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ABSTRACT: We calculate the S-multiplets for two-dimensional Euclidean N' = (0,2) and
N = (2,2) superconformal field theories under the TT deformation at leading order of per-
turbation theory in the deformation coupling. Then, from these N/ = (0,2) deformed mul-
tiplets, we calculate two- and three-point correlators. We show the NV = (0, 2) chiral ring’s
elements do not flow under the 7T deformation. Specializing to integrable supersymmet-
ric seed theories, such as N' = (2,2) Landau-Ginzburg models, we use the thermodynamic
Bethe ansatz to study the S-matrices and ground state energies. From both an S-matrix
perspective and Melzer’s folding prescription, we show that the deformed ground state
energy obeys the inviscid Burgers’ equation. Finally, we show that several indices indepen-
dent of D-term perturbations including the Witten index, Cecotti-Fendley-Intriligator-Vafa
index and elliptic genus do not flow under the TT deformation.
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1 Introduction

1.1 Background

Recent attention has been drawn toward irrelevant deformations of two-dimensional quan-
tum field theories (QFTs) and applications in holography. Unlike marginal or relevant
deformations, irrelevant deformations in QFTs are notoriously arduous to study due to
the requirement of including infinitely many counterterms to the action, and understand-
ing the ultraviolet physics of the system becomes highly ambiguous. It was not until
Zamolodchikov shed light on this subject matter by deriving his novel composite operator
TT = detT,,(\) [1] which circumvents this counterterm technicality that the deformed
Euclidean two-dimensional QFT is solvable as a function of the deformation coupling A.
The TT deformation is a double trace operator!' defined by solving the following ordinary
differential equation for the deformed action S(\)

d _
s —/de\/ETT(x), (1.1)
d\
where the deformed stress tensor is 7}, [S(A)]. The TT operator on a cylinder or flat plane is
TT := lim [T (/) T(2) - © (') 6(2)] , (1.2)
2=z

where in complex coordinates (z, z), we have defined the standard conventions:
T=T, T=Ts ©=-T,;. (1.3)

Using conservation of the stress tensor V#T),,, = 0 and assuming the undeformed theory
to be a CFT, we arrive at the following trace flow equation

T! = —a\TT +---, (1.4)

where - - are total derivatives of local operators V,0,(z). Notice that these additional
total derivative terms arise at least O(A?) because the operator product defining the TT
deformation is non-singular when the seed theory is a CET. We will take advantage of (1.4)
being exact at the leading order of A since we are working with the conformal perturbative
theory near the SCFT fixed point.

More recently, the 7T deformation was studied in the context of the S-matrix and
finite volume spectrum [5, 6]. One of the many novelties the authors in [5, 6] found was
that the TT deformation showcases non-local and string-theoretic properties. For instance,
the non-locality can be seen through the most popular example by deforming a seed action
of N free scalars. Using (1.1), one finds the deformed action is the Nambu-Goto action in
the static gauge with manifest SO(N +2) symmetry. Meanwhile, one can also show that the
energy of a generic state in the deformed theory is characterized by the inviscid Burgers’
equation.? By placing the deformed theory on a torus, modular invariance would further

!There is also a single trace version of the 7T deformation with applications to string theory in the bulk
interpolating between AdSs in the IR and a linear dilaton spacetime in the UV [2—4].

20ne also could generalize this argument by coupling the seed scalar theory to an arbitrary background
metric as [7] did and show the deformed energy spectrum still obeys the inviscid Burgers’ equation.



imply the density of states exhibit a Hagedorn behavior, i.e., p(E) ~ e~ which also hints
at non-locality. There are other examples one could see this non-locality property. Another
notable example is that when one TT deforms the seed action of a Yang-Mills gauge field
coupled to a scalar, the deformed theory gives a non-abelian analogue of a two-dimensional
DBI action [8].

As a matter of fact, we will see the same inviscid Burgers’ equation in the deformed
free scalar field theory used in section 4 when we calculate the flow equation of the ground
state energy for deformed integrable supersymmetric field theories and common supersym-
metric indices.

Shortly after findings in [5, 6], the TT deformation saw applications in the AdS3/CFTs
correspondence by McGough, Mezei and Verlinde [9]. The TT deformation puts the bulk
at a finite cutoff whose position is controlled by the deformation coupling A. The defor-
mation clearly spoils conformal invariance of the two-dimensional boundary field theory,
but, surprisingly, remains holographically dual to the three-dimensional bulk. Further evi-
dence is supported by Kraus, Liu and Marolf [10] where, at O(A?) and O()), they perfectly
matched the two- and three-point bulk and boundary deformed stress tensor correlators
respectively. More recently, understanding the TT deformation in curved spacetime for
AdSs [11, 12] and AdS3 [13-15] has greatly improved.

There are an abundance of applications of the TT deformation,® but for the main scope
of this paper, we focus on two-dimensional Euclidean N' = (0,2) and N' = (2,2) SCFTs
as well as some N = (2,2) integrable theories. The TT deformation for manifest super-
symmetric two-dimensional QFTs were first initiated by extending (1.1) to be constructed
as a supersymmetric descendant O(¢) from the supercurrent multiplet. For example, in
N = (1,1) supersymmetry, let (J444,J-) and (J-__, J+) belong to a supercurrent mul-
tiplet so the deformed superspace action is [17, 18]

S(V) = S(0) + A / &2 / 40+~ 0(¢) (1.5)

where O(¢) = T44++(Q)T-——-(¢) — T-(¢)I+(¢) is well-defined up to equations of motion
and total derivative terms. Therefore, since the TT deformation can be built out of a
supersymmetric descendant from an A = (1,1) supermultiplet, it preserves all of the
supersymmetry as well as integrability.

The TT deformation was shown to be solvable and preserve the original N = (0, 1)
and V' = (1,1) [17-19], N' = (0, 2) [20] and N = (2, 2) [21, 22] supersymmetries. Moreover,
there are recent studies of other irrelevant deformations, such as JT or JT [23-29] that
break Lorentz invariance, in the context of supersymmetry [30].

From these recent developments on the TT deformation in supersymmetric field theo-
ries, one can in principle calculate correlators associated to each NV = (p, q) supersymmetric
theory via superconformal Ward identities. For example, the authors in [31] perturbatively
calculated the n-point correlators of two-dimensional A" = (1,1) and N = (2, 2) supercon-
formal field theories (SCFTs).

3We refer the reader to this set of lecture notes [16] for a comprehensive review and several applications
on the TT deformation.



1.2 Main results and organization

The main results and organization of this paper are the following.

In section 2, we first embed the trace flow equation (1.4) into the R- and S-multiplets
for a two-dimensional N' = (0,2) SCFT. Equipped with these deformed multiplets, we
calculate the deformed two- and three-point correlators using methods developed in [10,
31, 32]. We perform conformal perturbation theory to derive deformed n-point correlators
for n general supermultiplets at O(A) following [33] and show that the two-dimensional
N = (0,2) SCFT’s chiral ring elements do not flow under the deformation.

In section 3, we repeat the same analysis for the deformed S-multiplet as in section 2
but for N' = (2,2) superconformal symmetry and conveniently list all of the deformed
S-multiplet’s components in appendix B. We find that naively the TT deformation breaks
both U(1)4 and U(1)y R-symmetries, so the S-multiplet becomes the generic one without
superconformal symmetry. However, there exist improvement transformations which allows
one to restore the conservation of one of the R-symmetries. Hence the S-multiplets can
either be improved to the Ferrara-Zumino (FZ)-multiplet or R-multiplet. This is consistent
with the usual expectation for a non-conformal supersymmetric theory. We additionally
find one of the central currents Yii or Gii will be generated. The central currents
take the form of a total derivative; however, it could still lead to non-trivial charge for non-
perturbative configurations. This is analogous to the instanton number in four-dimensional
gauge theory: 8% JTrF A F. We take this as a hint that one must further study the
non-perturbative effects of the TT" deformation to completely understand the perturbative
structure of the S-multiplet. One might find it tempting to conclude the chiral ring or
twisted chiral ring will cease to exist in the deformed theory based on the generation of
the central current. However, it is ambiguous whether every would-be chiral or twisted
chiral ring elements would actually be charged under the central current. We believe
understanding the non-perturbative effect of the 7T deformation and perhaps a model
dependent analysis are required to determine the ultimate fate of the chiral ring and twisted
chiral ring in the deformed theory.

In section 4, we find the deformed S-matrix and ground state energy for two-dimensional
N = (2,2) Landau-Ginzburg models with superpotential W (X, §) = Xl BX using the

n+1
thermodynamic Bethe ansatz (TBA). We show that the deformed ground state energy

obeys the inviscid Burgers’ equation, and perturbatively calculate the ground state energy
for each soliton system to leading order in the radius of the spatial circle. One can also
generalize this analysis to some A/ = (1,1) theory using Melzer’s folding prescription [34],
which relates the TBA analyses for integrable N/ = (2,2) models to the corresponding
N = (1,1) ones. This allows us to show the deformed ground state energy of N' = (1,1)
integrable models obey the inviscid Burgers’ equation and confirm the folded integrable
N = (2,2) models’ deformed ground state energy matches exactly with the deformed
ground state energy in A/ = (1,1) integrable models.

In the same section, we also explore well-studied supersymmetric indices under the TT
deformation and derive their corresponding flow equations via TBA. In particular, we show
the Witten index, Cecotti-Fendley-Intriligator-Vafa (CFIV) index and elliptic genus do not



flow under the TT deformation in the integrable supersymmetric theories. This is perhaps
not a surprise because in general these quantities do not depend on the D-term deformation.
More generally, we expect quantities dependent on D-terms like Tr(—1)" Fle=#H for [ > 1
to flow under the deformation. This is consistent with the results by [21], where they
showed the Kéhler potential (D-term) receives corrections from the TT deformation while
the superpotential (F-term) is protected. However, it is also worth to keep in mind that
for a generic supersymmetric field theory, non-perturbative effects of the TT deformation
may lead to some “large” D-term deformation which will change the index. Also, the CFIV
index not flowing hints at the possibility that the N' = (2,2) chiral ring do not flow. But
we will leave a thorough study on these two questions and other directions for future works.

To conclude this paper, in section 5 we will discuss open questions for future directions
including: studying SCFT correlators under different irrelevant deformations, a possible
way to derive the #t* equations using the deformed CFIV index and TBA analyses for
other deformed supersymmetric integrable models, and reflection matrices in the presence
of a boundary.

2 Deforming two-dimensional A" = (0,2) SCFT

In this section, we extend the analysis by Kraus, Liu and Marolf [10] to the two-dimensional
N = (0,2) SCFT setting. A main feature of a supersymmetric field theory is that various
bosonic and fermionic operators can combine into supermultiplets, which are represen-
tations of the supersymmetry algebra. In particular, the stress tensor 7}, is embedded
into the S-multiplet introduced by Dumitrescu and Seiberg [32] and may be reduced to a
smaller multiplet such as the R-multiplet. We will review this structure, and then at lead-
ing order in A, derive the two-point correlator of such supermultiplet using perturbation
theory. Besides the constraints from stress tensor conservation and rotational/translational
invariance used in [10], we also need to exploit constraints from N = (0, 2) supersymmetry.
As we see, this is easily achieved by embedding the operator equation (1.4)

into an operator equation written in superspace

A
R__ = %R++7Z___ +0(N2). (2.2)
Then, by taking each component of (2.2), we derive an operator equation that allows us to
calculate two- and three-point correlators as [10] did at leading order in .

2.1 Deformed stress tensor correlators in non-supersymmetric CFT

To be self-contained, we go over the pivotal results in [10] for the 2- and 3-point stress
tensor correlators in a non-supersymmetric 7T-deformed CFT. As previously mentioned,
we make use of rotational/translational symmetries to constrain the form of the two-point



functions

(Tor(2)T22(0)) = f12,'(4y)
(Toa(2)Tez(0)), = f;(g)
(T.2(2)T2(0)), = J;3Z<§/2> (2.3)
(Toz(2)T.2(0)), = 242(;2)7

2
z . . .
where (---), corresponds to the deformed correlator and y = % is a dimensionless coor-
dinate. We can solve for these unknown functions via stress tensor conservation to find

(5o () -

LROR

where / = d% and the initial conditions are for a CFT:

three ordinary differential equations:

€
27

However, stress tensor conservation is insufficient to uniquely fix all four unknown functions.

1 1 1
fi— ?fz—ﬂ), ?f3—>0, ?f4—>07 Y — 00. (2.5)

We can use conformal perturbation theory to determine one of the functions and then
substitute that result into the differential equations coming from stress tensor conservation
to determine the other three unknown functions. An important observation is to note that
all two-point correlators involving the stress tensor start to receive corrections at O(\?).
At O()\?), using conformal perturbation theory and (2.1), (T.z(2)T:z(0)), is:

(T22(2)Tz(0))x = /d2w<Tzz(w)ng(w)ng(z)ng(O))o

= 772)\2/d2w<Tzz(Z)Tzz(w)Tzz(0)>0<T27(Z)T27(M)T27(0)>0 (2.6)
T2\2c2 1 n2c?
=g am =
Substituting (2.6) into (2.4), we automatically determine the other 3 unknown functions.

Putting everything together, we arrive at

c 5m2\2c? 1

_ - 3
<TZZ(Z)TZZ(O)>/\ ~ 9,4 + 6 652 +O(N),
N2 1

<Tzz(z)Tz2(O)>)\ - —Tﬁ + O()\S)7

7T2)\202 1 5 (27)
(T T(0), = T +00%),

2 22 1
(T.z(2)T.2(0)) = 4 AT 0(\3).



Likewise, one can also use conformal perturbation theory along with (2.1) to calculate
three-point correlators and find

N 1

(s (1) Tor () T (@) = = (a5 +O (%),
oV Ton( __7r)\02 1 1 _7r)\02 1 9
<Tz2(21)Tzz( 2)Tz2( 3)>,\_ 3 (21*22)3 (22723)5 3 (23_2:1)3(22_23)54-0()\ ),
(Tox(21) Tos(22) Tos(23)) = ¢ +O(A2). (2.8)

(=1 —22)2(22 —23)2<Z3 —21)2

In the subsequent sections, we perform a similar analysis as presented in this subsection
for the supersymmetric cases involving their R- and S-multiplets.

2.2 The deformed S-multiplet’s structure

In this subsection, we present a short review on the S-multiplet in Euclidean signature?
together with an analysis on the S-multiplet’s structure under the TT deformation.
We define the supercovariant derivatives as

D =0y+00., D=0d;+00.. (2.9)
For a general N = (0,2) supersymmetric theory, its S-multiplet is [32]:
S, = j, +i0S, +1i0S, + 2007, .,
. ) o
We=—2S:+6 (Tzz + 28;%) +8C — 56905,
B 1, . T (2.10)
Ws= 5=+ 60 + 8Tz~ 50si. ) - 690,55
N -
Tz = Tz — %oa;sz + %98;5; + 50002,

where the components of the conserved stress tensor are T,,, Tz, Tz, the supersymmetric
current are® S, Sz, S, Sz, the R-current being an integral of the sum of j, and jz, and
the complex constant C is to be interpreted as a space-filling brane current.

The general solution for the defining equations of the S-multiplet (2.10)

9:S, = DW — DW),
DW = C, DW =C, (2.11)
DTz = —0:Ws, DTz = —0:W.

For NV = (0,2) supersymmetry, the supercurrent multiplet contains two real supercur-
rents S1, .52 with dimension 3/2. We write Sy, So as a complex supercurrent by defining
Sy =(S1)u +1(S2), and S, = (S1), — i(S2),. This could potentially lead to confusion as
S. # Sz # Sz and to avoid this confusion, we include z,Z indices throughout this paper.

“Note that notations in [32] are in Lorentzian signature.
5All of the conserved supersymmetric currents’ components have the same chirality, so we drop the
spinor indices for convenience.



The conservation equations are given by
0.5z + 0:5, =0,
9.5z + 95, =0, (2.12)
0. 1%, + 017, = 0.

Next, we discuss the cases where the S-multiplet can reduce to some simple multiplet.
Firstly, if C = 0 and there exists a well-defined jz such that 9,jz + 0zj, = 0, then the
S-multiplet can be improved to the R-multiplet:

R. = 7. +i0S, +1i0S, + 200T.,,
_— - 1
Tez = Toz — ~00:55 + ~00=S= + ~0002j.
2 2 2
and one can check the R-multiplet satisfies the following constraints

azRE + a?Rz = 0,

1

— 1
Secondly, if the seed IR theory is superconformal, then all the currents are holomorphic

(e.g., jz= Sz = Sz =T,z =0). As a result, at the superconformal point, Rz vanishes and
the S-multiplet reduces to the holomorphic supercurrent

8:S. = 0 (2.15)

and the anti-holomorphic component T3z of the stress tensor.
The non-trivial OPE can be nicely packaged using superspace notations [35]:

12 012 — 012012 012012 c
(21)S,(Zy)~—==DS,(Zy)——=—DS,(Z 2——=5.(Z 2 .S, (Z —,
5:(21)S:(Z2) Zis S:(Z2) 1o S:(Z2)+ 7, S:(Z2)+ Zro 025 ( 2)+3Z122

2T=(0 0:1=(0
Tos(21)Toz(2) ~ — ( )+ ,( ), (2.16)

274 z2 K
where 912 = 91 — 92, 912 = 51 — gg and Z12 = Z12 — 91@2 — ?191.
In components, we can alternatively write (2.16) as

Tea(2) T2 (0) ~ 55 2Tzzz2(0) N @TZ;(O)’ Toa()5.(0) ~ 3§1(20) N 6252(0)7
AP RRRVT A T )
T-2(2)12(0) ~ ‘72,(20 Ly 82‘7;(0), J2(2)5.(0) ~ Sio),
5.(2)5.(0) ~ oy + 2jz§0> L 21:(0) g(?zjz(())’ A F.00) ~ Szz(o)7
S:(2)5:(0) ~ 5:(2)5:(2) ~ 0, 5(3:(0) ~ 55 (217



Now, say we start with a seed supersymmetric theory which flows to a superconformal
point whose superconformal R-symmetry is not an accidental symmetry in the IR. Then
we parameterize the end of the RG flow using a parameter, A, such that at A = 0 we are
at the superconformal point. As we claimed before, all the anti-holomorphic components
of the conserved currents 7', S, S, j vanish, so perturbatively in A they admit an expansion
in terms of the SCFT’s operators. For instance, under the 7T deformation, we have (2.1).

In the case of a N' = (0, 2) theory, we can construct the R-multiplet perturbatively in
A via

Rz = —mASOTY 4 0(A2), (2.18)

where by the superscript (0), we mean the S, and T3z in the seed SCFT. The top com-
ponent of (2.18) yields the expansion of T,z in the non-supersymmetric TT trace flow
equation (1.4). Hence we conclude, at least perturbatively in the TT deformed theory, a
generic S-multiplet reduces to the R-multiplet. The above structure agrees with deforma-
tion of the conserved currents which Cardy discovered [33].

Notice we can have a case where the irrelevant deformation can generate non-
perturbative effects which explicitly breaks some of the U(1) symmetries.® For example, if
the IR theory contains two U(1) symmetries with a mixed ‘t Hooft anomaly, we can consider
gauging one of them. The U(1) gauge coupling is IR free, so it is an irrelevant deformation
from the point of view of the original theory. Due to the mixed ‘t Hooft anomaly, instanton
effects of the U(1) gauge field will break the other U(1) symmetry non-perturbatively as a
special case of UV /IR mixing! Perhaps it is too hasty to conclude that the TT deformation
will preserve the U(1) g symmetry even non-perturbatively. However, since our calculations
are perturbative in \, we will assume that the S-multiplet reduces to the R-multiplet and
leave the question whether the U(1)g is broken by the TT deformation non-perturbatively
or not for future investigations.

2.3 Deformed two-point correlators

We extract the SCFT two-point functions from the OPEs (2.16) and (2.17):

Cc

(8:(21)8:(Z2))0 = 377 (2.19)
In components, (2.19) is
(T.a(2)Tex(0))o0 = 5 7.
(T=(2)T=(0))o = 57,
B y (2.20)
(S2(2)5:(0))o = 3.3
(7:(2)7:(0)o = 5 5.

To derive the deformed two-point functions, we follow the method in [10] and sec-

tion 2.1. Since we are working in perturbation theory, all new terms appearing in the

correlation functions must be a function of y = % and vanish in the limit A — 0. Also,

SWe thank Ken Intriligator for pointing this example out for us.



all the correlation functions we consider are at separate spacetime points, so we will drop
present contact terms. The operator equations

Rz = —mASOTY 4 0(x2) (2.21)

z zz

allow us to derive the deformed two-point functions in superspace formalism

(Rz(Z1)Rz(Za))x = TN (R(Z1)Ra(Z2))o(Tez(21) Tez(22))o + O(A?)
A2 1 (2.22)

= 10N
6 21222%2

Then, from the conservation equation 0,Rz + &R, = 0, we find

D ST |
(R:(Z1)R=(Z2))» = "9 3. +O(N?),
12712 (2.23)
Re(Z)RAZ) = Sy~ "NC L L o) |
241 2\4L2))\ — - — .
3Z122 6 Zfz"f%z
We collect the non-zero two-point functions in component fields below:
(jz(2)jz(0))x = 6 24 +0(\?),
. . N2 1
(G:(2)iz(0) = =—5— 5 + OO, (2.24)
. . c X221 3
(J2(2)72(0))x = 3.2 + 6 A2 +0(\?),
(Sz(2)S=(0))x = 3 A +0(N\°),
— 222 1 .
(9:(2)Sz(0))x = T3 i +O(N),
B a2 s 3 (2.25)
(82(2)S5.(0))x = T3 i +O(X?),
- 2c 2w 1 3
c 5m2)02¢% 1
<Tzz<z)Tzz(0)>)\ - g + 76 7,2652 + O()\g),
2N22 1
(T2 (2)Tz(0))x = —— =3t O()‘3)a
A2 1 3 ’
(T2 (2)T(0))x = 3 At O(N\?),
A2 1
(Tz(2)Tz(0))x = 1 A +O(N).

We can see there is no space-filling brane current C at leading order in A from the
vanishing of the two point function

(5:(2)52(0))x = 0, (2.27)



because as pointed out in [32], C' appears in the two-point function as

(5:(2)52(0)) ~ —. (2.28)

z

This is consistent with the existence of Rz.

2.4 Deformed three-point correlators

Before we calculate the three-point correlators for the deformed N = (0,2) SCFT, we first
write down all the non-zero three-point correlators in the undeformed case. Reading off
from the OPEs (2.17), the undeformed three-point correlators are:

(Toa (1) T (22) T (03) )0 = %253%,1
(T (1) Tz (w2) To=(3) o = m
(T (21)S2(22) 5 (23))0 = ﬁ (2.29)
. — 2c 1
(J2(21)S2(22)5:(23))0 = 321122312%37
(o) (2)is))o = 5 -

Next, we consider the deformed three-point correlators (O1(z1)O02(22)O03(23))x at O(N).
The three-point correlators fall into two separate classes:

1. We could have one of O;, say O1, being an operator which vanishes in the SCFT,
or at the superconformal point (e.g., T.z, jz, Rz), and the rest of them being the
operators which survive in the SCFT (e.g., 1., T5z, R.).

2. We could have all three of them being the operators which survive in the SCFT.

For the first case, at the first order in perturbation theory, we obtain a four-point
correlator in the original SCFT because the first operator in the three-point correlator is a
product of holomorphic and anti-holomorphic operators T5s. The rest of the two operators
must be the same holomorphic operator and 7%z in order to have a non-vanishing result.

For the first case, correlators can be easily computed using superspace notation:

(Re(Z1)Rx(Z2)Tzz(23))x = =7 AR:(Z1)R(22))(Tez(21) Tz (23)) + O(A?)
A2 (2.30)
= —ggrar TOW),
671573,

and we collect the three-point functions in component fields at the end of this subsection.
For the second case, we obtain a five-point correlator in the undeformed SCF'T because

one of the operators has to be T3z which is anti-holomorphic. We must have another one or
two operators being T3z to see a non-vanishing result since the five-point function factorizes
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into a product of correlation functions of holomorphic and anti-holomorphic operators. If
the deformed three-point correlator contains two T3z, then

<01(.%'1)T§(5L‘2)Tﬁ(1‘3)>)\ = _WA/d2x<01(I’l)Tﬁ(l’Q)Tﬁ(xg)Tzz(x)Tﬁ(.’r)>0 + O(/\z)

= —7r)\/d2x<01(xl)Tzz(:U)>0<Tﬁ(x2)Ta(x3)Ta(x)>o + O()\Q).
(2.31)
To calculate a non-zero result, we must set O; = T, and obtain what [10] found:

a1 1 w1

— - 5=+ 0(\). (2.32)
3 2 z§3 3 Z??,)lzg?;

(Toz (1) Tz (w2) Tz (w3))A = —
If it contains only one of T3z, then we have

<01($1)02($2)T§(l‘3)>>\ = *W)\/d2$<01 (1}1)OQ(I‘Q)T%(:E;})TZZ(LE)TE(.’L’»O + 0()\2)

= —m\ [ @2(01(21)05(w2)Tex ()0 Tzl T=(@)o + OP).
(2.33)
To obtain a non-zero result, we must have (O1(z1)O2(z2)T(x))o # 0. Using (2.29) and
the trace flow equation as systematically carried out in [10] for the deformed three-point
correlators at O(\), we summarize all the non-vanishing three-point correlators:

w1

. . T _ 2
<.7Z(x1).7z<x2) zz(x3)>)\ 6 7Z%QE§1 + O()\ ),
— A2 1
(S=(21)8 (02) Toz(w3))x = — 5= + O(A?),
6 27923
- A2 1
(S=(21)S: (22) Tz (w3))n = — = ——1 + O(A2),
6 27973 (2.34)
2m\c? 1 1 ’
'z bz TE = — G G 5 G )\2 R
Gt T = =0 (g + ) + 009
- A 1 1
z z TE - — )\2 s
(S.()S (e2) Tox(ws))n =~ <z§2z§1 z§32§2> L o)
/1 1 1
Tzz T% Tﬁ = ——| ——— P 2 .
(Teclo) Pt T = =5 (G- + )+ OO

2.5 Deformed n-point correlators of other operators

We briefly comment on how to compute n-point correlators between n generic supermul-
tiplets using conformal perturbation theory. An analysis for the deformed A" = (1,1) and
N = (2,2) supersymmetric correlators were done by [31]. Recall that A" = (2, 2) superspace

are described by holomorphic and anti-holomorphic coordinates (Z, Z) = (z,0, 012, 9,0).
To obtain N' = (0,2), we simply set these two fermionic coordinates to zero =60=0in
N = (2,2) superspace. A generic N' = (0, 2) superfield is given by [36]:

Di(Z;) = di(zi) + 050 (i) + 030i(25) + 00gi(z:), (2.35)
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where ¢;(2), gi(z;) are complex scalar fields and v;(z;) is a complex spinor. Therefore, at
leading order in A, the deformed n-point correlators are simply given by

<ﬁ @z‘(ZuZz')> = —/\/d22/d29 <S(O)(Z)Tzz(z)ﬁq)i(ziazi)> ; (2.36)
i=1 A =1 0
where

/ P26 SO(2) = T..(2). (2.37)

This result can be conveniently acquired using the N' = (2,2) results in [31] by setting
0=0=0.

Qb

2.6 Renormalized correlators and universality

An interesting question to ask is if one can define renormalized operators as in [10, 33] while
respecting supersymmetry. This proof is quite obvious in superfield formalism inspired
from [31]. The singular piece in the dimension regularization parameter e for the deformed
two-point correlator is

_ 16mA 0120 2h
(D1(Z1,71)05(Z,%2)) 2 = ( + Q2 12) (@1(21,71)®2(Z2,%2))0, (2:38)
€ YAD) 212 Z12
where the undeformed two-point correlator is
B B 1 Q- 612012
(@1(21,21)®2(Z2,Z2))o = ——=€"" 712 0g11Qa0- (2.39)
Z3}zh

Here (h1,h1) = (h2, h2) = (h,h) are the scaling dimensions and Q1 + Q2 = Q; + Qy = 0
are the charges of ®1(Z1,21) and ®o(Zs, 22).
We define the renormalized superfield as

Bp—— 7{1) D}osd — & — MJ@ 0= (2.40)

in order to remove the above singular piece. In [10], for a general operator O with scaling
dimension (ho, ho), we have

(1 — x9)?
(x — x1)%(z — o

2

(O(l‘l)OT(xg)T(l‘)T(x»o = hoh@( )2> <(’)(x1)(9T(x2)>0 (2.41)
So, the deformed two-point correlators differ only by an overall coefficient hoho and this
matches the coefficients one obtains from acting on the undeformed two-point correlators
with 0,0z: B
1 - 4hoho

0.0z — = ST
Z2h(9§2h(9 22h0+122h0+1

(2.42)

which implies the coefficient A is universal for every operator. This allows us to embed
the TT deformation into superfield formalism, and thus preserve supersymmetry. As a
preview to the upcoming subsection, we will see that such a renormalization is absent for
the N' = (0,2) chiral ring elements ® which satisfy 9z® = 0.
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2.7 Other deformed operators and chiral rings

We will also comment on the TT deformation for other operators. The essential results
have been worked out by Cardy [33] and the advantage here is since the deformation is
independent of the operator’s scaling dimension, one can easily write the deformation in
superfield formalism for a given supermultiplet. In the upcoming subsections, we will
provide a few comments on more operators, such as conserved currents and chiral ring
elements in A" = (0, 2) theories.

2.7.1 Deformed holomorphic currents

Here we study holomorphic currents under the 7T deformation. In a N' = (0,2) SCFT with
a normalizable vacuum, the A’ = (0,2) holomorphic multiplet current J/ is constructed
out of two copies of N = (0, 1) currents (¢4, j2). For simplicity, we consider these currents
to be abelian and work in a complex basis: J = % (J1 + iJ2). Thus, we have

T =4 4+ V2052 — 000,47,

_ _ _ _ (2.43)
T4 =y —iv2eil + 000.5",
which are conserved
8.7 =0,7" =0, DJ=DT =0. (2.44)
The undeformed current OPEs are
AB 4150 o)
A —B k _ 012012 ap( 1 912912)
VA J9) = — z =k —_— = 2.45
TM2T(20) = e A =P (- - 1), (245
where k48 are ‘t Hooft anomaly coefficients
kgB if A, B are both right-moving
EAB = —kAB if A B are both left-moving , k= cg — cr, (2.46)
0 otherwise
Under the TT deformation, we need to accompany jz(o) with
Iz = —mA IO T + 0(\?) (2.47)
such that”

Then, just as before in the previous subsections, one can write down the deformed current
two-point correlator

(FN(2)T2 (22)) = PN (TN2)T2 (22)) (T=(20)T(22) ) + ONY)

AB ( 1 619012 (2.49)

VAU Ao

:7T2)\2T ) +O()\3)
212

Likewise, how conservation equations were used to find the other R correlators
in (2.23) in principle, one can perform the same trick for the other current correlators

(T4(20)TE(22)), and (TA(20)FE(22) .

7As one can easily check 5]; = D?; = 0 remains chiral.
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2.7.2 Deformed two-dimensional N' = (0, 2) chiral ring

Another interesting question to analyze is the TT deformed chiral ring elements for two-
dimensional NV = (0,2) SCFTs. These operators are superconformal primaries that are

n

annihilated by half of the superconformal charges, G, or G, and saturate the unitarity
bound h = |g|/2. Under the deformation, superconformal symmetry is broken and the full
short representation splits into representations of the surviving supersymmetry. Hence,
a natural question one can address is whether the resulting representations are chiral?
To show whether half of the supercharges annihilate these deformed operators, one can
compute OPE between the deformed supercurrent and the deformed chiral operators at
leading order in A. Let ®© be an element of the two-dimensional A = (0,2) chiral ring

and is annihilated by G7: G:1/2\<I>(0)) = 0. Then, we have the OPEs

(2.50)
79 (2)®(0) ~ 0
Now by using the deformation equation, Gz = —7mAG7 (0T + O(\?), we find
GZ (2)®(0) = —mAG; O (2)T=(2)8(0)© + O(A2) ~ O(N)2. (2.51)
From also using
X
53(0) = A / 42T (218,8(0) + O(\?) (2.52)
0
where X is an arbitrary reference point and
X 0
5T (2) = A / dZT9 (9.6 (2) + 0(\2), (2.53)
we obtain
5(G7 (2)2(0)) = [6G7 (2)]2V(0) + GZ O (2)6®(0) ~ 0+ O(N?). (2.54)
As a result,
G2 (2)9(0) ~ G= (2)8(0) ~ O(N?) (2.55)

which implies ®(x) and its super-partner will form a chiral superfield.
Another interesting perspective is to check the chiral ring relation under the 77T de-
formation. The deformed OPE coefficients for a general operator is derived in [33]:

2 y
5C’lmn(x1 —x9) = 27T)\6“b/ Toi(x + 6)ezjdx;-850lmn(az1 — x39), (2.56)
1

but since the OPE coefficients inside the chiral ring are constant, i.e., 9,:C'pnpn(x) = 0, we
must have §C%,,,, = 0. Therefore, the N' = (0,2) chiral ring relation is preserved under the
deformation.
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3 Deformation in two-dimensional N’ = (2,2) SCFT

In this section, we study the deformed S-multiplet for N' = (2,2) SCFTs. The calculations
for the S-multiplet are similar to those in A/ = (0, 2) theories in the previous section. The
main difference is that we must accompany the TT deformation with an additional im-
provement transformation to preserve one of the U(1)r symmetries in N' = (2,2) theories.

3.1 A brief review of two-dimensional N’ = (2,2) S-multiplets

In this subsection, we briefly review two-dimensional ' = (2, 2) S-multiplets following [32].
A generic N = (2,2) S-multiplet without conformal symmetry consists of two real super-
fields S4+ together with chiral superfields y+ and twisted chiral superfields )1 satisfying
the following constraints

Dy Ser = (x5 + V5), (3.1)
where
E:I:X:I: = 07 D:ty:t = 07
Diys =£C9), DY+ =F0W), (3.2)
D+X7 — Efy+ = k?, D+JL + D,y+ = k/.

Here k, k' and C*) are real and complex constants respectively.

In components, the S-multiplets are given by
. . . — ot —F (= .
Sis=jis—i0FSsss —i0F (S F2V2i, ) —i0 Sips—if (S$ii iQ\@Wi)
_ _ k' — R
—GieiTiiii—i-@:F@:F (AIFk—i- 2) +’L'(9+9_Y:|:i+i9+0 Yig
o _ 1 _ 1 _ _
+i"0 Gﬁ:m'e—e*c;ﬁzp§9+9—0i8ﬁ5¢ﬁ¢§9+9—9$aﬁ (Suzzt2v2i05)

- _ - _ , 1y
:F§9+9 eiaﬁgﬁﬁiam A (Si;$:|:2\/§l¢¢>—|—19+0 A -

(3.3)
and
X4 = =i (y) =10 Gy (y)+0~ <E(y)+§> +6 C40M070, X (y),
=i 0) =0 (Bly)— 3 ) +i87G——(5) 07 C=070"0__T(y),
Ap =+S5i0+V 20y, (3.4)

1 ( ) .
E=g (Trt———A)+ 7 (Or4j-——0-—j++),

044G =0__Gyy,

yrEt =gt +4i9i§i,
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/

Vi=VEL @407 (P@)+ 5 )~ Yes@)-0 O +VEi078 040 (7),

Vo =V2p_(5)-0" (F(@) ~ ]’;) +0"CH —i0 Y__(5)+V2i070 0 (9),

1 (3.5)
F=—g (Ti--+4)
O Y =0 Yiy,

gt = ot L 4i6%0"

1 (O 4J——+0——ji4),

It is important to identify the conserved brane currents in the generic S-multiplet: FiY 44
and +iG 44 are the zero-brane currents that give rise to the central charges Z and Z, while
the constants C* and k — k' are the space-filling brane currents which can lead to partial
supersymmetry-breaking.

The S-multiplet can be modified by an improvement transformation by a real super-

field U: B
St+ = S+ + D4, DU,

X+ — X+ — D4+ D_D.U, (3.6)
Vi =Y+ —DiD,D_U.

Like in the N' = (0,2) case, we are interested in the various possibilities where the
S-multiplet can be improved to a smaller multiplet:

1. If k = C®) =0 and there is a well-defined U such that y+ = D, D_D4+U, then an
improvement transformation can be used to set y+ = 0. The resulting multiplet is
the FZ-multiplet, whose bottom component is a conserved axial current.

2. If instead ¥ = C&) = 0 and there is a well-defined U such that Yy = D.D,D_U,
then a improvement transformation will set ) = 0. This leads to the R-multiplet,
whose bottom component is a conserved vector current. Notice that the FZ- and
R-multiplets are related by the following mirror automorphisms:

Sis 0 +8us, x4 0 Vi, x=© —V_, ke —k, CH o TH. (3.7)

3.1tk =k = C® = 0 and both y+ and Y+ can be removed by an improvement
transformation, then the theory is superconformal.

3.2 Deformation of the generic S-multiplet in N/ = (2,2) SCFT

We derive the deformed S-multiplet by supersymmetrizing the flow equation (1.4). The
trick is that we can apply the supercharge ) on both sides of the deformation equation.
We have to be careful since the supercharge @ in the deformed theory would be different
from the supercharge Q(®) in the seed theory by O(\) corrections. Since Tz is already of
the first order in A, at leading order of the perturbation theory, the extra correction of A
will not contribute. We have

Q. T:z] = [Q), —m AT T=] + O(N?). (3.8)
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One might worry that supersymmetry acts on operators which do not vanish at the super-
conformal point, such as T,,, will receive contribution like [)\Q TZ(S)]; however, all the
leading order contributions can be acquired by acting the supercharge on the operators
which do vanish at the superconformal point together with the Ward identity. Thus, we
do not have to worry about such a contribution. Using this method, we can determine the
deformed S-multiplet. The collected results are rather extensive and we refer the reader

to appendix B.

The advantage of this calculation is that neither Yi4 or Gii vanishes so that we
acquire a generic S-multiplet with no conserved R-currents. In particular, the deformation
of the bottom components j++ C Si4 are given by

. A .
0psj—=—20 0T +00?),
713 (3.9)
O—j4+ = ——6 SrJ)r T+ 0.

The above result clearly indicates that neither the vector current nor axial current are
conserved.

However, the appearance of the total derivative on the R.H.S. suggests it is possible
to consider an improvement transformation to acquire a conserved U(1)4 current or U(1)y
current. Supersymmetrizing such improvement transformation leads to either the FZ-
multiplet or R-multiplet. For instance, one can consider the improvement transformation
which acts on jii via

A 0 TA (0) (0
ot = Jr + EJ(_Z T s o = ot 1—6jilT£_)__. (3.10)

As one can check, after this improvement transformation, the vector current is now con-
served at the leading order of the perturbation theory in A:

Opqj—+0__jip =0\ (3.11)

Using N = (2, 2) supersymmetry, one can find the improvement transformation for the
result of the components in the S-multiplets and verify that the twisted chiral superfields
Y. indeed vanish. A new phenomenon is that this improvement transformation will lead
to an additional correction to the trace flow equations:

A
Thyo-= T2 7 1O, —a,,gﬁlm i+ 0002, (3.12)

Notice that central currents Y4+ and G4+ will be generated under the 7T deformation.
Even after the improvement transformation, only one of them can be removed and the one
left takes form of a total derivative. For instance, if we choose to remove Yii by an
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improvement transformation, we will find:

TA —(0
Gy = _Ea++s(+)++5<°> L0,

G = -5 5 5O 1 om),
Mlﬁ o (3.13)
— 0 J—
O = D0 50,50 s o)
G__= %sﬂﬁ_?@l_ +0(N2),

Being total derivatives itself does not suggest GLi leads to trivial charge, but rather it
suggests one must understand non-perturbative effects of the T7T deformation to fully
understand the perturbative S-multiplet for the deformed theory. Similar scenarios occur,
such as calculating the instanton number in four-dimensional gauge theory from integrating
the total derivative 8% Tr FAF.

It might be tempting to conclude that either chiral ring or twisted chiral ring will
cease to exist in the deformed theory. However, there is a caveat. There is no guarantee
that all the would-be chiral ring or twisted chiral ring elements would actually be charged
under the non-zero central current preventing one to simply draw such a conclusion. We
believe understanding the non-perturbative effect of the TT deformation and perhaps a
model dependent analysis are required to determine the ultimate fate of the chiral ring and
twisted chiral ring in the deformed theory.

4 Deformed S-matrices in N = (2, 2) integrable theories and indices

In the previous section, we studied the TT deformation for N' = (2,2) SCFTs and our
results are perturbative in A\. The TT deformation can be defined exactly for integrable
models [5, 6, 37—40] and it is tempting to study integrable QFTs in order to make some
exact statements via TBA.

Cavaglia et al. [6] studied the TT deformation for the well-known non-supersymmetric
sine-Gordon model using non-linear integral equations (NLIE). This is a single NLIE (for
one particle/soliton), and by changing the integration contours, one can access different
excited states. From this, one can derive a flow equation of the deformed energy E for
any state.

However, for supersymmetric integrable theories, most of the theories do not have such
a simple description as NLIE. The most convenient method that is readily available is TBA
and has been used in several instances to study integrable supersymmetric theories, such
as in [41-45]. Unfortunately, rather than just a single integrable equation, the TBA system
usually contains several coupled integrable equations.® Another disadvantage of the TBA
is that it is non-trivial to access generic states. Luckily, in [41-45], supersymmetric observ-
ables such as the Witten index, CFIV index and elliptic genus have been calculated using

8There are hybrid approaches combining the TBA and NLIE. These approaches have been carried out
in [46-48], yet the NLIEs only replace half of the many coupled integral equations.
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TBA and we will adopt techniques such as NLIE and TBA to compute these observables
under the TT deformation.

In this section, we will study N = (2,2) Landau-Ginzburg models with superpotential

Xn+1

WX, B) = n+1l

pX (4.1)

under the TT deformation.

These LG models are already known to be integrable [41, 44] and we will study vari-
ous physical aspects under the deformation following the strategies mentioned above after
briefly reviewing the TBA system for the undeformed theory. Additionally, we will perform
a TBA analysis for the 7T deformed A/ = (1,1) integrable models and explicitly show that
they are directly related to N' = (2,2) integrable models via Melzer’s folding trick [34].

4.1 Review of TBA system for Landau-Ginzburg models

In this subsection, we will provide a brief review on acquiring TBA for undeformed LG
models. We skip detailed derivations and refer the reader to pioneering work by Fendley
and Intriligator [41, 43].

These LG models have n supersymmetric vacua given by the n solutions from X" = 3.
There are BPS solitons which interpolate between different vacua. For a soliton connecting
the vacuum X; and X = eQ”i”/”Xi, it has mass

my, = M sin(rp), r=1,...,n—1, (4.2)

where M = f—fl and u = w/n. For each mass m,, there are a pair of solitons (u,,d,)
related by N' = (2,2) supersymmetry.
LG models’ S-matrices are diagonal under r, s labels with the incoming and outgoing

states being type-r, s solitons. The S-matrix S, 4(0) is

Aty Ugdy Us Uy dsd,

upds [ brs(0) & s(0) upus (ars(0) 0
drus (Cr,s(e) Br,5(9)> drds ( 0 dr,5(9)>’ (43)

where the S-matrix elements are

0rs(0) = Zrs(@)sinh (5 + 2 (r+9)). () =~ 2y, O)sns (5 - Lr-45))
bro0) = 2 (0)sinn 5+ 251 ). br0) = 2 (0)sinn (5+ 2 -5) ).
s (0) = Zo o ()ic T2 (sin(rp) sin(sy1)) s, Gr(0) = Zo o (0)ic™ =2 (sin(rp)sin(sp))
(4.4)
and satisfy the condition
ar,s(0)ar,s(0) + br.s(0)by5(0) — cr,5(0)é.5(0) = 0. (4.5)

The specific form of Z, 4(6) is unimportant in our analysis for the deformed theory and is
thus omitted.
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The basic idea of TBA is to place the system on a torus of length L (in the longitude
direction) at temperature 7' = 1/R. Then, working in the grand canonical ensemble, one
finds the energy spectrum and the particular filling of the energy levels which minimize the
free energy in the thermodynamic limit L — oo.

Now, consider N particles with rapidity 6;,i = 1,..., N on a circle S*(R). The allowed
wave function must be invariant under the transformation which brings the particle with
rapidity 05 around the circle and back to its original position. In other words, the wave
function obeys the Yang equation (see e.g., [49])

S ORL (g 10, o O 0y, O ) = 1, (4.6)

where T'(0|0k+1,- -+ ,0k—1) is the transfer matrix. The transfer matrix’s components can
be expressed in terms of the S-matrix:
di _ dnb
(Taw@)e = D St (0—-00) Sz (0= 02)-+- S’ (0= 0n).  (47)
ki, kn—1
Once we obtain the transfer matrix’s eigenvalues, the single-valuedness condition (4.6)
will lead to constraint equations. Minimizing the free energy under these constraints
from (4.6) provides the following TBA equations

_ _ ' o —ey(0')
€a(0) = mg R cosh(6) Xb: / o bap(0 — 0)In(1 + e ), (4.8)

where ¢4(0) is a kernel and the distribution of type-a solitons in the thermodynamic limit
is pa(0) = In(14-e=(?)). Therefore, the ground state energy of the system can be written as

B(R)=-Y 2 / d0 cosh(6) In(1 + (@) (4.9)

and the ground state momentum P(R) can be computed by replacing cosh # with sinh 6.
Due to the symmetry in €(f) = e(—6), one can show P(R) = 0 and it is consistent with
the expectation that the ground state has vanishing momentum.

Solving for the transfer matrix’s eigenvalues is usually a difficult task. For the special
case where the S-matrix is diagonal, the only process are two type a, b solitons scattering
into two type a, b solitons:

Set(0) = San (63555 (4.10)

This implies that the transfer matrix is also diagonal and the TBA system then greatly
simplifies. First, each €,(0) corresponds to a physical soliton of mass m,. The kernel ¢
also has a simple expression in terms of the S-matrix:

_Z,@ In Sab(g)

qbab(e) = 90 (411)

However, in (4.3), the S-matrix for LG models are not diagonal. Fortuitously, the

S-matrix is diagonal for the type-r, s soliton. The S-matrix is of the 6-vertex model form
and its eigenvalues can be solved by the so-called algebraic Bethe ansatz (ABA). From
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computing the eigenvalues of the S-matrix for fixed r, s, we construct the transfer matrix’s
eigenvalues.

A detailed discussion on how ABA works can be found in [41]’s appendix, but here we
will only cite results relevant to our discussion. As we will see later, this general result for
the 6-vertex model applies to the TT deformed theory with no additional work required.

Consider the undeformed S-matrix

ua dd ud du
u@ c b d@ 0 a 7 (4.12)
dd b c ud \ a 0

where its matrix elements obey

a(0)a(6) + b(0)b(0) — c(0)&(6) = 0. (4.13)
The eigenvalues are
m a 9 y N N
A0 y) = H o= y*) [H b6 —6;) + (-1)" JJ a6 — 92-)] : (4.14)
r=1 */Li=1 i=1

where y, and m are the solutions of

N by, — 6;
1:[& y*_e) = (—-1)™*L, (4.15)

Since the S-matrix is diagonal with type-r soliton, the transfer matrix’s eigenvalues A,
for bringing a type-r soliton around the cycle and passing all other solitons would simply
be a product of the 6-vertex model’s eigenvalues corresponding to type-r, s solitons.

Due to the complexity from the non-diagonal S-matrix, the TBA system not only has
€q(0) for each type-a soliton with mass mg,, but also contains two additional ¢(6) with
1 =0,0 and m; = 0. The integral equations of these TBA systems are

/
=X [ Gl - i1+ ),
d@’ (4.16)
€s(0) = mgR cosh(6 Z/—gbsB (0 —6',0)In(1 + e~B),

where B € {l,r}.
We refer the readers to [43] for detailed derivations of the kernels. The first kernel is

Gur(0) = cosh(@?in(ZtLZos(r,u) (4.17)

which does not depend on Z, (6) from the S-matrix (4.4).
The second kernel is

dt Sitf < cosh pt sinh(m — rp)t sinh sut)
- —9
brs(0) / 27r Ors sinh 7t sinh pt

(4.18)

d
=TIm—InZ,,
mosInZys(0) +

where ... denote the terms which are independent of Z, 4(6).
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As we will see shortly in the following subsection, these two facts alone allow us to
determine the TBA system for 7T deformed LG models.

4.2 TBA for the TT deformed LG models

Following [6], the TT deformation modifies the S-matrix by a Castillejo-Dalitz-Dyson
(CDD) factor

SH(0, ) = 55(0,0)245(6, ), (4.19)

where

(I)ij(ea )\) — ei)\mimj sinhG' (420)

As one can check, the deformed S-matrix satisfies all the standard constraints such as
crossing symmetry, unitarity and Yang-Baxter equation.

Since the TT deformation does not change the property that the S-matrix is diagonal
in the type r, s solitons, we can derive the TBA system following the same strategies used
in the previous subsection.

The first step is to derive the deformed eigenvalues of the 6-vertex model given by the

S-matrix.
Recall from [43], the S-matrix S, 4(0) is

dsuy usdy UsUp dsd,

upds [ brs(0) & .5(0) Urtls | ars(0) 0
drus<cr75(9) Br75(9)> ( ) (421)

and satisfies the constraint
ars(0)rs(0) + brs(0)br5(0) — cr.5(0)E5(0) = 0. (4.22)

Due to N = (2, 2) supersymmetry, u, and ds have the same mass and the TT deforma-
tion modifies S, 5(f) by an overall phase factor eA™mr™ms sinh® -~ The incoming states always
contain a type-r soliton and a type-s soliton. Thus, the constraint is still satisfied and, the
general result will hold for the deformed theory!

As a result, all the derivations in the undeformed theory should easily go through
for the deformed theory. The TBA system is obtained by absorbing the phase factor
eAmrmssinh into 7. (0), where we replace every Z,.(0) with eirmrmssinhb7 () The

deformed kernels are written as

(br,l(e: )‘) - ¢r,l(9 0)
¢’r‘,s(07 >‘) = ¢7‘,3(9a 0) + )‘mT‘mS COSh(Q)

)

(4.23)
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and implies the integral equations take the following forms

/
Z/dgaw 0')In(1+e ),

ao’
27

/ /
—Z/da G (0—0")In(1 e~ (@) Z/da Gr1(0—0)In(1+e= 1))

€s(0,\) =mgsRcosh(f Z)\mrms/ [cosh(6) cosh(8') +sinh(6) sinh(8") ] In(1+e =)

/
=ms(R+AE(R))cosh(f Z/d%sBa 0',0)In(1+e~8(9)), (4.24)

where we have used

E(R) = — zT: % / df cosh(0)In(1 + e~ (), s
PRy ==Y ’2”7 / df sinh(0)In(1 4+ e~ @) =0 '

As previously mentioned, we arrive at the same result derived in [6] for the non-
supersymmetric sine-Gordon theory. The effect of the TT deformation on the ground state
energy shifts the radius R by R+ E(R). Therefore, the diffeomorphism symmetry between
the undeformed and deformed ground state energies is

E(R,\) = E(R+ AE(R,)\),0), (4.26)
which famously obeys the inviscid Burgers’ equation®
WE(R,\) — E(R,\)OrE(R,\) = 0. (4.27)

Generically, E(R,0) can be solve numerically from the integral equation. However, in the
UV limit R — 0, we expect E(R,0) to behave the same as the CFT [41, 43]

E(R,0) ~ —%, R — 0. (4.28)

It is tempting to solve E(R,\) near the R = 0 limit,' assuming the initial condition at
A = 0 above:

2
E(R,)\)QR( 1—“6—1), R — 0. (4.29)

However, this leads to a double expansion in R and A:

w22 1 A3d 1
B(RN) = —— A A — —
(£ ) ( 6Rl+0(RO>>+ ( 36R3+O(R2>>+ ( 108R5+O(R4>>+ ’
(4.30)

9Also called the nonlinear advection equation. Technically it is a quasilinear equation, meaning that the
PDE can be written in the form a(zx,y, u)us + b(x, y, u)uy = c(z,y, u), not truly nonlinear.
0For general solutions with nonzero momenta, see for example section 3 of [50].
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where the higher order corrections in O(---) are coming from the subleading terms in
the E(R,0) expansion. If A is finite, we notice that higher order terms in A will be more
dominant in the R — 0 limit. As a result, (4.29) is only true in the following double scaling
limit between A\ and R:

R 2w Ac A
We define the type-r soliton’s energy as
E,(R) = o / d0 cosh(0)In(1 + e~ @), (4.32)
0

The physical interpretation of the individual E,(R) is clear — we consider a grand
canonical ensemble of solitons and derive a distribution for them which minimizes the
Gibbs free energy. E,(R) is the energy contribution from a particular soliton type r. Yet,
given this interpretation of E(R) as the central charge ¢, one can ask the if interpret-
ing F,(R) as a central charge ¢, makes sense for the type-r soliton sub-theory such that
¢ =>,¢r. Although this interpretation sounds rather tempting, we comment it is false
because solitons of different types interact with each other.

Therefore, E,(R,\) are solutions to the one-dimensional coupled inviscid Burgers’
equations

ONE.(R,\) (ZE (R, \) ) OrE.(R,\) = 0. (4.33)

For two solitons, we have the following system of differential equations

(4.34)

NEL(R,A) = (E1(R,A) + E2(R, \) OrE1(R, M),
8,\E2(R, )\) = (El(R, A) + EQ(R, )\)) 6RE2(R, )\)

Note that this is different from the full-fledged (with diffusion terms) one-dimensional
coupled Burgers’ equations for u(z,t) and v(z,t) (derived in a geophysical context of bidis-
peprsive sedimentation [51]), which has the following form:

u 0 2t (C%Jr 8“)—0
ot " o2 T My T\ Yar "0z T
(4.35)
C oy 62U+§+6<6U+ au)—o
ot T Hap2 TSV Yor T Vor

where ug“ is the non-linear convection term, and 1/6 and 1/u are reciprocals of Reynolds

numbers. The desired functions to be solved there are velocity components. Our equa-
tions (4.34) are simpler than (4.35), and can be solved by observing that E(R,\) =
E1(R,\) + E2(R, \) as well as the solution for F(R, A) being known.

Solving for individual E,(R,\) would also require initial condition E,(R,0) given by
the undeformed theory, which would require us to solve the full integral equations. However,
in the UV limit [41, 43], we have

1 Iy Yr __ ar
Ey(m.R — 0, )\—O)N—M[,C(lerr)—L(lJr%)]: o (a30)
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where L£(z) is the Rogers dilogarithm function

L(x) = ! /Ox dyLlIl_yy + ln(ly— y) (4.37)

and z,,y, are solutions of some algebraic equations given in [43].
Therefore, we can find the leading term of E,(R,\) in the same double scaling limit
as in (4.31):

1-22°-1), R—0, A=0, = ~O0(). (4.38)

We comment on a standard way to somewhat implicitly solve these equations (4.34) by
finding its characteristic curves which is an integral curve parametrized by a real number
s from solving the ordinary Lagrange-Charpit equations (or characteristic equations):

= -E(R,)) (4.39)

where the last equation can be easily seen from the chain rule and (4.27). By demanding
the absence of A(s = 0) = 0, the first equation in (4.39) implies A(s) = s. The second and
the third equations can be solved trivially!!

R=Es+Ch,

(4.40)
Ei 9 = Cy,

and the second expression show that the ground state energies F 2 are invariant along the
characteristic curves, which are straight lines with slopes E in the (s, R)-plane as shown by
the first expression. In (4.29), E(R, \) monotonically increases with R when R is small,'?
so that the characteristic lines never intersecting each other on the (s, R)-plane. As a
result, we do not expect phenomena such as wave steepening or shock singularities.

We know from [41, 43] that in the IR limit, for one species of soliton with mass m,

E(R — o) = —%/ df cosh ge~Ticosht, (4.41)

11 the following discussion on the method of characteristics, we will suppress arguments of each function
[e.g., E(R,\) = E] to emphasize that one should treat it as the most naive function. Namely, one is not
supposed to solve the second equation in (4.39) at face value, which is

AB6) _ proas) =s)~ B (1 —\J1- 2”“) 7

ds 25 3R?

where ~ is from (4.31).
121 fact, it also monotonically increases when R is large, as we will show shortly.
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which is just —22 K/ (R), in terms of the modified Bessel function of the second kind [52].
Given this initial condition at A = 0, the inviscid Burgers’ equation (4.27) has the general
solution E(R, \) algebraically solving this functional equation:

2
E(R,)\) = — K\ (R - \E), (4.42)
7
which is unfortunately transcendental. However,
ME(R,\) = % [Ko(R — AE) + Ka(R — AE)| E (4.43)

is always positive due to E(R, ) > 0, and from (4.27) we know that OrE(R, \) > 0, when
R — o0. Overall, since E(R, \) monotonically increases with R when R is both small and
large, it is reasonable to assume that this monotonicity holds for all R.

The general solutions to (4.39), when R is not extremal, may be found in terms of R
and s by noting that Co must be an arbitrary function of Cj, namely Cy(C7). We have
C1 =R — Esand Ey 3 = Cy(R — Es). Now we need to determine the function form from
an initial condition Ej o(R(s = 0),0).

Unfortunately, (4.36) [or (4.41)] is just an initial condition at a single point, instead of
telling us the complete R-profile of E 2(R,0) (analogous to the spatial distribution of tem-
perature at time ¢ = 0 for the heat equation.) This R-profile is also beyond the perturbative
treatment around R = 0 described previously (4.38). Hence, the method of characteristics
requires additional data than we are able to present here analytically. However, if one
manages to numerically obtain the profile E,.(R,0) form the full integral equations using
techniques discussed in [42, 49, 53-55], then it is possible to obtain the complete solutions
E.(R,)\). Finally, we again note that the above method easily generalizes to n > 2.

4.3 Connections to N' = (1,1) models

In this subsection, we briefly extend the NV = (2,2) TBA formalism from the previous
subsections to two-dimensional ' = (1,1) integrable models [56]. Melzer [34] rigorously
showed that the /' = (2,2) integrable systems derived by Fendley and Intriligator [41] are
related to A/ = (1,1) integrable systems via a “folding” procedure. The folding procedure
relates certain N' = (2,2) TBA systems with 2n types of particles to NV = (1,1) TBA
systems with n types of particles.

This folding procedure requires the TBA system to possess the following symmetries:

Mag = M2n+1—a, ¢a,b(9) = ¢2n+1—a72n+1—b(9)7 a,b=1,---,2n. (444)

Folding this TBA system would mean that we have half the number of particles a =
1,...,n and the folded kernel is

PLW(0) = Bap(0) + da2nt1-0(F), a,b=1,2,...,n. (4.45)

Inspired from this, we study the N’ = (1,1) theory from folding the LG models with

superpotential
X2k:
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In this subsection, we will achieve the following:
1. The ground state energy’s flow equation obeys the inviscid Burgers’ equation.

2. The folding of the TT deformed theory is the same as the TT deformation of the
folded theory.

First, we construct the TBA system for the folded 7T deformed theory and derive the
ground state energy’s flow equation.
For the undeformed theory, the TBA system contains 2k — 2 massive particles with

masses
rmT

2k -1

ma:sin< )M, r=1,---,2k — 2, (4.47)

and two massless particles labeled by 0,0. Identifying 0 with 2k — 1, then clearly we have
Mg = M2k—1—a- (448)

It it straightforward to check ¢ p = ¢ok—1—q,2k—1—p using the N' = (2, 2) kernels (4.17)
and (4.18).
With the TT deformation, the masses remain unchanged while'3

Gap(0,N) = ¢ap(0,0) + Amgmy cosh(d), a,b=0,---,2k — 1. (4.49)
From the symmetry of the masses m, = mor_1_q, we learn that the symmetry of the
kernels also holds under the 7T deformation:

brs(0,X) = ¢r.5(0,0) + Am,mg cosh(0)
= Pok—1-a,2k—1-b(0,0) + AMmgk_1_gmog_1_p cosh @ (4.50)
= Pok—1-r2k—1-s(0, ).

The folding of the TT deformed theory has a TBA system containing k particles with
mass spectrum

mielded — 7 gin (Qkai1>7 a=0,1,- k—1, (4.51)

together with the kernels

©4ed(0,3) = 60,4(0, ) + Ga2e—1-(0, A)
= ¢a,b(0,0) + dg26—1-5(6,0) + Amg(mp + mak_1-p) cosh 0 (4.52)
— ¢£o})ded(9, 0) + 2Amgmypcoshf, a,b=0,---  k— 1.

It is then straightforward to show that the TT deformation shifts the radius R in the
integral equation by an energy-dependent term AE(R) as in (4.24). Therefore, the flow
equation of the ground state energy obeys the usual inviscid Burgers’ equation.

BNotice that since mo = mok_1 = 0, ¢r; remains unchanged which is consistent with the previous
notation.
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Next, we want to show that the folding of a TT deformed theory is indeed the same as
TT deformation of the folded theory. By definition, the 7T deformation is given in terms
of the S-matrix instead of a kernel. A priori, we do not know what the 7T deformation
of the kernel ¢, should be without knowledge of the S-matrix. We will use the relations
in [56, 57] between the kernels and S-matrix to show this is indeed the case.

The undeformed N = (1, 1) theory’s S-matrix is

sl (g) = s7.(0)S%(6) (4.53)

where [ij] tell us which supermultiplets the solitons in the scattering belong to, ng Vis a
bosonic S-matrix and Sg]}]; is a piece of the S-matrix that mixes bosons and fermions. The
solitons’ masses are

V=) _ sin(ar/(2n + 1)) —1..n
a sn(r/(2n 1)) “T b (4.54)

The deformation is given by multiplying the S-matrix by
S0, x) = SN, 0)eirmima coshf, (4.55)
and the extra phase factor can be absorbed into the bosonic S-matrix
S(8,7) = 519, 0)eimims coshd, (4.56)

Then we use the relation between the kernel and the S-matrix:

_ ) SH (0, 1) glidl ()
=1 B ’ =1 ...
o (0,0 = aelm In ( o , a=1,---n, (4.57)

where ¢l7!() is some integral expression inside Sg%(Q) and thus independent of . In ad-
dition, there will be a single auxiliary massless particle labelled by 0 whose kernel ¢é\7f0:1(9)
is independent of ng } (6,)\) and we conclude that the TT deformation of the folded theory
is the same as the folding of the TT deformed theory up to a re-scaling in .

4.4 Deformed supersymmetric indices

To conclude this section, we will study various supersymmetric indices under the 7T de-
formation for LG models.

The most famous supersymmetric index is the Witten index [58]. The Witten index
is invariant under the TT deformation because the deformation does not lift the energy
degeneracy between bosons and fermions (although the energy itself does flow), which
implies the structure of the ground states remain unchanged.

There are other indices that are interesting to study under the deformation, such as
the CFIV index [45] and the elliptic genus [59-62]. We will consider these two indices in
the following subsections.
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4.4.1 CFIV index

First, consider
Z(a, B) = Trel*Fe=PH, (4.58)

For o = 7, this is simply the Witten index
Iy = Z(n, B) = Te(=1)FePH, (4.59)

Taking a derivative of (4.58) with respect to i« and setting aw = m, we arrive at the CFIV
index, which is invariant under D-term perturbations introduced in [45],

L(B) = Tr(-1)F Fe PH. (4.60)
One can consider generalization of I;(3) by taking more derivatives,
L(B) =Te(-)FFlePH 1> 2, (4.61)

however, as shown in [45], these quantities are not invariant under D-term perturbations
and are not indices.

For a theory with a mass gap, sometimes there is a vacuum degeneracy. Then we can
consider soliton configurations interpolating between the vacuum labelled by a on the left
and the vacuum labelled by b on the right. Thus, we can define I; for each pairwise soliton
configuration

(I1)ab = Trap(—1)F Fle™ P (4.62)

so that we now have n x n (n is the number of vacua) matrices rather than a number.

For the Witten index, (Ip)qp is just a diagonal matrix. This is exactly because for
a # b, a BPS soliton is required to connect the two different vacua. However, as we know,
this is a two-dimensional representation of N' = (2, 2) supersymmetry with non-zero energy
and will not contribute to the Witten index. Furthermore, since in our case there is a Z,,
symmetry that relates the n vacua, (Ip)qp is proportional to the identity matrix.

For the CFIV index, we obtain a general n X n matrix and are interested in their
eigenvalues. In practice, we keep track of the eigenvalues by introducing a weight for each
soliton type. For instance, if the soliton is charged under some topological symmetry with

charge 7T, then we can introduce a chemical potential '©7

imO

, expand the final answer in
terms of e with coefficients being the eigenvalues of (I)4. For this model, we consider
the superpotential W (X, 8) = % — BX which leads to n vacua at X = ¢2™d/ngl/n j —
1---n. As usual, we call a soliton type-r if the two vacua are related to each other by
satisfying X, = e*™/?X,. The p-th eigenvalues of (I1)s are found by introducing a
weight e2™"PNr/n where N, are the number of type-r solitons.

To make connections to integrable theories, we consider the free energy F,,, (f) with

chemical potential pg:

— BFu, (B) = InTr (eﬁza “aNae*'BH) . (4.63)
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The exact expression 3F),, (3) can be computed via TBA using the exact S-matrix
In T (e 20 peFiee =AM ) — ZmaL/ — cosh @1n(1 + Pra—cal®)), (4.64)
where the €,(0) are the solutions to the coupled integral equations:
a?’ Bur—es(0')
€a(0) = mg5 cosh(6 Z/—gbab (0 —0")In(1 + ePro—()), (4.65)
Recall from previous subsections that the ground state’s momentum vanishes
de
- Z maL / o sinh(0) In(1 4 e®#a=<9) = 0. (4.66)
0
a

In the vanishing chemical potential case (u, = 0), we argue that this integral vanishes
because of €,(0) = €,(—0). The same occurrence with vanishing momentum happens here
since the chemical potential only favors particular species of particles but not the rapidity.
Thus the § — —@ parity symmetry is unaffected by the chemical potential. For a vanishing
chemical potential, we similarly derive a flow equation of —5F,, (8) by introducing the
quantity

€ /8 {16 T —
(/3’)\ ) Zmaﬁ/—cosh )1n(1+eﬁua a0 )) - ZlnTr (e F42mirpNe /N BH>’

(4.67)
where in the last step we have chosen p, such that 53, e Noy = iaF 4 2mirpN, /N, and
p=0,...,n—1. Then we find the flow equation for F,(3, \, a):

ONFp (B, A, o) + Fp (B, A, a) 0 Fp (5, A, ) = 0. (4.68)

Unlike the Witten index, when being placed on S! with radius L, I; from (4.60) does scale
linearly with L. It is useful to introduce another quantity

QplB.X) = DaFp(B. N, @Jomr = 5 B InTe(F 2NN 51 (4 o)

which is clear in the thermodynamic limit I. — co. Taking a derivative of the flow equation
with respect to « evaluated at o = m, we find

0NQu(3: ) + QB0 (T 10Ty ) + (10 1) 00,50 = 0. (4.70)

After being simplified, the flow equation for @, (5, A) is

OxQp(B.2) + (I T))Qp(5. A) + %(m 10)35Qp(B. \) = 0, (4.71)

where we have the same I for all p since (Ip)qp is proportional to the identity and can be
simultaneously diagonalized with (I7)q, with N identical eigenvalues..14 In the thermody-
namic limit L — oo, we find

Q5. 2) = 0. (4.72)

14YWe will denote the eigenvalues as Iy and we have used the fact that Io is independent of 8 and .
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In other words, the CFIV index does not flow under 7T deformation and, perhaps, is not a
surprise after all. As argued in [45], the CFIV index is dependent of F-term perturbations
and is independent of D-term perturbations. These two facts combined imply that the
CFIV index will not flow under 7T deformation.

Now, let us consider I; for [ > 2. These are not invariant under D-term perturbations
making them not indices. Therefore, it is natural to expect these I;’s would flow under the
TT deformation. Indeed, TBA allows one to derive a set of recursive flow equations for
these I;’s. For instance, consider Iy and define

g (I3 I
= PF,(B N a)|aer == | 22 - 22, 4.73

Taking two derivatives with respect to a on both sides of the flow equation for
F,(B, A, a), we obtain

111[0

O\Q2p + (Q2p + BIsQ2,p) I

+2Q1,,08Q1,p = 0. (4.74)

12
If I, scales linearly with L in the thermodynamic limit L — oo, then Qz’p — f4# =
—%Q%,p. As a result, we have

BON(I2/L) — 21p(1 — InIp) Q1 ,08Q1p = O, (4.75)
where we used OyIp = OxI1, = 0.
4.4.2 Elliptic genus
Another interesting index to study in A = (2,2) theory is the elliptic genus'® defined by
Trelorfe(—1)Fre=FH, (4.76)
However, to study this theory, we must abandon the LG model with superpotential

Xn+1
W(X) = n+1

BX (4.77)

as the elliptic genus is not well-defined for gapped theories [44].
Instead, we consider the LG model with superpotential

W = gx*+2 (4.78)

where g is the coupling constant. These theories are conjectured to be integrable supported
with highly non-trivial checks in [44].

All excitations are massless with H = |P| in the system. The left-movers are in the
doublet representation (ur(6),dr()) of the left-moving N/ = (0,2) supersymmetry with

5The elliptic genus was first shown not to flow under the TT deformation in [63] by showing the existence
of a BPS-like sector in the spectrum. In our setting, we use the TBA as an alternative proof to further
support the elliptic genus not flowing under the 7T deformation.
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H = —P = Me?. The right-movers are in the same representation of the right-moving
N = (0,2) supersymmetry, but with H = P = M ¢’. The S-matrix contains three parts:
Srr (Sgrr) which encodes the scattering among the left(right)-movers, and Spr which
encodes the scattering between left-movers and right-movers. The exact form of the S-
matrix is irrelevant for this discussion and can be found in [44]. When the excitations are
massless, as pointed out in [6], the TT deformation manifests itself as

(N

SEL(9,\) = S (9,0)e s @) (4.79)
and

520 (0; — 6;) = —2x{pl ), (4.80)
where pgﬂ and p(»_) are the momenta of right- and left-moving particles. Thus, we see only

J _
Sr.r is modified under T'T" deformation with

5§ (0 — Or) = —2X\M2e"n 0%, (4.81)
For simplicity, we start with the simplest case with k = 1:
W =gX?3. (4.82)

The undeformed integral equations are

ae’ 1 Y
€a(0) = va(0) — Zlab 27 cosh(6 — ') In(1 + Age~ %)) (4.83)
b

where v,(0)’s, Ay’s, lqp and the index a are encoded in the following diagram:

eiar O QO eiar
AN /

R\ (4.84)
e—iaL O O e—iaR
The index a runs over each node:

0 if node a is open,
va(0) = { sMBe™? a=L, (4.85)
sMpe®  a=R.
Ao’s are given by the phases next to the four open nodes, and are equal to 1 for a = L, R.

Here l,;, = 1 if two nodes are connected and is 0 otherwise. The TBA system is used to
compute the following quantity:

6 . ,
clap,ap; MB) = £ log Tre'®r 1 gionfro=BH

3 , (4.86)
= Z/deya(e) log(1 + Age (@),
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The coupling between the L and R nodes is a result of the S-matrix Sy r and with the
TT deformation, we expect the undeformed kernel ¢rp = Wle—e/) to be modified by

LR — OLR — IAM2e?. (4.87)

Deriving a flow equation at any ar g for c(ar,ar; MB) is arduous due to not be-
ing invariant under supersymmetry-preserving deformations. However, for the special
value ag = m, ¢(ar, m; M) is the elliptic genus which is invariant under supersymmetry-
preserving deformations. Following this logic, we will show c¢(ar,7; M) does not flow
under the TT deformation.

Let us first fix ap = 7. For the undeformed TBA, with A\ = 0, the theory has a special
solution [44]

e RO — e (0) =0, (4.88)

where by £Fg, we mean the two nodes to the right of the node R in (4.84). To see this,
in the integral equations (4.83) of €4, (6), we have

do’ 1
= — - _eR(Q) —
e+ (0) / 37 cosh(0 — 7)) In(1+e )=20 (4.89)
while for e R0 we find
do’ 1

e~ R0 = oxp [ In(2 + 2 cos ag) + finite

2m cosh(0 — 0') (4.90)
=2+ 2cosapr x (finite) = 0 for ap = 7.

In this solution, the right-movers completely decouple from the left-movers as In(1 +
e~r(®)) = 0. In other words, the terms related to er(f) vanishes in the integral equa-
tion (4.83) of ez (#). It is straightforward to check that this remains true under the TT
deformation. This is again not a surprise. What the 7T deformation does is simply to in-
troduce a non-trivial coupling between left-movers and right-movers. If the two sectors are
already decoupled in the TBA system for the elliptic genus, then 7T deformation simply
will not have any effects on the TBA system.

It is not difficult to see that this argument generalizes to the superpotential W = g X*+2
for k > 2. The only difference in the TBA system is now there are extra k£ — 1 open nodes
linearly connecting nodes L and R. However, since ag = 7, the right-moving sector would
decouple anyways so the TT deformation will not change the TBA system for the remaining
left-moving sector.

5 Conclusion and future directions

In this paper, we have further explored several aspects of TT deformed SCFTs, integrable
supersymmetric models and their indices. We have calculated the deformed two- and three-
point correlators for two-dimensional Euclidean N = (0,2) SCFTs in the spirit of [10].
However, unlike in [10], we did not look at the bulk AdSs supergravity side [64, 65] as
an alternative method to obtain the deformed correlators. Additionally, studying how
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the correlators change under different solvable irrelevant deformations, such as using [30]’s
construction for the deformed multiplets in JT, JT and [27]’s systematic methods to
evaluate JT, JT correlators via conformal perturbation theory, seems tractable. Also, it
would be interesting to non-perturbatively calculate the deformed SCFT correlators & la
Cardy [33].

Our perturbative analysis of the N' = (2,2) S-multiplets near the superconformal fixed
point does not completely explain the full feature of the central current generated under
the TT deformation and does not allow one to convincingly determine the fate of the chiral
ring and twisted ring in the deformed theory. We believe a non-perturbative study of the
TT deformation is required for further exploration.

We also studied the TT deformed N = (1,1) and N = (2, 2) supersymmetric integrable
models’ S-matrices, ground state energies and common indices via TBA. We derived
a flow equation for the deformed ground state energy and showed that several D-term
independent indices do not flow. Among these indices, the CFIV index is special as it is
not a topological index but can be derived solely from the topological data (topological-
anti-topological fusions), i.e., the deformed N = (2,2) chiral ring, via the deformed ¢t*
equations. It would be interesting to study more aspects of the TT deformed (twisted)
chiral ring in relation to TQFTs [66-69).

While we have analyzed a class of deformed N' = (2,2) two-dimensional integrable
models via TBA or ABA, there are other interesting models one can consider such as the
following: Z,, generalizations of the supersymmetric sine-Gordon model, supersymmetric
CP"~! sigma models and SU(2); ® SU(2)1/SU(2)x; coset models. Also, it would be inter-
esting to use TBA to numerically study excited states in these models. Numerical solutions
for the excited states of the TBA equations have been studied in [55], which is extended
to supersymmetric integrable models in [70].

We studied the TT deformed S-matrices for a certain class of N = (1,1) and N' = (2, 2)
two-dimensional integrable models, and a natural question is to consider these same theories
when there is a boundary present to determine, with suitable boundary conditions, the
boundary reflection matrices on how much integrability and supersymmetry are preserved.
In the case for two-dimensional N' = (1,1) integrable models [57], reminiscent of the S-
matrix, the R-matrix is

RU(0) = REL(O) R (0), (5.1)
where R%j ] (0) is the reflection matrix for the bosonic part and R%]}(H) describes the relative
amplitudes for bosons and fermions when scattering off the boundary. The deformed R-
matrix obeys the usual unitarity condition, boundary Yang-Baxter equations and crossing
symmetry in terms of the deformed S-matrix. It would be interesting to study more on
boundary supersymmetric integrable models in the context of [57, 71-75] under the TT
deformation.

We hope to return to these open problems in future works.
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A Commutation relations for two-dimensional N = (2,2) SCFT

In this appendix, we review how one arrives at the commutation relations for two-
dimensional N’ = (2,2) SCFT in [32]. For any superfield S

€'Qy+6Q -TQ, -€Q .8 =i(¢"0r+¢Q -€Q, -2 )S, (Al

where QL are differential operators and )+ are supercharges

0 |
Qt = (%ﬁ‘i‘ieiaii (A2
Gao 2 g &
06" 2

For simplicity, to see how (A.1) is used, we will first look at the A" = (0, 2) S-multiplet.
This amounts to set £~ = ¢ = 0. The N = (0,2) S-multiplet contains two real superfields
Si+ and 7____ as well as a complex superfield W_ which obey the following constraints

8778++ — DJer - EJer,

E+W_ - C, (A?))
— 1
D+7:7777 - 5877W7.

Solving the above constraints in terms of components yields

Siv =g —i0 Sy — il Sapy — 070 Thyy,
W_ =-S5, _ —if" <T++ + ;3j++> ~07C+ %9+§+a++§+fﬂ (A.4)

T =T ___— %e+a__s+__ + %@*a__a__ + ie@*a%_ i
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Starting with @ :
Q1 S+4] =iQ4S+y (A.5)
(@ g — 07 Sy — 0 Spay — 010 Ty ]
=i <<‘%(Z+ + ;9+5++) (j++ — i Sy — 0 Sy — 9+§+T++++) (A.6)
= —Siit + 0 Ty + %9+a++j++ - %§+9+8++§+++'
So, we arrive at
{@+»j++} =—Sii+,
{Qus St} = Tt — %3++J'++,
{Q1,S+4} =0,
{@+7T++++} = %8++§++++-

The rest of the commutation and anti-commutation relations for the N' = (0, 2) supercon-
formal algebra are easily obtainable from the same method.

Using (A.1), we tabulate all the commutation and anti-commutations relations for the
N = (2,2) superconformal algebra.

For Q4:

[Q+: J++] = S

(@] = S4s—— +i2V20_,

1
@+ Thsr4] = 50445444,

Q@+, T4 —-]

_’L
2

[QJHT****] = _%‘a**SJr**v
Q4 Yii] = iV20 144,

Oy Sp——,

[Q4,G-—] =8-St —iV20__¢,,
[Q+,§++} =0,
[Q+-éff} =0,

{Q+,S++41 =0,

{Q+, 54—} =0,
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{Q4, 814} = —i¥ 44,

{Q+. 5} = Z'.?f—,

{Q+a§+++} = %3++j++ — Ty,

{Q+,§+——} =Ty — %8——j++,

{Q+a§*++} Gy,

{Q+,§__ } = —iG__, (A.8)

For Q_:

Q- jri] =S 41 —i2vV24,,
Q- j--]=8S——,

(@ Tra44] = 504451+,

Q
[
|
|
\
e
|
s
|
|

Q-,G--]= (A.9)
[Q—7é++} D4y 84— +iV20, 47,
[Q_,é__} =0__S4__+iNV20__9_,

{Q-, 8414} = —i¥ 44,

{Q-, 84—} =Y __,

{Q@-,5—++} =0,

{Q-, 5} =0,

{Q §+++} = -Gy,

{ S } iG__,

{ ;S +} L %3++j——,
{@-5-—-}=

T+l j_.

Q-, -
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For Q.

For Q _:

[Q+ J++} = =S4t
Quj] =-S5 +i2v2p,
[Q+ T++++} *3++S+++
[Q+ Tyqo } —6++S+,,
Q.1 |= —fa__s+__
{Q+»Y++ =0
QY] =,
QY iy| =ivV20449,
Q.Y __| =iv20__y,
Q1G] =0 (A.10)
Q.G =0
@+,@++: = =045 4y — V20419,
Q.G | =-05 . —iv2o__uy,
{@+, 5+++} = —Thjpt — %3++j++7
{Q+» 5+ff} =-Th -+ ;3f<7++
{@+7 5—++} = —iG 1y
{@,S,,,} —iG__
{@+:§+++} =0,
{§+a§—++} =iYiq,
Q.8 }=-iv_

Q- Tyyys] = —504045 44

Q.. Ty | = %a__s_++

o7 J=lo 5
[@_.vi4] =0,
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Q.Y _|=o,

:@7,7++: = iV20, 49,
QY| =iv2o__y_,
[ G++: = =045 +iV204 49,

G| =-0__S. _+iv2o__v_,

B TT deformed N = (2,2) S-multiplet

In this appendix, we collect our deformed N =
The elements of the deformed N =
formal point are:

by =—
Vo =+

E-F:

~ 16
A
= SS--)F-F T+ 0N,

~ 16

32v2\2

CYPRIS e
3?}<-8++3+++T++++)S(0) +0(\),
o (50--d 0 + )0+ 00,
BSOLTO o),

7r/\

S(—E—Ti-")--i"‘r +0(\?),
7T/\

S(—)——TJ(rOJ)rJrJr +0(N?),
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(2,2) S-multiplet results.
(2,2) S-multiplet which vanishes at the supercon-

A (1 ) =(0
( D13 ) — Tn(LOJ)r++>S(—)——+O(>\2),

(A.11)

(B.1)

(B.2)



7r/\ —=(0) =

Y — ”A5(+>++a__5( ) o),
(B.3)
— A
Yig = =550t S0 50 100,
Vo= Y 1o,
A
Gy =5 a++s<+)++s< )+ 00,
G = -T2 95O | on),
32 (B.4)
A _TA (0) <O 2
Gt = 55044511452+ O(XY),
_ >
G__= 7;2 9. 0 59 +o00).

The leading order correction of the operators which do not vanish at the superconformal
point can be solved from

. A .
Opyj—— = —*8—— (—OZTJ(r()l++ +0(\?),

O——jp+ = _EQ’L ST 003,

71')\
0S4t = 8++SSFJ)F+ 7O 10,
)\
T A—— a__SSLTQ++ + OO,
' <0 (0) 2 (B5)
O-_Syt4 = ——6++S+++T,,,, + O(X%),
04 5 __ = a,,s‘_)__Tﬁ)++ +0(N2),
7T)\
O-_Thiyq =— 16 5++T4(rol++T£0_)__ +0(\?),
A
04T = _%a__TSO_)__T$+)++ +0(N?).

At first glance, the deformation breaks both U(1)y and U(1) 4 R-symmetries, however,
any one of the symmetries can be restored by some improvement transformation, but we
can restore only one of them. For instance, we can shift away the superfield ) to restore
the U(1)y symmetry to improve the S-multiplet into R-multiplet. Consider the following

improvement transformation,

. A

04+ = T6](—OZTJ(rOJ)r++v
) TA

0 = ST

A
05144 = 51(0) 045,
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55, _ = Mg 050

32
540 =~ 0, S
65, = %a__ ;950
3S_ 4 = —%Aa 05O
5S___ = Z;T; 06 s
55 ., = @a 950
05 = zg; 0o 59
oYy = 7;;\5(_)__5++55ri+v
o0Y__ = g;sgﬁra**s( -
0Y 4y = 7;;‘5(_1_8++85rl+,
Y __ = ”Asii+a,,5‘_l_,
6G s = 7;; s 0,59,
3G = —%s<+)++a__s<_ol_,
5G4t = g;s@l,a++sﬂ+,
5G__ = sgm__s@,,,
dpy = 3127?[ (iaJrH'SrOJ)r TJ(rOJ)r++> 59
S — 3;”}( a__j9 — T(°)>S(+°)++,
0y = 31272)}( T+ 8+ J(+J)r>5(0) ,
op_ = 3;7:)\[ (T( Dt 3++J(0) )5(+04)r+’
[ —%i](_laiﬂgﬁ
0Ty = +gia__ 790,51,
ST __ = —ZZ 092 O

After the improvement transformation, we find

Y=, =Yy =Y =0
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and
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?(TG ;8_-3——> SEL. +00),
R R | !
7{2\(T4(r4)r++ %6++ SPJ)r) s?_+0 (),
7{2 (TQ++ r0i gi) 59y on?),
P10 R0 90,0 o), o
_%aH?f)HS( 00,
g0 550 4o,
7{28++S(+}r+5(_)__ +0(N?),
TA

= 269 0. 59+ 002).
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