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Summary

Pancreatic islet cells derived from human pluripotent stem cells hold great promise for 

modeling and treating diabetes. Differences between stem cell-derived and primary islets 

remain, but molecular insights to inform improvements are limited. Here, we acquire single-

cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and 

pancreas from childhood and adult donors for comparison. We delineate major cell types, define 

their regulomes, and describe spatiotemporal gene regulatory relationships between transcription 

factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble 

a transient, previously unrecognized, serotonin-producing pre-β-cell population in fetal pancreas, 

arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation 

of signal-dependent transcriptional programs during in vitro β-cell maturation and identify sex 

hormones as drivers of β-cell proliferation in childhood. Altogether, our analysis provides a 

comprehensive understanding of cell fate acquisition in stem cell-derived islets and a framework 

for manipulating cell identities and maturity.

Graphical Abstract

Zhu and Wang et al. compare regulomes of pancreatic endocrine cells from human stem 

cells and fetal, childhood and adult pancreas. They discovered a serotonin-producing fetal pre-

β-cell population resembling stem cell-derived enterochromaffin-like cells, previously coined 

pancreas-aberrant, and identified insufficient activation of β-cell maturation signals during in vitro 

differentiation.
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Introduction

The ability to generate pancreatic islet-like clusters from human pluripotent stem cells 

(hPSCs) holds great promise as a cell replacement therapy and in vitro disease model for 

diabetes. Current protocols mimic in vivo development by stepwise exposure of hPSCs to 

growth factors and small molecules1–8. Stem cell-derived islets (SC-islets) are comprised of 

insulin-producing β-cells, glucagon-producing α-cells, and somatostatin-producing δ-cells 

akin to the cell types found in pancreatic islets. SC-islets also contain cell types thought 

to be pancreas-aberrant, such as cells resembling enterochromaffin cells of the intestine7,8. 

Methodology to control cell type yields or eliminate unwanted populations is missing. 

Furthermore, despite protocol improvements, in vitro SC-β-cells are still functionally 

immature and respond differently to signals triggering insulin secretion compared to primary 

β-cells7. SC-β-cells acquire a more mature state when exposed to an in vivo environment 

by engraftment1,2,4,5,7,9,10, suggesting competence of SC-β-cells to respond to maturation 

signals but absence of these signals in vitro. In rodents and humans, β-cell functional 

maturation occurs postnatally11–19 and is driven by environmental cues17,20–23. However, 

a comprehensive understanding of the signals mediating β-cell maturation during postnatal 

life is still lacking.

Single-cell technologies can profile individual cells, allowing for detailed molecular 

characterization of developmental trajectories and cell states. Transcriptome analysis at 

single-cell level has defined signatures of cell populations during SC-islet differentiation 

and identified differentially expressed genes between SC-β-cells and primary β-cells7,8,10,24. 

However, gene expression alone provides a limited understanding of the regulatory features 

of each cell type or state which is determined by transcription factors (TFs) interacting with 

gene regulatory elements to enable precise gene expression control through gene regulatory 

networks (GRNs)25. The lack of GRN maps for SC-islets and primary islets hampers 

progress toward controlling cell fates and maturation states during SC-islet differentiation. 

By combining single-cell gene expression and chromatin accessibility profiling, it is possible 

to infer cell type- and cell state-specific GRNs to gain insight into the transcriptional 

programs driving cell fate acquisition and cell maturation.

Here, we built GRNs from single-cell transcriptome and chromatin accessibility data 

acquired throughout SC-islet differentiation and from primary childhood and adult islets. 

A major finding is that enterochromaffin-like cells (SC-ECs) produced during SC-islet 

differentiation resemble a pre-β-cell population in the fetal pancreas, suggesting a pancreatic 

rather than intestinal origin. Deletion of the SC-EC regulator CDX2 in hPSCs supports a 

close lineage relationship of SC-ECs and SC-β-cells. Comparison of regulatory programs 

from SC-β-cells and primary β-cells during postnatal maturation identified candidate 

signaling pathways involved in β-cell maturation and insufficiently activated in SC-β-cells. 
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Together, the established GRNs provide a roadmap for understanding and manipulating 

SC-islet differentiation.

Results

Chromatin accessibility and gene expression during SC-islet differentiation

Pancreatic endocrine cell differentiation from hPSCs produces insulin+ β-cells, glucagon+ 

α-cells, and somatostatin+ δ-cells (Figure 1A and Figure S1A). Glucose-stimulated insulin 

secretion is acquired during a subsequent ~2-week period of SC-islet maturation (Figure 

S1B). To characterize gene regulatory programs governing SC-islet differentiation and 

maturation, we conducted single-nucleus ATAC-sequencing (snATAC-seq) and single-cell 

RNA-sequencing (scRNA-seq) at the pancreatic progenitor (day, D11), endocrine progenitor 

(D14), immature (D21), and maturing SC-islet cell stage (D32/39; Figure 1A, Table S1A). 

After quality control (see Methods; Figure S1C,D), we obtained chromatin accessibility 

profiles from 65,255 cells and transcriptomes from 25,686 cells across the four stages. 

Following UMAP dimensionality reduction, we defined ten distinct cell populations 

based on promoter chromatin accessibility or RNA expression using canonical genes 

(Figure 1B and Figure S1E,F): two pancreatic progenitor cell populations (PP1 and PP2), 

distinguished by NKX6-1 expression; NEUROG3high early endocrine progenitors (ENP1); 

α-like endocrine progenitors (ENP-α, ARX+); two late endocrine progenitor populations 

(ENP2 and ENP3), expressing LMX1A and RFX3, respectively; and differentiated cell 

types including α-cells (SC-α, GCG+), β-cells (SC-β, INS+ and IAPP+), and δ-cells (SC-

δ, SST+). We also identified a previously described7,8 enterochromaffin cell-like SC-EC 

population (INS+ and SLC18A1+). Cultures at D11 and D14 were mostly comprised 

of pancreatic and endocrine progenitors, whereas at immature and maturing islet stages 

predominantly contained differentiated endocrine cell types (Figure S1G,H). We then 

integrated chromatin accessibility and gene expression data (Figure 1C) and generated 

in-silico pseudo-cells with matched epigenomic and transcriptomic information. The data 

integration revealed more cell type specificity in gene expression than in chromatin 

accessibility (Figure 1D), suggesting plasticity among cell populations.

Given that chromatin accessibility signifies developmental potential beyond cell identity 

defined by gene expression26, we inferred lineage relationships between cell populations 

by trajectory analysis based on chromatin activity (Figure 1E–G and Figure S1I–K). This 

analysis identified ENP1 progenitors as a common precursor for all endocrine cell lineages. 

ENP1 progenitors were predicted to give rise to α-lineage-restricted ENP-α progenitors 

and ENP2 progenitors that generate SC-ECs as well as ENP3 progenitors producing SC-β-

cells, SC-ECs, and SC-α-cells (Figure 1H). These results indicate that SC-α-cells can arise 

from two different progenitor populations, explaining findings from gene expression-based 

trajectories suggesting that SC-α-cells can form before or after the specification of SC-β-

cells and SC-ECs8,24. Together, this analysis suggests close relatedness of SC-β-cells and 

SC-ECs.

To identify TFs governing lineage transitions, we analyzed lineage trajectories for TF 

binding motif enrichment and expression. We focused on two branch points in the lineage 

tree (Figure 1H): (i) separation of ENP-α and ENP2 progenitors from ENP1 progenitors 
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(Figure 1I and Table S1C–E) and (ii) bifurcation between SC-β-cells and SC-ECs from 

ENP3 progenitors (Figure 1J and Table S1C–E). We found NEUROG3 motif enrichment 

and expression to be highest in ENP1, consistent with its function in endocrine lineage 

induction27,28, whereas PAX6 and PAX4 activity were highest in SC-α- and SC-β-cell 

precursors29–33, respectively (Figure 1I). Still uncharacterized regulators from this analysis 

included PITX1 predicted to specify SC-α-cells and LMX1A with a predicted role in non-α 
lineage choices (Figure 1I). Analysis of the SC-β-cell versus SC-EC lineage branch point 

confirmed PDX1 as a β-cell regulator34,35 and suggested a similar role for EBF1 (Figure 1J). 

Interestingly, FEV, LMX1A, and CDX2 exhibited motif enrichment and higher expression in 

SC-ECs compared to ENP3 progenitors or SC-β-cells (Figure 1J), indicating roles in SC-EC 

lineage specification.

Cell type-specific gene regulatory programs

To comprehensively characterize gene regulatory programs governing SC-islet cell type 

differentiation, we inferred GRNs for each cell population, linking TFs to candidate cis-

regulatory elements (cCREs) and their target genes (Figure 2A and Figure S2A–C). This 

analysis yielded a GRN connecting 266 TFs, 51,281 cCREs and 11,997 target genes 

(Methods). On average each TF was predicted to bind to 1,053 cCREs (Figure S2F,G), 

each gene to be regulated by 5.6 cCREs and each cCRE to control 1.3 genes (Figure 

S2D,E). To characterize cell type-specific gene regulatory programs, we subset the GRN 

by clustering cCREs based on accessibility pattern across cell types (Methods; Figure 

2B,C and Figure S2H). As expected, cCRE modules specific to related cell types (e.g., 

ENP-α and SC-α) were localized closely to each other on the cCRE UMAP (Figure 2B). 

Furthermore, target genes linked to cCREs within each module were cell type-specifically 

expressed (Figure 2C) and exhibited cell type-characteristic molecular functions (Figure 

S2I and Table S2A). Analysis of TFs regulating gene expression in each cell type revealed 

known gene regulatory roles for RFX3 and RFX6 in endocrine progenitors36,37 and ASCL2 

and SCRT1 in SC-β-cells38,39 (Figure 2D, Figure S2J, and Table S2B). We also identified 

still uncharacterized candidate cell fate regulators, including ETV1 in SC-α-cells, EBF1 

in SC-β-cells, and KLF10 in SC-δ-cells. CDX2, LMX1A, FEV, and HNF4G emerged as 

candidate TFs in SC-ECs and their precursors.

The cell type-specific sub-GRNs allowed us to examine relationships between TFs in the 

regulation of individual genes as well as target gene specificity of individual TFs across 

different cell types. For example, we found that cCREs within the GCG locus were bound 

by PAX6 already in ENP-α whereas ETV1 bound to GCG cCREs mostly in SC-α-cells 

(Figure S2K), suggesting sequential actions of these TFs in GCG regulation during α-cell 

development. NKX6-1 and the retinoic acid X receptor A (RXRA) emerged as candidate 

regulators of SC-β-cells and SC-ECs; however, NKX6-1 bound to different cCREs and 

regulated different genes in SC-β-cells than in SC-ECs (Figure 2E,F and Figure S2L). 

Whereas NKX6-1 target genes in SC-β-cells were related to β-cell developmental and β-cell 

function, NKX6-1 controlled genes involved in serotonergic signaling in SC-ECs (Figure 

2G and Table S2C), exemplified by NKX6-1 binding to cCREs in IAPP in SC-β-cells and 

cCREs in LMX1A, a TF controlling serotonin synthesis genes40, in SC-ECs (Figure 2H). 
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These examples illustrate the power of this analysis for identifying distinct temporal and cell 

type-specific roles of individual TFs.

We further calculated the likelihood of cooperative gene regulation by TFs in each cell 

type (Methods; Figure 2I and Table S2D). We inferred ENP1-specific cooperativity between 

the known heterodimers NEUROG3 and TCF341 (Figure S2M) and cooperativity between 

MAFG and the cap’n’collar (CNC) family TF BACH2 in both SC-α-cells and SC-β-cells 

(Figure S2N), consistent with recruitment of CNC TFs by small MAF proteins42. RXRA 

was predicted to cooperate with the bile acid receptor NR1H4 in SC-β-cell and SC-EC 

gene regulation (Figure 2J), identifying a possible mechanism for the role of bile acids in 

insulin secretion43. Of interest is the SC-β-cell-specific interaction between BACH2 and 

JUND (Figure 2K), which contribute to β-cell dysfunction in type 2 diabetes44–46. Our GRN 

provides a resource for interrogating gene regulatory mechanisms in SC-islet cell types and 

their precursors.

SC-islet cell type lineage trajectories

The GRN identified candidate TFs involved in the specification of islet cell lineages. 

However, the analysis left unclear the order in which these TFs function to specify a lineage. 

To gain insight into temporal aspects of lineage specification, we ordered gene regulatory 

programs identified in the GRN along a lineage trajectory by assigning pseudotime values 

to a given TF, cCREs bound by the TF, and cCRE target genes (Methods; Figure S3A–I). 

Validating our method, cCREs with early activity in the lineage trajectory - reflected by 

low cCRE pseudotime values - projected to progenitor-specific cCRE modules in the cCRE 

UMAP (Figure 3A,B and Figure S3J).

Integration of cCRE activity and gene expression into the pseudotemporal lineage trajectory 

(Figure 3C,D, Figure S3K, and Table S3), allowed us to quantify the temporal order 

of TF activity and their downstream target genes during SC-α-cell, SC-β-cell, and SC-

EC development. In the SC-α-lineage trajectory, we identified ZNF414, NEUROG3, and 

PKNOX2 as the earliest TFs, followed by RFX6, PITX1, and PPARG in ENP-α progenitors 

and ETV1, PAX6, and MEF2C with later functions in SC-α-cell development (Figure 

S3K). While target genes of the early TFs ZNF414 and NEUROG3 remained expressed 

throughout the trajectory, PKNOX2 target genes were mostly transiently expressed (Figure 

S3K), suggesting distinct gene regulatory programs controlled by early α-cell lineage 

TFs. Analysis of SC-β-cell and SC-EC trajectories from ENP3 progenitors revealed FEV, 

ASCL1, and RFX3 as ENP3-active TFs with their target genes expressed throughout lineage 

development (Figure 3C,D). Later phase TFs in the SC-β-cell and SC-EC trajectories could 

be separated into two groups: (i) shared TFs between SC-β-cells and SC-ECs, exemplified 

by NKX6-1 and RXRA and (ii) cell type-specific TFs with MAFA, PDX1, SCRT1, and 

EBF1 regulating genes in SC-β-cells, and CDX2, LMX1A, HNF4G, and THRA regulating 

genes in SC-ECs. CDX2 was the earliest TF expressed during SC-EC development and 

CDX2-bound cCREs exhibited activity already in ENP3 progenitors (Figure 3D), suggesting 

an early role for CDX2 in SC-EC development.

Zhu et al. Page 6

Dev Cell. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Enterochromaffin cell-like resemble pre-β-cells in human fetal pancreas

Serotonin-producing SC-ECs are thought to be an erroneous cell type produced during 

SC-islet differentiation7,8. However, in both human fetal and adult pancreas, endocrine cells 

with serotonin granules have been reported using ultrastructural analysis47–49, raising the 

possibility that SC-ECs are a bona fide pancreatic endocrine cell type.

To test this, we assessed transcriptomic similarities between primary human fetal50 and SC-

islet endocrine cells (Figure S4A,B). Interestingly, SC-ECs and SC-β-cells both co-localized 

with fetal β-cells on the UMAP (Figure 4A–C). To identify and characterize “EC-like” fetal 

β-cells, we isolated fetal β-cells and performed sub-clustering (Figure 4D). Among the five 

defined sub-clusters, fetal-β3 cells exhibited the highest expression of serotonin synthesis 

genes (Figure 4E). This population also expressed high levels of endocrine progenitor-

characteristic TFs (e.g., FEV, PAX4, NEUROG3) and CDX2 (Figure 4E), suggesting 

fetal-β3 cells are a serotonin-producing pre-β-cell population. Immunofluorescence staining 

against serotonin (5HT) confirmed the presence of serotonin-producing β-cells (5HT+/

INS+/PDX1+) in human fetal, neonatal, and infant pancreas (Figure 4F). This population 

gradually declined after birth and was rare in childhood (Figure 4G,H), indicating that 

serotonin-producing β-cells are a transient developmental β-cell population with progenitor 

characteristics.

Long-term SC-islet culture induced β-cell functional maturation (Figure S4C), akin to 

postnatal β-cell maturation11–16. It also led to a decrease in the percentage of SC-ECs 

(NKX6-1+/SLC18A1+), an increase in SC-β-cells (NKX6-1+/INS+) but no change in SC-

α-cell abundance (NKX6-1−/CD26+51; Figure 4I–K). Likewise, scRNA-seq data7 revealed 

a decrease in SC-ECs after long-term SC-islet culture and SC-islet engraftment (Figure 

S4D,E). Thus, like fetal serotonin-producing β-cells, SC-ECs are a transient, β-cell-related 

population.

Serotonin-producing fetal β-cells expressed CDX2 and endocrine progenitor cell markers 

(Figure 4E). We analyzed CDX2 expression together with PDX1 and 5HT in fetal and 

postnatal pancreas. In fetal pancreas, CDX2 was co-expressed with PDX1 in ductal 

pancreatic progenitors (Figure S4F,G). Among fetal CDX2+ cells, ~3% expressed insulin 

and 5HT, but CDX2+ cells co-expressing insulin and 5HT became rare postnatally (Figure 

4L,M). In early fetal development, most serotonin-producing β-cells expressed CDX2; 

however, the percentage expressing CDX2 decreased at later fetal stages and remained low 

after birth (Figure 4N). Supporting the similarity between serotonin-producing fetal β-cells 

and SC-ECs, CDX2 was expressed in SC-derived pancreatic progenitors and SC-ECs and 

SC-EC CDX2 expression decreased during SC-islet differentiation (Figure S4H–J).

Collectively, these findings identify a transient, CDX2+ serotonin-producing β-cell 

population in the human fetal pancreas (Figure 4O) that resembles SC-ECs produced during 

SC-islet differentiation.

CDX2 regulates serotonin synthesis genes

The GRN suggested that CDX2 is critical for gene regulation in endocrine progenitors 

and SC-ECs (Figure 2D). Candidate CDX2 target genes included serotonin pathway genes, 
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such as tryptophan hydroxylase (TPH1) and the serotonin transporter SLC18A1. Both genes 

were expressed in endocrine progenitors and serotonin-producing fetal β-cells as well as 

in SC-derived ENP3 and SC-ECs (Figure 4E, Figure 5A, and Figure S5A). At the TPH1 
locus, CDX2 bound to a distal cCRE active in SC-ECs and fetal endocrine cells52 but not 

in SC-β-cells or fetal pre-ductal/endocrine and pre-acinar cells (Figure 5B and Figure S5B). 

A similar chromatin activity pattern was found at the CDX2-bound SLC18A1 promoter 

(Figure 5C and Figure S5C). Thus, serotonin synthesis genes are expressed in a subset of 

human fetal endocrine progenitors and β-cells and these genes are predicted to be CDX2-

regulated.

To examine CDX2 function during islet cell development, we deleted CDX2 in hESCs 

(CDX2-KO line) using CRISPR/Cas9-mediated genome editing (Figure S5D–F). We 

differentiated CDX2-KO hESCs and unedited wildtype (WT) hESCs into SC-islets and 

quantified endocrine cell type composition by flow cytometry and image analysis. CDX2 
inactivation led to a significant reduction in SC-ECs, a slight reduction in SC-β-cells, but 

no change in SC-α-cells (Figure S5G–L). Single-cell RNA-seq analysis confirmed lower 

numbers of SC-ECs in CDX2-KO SC-islets and revealed a decrease in SC-β-cells and 

increase in SC-α-cells (Figure 5D), suggesting that CDX2 controls the lineage decisions at 

the SC-α-cell and SC-ECs/β-cell branchpoint. The discrepancy between effects of CDX2 
deletion on cell type composition based on marker proteins and scRNA-seq likely reflects 

marker proteins only capturing a small aspect of cell identity.

Furthermore, expression of serotonin synthesis genes (TPH1, SLC18A1, LMX1A, DDC) 

was reduced in ENP3 endocrine progenitors and SC-ECs in the CDX2-KO, whereas β-cell 

identity genes (INS, IAPP, PDX1, NKX6-1) were more highly expressed in SC-ECs and 

SC-β-cells in the CDX2-KO (Figure 5E, Figure S5M, and Table S4). These findings suggest 

that CDX2 favors SC-EC over SC-β-cell identity. Interestingly, NKX6-1 expression was 

lower in CDX2-deficient ENP3 (Figure 5E) and the NKX6-1+ population decreased after 

CDX2 deletion (Figure S5I,J), possibly reflecting NKX6-1 regulation by CDX2 at an early 

phase of β-cell development in endocrine progenitors.

Together, our analysis suggests that CDX2 is transiently expressed in a bona fide fetal 

pre-β-cell population and that CDX2 regulates serotonin synthesis genes in pre-β-cells. 

Serotonin production is a feature of neonatal and adolescent β-cells53,54, and adult β-cells 

can activate serotonin synthesis during pregnancy55–58. Based on this evidence, we posit that 

SC-ECs are not an erroneous intestinal cell type of SC-islet differentiation.

Insufficient activation of signal-dependent gene regulatory programs in SC-islets

Next, we sought to determine how closely gene regulatory programs of SC-derived 

endocrine cells resemble those of corresponding cell types in postnatal pancreas. Toward 

this goal, we generated snATAC-seq, scRNA-seq, and single-nucleus RNA-sequencing 

(snRNA-seq) datasets from primary islets and pancreas from childhood (ages 13 months to 

9 years) and adult donors (ages 20–66) complemented by publicly available islet scRNA-seq 

data59,60 (Table S1A,B). The inclusion of snRNA-seq data from frozen pancreas mitigated 

artifacts owing to induction of stress-response genes by the islet isolation procedure61,62.
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To focus on endocrine cell types, we selected endocrine populations from each dataset 

(Figure 6A and Figure S6A–H) and integrated them into one UMAP for chromatin 

accessibility and gene expression, respectively (Figure 6B,C). In both types of data, we 

identified a single α-cell, δ-cell, and γ-cell cluster as well as β-cells comprised of four 

subclusters (Figure 6B,C and Figure S6I). Chromatin accessibility and gene expression 

data were highly concordant between clusters (Figure S6J) and cell type annotations in 

the integrated map largely corresponded to cell identities prior to data integration (Figure 

S6K,L). The α-cell and δ-cell clusters each comprised α-cells and δ-cells from stem 

cells, childhood, and adult pancreas, demonstrating similarity of SC-α- and SC-δ-cells 

with corresponding primary cells (Figure 6B,C and Figure S6K–M). A subset of SC-α-

cells clustered with primary γ-cells in the integrated map (Figure 6B,C, dashed circles), 

consistent with developmental similarity between α-cells and γ-cells63. In contrast, SC-

derived β-related cell types (ENP3, SC-β-cells and SC-ECs) clustered separately from 

primary β-cells (Figure 6B,C). This suggests that SC-β-cells are more distant to their 

primary counterparts than other SC-derived endocrine cell types, supported by correlation 

analysis of the transcriptomes (Figure S6N).

We further analyzed the relatedness of SC-islet cells to primary endocrine cells by inferring 

lineage trajectories based on chromatin accessibility. We built two separate trajectories by 

grouping cell types with known lineage relationship63: (i) an α-cell/γ-cell trajectory with 

ENP-α, SC-α-cells, and primary childhood and adult α- and γ-cells (Figure 5D); and (ii) 

a β-cell/δ-cell trajectory with ENP3, SC-EC, SC-β-cells, SC-δ-cells, and primary childhood 

and adult β- and δ-cells (Figure 6E). In the α-cell/γ-cell trajectory, ENP-α progressed 

to SC-α-cells, to childhood α-cells, and finally to adult α-cells, suggesting immaturity of 

SC-α-cells but a correct differentiation path. In the β-cell/δ-cell trajectory, three trajectories 

each originated from ENP3 progenitors. One branch encompassed SC-δ-cells and primary 

δ-cells, one SC-β-cells, and a third primary β-cells with SC-ECs closely associated. This 

analysis confirms the relatedness of SC-ECs to β-cells, providing further support for SC-

ECs resembling a unique β-cell state in human development.

To identify gene regulatory programs that distinguish primary from SC-derived endocrine 

cell types, we identified TF motifs with variable accessible chromatin enrichment across 

cell populations (Figure 6F and Table S5A). Motifs for lineage-determining TFs, such as 

NKX6-1, PDX1, NKX2–2, and PAX6, were enriched in SC-islet cell types, suggesting that 

gene regulatory programs driven by lineage-determining TFs are sufficiently active in SC-

islet cells. By contrast, motifs for signal-dependent TFs were enriched in primary compared 

to SC-islet endocrine cell populations, consistent with lower expression of some of these 

TFs in SC-islet cells (Figure 6F). Signal-dependent TFs included STAT3 which is activated 

by signals from immune cells64,65, the circadian clock-dependent TF ARNTL23,66–68, and 

TFs activated by steroid hormones, such as the androgen receptor (AR) and thyroid hormone 

receptor (THRA)1,69,70. These findings suggest that SC-derived and primary endocrine cells 

are distinguished by insufficient activation of signal-dependent gene regulatory programs.

Next, we identified differentially expressed genes between related primary and SC-islet 

cell types and clustered them into gene modules based on their expression pattern (Figure 

6G and Figure S6O,P). Genes in modules more highly expressed in primary β-cells than 
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SC-β-related cells were associated with signaling pathways regulating β-cell function, 

including inflammatory, circadian, and neurotrophin signaling (Figure 6H and Table S5B). 

Signal-dependent genes were also lower expressed in SC-α-cells compared to primary 

α-cells (Figure S6Q and Table S5C). In addition, primary β-cells expressed higher levels of 

genes associated with insulin secretion, whereas genes involved in amino acid catabolism 

were more highly expressed in SC-β-cells (Figure 6H), consistent with a more pronounced 

insulin secretory response to amino acids in SC-β-cells compared to primary β-cells7,71. 

This phenocopies immature β-cells in newborn mammals, which utilize fat and amino 

acids as the major carbon source17,72,73. Together, these findings underscore that important 

signaling events are not sufficiently induced in SC-derived endocrine cells and suggest 

that insufficient activation of these signal-dependent processes could explain remaining 

functional differences between primary and SC-β-cells.

Steroid hormones stimulate β-cell proliferation

To comprehensively identify TFs and associated target genes with differential activity in 

primary and SC-β-cells, we constructed a GRN comprised of β-cell-related populations 

(approach see Figure 2A; Figure S7A–C and Figure S7F). We identified 377 TFs connected 

to 96,020 cCREs and 12,370 target genes. Each TF in the network bound an average of 

2,698 cCREs, each cCRE regulated 1.55 genes, and each gene was regulated by 13.6 cCREs 

(Figure S7D,E,G).

We then subset the GRN by identifying cCRE modules specific to β-cell populations (ENP3, 

SC-EC, SC-β, and primary childhood and adult β-cells). In addition to population-specific 

modules, we identified cCRE modules shared between cell types, exemplified by a shared 

module between childhood and adult primary β-cells, SC-β-cells and primary β-cells, and 

SC-ECs and primary β-cells (Figure 7A and Figure S7H). The shared SC-β-cell/primary β-

cell module lied between the SC-β-cell- and childhood β-cell-specific modules, suggesting 

that aspects of gene regulatory changes associated with β-cell maturation occur in SC-β-

cells. Furthermore, presence of a SC-EC/primary β-cell module indicates that SC-ECs share 

gene regulatory features with primary β-cells, supporting their relatedness.

Analysis of TFs with different activity across modules confirmed activation of programs 

downstream of lineage-determining TFs (e.g., FEV, PAX4, NKX6-1, CDX2, PDX1) and 

insufficient activation of programs regulated by signal-dependent TFs (e.g., PGR, VDR, 

STAT3, ARNTL, ATF6, THRA/B) in SC-derived β-cell populations (Figure 7B and Table 

S6A).

To catalog signal-dependent molecular processes insufficiently activated in SC-β-cells, we 

grouped signal-dependent TFs exclusively active in primary β-cells based on upstream 

signals regulating their activity and identified downstream target genes from the GRN. 

Primary β-cell-specific signaling pathways included circadian rhythm (ARNTL, NPAS2), 

interleukins (STAT1–4, STAT5A, STAT5B, STAT6), steroid hormones (AR, PGR, ESR1, 

ESR2), thyroid hormones (THRA, THRB), and the unfolded protein response (UPR; ATF6, 

ATF6B, ATF4) (Figure 7C and Table S6B). Validating the approach, thyroid hormone 

receptors were predicted to regulate genes involved in thyroid hormone signaling and TFs 

of the UPR genes involved in endoplasmic reticulum (ER) quality control (Figure 7C and 
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Table S6B). The analysis predicted regulation of chromatin modifiers by circadian cues, 

suggesting a role for circadian signals in modulating the β-cell epigenome. Furthermore, 

identification of thyroid hormone as an upstream regulator of genes involved in AMPK 

signaling established a molecular link between thyroid hormone and AMPK signaling, 

which regulates β-cell maturation22,69,71. Consistent with temporarily distinct functions of 

THRA and THRB in murine β-cells74, the expression and activity of THRA and THRB 

differed between childhood and adult β-cells (Figure S7I–K). Furthermore, we found 

regulation of autophagy genes by UPR-activated TFs in β-cells, consistent with autophagy 

influencing β-cell function under ER stress75,76. The GRN provides a framework for 

understanding signal-dependent regulation of molecular processes in β-cells and identifies 

signal-dependent processes insufficiently activated during SC-β-cell differentiation.

The GRN predicted that steroid hormones regulate E2F target genes (Figure 7C and Table 

S6B), suggesting involvement of steroid hormones in β-cell proliferation. The childhood 

β-cell-specific module was enriched for genes regulated by the progesterone receptor (PGR) 

which shares a sequence motif with the androgen receptor (AR). We validated PGR/AR 

motif enrichment in childhood β-cells in H3K27ac ChIP-seq data from sorted childhood 

compared to adult human β-cells16 (Figure S7I). This finding indicates that sex hormones 

promote β-cell proliferation specifically during childhood. The GRN revealed the cell 

cycle genes CCND2 and MCM5 as targets of PGR/AR signaling in childhood β-cells 

(Figure 7D,E). To test whether AR receptor activation could induce β-cell proliferation, 

we treated SC-islets with dihydrotestosterone (DHT) during two different time windows 

of SC-islet differentiation and quantified relative β-cell numbers and proliferation rates 

(Figure 7F). During both treatment windows, DHT increased SC-β-cell numbers and 

proliferation assessed by EdU incorporation (Figure 7G,H). These results identify a role for 

AR signaling in β-cell proliferation, suggesting a connection between the surge in neonatal 

testosterone77,78 and early postnatal β-cell proliferation.

Discussion

It is still a major challenge to influence cell fate decisions during SC-islet differentiation 

and a roadmap for maturing in vitro-produced β-cells is missing. Here we integrated 

transcriptome and chromatin accessibility data from SC-islets and primary islets and 

inferred GRNs that describe cell type-specific gene regulatory programs. Our integrated 

GRN provides a framework for understanding gene regulatory mechanisms of islet cell fate 

acquisition and benchmarked gene regulatory programs of SC-islet cell types against those 

of primary islet cell types. This information provides a rich resource to design experiments 

for programming specific islet cell types and maturation states.

Previous work has described serotonin-producing cells during SC-islet differentiation7,8. 

Based on their similarity to intestinal enterochromaffin cells and absence of a similar cell 

type in adult islets, it was proposed that these cells lack a lineage relationship with β-cells8. 

We show that SC-ECs are similar to a transitory serotonin-producing pre-β-cell population 

in the human fetal pancreas, indicating that SC-ECs are not pancreas-aberrant. Serotonin-

producing β-cells become rare later in development and are absent from adult pancreas. 

Likewise, SC-ECs decrease during in vitro maturation and after SC-islet engraftment. 
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However, they persist even in prolonged culture and after engraftment8,10, indicating 

insufficient developmental progression of SC-ECs. A better understanding of the signals 

that trigger the transition from SC-ECs to SC-β-cells could help improve protocols for SC-

β-cell production. Given that SC-ECs are a β-cell lineage intermediate, proposed depletion 

strategies8 might not be necessary for a SC-islet cell therapy.

Whether the identified pre-β-cell population represents a transitory state through which all 

progenitors progress or whether only a subset of adult β-cells arise from this population 

is still unclear. A subset of primary adult β-cells shares epigenomic features with SC-ECs 

(Figure S6K), which could indicate a distinct developmental origin of this β-cell subset. 

Lineage tracing studies will be necessary to determine the origin and fate of serotonin-

producing pre-β-cells and the extent to which adult β-cell heterogeneity is developmentally 

determined. Another open question is whether reactivation of the fetal serotonin synthesis 

program during pregnancy55 is restricted to a subpopulation of β-cells or occurs in all 

β-cells.

Whereas β-cell differentiation occurs prenatally, the neonatal and early childhood period 

is characterized by the expansion, proliferation, and functional maturation of β-cells11–16. 

Postnatal changes in β-cells are thought to be driven by environmental cues20; however, 

the specific signals have remained poorly characterized. Our integrated GRN identified 

insufficient activation of circadian, JAK/STAT, steroid and thyroid hormone, as well as 

UPR signals in SC-β-cells. While circadian cues and thyroid hormone are known β-cell 

maturation signals23,69, the roles of the other signals remain to be studied. The GRN 

indicates that JAK/STAT-mediated regulation of stress response genes distinguishes primary 

from SC-β-cells, which could be due to the absence of islet-resident immune cells in 

SC-islets. Whether or not immune cells play a role in human β-cell maturation remains to be 

examined.

We identified sex hormone-mediated activation of proliferation genes as a program 

specific to childhood β-cells and showed that androgens stimulate SC-β-cell proliferation. 

Stimulation of sex hormone-dependent proliferation genes in β-cells could be linked to 

the neonatal testosterone surge77,78 or alternatively, be mediated by locally produced 

testosterone in islets79. Interestingly, a pro-proliferative effect of androgens has also been 

reported during neurogenesis in human brain organoids80, suggesting a shared mechanism 

between pancreatic and neuronal cells.

In summary, our GRN analysis provides a detailed understanding of the regulatory 

mechanisms defining SC-islet and primary islet cell types. The GRNs will be a valuable 

resource to inform strategies for producing precision cell therapy products.

Limitations of Study

One limitation of our study is the relatively small number of human pancreas samples 

we analyzed to characterize serotonin-producing pre-β-cells in primary pancreas and islets. 

Analysis of larger sample sizes should provide deeper insight into the population dynamics 

of pre-β-cells during human development, including the transition to β-cells. Furthermore, 

the cell type-specific GRNs in our study are based on the correlation between TF and target 
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gene expression; however, TF activity can be regulated independently of TF expression 

levels.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Maike Sander (masander@ucsd.edu).

Material availability—CDX2 knockout H1 hESC line is available upon request.

Data and code availability—Single-nucleus ATAC sequencing (snATAC-seq), Single-

nucleus RNA sequencing (snATAC-seq), Single-cell RNA sequencing (scRNA-seq), and 

CDX2 ChIP sequencing raw and processed data are available through the Gene Expression 

Omnibus under accession GSE202500. Other published datasets used in this study 

are summarized in Table S1. UCSC genome browser sessions of aggregated snATAC-

seq, snRNA-seq, and scRNA-seq data are available at: https://genome.ucsc.edu/s/gaowei/

hg19_islet.

Custom codes for main analysis used in this study have been deposited on GitHub: https://

github.com/gaoweiwang/SCislet, and on Zendo. DOI is available in the Key Resource Table.

Any additional information required to reanalyse the data reported in this work paper is 

available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human pancreata and pancreatic islets—Single-cell genomic assays were performed 

on snap frozen pancreas tissue or isolated islets obtained from 18 adult (20 to 61 years 

old) and 7 childhood (13-months to 9 years old) non-diabetic donors (HbA1c ≤ 5.6) 

through multiple sources including: Network for Pancreatic Organ Donors with Diabetes 

(nPOD), Integrated Islet Distribution Program (IIDP) and Alberta Diabetes Institute (ADI) 

IsletCore (see Table S1). Islet preparations were further enriched using zinc-dithizone 

staining followed by hand picking, and either directly processed for single-cell RNA 

sequencing (scRNA-seq) or snap frozen with liquid nitrogen or dry ice. Cryosections of 

fixed neonatal human pancreas were obtained from nPOD. Fixed human fetal pancreatic 

tissue samples were provided by the MRC/Wellcome Trust-funded Human Developmental 

Biology Resource (HDBR; https://www.hdbr.org; stages CS20, 10, 12, 20 and 21 wpc; 

gender not established) and by the University of Washington Birth Defects Research 

Laboratory (stages 13, 18, 19 wpc, gender not established). Lightly paraformaldehyde 

(PFA)-fixed pancreatic tissue from neonatal (1 and 4 days after birth), infant (2, 4, 13 

months after birth), and childhood (20, 21 months, and 2, 3, 8 years old) stages was obtained 

for immunostaining through partnership with the International Institute for Advancement 

of Medicine (IIAM) as part of the Human Atlas of the Neonatal Development and Early 

Life Pancreas (HANDEL-P) program. Adult human pancreas tissue for immunostaining was 

obtained from Prodo Labs. All human tissues were obtained from de-identified donors, and 

protocols used in this study were approved by Institutional Review Board (IRB, protocol 
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091602XX) of the University of California San Diego or by the HDBR Steering Committee 

to the Spagnoli laboratory at King’s College London, UK (License #200523). The HDBR 

is a Research Ethics Committee (REC) approved and HTA licensed tissue bank. The 

Vanderbilt University Institutional Review Board does not consider studies on de-identified 

human pancreatic specimens to qualify as human subject research. For all human samples, 

informed consent was obtained for use of human tissue in research.

Human cell culture experiments—hESC research was approved by the University 

of California, San Diego (UCSD), Institutional Review Board and Embryonic Stem Cell 

Research Oversight Committee (protocol 090165ZX).

METHOD DETAILS

Maintenance and differentiation of H1 hESCs—H1 hESCs (male) were maintained 

as described by Geusz et al.91. In brief, hESCs were seeded onto Matrigel (Corning, 

356238) coated tissue culture surfaces in mTeSR1 media (Stem Cell Technologies, 85850) 

supplemented with 1% Penicillin-Streptomycin (Thermo Fisher Scientific, 15140122), and 

propagated every 3 to 4 days. Accutase (Thermo Fisher Scientific, 00-4555-56) based 

enzymatic dissociation method was employed for passaging and 10 μM Y-27632 (Stem Cell 

Technologies, 72307) was supplied on the first day of each passage.

H1 hESCs were differentiated into SC-islets with a protocol we modified from previous 

publications by Rezania et al., Velazco-Cruz et al., and Hogrebe et al.1,4,6. After 

dissociation using Accutase, H1 cells were suspended with mTeSR1 media with %1 

Penicillin-Streptomycin and 10 μM Y-27632 and plated using either a 3D culture or a 

2D culture condition. For the 3D culture, cells were aggregated in 5.5mL medium at a 

concentration of 5.5 × 106 cells/well in a low attachment 6-well plate on an orbital shaker 

(100 rpm, 0.2 × g) in a 37 °C incubator. The following day (day 0), undifferentiated 

cells were washed in Stage 1/2 base medium (see below) and then differentiated using a 

seven-step protocol with stage-specific medium. Medium was refreshed daily until day 32. 

At day 8, the speed of the orbital shaker was increased to 110 rpm (0.3 × g). On day 21, cells 

were dissociated with Accutase, suspended in Stage 7 medium (see below) supplemented 

with 10 μM Y-27632 and re-aggregated at a concentration of 3 × 106 cells/well in a low 

attachment 6-well plate on an orbital shaker (100 rpm, 0.2 × g) in a 37 °C incubator. The 

speed of the shaker was increased to 110 rpm (0.3 × g) on the following day.

For a subset of experiments, a 2D differentiation protocol was used which is identical to 

the 3D protocol with the following exceptions: H1 hESCs cells were plated onto Matrigel 

coated tissue culture surfaces in base medium at a concentration of 5.7 × 105 cells/cm2. 

Stage 1 was extended to a total of 4 days (day 0–3). On day 29, cells were dissociated with 

Accutase, suspended in Stage 7 medium (see below) supplemented with 10 μM Y-27632, 

and re-aggregated at a concentration of 3 × 106 cells/well in a low attachment 6-well plate 

on an orbital shaker (100 rpm, 0.2 × g) in a 37 °C incubator. The speed of the shaker was 

increased to 110 rpm (0.3 × g) on the following day.

Base medium for all stage-specific media was comprised of MCDB 131 medium (Thermo 

Fisher Scientific, 10372019) supplemented with NaHCO3 (Sigma, S6297), GlutaMAX 
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(Thermo Fisher Scientific, 35050061), D-Glucose (Sigma, G8769), and BSA (Lampire 

Biological Laboratories, 7500804) using the following concentrations:

Stage 1/2 base medium: MCDB 131 medium, 1.5 g/L NaHCO3, 1X GlutaMAX, 10 mM 

D-Glucose, 0.5% BSA

Stage 3/4 base medium: MCDB 131 medium, 2.5 g/L NaHCO3, 1X GlutaMAX, 10 mM 

D-glucose, 2% BSA

Stage 5/6 base medium: MCDB 131 medium, 1.5 g/L NaHCO3, 1X GlutaMAX, 20 mM 

D-glucose, 2% BSA

Stage 7 base medium: MCDB 131 medium, 1.5 g/L NaHCO3, 1X GlutaMAX, 2% BSA

Media compositions for each stage were as follows:

Stage 1 (days 0–2 for 3D culture and days 0–3 for 2D culture): base medium, 100 ng/mL 

Activin A (R&D Systems, 338-AC/CF), 25 ng/mL Wnt3a (R&D Systems, 5036-WN, only 

on day 0).

Stage 2 (days 3–5 for 3D culture and days 4–6 for 2D culture): base medium, 0.25 mM 

L-Ascorbic Acid (Sigma, A4544), 50 ng/mL FGF7 (R&D Systems, 251-KG)

Stage 3 (days 6–7 for 3D culture and days 7–8 for 2D culture): base medium, 0.25 mM 

L-Ascorbic Acid, 50 ng/mL FGF7, 0.25 μM SANT-1 (Sigma, S4572), 1 μM Retinoic Acid 

(Sigma, R2625), 100 nM LDN193189 (Stemgent, 04-0074), 1:200 ITS-X (Thermo Fisher 

Scientific, 51500056), 200 nM TPB (Calbiochem, 565740)

Stage 4 (days 8–10 for 3D culture and days 9–11 for 2D culture): base medium, 0.25 

mM L-Ascorbic Acid, 2 ng/mL FGF7, 0.25 μM SANT-1, 0.1 μM Retinoic Acid, 200 nM 

LDN193189, 1:200 ITS-X, 100 nM TPB

Stage 5 (days 11–13 for 3D culture and days 12–14 for 2D culture): base medium, 0.25 

μM SANT-1, 0.05 μM RA, 100 nM LDN-193189, 1 μM T3 (Sigma, T6397), 10 μM ALK5i 

II (Cayman Chemicals, 14794), 10 μM ZnSO4 (Sigma, Z0251), 10 μg/mL heparin (Sigma, 

H3149), 1:200 ITS-X

Stage 6 (days 14–20 for 3D culture and days 15–21 for 2D culture): base medium, 100nM 

LDN193189, 1 μM T3, 10 μM ALK5i II, 10 μM zinc sulfate, 100 nM gamma secretase 

inhibitor XX (Calbiochem, 565789), 10 μg/ml heparin, 1:200 ITS-X

Stage 7 (from day 21 for 3D culture and from day 22 for 2D culture): base medium, 10 μM 

zinc sulfate, 10 μg/ml heparin, 1:1000 Trace Element A (Corning, 89408-312), 1:1000 Trace 

Element B (Corning, 89422-908), 1:100 MEM Non-Essential Amino Acids (Thermo Fisher 

Scientific, 11140076)

Dihydrotestosterone treatment—H1 hESCs were differentiated as described above. 

10nM dihydrotestosterone (DHT, Sigma, D-073) was added daily to the differentiation 
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medium starting from either day 14 (end of Stage 5) or day 21 (end of Stage 6). Methanol 

was used as vehicle control.

Generation of CDX2 KO H1 hESC line—To generate a homozygous CDX2 deletion 

H1 hESC line, sgRNAs targeting the first exons of CDX2 were cloned into PX458 

(Addgene, 48138). The plasmid was transfected into H1 hESCs with XtremeGene 9 

(Roche, 6365787001), and 24 h later 5000 GFP+ cells were sorted into a well of six-well 

plate using mTeSR1 medium supplemented with 10 μM Y-27632. Individual colonies that 

emerged within 7 days were subsequently transferred manually into 48-well plates for 

expansion, genomic DNA extraction, PCR genotyping, and Sanger sequencing. A clone 

with a homozygous five base pair deletion in the CDX2 coding sequence was selected. For 

control clones, the PX458 plasmid was transfected into H1 hESCs, and cells were subjected 

to the same workflow as H1 hESCs transfected with sgRNAs. Sequence of sgRNA oligos 

used to generate CDX2 KO hESCs and PCR primers used to amply DNA after CDX2 gene 

editing can be found in Table S7.

Flow cytometry analysis—Cell aggregates derived from hESCs were allowed to settle 

in microcentrifuge tubes and washed with PBS. Cell aggregates were incubated with 

Accutase® at 37 °C until a single-cell suspension was obtained. Cells were washed with 

1 mL ice-cold flow buffer comprised of 0.2% BSA in PBS and centrifuged at 200 × g 
for 5 min. BD Cytofix/Cytoperm™ Plus Fixation/Permeabilization Solution Kit was used to 

fix and stain cells for flow cytometry according to the manufacturer’s instructions. Briefly, 

cell pellets were resuspended in ice-cold BD Fixation/Permeabilization solution (300 μL per 

microcentrifuge tube). Cells were incubated for 20 min at 4 °C. Cells were washed twice 

with 1 mL ice-cold 1X BD Perm/Wash™ Buffer and centrifuged at 4 °C and 200 × g or 

5 min. Cells were resuspended in 50 μL ice-cold 1X BD Perm/Wash™ Buffer containing 

diluted antibodies, for each staining performed. Cells were incubated at 4 °C in the dark 

for 1–3 h. If a secondary antibody staining was required, cells were washed twice with 1 

mL ice-cold 1X BD Perm/Wash™ Buffer and centrifuged at 4 °C and 200 × g for 5 min. 

Cells were resuspended in 50 μL ice-cold 1X BD Perm/Wash™ Buffer containing diluted 

secondary antibodies. For EdU incorporation assays coupled with the flow analysis, cells 

were stained for EdU prior to primary antibody staining. Cells were washed with 1.25 

mL ice-cold 1X BD Wash Buffer and centrifuged at 200 × g for 5 min. Cell pellets were 

resuspended in 300 μL ice-cold flow buffer and analyzed in a FACS LSRFortessa™ system 

(BD Biosciences). Antibodies used were AlexaFluor® 647-conjugated anti-NKX6-1 (1:5 

dilution, BD Biosciences 563338); PE-conjugated anti-insulin (1:50 dilution, Cell Signaling 

8508); rabbit anti-human SLC18A1 (1:300 dilution, Sigma HPA063797); AlexaFluor® 488-

conjugated donkey anti-rabbit IgG (1:1000 dilution, Jackson Immunoresearch 711-545-152); 

Biotin-conjugated anti-CD26 (1:500 dilution, BioLegend 302718); and Brilliant Violet 

421™-conjugated Streptavidin (1:500 dilution, BioLegend 405226). Data were processed 

using FlowJo software v10.

Nucleoside analog (EdU) incorporation assay—Proliferation in SC-β-cells was 

assayed using Click-iT™ EdU Alexa Fluor™ 488 Flow Cytometry Assay Kit following 

the manufacturer’s instructions with modifications. In brief, nucleoside analog, EdU (5-
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ethynyl-2′-deoxyuridine, 10 μM), was added daily to SC-islets starting from day 21 until 

day 32 of 3D culture. Labeled cells were dissociated, fixed, and permeabilized using the 

same procedures as described in “Flow cytometry analysis”, and visualized with Alexa 

Fluor® 488 azide through “click” chemistry. To detect SC-β-cell-specific EdU incorporation, 

cells were stained with AlexaFluor® 647-conjugated anti-NKX6-1 and PE-conjugated anti-

insulin (see “Flow cytometry analysis”), and analyzed in a FACS LSRFortessa™. Data were 

processed using FlowJo software v10.

Immunofluorescence analysis—SC-islets were washed twice with PBS and fixed 

with 4% paraformaldehyde (PFA) for 30 min at room temperature. Fixed samples were 

washed twice with PBS and dehydrated in 30% (w/v) sucrose in PBS at 4 °C overnight. 

The following day, samples were embedded with Tissue-Tek® O.C.T. Sakura® Finetek 

compound (VWR) in disposable embedding molds (VWR), and frozen in a dry ice-ethanol 

bath. Tissue blocks were sectioned at 10 μm and sections were placed on Superfrost Plus® 

(Thermo Fisher) microscope slides and washed twice with PBS for 10 min. On neonatal and 

adult human pancreas sections, immunostaining was performed as described previously by 

Brissova et al. and Saunders et al.92,93. In brief we performed antigen retrieval by boiling 

sections in sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0) for 

20 min. Sections were then permeabilized with 0.1% (v/v) Triton X-100 (Sigma-Aldrich) 

for 30 min, and blocked with blocking buffer, consisting of 0.1% (v/v) Triton X-100 (Sigma-

Aldrich) and 1% (v/v) normal donkey serum (Jackson Immuno Research Laboratories, 

Cat 017-000-121) in PBS for 1h at room temperature. Primary antibody incubation was 

conducted in the same blocking buffer at 4 °C overnight. The following day, sections were 

washed three times with PBS and stained with diluted secondary antibodies and Hoechst 

33342 (Invitrogen, H3570) for 1h at room temperature. Stained sections were washed five 

times with PBS before mounting with VECTASHIELD® (Vector Laboratories, H-1300). 

Images were obtained with a Zeiss Axio-Observer-Z1 microscope equipped with a Zeiss 

ApoTome and AxioCam digital camera and quantified using HALO image analysis (Indica 

Lab). Fetal human pancreas sections processed in the Spagnoli laboratory at King’s College 

London were stained with a similar procedure but using slightly different reagents, including 

a citrate buffer solution (Dako) for antigen retrieval, a TSA blocking buffer [0.5% TSA 

blocking powder (Perkin Elmer, Cat NEL 701001KT), 10% horse serum (Invitrogen, Cat 

16050130) in 0.1% Triton 1x PBS] and Dako Fluorescent Mounting Medium (Dako, Cat 

S3023). Images were acquired on Zeiss LSM 700 laser scanning microscope or on FV3000 

confocal laser scanning microscope (Olympus).

Dynamic glucose-stimulated insulin secretion (GSIS) assay—GSIS assays were 

carried out at 37°C using the Biorep perifusion system (Biorep v5), which allows a dynamic 

exchange of Krebs-Ringers-Bicarbonate-HEPES (KRBH) buffer (130 mM NaCl, 5 mM 

KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 1.2 mM KH2PO4, 20 mM HEPES pH 7.4, 25 mM 

NaHCO3, and 0.1% BSA) with high (16.8 mM) and low (2.8 mM) glucose concentrations. 

30–50 hand-picked SC-islets were loaded into the perifusion chamber and equilibrated with 

low glucose KRBH for 1h. SC-islets were then stimulated with KRBH containing indicated 

concentration of glucose for indicated duration.
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Perifusate was collected every minute, and samples from indicated time points were 

analyzed using STELLUX® Chemi Human C-peptide ELISA (ALPCO). SC-islets from 

perifusion chambers were transferred to microcentrifuge tubes and lysed by sonication for 

total C-peptide content measurement.

RNA extraction and qRT-PCR—Approximately 500 SC-islets were collected and 

washed before RNA isolation using the RNeasy Micro kit (QIAGEN) according to the 

manufacturer’s instructions. RT-qPCR was performed as previously described by Wortham 

et al.94. In brief, 500 ng for total RNA was converted to cDNA using iScript™ cDNA 

Synthesis Kit (Bio-Rad). Gene expression was quantified with iQ™ SYBR® Green 

Supermix (Bio-Rad). Primers used for qPCR were listed in Table S7.

Single-cell RNA-sequencing (scRNA-seq)—Differentiating aggregates and hand-pick 

human islets were collected in microcentrifuge tubes and washed with PBS. Accutase® was 

used to dissociate aggregates into single cells, which were then stained with propidium 

iodide (Sigma) in a PBS solution containing 0.2% BSA. Approximately 200,000 live cells 

(propidium iodide-negative) were sorted with a FACSAriaTM Fusion Flow Sorter at a 

sorting speed lower than 3,000 events per second to minimize damage to the cells. Sorted 

cells were pelleted with 250 × g for 5 minutes at 4°C, and counted with a Scepter™ 

automated cell counter. 10,000 accurately counted cells per sample were loaded onto a 10X 

Chromium Controller for GEM formation and cell barcoding using Next GEM Single Cell 

3’ v3.1 reagents. Barcoded single cells were subjected to cDNA synthesis and sequencing 

library construction using 10X Next GEM Single Cell 3’ v3.1 reagents according to 

manufacturer’s instructions. Final libraries were quantified using a Qubit fluorimeter (Life 

Technologies) and the fragmented cDNA was verified using a Tapestation (High Sensitivity 

D1000, Agilent). Libraries were sequenced on NextSeq 500, HiSeq 4000 or NovaSeq 6000 

sequencers (Illumina) and reads were trimmed afterwards to fit into corresponding analysis 

pipeline.

Single-nucleus RNA-sequencing (snRNA-seq)—Nuclei were isolated from 

approximately 1,000 differentiated aggregates (~1,000 cells per aggregate) or approximately 

35 mg of frozen human pancreas using a nuclei permeabilization buffer [0.1% Triton X-100 

(Sigma-Aldrich, T8787), 1X Pierce Protease Inhibitor (Fischer, PIA32965), 1 mM DTT 

(Sigma-Aldrich, D9779), Recombinant RNase inhibitor (0.2 U/μl; Promega, 2% Fatty-acid-

free BSA in PBS (Proliant, 7500804; Corning, 21-040-CV)]. For differentiated aggregates, 

nuclei extraction was done in a glass dounce, and for frozen human pancreas, samples were 

pulverized and resuspended in the nuclei permeabilization buffer.

Samples were incubated on a rotator for 5 min at 4°C and then centrifuged at 500g for 

5 min (Eppendorf, 5920R; 4°C, ramp speed of 3/3). Supernatant was removed and pellet 

was resuspended in sort buffer [1mM EDTA (Invitrogen, 15575020), 0.2U/μL Recombinant 

RNAsin (Promega, PAN2515), 1% Fatty-acid-free BSA in PBS (Proliant, 7500804; Corning, 

21-040-CV) and stained with DRAQ7 (1:150; Cell Signaling Technology, 7406). 60,000 

nuclei were sorted using an SH800 sorter (Sony) into 50 μl of collection buffer [1.0U/μL 

Recombinant RNAsin (Promega, PAN2515), 5% Fatty-acid-free BSA in PBS (Proliant, 

7500804; Corning, 21-040-CV)]. Sorted nuclei were then centrifuged at 1000 g for 15 min 
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(Eppendorf, 5920R; 4°C, ramp speed of 3/3), and supernatant was removed. Nuclei were 

resuspended in reaction buffer [RNase inhibitor (0.2U/μL Recombinant RNAsin (Promega, 

PAN2515), 1% Fatty-acid-free BSA in PBS (Proliant, 7500804; Corning, 21-040-CV) and 

counted using a hemocytometer.

16,550 nuclei were loaded onto a Chromium controller (10x Genomics). Libraries were 

generated using the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead 

Kit v3.1 (10x Genomics, PN-1000121) according to the manufacturer specifications. 

Complementary DNA was amplified for 12 PCR cycles. SPRISelect reagent (Beckman 

Coulter) was used for size selection and cleanup steps. Final library concentration was 

assessed by the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific), and fragment size 

was checked using TapeStation High Sensitivity D1000 (Agilent) to ensure that fragment 

sizes were distributed normally around 500 bp. Libraries were sequenced using a NextSeq 

500 or NovaSeq 6000 (Illumina).

Single-nucleus ATAC-sequencing (snATAC-seq)—Nuclei extraction and sorting 

were done using the same methodology as described in “Single nucleus RNA-seq”. Single 

nucleus ATAC-seq libraries were generated using either the Chromium Chip E Single 

Cell ATAC Kit (10x Genomics, 1000086) or Chromium Next GEM Single Cell ATAC 

Library & Gel Bead Kit v1.0 (10x Genomics, 1000175) with Chromium Next GEM Chip 

H Single Cell Kit (1000161) following the manufacturer’s instructions. Indexes used were 

Chromium i7 Multiplex Kit N, Set A (10x Genomics, 1000084) and Single Index Kit N 

Set A (1000212)10x Genomics, 1000084), respectively. Final libraries were quantified using 

a Qubit fluorimeter (Life technologies) and the nucleosomal pattern was verified using a 

Tapestation (High Sensitivity D1000, Agilent). Libraries were sequenced on NextSeq 500, 

HiSeq 4000 or NovaSeq 6000 sequencers (Illumina) and reads were trimmed afterwards to 

fit into corresponding analysis pipeline.

Chromatin immunoprecipitation sequencing (ChIP-seq)—ChIP-seq was performed 

using the ChIP-IT High-Sensitivity kit (Active Motif) according to the manufacturer’s 

instructions. Briefly, from day 21 SC-islets 5–10 × 106cells were harvested and fixed on 

a rocker for 15 min in an 11.1% formaldehyde solution. The reaction was quenched for 5 

min in 0.125 M glycine, cells washed in DPBS containing 0.5% NP-40, then once again 

in DPBS supplemented with 0.5% NP-40 and 1 mM PMSF. Cells were lysed by sonication 

with a Bioruptor® Plus (Diagenode), on high for 3 × 5 min (30 s on, 30 s off). 30 μg of 

the resulting sheared chromatin was used for each immunoprecipitation. Equal quantities 

of sheared chromatin from each sample were used for immunoprecipitations carried out at 

the same time. 6 μg anti-CDX2 antibody (A300-691A, Bethyl Laboratories) was used for 

the ChIP-seq assay. Chromatin was incubated with primary antibody overnight at 4 °C on 

a rotator followed by incubation with Protein G agarose beads for 3 h at 4 °C on a rotator. 

Reversal of crosslinks and DNA purification were performed according to the ChIP-IT 

High-Sensitivity instructions, with the modification of incubation at 65 °C for 2–3 h, rather 

than at 80 °C for 2 h. Sequencing libraries were constructed using KAPA DNA Library 

Preparation Kits for Illumina® (Kapa Biosystems) and library sequencing was performed 

on either a HiSeq 4000 System (Illumina®) or NovaSeq 6000 System (Illumina®) with 
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single-end reads of either 50 or 75 base pairs (bp). Sequencing was performed by the UCSD 

Institute for Genomic Medicine (IGM) core research facility. For the ChIP-seq experiment, 

replicates from two independent hESC differentiations were generated.

ChIP-seq data analysis—Bowtie286 (v2.3.4.1) was used for mapping of raw data to the 

human reference genome hg19 with a maximum of 2 mismatches allowed in the seed region, 

discarding reads aligning to multiple sites. Duplicate reads were removed using SAMtools87. 

DeepTools88 was used to generate bigwig format tracks for visualization in UCSC Genome 

Browser. Peak calling was performed using MACS289 with default setting for TF ChIP-seq 

and ChIP-seq input as the background control.

Single-cell raw data processing and quality control

Data processing using Cell Ranger software: Alignment to the hg19 genome and initial 

processing were performed using the 10x Genomics Cell Ranger ATAC v1.1.0 and Cell 

Ranger RNA v.3.0.2 pipelines. Sample information and a summary of the Cell Ranger 

ATAC-seq and RNA-seq quality metrics are provided in Table S1.

Filtering barcode doublets and low-quality cells for each individual donor: Cell 

barcodes from the 10x Chromium snATAC-seq assay may have barcode multiplets that 

have more than one oligonucleotide sequence95. We used ‘clean_barcode_multiplets_1.1.py’ 

script from 10x to identify barcode multiplets for each donor and excluded these barcodes 

from further analysis. We then filtered low quality snATAC-seq profiles by total UMIs 

(<1,000), fraction of reads overlapping TSS (<15%), fraction of reads overlapping called 

peaks (<30%), and fraction of reads overlapping mitochondrial DNA (>10%) according 

to the distribution of these metrics for all barcodes. We also excluded profiles that had 

extremely high unique nuclear reads (top 1%), fraction of reads overlapping TSS (top 1%) 

and called peaks (top 1%) to minimize the contribution of these barcodes to our analysis. For 

RNA-seq data, we used total UMIs (<1,000) and fraction of reads overlapping mitochondrial 

DNA (>10%) to filter cells with low quality RNA profiles. We also excluded profiles that 

had extremely high total UMIs (top 1%) to minimize the contribution of these barcodes to 

our analysis.

Cell clustering: After filtering low quality cells, we checked ATAC and RNA data 

quality from each sample by performing an initial clustering using Scanpy (v.1.6.0)81. 

For ATAC-seq data, we partitioned the hg19 genome into 5 kb sliding windows 

and removing windows overlapping blacklisted regions from ENCODE96,97 (https://

www.encodeproject.org/annotations/ENCSR636HFF/). Using 5 kb sliding windows as 

features, we produced a barcode-by-feature count matrix consisting of the counts of reads 

within each feature region for each barcode. Detailed pipeline to process ATAC-seq data can 

be found in our previous work by Chiou et al.98. We normalized each barcode to a uniform 

read depth and extracted highly variable features. Then, we regressed out the total read depth 

for each cell, performed PCA, and extracted the top 50 principal components to calculate 

the nearest 30 neighbors using the cosine metric, which were subsequently used for UMAP 

dimensionality reduction with the parameters ‘min_dist=0.3’ and Leiden99 clustering with 

the parameters ‘resolution=0.8’.
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We then performed initial cell clustering for cells from all donors using similar methods to 

cluster cells for each donor. Of note, we extracted highly variable features across cells from 

all experiments. Since read depth was a technical covariate specific to each experiment, we 

regressed this out on a per-experiment basis. We also used Harmony100 to adjust for batch 

effects across experiments. We identified clusters and subclusters (‘resolution’=1.5) with 

significantly different total UMIs, fraction of reads overlapping TSS, or fraction of reads 

overlapping called peaks compared to other clusters and subclusters. We excluded these 

clusters and subclusters and obtained final cell clusters by performing cell clustering using 

identical methods for initial clustering of all cells. We determined the cell type represented 

by each cluster by examining chromatin accessibility at the promoter regions of known 

marker genes.

Generating fixed-width and non-overlapping peaks that represent cCREs 
across cell types—We called peaks for each cell type using the MACS2 call peak 

command with parameters ‘--nomodel --extsize 200 –shift 0 --keep-dup all -q 0.05’ and 

filtered these peaks by the ENCODE hg19 blacklist. For each cell type, we generated 

fixed-width peaks (summits of these peaks from macs2 were extended by 250 bp on either 

side to a final width of 501 bp), as previously described by Satpathy et al.101. We quantified 

the significance of these fixed-width peaks in each cell type by converting the MACS2 

peak scores (−log10(Q value)) to a ‘score quantile’. Then, fixed-width peaks for each cell 

type were combined into a cumulative peak set. As there are overlapping peaks across cell 

types, we retained the most significant peak and any peak that directly overlapped with that 

significant peak was removed. This process was iterated to the next most significant peak 

and so on until all peaks were either kept or removed due to direct overlap with a more 

significant peak. These fixed-width and non-overlapping peaks were defined as candidate 

cis-regulatory element, or cCREs.

Differential gene expression analysis—We used generalized linear regression model 

(glm function in R) to call differential expressed genes between different cell types or 

states from snRNA-seq data. Expression level of genes were normalized by total count for 

individual cells. In addition to cell types or states annotation, we also considered total count 

of individual cells as covariate in the model to calculate coefficient and p value. Adjusted 

p values (FDRs) were obtained using p.adjust function in R with a Benjamini & Hochberg 

method. Differentially expressed genes were selected using FDR<0.05 as cutoff.

K-means clustering—For α-cells, we used the cell type-by-genes count matrix and 

differentially expressed genes between α-cells from SC-islets, childhood, and adult primary 

islets (FDR<0.05) as input. We normalized the expression level of genes using total counts 

and performed K-means clustering analysis using kmeans function in R. We then repeated 

the same procedure for β-cells.

Integrating snATAC-seq and sc/snRNA-seq data—We used the Seurat package82 

to integrate single modality snATAC-seq and sc/sn RNA-seq datasets (https://satijalab.org/

seurat/articles/atacseq_integration_vignette.html). Raw count matrices of snATAC-seq and 

sc/snRNA-seq data, as well as cell clustering results were loaded into the Seurat package 
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as input. To integrate and establish connections between transcriptome (sc/sn RNA-seq) 

and accessible chromatin (snATAC-seq) profiles, we first inferred gene activity scores from 

snATAC-seq data using the GeneActivity function and performed log-normalization. Gene 

activity scores from snATAC-seq data and gene expression from sc/snRNA-seq data were 

then compared and linked using FindTransferAnchors function with a Canonical Correlation 

Analysis (CCA) based dimension reduction method. Using anchors identified in the CCA 

space, cluster identities and mRNA counts of the snRNA-seq dataset were transferred 

to cells in snATAC-seq datasets. We applied the procedure to integrate snATAC- and sc/

snRNA-seq data of SC-islets and endocrine cells from SC-islets and primary endocrine cells 

from human pancreas.

Integrating SC-islet endocrine cells with primary human pancreatic endocrine 
cells—We performed separate integration analyses for snATAC-seq data and sc/snRNA-

seq data obtained from SC-islet endocrine cells and primary human pancreatic endocrine 

cells. For snATAC-seq, processed matrices from Scanpy were imported into the 

“Signac” R package (https://satijalab.org/signac/articles/pbmc_vignette.html). Data from 

SC- and primary endocrine cells were merged and normalized using a frequency-

inverse document frequency (TF-IDF) method and dimension reduction was performed 

using singular value decomposition (SVD) followed by latent semantic indexing 

(LSI). Cells from the two datasets were compared in the LSI space and integration 

anchors were identified using the FindIntegrationAnchors function, and integrated with 

those integration anchors using IntegrateData. For sc/snRNA-seq datasets, integration 

was performed following “Seurat” data integration instructions (https://satijalb.org/seurat/

articles/integration_introduction.html). In brief, SC- and primary endocrine cells were 

imported into “Seurat” package from “Scanpy” with original dimension reductions (PCA 

and UMAP) remaining the same. Integration anchors were found by comparing datasets 

in the PCA space using FindIntegrationAnchors before datasets were integrated using 

IntegrateData. Corrected snATAC-seq and sc/snRNA-seq matrices after integration were 

normalized and dimensionally reduced. Cells from SC- and primary endocrine cells were 

co-embedded on a same UMAP following the method described in “Single-cell raw data 

processing and quality control”. Both original cell identities and new identities obtained 

after integration were visualized using the first two UMAP components and compared.

TF motif enrichment analysis—Using the barcode-by-peaks (501 bp fixed-width 

peaks) count matrix as input, we inferred enrichment of TF motifs for each barcode 

using chromVAR90 (v.1.4.1). We filtered cells with minimal reads less than 1500 

(min_depth=1500) and peaks with fraction of reads less than 0.15 (min_in_peaks=0.15) 

by using ‘filterSamplesPlot’ function from chromVAR. We also corrected GC bias based on 

‘BSgenome.Hsapiens.UCSC.hg19’ using the ‘addGCBias’ function. Then, we used the TF 

binding profiles database JASPAR 2020 motifs102 and calculated the deviation z-scores for 

each TF motif in each cell by using the ‘computeDeviations’ function. High-variance TF 

motifs across all cell types were selected using the ‘computeVariability’ function with the 

cut-off 1.15 (n=315). For each of these variable motifs, we calculated the mean z-score for 

each cell type and normalized the values to 0 (minimal) and 1 (maximal).
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Building pseudotime trajectories with Monocle3—For each developmental 

trajectory, cells from indicated lineages were selected in the snATAC-seq dataset 

Seurat object using the subset function and the subset object was imported into 

Monocle383 using the as.cell_data_set functions with default settings. snATAC-seq 

UMAP coordinates were used to estimate distance between cells and to identify 

the nearest neighbor cell. This process was combined with the establishment of 

a lineage trajectory using the learn_graph function with close_loop = F, and 

learn_graph_control=list(ncenter=500,minimal_branch_len=10). Pseudotime trajectory roots 

were chosen empirically based on prior knowledge of pancreas development, with an 

interactive interface using the order_cells function. To minimize computational noise 

introduced by the sparse nature of single-cell data, we created pseudo-bulk samples by 

cutting the entire pseudotime trajectory into 12 pseudotime bins and aggregated cells 

within each bin using the aggregate_by_cell_bin function. We then integrated chromatin 

accessibility, gene expression and TF motif enrichment data into each single-cell to compute 

CPM values of cCREs, genes, and mean motif enrichment scores in each pseudotime bin. 

Values were then scaled and plotted on a heatmap for visualization.

Inferring gene regulatory networks (GRNs)

Computing correlation between cCRE accessibility and target gene expression: To 

identify putative target genes of cCREs, we combined and modified previously published 

methods by Li et al.103. First, we identified cCRE-gene pairs with physical interaction 

with the following three methods: 1. cCREs within ± 1 kb of a TSS were defined as gene 

promoter cCREs. Promoter-gene pairs were established across all expressed genes in each 

cell type. 2. cCREs located outside ± 1 kb, but within ± 50 kb of a TSS were classified 

as proximal elements, and all proximal cCRE-gene interactions in each cell type were 

considered. 3. We used Cicero84 to calculate co-accessibility between long distance cCREs 

(see “Computing co-accessibility using Cicero”) and identified distal cCRE-gene pairs for 

individual cell types.

We then generated pseudo-bulk ATAC and mRNA profiles by aggregating single cells of the 

same cell type from different cell sources (stem cell-derived, endocrine cells from childhood 

or adult pancreas) and collection times during SC-islet differentiation (D11, D14, D21, 

D32, D39). In total there were 16 pseudo-bulk ATAC and RNA profiles. CPM (counts per 

million reads) values of cCRE accessibility and gene expression in each pseudo-bulk ATAC 

and RNA profile were calculated, cCREs with low accessibility (maximum CPM value 

across pseudo-bulk ATAC profile <1) and gene with low expression genes (maximum CPM 

value across pseudo-bulk RNA profile <3) were excluded from further analysis. Finally, 

we calculated the Spearman correlation coefficient (SCC) between cCRE accessibility and 

target gene expression across all cCRE-gene pairs identified above. To estimate background, 

we generated permuted pseudo-bulk ATAC and RNA profiles by randomly shuffling 

identities of pseudo-bulk profiles, cCREs, and genes. We estimated False-positive detection 

rates (FDR)104 based on the fraction of detected pairs from the shuffled group. Empirically 

defined cutoffs were used to identify the final lists of cCRE-gene pairs.
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Computing co-accessibility using Cicero: We used Cicero84 (v.1.3.4.10) to calculate 

co-accessibility scores for pairs of peaks in each individual cell type. Using SC-β-cell 

as example, we started from the merged peak by cell sparse binary matrix, extracted 

SC-β-cells, and filtered out peaks that were not present in SC-β-cells. We used the 

‘make_cicero_cds’ function to aggregate cells based on the 50 nearest neighbors. We then 

used Cicero to calculate co-accessibility scores using a window size of 1 Mb and a distance 

constraint of 250 kb. We then repeated the same procedure for other cell types. We used 

a co-accessibility threshold of 0.05 to define pairs of peaks as co-accessible. Peaks within 

and outside ± 5 kb of a TSS in GENCODE V19 were considered proximal and distal, 

respectively. Peaks within ± 500 bp of a TSS in GENCODE V19 were defined as promoter. 

Co-accessible pairs were assigned to one of three groups: distal-to-distal, distal-to-proximal 

and proximal-to-proximal. Distal-to-proximal co-accessible pairs were defined as potential 

enhancer-promoter connections. Genes linked to proximal or distal cCREs were identified.

Computing correlation between transcription factor (TF) expression and cCRE 
accessibility.: We used a position frequency matrix (PFMatrixList object) of TF DNA-

binding preferences from the JASPAR 2020 database102 and width-fixed peaks as input to 

perform TF footprinting analysis. We used the ‘matchMotifs’ function in the R package 

motifmatchr to infer cCREs bound by TFs. This analysis established a preliminary set of 

TF-cCRE pairs. A matching set of aggregated pseudo-bulk ATAC and RNA profiles (see 

“Computing correlation between cCRE accessibility and target gene expression”) was used 

to quantify CPM values of TF expression and cCRE accessibility. We then calculated SCCs 

across all pseudo-bulk and permuted pseudo-bulk aggregates through randomization. The 

FDR was calculated using the same method as described in “Computing correlation between 

cCRE accessibility and target gene expression” and empirically defined cutoffs were used to 

define significantly correlated TF-cCRE pairs.

Establishment of cell type-specific GRNs: We identified highly variable cCREs across 

cell types based on cCRE-by-pseudo-bulk count matrices. We then performed k-means 

clustering of highly variable cCREs to identify cCREs modules, defined by cCREs 

exhibiting a similar accessibility pattern across cell types. Cell type-specific cCRE modules 

and cell type-shared cCRE modules were identified. Upstream TFs and downstream target 

genes of each cCRE from each module were used to define cell type-specific GRNs. 

To visualize features of cell type-specific GRNs, we performed a UMAP (umap function 

in “uwot” package in R) based dimension reduction analysis of the pseudocell-by-cCRE 

accessibility matrices used for the correlation-based GRN inference, and plotted individual 

cCREs using the first two UMAP components. Onto this cCRE UMAP, we plotted different 

features of cCREs used in the GRN analysis and retained cCRE module-specific information 

in the plots. Those cCRE features include: 1. Accessibility in each pseudocell; 2. cCRE 

module identity; 3. Correlation (SCC) between each cCRE and a given TF; 4. cCREs 

co-bound by two TFs; 5. cCRE pseudotime values.

Identification of cell type-specific transcriptional regulators: We used Fisher’s exact test 

to identify cell type-specific TFs. For each TF in query, we computed (fisher.test function 

in R) odds ratio and p value describing enrichment of cCREs bound by the TF within a 
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cCRE module compared to TF-bound cCREs across all cCRE modules. This process was 

repeated for all TFs in all cCRE modules and adjusted p values (FDR) were obtained using 

p.adjust function in R with a Benjamini & Hochberg method. Significantly enriched TFs 

were selected if FDR<0.05.

Inferring cell type-specific TF interactions: TF interactions were inferred by one TF 

(TF1) binding to the same set of cCREs also bound by another TF (TF2) in a cell 

type-specific cCRE module. To test this, we focused on one cCRE module each time and 

estimated the enrichment of TF1-bound cCREs within TF2 binding sites compared to those 

in the entire cCRE module. This enrichment was summarized using odds ratios and p values 

calculated with fisher.test in R. This procedure was repeated for all TF pairs in all cCRE 

modules and adjusted p values (FDR) were obtained using p.adjust function in R with a 

Benjamini & Hochberg method. Significantly TF interactions were selected if FDR<0.05.

Pseudotime ordering of transcriptional programs: Transcriptional programs were 

ordered separately for α-cell, β-cell and SC-EC lineages. In each lineage, cells were ordered 

on a pseudotime trajectory established in Monocle3 (described in “Building pseudotime 

trajectories with Monocle3”). Both cCRE accessibility and gene expression levels were 

plotted in each single cell on the pseudotime trajectory.

Since chromatin accessibility signals are binary, for each cCRE, we estimated the density 

of accessible cCREs along pseudotime using the density function in R, and identified 

pseudotime points with highest cCRE density. For each gene, we fitted gene expression 

along pseudotime with the smooth.spline function, and identified pseudotime points with 

maximum gene expression. cCRE accessibility and gene expression pseudotime values 

were defined as time points with highest density of accessible cCREs and maximum gene 

expression, respectively. Based on these pseudotime values, cCREs and genes were aligned 

and ordered for each lineage. Using the established GRN that connects TFs to cCREs and 

target genes, we were able to plot entire transcriptional programs downstream of each TF in 

a lineage-specific manner.

Gene ontology (GO) enrichment analysis—We performed gene 

ontology and pathway enrichment analysis using R package 

Enrichr85. Libraries “GO_Biological_Process_2018”, “GO_Cellular_Component_2018”, 

“GO_Biological_Process_2018”, “KEGG_2019_Human”, “MSigDB_Hallmark_2020”, 

“Reactome_2016” were used with default parameters. To compare enrichment among 

multiple gene sets, GO and pathway terms significantly enriched (p value<0.05) in at least 

one gene set were merged. Odds ratios and p values of those terms in each gene set were 

summarized in a dot plot.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad Prism (v8.1.2), and R (v3.6.1). 

Statistical parameters such as the value of n, mean, standard deviation (SD), p values, 

and the statistical tests used are reported in the figures and figure legends. In H1 

hESC differentiation experiments, the “n” refers to the number of independent hESC 
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differentiation experiments analyzed (biological replicates, Figure 4I–K, and Figure 7G,H). 

In human pancreas immunofluorescence staining in Figure S4G, “n” indicates the number 

of donors from which samples were obtained. In human pancreas immunofluorescence 

staining in Figure 4G,H,M,N, “n” indicates the number of randomly selected imaging 

regions (technical replicates) from each donor. At each human developmental stage, more 

than four donors were quantified (biological replicates). All bar graphs and line graphs are 

displayed as mean ± SD. Paired (if observations were related, Figure S5M) or unpaired 

(observations were independent, Figure 4I–K and Figure S4I–L) student’s t-tests were 

used for two-sample comparisons. For multiple-sample comparisons and comparisons done 

between multiple types of variables, one-way and two-way ANOVA was used, respectively. 

ANOVAs were coupled with one of the three multiple-comparisons tests: Šidák-Holm’s test 

(for two column data in two-way ANOVA, Figure S4C and S5S); Tukey (if every column 

compared with every other column, Figure 4G,H,M,N, Figure S1B, and Figure S4G); or 

Dunnett’s test (if every column compared with a control column, Figure 7G,H).
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Highlights:

• Cell type-specific gene regulatory programs governing SC-islet differentiation

• SC-derived enterochromaffin-like cells resemble fetal pancreatic β-cell-like 

cells

• Signal-dependent transcriptional programs are insufficiently activated in SC-

islets

• Sex hormones promote β-cell proliferation in childhood
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Figure 1. Stem cell islet lineage trajectories based on integrated single-cell chromatin 
accessibility and transcriptome profiles.
(A) Experimental design. scRNA-seq and snATAC-seq data were generated during SC-islet 

differentiation at day (D) 11, D14, D21, D32 and D39 and computationally integrated to 

generate “pseudo-cells”.

(B) UMAP embedding of chromatin accessibility (left) and transcriptome (right) data. 

Cluster identities were defined by promoter accessibility (snATAC-seq) or expression 

(scRNA-seq) of marker genes. PP, pancreatic progenitor; ENP, endocrine progenitor; SC-

EC, stem cell-derived enterochromaffin cell-like cells.

(C) Heatmap showing ratio of cells with identities in scRNA-seq (column) data matching 

identities in snATAC-seq (row) data.

(D) Gene activity (top) and gene expression (bottom) for cell type marker genes.

(E-G) Trajectory analysis based on chromatin accessibility, showing trajectories from D11 

and D14 (E), D14 and D21 (F), and D21 and D32/39 (G) data with ENP1, ENP2 and ENP3 
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set as the root, respectively. Cells were color-coded by either cluster identities or pseudotime 

values (insets). PP1 and PP2 cells were excluded from the analysis.

(H) Inferred endocrine lineage trajectory from e-g. Two branch points (in red) were used in 

analyses in (I) and (J).

(I, J) Heatmaps of transcription factor motif enrichment (top) and gene expression (bottom) 

along pseudotime bins downstream of trajectory branch points in (H). Top bar shows 

proportion of cell types in each pseudotime bin, using matching colors to cell type 

annotations in (B).

See also Figure S1 and Table S1.
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Figure 2. Gene regulatory network analysis of stem cell islet development.
(A) Schematic of GRN inference framework and identification of cell type-specific 

transcriptional programs. cCRE, candidate cis regulatory element.

(B) Clustering of GRN cCREs highly variable across cell types and UMAP embedding. Cell 

identities were assigned to each cCRE module based on cell type with highest chromatin 

accessibility of the cCREs.

(C) Heatmaps showing scaled chromatin accessibility at cCREs (left) and expression levels 

(right) of target genes linked to the cCRE in each pseudo-cell.

(D) Dot plot showing enrichment of TFs predicted to bind to cCREs in each module against 

a background of all highly variable cCREs. Significance (−log10 FDR) and odds ratio of the 

enrichments are represented by color and dot size, respectively.

(E) UMAP projections of correlations between NKX6-1 expression and chromatin 

accessibility of predicted NKX6-1-bound cCREs. SC-β-cell- and SC-EC-specific cCRE 
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modules are highlighted with dashed circles. Spearman cor., spearman correlation coefficient 

between NKX6-1 expression and cCRE accessibility.

(F) Venn diagram showing overlap between NKX6-1 target genes in SC-ECs and SC-β-

cells. Cell type specificity of target genes was determined based on specificity of upstream 

cCREs. 33 genes are regulated by both SC-β-cell- and SC-EC-specific cCREs.

(G) Enriched gene ontology terms/pathways among SC-EC- or SC-β-cell-specific NKX6-1 

target genes. Significance (−log10 p-value) and odds ratio of the enrichments are represented 

by color and dot size, respectively.

(H) UMAP locations (left) and genome browser snapshots (right) of predicted NKX6-1-

bound cCREs at IAPP and LMX1A gene loci. Genome browser tracks show aggregated 

ATAC reads in SC-β-cells and SC-ECs. All tracks are scaled to uniform 1×106 read depth. 

SCC, spearman correlation coefficients for cCRE accessibility and target gene expression.

(I) Schematic of prediction method for cell type-specific TF interactions.

(J, K) UMAP projections of predicted TF-TF interactions. Green dots, cCREs bound by 

background TF; red dots, cCREs bound by test TF; yellow dots, cCREs co-bound by both 

TFs; dark grey dots, cCRE module(s) with predicted TF interaction(s).

See also Figure S2 and Table S2.
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Figure 3. Ordering of transcriptional programs along lineage trajectories.
(A, B) UMAP projections of cCRE pseudotime on SC-β-cell (A) and SC-EC (B) lineage 

trajectories. Insets show cell type annotations of cCRE modules.

(C, D) Pseudotime ordering of transcriptional programs along SC-β-cell (C) and SC-EC (D) 

lineage trajectories from ENP3 progenitors. Gene expression and cCRE accessibility were 

assigned pseudotime values and plotted in two separate dotted lines (genes, top; cCREs, 

bottom). For each shown TF, the TF (green), TF-bound cCREs (colored based TF-cCRE 

correlations) and target genes (brown) are shown.

See also Figure S3 and Table S3.
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Figure 4. A transient fetal pancreatic pre-β-cell population resembles stem cell-derived 
enterochromaffin cells.
(A,B) UMAP co-embedding of single-cell transcriptomes from endocrine cells in fetal 

human pancreas (A) and during SC-islet differentiation (B). Cells are color-coded based on 

their annotated identities in Figure S4A and Figure 1B, respectively.

(C) Embedding of single-cell transcriptomes from fetal β-cells (top) and SC-ECs (bottom) 

on the same UMAP.

(D) UMAP embedding of fetal β-cells from the mSTRT-seq data. β-cell subclusters were 

defined by transcriptome similarities.

(E) Gene expression for fetal-β3 cell marker genes.

(F) Representative immunofluorescent images for 5HT, PDX1, and insulin (INS) on human 

pancreas at indicated development stages. Nuclei were labeled with DAPI. Scale bar, 20 μm.

(G,H) Quantification of INS+ cells expressing 5HT (G) and 5HT+ cells expressing INS (H) 

in fetal (10–21 wpc, n > 7 from each donor), neonatal (1–4 days postnatally, n > 6 from each 
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donor, gestational week at birth is shown in the brackets), infant (2–13 months postnatally, n 

> 6 from each donor) and childhood (20 months to 8 years, n > 6 from each donor) human 

pancreas. Data are shown as mean ± S.D. Replicates (n) were obtained from randomly 

selected imaging regions. P-values were calculated using Tukey’s multiple comparisons test 

after one-way ANOVA.

(I-K) Representative flow cytometry plots (left, percentage of population of interest in 

red) and quantifications (right) of SC-β-cells (NKX6-1+/INS+, G), SC-ECs (NKX6-1+/

SLC18A1+, H) and SC-α-cells (NKX6-1−/CD26+, I) in early (day (D) 50) and late (D170) 

SC-islet cultures. Data are shown as mean ± S.D. (n = 3 independent differentiations). 

P-values were calculated by unpaired two-tailed t-test.

(L) Representative immunofluorescent images for 5HT, CDX2, and insulin (INS) on human 

pancreas at indicated development stages. Nuclei were labeled with DAPI. Arrowheads in 

insets indicate CDX2 and INS co-positive cells. Scale bar, 20 μm.

(M,N) Quantification of CDX2+ cells expressing 5HT and INS (M) and 5HT+/INS+ cells 

expressing CDX2 (N) in samples from (G,H). Data are shown as mean ± S.D. Replicates 

(n) were obtained from randomly selected imaging regions. P-values were calculated using 

Tukey’s multiple comparisons test after one-way ANOVA.

(O) Illustration of CDX2 and 5HT expression in EC-like pre-β-cell.

See also Figure S4.
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Figure 5. CDX2 regulates serotonin synthesis genes.
(A) Expression of CDX2, TPH1, and SLC18A1 in fetal (top) or stem cell-derived (bottom) 

endocrine cells. UMAPs on left indicate location of relevant cell types.

(B, C) Genome browser tracks showing CDX2 ChIP-seq reads in SC-islets and aggregated 

ATAC reads in SC-β-cells and SC-ECs at TPH1 (B) and SLC18A1 (C) gene loci. CDX2-

bound cCREs are highlighted. All tracks are scaled to uniform 1×106 read depth. SCC, 

spearman correlation coefficients for cCRE accessibility and target gene expression.

(D) UMAP co-embedding of single cell transcriptomes from wild type (WT) and CDX2 
knockout (KO) SC-islets. Cells are color-coded based by transferred identities from Figure 

1b. The relative abundance of each cell type in WT and CDX2 KO SC-islets is shown on the 

right.

(E) Dot plot showing differentially expressed genes in WT and CDX2 KO SC-islet cell 

types. The color of each dot represents the expression level and the size the percentage of 

cells expressing the gene.

See also Figure S5 and Table S4.
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Figure 6. Insufficient activation of signal-dependent gene regulatory programs in stem cell 
β-cells.
(A) Schematic showing cell types included into the integrative analysis of snATAC-seq and 

sc/snRNA-seq data.

(B, C) UMAP embedding of chromatin accessibility (B) and transcriptome (C) data 

from cell types detailed in (A). Cluster identities were defined by promoter accessibility 

(snATAC-seq) or expression (sc/snRNA-seq) of marker genes. The dashed line outlines 

β-cell-related cell types. Bottom panels: split UMAPs showing localization of stem cell, 

childhood and adult pancreatic endocrine cells. Cells were color-coded based on their 

identities from (A).

(D, E) Trajectory analysis based on chromatin accessibility, showing trajectories for α-

cells/γ-cells (D) and β-cells/δ-cells (E) with ENP-α and ENP3 set as the root, respectively. 

Cells were color-coded by either original identities (A) or pseudotime values.
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(F) Dot plots showing scaled average motif enrichment (left) or gene expression (right) of 

TFs. The color of each dot represents the average motif enrichment or expression level and 

the size of each dot the percentage of positive cells for each TF. LDTF, lineage-determining 

TF; SDTF, signal-dependent TF.

(G) K-means clustering of genes with variable expression across β-related cell types (ENP3, 

SC-ECs, SC-β-cells, PC-β-cells, and PA-β-cells). Clusters were annotated and color-coded 

based on gene expression patterns.

(H) Enriched gene ontology terms/pathways in each cluster. Significance (−log10 p-value) 

and odds ratio of the enrichments are represented by color and dot size, respectively.

See also Figure S6 and Table S5.
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Figure 7. Gene regulatory network underlying β-cell maturation.
(A) Clustering of GRN cCREs highly variable across β-related cell types and UMAP 

embedding. Cell identities were assigned to each cCRE module based on cell type with 

highest chromatin accessibility of the cCREs. ENP, endocrine progenitor; SC, stem cell; EC, 

enterochromaffin-like cell; PC, primary childhood; PA, primary adult.

(B) Dot plot showing enrichment of TFs predicted to bind to cCREs in each module. 

Significance (−log10 FDR) and odds ratio of the enrichments are represented by color and 

dot size, respectively.
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(C) Enriched gene ontology terms/pathways among target genes regulated by signals active 

in primary β-cells (PC-β and PA-β combined). Significance (−log10 p-value) and odds ratio 

of the enrichments are represented by color and dot size, respectively.

(D, E) UMAP locations (left) and genome browser snapshots (right) of predicted PGR/

AR-bound cCREs at CCND2 (D) and MCM5 (E) gene loci. Genome browser tracks show 

aggregated ATAC reads in SC-β-cells, PC-β-cells, and PA-β-cells. PGR/AR-bound PC-β-

cell-specific cCREs at CCND2 (D) and MCM5 (E) are highlighted. All tracks are scaled to 

uniform 1×106 read depth. SCC, spearman correlation coefficients for cCRE accessibility 

and target gene expression.

(F) Experimental design for dihydrotestosterone (DHT) treatment of SC-islets. EdU, 

nucleoside analogue 5-Ethynyl-2′-deoxyuridine.

(G) Representative flow cytometry plots (left, SC-β-cell percentage in red) and 

quantifications (right) of SC-β-cells (NKX6-1+/INS+) in D32 SC-islets with treatments 

shown in (F). Data are shown as mean ± S.D. (n = 3 independent differentiations). P-values 

were calculated by Dunnett’s multiple comparisons test after one-way ANOVA.

(H) Representative flow cytometry plots (left) and quantifications (right) of EdU+ SC-β-cells 

(NKX6-1+/INS+) in D32 SC-islets with treatments shown in (F). Data are shown as mean 

± S.D. (n = 3 independent differentiations). P-values were calculated by Dunnett’s multiple 

comparisons test after one-way ANOVA.

See also Figure S7 and Table S6.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Guinea pig anti-insulin DAKO A0564

Guinea pig anti-insulin Invitrogen PA1-26938

Mouse pig anti-insulin Abcam ab9569

Mouse anti-NKX6.1 DSHB F55A10

Goat anti-PDX1 R&D AF2419

Guinea pig anti-PDX1 Abcam ab47308

Rabbit anti-CDX2 Cell Signaling 12306

Rabbit anti-CDX2 Abcam ab76541

Rabbit anti-SLC18A1 Sigma HPA063797

Sheep anti-TPH1 Sigma AB1541

Goat anti-5HT (serotonin) Immunostar 20079

Goat anti-somatostatin Santa Cruz SC7819

Mouse anti-glucagon Sigma G2654

AlexaFluor® 647-conjugated anti-NKX6-1 BD Biosciences 563338

PE-conjugated anti-insulin Cell Signaling 8508

AlexaFluor® 488-conjugated donkey anti-rabbit IgG Jackson Immunoresearch 711-545-152

Biotin-conjugated anti-CD26 BioLegend 302718

Brilliant Violet 421™-conjugated Streptavidin BioLegend 405226

Rabbit anti-CDX2 Bethyl Laboratories A300-691A

Biological Samples

Frozen childhood human pancreas Pancreatic Organ Donors with Diabetes (nPOD) HDL-052
HDL-067
HDL-077
HDL-015
HDL-019
HDL-021

Frozen adult human pancreas nPOD 6229
6339
6366
6375
6479
6234
6401

Isolated childhood human islets ADI IsletCore R394

Fixed fetal human pancreas sections MRC/Wellcome Trust-funded Human 
Developmental Biology Resource

N/A

Fixed fetal human pancreas sections University of Washington Birth Defects Research 
Laboratory

N/A

Fixed neonatal human pancreas sections nPOD N/A

Fixed adult human pancreas sections Prodo Labs N/A

Chemicals, Peptides, and Recombinant Proteins

Matrigel Corning 356238
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REAGENT or RESOURCE SOURCE IDENTIFIER

mTeSR1 media Stem Cell Technologies 85850

Penicillin-Streptomycin Thermo Fisher Scientific 15140122

Accutase Thermo Fisher Scientific 00-4555-56

ROCK inhibitor Y-27632 Stem Cell Technologies 72307

MCDB 131 medium Thermo Fisher Scientific 10372019

NaHCO3 Sigma S6297

GlutaMAX Thermo Fisher Scientific 35050061

D-Glucose Sigma G8769

Bovine Serum Albumin (BSA) Lampire Biological Laboratories 7500804

Activin A R&D Systems 338-AC/CF

Wnt3a R&D Systems 5036-WN

L-Ascorbic Acid Sigma A4544

FGF7 R&D Systems 251-KG

SANT-1 Sigma S4572

Retinoic Acid Sigma R2625

LDN193189 Stemgent 04-0074

ITS-X Thermo Fisher Scientific 51500056

TPB Calbiochem 565740

T3 Sigma T6397

ALK5i II Cayman Chemicals 14794

ZnSO4 Sigma Z0251

heparin Sigma H3149

Gamma secretase inhibitor XX Calbiochem 565789

Trace Element A Corning 89408-312

Trace Element B Corning 89422-908

MEM Non-Essential Amino Acids Thermo Fisher Scientific 11140076

Dihydrotestosterone (DHT) Sigma D-073

Hoechst 33342 Invitrogen H3570

Horse serum Invitrogen 16050130

Triton X-100 Sigma T8787

Pierce Protease Inhibitor Fischer PIA32965

DTT Sigma D9779

Recombinant RNAsin RNase inhibitor Promega PAN2515

EDTA Invitrogen 15575020

DRAQ7 Cell Signaling 7406

Critical Commercial Assays

XtremeGene 9 transfection reagents Roche 6365787001

Cytofix/Cytoperm™ Plus Fixation/Permeabilizatio n Solution Kit BD Biosciences AB_2869009

Click-iT™ EdU Alexa Fluor™ 488 Flow Cytometry Assay Kit Thermo Fisher C10420
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REAGENT or RESOURCE SOURCE IDENTIFIER

VECTASHIELD® mounti ng media Vector Laboratories H-1300

Dako Fluorescent Mounting Medium Dako S3023

Tissue-Tek® O.C.T. Sakura® Finetek compound VWR 25608-930

Superfrost Plus® Microscope Slides Thermo Fisher 22-037-246

TSA blocking buffer Perkin Elmer NEL 701001KT

STELLUX® Chemi Human C-peptide ELISA ALPCO 80-CPTHU-CH01

RNeasy Micro kit QIAGEN 74004

iScript™ cDNA Synthesis Kit Bio-Rad 1708891

iQ™ SYBR® Green Supermix Bio-Rad 1708880

ChIP-IT High-Sensitivity kit Active Motif N/A

10X Next GEM Single Cell 3’ v3.1 10X Genomics PN-1000121

10X Chromium Chip E Single Cell ATAC Kit 10X genomics 1000086

10X Chromium Next GEM Single Cell ATAC Library & Gel Bead 
Kit v1.0

10X genomics 1000175

10X Chromium Next GEM Chip H Single Cell Kit 10X genomics 1000161

Deposited Data

snATAC-seq of SC-islet differentiation Gene Expression Omnibus GSE202500

sc/snRNA-seq of SC-islet differentiation Gene Expression Omnibus GSE202500

snATAC-seq of primary childhood human pancreas or pancreatic 
islet

Gene Expression Omnibus GSE202500

sc/snRNA-seq of primary childhood human pancreas or pancreatic 
islet

Gene Expression Omnibus GSE202500

CDX2 ChIP-seq of D21 SC-islet Gene Expression Omnibus GSE202500

scRNA-seq of primary adult human pancreatic islets Gene Expression Omnibus GSE114297

scRNA-seq of primary adult human pancreatic islets HPAP See Table S1A

snATAC-seq of primary fetal human pancreas Domcke et al., 202052 (https://
descartes.brotmanbaty.org/)

N/A

scRNA-seq of primary fetal human pancreas OMIX OMIX236

Experimental Models: Cell Lines

Human: H1 ESC WiCell Research Institute WA01

Oligonucleotides

List of primers used in this paper See Table S7 for details N/A

Recombinant DNA

PX458 Addgene 48138

Software and Algorithms

HALO image analysis Indica Lab N/A

FlowJo V10 FlowJo LLC. N/A

GraphPad Prism (v8.1.2) Dotmatics N/A

R (v3.6.1) CRAN N/A

Cell Ranger ATAC v1.1.0 10X Genomics N/A

Cell Ranger RNA v.3.0.2 10X Genomics N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Scanpy (v.1.6.0) Wolf et al., 201881 N/A

Seurat Stuart et al., 201982 N/A

Monocle3 Qiu et al., 201783 N/A

Cicero Pliner et al., 201884 N/A

Enrichr Kuleshov et al., 201685 N/A

Bowtie2 Langmead and Salzberg, 201286 N/A

SAMtools Li et al., 200987 N/A

DeepTools Ramirez et al., 201488 N/A

MACS2 Zhang et al., 200889 N/A

chromVAR Schep et al., 201790 N/A

Custom codes Zendo DOI:10.5281/
zenodo.7694211
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