + b̃n)ey

]
einx, (6.34)

therefore ãn = c̃n and b̃n = |n| c̃n, leaving

Ψ1 =
∞∑

n=−∞

c̃n(1 + |n| y)e−|n|yeinz. (6.35)

For Taylors sinusoidal swimming sheet we have c̃1 = −i/2 yielding Ψ1 = (1 +

y)e−y sin z. As in the transient calculation, we see the that the linear flow field is

strictly Newtonian.
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6.6.4 Second order

For the swimming speed at second order the boundary conditions are

∇ψ2|y=0 = −g(z)∇∂ψ1

∂y
+

ey
2

[
g′(z)2 −

〈
g′(z)2

〉]
(6.36)

If we are only interested in the swimming speed at second order then we may ignore

all terms but the mean term since that is the only term that affects the second

order swimming speed, and as we showed above

∂ψ̃
(0)
2

∂y

∣∣∣∣∣
y=0

=
∑
n

n2c̃nc̃
∗
n. (6.37)

However, if we wish to proceed to higher order we need to find all modes present

in ψ2.

The equation governing the zeroth mode at second order as shown above is

τ
(0)
2 − γ(0)

2 =
∑
n

[
De1 −De2

1− inDe1

(
∇ũ

(n)T
1 · ˜̇γ(n)∗

1 + ˜̇γ
(n)∗
1 ·∇ũ

(n)
1 − ũ

(n)
1 ·∇˜̇γ

(n)∗
1

)]
.

(6.38)

After taking the divergence and curl we obtain a forced biharmonic equation for

the stream function

∇4ψ
(0)
2 =

∑
n

8c̃nc̃
∗
nDe1(De1 −De2)e−2|n|yn6 (|n| (1 + y2n2)− 3n2y)

1 + n2De2
1

. (6.39)

The particular solution may be found by integration and when adding the homo-

geneous solution and taking into account the boundary conditions we may obtain

the second order swimming speed,

U2 = −
∑
n

n2c̃nc̃
∗
n

1 + n2De1De2

1 + n2De2
1

,

= −
∑
n

n2c̃nc̃
∗
n

1 + n2De2β

1 + n2De2 . (6.40)

For the Taylor sinusoidal swimming sheet the only nonzero coefficient is c̃1 =

−i/2. We see of course that we recover the steady state limit from the transient

calculation presented above. Here we take the time to highlight the factor

Υn =
1 + n2De2β

1 + n2De2 (6.41)
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which separates the viscoelastic swimming speed from the Newtonian one. We

point out this factor because it will occur in all the classical variants of the swim-

ming sheet problem we consider below.

6.7 Steady swimming near a wall

Another classical swimming problem is the swimming sheet near a wall. On

the swimmer we have the same boundary condition but now we stipulate that a

well exists at y = h where we have no slip, u = 0. In the frame moving with the

swimmer we then have

∇ψ|y=h = −Uey. (6.42)

We again look for solutions in terms of a regular perturbation series, U =
∑

n ε
nUn.

6.7.1 First order

The boundary conditions are

∇ψ̃
(n)
1

∣∣∣
y=0

= ∇g(z) = nic̃ne
niz, (6.43)

∇ψ1|y=h = −U1ey. (6.44)

With the first order boundary conditions we arrive at the stream function

ψ1 =
U1 − 3d̃0h

2

2h
y2 + d̃0y

3

+
∑
n6=0

einx
[

coshny

(
c̃n −

nyc̃n(2hn+ sinh[2hn])

1 + 2h2n2 − cosh[2hn]

)
(6.45)

+ sinhny

(
c̃n(2hn− ny + ny cosh[2hn] + sinh[2hn])

1 + 2h2n2 − cosh[2hn]

)]
. (6.46)

Now at this point we must resort to dynamical considerations to resolve the un-

known coefficient, namely enforcing that the swimmer (and thus the wall) is force

free, to find d̃0 = 0 and hence U1 = 0.
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6.7.2 Second order

Again at second order we only compute the mean component of the bound-

ary conditions

∂ψ
(0)
2

∂y

∣∣∣∣∣
y=0

=
∑
n

c̃nc̃
∗
nn

2 1− 2h2m2 − cosh[2hm]

1 + 2h2m2 − cosh[2hm]
, (6.47)

∂ψ̃
(0)
2

∂y

∣∣∣∣∣
y=h

= −U2. (6.48)

From this we compute the inhomogeneous second order biharmonic equa-

tion. Since the mean contains no x dependency we can simply integrate to obtain

the particular solution. The problem is closed by assuming both the sheet and the

wall are force free. The swimming speed is then found to be

U2 = −
∑
n

n2c̃nc̃
∗
n

sinh2 nh+ n2h2

sinh2 nh− n2h2
Υn. (6.49)

We see again that the classical result for swimming speed near a wall, to leading

order, is simply modified by the factor Υn for every Fourier mode in the shape of

the traveling wave.

6.8 Peristaltic pumping

We now think consider the case of peristaltic pumping between two oscil-

lating walls with a phase difference of φ.

yh = h+ εc̃ne
inz

y−h = −h+ εc̃ne
in(z+φ) = −h+ εα̃ne

inz (6.50)

6.8.1 First order

The boundary conditions are

∇ψ̃
(n)
1

∣∣∣
y=h

= nic̃ne
nizex (6.51)

∇ψ̃
(n)
1

∣∣∣
y=−h

= niα̃ne
nizex (6.52)
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With the first order boundary conditions we arrive at the stream function

ψ1 = d̃0y
(
y2 − 3h2

)
+
∑
n6=0

einx
[

coshny

(
−ny(c̃n − α̃n) cosh[hn]

−2hn+ sinh[2hn]
+

(c̃n + α̃n)(hn cosh[hn] + sinh[hn])

2hn+ sinh[2hn]

)
+ sinhny

(
(c̃n − α̃n)(cosh[hn] + hn sinh[hn])

−2hn+ sinh[2hn]
− ny(c̃n + α̃n) sinh[hn]

2hn+ sinh[2hn]

)]
(6.53)

If there is no imposed pressure drop, then d̃0 = 0. Otherwise d̃0 = −∆P/6.

6.8.2 Second order

The mean component of the boundary condition at the top wall is

∂ψ
(0)
2

∂y

∣∣∣∣∣
y=h

=
∑
n

c̃nc̃
∗
nn

2

(
sinh[2nh]2 + 4n2h2

sinh[2nh]2 − 4n2h2
− e−inφ 4hn sinh[2hn]

sinh[2nh]2 − 4n2h2

)
(6.54)

while at the bottom wall

∂ψ
(0)
2

∂y

∣∣∣∣∣
y=−h

=
∑
n

c̃nc̃
∗
nn

2

(
sinh[2nh]2 + 4n2h2

sinh[2nh]2 − 4n2h2
− einφ 4hn sinh[2hn]

sinh[2nh]2 − 4n2h2

)
(6.55)

By the same methodology above, and assuming no second order pressure

drop we find a flow-rate Q of

Q =

∫ h

−h

∂ψ2

∂y
dy (6.56)

=
∑
n

2hn2c̃nc̃
∗
n

(
Sinh[2hn]2 + 4h2n2

Sinh[2hn]2 − 4h2n2
− 4hnCos[nφ]Sinh[2hn]

Sinh[2hn]2 − 4h2n2

)
Υn (6.57)

which is again identical to the Newtonian result with the exclusion of Υn.

6.9 Steady swimming sheet, higher order

The leading order steady swimming speed, U2, for Taylor’s swimming sheet,

c̃1 = −i/2 and c̃n = 0 for all other n, was first found by Lauga [59]. Here we present

the swimming speed at the next two non-zero orders in the asymptotic series, the

fourth and the sixth. While laborious in practice, the results can be found with a

straight forward application of the formalism presented above, in particular section

6.6.2.
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6.9.1 Boundary conditions

For large amplitude (ε) transverse oscillations of the sheet it is necessary,

as we showed in Chapter 3, to recast the boundary conditions so that the sheet

remains inextensible. These boundary conditions for a sinusoidal sheet were first

described by Taylor [13] and catalogued in detail, for general waveforms, in [68].

The boundary conditions are

u |y=y1 = 1− α cos θ |y=y1 , (6.58a)

v |y=y1 = −α sin θ |y=y1 (6.58b)

where the angle, θ, is defined by tan θ = ∂y/∂z. Hence

cos θ =
1√

1 + (y′)2
, (6.59)

sin θ = y′ cos θ, (6.60)

and the material velocity (in the wave frame), α, is ratio of the length of the sheet

to its wavelength multiplied by the wave speed, or

α =
1

2π

∫ 2π

0

√
1 +

(
∂y

∂x

)2

dx. (6.61)

Expanding the boundary conditions we obtain

u |y=y1= Re

[(
1

4
e2iz

)
ε2 − 1

64

(
2 + 8e2iz + 3e4iz

)
ε4 (6.62)

+

(
1

32
+

45

512
e2iz +

3

64
e4iz +

5

512
e6iz

)
ε6
]

(6.63)

−v |y=y1 = Re

[(
eiz
)
ε−

(
eiz

8
+

1

8
e3iz

)
ε3 +

1

128

(
12eiz + 11e3iz + 3e5iz

)
ε5
]

(6.64)

6.9.2 Results

Following the methodology presented above, a perturbation expansion in

ε, we obtain a inhomogeneous biharmonic equation at each order for each Fourier

mode, the stream function then satisfying each such equation and the appropriate
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part of the boundary condition leads to the solution of the flow field at each order.

The details are lengthy and laborious and omitted here for clarity. Noting that

b
(0)
j = −Uj gives the swimming speed at each order and De2 = ηrDe we give the

results at each order below.

At second order we repeat the Lauga [59] result

U2 = − 1 + De2ηr

2
(
1 + De2

) . (6.65)

As Lauga found, this indicates that at leading order the swimming speed is strictly

less than the swimming speed in a Newtonian fluid.
At fourth order we find

U4 =

((
1 + De2ηr

) (
76 + 50De2 + 47De4 + De2

(
102 + 29De2

)
ηr + De2

(
76 + 45De2 + 42De4

)
η2r + De4

(
107 + 34De2

)
η3r

))
(
128

(
1 + De2

)3 (1 + De2η2r
)) .

(6.66)

Hence there exist regimes where the viscoelastic swimming speed is faster than

the Newtonian swimming speed (at equivalent order) near De = 1, but only for

relatively large amplitudes.
Finally at sixth order we find the mercilessly lengthy formula

U6 =

[
956448

+ De
2
(
4377888 + 57875730De

2
+ 185430852De

4
+ 133190147De

6
+ 180283105De

8
+ 48775484De

10
+ 13846644De

12
)
ηr

+ 3De
2
(
1912896 + 27553473De

2
+ 111625168De

4
+ 169957123De

6
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8
+ 96543501De

10
+ 29566863De

12
)
η
2
r

+ De
4
(
25917048 + 345637148De

2
+ 1134451024De

4
+ 907319288De

6
+ 1157711741De

8
+ 325926653De

10
+ 77353668De

12
)
η
3
r

+ De
4
(
8608032 + 147895752De

2
+ 823387667De

4
+ 1743774767De

6
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8
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10
+ 223458219De

12
)
η
4
r

+ De
6
(
39247080 + 533168575De

2
+ 1833453005De

4
+ 1671026336De

6
+ 1705865570De

8
+ 479056216De
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+ 113365368De

12
)
η
5
r

+ De
6
(
3825792 + 102195918De

2
+ 853535920De

4
+ 2264397416De

6
+ 1203975005De

8
+ 1002144235De

10
+ 202656204De
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)
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η
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. (6.67)

At this order the swimming speed is again strictly less than the swimming speed

in a Newtonian fluid, for all ε.

The swimming speed in a viscoelastic fluid, asymptotically valid up to sixth

order is hence

U = ε2(U2 + ε2U4 + ε4U6) +O(ε8). (6.68)
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Again all odd terms in the expansion are zero by symmetry.

As expected, when we take De = 0 we obtain the swimming speed in a

Newtonian fluid to sixth order

UN = −ε
2

2

(
1− 19

16
ε2 +

41

32
ε4
)

+O(ε8). (6.69)

where the first two terms were found by Taylor [13], while the third was later found

by Drummond [79].

There is some debate in the literature whether large amplitude gaits may

see a swimming speed increase in viscoelastic fluids, near De = 1, as found in

experiments by Liu et al. [80], and numerics by Teran et al. [81] and as displayed by

our fourth order accurate formula, or as demonstrated in another set of experiments

with C. Elegans swimming in viscoelastic fluids by Shen and Arratia [82] there is

instead strictly a swimming speed decrease (as with the second or sixth order

accurate formulae). Sadly our results are inconclusive on this matter.

6.10 Conclusion

Because many microorganisms swim immersed in biological fluids which are

non-Newtonian, in this chapter we introduced swimming in a viscoelastic Oldroyd-

B fluid. We first demonstrated that there are transient effects on the swimming

speed of a microorganism decaying both on the relaxation timescale and retar-

dation timescale. Secondly the steady state swimming speed is strictly lower in a

viscoelastic fluid compared to a Newtonian fluid at leading order and the difference

was shown to be determined by a factor that depends on each Fourier mode which

constitute the swimming waveform. This factor was found to be identical in other

classical results such as swimming next to a wall and peristaltic pumping. Finally

we presented the next two terms in the asymptotic series for the swimming speed

of a sinusoidal sheet in an unbounded fluid.

Chapter 6, in small part, is a reprint of the material as it appears in the

Journal of Fluid Mechanics 2010. Elfring, Gwynn J.; Pak, On Shun; Lauga, Eric,

Cambridge University Press, 2010. The dissertation author was the primary in-

vestigator and author of this paper.



Chapter 7

Non-Newtonian synchronization

7.1 Introduction

In all previously-studied situations, synchronization was addressed in the

case of a Newtonian fluid. In this chapter we study the passive synchronization

of two flagellated cells in a viscoelastic (Oldroyd-B) fluid. Using Taylor’s infinite

two-dimensional sheet model, we show that not only does phase locking arise in

a viscoelastic fluid, but also that it does not require the front-back geometrical

asymmetry that must exist for such a model to display synchronization in a New-

tonian fluid. We demonstrate that the system evolves to a single stable fixed point

at the in-phase conformation, which is also the conformation that yields minimal

energy dissipation. In addition, we show that the evolution to a phase-locked state

occurs on asymptotically faster time scales than in a Newtonian fluid.

7.2 Setup

Our system, shown in Fig. 7.1, consists of two parallel infinite two-dimensional

sheets, separated by a mean distance h. Both sheets propagate sinusoidal waves of

transverse displacement of amplitude a at speed c = ω/k, where ω is the wave fre-

quency and k is the wavenumber, but have an initial phase difference φ0. By pass-

ing these waves, the sheets propel themselves in the direction opposite to the wave

speed [13]. The sheets are also permitted to move relative to each other with an un-

94
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φ = π

φ = 0
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h

U + U∆/2

U − U∆/2

x

y

Figure 7.1: Model system consisting of two infinite sinusoidal sheets passing waves
at speed c and thereby swimming at speed U ± U∆/2 in the opposite direction.
The difference in phase φ incurs a relative velocity U∆(φ, h) between the two sheets
denoted positive when the top sheet swims to the right relative to the bottom one.
The average separation distance is denoted h.

known velocity U∆, denoted positive when the top sheet (#2) swims in the positive

x direction relative to the bottom one (#1). The positions of the sheets, in their

swimming frames, are thereby given by y1 = a sin(kx−ωt−φ0/2+
∫ t

0
kU∆(t′)dt′/2)

and y2 = h+ a sin(kx− ωt+ φ0/2−
∫ t

0
kU∆(t′)dt′/2).

We use the following dimensionless variables x∗ = xk, t∗ = tω, u∗ = u/c,

U∗∆ = U∆/c. The amplitude of the waves is non-dimensionalized by the wavenum-

ber, ε = ak. For convenience we let z∗ = x∗ − t∗ and φ = φ0 −
∫ t∗

0
U∗∆(t′)dt′

which is the instantaneous phase difference between the two sheets. The position

of the sheets in dimensionless form is thus given by y∗1 = ε sin(z∗ − φ/2), and

y∗2 = h∗ + ε sin(z∗ + φ/2), and the phase evolves in time according to φ̇ = −U∗∆.

We refer to the φ = 0 conformation as in-phase, and the φ = π conformation as

opposite-phase. The system is 2π periodic and φ is defined from −π to π. We now

drop the (∗) notation and refer only below to dimensionless variables.

Since this problem is two dimensional, we introduce the streamfunction

ψ(x, y, t) where the components of the velocity field are u = [u, v]T = [∂ψ/∂y,−∂ψ/∂x]T,

and the incompressibility condition is always satisfied. The boundary conditions

then become

∇ψ|y=y1 = ∇
[
− U∆y/2 + ε sin(z − φ/2)

]∣∣∣
y=y1

, (7.1)

∇ψ|y=y2 = ∇
[
U∆y/2 + ε sin(z + φ/2)

]∣∣∣
y=y2

. (7.2)

We solve this problem, in the post-transient limit, using the perturbative
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formalism presented in the previous chapter.

7.3 Analysis

7.3.1 First-order solution

The leading order component of (6.3) is

τ 1 + De1
∂τ 1

∂t
= γ1 + De2

∂γ1

∂t
· (7.3)

Taking the divergence and the curl of (7.3) we get the governing equation for the

first-order streamfunction (
1 + De2

∂

∂t

)
∇4ψ1 = 0. (7.4)

With the first order boundary conditions

∇ψ1|y=0 = ∇ [(−U∆1y/2 + sin(z − φ/2)] |y=0, (7.5)

∇ψ1|y=h = ∇ [U∆1y/2 + sin(z + φ/2)] |y=h, (7.6)

the solution can be shown to be

ψ1 = a0(y) + a1(y) cos(z) + b1(y) sin(z), (7.7)

where

a0(y) = C1y
2

(
y − 3

2
h

)
+

1

2
U∆1y

(y
h
− 1
)
, (7.8)

a1(y) =
sin φ

2

h− sinh(h)

(
y cosh(h− y)− (h− y) cosh y + sinh(h− y)− sinh y

)
,

(7.9)

b1(y) =
cos φ

2

h+ sinh(h)

(
y cosh(h− y) + (h− y) cosh y + sinh(h− y) + sinh y

)
.

(7.10)

To determine the unknown constant C1 we resort to dynamical consid-

erations. For simplicity we resolve the streamfunction into its complex Fourier
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components in the wave variable z = x − t giving ψ1 = Re
[
ψ̃

(0)
1 + ψ̃

(1)
1

]
, where

Re[...] denotes the real part and ψ̃1
(0)

= a0(y) and ψ̃
(1)
1 = (a1(y) + ib1(y))e−iz. The

strain-rate tensor, γ1 = ∇u1 +∇uT
1 , can then be obtained using (7.7). Exploiting

(7.3), we see that the first-order stress tensor is given by

τ 1 = Re

[
˜̇γ

(0)
1 +

1 + iDe2

1 + iDe1

˜̇γ
(1)
1

]
. (7.11)

If σ = −pI + τ refers to the total stress tensor, integration of ∇ · σ = 0 leads to

the sum of the forces, f , on the upper and lower sheets (over a period) equal to

zero, i.e. f |y=y1 + f |y=y2 = 0. At leading order, the horizontal component of this

relationship is ∫ 2π

0

τ1xy|y=0dx =

∫ 2π

0

τ1xy|y=hdx, (7.12)

which yields C1 = 0. We finally determine the relative velocity by insisting the

sheets be force-free. Typically, for each sheet, one must sum the forces on both

the inner and outer surfaces. However, the outer problem is force-free for all U∆1

[59]. The net force on the upper sheet is therefore given by

F1x = −
∫ 2π

0

a′′0(h)dx = −2πU∆1/h, (7.13)

and hence U∆1 is zero, which is expected due to the ε → −ε symmetry of the

system. With C1 and U∆1 equal to zero then a0 = 0 (see (7.8)) therefore we

have no time-averaged flow and we get a simplified relation between stress and

strain-rate in Fourier space as

τ̃ 1 =
1 + iDe2

1 + iDe1

˜̇γ1. (7.14)

7.3.2 Second-order solution

The second-order component of (6.3) is given by(
1 + De1

∂

∂t

)
τ 2 −

(
1 + De2

∂

∂t

)
γ2 = De1

(
∇uT

1 · τ 1 + τ 1 ·∇u1 − u1 ·∇τ
)

−De2

(
∇uT

1 · γ1 + γ1 ·∇u1 − u1 ·∇γ1

)
.

(7.15)



98

The only part of the streamfunction, ψ2, that will contribute to the force on the

sheets at second order is its mean value in x. Using (7.14), the mean value of

(7.15) is given by

〈τ 2〉 − 〈γ2〉 = Re

[
De1 −De2

2(1 + iDe1)

(
∇ũT∗

1 · ˜̇γ1 + ˜̇γ1 ·∇ũ∗1 − ũ∗1 ·∇˜̇γ1

) ]
, (7.16)

where *’s indicate complex conjugates, and 〈...〉 denotes averaging over one period

in x. The right hand side of (7.16) can then be computed using the first-order

streamfunction. Upon taking the divergence and the curl of (7.16), we obtain

∇4〈ψ2〉 =
De1 −De2

1 + De2
1

d2

dy2
G(y;h, φ), (7.17)

where

G(y;h, φ) =
1

2

[
− a′1(y)

(
De1a

′′
1(y) + 3b′′1(y)

)
+ b′1(y)

(
3a′′1(y)−De1b

′′
1(y)

)
+ a1(y)

(
− 2b′1(y)−De1a

′′′
1 (y) + b′′′1 (y)

)
+ b1(y)

(
2a′1(y)− a′′′1 (y)−De1b

′′′
1 (y)

)]
. (7.18)

The second-order components of the boundary conditions are

∇ψ2|y=0 = −∇(U∆2y)− sin(z − φ/2)∇
(
∂ψ1

∂y

) ∣∣∣
y=0

, (7.19)

∇ψ2|y=h = ∇(U∆2y)− sin(z + φ/2)∇
(
∂ψ1

∂y

) ∣∣∣
y=h

. (7.20)

Taking the mean value of (7.19) and (7.20) yields

∂〈ψ2〉
∂x

∣∣∣
y=0

= 0, (7.21)

∂〈ψ2〉
∂y

∣∣∣
y=0

=
1

2

[
−U∆2 +

cos2(φ
2
)(−h+ sinhh)

h+ sinhh
+

sin2(φ
2
)(h+ sinhh)

−h+ sinhh

]
, (7.22)

∂〈ψ2〉
∂x

∣∣∣
y=h

= 0, (7.23)

∂〈ψ2〉
∂y

∣∣∣
y=h

=
1

2

[
U∆2 +

cos2(φ
2
)(−h+ sinhh)

h+ sinhh
+

sin2(φ
2
)(h+ sinhh)

−h+ sinhh

]
. (7.24)
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Solving (7.17) with the above boundary conditions leads to the solution

〈ψ2〉 = C2y
2

(
y − 3h

2

)
+
U∆2y(y − h)

2h
+
y(sinhh− h) cos2 φ

2

2(h+ sinhh)
+
y(sinhh+ h) sin2 φ

2

2(−h+ sinhh)

+
De1 −De2

1 + De2
1

[
y(y − 2h)

2h

∫
Gdy|y=0 −

y2

2h

∫
Gdy|y=h +

∫ ∫
Gdy2

]
.

(7.25)

To find the unknown constant C2 we again turn to dynamical considerations.

Using integration by parts, it is straightforward to get that the force on the bottom

sheet, to O(ε2), is given by

F2x =

∫ 2π

0

〈τ2xy〉|y=0dx, (7.26)

and only the mean component of the second-order stress, 〈τ2xy〉, contributes to

the net force. A similar relationship holds for the force on the upper sheet. We

then proceed by obtaining 〈τ2xy〉 from (7.16), where 〈γ̇2〉 = ∇〈u2〉 + ∇〈u2〉T

and 〈u2〉 = [∂〈ψ2〉/∂y,−∂〈ψ2〉/∂x]T. Exploiting that f |y=y1 = −f |y=y2 we obtain

C2 = 0, and the net force on the upper sheet is finally given by

F2x = −2πU∆2

h
+ 4π

(
De1 −De2

1 + De2
1

)
A(h) sinφ, A(h) =

h coshh+ sinhh

cosh(2h)− 2h2 − 1
·

(7.27)

7.4 Results

7.4.1 Synchronization

It is insightful first to consider the nature of the force which arises if the

sheets are not permitted to move relative to each other but instead held with a fixed

phase difference. If U∆2 = 0, then the force in (7.27) is zero for φ = 0,±π. The

function A(h), governing the variation in the force amplitude with mean distance

h, is positive definite and decays exponentially with h, while becoming unbounded

near h = 0 (see Fig. 7.2a). Since De1 > De2, we see that the force F2x ∝ sinφ.

This indicates that φ = 0 is a stable fixed point while φ = ±π are unstable, and

therefore we expect in-phase synchronization to occur.



100

We next observe that we obtain here a nonzero force on sheets with front/back

symmetric waveforms. In the case of a Newtonian fluid, this is forbidden because of

kinematic reversibility, and the force is identically zero unless the front/back sym-

metry is broken [25, 68]. The other symmetry, with respect to the x-axis, is always

assumed to be true in order to enforce swimming along a straight line. Indeed, in

a Newtonian fluid, for any system with both vertical and horizontal symmetry one

can reflect about both axes of symmetry then reverse the kinematics to obtain an

identical conformation with the opposite force necessitating Fx = 0 (our calcula-

tions confirm this by setting De1 = De2 = 0 in 7.27). In a viscoelastic fluid, time

is no longer merely a parameter, and therefore the flow is no longer kinematically

reversible, thereby permitting a nonzero force.

If instead of holding the sheets fixed, we let them move, we then have

to enforce the force-free condition, and thus we obtain the relative speed U∆2 =

hF s
2x/2π, where F s

2x is the static force incurred when U∆2 = 0 in (7.27). The

remarkable result is that, since the force occurs in a viscoelastic fluid at second

order in the wave amplitude, the phase will evolve on a time scale varying as

t ∼ ε−2. In a Newtonian fluid, was shown that the force is always zero to second

order in ε, for any shape, and first appears at fourth order for shapes with broken

front-back symmetry [68]. This means that in a Newtonian fluid, at best, the phase

will evolve to a phase-locked configuration on a time scale varying as t ∼ ε−4. In

complex fluids, synchronization is therefore seen to take place on asymptotically

faster time scales than in a Newtonian fluid.

We now solve analytically for the time-evolution of the phase. Since to

leading order φ̇ = −ε2U∆2, we obtain a differential equation for the evolution for

φ as
dφ

dt
= −ε22h

(
De1 −De2

1 + De2
1

)
A(h) sinφ, (7.28)

which, for constant h, can be integrated to yield an analytical formula for the

phase as

φ(t) = 2 tan−1

{
tan

(
φ0

2

)
exp

[
−ε22hA(h)

(
De1 −De2

1 + De2
1

)
t

]}
· (7.29)

Given that De1 > De2, we see that φ ∼ ±e−t near the φ = 0 fixed point, meaning
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Figure 7.2: a) Amplitude A of the phase-locking force decays exponentially with
the separation distance, h (7.27). b) Time-evolution of the phase angle φ(t) from
various initial conditions towards the stable in-phase conformation ((7.29) with
ε = 0.1, h = 2, De1 = 100 and De2 = 10).

it is stable; however, near the φ = ±π fixed points, φ∓ π ∼ ∓et meaning they are

unstable and hence the phase converges to φ = 0 for all initial conditions. The time-

evolution of the phase from various initial positions, assuming a constant separation

between the sheets of h = 2, is plotted in Fig. 7.2b with De1 = 100, De2 = 10

and ε = 0.1. All initial conformations evolve to stable in-phase synchrony. In the

Newtonian case, the stability of the in-phase versus opposite-phase conformation

is purely a matter of geometry, regardless of considerations of energy dissipation,

and in fact two swimmers can evolve to a stable conformation which maximizes

the energy dissipated [25, 68]. In contrast, in a viscoelastic fluid we find that with

no asymmetry the system naturally evolves to an in-phase conformation which, as

we show below, coincides with the conformation of minimal viscous dissipation.

7.4.2 Energy dissipation

The energy dissipated in the fluid between two sheets is given by integrating

the dissipation density, τ : γ, over the volume. The leading order component is

given by

τ 1 : γ1 = Re [τ̃ 1] : Re
[
˜̇γ1

]
=

1 + De1De2

1 + De2
1

γ1 : γ1 −
1

2

De1 −De2

1 + De2
1

=
[
˜̇γ1 : ˜̇γ1

]
,

(7.30)
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where =[...] denotes the imaginary part. The second term in (7.30) integrates to

zero over a period, thus, to leading order, the energy dissipation rate per unit

depth over one period is given by

Ė = ε2
1 + De1De2

1 + De2
1

∫ 2π

0

∫ y2

y1

γ1 : γ1dxdy. (7.31)

The result of (7.31) is merely a scalar multiple of the Newtonian dissipation cal-

culated by [13], which is minimum at the in-phase conformation, and maximum

in the case of opposite-phase (and decays to zero as h → 0). We see therefore

that in a viscoelastic fluid the system is driven towards a state of minimum energy

dissipation.

7.4.3 Vertical force

Since the evolution of the phase depends on the separation distance h, it

is informative to analyze the magnitude of vertical forces between the sheets. We

now proceed to compute the vertical force from the inner problem with the first

and second-order streamfunctions derived here, and we use the solutions of the

outer flow problem from the literature [59]. The vertical force on the bottom sheet

to first order is given by

F1y =

∫ 2π

0

(
σ122|y=0 − σouter

122
|y=0

)
dx. (7.32)

Both components are individually zero, hence the force is zero. At second order,

the outer flow yields no force for all U∆2, therefore the force on the bottom sheet

is given by

F2y =

∫ 2π

0

[
〈τ2yy〉 −

∫
∂〈τ2yy〉
∂y

dy

] ∣∣∣
y=0

dx

= 2π

(
De1 −De2

1 + De2
1

)[
B1(h) + B2(h) cosφ

]
, (7.33)

where

B1(h) =
2 [1− (1 + 2h2) cosh(2h)− 2h sinh(2h)]

(cosh(2h)− 1− 2h2)2 , (7.34)

B2(h) =
(4h2 − 1) coshh+ cosh(3h) + 2h [3 + 2h2 + cosh(2h)] sinhh

(cosh(2h)− 2h2 − 1)2 ·(7.35)
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Figure 7.3: a) The leading-order vertical force on the lower sheet, F2y(h), displays
a complex behavior which depends on both phase difference φ and mean separation
h. Plotted for φ = {0, π/16, π/8, π/4, π/2 (shown dashed), 3π/4, π} (arbitrary
units). b) Equilibrium separation, heq, defined as the distance at which the vertical
force is zero for a given φ.

The vertical component of the force is a cosine function in φ which is am-

plified by the positive-definite function B2 and shifted by the negative-definite

function B1. Both functions become unbounded as h→ 0, and both tend asymp-

totically to zero as h → ∞. In Fig. 7.3a we plot the vertical force as a function

of the distance between the sheets, h, for various φ (arbitrary units). If the phase

difference is above π/2 (φ = π/2 is shown dashed), then the sheets will be re-

pelled from each other. However, as the sheets get closer in phase there arises a

finite equilibrium separation, heq(φ), where F2y = 0. If the sheets are separated by

h < heq, they will be repelled while if h > heq, they will be attracted. In Fig. 7.3b

we plot heq as a function of phase difference and we see that the equilibrium sepa-

ration decreases monotonically with decreasing φ and that when the sheets are in

phase the vertical force acting on them is strictly attractive. Indeed, for φ = 0, in

the limit h→ 0 we see that F2y = (3π/4)(De1−De2)/(1 + De2
1). Note h is allowed

to approach zero only when φ = 0, as otherwise the sheets would overlap.

7.4.4 Coupled dynamics

In the idealized two-dimensional case studied here, the swimmer mobility

in the vertical direction is strictly zero and hence only motion in the horizontal

direction occurs. In the slender-body limit, which is the one relevant for the
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Figure 7.4: Coupled time evolution of the distance between the swimmers, h(t)
(a), and the phase difference, φ(t) (b). The initial condition is h0 = 2, and the
mobility in y is taken to be half of that in x: φ0 = 3π/4 (dotted line), φ0 = π/2
(dashed line), φ0 = π/8 (solid line). Here ε = 0.1, De1 = 100 and De2 = 10.

dynamics of three-dimensional flagellar filaments of swimming cells, the viscous

mobility in the direction perpendicular to the length of the flagellum is about half

of that in the parallel direction [83]. In order to propose a simple model for the

coupled vertical/horizontal motion of the sheets, we proceed to use this ratio in

our model, and simply assume

dh

dt
= −ε

2h

4π
F s

2y. (7.36)

Given the behavior of the vertical force, we expect the swimmers to be pushed apart

slightly if their phase difference is large, then, as the phase difference decreases, to

be attracted to a final synchronized conformation where the flagella are as close

together as possible, as seen experimentally [4]. We can numerically integrate both

differential equations, (7.28) and (7.36), to obtain the coupled time evolution of

h(t), shown in Fig. 7.4a, and φ(t), shown in Fig. 7.4b, for an initial separation

h0 = 2. We see that for a small enough initial angle, the sheets are monotonically

attracted to each-other (φ0 = π/8, solid line). However, for larger initial phase

differences, the sheets are initially repelled, before reaching a maximum separation,

and eventually being drawn together closely. This is illustrated for φ0 = π/2

(dashed line) and φ0 = 3π/4 (dotted line). The time scale for the evolution of the

phase angle is similar to the constant separation case, and all initial conformations

converge to the stable in-phase conformation.
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7.5 Conclusion

In this chapter we used a two-dimensional model to address analytically

the synchronization of two swimmers in a viscoelastic (Oldroyd-B) fluid. In New-

tonian fluids, a front-back asymmetry in the swimmer’s waveform is required for

synchronization. In contrast, in a viscoelastic fluid, phase-locking occurs even for

swimmers displaying front/back symmetry. The two swimmers are driven into

a stable in-phase conformation where a minimum of mechanical energy is dis-

sipated, contrary to the Newtonian case where the stable conformation can be

either in-phase or opposite-phase depending only on the waveform geometry. In

addition, the evolution to a phase-locked conformation in a viscoelastic fluid occurs

on asymptotically faster time scales than in a Newtonian fluid.

From a biological standpoint, the results of our model indicate that, for

example, mammalian spermatozoa progressing through cervical mucus would be

expected to synchronize passively, thereby reducing the work they are doing against

the surrounding fluid as compared to when swimming isolated. This net energy

savings could then potentially be used to increase their wave speeds, and hence

swimming speed, as is observed experimentally [4]. The asymptotically larger

forces between swimmers might also lead to large-scale coherence in the dynamics

of cell suspensions which is more pronounced in complex fluids than in Newtonian

environments.

Chapter 7, in part, is a reprint of the material as it appears in the Journal of

Fluid Mechanics 2010. Elfring, Gwynn J.; Pak, On Shun; Lauga, Eric, Cambridge

University Press, 2010. The dissertation author was the primary investigator and

author of this paper.



Chapter 8

Buckling instability of squeezed

droplets

8.1 Introduction

The interaction between liquids and solids is ubiquitous in our daily life,

from droplets on a windshield to ink in our printers [84]. Capillary phenomena

arise as a consequence of intermolecular forces and manifest themselves on large

scales by the tendency of liquids to minimize their surface area [85]. The theory

for the shapes of droplets was proposed over two hundred years ago by Young [86]

and Laplace [87], and since that time much has been learned on the wetting of

solids by liquids [88, 89]. Of interest to us in this chapter is why certain droplet

configurations may be unstable. Plateau observed that a liquid jet would ulti-

mately break up into droplets because the energy of the initial cylindrical shape

is lowered by long wavelength perturbations [90]. The dynamics of this instability

was later elucidated by Lord Rayleigh [91] while more recent work has explored

the finite-time singularity at the break-up [92].

A somewhat lesser known observation made by Plateau, in the same work

[90], details how a droplet suspended between two equal circular disks (a so-called

liquid bridge) loses axisymmetry when sufficiently compressed. Plateau [90] ob-

served that the onset of this shape instability occurs when the profile of the droplet

106
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at the point of contact with the pinned surface becomes tangent to the disks, hence

making for an apparent droplet contact angle of π (see also the review in Ref. [93]).

An analytical solution for the shape of a liquid bridge was put forward by Howe

[94] along with an initial analysis of the instability [94, 95]. It was later shown

formally that if the axisymmetric droplet shape is described in polar coordinates

by a single valued radius function then it is always stable to asymmetric perturba-

tions for pinned boundary conditions [96]. Such a single-valued description breaks

down when the droplet becomes tangent to the disks. Russo and Steen showed

then that past this point the droplet is unstable to asymmetric perturbations [97].

Subsequent works [98, 99, 100, 101] further elucidated the space of stability

of these liquid bridges for which the results of Plateau is only one of many. In

particular, it was similarly shown that a pinned droplet deformed by a gravitational

field, rather than by compression from an upper surface, will also transition to an

asymmetric shape past the point when the droplet profile is tangent to the pinning

line at the point of contact[93]. A related shape instability arises when two free-

surfaces are squeezed together [102]. If two droplets, or bubbles [103, 104], are

brought into contact, then initially the interface separating them is perpendicular

to the direction of compression and their shapes deform in an axisymmetric fashion.

Past a critical conformation the separating interface rotates and the droplets, or

bubbles, lose axisymmetry. A general framework for the stability of equilibrium

states of capillary phenomena is provided in the text by Myshkis et al. [105].

In recent experiments by Nagy and Neitzel, droplets pinned to a bottom

surface and compressed by a perfectly non-wetting surface from above have been

shown to develop a geometric asymmetry at a critical deformation [106]. Experi-

mentally, the perfectly non-wetting condition on the top surface is obtained using

a thin layer of air maintained by thermocapillary convection between the cold sur-

face (of arbitrary contact angle) and the hot droplet, leading to an effective contact

angle of 180◦ [107, 108]. On the bottom surface, pinned boundary conditions are

achieved by extruding liquid through a capillary, but one can also imagine a droplet

confined to the top of a small post or a disk. When the droplet is compressed by

displacing the top surface, below a threshold the droplet maintains axisymmetry,
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a) b) c)

Figure 8.1: Images of a water droplet at the tip of a straw compressed against a
hydrophobic surface; (a): The droplet after initial contact, with pinned boundary
conditions at the bottom and a fixed hydrophobic contact angle at the top; (b):
Axisymmetric deformation of the droplet prior to the onset of shape instability;
(c) Asymmetric bulge-like shape of the droplet after the critical compression.

but upon reaching a critical conformation, the droplet bulges to one side indicat-

ing a shape instability. Subsequent Surface Evolver [109] simulations of the same

setup verified the geometric asymmetry [106].

In this chapter we show that the shape instability observed by Nagy and

Neitzel [106] arises with the same geometrical criterion as that of the Plateau

liquid bridge, namely when the droplet surface becomes tangent to the pinned

surface at the point of contact (apparent contact angle of π). We demonstrate

that this instability criterion does not depend on the droplet contact angle on the

upper surface. We reveal, however, that that the geometric instability criterion

no longer holds when the deforming surface is not flat, as is illustrated with a

compression of the droplet by a conical surface. We first use a simple table-

top experimental example to show that the shape instability occurs even if the

deforming surface is not perfectly non-wetting. We then employ a two-dimensional

analysis to provide a preliminary analytical approach to the instability, and derive

the stability criterion and its independence on the top contact angle. We next

carry out a three-dimensional perturbation energetic analysis confirming the two-

dimensional theory, and demonstrating the breakdown of the geometric stability

criterion when the deforming surface is no longer flat. We finally utilize numerical

computations using Surface Evolver to confirm our theoretical predictions.
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8.2 Table-top experiments

We first performed simple table-top experiments in an effort to observe

whether the shape instability occurs in the case where the compressing surface is

not perfectly non-wetting. The results are shown in Fig. 8.1. We use a plastic straw

extruding water, coated with hydrophobic spray to delay its wetting prior to the

shape instability. The water droplet is put in contact with a slightly hydrophobic

surface. In Fig. 8.1 we see that initially the droplet is symmetric (a), and remains

symmetric under small deformations (b). When the droplet has been sufficiently

squeezed, it rapidly develops a pronounced geometric asymmetry (c).

8.3 Energetic analysis

Consider a droplet pinned along one surface, which we will call the bottom

surface with a constant circular area. The droplet has an volume V which remains

constant by conservation of mass. We assume that the droplet is smaller than the

capillary length and hence ignore gravity [84]. The droplet shape is the one which

minimizes the functional

E =

∫
S

γdS −
∫
V

pdV, (8.1)

where γ is the interfacial tension coefficient which is integrated over all interfaces

S and the pressure p is a Lagrange multiplier enforcing mass conservation. We

further assume that the droplet is in contact with a second surface, parallel to the

bottom surface, and which we will refer to as the top surface. That surface, of

area W , does not pin the drop but instead the droplet contact line is free to move

along the top surface with the set contact angle θ. We ignore effects arising from

contact angle hysteresis. In that case the relevant surface energy now becomes

E = γsv(W − Ssl) + γslSsl + Slvγlv + const., (8.2)

where the subscripts sv, sl and lv indicate the solid-vapor, solid-liquid and liquid-

vapor interfaces respectively. The surface energy of the pinned interface is un-

changing and thus rolled into the constant term. Using Young’s equation for the
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Figure 8.2: Schematic representation of the droplet in various stages of defor-
mation, for a contact angle θ = 2π/3. (a): No deformation; (b): Droplet at the
critical conformation, R = Rc; (c): Asymmetric droplet post threshold R = Ra

(δ > 0); (d): Symmetric droplet post threshold R = Rs (δ > 0). The droplet
volume (termed A in 2D, V in 3D) remains constant; the initial radius Ri and
surface area Si are thus set by the value of the droplet volume.

equilibrium contact angle θ on the top surface [84], Eq. (8.2) may then be recast

as

E = γlv (Slv − Ssl cos θ) + γsvW + const. (8.3)

Given that W is constant, we see that finding an equilibrium is tantamount to

minimizing the projected surface S = Slv − Ssl cos θ. Note that when the solid

surface is nonwetting, θ = π, and one has thus to minimize S = Ssl + Slv. From

this point on we neglect the constant terms in Eq. (8.3), and drop the lv subscript

for the liquid-vapor interfacial coefficient for simplicity. Hence we write E = γS.

8.3.1 Two-dimensional analysis

Flat surface

In order to get a sense of the essential physics of the droplet instability

we first illustrate the process in two dimensions. The geometric criterion for the
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instability of symmetric solutions is easier to derive and visualize than in three-

dimensions, which is a calculation we will address in the next section.

The setup and notations are illustrated in Fig. 8.2. The volume of the

droplet is denoted V in three dimensions and A in two dimensions, and the inter-

faces are denoted S in both cases. The liquid-vapor interface which minimizes the

total interfacial energy is a surface of constant mean curvature, and thus in 2D it is

circular. We therefore write the shape of the liquid-vapor interface, parameterized

by t in the {r,z} plane, as

r(t) = r0 +R cos(t),

z(t) = z0 +R sin(t), (8.4)

where R is the radius of curvature of the 2D droplet originating from the center

(r0, z0), and t is the polar angle about that point measured positive counterclock-

wise from the point where the droplet is locally parallel to the z axis on the

right-hand side. The contact point where the droplet is pinned occurs at t = t1,

and the point of contact with the wall W occurs at t = t2. We define ∆t = t2 − t1
so that the surface area of the liquid-vapor portion of the droplet is Slv = 2R∆t.

The contact area with the bottom surface is assumed to be of length L = 2r1. We

subsequently employ the subscript 1 or 2 on any function of t to denote the func-

tion evaluated at t1 or t2 respectively. With this in mind, the height between the

two surfaces (clearance) is given by h = z2−z1. We use θ to denote the equilibrium

contact angle of the droplet on the top surface, and β the apparent contact angle

with the bottom, horizontal, surface (where the contact line is pinned).

When the top surface is not in contact with the droplet, as in Fig. 8.2a, then

t2 is taken to lie on the axis of symmetry of the undeformed droplet (t2 = π/2). The

initial droplet volume, which remains constant, is A = (R2
i /2)(2∆t+sin[2π−2∆t]),

and the pinning length L2 = 4R2
i (1 − sin2[(π − 2∆t)/2]) closes the system. The

droplet will form a half circle when L = 4
√
A/2π.

When there is contact with the wall, the droplet takes the shape illustrated

in Fig. 8.2b, and two ‘disconnected’ liquid-vapor surfaces are present. In order to

maintain mechanical equilibrium these two surfaces must have an identical radius

of curvature, R. The point t2 is located where the droplet is in contact with the
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surface, and therefore we necessarily have t2 = θ − π/2. If the apparent contact

angle at the pinned line, β, satisfies β ≤ π, in other words t1 ≥ −π/2, we will show

below that the only solution for the two-dimensional droplet is left-right symmetric

(the details below will demonstrate that there exists no asymmetric solution).

At the critical point (denoted with a subscript c), which is depicted in

Fig. 8.2b, we have t1 = tc1 = −π/2 and ∆t = θ. The total surface energy is

then given by Ec/γ = (2ΘRc − L cos θ), where Θ ≡ θ − cos θ sin θ. Here the

radius Rc is given by conservation of volume, A = ΘR2
c + LRc(1 − cos θ); this

quadratic equation for Rc can be solved to obtain the critical radius for a given

initial droplet volume, pinning length and contact angle. The critical gap height,

hc = z2−zc1 = Rc(1−cos θ), increases monotonically with the contact angle (which

ranges from zero to θ = π).

If we now reduce the gap height by some amount δ, so that h = hc− δ, two

possibilities exist for the droplet shape, either asymmetric (Fig. 8.2c) or symmetric

(Fig. 8.2d). In each case the left and right sides of the droplet need to have the

same radius of curvature to ensure mechanical stability. From this point on all

lengths will be non-dimensionalized by the critical radius Rc, and hence Rc = 1.

In the asymmetric case, denoted by the subscript a, one of the circular

ends moves in and the other moves out (see Fig. 8.2c). The droplet volume in this

instance is A = ΘR2
a + hL, meaning that R2

a = 1 + Lδ/Θ. If we take δ < 0 we

see that Ra < 1 which is impossible as the droplet would not span the required

length h, hence there can be no asymmetric shape for δ < 0. Further, we see that

for δ > 0, Ra > 1. The relevant surface energy is given by Ea/γ = 2ΘRa − L cos θ

in that case.

Alternatively, the droplet may remain symmetric (subscript s) past the

critical point, as shown in Fig. 8.2d. Conservation of volume leads to A = R2
s[Θ−

π/2 − t1 + cos t1(sin t1 − 2 cos θ)] + hL, where we set the gap height to be h =

1 − cos θ − δ, and hence t1 = − sin−1 [cos θ + h/Rs]. Note that when in contact

with hydrophilic surfaces, θ < π/2, droplets undergo a inversion of the concavity

of the liquid-vapor interface for larger negative values of δ where this geometry

no longer holds. The relevant surface energy is now give by Es/γ = 2(Θ − t1 −
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π/2)Rs − (L− 2Rs cos t1) cos θ.

The symmetric and asymmetric cases are the only two possible mechan-

ically stable solutions. The one which appears in equilibrium is the one which

minimizes surface energy. Solving for Rs and Es, can in general only be done

numerically. However, the difference in the surface energies between the symmet-

ric and asymmetric configurations, ∆E = Es − Ea, may be formally bounded as

follows

∆E

2γRs

= Θ + λ−
√
Θ2 +Θ(λ+ Γ ) ≥ 0, (8.5)

where Θ ≡ θ−sin θ cos θ, λ = α−sinα cos θ and Γ = (cosα−cos θ) sinα and while

θ ∈ [0, π] and α = −(ts1 + π/2) ∈ [0, θ] (the superscript s indicates the symmetric

contact point). We see that evidently Θ ≥ 0 and λ ≥ 0 as θ ≥ sin θ. Rearranging

we obtain

λ− Γ ≥ −λ
2

Θ
. (8.6)

Substituting back, we find

α− sinα cosα ≥ −λ
2

Θ
, (8.7)

and since the left-hand side is non-negative the inequality is proved. The equality

holds only at the critical point when ts1 = tc1 = −π/2, in other words when δ = 0

and Rs = 1. We have thus proven that, past the critical point (δ > 0), the

asymmetric conformation is always the droplet shape which minimizes the free

energy, independently of the value of the contact angle on the top surface. Droplets

after this critical compression are thus expected to always display an asymmetric

shape.

For small values of δ, the value of Rs can be found by hand, and provided

the contact angle θ is not too small we obtain

Rs = 1− 1

1− cos θ
δ +

(L[1− cos θ] + 2Θ)2

256 sin10(θ/2)
δ2 +O(δ3), (8.8)

Es
γ

= 2Θ − L cos θ + Lδ +
L(1− cos θ) +Θ

4 sin4(θ/2)
δ2 +O(δ3). (8.9)
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Figure 8.3: Surface energy, E, vs. change in separation, δ, with L = 2 and
θ = 2π/3 (two-dimensional case). The solid lines are exact solutions and the
dashed line is asymptotic. The inset shows the slope of E. We see that when
δ = 0 (indicated by the dotted line) the surface energy bifurcates into symmetric
and asymmetric conformations. The asymmetric conformation (solid black line)
has lower surface energy than the asymmetric conformation (solid gray line) and
hence is the energetically preferable state.

We then get

∆E

γ
=

(L[1− cos θ] + 2Θ)2

16Θ sin4(θ/2)
δ2 +O(δ3) ≥ 0. (8.10)

Notably, the force required to deform the droplet is proportional to the

spatial rate of change of the surface area hence, for δ > 0 we find

f =
∂E

∂δ
= γ

L√
1 + Lδ/Θ

· (8.11)

This may be recast in terms of the pressure jump f/L = ∆p = γ/Ra which recovers

the Young-Laplace equation in two dimensions. Since the radius of curvature has

increased, the pressure has decreased in this configuration. The slope of the force

at the critical point df/dδ|δ=0 = −γL2/2Θ. As might be physically expected the

pressure drop is least steep for large L and θ = π.

The two-dimensional results are illustrated in Fig. 8.3 where we plot the sur-

face energies, E (main plot), and the energy slope (force, inset) against the change

in gap height from the critical conformation, δ (for the values L = 2 and θ = 2π/3).
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The surface energies increase monotonically as the droplet is progressively com-

pressed. Beyond the transition point (δ = 0) both the asymmetric conformation

(black) and the symmetric conformation (gray) are geometrically permissible al-

though the asymmetric conformation is always energetically favorable. Note that

the solid gray line is obtained numerically for the symmetric conformation whereas

the dashed line is the asymptotic result.

As seen above, the slope of the energy is the force required to deform the

droplet. We therefore see that increasingly more force is required to compress the

droplet up to the critical conformation, but that beyond the transition point the

more we compress the droplet the less force is required to deform it. The non-

monotonic force profile is reminiscent of the non-monotonic pressure required to

inflate a balloon [110]. For squeezed droplets, that result means that the droplet

will buckle at the transition point if an increasing (or constant) load is applied.

Unlike the classic Euler-buckling of beams [67] which can support an increasing

load after a buckling event, the buckling instability of a droplet is catastrophic, a

so-called limit-point instability, as the droplet can no longer sustain the force at

the point of instability and collapses. In the context of superhydrophobic surfaces

in which a droplet rests on a series of posts this would be what has been referred

to as the impalement transition between the Cassie and Wenzel states [89, 111].

Precisely the same behavior will be obtained in three dimensions.

Inclined surface

How different is the transition to an asymmetric shape is the upper surface

is not flat? Since we do not want to embed a broken-symmetry in the top surface we

insist that the top surface remains axisymmetric, the simplest example of which is a

cone of slope χ – or a wedge in two dimensions. One finds that a droplet undergoes

a similar symmetric to asymmetric bifurcation of possible solutions precisely at the

moment when the droplet on the bottom surface (at t = t1) is parallel to the upper

surface, in other words, when the apparent contact angle with the bottom (pinned)

surface reaches the value β = π − χ. As we show below, this two-dimensional

criterion is no longer indicative of the onset of the instability in three dimensions
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where the critical compression becomes a more complex function of the droplet

volume and contact angle. The quantitative agreement between two and three

dimensions is therefore restricted to the case where the top surface is flat.

8.3.2 Three-dimensional analysis

Axisymmetric solution

In three dimensions the problem becomes more complicated due to the

introduction of an second radius of curvature. Unlike the two-dimensional case,

asymmetric analytical extremum are unavailable. We follow here the approach of

Russo and Steen [97] by first assuming that the droplet is axisymmetric, which

yields analytical solutions. We then consider small asymmetric perturbations to

the axisymmetric shapes to find the configuration where the axisymmetric solution

is no longer energy minimizing. Finally in Section 8.4 we use Surface Evolver[109]

simulations to explore the mechanical properties of the asymmetric shapes.

The energy functional, Eq. (8.1), may be written

E =

∫
Slv

γdA−
∫
Ssl

γ cos θdA−
∫
Vl

pdV. (8.12)

The axisymmetric droplet is schematically depicted in Fig. 8.4. It is easier to

integrate V = Vl +Vi and so we have to subtract the volume Vi. A known function

g(r, z) = 0 defines the topology of the top surface. Assuming axisymmetry and

parameterizing the shape by t we may recast the integral as

E =

∫ t2

t1

π
(

2γr
√
ṙ2 + ż2 − pr2ż

)
dt

− γ cos θSsl(r2) + pVi(r2), (8.13)

or simply E =
∫ t2
t1
F (r, ṙ, ż, t)dt+ f(r2), where again numbered subscripts indicate

evaluation at t1 or t2 and the over-dot represents a partial derivative with respect

to t. Note that since the topology of the upper surface is known then the only

unknown for Ssl and Vi is the location of the contact point, r2.

Extremizing Eq. (8.13) leads to the Young-Laplace equation

d

dt

[
2γrż√
ṙ2 + ż2

− pr2

]
= 0, (8.14)
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Figure 8.4: Schematic representation of an axisymmetric pinned droplet com-
pressed by a cone of slope χ. The angle θ indicates the contact angle with the top
surface (t = t2) and β the apparent contact angle with the bottom surface (t = t1).
Here Vl is the volume of the liquid and Vi is the volume of revolution inside the
cone from its tip to t2.

and the boundary condition(
∂f

∂r2

+
∂F

∂ṙ
− ∂F

∂ż

∂g/∂r

∂g/∂z

)∣∣∣∣
t=t2

= 0. (8.15)

Eq. (8.14) was shown by Howe [94], as restated in English by Gillette and

Dyson [95], to have a solution

r(t) = Λ
√

1− sin2Ω sin2 t, (8.16a)

z(t) = Λ[E2(Ω, t) + E1(Ω, t) cosΩ], (8.16b)

where

Ei =

∫ t

0

(1− sin2Ω sin t′)−3/2+idt′, (8.17)

are elliptic integrals of the first and second kind. The solution described by

Eq. (8.16) has two parameters: the first one, Λ, with units of length, merely acts

as a scaling factor; the second parameter, Ω, which is dimensionless, modulates

the shape, and may be interpreted through the mean curvature H as follows

cosΩ =
1− ΛH
ΛH

· (8.18)
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From this point on we rescale all distances by Λ (equivalently we set Λ = 1). Note

that using these parameters, the pressure is then given by

p

γ
=

2

Λ(1 + cosΩ)
· (8.19)

We note that the energy functional in Eq. (8.13) may be recast using a unit speed

parameter s (arclength of the generatrix) [105] which then simplifies the formu-

lae shown here; however, because the analytical axisymmetric solution is nonunit

speed[100, 105] we leave the formulation general.

Boundary conditions

If the upper surface is a cone with slope χ as in Fig. 8.4 then it is described

by

g(r, z) = r tanχ− (z − h) = 0, (8.20)

where h is the smallest separation between the pinned surface and g. The flat wall

is included here as the special case χ = 0. We now have

f(r2) = −γ cos θ
πr2

2

cosχ
+ p

πr3
2

3
tanχ. (8.21)

Using Eq. (8.21) into Eq. (8.15) we obtain the contact angle condition

ż2 = ṙ2 tan(θ + χ). (8.22)

By differentiating our solution, Eq. (8.16), and substituting into Eq. (8.22)

we can then obtain the location of the contact point as

t2 =
1

2

(
θ + χ− arccos

[
− cos(θ + χ) cot

(
Ω

2

)2
])

. (8.23)

Note that if we select θ = π/2− χ then we obtain t2 = 0 as expected. Also, since

the droplet shape is symmetric about the point t = 0, the starting point (pinned

contact point on the bottom surface) is given by the negative of the formula for

t2, and we have

t1 =
1

2

(
−β + arccos

[
− cos β cot

[
Ω

2

]2
])

, (8.24)
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where in Eq. (8.24) β is the apparent contact angle with the horizontal bottom

surface. The point where β = π is referred to as the Steiner limit[97]. In the

two-dimensional analysis, recall that we obtained that the droplet goes unstable

when the apparent contact angle, β, is parallel to the upper surface and hence

t1 = tc1 when β = π − χ. We show below that this is true only when the wall is

flat χ = 0, but does not remain valid when χ 6= 0.

Physical contact

If the slope of the cone is nonzero, χ 6= 0, we run the risk of having physical

contact between the upper surface and lower surface prior to the instability hence

we have to limit the regime of Ω and t1 (or β) to exclude this possibility. Since the

parameter Λ merely scales the shape it is inconsequential. Solving the equation

z(t2, Ω)− z(t1, Ω) = r(t2, Ω) tanχ, (8.25)

yields the limit of physically realizable solutions in the Ω-t1 plane.

Perturbations

In order to observe the instability of axisymmetric shapes, following the

method of Russo and Steen [97], we add to our axisymmetric solution (defined

by r(t) and z(t)) small, non-axisymmetric perturbations defined by the functions

F (t, φ) and G(t, φ) which contain explicit dependence on the azimuthal angle φ.

The liquid-vapor interface is thus given by the following equations

R(t, φ) = r(t) + F (t, φ), (8.26)

Z(t, φ) = z(t) +G(t, φ). (8.27)

The perturbations given by F and G must yield shapes which satisfy the boundary

conditions and preserve volume, ∆Vl ≡ Vl(R,Z)−Vl(r, z) = 0, in order to be viable.

To discover the onset of the instability we solve for tc1(Ω) such that surface

energy of the perturbed shape is equal to the axisymmetric shape ∆E = E(R,Z)−
E(r, z) = 0. This will yield the point of the instability for any axisymmetric shape

Ω. The results of this perturbative analysis are given below while the mathematical
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details are given in Appendix C. The perturbation analysis can only reveal the

onset of the asymmetry; to probe the mechanical properties of the asymmetric

droplets Surface Evolver simulations are used in Section 8.4. Alternatively, other

schemes [100, 101], often developed for liquid bridges, might be adapted for use

with the contact angle boundary condition.

Results

Our theoretical results are illustrated in Fig. 8.5. We plot the dependance

of the critical point at which the axisymmetric state becomes unstable to non-

axisymmetric perturbations, tc1(Ω), with the shape parameter, Ω, for contact an-

gles on the upper surface ranging from π/4 to π. The case of a flat wall is shown in

Fig. 8.5a while the conical surface with χ = π/8 is displayed in Fig. 8.5b. In both

figures, the dotted lines are examples of a paths of constant volume with arrows

indicating the direction of decreasing gap separation.

Plotted in Fig. 8.5 as a dashed line is the Steiner limit which corresponds to

an apparent contact angle on the (bottom) pinned surface of β = π, while the solid

line indicates where the apparent contact angle at the bottom surface is parallel

to the top surface, i.e. β = π − χ. In the case of a flat wall, χ = 0, the two lines

are coincident. For this geometry we see that for any contact angle on the upper

surface the point of instability occurs on or immediately after the Steiner limit.

Since we use only a truncated and restricted series to represent the asymmetric

perturbations (see Appendix C), this results represents an upper bound. Using a

symmetrization argument, Gillete and Dyson showed that the droplets in a liquid

bridge [97, 98, 99, 100, 101], which can be represented by single valued functions

r(z) (in other words droplets prior to the Steiner limit), are stable to axisymmetric

perturbations [96]. There is nothing in their argument that prohibits its application

when we permit r2 to be variable so long as z2 is fixed; however, such a map does

not preserve contact angle. To apply in our case when χ = 0 we must adjust the

contact angle, but it can easily be shown that one can always smoothly change the

contact angle with a vanishing change in the surface area and volume. As lower

and upper bound coincide, we get the final result that, in the flat wall case, the
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Figure 8.5: The onset of the asymmetric instability with varying shape Ω. The
points indicate the limit of stability found by solving ∆E(t1) = 0 for a flat wall
(case a, χ = 0) and a conical top surface (case b, χ = π/8). The contact angle θ
on the top surface varies between π/4 and π by π/4 increments. The dashed line
indicates the point when the apparent contact angle β = π (droplet tangent to the
bottom surface) while the solid line indicates when β = π − χ (bottom contact
line parallel to the top surface); these two limits coincide in the flat wall case of
(a). The dash-dot lines indicate the limit of physically realizable solutions when
χ 6= 0. Our parameter α ∈ (−0.06,−0.29) is selected to give the earliest possible
instability. We see when χ = 0 (flat wall) the limit of stability always corresponds
to β = π, but when χ 6= 0 the data do not always lie on either the β = π − χ or
β = π curves. The dotted lines in each plot are examples of a paths of constant
volume with arrows indicating the direction of decreasing gap separation; they are
further illustrated in Figs. 8.7 and 8.8.
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limit of stability is when the droplet is parallel to the pinned surface at the point

of contact (apparent contact angle of π), similarly to the stability threshold for

liquid bridges and sessile droplets [93, 101].

The case where the top surface is conical (χ = π/8, Fig. 8.5b) shows a

different stability behavior. Because the upper surface may now contact the lower

surface before the droplet goes unstable, a portion of parameter space, depending

on the contact angle, is excluded; this is indicated by the dash-dotted lines. Our

stability calculations show, in this case, that the droplet does not always go unsta-

ble when its surface is parallel to the upper surface (blue solid line) nor when it is

tangent to the lower surface (purple dashed line). The two-dimensional prediction

cannot therefore be extended to three dimensions.

Unlike the flat surface case, the symmetrization argument clearly does not

hold when χ 6= 0 and hence our prediction here for the limit of stability can only be

regarded as an upper bound. We will show in the next section that this prediction

can perform well nevertheless.

8.4 Surface Evolver computations

In order to corroborate our asymptotic predictions we appeal to numerical

simulations using Surface Evolver (SE) [109]. Nagy and Neitzel also used the

same program to confirm the existence of their observed instability in an idealized

setting [106]. In Surface Evolver the droplet shape is discretized into triangular

facets whose positions are defined by a position vector X hence the energy is E(X)

[112]. At a minimum of energy we have ∇E = 0 and the Hessian matrix, H =

∂2E/∂Xi∂Xj, must be positive definite. We run SE simulations of both the flat and

conical geometries and see that, as the separation h approaches a critical separation

hc, the smallest eigenvalue of H approaches zero. If the separation is reduced below

this critical separation, the symmetric form yields negative eigenvalues and the true

minimum is then given by an asymmetric shape.

Appealing to dimensional analysis tells us that we can write the critical

separation in the form hc/r1 = Φ(Vl/r
3
1, θ, χ) [97, 113]. Given that we have an
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Figure 8.6: Critical separation hc vs liquid volume Vl non-dimensionalized by the
pinned radius r1 for θ = {π/4, π/2, 3π/4, π} and χ = 0.

analytical equation for the the limit of stability when the compressing top wall is

flat (χ = 0) in Eq. (8.24), we can plot this function easily for various constant

θ, with results shown in solid lines in Fig. 8.6. We then run Surface Evolver, the

symbols in Fig 8.6 indicate simulations performed where h = hc was stable but

h = 0.99hc unstable. This then demonstrates that the instability occurs precisely

as predicted theoretically in the previous section. We note that, as predicted by

the two-dimensional example, the instability is the least physically apparent for

large volumes and high contact angles, θ → π. In Surface Evolver this manifests

itself by a need to use very high resolution to capture the onset of the stability in

these physical regimes properly.

As a more concrete example we define a specific physical system and illus-

trate its transition to asymmetry. We choose as an example a droplet of volume

V = 4 pinned on a base of radius r1 = 1 (arbitrary units) compressed by a flat

upper surface of contact angle θ = 120◦. Solving for V (Λ,Ω, tc1(Ω)) = 4 and

r(Λ,Ω, tc1(Ω)) = 1 we determine theoretically that Λ ≈ 1.42 and Ω ≈ 2.089 at a

predicted critical separation hc ≈ 0.6923. The constant volume path of this sys-

tem, from h = 1.5hc to hc, was illustrated in parameter space in Fig. 8.5 by dots,

the arrow indicating the direction of increased compression of the droplet.

In Fig. 8.7 we show the results of Surface Evolver simulations of this system
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Figure 8.7: Surface evolver simulations of the onset of the instability for a flat
wall, χ = 0 with V = 4 and r1 = 1. (a): Pressure, p (axis on the left, circles joined
by a dashed line is numerical data and the solid line is analytical), and smallest
eigenvalue of the Hessian matrix, λ1 (squares with axis on right), versus separation
h. We see that the smallest eigenvalue goes to zero, indicating a loss of stability,
precisely when we predict h = hc. The pressure reaches a maximum at the onset
of the shape instability. The cross indicates the pressure past hc is higher if the
conformation were axisymmetric but this point is not physically realized. We have
also inset graphical representations of the droplet for h/hc = 0.6, 0.95, 1, and 1.5.
(b): Surface energy, E, varies monotonically with the gap height. The slope of
the energy (inset) indicates that the force required to deform the droplet peaks
at h = hc past which the droplet becomes asymmetric and the amount of force
required to deform the droplet decreases with increasing displacement. A loaded
droplet would thus buckle at the transition to asymmetry.
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with the separation, h, ranging 1.5hc to 0.6hc. First and foremost, we see that the

instability occurs precisely at the analytically predicted h = hc. The pressure in

the droplet increases until the critical point where the smallest eigenvalue in the

system vanishes, indicating a loss of stability. Beyond the critical point, symmetric

shapes have negative eigenvalues indicating an unstable saddle. The stable shapes

beyond the critical point are asymmetric and have progressively lower pressure. In

Fig. 8.7b we display the variation of the surface energy of the droplet, E, with the

separation distance between the surface; in inset we plot the slope of the energy

(obtained by numerical differentiation of E), i.e. the force acting on both surfaces

resisting compression. The surface energy progressively increases as we deform the

droplet from h = 1.5hc to h = 0.6hc. The slope of the energy (shown in the inset)

indicates that the force required in order to further deform the droplet peaks at the

critical separation and then monotonically decreases with increasing deformation.

Experimentally, if we were to progressively load a droplet with increasing

force, then at the point when the droplet is tangent to the pinned area it would

become mechanically unstable, regardless of the contact angle of the deforming

surface (and true for both two- and three-dimensional systems). The system would

undergo a dynamic collapse past this point. These mechanical considerations are

important for the design of systems such as the one described by Neitzel et al. for

load support in a non-wetting scenario [107, 108, 106]. The peak load occurs

at the critical shape, beyond which the droplet undergoes a limit-point buckling

instability, and collapses.

With χ 6= 0 we are not assured that an axisymmetric instability can occur

prior to contact between the upper and lower surface. Since we do not have a

analytical expression for the unstable point, when we must solve ∆E(Ω, tc1) = 0

given by Eq. (C.16), together with V (Λ,Ω, tc1) = 10 and r(Λ,Ω, tc1) = 1, with

χ = π/8 and θ = 3π/4, to obtain our predictions Λ ≈ 1.575, Ω ≈ 1.84 and

a contact point tc1 ≈ −0.93. We then compute our predicted critical separation

hc = z2 − zc1 − r2 tanχ ≈ 1.18. As discussed the analytical prediction serves as

an upper bound on the energy at the critical point, and we see when compared to

the SE simulations, shown in Fig. 8.8, that the analysis slightly under-predicts the
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Figure 8.8: Surface Evolver simulations of the onset of the instability in the
case where the top surface is conical, χ = π/8. Same notation and parameters
as in Fig. 8.7. The smallest eigenvalue goes to zero, and the pressure reaches a
maximum, just past our calculated stability limit, at about h ≈ 1.04hc. Insets
show graphical representations of the droplet for h/hc = 0.6, 0.95, 1 and 1.5.

critical separation, and we obtain numerically that the droplet becomes asymmetric

when h ≈ 1.038hc.

The path from h = 1.5hc to h = 0.6hc was shown earlier in Fig. 8.5b) by

dotted lines, the cross along this path indicates where the instability occurs in

Surface Evolver. Similarly to the flat wall case, we find the droplet displays a

drop in pressure after losing axisymmetry, indicating the presence of a limit-point

buckling instability.

8.5 Conclusion

In this chapter, motivated by recent experiments by Nagy and Neitzel [106],

we have used theory and computations to show that a droplet, pinned at the

bottom by a surface of finite area, if sufficiently deformed by a surface at the top,

will always develop a shape instability at a critical compression – a result true

for all values of the contact angle between the droplet and the top surface. After
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the critical compression, the droplet will then transition from a symmetric shape

to an asymmetric shape. The force required to deform the droplet peaks at the

critical point then progressively decreases indicative of a buckling instability. If

the deforming surface is flat then we predict the instability to occur when the

apparent contact angle of the droplet at the pinned surface is π, regardless of

the contact angle of the upper surface, similarly to past work on liquid bridges

and sessile droplets. However, when the upper surface has non-trivial topology

this criterion no longer holds, and a detailed stability analysis is carried out to

predict the critical compression. An interesting question for future work would be

to explore the effects of surface curvature on the shape instability.

Chapter 8, in part, is a reprint of the material as it appears in Physics of

Fluids 2012. Elfring, Gwynn J.; Lauga, Eric, the American Institute of Physics,

2012. The dissertation author was the primary investigator and author of this

paper.



Appendix A

Phase locking asymptotics

A.1 Fourth order expansion

A.1.1 Flow at O(ε)

The governing equation at O(ε) is

∇4ψ1 = 0, (A.1)

and the boundary conditions are given by

∇ψ1 |y=0 = ∇g(x), (A.2a)

∇ψ1 |y=h̄ = ∇g(x+ φ) + eyU∆1, (A.2b)

where ey denotes the unit vector in the y direction. We note that the boundary

conditions at O(ε) are the same for both extensible and inextensible motion.

The biharmonic equation can be solved by repeated separation of variables.

128
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The general solution may be expressed as

ψ1(x, y) = A1,0 +B1,0y + C1,0y
2 +D1,0y

3

+ (E1,0 + F1,0y +G1,0y
2 +H1,0y

3)x

+
∞∑
n=1

[
(A1,n +B1,ny) sinh(ny)

+ (C1,n +D1,ny) cosh(ny)

]
cos(nx)

+
∞∑
n=1

[
(E1,n + F1,ny) sinh(ny)

+ (G1,n +H1,ny) cosh(ny)
]

sin(nx), (A.3)

where for the constants A through H, the first subscript refers to the order in the

expansion (here, first order) and the second refers to the corresponding Fourier

mode. We can immediately discard the terms linear in x due to the periodicity of

the problem.

From the first order boundary conditions, Eq. (A.2), we get that the solution

to the biharmonic equation may be written analytically as

ψ1 = a1,0(y) +
∞∑
n=1

[
a1,n(y) cos(nx) + b1,n(y) sin(nx)

]
, (A.4)

where

a1,0(y) =

(
U∆1 − 3D1,0h̄

2
)
y2

2h
+ U∆1y

3, (A.5)

a1,n(y) = 2Pn(y)
(
αn cos(nφ) + βn sin(nφ)

)
+ αnQn(y), (A.6)

b1,n(y) = 2Pn(y)
(
βn cos(nφ)− αn sin(nφ)

)
+ βnQn(y), (A.7)
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and

Pn(y) =

[
n2h̄y cosh(nh̄) + sinh(nh̄)ny

2n2h̄2 − 2 sinh2(nh̄)

]
cosh(ny)

−
[(

1 + h̄n2y
)

sinh(nh̄) + hn cosh(nh̄)

2n2h̄2 − 2 sinh2(nh̄)

]
sinh(ny),

(A.8)

Qn(y) =

[
2nh̄+ 2ny sinh2(nh̄) + sinh(2nh̄)

2n2h̄2 − 2 sinh2(nh̄)

]
sinh(ny)

+

[
1− 2h̄n2y + ny sinh(2nh̄)

2n2h̄2 − 2 sinh2(nh̄)

]
cosh(ny). (A.9)

The force on the top sheet is

F1x = −2π

h̄
U∆1. (A.10)

If U∆1 = 0 then there is no phase locking force. Conversely if the sheets are force

free then U∆1 = 0. There is thus no synchronization at O(ε), as expected from the

ε→ −ε symmetry.

A.1.2 Flow at O(ε2)

The governing equation at O(ε2) is

∇4ψ2 = 0, (A.11)

while the boundary conditions are given by

∇ψ2 |y=0 = −g(x)∇
(
∂ψ1

∂y

)
|y=0

+
ey
2

[
g′(x)2 − 1

2π

∫ 2π

0

g′(x)2dx

]
, (A.12)

∇ψ2 |y=h̄ = eyU∆2 − g(x+ φ)∇
(
∂ψ1

∂y

)
|y=h̄

+
ey
2

[
g′(x+ φ)2 − 1

2π

∫ 2π

0

g′(x+ φ)2dx

]
, (A.13)

where the terms in the square brackets represent the contribution from the inex-

tensibility constraint.
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The solution to the biharmonic equation is written

ψ2 = a2,0(y) +
∞∑
n=1

a2,n(y) cos(nx) +
∞∑
n=1

b2,n(y) sin(nx). (A.14)

The zeroth mode is given by

a2,0(y) = u20y +
(U∆2 + u2h − u20) y2

2h̄
, (A.15)

The force on the top sheet is then given as

F2x =
2π

h̄
(u20 − u2h − U∆2). (A.16)

The mean components of the horizontal boundary conditions must then be evalu-

ated, the lower

u20 =
1

2π

∫ 2π

0

{
−g(x)

(
∂2ψ1

∂y2

)
|y=0

+
1

2

[
g′(x)2 − 1

2π

∫ 2π

0

g′(t)2dt

]}
dx. (A.17)

The term in the square brackets clearly integrates to zero, hence we are left with

u20 = − 1

2π

∫ 2π

0

g(x)

(
∂2ψ1

∂y2

)
|y=0 dx, (A.18)

which, using orthogonality of Fourier modes, gives

u20 = −1

2

∞∑
n=1

[
αna

′′
1,n(0) + βnb

′′
1,n(0)

]
. (A.19)

Similarly u2h is given by

u2h = − 1

2π

∫ 2π

0

g(x+ φ)

(
∂2ψ1

∂y2

)
|y=h̄ dx, (A.20)

which may be evaluated to give

u2h = −1

2

∞∑
n=1

[
(αna

′′
1,n(h̄) + βnb

′′
1,n(h̄)) cos(nφ)

+ (βna
′′
1,n(h̄)− αnb′′1,n(h̄)) sin(nφ)

]
. (A.21)
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Further, by considering Pn and Qn, given by Eq. (A.7) and Eq. (A.8) respectively,

and observing that 2P ′′n (h̄) = −Q′′n(0) and 2P ′′n (0) = Q′′n(h) it can be shown that

u20 − u2h =
1

2

∞∑
1

(α2
n + β2

n)

[
2P ′′n (h̄)−Q′′n(0)

− cos(nφ)
(

2P ′′n (0)−Q′′n(h̄)
)]

= 0, (A.22)

as each term in the sum is zero for all n.

The force on the top sheet is then equal to

F2x = −2π

h̄
U∆2. (A.23)

Here again we see that when we allow the swimmers to move in a force free manner

then U∆2 = 0 and hence there is no synchronization at O(ε2). Note that we have

not specified the Fourier coefficients of the of the waveform, and this result is

therefore valid for any waveform g(x).

Sadly, due to the ε→ −ε symmetry of the model there cannot be any force

at O(ε3), and therefore we expect the force to arise at best at O(ε4).

A.1.3 Flow at O(ε3)

The third order component of Eq. (3.9) is

∇4ψ3 = 0. (A.24)

with the third order boundary conditions

∇ψ3 |y=0 = −g(x)

[
∇
(
∂ψ2

∂y

)
+
g(x)

2
∇
(
∂2ψ1

∂y2

)]
|y=0

− ex
g′(x)

2

[
g′(x)2 − 1

2π

∫ 2π

0

g′(x)2dx

]
, (A.25)

∇ψ3 |y=h̄ = eyU∆3 − g(x+ φ)×[
∇
(
∂ψ2

∂y

)
+
g(x+ φ)

2
∇
(
∂2ψ1

∂y2

)]
|y=h̄

− ex
g′(x+ φ)

2
×[

g′(x+ φ)2 − 1

2π

∫ 2π

0

g′(x+ φ)2dx

]
. (A.26)
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The force again takes the form

F3x =
2π

h̄
(u30 − u3h − U∆3) . (A.27)

If the swimmers are force free we see U∆3 = u30 − u3h but due to the ε → −ε
symmetry of the geometry we must have U∆3 = 0 (in the example we consider in

Sec. 3.7 u30 = u3h = 0).

A.1.4 Flow at O(ε4)

The fourth order component of Eq. (3.9) is

∇4ψ4 = 0. (A.28)

The boundary conditions at fourth order are given by

∇ψ4 |y=0 = −g(x)

[
∇
(
∂ψ3

∂y

)
+
g(x)

2
∇
(
∂2ψ2

∂y2

)
+
g(x)2

6
∇
(
∂3ψ1

∂y3

)]
|y=0

− ey
g′(x)2

4

[
3

2
g′(x)2 − 1

2π

∫ 2π

0

g′(x)2dx

]
+

ey
16π

∫ 2π

0

g′(x)4dx, (A.29)

∇ψ4 |y=h̄ = −g(x+ φ)

×
[
∇
(
∂ψ3

∂y

)
+
g(x+ φ)

2
∇
(
∂2ψ2

∂y2

)
+
g(x+ φ)2

6
∇
(
∂3ψ1

∂y3

)]
|y=h̄

− ey
g′(x+ φ)2

4

[
3

2
g′(x+ φ)2 − 1

2π

∫ 2π

0

g′(x+ φ)2dx

]
+ eyU∆4 +

ey
16π

∫ 2π

0

g′(x+ φ)4dx. (A.30)

The force on the upper sheet is

F4x =
2π

h̄
(u40 − u4h − U∆4). (A.31)

Setting U∆4 = 0 gives rise to a phase-locking force in the static case and for free-

swimming we set F4x = 0 and solve for U∆4. As at all previous orders the force

and swimming speed are identically zero, the fourth order results are the leading

order terms in the asymptotic expansion.

Importantly, the formulae for u40 and u4h, defined in Eq. (3.17), are too

unwieldy for the most enterprising appendix even for simple g(x), and hence are not

stated explicitly (although straightforward to obtain with a symbolic calculation

package).
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A.2 Vertical force

In a manner similar to the horizontal force, the integral for the vertical force

on the bottom sheet may be expanded on the x-axis as follows

Fy =

∫ 2π

0

[
σyy +

∞∑
n=1

εn
∂

∂x

(
n− 1

n!
gn
∂n−1σxy
∂yn−1

)]
y=0

dx. (A.32)

The term in the sum is a perfect derivative and hence zero for all n, so therefore

Fy(y) = −
∫ 2π

0

[
p+ 2

∂2ψ

∂x∂y

]
y=0

dx. (A.33)

The second term is a perfect derivative in x, and hence in a 2π periodic system

gives zero when integrated over a period. We thus have

Fy = −
∫ 2π

0

pdx. (A.34)

Upon integrating the Stokes equations using the Fourier form of the stream func-

tion (3.15) and matching we arrive at

Fy = −2πC (A.35)

where C is an unknown constant of integration. This indicates that there is no

dynamic contribution to the vertical force.
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Finite swimmer terms

B.1 Flagellum equations

B.1.1 Local operator

The local operator L represents the local flagellar interaction with the flow

field. For the swimmer 1 this is written below

〈L1[f1]Pi〉 = − 1

8π

〈[
(I + t1(s)t1(s)) ln(ε−2) + I− 3t1(s)t1(s)

] N∑
j=0

a1jPj(s)Pi(s)

〉
,

= − 1

8π

∑
j

〈PiPjL1〉 · a1j, (B.1)

where we have labeled the term in the square brackets as L1. The equations the

first and second swimmers are then written as a single the linear operator L acting

on our vector of unknowns a.

B.1.2 The non-local operator

The non-local operator K represents the interaction of each flagella with its

own flow field. This interaction, for the first swimmer may be written as

K1[f1](s) = − 1

8π

∫ 1

−1

[
S1(s, s′)−

(
I + t1(s)t1(s)

|s− s′|

)]
· f1(s′)ds′

− 1

8π
(I + t1(s)t1(s))

∫ 1

−1

f1(s′)− f1(s)

|s− s′| ds. (B.2)
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The first term is regular while the second term is singular and hence we deal with

these two terms separately. We label the term in the square brackets as the tensor

K1. Taking the inner product of the first term with the ith Legendre polynomial

we obtain∫ 1

−1

Pi(s)

∫ 1

−1

K1(s, s′) · f1(s′)ds′ds =
∑
j

∫ 1

−1

∫ 1

−1

Pi(s)Pj(s
′)K1(s, s′) · a1jds

′ds,

=
∑
j

〈〈Pi(s)Pj(s′)K1(s, s′)〉〉 · a1j. (B.3)

For the second term we use the Götz result∫ 1

−1

f(s′)− f(s)

|s′ − s| ds′ =
N−1∑
j=0

λjPj(s)aj, (B.4)

where λj =
∑j

n=1 n
−1 and λ0 = 0. Hence the inner product of the second term

with the ith Legendre polynomial is simply

− 1

8π

〈
Pi(s)(I + t1(s)t1(s)) ·

∑
j

λjPj(s)a1j

〉
= − 1

8π

∑
j

〈λjPi(s)Pj(s)T1(s)〉 · a1j,

(B.5)

where T = I + t(s)t(s). These two components together, for both swimmers

combine to yield the non-local operator K.

B.1.3 Flow from the flagellum

Now we tackle the flow field from one flagellum onto the next

〈u2f [f2]Pi〉 = − 1

8π

∫ 1

−1

∫ 1

−1

G(x1(s)− x2(s′)) · f2(s′)ds′Pi(s)ds,

= − 1

8π

∑
j

〈〈Pi(s)Pj(s′)G1(s, s′)〉〉 · a2j. (B.6)

The term Gf contains this interaction on each swimmer respectively.
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B.1.4 Flow from the heads

The flows on the flagella from its own head and the other head are given

respectively after projection onto the ith Legendre polynomial as

〈u1h[F1, T1]Pi〉 = − 1

8π

{〈
PiGh(x1(s)− xh1)

〉
· F1 +

〈
Piv(x1(s)− xh1)T1

〉}
, (B.7)

〈u2h[F2, T2]Pi〉 = − 1

8π

{〈
PiGh(x1(s)− xh2)

〉
· F2 +

〈
Piv(x1(s)− xh2)T2

〉}
. (B.8)

These effects, for both swimmers, comprise the operator Gh.

B.1.5 Rigid body motion

The rigid body motion of the flagellum comes from the sum of the motion

of the head and a rotation centered at the head. Projected onto the Legendre

polynomials these terms are given

−ẋh1 〈Pi〉 − θ̇1

〈
r⊥1 Pi

〉
. (B.9)

The only Legendre polynomial with nonzero mean is the k = 0 term. We collect

this and the equivalent for the second swimmer into the operator Uf .

B.2 Head equations

B.2.1 Flow from flagella

The head of the first swimmer interacts with the flow that is generated by

its own flagella and flagella of the second swimmer as given below.

F t1u1f [f1] = − 1

8π

∑
j

〈
Ghf (x

h
1 − x1(s))Pj

〉
· a1j, (B.10)

F t1u2f [f2] = − 1

8π

∑
j

〈
Ghf (x

h
1 − x2(s))Pj

〉
· a2j, (B.11)

F θ1 u1f [f1] · ez =
1

8π

∑
j

〈
v(xh1 − x1(s))Pj

〉
· a1j, (B.12)

F θ1 u2f [f2] · ez =
1

8π

∑
j

〈
v(xh1 − x2(s))Pj

〉
· a2j. (B.13)

These terms and those for the second swimmer are captured by the operator Hf .
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B.2.2 Flow from head

The head of the first swimmer also interacts with the flow generated by the

head of the second swimmer,

F tu2h[F2, T2] = − 1

8π

[
Ghh(x

h
1 − xh2) · F2 + v(xh1 − xh2)T2

]
, (B.14)

F θ1 u2h[F2, T2] = − 1

8π

[
−v(xh1 − xh2) · F2 +

1

2

∣∣xh1 − xh2
∣∣−3

T2

]
. (B.15)

These effects for both swimmers are rolled into the Hh operator. Note that we can

use Ghh(−x) = Ghh(x) while v(−x) = −v(x) to reduce this computation.

B.2.3 Rigid body motion

The terms containing the force and motion of the first head are given below

−M · F̃1 − I ·U1 (B.16)

where I a 3× 3 matrix and

M =


Mt 0 0

0 Mt 0

0 0 Mθ

 . (B.17)

For both swimmers these terms are represented by the Uh operator.

B.3 Forces and torques

Finally the each body is force and torque free, for example for swimmer 1

we write,

〈f1〉+ F1 = 0, (B.18)〈
r̃⊥1 · f1

〉
+ T1 = 0. (B.19)

While for both swimmers together we write F · a = 0.



Appendix C

Droplet perturbation formulation

To satisfy the requirements on the functions F and G we expand them in

a quarter range basis as

F (t, φ) =
∑
m,n

Am,n cos(mφ) sin
(nπ

2
T
)
, (C.1)

G(t, φ) =
∑
m,n

Bm,n cos(mφ) sin
(nπ

2
T
)
, (C.2)

where n is odd and T = (t− t1)/∆t.

Using the above definitions of F and G in Eq. (C.11) we obtain∑
n

(−1)
n−1
2 Bm,n =

∑
n

(−1)
n−1
2 Am,n tanχ. (C.3)

Unlike the analysis in Russo and Steen [97] we cannot use normal perturbations

with zero magnitude at the endpoints, as we wish the droplet to be able to have a

variable contact point on the upper surface (fixed contact angle condition). How-

ever, as shown in Ref. [97], the lowest modes are the ones with the largest increase

in surface energy, therefore in order to establish an upper bound on the energy at

the critical point we restrict our analysis to the lowest two modes in t and φ.

We first consider the case χ = 0, then generalize. With Eq. (C.3) we have

Bm,1 = Bm,3. The boundary condition places no restriction on g and hence we let

Am,3 = 0. As the surface energy is nonlinear in the shape perturbations, different

modes couple and we must be careful in our selection of allowed perturbation shape.

While we cannot make the perturbations normal to the shape everywhere, we
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impose a related constraint by letting Bm,1 = αAm,1, where α is a free parameter.

This restriction on the shapes reduces the unknown coefficients by one to facilitate

the analytical calculation, while the free parameter allows some flexibility on the

shape of the perturbations, and we tune its value so as to give the earliest possible

instability. Because our choice for the space of allowed perturbations may not

optimally minimize the surface energy, our analysis is thus only able to derive an

upper bound for the stability limit. However, as we will show, this upper bound

will coincide with the lower bound, when χ = 0. With these assumptions, our

perturbations now take the form

F (t, φ) = (A01 + A11 cosφ)f(t), (C.4)

G(t, φ) = (A01 + A11 cosφ)g(t), (C.5)

where

f(t) = sin
(π

2
T
)
, (C.6)

g(t) = α

[
sin
(π

2
T
)

+ sin

(
3π

2
T

)]
. (C.7)

For a general value of χ 6= 0, we can rotate our perturbations to the χ plane

[f ′, g′]T = Rχ[f, g]T where Rχ is a two-dimensional rotation operator of angle χ.

Hence, for all χ, we may write

f(t) =

[
(cosχ− α sinχ) sin

(π
2
T
)
− α sinχ sin

(
3π

2
T

)]
, (C.8)

g(t) =

[
(α cosχ+ sinχ) sin

(π
2
T
)

+ α cosχ sin

(
3π

2
T

)]
. (C.9)

We see that G2 = F2 tanχ for all α.

We require the asymmetric shapes to satisfy the contact angle condition at

t2 and hence Ż2 = Ṙ2 tan(θ + χ) which leads directly to

Ġ2 = Ḟ2 tan(θ + χ). (C.10)

Eq. (C.10) merely states that our asymmetric perturbations must preserve the

slope imposed by the contact angle at t2. To satisfy this for all θ and χ we set

Ḟ2 = Ġ2 = 0. Furthermore we require F1 = G1 = 0 so that the droplet remains



141

pinned at t1. Additionally, our perturbations must be directed along the surface

at the upper bound and hence we need

G2 = F2 tanχ. (C.11)

We now expand F =
∑
εjF (j) and G =

∑
εjG(j) where ε is a small dimen-

sionless parameter. We must ensure our perturbations, order by order, conserve

volume

Vl =
1

2

∫ t2

t1

∫ 2π

0

R2Żdtdφ− 1

6
tanχ

∫ 2π

0

R3
2dφ, (C.12)

where the second term in Eq. (C.12) takes into account the inner cone. Expanding

and subtracting off the unperturbed case we get to leading order

∆Vl = επA
(1)
01

[∫ t2

t1

r (rġ + 2f ż) dt− f2r
2
2 tanχ

]
= 0, (C.13)

so A
(1)
01 = 0. The O(ε2) term yields the following relationship

A
(2)
01 = −

(
A

(1)
11

)2
∫ t2
t1
f (2rġ + f ż) dt− 1

2
f 2

2 r2 tanχ

2
∫ t2
t1
r (rġ + 2f ż) dt− f2r2

2 tanχ
, (C.14)

hence with A
(2)
01 = −

(
A

(1)
11

)2

I, where I is the quotient in Eq. (C.14), volume is

conserved to order O(ε2).

The perturbed surface energy is given by

E =γ

∫ t2

t1

∫ 2π

0

[
R2(Ṙ2 + Ż2) + (RφŻ − ṘZφ)2

]1/2

dtdφ

− γ cos θ

2 cosχ

∫ 2π

0

R2
2dφ. (C.15)

Expanding the integral and subtracting off the axisymmetric contribution, the

leading order term of the difference is given by

∆E

ε2πγ
(
A

(1)
11

)2 =

∫ t2

t1

{
− 2Ifv − rw2

2v3
+

1

2rv

(
2rw(f − 2Ir)

+ r2
(
ḟ 2 + ġ2

)
+ (gṙ − f ż)2

)}
− 1

2

cos θ

cosχ
f2(f2 − 4Ir2), (C.16)
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where

v(t) =
√
ṙ2 + ż2, (C.17)

w(t) = ḟ ṙ + ġż. (C.18)

Note from Eq. (C.16) that our marginal stability curve will be independent of γ

and A2
11. We are interested in all outward bulging shapes, nodoids, and hence we

check all Ω ∈ [π/2, π).
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motors shape the flagellar beat. HFSP J., 1:192–208, 2007.

[53] M. Argentina, J. Skotheim, and L. Mahadevan. Settling and swimming of
flexible fluid-lubricated foils. Phys. Rev. Lett., 99:224503, 2007.

[54] N. J. Balmforth, D. Coombs, and S. Pachmann. Microelastohydrodynamics
of Swimming Organisms Near Solid Boundaries in Complex Fluids. Q.J.
Mechanics Appl. Math., 63:267–294, 2010.

[55] A. E. Hosoi and L. Mahadevan. Peeling, healing, and bursting in a lubricated
elastic sheet. Phys. Rev. Lett., 93:137802, 2004.

[56] E.M. Purcell. Life at low Reynolds number. Am. J. Phys., 45:11, 1977.

[57] K. E. Machin. Wave propagation along flagella. J. Exp. Biol., 35:796–806,
1958.



147

[58] C. H. Wiggins and R. E. Goldstein. Flexive and propulsive dynamics of
elastica at low Reynolds number. Phys. Rev. Lett., 80:3879–3882, 1998.

[59] E. Lauga. Propulsion in a viscoelastic fluid. Phys. Fluids, 19:083104, 2007.
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