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ABSTRACT OF THE DISSERTATION

Algorithms for long-read assembly

by

Mikhail A. Kolmogorov

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Pavel Pevzner, Chair

The recently introduced long-read sequencing technologies (such as Pacific Biosciences or

Oxford Nanopore) have substantially improved genome assemblies of many organisms, including

the human reference genome. The technologies are, however, facing the challenge of high read

errors. In this dissertation, we describe multiple algorithms for assembly and analysis of long-read

sequencing data. First, we introduce the ABruijn algorithm for long-read assembly that bypasses

the expensive read error-correction step by identifying reliable k-mers in reads. We then describe

the Flye package, that combines ABruijn with a new repeat graph approach that accurately

resolves the genomic structure. Finally, we extend Flye to the assembly of complex metagenomic

communities using long reads.

xii



Chapter 1

Assembly of long, error-prone reads using

de Bruijn graphs

1.1 Abstract

The recent breakthroughs in assembling long error-prone reads were based on the overlap-

layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn

graph approach to genome assembly. Moreover, these studies often assume that applications of

the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach

is the only practical paradigm for assembling long error-prone reads. We show how to generalize

de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler,

which combines the de Bruijn graph and the OLC approaches and results in accurate genome

reconstructions.
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1.2 Introduction

The key challenge to the success of single-molecule sequencing (SMS) technologies lies

in the development of algorithms for assembling genomes from long but inaccurate reads. The

pioneer in long reads technologies, Pacific Biosciences, now produces accurate assemblies from

long error-prone reads [Berlin et al., 2015, Chin et al., 2013]. [Goodwin et al., 2015] and [Loman

et al., 2015] demonstrated that high-quality assemblies can be obtained from even less-accurate

Oxford Nanopore reads. Advances in assembly of long error-prone reads recently resulted in the

accurate reconstructions of various genomes [Koren et al., 2013, Koren and Phillippy, 2015, Lam

et al., 2015, Chaisson et al., 2015, Huddleston et al., 2014, Ummat and Bashir, 2014]. However,

as illustrated in [Booher et al., 2015], the problem of assembling long error-prone reads is far

from being resolved even in the case of relatively small bacterial genomes.

Previous studies of SMS assemblies were based on the overlap-layout-consensus (OLC)

approach [Kececioglu and Myers, 1995] or a similar string graph approach [Myers, 2005],

which require an all-against-all comparison of reads [Myers, 2014] and remain computationally

challenging (see [Idury and Waterman, 1995, Li et al., 2012, Pevzner et al., 2001] for a discussion

of the pros and cons of this approach). Moreover, there is an assumption that the de Bruijn graph

approach, which has dominated genome assembly for the last decade, is inapplicable to long reads.

This is a misunderstanding, because the de Bruijn graph approach, as well as its variation called

the A-Bruijn graph approach, was developed to assemble rather long Sanger reads [Pevzner et al.,

2004]. There is also a misunderstanding that the de Bruijn graph approach can only assemble

highly accurate reads and fails when assembling long error-prone reads. Although this is true

for the original de Bruijn graph approach to assembly [Idury and Waterman, 1995, Li et al.,

2012, Pevzner et al., 2001], the A-Bruijn graph approach was originally designed to assemble

inaccurate reads as long as any similarities between reads can be reliably identified. Moreover,

A-Bruijn graphs have proven to be useful even for assembling mass spectra, which represent

2



highly inaccurate fingerprints of amino acid sequences of peptides [Bandeira et al., 2007, 2008].

However, although A-Bruijn graphs have proven to be useful in assembling Sanger reads and

mass spectra, the question of how to apply A-Bruijn graphs for assembling long error-prone reads

remains open.

De Bruijn graphs are a key algorithmic technique in genome assembly [Idury and Water-

man, 1995, Butler et al., 2008, Simpson et al., 2009, Zerbino and Birney, 2008, Bankevich et al.,

2012]. In addition, de Bruijn graphs have been used for sequencing by hybridization [Pevzner,

1989], repeat classification [Pevzner et al., 2004], de novo protein sequencing [Bandeira et al.,

2008], synteny block construction [Pham and Pevzner, 2010], genotyping [Iqbal et al., 2012],

and Ig classification [Bonissone and Pevzner, 2015]. A-Bruijn graphs are even more general

than de Bruijn graphs; for example, they include breakpoint graphs, the workhorse of genome-

rearrangement studies [Lin et al., 2014].

However, as discussed in [Lin et al., 2014], the original definition of a de Bruijn graph is

far from being optimal for the challenges posed by the assembly problem. Below, we describe the

concept of an A-Bruijn graph, introduce the ABruijn assembler for long error-prone reads, and

demonstrate that it generates accurate genome reconstructions.

1.3 Methods

1.3.1 The Key Idea of the ABruijn Algorithm

The Challenge of Assembling Long Error-Prone Reads. Given the high error rates of

SMS technologies, accurate assembly of long repeats remains challenging. Also, frequent k-mers

dramatically increase the number of candidate overlaps, thus, complicating the choice of the

correct path in the overlap graph. A common solution is to mask highly repetitive k-mers as

done in the Celera Assembler [Myers et al., 2000] and Falcon [Chin et al., 2016]. However, such

masking may lead to losing some correct overlaps. Below we illustrate these challenges using the

3



Xanthomonas genomes as an example.

[Booher et al., 2015] recently sequenced various strains of the plant pathogen Xan-

thomonas oryzae and revealed the striking plasticity of transcription activator-like (tal) genes,

which play a key role in Xanthomonas infections. Each tal gene encodes a TAL protein, which

has a large domain formed by nearly identical TAL repeats. Because variations in tal genes and

TAL repeats are important for understanding the pathogenicity of various Xanthomonas strains,

massive sequencing of these strains is an important task that may enable the development of

novel measures for plant disease control [Schornack et al., 2013, Doyle et al., 2013]. However,

assembling Xanthomonas genomes using SMS reads (let alone, short reads) remains challenging.

Depending on the strain, Xanthomonas genomes may harbor over 20 tal genes with

some tal genes encoding over 30 TAL repeats. Assembling Xanthomonas genomes is further

complicated by the aggregation of various types of repeats into complex regions that may

extend for over 30 kb in length. These repeats render Xanthomonas genomes nearly impossible to

assemble using short reads. Moreover, as [Booher et al., 2015] described, existing SMS assemblers

also fail to assemble Xanthomonas genomes. The challenge of finishing draft genomes assembled

from SMS reads extends beyond Xanthomonas genomes (e.g., many genomes sequenced at the

Centers for Disease Control are being finished using optical mapping [Williams et al., 2016]).

Another challenge is using SMS technologies to assemble metagenomics datasets with

highly variable coverage across various bacterial genomes. Because the existing assemblers

for long error-prone reads generate fragmented assemblies of bacterial communities, there are

as yet no publications describing metagenomics applications of SMS technologies. Below we

benchmark ABruijn and other state-of-the-art SMS assemblers on various genomes and the

Bugula neritina metagenome.

From de Bruijn Graphs to A-Bruijn Graphs. In the A-Bruijn graph framework, the

classical de Bruijn graph DB(String,k) of a string String is defined as follows. Let Path(String,k)

be a path consisting of |String|− k+1 edges, where the i-th edge of this path is labeled by the

4



i-th k-mer in String and the i-th vertex of the path is labeled by the i-th (k− 1)-mer in String.

The de Bruijn graph DB(String,k) is formed by gluing together identically labeled vertices in

Path(String,k) (Figure 1.1). Note that this somewhat unusual definition results in exactly the same

de Bruijn graph as the standard definition (see [Compeau and Pevzner, 2015] for details).

De Bruijn graph

Path(String, 3)
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GA
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TA
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T
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G

A
G
G

G
G
A

G
A
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DB(String, 3)

AT TC CA AG GA

TA GG
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AT
A

ATC TCA
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G
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A
G
G

G
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GAT

CAG AGA
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TC CA

CA

AG

AG

GA

GA

TA
GG

AC

ATC TCA CAG AGA
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ATA TAG AG
G
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A

GACACA
CAT

A-Bruijn graph

Path(String, V )

CA
AT

TC

CA

AGA

AT
TA

AC

1

1

1

1

21

4

1

AB(String, V )

AT TC CA AGA

TA

AC

1 1 1

2
1

4

1
1

AT

AT

TC CA

CA

AGA

TA

AC

1 1 1

2
1 4

1
1

Figure 1.1: Constructing the de Bruijn graph (Left) and the A-Bruijn graph (Right) for a
circular String = CATCAGATAGGA. (Left) From Path(String,3) to DB(String,3). (Right)
From Path(String,V ) to AB(String,V ) for V =CA,AT,TC,AGA,TA,AC. The figure illustrates
the process of bringing the vertices with the same label closer to each other (middle row) to
eventually glue them into a single vertex (bottom row). Note that some symbols of String are
not covered by strings in V . We assign integer shi f t(v,w) to the edge (v,w) in this path to denote
the difference between the positions of v and w in String (i.e., the number of symbols between
the start of v and the start of w in String).
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We now consider an arbitrary substring-free set of strings V (which we refer to as a set of

solid strings), where no string in V is a substring of another one in V . The set V consists of words

(of any length) and the new concept Path(String,V) is defined as a path through all words from V

appearing in String (in order) as shown in Figure 1.1. Afterwards, we glue identically labeled

vertices as before to construct the A-Bruijn graph AB(String,V) as shown in Figure 1.1. Clearly,

DB(String,k) is identical to AB(String,Σk−1), where Σk−1 stands for the set of all (k−1)-mers in

alphabet Σ.

The definition of AB(String,V) generalizes to AB(Reads,V) by constructing a path for each

read in the set Reads and further gluing all identically labeled vertices in all paths. Because the

draft genome is spelled by a path in AB(Reads,V) [Pevzner et al., 2004], it seems that the only

thing needed to apply the A-Bruijn graph concept to SMS reads is to select an appropriate set of

solid strings V , to construct the graph AB(Reads,V), to select an appropriate path in this graph as

a draft genome, and to correct errors in the draft genome. Below we show how ABruijn addresses

these tasks.

The Challenge of Selecting Solid Strings. Different approaches to selecting solid strings

affect the complexity of the resulting A-Bruijn graph and may either enable further assembly

using the A-Bruijn graph or make it impractical. For example, when the set of solid strings

V = Σk−1 consists of all (k−1)-mers, AB(Reads,Σk−1) may be either too tangled (if k is small)

or too fragmented (if k is large).

Although this is true for both short accurate reads and long error-prone reads, there is a

key difference between these two technologies with respect to their resulting A-Bruijn graphs. In

the case of Illumina reads, there exists a range of values k so that one can apply various graph

simplification procedures (e.g., bubble and tip removal [Pevzner et al., 2004, Zerbino and Birney,

2008]) to enable further analysis of the resulting graph. However, these graph simplification

procedures were developed for the case when the error rate in the reads does not exceed 1% and

fail in the case of SMS reads where the error rate exceeds 10%.
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An Outline of the ABruijn Algorithm. We classify a k-mer as genomic if it appears in

the genome and nongenomic otherwise. Ideally, we would like to select a set of solid strings

containing all genomic k-mers and no nongenomic k-mers.

Although the set of genomic k-mers occurring in the set of reads is unknown, we show

how to identify a large set of predominantly genomic k-mers by selecting sufficiently frequent

k-mers in reads. However, this is not sufficient for assembly, because some genomic k-mers

are missing and some nongenomic k-mers are present in the constructed set of solid k-mers.

Moreover, even if we were able to construct a very accurate set of genomic k-mers, the de Bruijn

graph constructed on this set would be too tangled because typical values of k range from 15 to

25 (otherwise it is difficult to construct a good set of solid k-mers). Instead, we construct the

A-Bruijn graph on the set of identified solid k-mers rather than the de Bruijn graph on all k-mers

in reads. Although only a small fraction of the k-mers in each read are solid (and hence this is a

very incomplete representation of reads), overlapping reads typically share many solid k-mers

(compared with non-overlapping reads). Therefore, a rough estimate of the overlap between two

reads can be obtained by finding the longest common subpath between the two read-paths using a

fast dynamic programming algorithm. Hence, the A-Bruijn graph can function as an oracle, from

which one can efficiently identify the overlaps of a given read with all other reads by considering

all possible overlaps at once. The genome is assembled by repeatedly applying this procedure

and borrowing the path extension paradigm from short read assemblers [Boisvert et al., 2012,

Prjibelski et al., 2014, Vasilinetc et al., 2015].

Each assembler should minimize the number of misassemblies and the number of base-

calling errors. The described approach minimizes the number of misassemblies but results in

an inaccurate draft genome with many basecalling errors. We later describe an error-correction

approach, which results in accurate genome reconstructions.
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1.3.2 Selecting Solid Strings for Constructing A-Bruijn Graphs

We define the frequency of a k-mer as the number of times this k-mer appears in the reads

and argue that frequent k-mers (for sufficiently large k) are good candidates for the set of solid

strings. We define a (k, t)-mer as a k-mer that appears at least t times in the set of reads.

We classify a k-mer as unique (repeated) if it appears once (multiple times) in the genome.

Figure 1.2 shows the histogram of the number of unique/repeated/nongenomic 15-mers with

given frequencies for the Ecoli SMS dataset described in Results. As Figure 1.2 illustrates, the

lion’s share of 15-mers with frequencies at least t are genomic (t = 7 for the Ecoli dataset).

To automatically select the parameter t, we compute the number of k-mers with frequencies

exceeding t, and select a maximal t such that this number exceeds the estimated genome length.

As Figure 1.2 illustrates, this selection results in a small number of nongenomic k-mers while

capturing most genomic k-mers.

Figure 1.2: The histograms of the number of 15-mers with given frequencies for the Ecoli
dataset from Escherichia coli. The bars for unique/repeated/nongenomic 15-mers for the E.
coli genome are stacked and shown in green/red/blue according to their fractions. ABruijn
automatically selects the parameter t and defines solid strings as all 15-mers with frequencies at
least t = 7 for the Ecoli dataset. We found that increasing the automatically selected values of t
by 1 results in equally accurate assemblies. There exist 4.1, 0.1, and 0.5 million (3.9, 0.1, and
0.3 million) unique, repeated, and nongenomic 15-mers, respectively, for Ecoli at t = 7 (t = 8).
Although larger values of k (e.g., k = 25) also produce high-quality SMS assemblies, we found
that selecting smaller rather than larger k results in slightly better performance.
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1.3.3 Finding the Genomic Path in an A-Bruijn Graph

After constructing an A-Bruijn graph, one faces the problem of finding a path in this graph

that corresponds to traversing the genome and then correcting errors in the sequence spelled by

this path (this genomic path does not have to traverse all edges of the graph). Because the long

reads are merely paths in the A-Bruijn graph, one can use the path extension paradigm [Boisvert

et al., 2012, Prjibelski et al., 2014, Vasilinetc et al., 2015] to derive the genomic path from

these (shorter) read-paths. exSPAnder [Prjibelski et al., 2014] is a module of the SPAdes

assembler [Bankevich et al., 2012] that finds a genomic path in the assembly graph constructed

from short reads based either on read-pair paths or read-paths, which are derived from SMS reads

as in hybridSPAdes [Antipov et al., 2015]. Recent studies of bacterial plankton [Labonté et al.,

2015], antibiotics resistance [Ashton et al., 2015], and genome rearrangements [Risse et al., 2015]

demonstrated that hybridSPades works well even for coassembly with less-accurate nanopore

reads. Below we sketch the HYBRIDSPADES algorithm [Antipov et al., 2015] and show how to

modify the path extension paradigm to arrive at the ABruijn algorithm.

hybridSPAdes. hybridSPAdes uses SPAdes to construct the de Bruijn graph solely

from short accurate reads and transforms it into an assembly graph by removing bubbles and

tips [Bankevich et al., 2012]. It represents long error-prone reads as read-paths in the assembly

graph and uses them for repeat resolution.

A set of paths in a directed graph (referred to as Paths) is consistent if the set of all

edges in Paths forms a single directed path in the graph. We further refer to this path as

ConsensusPath(Paths). The intuition for the notion of the consistent (inconsistent) set of paths

is that they are sampled from a single segment (multiple segments) of the genomic path in the

assembly graph [Antipov et al., 2015].

A path P′ in a weighted graph overlaps with a path P if a sufficiently long suffix of P (of

total weight at least minOverlap) coincides with a prefix of P′ and P does not contain the entire

path P′ as a subpath. Given a path P and a set of paths Paths, we define PathsminOverlap(P) as the
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set of all paths in Paths that overlap with P.

Our sketch of hybridSPAdes omits some details and deviates from the current implemen-

tation to make similarities with the A-Bruijn graph approach more apparent (e.g., it assumes that

there are no chimeric reads and only shows an algorithm for constructing a single contig).

function HYBRIDSPADES(ShortReads, LongReads, k, minOverlap)
construct the de Bruijn graph on k-mers from ShortReads
transform the de Bruijn graph into the assembly graph
ReadPaths← the set of paths in the assembly graph corresponding to

all reads from LongReads
InitialPath← an arbitrary read-path from ReadPaths
GrowingPath← InitialPath
while forever do

OverlapPaths← ReadPathsminOverlap(GrowingPath)
if the set OverlapPaths is consistent then

if CONSENSUSPATH(OverlapPaths) contains InitialPath then
return string spelled by GrowingPath (as a complete genome)

end if
if CONSENSUSPATH(OverlapPaths) overlaps with GrowingPath then

extend GrowingPath by CONSENSUSPATH(OverlapPaths)
end if

else
return string spelled by GrowingPath (as one of the contigs)

end if
end while

end function

From hybridSPAdes to longSPAdes. Using the concept of the A-Bruijn graph, a similar

approach can be applied to assembling long reads only. The pseudocode of longSPAdes differs

from the pseudocode of hybridSPAdes by only the top three lines shown below:

function LONGSPADES(LongReads, k, t, minOverlap)
construct the A-Bruijn graph on (k, t)-mers from LongReads
transform the A-Bruijn graph into the assembly graph

end function

We note that longSPAdes constructs a path spelling out an error-prone draft genome that

requires further error correction. However, error correction of a draft genome is faster than the
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error correction of individual reads before assembly in the OLC approach [Berlin et al., 2015,

Chin et al., 2013, Goodwin et al., 2015, Loman et al., 2015].

Although hybridSPAdes and longSPAdes are similar, longSPAdes is more difficult to

implement because bubbles in the A-Bruijn graph of error-prone long reads are more complex

than bubbles in the de Bruijn graph of accurate short reads. As a result, the existing graph

simplification algorithms fail to work for A-Bruijn graphs made from long error-prone reads.

Although it is possible to modify the existing graph simplification procedures for long error-prone

reads (to be described elsewhere), this paper focuses on a different approach that does not require

graph simplification.

From longSPAdes to ABruijn. Instead of finding a genomic path in the simplified A-

Bruijn graph, ABruijn attempts to find a corresponding genomic path in the original A-Bruijn

graph. This approach leads to an algorithmic challenge: Although it is easy to decide whether

two reads overlap given an assembly graph, it is not clear how to answer the same question in the

context of the A-Bruijn graph. Note that although the ABruijn pseudocode below uses the same

terms “overlapping” and “consistent” as longSPAdes, these notions are defined differently in the

context of the A-Bruijn graph. The new notions (as well as parameters jump and maxOverhang)

are described below.

The constructed path in the A-Bruijn graph spells out an error-prone draft genome (or

one of the draft contigs). For simplicity, the pseudocode below describes the construction of a

single contig and does not cover the error-correction step. In reality, after a contig is constructed,

ABruijn maps all reads to this contig and uses the remaining reads to construct other contigs. The

contig generation procedure iteratively extends the current path in the positive strand direction. If

the extension halts due to a path inconsistency, ABruijn attempts to extend the current contig to

the opposite strand direction starting from the initial contig read.
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function ABRUIJN(LongReads, k, t, minOverlap, jump, MaxOverhang)
construct ABruijn graph on (k, t)-mers from LongReads
ReadPaths← the set of paths in the assembly graph corresponding to

all reads from LongReads
InitialPath← an arbitrary read-path in the A-Bruijn graph
GrowingPath← InitialPath
ReadPath← InitialPath
while forever do

OverlapPaths← all paths in ReadPaths
(w.r.t. minOverlap, jump and maxOverhang)

if the set OverlapPaths is consistent then
if InitialPath is a consistent path in OverlapPaths then

return string spelled by GrowingPath (as a circular contig)
end if
ConsistentPath← most-consistent path in OverlapPaths
extend GrowingPath by ConsensusPath
ReadPath← ConsensusPath

else
return string spelled by GrowingPath (as one of the contigs)

end if
end while

end function

1.3.4 Common jump-Subpaths

Given a path P in a weighted directed graph (weights correspond to shifts in the A-Bruijn

graph), we refer to the distance dP(v,w) along path P between vertices v and w in this path (i.e.,

the sum of the weights of all edges in the path) as the P-distance. The span of a subpath of a path

P is defined as the P-distance from the first to the last vertex of this subpath.

Given a parameter jump, a jump-subpath of P is a subsequence of vertices v1...vt in P

such that dP(vi,vi+1)≤ jump for all i from 1 to t−1. We define Path jump(P) as a jump-subpath

with the maximum span out of all jump-subpaths of a path P.

A sequence of vertices in a weighted directed graph is called a common jump-subpath

of paths P1 and P2 if it is a jump-subpath of both P1 and P2 (Figure 1.3). The span of a common

jump-subpath of P1 and P2 is defined as its span with respect to path P1 (note that this definition

is nonsymmetric with respect to P1 and P2). We refer to a common jump-subpath of paths P1 and
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P2 with the maximum span as Pathjump(P1,P2) (with ties broken arbitrarily).

Figure 1.3: Two overlapping reads from the Ecoli dataset and their common jump-subpath with
maximum span that contains 50 vertices and has span 6,714 with respect to the bottom read (for
jump = 1,000). The left and right overhangs for these reads are 425 and 434. The weights of the
edges in the A-Bruijn graph are shown only if they exceed 400 bp.

Below we describe how the ABruijn assembler uses the notion of common jump-subpaths

with maximum span to detect overlapping reads.

Finding a Common jump-Subpath with Maximum Span. For the sake of simplicity,

below we limit our attention to the case when paths P1 and P2 traverse each of their shared vertices

exactly once.

A vertex w is a jump-predecessor of a vertex v in a path P if P traverses w before traversing

v and dP(w,v)≤ jump.

We define P(v) as the subpath of P from its first vertex to v. Given a vertex v shared

between paths P1 and P2, we define spanjump(v) as the largest span among all common jump-

subpaths of paths P1(v) and P2(v) ending in v. The dynamic programming algorithm for finding a

common jump-subpath with the maximum span is based on the following recurrence:

spanjump(v) = maxall jump−predecessors w of v in P1 and P2{spanjump(w)+dP1(w,v)} (1.1)

A heuristic for finding a maximum common jump-subpath with maximum. We

define Predjump(v) as the set of all jump-predecessors of a vertex v in paths P1 and P2. A

vertex w in Predjump(v) is called dominant if it is not a jump-predecessor of any other vertex in

Predjump(v). If paths P1 and P2 traverse Predjump(v) in the same order, then there is one dominant
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vertex in Predjump(v), denoted as w, and spanjump(v) = {spanjump(w)+ dP1(w,v)}. To speed-up the

dynamic programming algorithm based on the recurrence in the main text, ABruijn stores and

checks only the dominant vertices in Pred jump(v). A similar approach is used to find a common

( jump,∆)-subpath with maximum span.

Our use of k-mers to identify overlapping reads has similarities with MHAP [Berlin et al.,

2015] that utilizes hashing of all k-mers on every read as a way to identify overlaps. The key

difference is that, while MHAP is applied to a pair of reads, ABruijn utilizes information from

all reads in order to identify the set of solid k-mers that one should focus on, make extension

decisions, identify chimeric reads, etc.

1.3.5 Path extensions in A-Bruijn graphs

Overlapping Paths in A-Bruijn Graphs. We define the right overhang between paths

P1 and P2 as the minimum of the distances from the last vertex in Pathjump(P1,P2) to the ends of

P1 and P2. Similarly, the left overhang between paths P1 and P2 is the minimum of the distances

from the starts of P1 and P2 to the first vertex in Pathjump(P1,P2).

Given parameters jump, minOverlap and maxOverhang, we say that paths P1 and P2

overlap if they share a common jump-subpath of span at least minOverlap and their right and

left overhangs do not exceed maxOverhang. To decide whether two reads have arisen from

two overlapping regions in the genome, ABruijn checks whether their corresponding read-paths

P1 and P2 overlap (with respect to parameters jump, minOverlap, and maxOverhang). Given

overlapping paths P1 and P2, we say that P1 is supported by P2 if the P1-distance from the last

vertex in Pathjump(P1,P2) to the end of P1 is smaller than the P2-distance from the last vertex in

Pathjump(P1,P2) to the end of P2.

Most-Consistent Paths. Although it seems that the notion of overlapping paths allows

us to implement the path extension paradigm for A-Bruijn graphs, there are two complications.

First, the path extension algorithm becomes more complex when the growing path ends in a long

14



repeat [Vasilinetc et al., 2015]. Second, chimeric reads may end up in the set of overlapping read-

paths extending the growing path in the ABruijn algorithm. Also, a set of extension candidates

may include a small fraction of spurious reads from other regions of the genome. Below we

describe how ABruijn addresses these complications.

Given a path P in a set of paths Paths, we define rightSupportPaths(P) as the number of

paths in Paths that support P. leftSupportPaths(P) is defined as the number of paths in Paths that

are supported by P. We also define SupportPaths(P) as the minimum of rightSupportPaths(P)

and leftSupportPaths(P). A path P is most-consistent if it maximizes SupportPaths(P) among all

paths in Paths (Figure 1.4 , Top).

Given a set of paths Paths overlapping with ReadPath, ABruijn selects a most-consistent

path for extending ReadPath. Our rationale for selecting a most-consistent path is based on the

observation that chimeric and spurious reads usually have either limited support or themselves

support few other reads from the set Paths. For example, a chimeric read in Paths with a spurious

suffix may support many reads in Paths but is unlikely to be supported by any reads in Paths.

Support Graphs. When exSPAnder extends the growing path, it takes into account the

local repeat structure of the de Bruijn graph, resulting in a rather complex decision rule in the

case when the growing path contains a repeat [Prjibelski et al., 2014, Vasilinetc et al., 2015].

Figure 1.4 (Middle) shows a fragment of the de Bruijn graph with a repeat of multiplicity 2

(internal edge), a growing path ending in this repeat (shown in green), and eight read-paths that

extend this growing path. exSPAnder analyzes the subgraph of the de Bruijn graph traversed by

the growing path, ignores paths starting in the edges corresponding to repeats, and selects the

remaining paths as candidates for an extension (reads 1, 2, and 3 in Figure 1.4, Middle). Below

we show how to detect that a growing path ends in a repeat in the absence of the de Bruijn graph

and how to analyze read-paths ending/starting in a repeat in the A-Bruijn graph framework.

Figure 1.4, Bottom shows a support graph with eight vertices (each vertex corresponds to

a read-path in Figure 1.4, Middle. There is an edge from a vertex v to a vertex w in this graph if
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Figure 1.4: (Top) A growing path (shown in green) and a set of five paths Paths above it
(extending this path). The gray path with SupportPaths(P) = 2 is the most-consistent path in
the set Paths. (Middle) A growing path (shown in green) ending in a repeat (represented by
the internal edge in the graph), and eight read-paths that extend this growing path (five correct
extensions shown in blue and three incorrect extensions shown in red. (Bottom) A support graph
for the above eight read-paths. Note that the blue read-path 1 is connected by edges with all
red read-paths because it is supported by all red paths even though these paths do not contain
any short suffix of read-path 1 (the ABruijn graph framework is less sensitive than the de Bruijn
graph framework with respect to overlap detection).

read v is supported by read w. The vertex of this graph with maximal indegree corresponds to the

rightmost blue read-path (read 8) and reveals four other blue read-paths as its predecessors, that is,

vertices connected to the vertex 8 (cluster of blue vertices in Figure 1.4, Bottom). The remaining

three vertices in the graph represent incorrect extensions of the growing path and reveal that this

growing path ends in a repeat (cluster of red vertices in Figure 1.4, Bottom). This toy example

illustrates that decomposing the vertices of the support graph into clusters helps to answer the
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question of whether the growing path ends in a repeat (multiple clusters) or not (single cluster).

Although exSPAnder and ABruijn face a similar challenge while analyzing repeats, the A-

Bruijn graph, in contrast to the de Bruijn graph, does not reveal local repeat structure. However, it

allows one to detect reads ending in long repeats using an approach that is similar to the approach

illustrated in Figure 1.4. Below we show how to detect such reads and how to incorporate their

analysis in the decision rule of ABruijn.

Identifying Reads Ending/Starting in a Repeat. Given a set of reads Reads supporting

a given read, we construct a support graph G(Reads) on |Reads| vertices. We further construct

the transitive closure of this graph, denoted G?(Reads), using the Floyd-Warshall algorithm.

Figure 1.5 presents the graph G(Reads) for a read that does not end in a long repeat and for

another read that ends in a long repeat.

Figure 1.5: (Left) Support graph G(Reads) for a read in the BLS dataset (Results, Datasets)
that does not end in a long repeat. Reads in the BLS dataset are numbered in order of their
appearance along the genome. The green vertex represents a chimeric read. The blue vertex
has maximum degree in G?(Reads) and reveals a single cluster consisting of all vertices but
the green one. A vertex 281 with large indegree (5) and large outdegree (3) in G?(Reads) is
a most-consistent read-path, and it is selected for path extension (unless it ends in a repeat).
(Right) Support graph G?(Reads) for a read in the BLS dataset that ends in a long repeat. The
green vertex represents a chimeric read. The blue vertex has maximum degree in G?(Reads)
and reveals a cluster consisting of nine blue vertices. The vertex 4901 with large indegree (4)
and large outdegree (4) in G?(Reads) is a most-consistent read-path, and it is selected for path
extension if it does not start in a repeat. The red vertex reveals another cluster consisting of
five red vertices. Generally, we expect that a read ending in a long repeat of multiplicity m will
result in m clusters because reads originating different instances of this repeat are not expected
to support each other and, thus, are not connected by edges in G?(Reads).
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ABruijn partitions the set of vertices in the graph G?(Reads) into nonoverlapping clusters

as follows. It selects a vertex v with maximum indegree in G?(Reads) and, if this indegree

exceeds a threshold (the default value is 1), removes this vertex along with all its predecessors

from the graph. We refer to the set of removed vertices as a cluster of reads and iteratively repeat

this procedure on the remaining subgraph until no vertex in the graph has indegree exceeding the

threshold. Figure 1.5 illustrates that this decomposition results in a single cluster for a read that

does not end in a repeat and in two clusters for a read that ends in a repeat.

We classify a read as a read ending in a repeat if the number of clusters in G?(Reads)

exceeds 1 (the notion of a read starting from a repeat is defined similarly). A set of reads is called

inconsistent if all reads in this set either end or start in a repeat, and consistent otherwise. ABruijn

detects all reads ending and starting in a repeat before the start of the path extension algorithm;

3.2% and 6.4% of all reads in Ecoli and BLS datasets, respectively, end in repeats.

The Path Extension Paradigm and Repeats. ABruijn attempts to exclude reads ending

in repeats while selecting a read that extends the growing path. Because this is not always possible,

below we describe two cases: The growing path does not end in a repeat and the growing path

ends in a repeat.

If the growing path does not end in a repeat, our goal is to exclude chimeric and spurious

reads during the path extension process. ABruijn, thus, selects a read from Reads that (i) does

not end in a repeat and (ii) supports many reads and is supported by many reads. Condition

(ii) translates into selecting a vertex whose indegree and outdegree are both large (i.e., a most-

consistent path). In the case that all reads in Reads end in a repeat, ABruijn selects a read that

satisfies the condition (ii) but ends in a repeat.

If the growing path ends in a repeat, ABruijn uses a strategy similar to exSPAnder to avoid

reads that start in a repeat as extension candidates (e.g., all reads in Figure 1.4, Middle except

for reads 1, 2, and 3). It thus selects a read from Reads that (i) does not start in a repeat and (ii)

supports many reads and is supported by many reads. To satisfy condition (ii), ABruijn selects a
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most-consistent read among all reads in Reads that do not start in a repeat. If there are no such

reads, ABruijn halts the path extension procedure.

1.3.6 Correcting Errors in the Draft Genome

Matching Reads Against the Draft Genome. ABruijn uses BLASR [Chaisson and

Tesler, 2012] to align all reads against the draft genome. It further combines pairwise alignments

of all reads into a multiple alignment. Because this alignment against the error-prone draft

genome is rather inaccurate, we need to modify it into a different alignment that we will use for

error correction.

Our goal now is to partition the multiple alignment of reads to the entire draft genome

into thousands of short segments (mini-alignments) and to error-correct each segment into the

consensus string of the mini-alignment. The motivation for constructing mini-alignments is to

enable accurate error-correction methods that are fast when applied to short segments of reads but

become too slow in the case of long segments.

The task of constructing mini-alignments is not as simple as it may appear. For example,

breaking the multiple alignment into segments of fixed size will result in inaccurate consensus

sequences because a region in a read aligned to a particular segment of the draft genome has

not necessarily arisen from this segment (e.g., it may have arisen from a neighboring segment

or from a different instance of a repeat). Because many segments in BLASR alignments are

misaligned, the accuracy of our error-correction approach (that is designed for well-aligned reads)

may deteriorate.

We, thus, search for a good partition of the draft genome that satisfies the following

criteria: (i) Most segments in the partition are short, so that the algorithm for their error-correction

is fast, and (ii) with high probability, the region of each read aligned to a given segment in the

partition represents an error-prone version of this segment. Below we show how to construct a

good partition by building an A-Bruijn graph.

19



Defining Solid Regions in the Draft Genome. We refer to a position (column) of the

alignment with the space symbol “-” in the reference sequence as a non-reference position

(column) and to all other positions as a reference position (column). We refer to the column in

the multiple alignment containing the i-th position in a given region of the reference genome as

the i-th column. The total number of reads covering a position i in the alignment is referred to as

Cov(i).

A non-space symbol in a reference column of the alignment is classified as a match (or a

substitution) if it matches (or does not match, respectively) the reference symbol in this column.

A space symbol in a reference column of the alignment is classified as a deletion. We refer to the

number of matches, substitutions, and deletions in the i-th column of the alignment as Match(i),

Sub(i), and Del(i), respectively. We refer to a non-space symbol in a non-reference column as an

insertion and denote Ins(i) as the number of nucleotides in the non-reference columns flanked

between the reference columns i and i+1 (Figure 1.6).

For each reference position i, Cov(i) = Match(i) + Sub(i) + Del(i). We define the match,

substitution, and insertion rates at position i as Match(i) / Cov(i), Sub(i) / Cov(i), Del(i) / Cov(i),

and Ins(i) / Cov(i), respectively. Given an l-mer in a draft genome, we define its local match rate

as the minimum match rate among the positions within this l-mer. We further define its local

insertion rate as the maximum insertion rate among the positions within this l-mer.

An l-mer in the draft genome is called (α,β)-solid if its local match rate exceeds α and its

local insertion rate does not exceed β. When α is large and β is small, (α,β)-solid l-mers typically

represent the correct l-mers from the genome. The last row in Figure 1.6, Bottom Left shows all

of the (0.8, 0.2)-solid 4-mers in the draft genome. The contiguous sequence of (α,β)-solid l-mers

forms a solid region. Our goal now is to select a position within each solid region (referred to

as a landmark) and to form mini-alignments from the segments of reads spanning the intervals

between two consecutive landmarks.

Breaking the Multiple Alignment into Mini-Alignments. An l-mer is called simple if
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Figure 1.6: (Top Left) The pairwise alignments between a reference region ref in the draft
genome and five reads Reads = read1,read2,read3,read4,read5. All inserted symbols in these
reads with respect to the region ref are colored in blue. (Bottom Left) The multiple align-
ment Alignment constructed from the above pairwise alignments along with the values of
Cov(i), Match(i), Del(i), Sub(i) and Ins(i). The last row shows the set V of (0.8,0.2)-solid
4-mers. The non-reference columns in the alignment are not numbered. (Right) Constructing
AB(Alignment), that is, combining all paths Path(read j,V ) into AB(Alignment). Note that the
4-mer ATGA corresponds to two different nodes with labels 1 and 13. The three boundaries of
the mini-alignments are between positions 2 and 3, 7 and 8, and 14 and 15. The two resulting
necklaces are formed by segments {GAATCA,GATTCA,GAAACA,GAAACA,GAGGTA} and
{GTCAT,GTTCA,TCCTCGAT,GTATTACAT,GTCTTAAT}.

all its consecutive nucleotides are different. For example, CAGT and ATGA are simple 4-mers,

and GTTC is not a simple 4-mer. ABruijn selects simple 4-mers that are at least l positions away

from each other within solid regions as landmarks. We introduce multiple (rather than a single)

landmarks in some solid regions to minimize the size of mini-alignments resulting from long

solid regions. We further use the middle points (i.e., a point between its 2nd and 3rd nucleotides)

of selected simple 4-mers as landmarks. This procedure resulted in 159,142 mini-alignments

for the Ecoli dataset. ABruijn analyzes each mini-alignment and error-corrects each segment

between consecutive landmarks.

Constructing the A-Bruijn Graph on Solid Regions in the Draft Genome. We refer

to the multiple alignment of all reads against the draft genome as Alignment. We label each

landmark by its landmark position in Alignment and break each read into a sequence of segments
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aligned between consecutive landmarks. We further represent each read as a directed path through

the vertices corresponding to the landmarks that it spans over. To construct the A-Bruijn graph

AB(Alignment), we glue all identically labeled vertices in the set of paths resulting from the reads

(Figure 1.6, Right).

Labeling vertices by their positions in the draft genome (rather than the sequences of

landmarks) distinguishes identical landmarks from different regions of the genome and prevents

excessive gluing of vertices in the A-Bruijn graph AB(Alignment). We note that whereas the

A-Bruijn graph constructed from reads is very complex, the A-Bruijn graph AB(Alignment)

constructed from reads aligned to the draft genome is rather simple. Although there are many

bubbles in this graph, each bubble is simple, making the error correction step fast and accurate.

The edges between two consecutive landmarks (two vertices in the A-Bruijn graph) form

a necklace consisting of segments from different reads that align to the region flanked by these

landmarks (Figure 1.6, Right shows two necklaces). Below we describe how ABruijn constructs

a consensus for each necklace (called the necklace consensus) and transforms the inaccurate draft

genome for the Ecoli dataset into a polished genome to reduce the error rate to 0.0004% for the

Ecoli dataset (only 19 putative errors for the entire genome).

1.3.7 Error-Correcting Mini-Alignments

A Probabilistic Model for Necklace Polishing. Each necklace contains read-segments

Segments = seg1,seg2, ...,segm (1.2)

and our goal is to find a consensus sequence Consensus maximizing

Pr(Segments|Consensus) = Π
m
i=1Pr(segi|Consensus) (1.3)
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where Pr(segi|Consensus) is the probability of generating a segment segi from a consensus

sequence Consensus. Given an alignment between a segment segi and a consensus Consensus,

we define Pr(segi|Consensus) as the product of all match, mismatch, insertion, and deletion rates

for all positions in this alignment. The match, mismatch, insertion, and deletion rates should be

derived using an alignment of any set of reads to any reference genome.

ABruijn selects a segment of median length from each necklace and iteratively checks

whether the consensus sequence for each necklace can be improved by introducing a single muta-

tion in the selected segment. If there exists a mutation that increases Pr(Segments|Consensus),

we select the mutation that results in the maximum increase and iterate until convergence. We

further output the final sequence as the error-corrected sequence of the necklace. As described

in [Chin et al., 2013], this greedy strategy can be implemented efficiently because a mutation

maximizing Pr(Segments|Consensus) among all possible mutated sequences can be found in

a single run of the forward-backward dynamic programming algorithm for each sequence in

Segments. The error rate after this step drops to 0.003% for the Ecoli dataset.

Error-Correcting Homonucleotide Runs. The probabilistic approach described above

works well for most necklaces but its performance deteriorates when it faces the difficult problem

of estimating the lengths of homonucleotide runs, which account for 46% of the E. coli genome

(see discussion on pulse merging in [Chin et al., 2013]). We, thus, complement this approach

with a homonucleotide likelihood function based on the statistics of homonucleotide runs. In

contrast to previous approaches to error-correction of long error-prone reads, this new likelihood

function incorporates all corrupted versions of all homonucleotide runs across the training set

of reads and reduces the error rate sevenfold (from 0.003% to 0.0004% for the Ecoli dataset)

compared with the standard likelihood approach.

To generate the statistics of homonucleotide runs, we need an arbitrary set of reads aligned

against a training reference genome. For each homonucleotide run in the genome and each read

spanning this run, we represent the aligned segment of this read simply as the set of its nucleotide
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counts. For example, if a run AAAAAAA in the genome is aligned against AAT TACA in a read,

we represent this read-segment as 4A3X, where X stands for any nucleotide differing from A.

After collecting this information for all runs of AAAAAAA in the reference genome, we obtain the

statistics for all read segments covering all instances of the homonucleotide run AAAAAAA. We

further use the frequencies in this table for computing the likelihood function as the product of

these frequencies for all reads in each necklace (frequencies below a threshold 0.001 are ignored).

It turned out that the frequencies in the resulting table hardly change when one changes the

dataset of reads, the reference genome, or even the sequencing protocol from P6-C4 to the older

P5-C3. To decide on the length of a homonucleotide run, we simply select the length of the run

that maximizes the likelihood function.

Although the described error-correcting approach results in a very low error rate even

after a single iteration, ABruijn realigns all reads and error-corrects the pre-polished genome in

an iterative fashion (three iterations by default).

1.4 Results

1.4.1 Datasets

The E. coli K12 dataset [Kim et al., 2014] (referred to as Ecoli) contains 10,277 reads

with ≈ 55× coverage generated using the P6-C4 Pacific Biosciences technology.

The E. coli K12 Oxford Nanopore dataset [Loman et al., 2015] (referred to as EcoliNano)

contains 22,270 reads with ≈ 29× coverage.

The BLS and PXO datasets were derived from Xanthomonas oryzae strains BLS256 and

PXO99A previously assembled using Sanger reads [Bogdanove et al., 2011, Salzberg et al., 2008]

and reassembled using Pacific Biosciences P6-C4 reads in [Booher et al., 2015]. The BLS dataset

contains 89,634 reads (≈ 234× coverage), and the PXO dataset contains 55,808 reads (≈ 141×

coverage). The assembly of BLS and PXO datasets is particularly challenging because these
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genomes have a large number of tal genes.

The Bryozoa neritina dataset (referred as BNE) contains 1,127,494 reads (estimated

coverage ≈ 25×) generated using the P6-C4 Pacific Biosciences technology. B. neritina is

a microscopic marine eukaryote that forms colonies attached to the wet surfaces and forms

symbiotic communities with various bacteria. B. neritina is the source of bryostatin, an anticancer

and memory-enhancing compound [Trost and Dong, 2008]. B. neritina is also a model organism

for biofouling, studies of accumulation of various organisms on wetted surfaces that present a

risk to underwater construction.

The symbiotic bacteria live inside of B. neritina making it impossible to isolate the

B. neritina DNA from the bacterial DNA for genome sequencing. As the result, despite the

importance of B. neritina, all attempts to sequence it so far have failed [Lopanik et al., 2008].

The total genome size of the symbiotic bacteria in B. neritina is significantly larger than the

estimated size of the B. neritina genome (135 Mb). Thus, sequencing B. neritina presents a

complex metagenomics challenge.

The S. cerevisiae W303 dataset [Kim et al., 2014] (referred as SCE) contains 232,230

reads with ≈117X coverage generated using the P5-C3 Pacific Biosciences technology.

1.4.2 Assembling the Ecoli Dataset

The Challenge of Benchmarking SMS Assemblies. Because Canu [Koren et al., 2017]

improved on PBcR [Koren et al., 2012] with respect to both speed and accuracy, we limited our

benchmarking to ABruijn and Canu v1.2.

High-quality short-read bacterial assemblies typically have error-rates on the order of 105,

which typically result in 50 to 100 errors per assembled genome [Ronen et al., 2012]. Because

assemblies of high-coverage SMS datasets are often even more accurate than assemblies of short

reads, short-read assemblies do not represent a gold standard for estimating the accuracy of SMS

assemblies. Moreover, the E. coli K12 strain used for SMS sequencing of the Ecoli dataset differs
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from the reference genome. Thus, the standard benchmarking approach based on comparison

with the reference genome [Gurevich et al., 2013] is not applicable to these assemblies.

We used the following approach to benchmark ABruijn and Canu against the reference

E. coli K12 genome. There are 2,892 and 2,887 positions in E. coli K12 genome where the

reference sequence differs from ABruijn and Canu+Quiver, respectively. However, ABruijn and

Canu+Quiver agree on 2,873 of them, suggesting that most of these positions represent mutations

in E. coli K12 compared with the reference genome. Both Canu+Quiver and ABruijn suggest that

the Ecoli dataset was derived from a strain that differs from the reference E. coli K12 genome by

a 1,798-bp inversion, two insertions (776 and 180 bp), one deletion (112 bp), and seven other

single positions. We, thus, revised the E. coli K12 genome to account for these variations and

classified a position as an ABruijn error if the Canu+Quiver sequence at this position agreed with

the revised reference but not with the ABruijn sequence (Canu errors are defined analogously).

Comparing ABruijn and Canu using the Ecoli dataset. ABruijn and Canu assembled

the Ecoli dataset into a single circular contig structurally concordant with the E. coli genome.

We further estimated the accuracy of ABruijn and Canu in projects with lower coverage by

down-sampling the reads from Ecoli. For each value of coverage, we made five independent

replicas and analyzed errors in all of them.

In contrast to ABruijn, Canu does not explicitly circularize the reconstructed bacterial

chromosomes but instead outputs each linear contig with an identical (or nearly identical) prefix

and suffix. We used these suffixes and prefixes to circularize bacterial chromosomes and did not

count differences between some of them as potential Canu errors. However, for some replicas with

coverage 40×, 35×, 30×, and 25×, Canu missed short 2-kb to 7-kb fragments of the genome

(possibly due to low coverage in some regions), thus, preventing us from circularization. To

enable benchmarking, we did not count these missing regions as Canu errors. Also, at coverage

30×, Canu (i) failed to assemble the Ecoli dataset into a single contig for one out of five replicas

and (ii) correctly assembled bacterial chromosome for another replica but also generated a false
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contig (probably formed by chimeric reads). In contrast, ABruijn correctly assembled all replicas

for all values of coverage.

Table 1.1 illustrates that, in contrast to ABruijn, Canu generates rather inaccurate as-

semblies without Quiver, a tool that uses raw machine-level HDF5 signals for polishing: 637

errors (160 insertions and 477 deletions) and 19 errors (12 insertions and 7 deletions) for Canu

and ABruijn, respectively. However, after applying Quiver, the number of errors reduces to

14 (1 insertion and 13 deletions) and 15 (2 insertions and 13 deletions) for Canu and ABruijn,

respectively. ABruijn assembled the Ecoli dataset in ≈ 8 min and polished it in ≈ 36 min (the

memory footprint was 2 Gb). ABruijn and Canu have similar running times: 2,599 s and 2,488 s,

respectively (4,873 s and 4,803 s for ABruijn+Quiver and Canu+Quiver, respectively).

Table 1.1: Summary of errors for Canu and ABruijn assemblies of the Ecoli, BLS, and PXO
datasets as well as for the downsampled Ecoli datasets with coverage varying from 50× to 25×

Dataset Canu ABruijn Canu+Quiver ABruijn+Quiver
BLS 73 5 51 31
PXO 1,162 21 130 15
Ecoli 637 19 14 15

Ecoli 50x 703 33 20 18
Ecoli 45x 829 45 29 29
Ecoli 35x 1,541 153 88 84
Ecoli 30x 2,470 291 175 154
Ecoli 25x 3,053 687 322 329

To enable a fair benchmarking and to offset the artifacts of Canu assemblies at 30×

coverage, we collected statistics of errors for four out of five best assemblies for each value of

coverage. Table 1.1 illustrates that both ABruijn and Canu maintain accuracy even in relatively

low coverage projects but Canu assemblies become fragmented and may miss short segments

when the coverage is low.
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1.4.3 Assembling the EcoliNano Dataset

Both the Nanocorrect assembler [Loman et al., 2015] and ABruijn assembled the Ecoli-

Nano dataset into a single circular contig structurally concordant with the E. coli K12 genome

with error rates 1.5% and 1.1%, respectively (2,475 substitutions, 9,238 insertions, and 40,399

deletions for ABruijn). We note that, in contrast to the more accurate Pacific Biosciences technol-

ogy, Oxford Nanopore technology currently has to be complemented by hybrid coassembly with

short reads to generate finished genomes [Antipov et al., 2015, Labonté et al., 2015, Ashton et al.,

2015, Risse et al., 2015].

Although further reduction in the error rate in Oxford Nanopore assemblies can be

achieved by processing of the signal resulting from DNA translocation [Loman et al., 2015], it is

still two orders of magnitude higher that the error rate for the down-sampled Ecoli dataset with

similar 30× coverage by Pacific Biosciences reads (Table 1.1) and below the acceptable standards

for finished genomes. Because Oxford Nanopore technology is rapidly progressing, we decided

not to optimize it further using signal processing of raw translocation signals.

1.4.4 Assembling Xanthomonas Genomes

Because HGAP 2.0 failed to assemble the BLS dataset, [Booher et al., 2015] developed a

special PBS algorithm for local tal gene assembly to address this deficiency in HGAP. They further

proposed a workflow that first launches PBS and uses the resulting local tal gene assemblies

as seeds for a further HGAP assembly with custom adjustment of parameters in HGAP/Celera

workflows. Although HGAP 3.0 resulted in an improved assembly of the BLS dataset, [Booher

et al., 2015] commented that the PBS algorithm is still required for assembling other Xanthomonas

genomes. Because PBS represents a customized assembler for tal genes that is not designed to

work with other types of complex repeats, development of a general SMS assembly tool that

accurately reconstructs repeats remains an open problem.
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We launched ABruijn with the automatically selected parameters t = 28 and t = 18 for

the BLS and PXO datasets, respectively (all other parameters were the same default parameters

that we used for the Ecoli dataset). ABruijn assembled the BLS dataset into a circular contig

structurally concordant with the BLS reference genome. It also assembled the PXO dataset into a

circular contig structurally concordant with the PXO reference genome but, similarly to the initial

assembly in [Booher et al., 2015], it collapsed a 212-kb tandem repeat.

Canu assembled the BLS dataset into a circular contig structurally concordant with the

BLS reference genome but assembled the PXO dataset into two contigs, a long contig similar

to the reference genome (with a collapsed 212-kb tandem repeat and three large indels of total

length over 1,500 nucleotides) and a short contig. In summary, ABruijn+Quiver and Canu+Quiver

assemblies of the BLS dataset resulted in only 31 and 51 errors, respectively. Surprisingly,

ABruijn without Quiver resulted in a better assembly than ABruijn+Quiver with only five errors.

To evaluate errors for the PXO dataset, we decided to ignore the short contig generated

by Canu and a collapsed 212-kb repeat (generated by both Canu and ABruijn). ABruijn+Quiver

assembly of the PXO dataset resulted in only 15 errors whereas Canu+Quiver assembly resulted

in 130 errors, including one insertion of 100 nucleotides.

1.4.5 Assembling the B. neritina Metagenome

We have assembled the B. neritina metagenome and further analyzed all long contigs

at least 50 kb in size (1,319 and 1,108 long contigs for Canu and ABruijn, respectively). We

ignored shorter contigs because they are often formed by a few reads or even a single read. The

total length of long contigs was 171 Mb for Canu and 202 Mb for ABruijn. Figure 1.7 shows

the histogram of the total length of contigs with a given coverage. Because the spread of the

distribution of coverage for B. neritina significantly exceeds the spread we observed in other SMS

datasets (typically within 15% of the average coverage), we attribute most bins with coverage

below 20× to contigs from symbiotic bacteria (the tallest peak in the histogram suggests that
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the average coverage of B. neritina is 25×). Running AntiSmash [Medema et al., 2011] on the

ABruijn assembly revealed nine bacterial biosynthetic gene clusters encoding natural products

that, similarly to bryostatin, may represent new bioactive compounds.

Figure 1.7: Contig length distribution for ABruijn and Canu assemblies of B. neritina
metagenome.

We attribute the large difference in the total contig length to fragmentation in Canu

assemblies in the case of low-coverage datasets, which we observed in our analysis of the

downsampled Ecoli datasets. This fragmentation may have also contributed to differences in the

N50 (98 kb vs. 242 kb) between Canu and ABruijn.

However, differences in N50 are poor indicators of assembly quality in the case when

the reference genome is unknown. We, thus, conducted an additional analysis using the Core

Eukaryotic Genes Mapping Approach (CEGMA) that was used in hundreds of previous studies for

evaluating the completeness of eukaryotic assemblies [Parra et al., 2007]. CEGMA evaluates an

assembly by checking whether its contigs encode all 248 ultraconserved eukaryotic core protein

families. Canu and ABruijn assemblies missed 18 and 11 out of 248 core genes, respectively

(7.3% vs. 4.4%). Thus, although both Canu and ABruijn generated better assemblies than typical
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eukaryotic short read assemblers (that often miss over 20% of core genes), the ABruijn assembly

improved on the Canu assembly in this respect.

1.4.6 Assembling the S. cerevisiae W303 genome

Since S. cerevisiae W303 genome has not been finished using an alternative sequencing

technology yet, we use its closest finished reference S. cerevisiae S288c (12,157,105 nucleotides,

NCBI Assembly GCF 000146045.2) for esimating the accuracy of the ABruijn assembly. We

estimated the average percent identity between the S. cerevisiae W303 and S. cerevisiae S288c

genomes by comparing the longest contig assembled by ABruijn and PBcR-MHAP [Berlin et al.,

2015] that is structurally concordant with the entire chromosome IV in S. cerevisiae S288c.

ABruijn and PBcR-MHAP contigs featured 99.92% similarity with each other but only 97.8%

similarity with chromosome IV. High similarity between ABruin and PBcR-MHAP assemblies

suggests that many differences between these assemblies and chromosome IV represent structural

variations rather than assembly errors.

Considering only long contigs (longer than 50 Kb), both PBcR-MHAP assemblies [Berlin

et al., 2015] and ABruijn assemblies of the SCE dataset were largely structurally concordant

with sixteen chromosomes of the S. cerevisiae S288C genome. Although QUAST with default

parameters reported 77 and 72 misassemblies for 20 long contigs in the PBcR-MHAP assembly

and 24 long contigs in the ABruijn assembly, respectively, most of these misassemblies represent

structural variations or regions of high divergence as compared to the reference genome (e.g., the

PBcR-MHAP and ABruijn assemblies coincided with each other in most regions where QUAST

reported misassemblies). The total contig length for the PBcR-MHAP assembly was slightly

longer than for the ABruijn assembly (12.18 Mb vs. 12.08 Mb) but its duplication ratio was

slightly larger.

It is not clear whether the small difference in the total contig length represents an im-

provement in assembly or a reporting artifact. For example, while the longest contig in the
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PBcR-MHAP and ABruijn assemblies (1.548 Mb and 1.532 Mb, respectively) are structurally

concordant with chromosome IV in S. cerevisiae S288C, the PBcR-MHAP contig is slightly

longer. However, the 14 kb long suffix of this contig does not align to the reference chromosome

IV. Therefore, it remains unclear whether this suffix represents an extension of chromosome IV

as compared to the S. cerevisiae S288C genome or an assembly artifact.

To offset the effect of differences with the reference genome on the number of misassem-

blies, we increased the QUAST parameter extensive-mis-size from its default value 1 kb to 40 kb

to mask out the large structural variations between S. cerevisiae S288C and S. cerevisiae W303

genomes. After this increase, QUAST reported no misassemblies for PBcR-MHAP and one

misassembly for ABruijn. Thus, most of misassemblies reported by QUAST with the default 1

kb value of the extensive-mis-size parameter likely represent insertions of mobile elements, large

indels (longer than 1 kb), or long regions with high divergence as compared to the reference.

1.4.7 Running time and memory footprint

For the Xanthomonas genomes, which have complex repeat structure and high coverage,

the assembly time and memory footprint increased as compared to the Ecoli dataset: 28 m

assembly step, 160 m polishing step, 15 Gb memory for the PXO dataset and 68 m assembly step,

359 m polishing step, 21 Gb memory for the BLS dataset (Intel Core i7-4790 3.60 GHz with 4

cores (8 threads), 32Gb of RAM).

The running time increased to 4 h 53 m (memory footprint 2 Gb) for the EcoliNano

dataset. The increase in the running time is attributed to the polishing step since Oxford Nanopore

reads are less accurate than Pacific Biosciences reads (the assembly step took only 4 minutes).

In contrast, the running time for the SCE dataset was dominated by the assembly step

(8h44m for the assembly step and 2 h 30 m for the polishing step). The increase in the running

time of the assembly step is explained by many long and highly conserved Ty1 - Ty 5 repeats and

long segmental duplications.
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For the BNE metagenome, assembly step took 19 h 10 m, polishing step took 28 h 56

m, and the memory footpring was 278 Gb (64 cores, AMD Opteron 6376 2.30 GHz, 512 Gb of

RAM).

1.5 Discussion

We developed the ABruijn algorithm aimed at assembling bacterial and relatively small

eukaryotic genomes from long error-prone reads. Because the number of bacterial genomes that

are currently being sequenced exceeds the number of all other genome sequencing projects by

an order of magnitude, accurate sequencing of bacterial genomes remains an important goal.

Because short-read technologies typically fail to generate long contiguous assemblies (even in

the case of bacterial genomes), long reads are often necessary to span repeats and to generate

accurate genome reconstructions.

Because traditional assemblers were not designed for working with error-prone reads, the

common view is that OLC is the only approach capable of assembling inaccurate reads and that

these reads must be error-corrected before performing the assembly [Berlin et al., 2015]. We

have demonstrated that these assumptions are incorrect and that the A-Bruijn approach can be

used for assembling genomes from long error-prone reads. We believe that initial assembly with

ABruijn, followed by construction of the de Bruijn graph of the resulting contigs, followed by a

de Bruijn graph-aware reassembly with ABruijn may result in even more accurate and contiguous

assemblies of SMS reads.

1.6 Acknowledgments

We thank Dmitry Antipov, Bahar Behsaz, Adam Bogdanove, Anton Korobeinikov, Mihai

Pop, Steven Salzberg, and Glenn Tesler for their many useful comments; Mike Rayko for his help

33



with analyzing the B. neritina assemblies; and Alexey Gurevich for his help with QUAST and

AntiSmash.

This chapter, in full, is a reprint of the material as it appears in Y. Lin, J. Yuan, M.

Kolmogorov, M. Shen, M. Chaisson and P. Pevzner, “Assembly of long error-prone reads using

de Bruijn graphs”, Proceedings of the National Academy of Sciences (2016). The dissertation

author was the primary developer of the ABruijn project and one of the three lead authors of this

paper.

34



Chapter 2

Assembly of long, error-prone reads using

repeat graphs

2.1 Abstract

Accurate genome assembly is hampered by repetitive regions. Although long single

molecule sequencing reads are better able to resolve genomic repeats than short-read data, most

long-read assembly algorithms do not provide the repeat characterization necessary for producing

optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates arbitrary

paths in an unknown repeat graph, called disjointigs, and constructs an accurate repeat graph

from these error-riddled disjointigs. We benchmark Flye against five state-of-the-art assemblers

and show that it generates better or comparable assemblies, while being an order of magnitude

faster. Flye nearly doubled the contiguity of the human genome assembly (as measured by the

NGA50 assembly quality metric) compared with existing assemblers.
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2.2 Introduction

Genome assembly is the process of reconstructing genomes from DNA sequence reads. In

repetitive regions of the genome, accurately assembling short reads is challenging and can lead to

inaccurate or unresolved assemblies. Single molecule sequencing (SMS) long-read technologies

(such as Pacific Biosciences and Oxford Nanopore) have been used to improve the resolution

of repetitive genomic regions, but many long stretches of repetitive DNA remain intractable

to these approaches. Current SMS assemblers, such as PBcR [Koren et al., 2012, Chin et al.,

2013, Berlin et al., 2015], Falcon [Chin et al., 2016], Miniasm [Li, 2016], ABruijn [Lin et al.,

2016], HINGE [Kamath et al., 2017], Canu [Koren et al., 2017], and Marvel [Nowoshilow et al.,

2018], have been used to successfully resolve some repeat regions across complex genomes, but

correct assembly of long reads in long and highly repetitive genomic regions remains challenging.

As a result, long-read technologies are often complemented by proximity ligation techniques

(Hi-C) [Ghurye et al., 2017] and optical [Weissensteiner et al., 2017] mapping data to improve

the contiguity of assemblies.

The de Bruijn graph has been used by short-read assembly approaches to represent

genomic repeats as a repeat graph. Previous studies have demonstrated the value of this approach

for improving the accuracy of genome assembly [Pevzner et al., 2004]. Recently, long-read

assemblers such as ABruijn [Lin et al., 2016] and HINGE [Kamath et al., 2017], which capitalize

on a similar de Bruijn graph-based approach, have been developed. Most short-read assemblers

construct the de Bruijn graph based on all k-mers in reads and further transform it into a simpler

de Bruijn assembly graph [Bankevich et al., 2012]. This approach collapses multiple instances of

the same repeat into a single path in the assembly graph and represents the genome as a genome

tour, which visits each edge in the assembly graph. However, in the case of SMS reads, the key

assumption of the de Bruijn graph approach – that most k-mers from the genome are preserved

in multiple reads – does not hold. As a result, various challenges that have been addressed
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for short-read assembly, such as how to deal with the fragmented de Bruijn graph and how to

transform it into an assembly graph, remain largely unaddressed in long-read assemblers.

2.3 Methods

2.3.1 Flye outline

(a) Genome

(b) Reads

(c) Generating disjointigs

(d) Concatenated disjointigs

(f) Repeat graph of the concatenate

R1 R2 R1 R2
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R2

A

B C D

A R1 D R2 C R1 B R2

AC B D

R'1

R2

A

C D

B

R''1

(h) Resolving bridged repeats
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(g) Aligning reads to the repeat graph
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(i) Resolving unbridged repeats

R''2

A R2 C

(e) Repeat plot of the concatenate

Figure 2.1: (a) A genome with two 99% identical copies of a repeat R1 and two 99% identical
copies of a repeat R2. Segments A, B, C, and D represent non-repetitive regions. (b) A set of reads
sampled from the genome. (c) Two (misassembled) disjointigs AR1DR2 A and R2CR1BR2C
derived from the reads. (d) Concatenate of the disjointigs. (e) Repeat plot of the concatenate.
(f) Repeat graph constructed by “gluing” vertices in the concatenate according to the repeat
plot. For each two-dimensional point (x,y) in the repeat plot, we glue vertices x and y in the
concatenate. (g) Aligning reads against the repeat graph. (h) Resolving the bridged repeat R1
and reconstructing its two copies R′1 and R′′1 . The differences between each copy of this repeat
and the consensus of this repeat are shown as small diamonds. (i) Resolving the unbridged
repeat R2 with two slightly diverged copies. Appendix 2.7.1 describes the Flye assembly of a
simulated genome modeled after the genome shown in (a).

Here we describe the Flye algorithm for accurately assembling long reads (Fig. 2.1).

Unlike existing assemblers that attempt to generate contigs, Flye initially generates disjointigs
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that represent concatenations of multiple disjoint genomic segments, concatenates all error-prone

disjointigs into a single string (in an arbitrary order), constructs an accurate assembly graph from

the resulting concatenate, uses reads to untangle this graph, and resolves bridged repeats (which

are bridged by some reads in the repeat graph). Afterwards, it uses the repeat graph to resolve

unbridged repeats (which are not bridged by any reads) using small differences between repeat

copies and then outputs accurate contigs formed by paths in this graph. We benchmark Flye

against five state-of-the-art SMS assemblers (Falcon, Miniasm, HINGE, Canu, and MaSuRCA)

and show that it generates more accurate and contiguous assemblies and provides valuable

information to aid in assembly finishing. Flye also reconstructs the mosaic structure of segmental

duplications – a difficult problem even for finished genomes [Jiang et al., 2007, Pu et al., 2018].

2.3.2 Repeat graphs

Repeat graph construction. Repeats in a genome are often represented as pairwise local

alignments and visualized as alignment-paths in a two-dimensional dot-plot of a genome. This

pairwise representation is limited since it does not contribute to solving the repeat characterization

problem [Pevzner et al., 2004, Bao and Eddy, 2002]. In contrast, the repeat graph compactly

represents all repeats in a genome and reveals their mosaic structure [Pevzner et al., 2004,

Jiang et al., 2007]. Assembly graph construction represents a special case of the repeat graph

construction problem. Figure 2.2 outlines the algorithm for constructing the repeat graph of

a finished (complete) genome. Flye applies this algorithm to construct the repeat graph of a

pseudo-genome formed by concatenating all disjointigs (formed at the previous stage of the

pipeline) in an arbitrary order. Below we explain why the resulting graph provides the correct

representation of the assembled genome (as if it had been constructed from a complete genome)

and describe additional algorithmic details.

Repeat characterization problem. Below we describe the abstract repeat characteriza-

tion problem and explain how it relates to genome assembly. Consider a tour T = v1,v2, ...vn of

38



X A A

A

X

B B B

B

B

B

A

Y Z U

Z

U

Y

X A AB B BY Z U

X
A B

A

B

B

Y

Z

U

X
A B

Y

Z

U

Figure 2.2: (a) Alignment-paths for all local self-alignments within a genome XABYABZBU
formed by segments X , A, B, Y , Z, and U . Three instances of a mosaic repeat (AB, AB, and
B) are represented as diagonal alignment-paths in the repeat plot. The self-alignment of the
entire genome is shown by the main (dotted) diagonal. Alignment endpoints are clustered
together if their projections on the main diagonal coincide or are close to each other (clusters
of closely located endpoints for the distance threshold d = 0 are painted with the same color).
For example, the right-most endpoints (shown in blue) of all three alignments form a single
cluster because two of them have the same vertical projection and two of them have the same
horizontal projection on the main diagonal. This clustering reveals three clusters (yellow, purple,
and blue) with eight projections to the main diagonal. (b) Projections of the clustered endpoints
on the main diagonal define eight vertices (breakpoints) that will be used for constructing the
approximate repeat graph. (c) Breakpoints that belong to the same clusters are glued together.
(d) Gluing parallel edges in the resulting graph produces the approximate repeat graph.

length n visiting all vertices of a directed graph G. We say that the i-th and j-th vertices in the

tour T are equivalent if they correspond to the same vertex of the graph, that is, vi = v j . The

set of all pairs of equivalent vertices forms a set of points (i, j) in a two-dimensional grid that

we refer to as the repeat plot PlotT (G) of the tour T (Fig. 2.3). The transformation of a tour

T traversing a known graph G into the repeat plot PlotT (G) is a simple procedure. Below, we

address the reverse problem that is at the heart of genome assembly, repeat characterization and

synteny block construction: given an arbitrary set of points Plot, in a two-dimensional grid, find

a graph G = G(Plot) and a tour T in this graph such that Plot = PlotT (G).

A dot-plot of a genome is a matrix that graphically represents all repeats in a genome [Gibbs
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Figure 2.3: (a) A tour T = ...A1B2C3D4...B5C6D7E8...A9B10C11D12E13... in a graph G with red,
green, and blue instances of a repeat that includes two copies of vertices A and E and three
copies of vertices B, C, and D. Dots represent multiple vertices that appear before, between, and
after these three instances of the repeat. The repeat plot PlotT (G) consists of three diagonals
representing the three instances of the repeat in the tour. The trivial self-alignment of the entire
genome against itself is shown by the main dotted diagonal (the points below this diagonal are
not shown). Since vertex A in the graph is visited twice in tour T , it results in a single point (1,
9) in PlotT (G). Vertex B results in points (2, 5), (2, 10), and (5, 10); vertex C results in points
(3, 6), (3, 11), and (6, 11); vertex D results in points (4, 7), (4, 12), and (7, 12); and vertex E
results in the point (8, 13). (b) Constructing the punctilious repeat graph from the repeat plot by
gluing vertices with indices i and j for each point (i, j) in the repeat plot. Each non-branching
path in the graph is substituted by a single edge with length equal to the number of edges in
this path. The lengths of the short edges (A,B) and (D,E) in the resulting graph are equal to
1 and the length of the long edge (B,D) is equal to 2 (for edge length threshold d = 1). The
punctilious repeat graph (second graph from the bottom) is transformed into the repeat graph
(bottom-most graph) by contracting the short edges (A,B) and (D,E).

and McIntyre, 1970]. In the case of repeat characterization, we are interested in the dot-plot Plot

formed by non-overlapping alignment-paths representing all high-scoring local self-alignments

of a genome against itself (below, we refer to these alignments as simply self-alignments). Each
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self-alignment reveals two instances of a repeat corresponding to contiguous segments x and y in

the genome (x and y are called the spans of the alignment). Given a genome of length n and a set

of its self-alignments Plot, the repeat characterization problem amounts to constructing a graph

G and a tour T of length n in this graph (each segment of the genome corresponds to a subpath of

the graph traversed by the tour) such that Plot = PlotT (G) and the tour T is alignment-compatible.

A tour is alignment-compatible with respect to the dot-plot Plot if, for each alignment with spans

x and y in Plot, paths in the graph corresponding to segments x and y coincide.

Generating the repeat plot of a genome. Our goal is to construct both the repeat graph

of a genome and an alignment-compatible tour in this graph. Constructing the de Bruijn graph

of a genome based on long k-mers will not solve this problem since the differences between

imperfect repeat copies mask the repeat structure of the genome. Constructing the de Bruijn

graph based on short k-mers will not solve this problem due to the presence of repeating short

k-mers within long repeats (these k-mers lead to a tangled repeat graph). Thus, at the initial stage,

Flye generates all self-alignments (repeats) of a genome and combines them into a repeat plot

Plot. However, it is unclear how to solve the reverse problem of generating the repeat graph

G(Plot) of the genome.

To address this problem for a “genome” representing a concatenate of accurate short reads,

a previous study [Pevzner et al., 2004] described various graph simplification procedures, for

example, bubble and whirl removals, that are now at the heart of various short-read assemblers

such as SPAdes [Bankevich et al., 2012]. However, it is not clear how to generalize these

procedures to make them applicable to error-prone SMS reads. Below, we show how to modify

the concept of a punctilious repeat graph [Pevzner et al., 2004] so that it can be applied to

assembling SMS reads.

Constructing a punctilious repeat graph. Let Alignments = Alignments(Genome, mi-

nOverlap) be the set of all sufficiently long (of length at least minOverlap) self-alignments of

a genome Genome. Flye sets the minOverlap parameter as the N90 of the read-set (the N90 of
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reads is the largest possible number N such that all reads of length N or longer have a total length

of at least 90% of the total sequence; minOverlap varies from 3,000 to 5,000 nucleotides for the

SMS datasets analyzed in this paper).

Given a set of self-alignments Alignments of a genome Genome, we construct the punctil-

ious repeat graph RepeatGraph(Genome, Alignments) by representing Genome as a path consisting

of |Genome| vertices (Fig. 2.3) and by “gluing” each pair of vertices (positions in the genome)

that are aligned against each other in one of the alignments in Alignments [Pevzner et al., 2004].

Gluing vertices v and w amounts to substituting them by a single vertex that is connected by edges

to all vertices that either vertex v or vertex w was connected to. We consider branching vertices

(that is, vertices with either in-degree or out-degree differing from 1) in the resulting graph and

substitute each non-branching path between them by a single edge of length equal to the number

of original edges in this path. Edges in the punctilious repeat graph are classified as long (longer

than a predefined threshold d with default value 500 nucleotides) and short (Fig. 2.3).

The punctilious repeat graphs of real genomes are very complex due to various arti-

facts [Pevzner et al., 2004, Jiang et al., 2007]. For example, the starting/ending points of

alignment-paths corresponding to three repeat copies starting at positions x, y, and z in the

genome hardly ever start at points (x,y),(x,z), and (y,z) in the repeat plot. Because each repeat

with
(m

2

)
copies in the genome results in pair-wise alignments and each of the corresponding(m

2

)
alignment-paths may have unique starting (ending) vertices that differ from all other start-

ing/ending positions, there will be many gluing operations for the starting (ending) positions of

this repeat. Note that each of these operations may form a new branching vertex in the punctilious

repeat graph. For example, gluing the endpoints of the three diagonals in Fig. 2.3 results in the

branching vertices A, B, D, and E in the graph. Punctilious repeat graphs of real genomes often

contain many branching vertices, making it difficult to compactly represent repeats. We address

this challenge by transforming the punctilious repeat graph into a simpler graph.

From punctilious repeat graph to repeat graph. As described before, the endpoints
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of alignment-paths representing the same repeat might not be coordinated among all pair-wise

alignments of this repeat. These uncoordinated alignments result in a complex repeat graph with

an excessive number of branching vertices and many short edges (shorter than a threshold d). The

repeat graph RepeatGraph(Genome, Alignments, d) is defined as the result of contracting all short

edges in the punctilious repeat graph (Fig. 2.3). The contraction of an edge is the gluing of the

endpoints of this edge, followed by the removal of the loop-edge resulting from this gluing. Since

the genome represents a tour visiting all edges in the repeat graph, we define the multiplicity of

an edge in the repeat graph as the number of times this edge is traversed in the tour. Edges of

multiplicity 1 are called unique edges and all other edges are called repeats.

2.3.3 Approximate repeat graphs

Hiding graph artifacts. The described approach, although simple in theory, results

in various complications in the case of real genomes, particularly in the case of inconsistent

pair-wise alignments (see Appendix 2.7.5). In the case of short reads, various graph simplification

procedures [Pevzner et al., 2004, Bankevich et al., 2012] result in a modified repeat graph that

represents a more sensible repeat characterization, but sacrifice the fine details of some repeats in

favor of revealing the mosaic structure shared by different repeat copies. However, in the case of

SMS assemblies, repeat graph (and A-Bruijn graph) construction results in excessively complex

graphs that make the previously proposed graph simplification algorithm for A-Bruijn graph

construction [Pevzner et al., 2004] inefficient and make it difficult to select sensible parameters for

graph simplification. For example, it is unclear how to select an adequate bubble size parameter

for bubble removal (small values of this parameter result in complex A-Bruijn graphs while

large values result in oversimplified A-Bruijn graphs). While there exists a “sweet spot” for this

parameter in short-read assembly, we were not able to find such a spot for long-read assembly.

That is why we departed from the original A-Bruijn graph framework and opted to construct a

different version of the repeat graph (called the approximate repeat graph) based only on the
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endpoints of diagonals in the genomic dot-plot rather than the entire diagonals as in a previous

study [Pevzner et al., 2004]. This approach led to a great reduction in running time and allowed

us to bypass the bubble/whirl-removal steps (and the challenge of choosing parameters for these

operations) altogether.

Some branching vertices in the repeat graph arise from the contraction of multiple vertices

in the punctilious repeat graph; for example, vertices A and B were contracted into a single vertex

A/B in the repeat graph in Fig. 2.3. Consider the set of all vertices in the punctilious repeat graph

that gave rise to branching vertices in the repeat graph (vertices A,B,D, and E in Fig. 2.3) and

let Breakpoints = Breakpoints(Genome, Alignments, d) be the set of all positions in the genome

that gave rise to these vertices (Breakpoints = {1,2,4,5,7,8,9,10,12,13} in Fig. 2.3). This set

of vertices forms a set of short, contiguous genomic segments (segments (1,2), (4,5), (710), and

(12,13) in Fig. 2.3) that contain all horizontal and vertical projections of the endpoints of all

alignments in Alignments.

Flye approximates the set Breakpoints by recruiting all horizontal and vertical projections

of the endpoints of alignments from Alignments to the main diagonal in the repeat plot. Figure 2.2

presents three alignments, resulting in eight projected points on the main diagonal. Two alignment

endpoints are close if either of their projections on the main diagonal are located within a distance

threshold d (including the case when a vertical projection of one endpoint coincides with or is

close to a horizontal projection of another endpoint).

Flye clusters close endpoints together based on single linkage clustering. Applying this

procedure (with d = 0) to eight breakpoints (projected endpoints) in Fig. 2.2 results in three

clusters (breakpoints in the same cluster are painted with the same color). Figure 2.2 illustrates

that gluing breakpoints that belong to the same clusters (and further collapsing parallel edges)

results in an approximate repeat graph of the genome. However, although this procedure led

to the correct repeat graph in the simple case shown in Fig. 2.2, the approximate repeat graph

constructed based on the clustering of closely located breakpoints may differ from the repeat graph
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constructed based on the punctilious repeat graph. Appendix 2.7.6 illustrates that mosaic repeats

and inconsistencies of local alignments may result in an “incorrect” clustering-based repeat graph.

Below, we explain how Flye extends the set Breakpoints to address this complication.

Extending the set of breakpoints. As described above, Flye constructs the initial set

Breakpoints by projecting all endpoints of the alignments (in the set of self-alignments Alignments)

onto the main diagonal in the repeat plot. Each point in an alignment-path in the |Genome|×

|Genome| grid has two projections (horizontal and vertical) on the main diagonal. Note that

projections of some internal points in an alignment-path may belong to Breakpoints; for example,

both projections of the middle point of the longest alignment-path in Fig. 2.2 (shown in purple)

belong to Breakpoints. Such internal points should be reclassified as new alignment endpoints

(by breaking the alignment-path into two parts) to avoid inconsistencies during the construction

of the repeat graph. However, for some internal points, only one of their two projections belongs

to Breakpoints, leading to complications in the path-breaking process. Below, we explain how to

break the alignment-paths into subpaths (and, at the same time, extend the set Breakpoints) to

address this complication.

A point in an alignment-path is called valid if both of its projections belong to Breakpoints,

and invalid if only one of its projections belongs to Breakpoints. A set Breakpoints is called valid

if all points in all alignment-paths are valid, and invalid otherwise. In the case that the constructed

set Breakpoints is invalid, our goal is to add the minimum number of points to this set to make it

valid. See Appenidx 2.7.6 for an example of an invalid point and a discussion on the importance

of extending the set Breakpoints to make it valid.

Flye iteratively adds the missing projection for each invalid point to the set Breakpoints

on the main diagonal until there are no invalid points left. Afterwards, it combines close points

in Breakpoints into segments using single linkage clustering (as described above). The set of

resulting segments (defined by their minimal and maximal positions on the main diagonal) forms

a set BpSegments. Two segments from BpSegments are equivalent if there exists a point in one
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of the alignment-paths such that one of its projections on the main diagonal falls into the first

segment and another falls into the second segment.

Each repeat of multiplicity m typically corresponds to m segments in BpSegments corre-

sponding to m starting positions of this repeat in the genome (and the same number of segments

corresponding to its ending positions). Note that the number of breakpoint segments resulting

from this repeat is reduced as compared with the number of breakpoints, which can be as large as(m
2

)
for the starting positions of the repeat (and the same number for its ending positions). Flye

takes advantage of this reduction by selecting middle points of each breakpoint segment and only

gluing these middle points rather than all breakpoints. Essentially, it redefines the endpoints of

each alignment-path as the middle points of corresponding breakpoint segments.

Specifically, Flye constructs the approximate repeat graph by generating the set BpSeg-

ments, selecting a middle point from each segment in BpSegments, and gluing the two middle

points for every pair of equivalent segments. Afterwards, it glues together parallel edges (edges

that start and end at the same vertices) if the genome segments corresponding to these edges are

aligned in Alignments, that is, if there exists an alignment with its x- and y-spans overlapping

both these segments. For brevity, below we refer to the approximate repeat graph resulting from

this procedure simply as the repeat graph.

2.3.4 Constructing repeat graphs from long reads

From the repeat graph of a genome to the assembly graph of contigs. The ABruijn

assembler [Lin et al., 2016] constructs a set of contigs but stops short of constructing the repeat

graph of a genome based on these contigs (Appenidx 2.7.7 describes the challenge of assembling

contigs into a repeat graph). The contig construction in ABruijn essentially amounts to finding

extension reads for extending paths in the (unknown) repeat graph of the genome. Each extension

read increases the length of the growing path until the extension process becomes ambiguous,

that is, when it reaches a branching vertex in the (unknown) repeat graph. Afterwards, ABruijn
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decides whether to continue or to stop the path extension to avoid assembly errors. Since ABruijn

does not know the exact locations of branching vertices, it uses the last extension read to extend

the path beyond the branching vertex by at least minOverlap nucleotides. As a result, each linear

contig constructed by ABruijn satisfies the overhang property: it extends by at least minOverlap

nucleotides before the first branching vertex and after the last branching vertex it traverses. Note

that the same minOverlap value is used during repeat graph construction.

Constructing disjointigs. ABruijn and other existing SMS assemblers invest substantial

time into making sure that generated contigs are correctly assembled (represent subpaths of the

genomic tour in the repeat graph). In contrast to ABruijn, Flye does not attempt to construct

accurate contigs at the initial assembly stage but instead generates disjointigs as arbitrary paths

in the (unknown) repeat graph of the genome. However, it constructs an accurate repeat graph

(assembly graph) from error-prone disjointigs.

Flye randomly walks in the (unknown) assembly graph to generate random paths from this

graph. Each non-chimeric read from Reads defines a subpath of a genomic tour in an assembly

graph. Flye extends this path by switching from the current read to any other overlapping

read (with sufficiently long common jump-subpath) rather than a carefully chosen overlapping

read [Lin et al., 2016], avoiding a time-consuming test to check whether this selection triggers an

assembly error.

Since the resulting FLYEWALK algorithm (see Appenidx 2.7.8) does not invoke the contig

correctness check, it constructs paths (chains of overlapping reads) that do not necessarily follow

the genome tour through the assembly graph. Although it may appear counter-intuitive that

inaccurate disjointigs constructed by FLYEWALK result in an accurate assembly graph, note

that inaccurate paths (disjointigs) in the de Bruijn graph (a special case of the assembly graph)

certainly result in an accurate assembly graph. Indeed, an assembly graph constructed from

arbitrary paths in a de Bruijn graph is the same as the original de Bruijn graph (as long as these

paths include all k-mers from the assembly graph). See Appendix 2.7.9 for additional details.
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Constructing the assembly graph from disjointigs. Similarly to ABruijn, Flye gener-

ates disjointigs satisfying the overhang property, which, as will be explained below, represents an

important condition for constructing the repeat graph. Flye further concatenates all disjointigs

(separated by delimiters) in an arbitrary order into a single string Concatenate. It further uses the

longest jump-subpath approach [Lin et al., 2016] to generate the set Alignments of all sufficiently

long self-alignments within the resulting concatenate and constructs the assembly graph as the

repeat graph of the concatenate RepeatGraph(Concatenate, Alignments, d).

It has been shown that the repeat graph of concatenated accurate reads (when alignments

between reads do not extend beyond delimiters in the concatenate of all reads) approximates

the repeat graph of the genome [Pevzner et al., 2004]. Appendix 2.7.10 demonstrates that the

assembly graph constructed from inaccurate disjointigs also approximates the repeat graph of the

genome.

Figure 2.4 (left) presents the assembly graph of the SMS reads from an Escherichia coli

genome. Flye further untangles this graph into a graph with just six edges (Fig. 2.4, middle) as

described below.

2.3.5 Simplifying repeat graph

Resolving bridged repeats in the assembly graph. Flye aligns all reads to the con-

structed assembly graph (see Appendix 2.7.11) and uses them to identify the repeat edges in

this graph (see Appendix 2.7.12). It further transforms the assembly graph into the condensed

assembly graph by contracting all of its repeat edges. Aligning a read to the assembly graph

induces its alignment to the condensed assembly graph, and we focus on bridging reads that align

to multiple edges in the condensed assembly graph. Untangling incident edges e = (w,v) and

f = (v,u) in the condensed assembly graph amounts to substituting them by a single edge (w,u).

Below, we describe how Flye uses bridging reads to untangle the condensed assembly graph and

how this untangling contributes to resolving repeats in the assembly graph.
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A bridging read in the condensed assembly graph is called an (e, f )-read if it traverses two

consecutive edges e and f in this graph. For each pair of incident edges e and f in the condensed

assembly graph, we define transition(e, f ) as the number of (e, f )-reads plus the number of

( f ′,e′)-reads, where e′ and f ′ are complementary edges for e and f , that is, edges representing a

complementary strand.

Given a set of bridging reads in the condensed assembly graph, we construct a transition

graph as follows. Each edge e in the condensed assembly graph corresponds to vertices eh

and et in the transition graph, representing the head (start) and tail (end) of e, respectively. A

complementary edge for e corresponds to the same vertices, but in the opposite order. Each

(e, f )-read defines an undirected edge between et and fh in the transition graph with weight equal

to transition(e, f ).

Note that the transition graph is bipartite for the simple case when the two subgraphs of

the condensed assembly graphs, corresponding to complementary strands, do not share vertices.

However, it is not necessarily bipartite in the case of genomes that contain long inverted repeats.

Flye thus applies Edmonds algorithm [Edmonds and Johnson, 1973] to find a maximum weight

matching in the transition graph and uses this matching for untangling the condensed assembly

graph. For each edge (et , fh) in the constructed matching, Flye additionally checks the confidence

of the transition between edges e and f (see Appendix 2.7.13 for details) and untangles e and

f for each edge (et , fh) in the transition graph that passes this check. Flye iteratively untangles

edges in the condensed assembly graph and performs the corresponding iterative repeat resolution

in the assembly graph.

Note that consecutive edges e and f in the condensed assembly graph are not necessarily

consecutive in the assembly graph. Thus, after Flye untangles e and f , it uses one of the

bridging (e, f )-reads to fill the gap between the end of e and the start of f in the assembly graph.

Afterwards, most repeat edges in the assembly graph either represent long unbridged repeat edges

(that are not bridged by any reads) or form paths consisting of repeat edges with total lengths
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typically exceeding the median read length.

Resolving unbridged repeats in the assembly graph. Flye utilizes the constructed

repeat graph for the resolution of unbridged repeats. Resolving unbridged and nearly identical

repeats using SMS reads is a difficult problem since error-prone SMS reads make it difficult to

distinguish repeat copies with divergence below 10%. As a result, SMS assemblers often fail to

resolve unbridged repeats, which are common even in bacterial genomes [Kamath et al., 2017,

Schmid et al., 2018]. This challenge is related to the challenge of constructing phased diploid

genome assemblies [Chin et al., 2016] and overlap-filtering for repeat resolution [Koren et al.,

2017]. The repeat graph constructed by Flye offers an approach for resolving unbridged repeats

based on analyzing the topology of the repeat graph.

Figure 2.4 shows an unbridged repeat REP as an edge in the assembly graph. It would

be impossible to resolve this repeat (that is, to pair each incoming edge into the initial vertex of

REP with the corresponding outgoing edge from the terminal vertex of REP) if its two copies

were identical. However, since there exist variations between these copies, it becomes possible

to transform the single sequence REP into two different repeat instances, REP1 and REP2 , as

shown in Fig. 2.4. Below we describe how Flye resolves unbridged repeats by (1) identifying

variations between repeat copies, (2) matching each read with a specific repeat copy using these

variations, and (3) using these reads to derive a distinct consensus sequence for each repeat copy.

Flye takes advantage of the small variations between different repeat copies to resolve

unbridged repeats. It identifies the variations between repeat copies, matches each read with

a specific repeat copy using these variations, and uses these matched reads to derive a distinct

consensus sequence for each repeat copy. The success of this approach is contingent on the

presence of a sufficiently large number of variations between the different repeat copies. Therefore,

the first step is to estimate the number and positions of variations between the repeat copies and to

calculate the divergence of the various repeat copies from reads alone. Appendix 2.7.14 describes

how Flye calculates the divergence between repeat copies. The current version of Flye is limited
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Figure 2.4: (a) An assembly graph of SMS reads from the E. coli strain EC9964 genome
visualized with Bandage [Wick et al., 2015]. (b) The untangled assembly graph (after resolving
bridged repeats in the graph on the left) contains a single unbridged repeat REP (and its
complement REP′) of length 22 kb. The incoming edges into the initial vertex (outgoing
edges from the terminal vertex) of edge REP are denoted IN1 and IN2 (OUT1 and OUT2).
Two complementary strands are fused together in a single connected component. It is unclear
whether the genome traverses the assembly graph as IN1 → REP→ OUT1 → REP′ or as
IN1→ REP→ OUT2→ REP′. (c) A total of 93, 71, 75, and 76 reads traverse both IN1 and
REP, IN2 and REP, REP and OUT1, and REP and OUT2, respectively. The span of 383 reads
falls entirely within edge REP. (d) After assigning 93 reads that traverse both IN1 and REP
to the first repeat copy, and 71 reads that traverse both IN2 and REP to the second repeat
copy, we “move forward” into the repeat and construct two differing consensus sequences for a
8.6-kb-long prefix of REP with divergence 9.8% (two consensus sequences for a 6.8-kb-long
suffix of REP when we “move backward” into the repeat). The length of the repeat edge is
reduced to 22.0 8.6 6.8 = 6.6 kb, resulting in the emergence of 13 + 18 = 31 spanning reads
for this repeat, all of them supporting a cis transition (IN1 with OUT1 and IN2 with OUT2). (e)
Resolved instances of the repeat with consensus sequences REP1 and REP2 and divergence
6.9%.

to resolving unbridged repeats of multiplicity two in both haploid (for example, bacterial) and

diploid (for example, human) genomes.

The idea of the algorithm is to assign each read to a specific repeat copy and then use the

assigned reads to derive a distinct consensus sequence for each repeat copy. Figure 2.4 shows an

example in which the 93 reads that traverse edges IN1 and REP can be assigned to one repeat

copy and the 75 reads that traverse edges IN2 and REP can be assigned to another repeat copy.

However, it is unclear how to assign other reads mapping to the edge REP to a specific repeat

copy. Flye uses reads starting in the incoming edges (93 and 75 reads in Fig. 2.4) to “move

forward” into the repeat and construct two different prefixes of the repeat REP corresponding to

the two copies of the repeat. In parallel, it uses reads ending in the outgoing edges (71 and 76
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reads in Fig. 2.4) to “move backward” into the repeat and construct two different suffixes of this

repeat.

In each iteration of the algorithm, reads are assigned to a specific repeat copy, and then

all of the reads assigned to each repeat copy are used to construct a consensus sequence for that

copy. Thus, as the algorithm proceeds, more reads are assigned to specific repeat copies and the

consensus sequence for each repeat copy grows longer. The algorithm terminates when no new

reads can be assigned to read copies and the consensus sequences stop growing in length. There

are two goals: to obtain distinct consensus sequences for each repeat copy and to determine the

correct pairings of incoming and outgoing edges for each repeat copy. Appendix 2.7.15 describes

each successive iteration of the algorithm in detail.

2.4 Results

Benchmarking Flye. We benchmarked Flye against SMS assemblers Canu, Falcon,

HINGE, Miniasm, and MaSuRCA using six datasets. We used QUAST [Mikheenko et al., 2018]

to evaluate all assemblers (Appendix 2.7.2). Since Miniasm returns assemblies with a much larger

number of mismatches and indels than other assemblers, it is not well suited for a reference-based

quality evaluation with QUAST. To make a fair comparison, we ran the ABruijn contig-polishing

module [Lin et al., 2016] on the Miniasm output to improve the accuracy of its contigs (referred

to as Miniasm + ABruijn).

2.4.1 Benchmarking with the Bacteria dataset

The dataset consists of 21 sets of Pacific Biosciences (PacBio) reads from the National

Collection of Type Cultures (NCTC). These NCTC sets were studied in detail in [Kamath et al.,

2017] and used to benchmark various assemblers. We only benchmarked Flye against HINGE on

these datasets, since HINGE outperformed the other assemblers on bacterial genomes [Kamath
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et al., 2017]. We ignored small connected components in the bacterial assembly graphs (which

represent plasmids that do not share repeats with chromosomes) and classified an assembly as (1)

complete if the assembly graph consists of a single loop-edge representing a circular chromosome,

(2) semicomplete if the assembly graph contains multiple edges but there exists a single Chinese

postman tour in this graph [Edmonds, 1965], and (3) tangled if the assembly graph is neither

complete nor semicomplete.

While HINGE does not distinguish between complete and semi-complete assemblies,

we argue that ignoring this separation may lead to assembly errors. Indeed, a single Chinese

postman tour in a semicomplete assembly graph results in a unique assembly only in the case

of unichromosomal genomes without any plasmids that share repeats with the chromosome

(repeat-sharing plasmids). In the case of multichromosomal genomes or in the case of repeat-

sharing plasmids, there exist multiple possible assemblies from a semicomplete assembly graph.

Since 10% of known bacterial genomes are multichromosomal and since a large fraction of

unichromosomal genomes have repeat-sharing plasmids [Antipov et al., 2015], the assumption

that a semicomplete assembly graph results in a complete genome reconstruction may lead to

errors.

Before resolving unbridged repeats, Flye assembled the genomes from the Bacteria dataset

into 4 complete, 1 semicomplete, and 16 tangled assembly graphs. After resolving unbridged

repeats, the Flye assemblies resulted in 8 complete, 5 semicomplete, and 8 tangled assembly

graphs with the number of edges varying from 3 to 25. Figure. 2.5 shows examples of assembly

graphs generated by Flye and HINGE, and Table 2.1 illustrates that Flye and HINGE generated

very similar assemblies.

2.4.2 Benchmarking with the Metagenome dataset

The Metagenome dataset consists of Pacific Biosciences reads from a synthetic commu-

nity of 20 bacteria. Since 3 of 20 bacterial genomes in the metagenomic sample had coverage
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Table 2.1: A comparison of Flye and HINGE on bacterial genomes from the Bacteria dataset.
HINGE results were reproduced from [Kamath et al., 2017]. Tangled* stands for Tangled/Lacks
Circularization. “n/a” indicates that the assembly graph is not complete and has no unbridged
repeats of multiplicity two.

dataset bacterial species Flye
Flye + unbridged
repeat resolution HINGE

EC4450 Escherichia coli Tangled n/a Tangled
KP5052 Klebsiella pneumoniae Tangled Tangled Tangled
SA6134 Staphylococcus aureus Complete n/a Complete
EC7921 Escherichia coli Tangled Complete Complete
EC8333 Escherichia coli Tangled* n/a Tangled
EC8781 Escherichia coli Tangled n/a Tangled
EC9002 Escherichia coli Complete n/a Complete
EC9006 Escherichia coli Tangled Tangled Tangled
EC9007 Escherichia coli Tangled Tangled Tangled
EC9012 Escherichia coli Tangled Tangled Complete
EC9016 Escherichia coli Tangled Tangled Tangled
EC9024 Escherichia coli Tangled n/a Tangled
EC9103 Escherichia coli Complete n/a Complete
KP9657 Klebsiella pneumoniae Tangled n/a Tangled
EC9664 Escherichia coli Tangled Complete Tangled

EC10864 Escherichia coli Tangled n/a Complete
EC11022 Escherichia coli Tangled Semi-complete Complete
KS11692 Klebsiella sp Tangled n/a Complete
SA11962 Staphylococcus aureus Tangled Tangled Tangled
KP12158 Klebsiella planticola Semi-complete n/a Complete
KC12993 Kluyvera cryocrescens Complete n/a Complete

Figure 2.5: A comparison of Flye and HINGE assembly graphs on bacterial genomes from the
Bacteria dataset. (Left) Flye and HINGE assembly graphs of the KP9657 dataset. There is a
single unique edge entering into (and exiting) the unresolved yellow repeat and connecting it to
the rest of the graph. Thus, this repeat can be resolved if one excludes the possibility that it is
shared between a chromosome and a plasmid. In contrast to HINGE, Flye does not rule out this
possibility and classifies the yellow repeat as unresolved. (Right) The Flye and Hinge assembly
graphs of the EC10864 dataset show a mosaic repeat of multiplicity four formed by yellow, blue,
red and green edges (the two copies of each edge represent complementary strands). HINGE
reports a complete assembly into a single chromosome. .
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below 1× (Methanobrevibacter smithii, Candida albicans, and Streptococcus pneumoniae), they

were excluded from the benchmarking analysis. Since other assemblers performed poorly on

the Metagenome dataset, we limited our benchmarking to Flye and Canu, which assembled

this dataset with NGA50 = 1,277 kb (84 misassemblies) and NGA50 = 1,061 kb (99 misassem-

blies), respectively (see Table 2.2). Appendix 2.7.3 illustrates that most misassemblies in the

Metagenome dataset probably represent differences between the genomes in the Metagenome

sample and the reference genomes rather than real misassemblies.

Flye performed better than Canu for five genomes and Canu performed better that Flye

for four genomes. In particular, Flye produced a better assembly of Rhodobacter sphaeroides,

which has the lowest coverage (24×) among the 17 analyzed genomes (NGA50 = 2 Mb for

Flye, compared with 54 kb for Canu). Comparison between the metagenome assemblies and

the inferred isolate assemblies (from reads matched to the reference genomes) suggests that our

metagenomics assemblies could be further improved by a better handling of datasets with uneven

coverage.

2.4.3 Benchmarking with the Yeast dataset

The Yeast dataset contains PacBio and Oxford Nanopore Technology (ONT) reads from

the Saccharomyces cerevisiae S288c genome of length 12.1 Mb at 30× coverage [Giordano et al.,

2017]. Similarly to the original study, we used the full set of ONT reads in the Yeast-ONT dataset

(30× coverage) but downsampled the PacBio reads from the original 120 coverage to 30 in the

Yeast-PacBio dataset to have their coverage distribution be similar to the ONT data. Assembling

this dataset with the original 120 coverage results in better assemblies; for example, the NGA50

increased from 560 kb to 732 kb for the Flye assembly (Flye fully assembled 14 of 16 yeast

chromosomes). Table 2.2 illustrates that all of the assemblers tested except HINGE produced

Yeast-PacBio assemblies with similar NGA50 values ranging from 560 kb for Flye to 603 kb for

Canu (HINGE resulted in a lower NGA50 of 361 kb). Flye generated the most accurate assembly
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Table 2.2: Assembly statistics for the Yeast, Worm, Human, and Human+ datasets generated
using QUAST. The NG50 of an assembly is the largest possible number L, such that all contigs
of length L or longer cover at least 50% of the genome. Given an assembled set of contigs and
a reference genome, a corrected assembly is formed by breaking each erroneously assembled
contig at its breakpoints, resulting in shorter contigs 19 . The NGA50 of an assembly is defined
as the NG50 of its corrected assembly. The minimum contig size was set to 5 kb for the Yeast
and Worm assemblies and to 50 kb for the Human assemblies. The human reference was
modified by masking the low-complexity centromere regions of the chromosomes.

Dataset Assembler Length
No.

contigs NG50 (kb)
Ref.

coverage, %
Ref.

identity, %
No.

misassemblies NGA50 (kb)

Yeast-PacBio Flye 12.1 28 670 98.3 99.95 5 560
Canu 12.4 33 708 99.5 99.95 13 603

Falcon 12.1 42 562 97.5 99.91 27 562
HINGE 12.2 45 440 91.9 98.81 19 361

Miniasm + ABruijn 12.2 36 600 98.2 99.93 11 592
Yeast-ONT Flye 12.1 28 810 98.7 99.04 9 660

Canu 12.2 41 800 99.1 98.96 18 655
Falcon 11.9 41 662 97.4 98.81 17 637
HINGE 12.2 64 309 92.5 97.94 59 292

Miniasm + ABruijn 11.6 24 723 98.8 99.03 12 723
Worm Flye 103 85 3,256 99.5 99.93 111 1,893

Canu 108 175 2,954 99.7 99.93 190 1,974
Falcon 101 106 2,291 98.7 99.78 118 1,242
HINGE 103 64 2,710 98.0 99.40 174 1,441

Miniasm + ABruijn 108 178 2,314 99.6 99.93 181 1,437
Human Flye + Pilon 2,776 1,069 7,886 96.4 99.70 879 6,349

Canu + Pilon 2,730 2,195 3,209 95.4 99.49 1,200 2,870
MaSuRCA 2,768 1,269 4,670 95.1 99.84 1,500 3,812

Human+ Flye + Pilon 2,823 782 18,181 97.0 99.69 1,487 11,800
Canu + Pilon 2,815 798 10,410 96.8 99.81 1,455 7,007
MaSuRCA 2,876 1,111 8,425 97.5 99.80 2,101 5,581

with 5 errors (versus 13 errors for Canu). Although Miniasm generated an assembly with only

90% sequence identity, Miniasm + ABruijn contigs had 99.93% accuracy. Canu and Flye resulted

in assemblies with the highest sequence identity (above 99.95%).

The Yeast-ONT assemblies show a similar trend, with all assemblers except HINGE

producing similar NGA50 values ranging from 637 kb (Falcon) to 723 kb (Miniasm). Flye

generated the most accurate assembly with 9 errors (18 errors for Canu). Figure 2.6 shows the

assembly graph generated by Flye.

2.4.4 Analyzing the Worm dataset

The Worm dataset contains PacBio reads from the Caenorhabditis elegans genome of

length 100 Mb at 40× coverage. Flye and Canu produced the most contiguous assemblies
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Figure 2.6: The assembly graph of the Yeast-ONT dataset. Edges that were classified as
repetitive by Flye are shown in color, while unique edges are black. Flye assembled the
Yeast-ONT dataset into a graph with 21 unique and 34 repeat edges and generated 21 contigs
as unambiguous paths in the assembly graph. A path v1, ...vi,vi+1...vn in the graph is called
unambiguous if there exists a single incoming edge into each vertex of this path before vi+1
and a single outgoing edge from each vertex after vi. Each unique contig is formed by a single
unique edge and possibly multiple repeat edges, while repetitive contigs consist of the repetitive
edges which were not covered by the unique contigs. The visualization was generated using the
graphviz tool (http://graphviz.org).

(NGA50 = 1,893 kb and 1,974 kb, respectively). However, Canu showed an increased number of

misassemblies (190) compared with Flye (111) and Falcon (118). Flye was faster than Canu and

Falcon in assembling the Worm dataset (128, 780, and 945 minutes of wall clock time, respectively

(see Appendix 2.7.2 for more details). With an increase in genome size, Flye achieves close to

an order of magnitude speed-up as compared with Canu: for example, 140 versus 1,100 hours

to assemble the Drosophila melanogaster genome. This speed-up highlights the advantages of

skipping the time-consuming read-correction step and replacing conventional contig generation

with the much more rapid generation of disjointigs.

Since inferring the length of long tandem repeats is a difficult problem in short-read

assembly, tandem repeats in many reference genomes might be misassembled. Figure 2.7
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demonstrates that Flye improves on other long-read assemblers in reconstructing tandem repeats

and reveals that some differences between the Flye assembly and the reference C. elegans genome

probably represent differences with the reference rather than misassemblies by Flye.

2.4.5 Analyzing the Human and Human+ datasets

The Human dataset contains ONT reads from the GM12878 human cell line at 30×

coverage complemented by a set of short Illumina reads at 50× coverage. The Human+ dataset

combines the Human dataset with a dataset of ultra-long ONT reads (those with reads N50 >

100 kb; that is, 50% of the total sequence data in reads longer than 100 kb) at 5× coverage [Jain

et al., 2018]. Since Canu improved on Falcon and Miniasm in assembling large genomes [Koren

et al., 2017], we only benchmarked Flye against Canu for the human genome datasets. The

Canu Human assembly was generated in [Jain et al., 2018], and the assembly of the Human+

dataset was later updated by the authors using the latest Canu 1.7 version. We also analyzed

hybrid MaSuRCA assemblies of the Human and Human+ datasets [Zimin et al., 2017], which are

available from the MaSuRCA website.

Currently, the ONT assemblies have many base-calling errors (the Flye and Canu Human

assemblies had 1.2% and 2.8% error rate, respectively) because of the biased error pattern in ONT

reads. Although the Nanopolish tool contributed to a reduction in the base-calling errors of the

ONT assemblies [Simpson et al., 2017], the resulting error rates still an order of magnitude higher

than the error rates of Illumina or PacBio assemblies. Since most errors in the ONT assemblies

are frameshift-introducing indels, they are particularly problematic for downstream applications.

To mitigate the high error rates of these ONT assemblies, we used Pilon [Walker et al.,

2014] in the indel correction mode to polish Flye and Canu assemblies using Illumina reads.

Although such polishing reduced the error rates (to 0.30% for Flye + Pilon and to 0.51% for

Canu + Pilon), we note that Illumina-based read correction of ONT assemblies has limitations,

especially for repetitive regions with low short-read mappability.
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Figure 2.7: Dot-plots showing the alignment of reads against the Flye assembly, the Miniasm
assembly and the reference C. elegans genome. (a) The reference genome contains a tandem
repeat of length 1.9 kb (10 copies) on chromosome X with the repeated unit having length
190 nucleotides. In contrast, the Flye and Miniasm assemblies of this region suggest a tandem
repeat of length 5.5 kb (27 copies) and 2.8 kb (13 copies), respectively. 15 reads that span over
the tandem repeat support the Flye assembly (the mean length between the flanking unique
sequence matches the repeat length reconstructed by Flye) and suggests that the Flye length
estimate is more accurate. (b) The reference genome contains a tandem repeat of length 2
kb on chromosome 1. In contrast, the Flye and Miniasm assemblies of this region suggest a
tandem repeat of length 10 kb and 5.6 kb, respectively. A single read that spans over the tandem
repeat supports the Flye assembly. Since the mean read length in the WORM dataset is 11
kb, it is expected to have a single read spanning a given 10.0 kb region but many more reads
spanning any 5.6 kb region (as implied by the Miniasm assembly) or 2.0 kb region (as implied
by the reference genome). Six out of 23 reads cross the “left” border (two out of 18 reads
cross the right border) of this tandem repeat by more than 5.6 kb, thus contradicting the length
estimate given by Miniasm and suggesting that the Flye length estimate is more accurate. (c)
The reference genome contains a tandem repeat of length 3 kb on chromosome X. In contrast,
the Flye and Miniasm assemblies of this region suggest a tandem repeat of lengths 13.6 kb and
8 kb, respectively. A single read that spans over the tandem repeat reveals the repeat cluster
to be of length 12.2k, which suggests that the Flye length estimate is more accurate. (d) The
reference genome contains a tandem repeat of length 1.5 kb on chromosome 1. In contrast, the
Flye and Miniasm assemblies of this region suggest tandem repeats of length 17 kb and 4.3 kb,
respectively. One read that spans over the tandem repeat reveals the repeat cluster to be of length
18.0 kb, which suggests that the Flye length estimate is more accurate.
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It turns out that Flye assembled a larger fraction of the human genome (96.4%) than

Canu (95.4%) and MaSuRCA (95.1%). Interestingly, Flye and MaSuRCA, in contrast to Canu,

assembled some difficult-to-assemble, low-complexity centromeric chromosome regions, which

are hard to benchmark using reference-based methods. To provide a fair comparison between all

three assemblers using QUAST, we thus modified the hg38 reference by masking the centromeric

regions using the coordinates from the UCSC Genome Browser.

For the Human dataset, Flye, MaSuRCA, and Canu generated assemblies with NGA50

values equal to 6.35 Mb (879 assembly errors), 3.81 Mb (1,500 assembly errors), and 2.87 Mb

(1,200 assembly errors), respectively. The MaSuRCA assembly had a slightly higher percentage

identity with the reference (99.84% compared with 99.70% for Flye + Pilon and 99.49% for Canu

+ Pilon). For the Human+ dataset, Flye, Canu, and MaSuRCA generated assemblies with NGA50

values equal to 11.8 Mb (1,487 assembly errors), 7 Mb (1,455 assembly errors), and 5.6 Mb

(2,101 assembly errors), respectively. As expected, incorporating ultra-long ONT reads resulted

in a more contiguous assembly for all assemblers.

2.4.6 Segmental duplications in the human genome

The repeat graph constructed by Flye reveals the complex mosaic structure of segmental

duplications. Flye classifies all edges in the graph into unique and repeat edges by analyzing

how reads traverse the graph and by using coverage-based arguments. After removing all unique

edges from the assembly graph, only the connected components formed by repeat edges remain,

which reveal the segmental duplications encoded by the repeat edges in the graph. We define

the complexity (length) of a segmental duplication as the number (total length) of edges in its

connected component. Figure 2.8 (left) illustrates a mosaic segmental duplication of complexity 7

and length 25.7 kb (the 7 colored repeat edges form a connected component in the Flye assembly

graph after removing all of the unique edges). A segmental duplication is classified as simple if

its complexity is 1 and mosaic otherwise [Jiang et al., 2007, Pu et al., 2018]. Figure 2.8 (right)
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shows the distributions of lengths and complexities of segmental duplications identified by Flye

and illustrates the power of the assembly graph for repeat resolution.
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Figure 2.8: (a) A mosaic segmental duplication (SD) of complexity 7 represented as a connected
component formed by repeat edges (7 colored edges of total length 25.7 kb) in the assembly
graph of the Human dataset (flanking unique edges shown in black). The loop-edge C with
coverage 473× represents a tandem repeat C? with unit length 1.3 kb that is repeated 19 times.
The colored edges of the assembly graph align to a region on chromosome 7 of length 31 kb and
two regions on chromosome 20 of lengths 30 kb and 46 kb. These three instances of SDs were
not resolved using standard ONT reads but were resolved using ultra-long reads in a way that is
consistent with the reference human genome. (b) Statistics are given before resolving bridged
repeats (green), after resolving bridged repeats with standard ONT reads (orange), and with
ultra-long ONT reads (blue). Only SDs between 5 kb and 50 kb in length and with complexity
between 2 and 50 contributed to the SD length and SD complexity histograms. Only two SDs
have complexity exceeding 50 before bridged repeat resolution. Of the 688 SDs between 5 kb
and 50 kb, 545 were resolved using the standard ONT reads, and ultra-long reads resolved an
additional 58 SDs. There were 1,256 simple SDs before bridged repeat resolution and 143 after
bridged repeat resolution with ultra-long reads. Since Flye usually resolves SDs shorter than the
typical read length, the SDs identified by Flye do not include many known human SDs.

There are 1,748 repeat edges longer than 5 kb, forming 749 connected components in the

Flye assembly graph of the Human dataset before performing bridged repeat resolution. After

bridged repeat resolution with ultra-long reads, there are only 765 repeat edges, forming 107 con-

nected components in the assembly graph. Of these, 73 (34) represent mosaic (simple) segmental
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duplications (most simple ones represent isolated edges and loop-edges). See Appendix 2.7.4 for

more details.

2.5 Discussion

We describe the Flye algorithm for constructing an assembly graph from SMS reads and

demonstrate that repeat characterization improves genome assembly. We show how to use the

assembly graph to resolve unbridged repeats using variations between repeat copies and compared

Flye with the Canu, Falcon, HINGE, Miniasm, and MaSuRCA assemblers.

In the case of the Bacteria datasets, Flye and HINGE showed good agreement in the

structure of constructed assembly graphs. Flye showed substantial improvement compared with

HINGE on more complex eukaryotic datasets and generated the most accurate assemblies of

the Yeast and Worm datasets; Flye and Canu also produced the best assembly contiguity in the

case of the Worm dataset. For the more complex Human and Human+ datasets, Flye generated

more contiguous and accurate assemblies than Canu and MaSuRCA, while being notably faster.

Although assemblies of ONT reads feature rather high base-calling error rates (1.2% for the Flye

Human assembly), polishing the Flye assembly graph using Illumina reads has the potential to

reduce the error rates by an order of magnitude.

The fact that Flye substantially improved on the Canu and MaSuRCA assemblies of the

human genome suggests that there are still unexplored avenues for increasing the contiguity of

SMS assemblies. We believe that better algorithms for resolving unbridged repeats in assembly

graphs have the potential to greatly improve SMS assemblies, potentially increasing their NGA50

values by an order of magnitude. Flye constructed a repeat graph of the human genome with

only 765 repeat edges representing various long segmental duplications. Our algorithm for

resolving unbridged repeats resolved only a small fraction of these segmental duplications since

it is currently limited to simple segmental duplications (the vast majority of human segmental
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duplications are mosaic). Moreover, it currently has difficulties resolving highly similar segmental

duplications, for example, segmental dulications with less than 1% divergence. Although we

reported the resolution of highly similar segmental duplications on simulated datasets, most

unbridged repeats resolved by Flye and Canu are simple repeats with divergence exceeding

3%. Extending Flye to mosaic segmental duplications has the potential to resolve most of the

remaining unbridged repeats, since the vast majority of segmental duplications in the human

genome diverge by more than 1% [Pu et al., 2018]. Since there are only 53 long segmental

duplications (with length exceeding 15 kb) in the human genome that diverge by less than 1%,

an SMS assembler that accurately resolves highly similar unbridged repeats will result in highly

contiguous human genome assemblies, thus reducing the need for additional genome-finishing

experiments (such as using Hi-C and/or optical maps).

Assembly graphs represent a special case of breakpoint graphs [Lin et al., 2014], and

they are therefore well suited for analyzing structural variations [Chaisson et al., 2015, Nattestad

et al., 2018] and segmental duplications [Jiang et al., 2007, Pu et al., 2018]. Flye assembly graphs

provide a useful framework for reconstructing segmental duplications and planning additional

genome-finishing experiments.

2.6 Acknowledgements

We are indebted to S. Nurk for his multiple rounds of critique and suggestions that have

improved the paper. We are also grateful to A. Mikheenko, B. Behsaz, L. Pu, and G. Tesler for

their comments. This work is supported by NSF/MCB-BSF grant no. 1715911.

This chapter, in full, is a reprint of the material as it appears in M. Kolmogorov, J.

Yuan, Y. Lin and P. Pevzner, “Assembly of long error-prone reads using repeat graphs”, Nature

Biotechnology (2019). The dissertation author was the primary developer of Flye and first author

of this paper.

63



2.7 Appendices

2.7.1 Benchmarking Flye on a simple simulated genome

We simulated the “genome” shown in Figure 2.1 with two 99% identical copies of repeat

R1 of length 10 kb and two 99% identical copies of repeat R2 of length 30 kb. The unique

segments A, B, C, and D were simulated as random strings of length 250 kb each so that the total

genome length is 1 Mb. Afterwards, we simulated reads of length N randomly sampled from this

genome at coverage 100× using the PBSIM tool [Ono et al., 2012] and assembled them with

Flye. We simulated two sets of reads, one with N = 12 kb (slightly larger than the length of the

repeat R1 but shorter than the length of the repeat R2) and another with N = 10 kb.

In the case of N = 12 kb, Flye constructed the repeat graph (Figure 2.1f), identified the

bridged repeat R1, and resolved it as shown in Figure 2.1h. Afterwards, it resolved the unbridged

repeat R2 and reconstructed its two 99% identical copies (Fig. 2.1i), assembling the entire genome

into a single circular contig.

In the case N = 10 kb, Flye constructed the repeat graph (Figure 2.1f), identified both R1

and R2 as unbridged repeats and resolved them as shown in Fig. 2.1i. As the result, it assembled

the entire genome into a single circular contig.

2.7.2 Additional information on benchmarking

Running QUAST. QUAST 5.0 was run using the “--large” option for all eukaryotic

genomes, which is recommended for the analysis of large genomes with complex repeat structures.

The minimum alignment identity was set to a low 90% to account for the higher error rate in some

regions of SMS assemblies. The minimum contig length was set to 50 kb for the Human/Human+

assemblies and 5 kb for all of the other assemblies.

Software versions used. All assemblies were run with the default parameters.
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• Flye 2.3.5 (commit 20afeda)

• Canu 1.7.1 (commit dfa60b8)

• Falcon - 0.3.0 (FALCON-Integrate commit 7498ef9)

• HINGE - 0.5.0 (commit 79fdf66)

• Miniasm - 0.2-r168-dirty (commit 40ec280) / Minimap2 2.8-r711 (commit 8fc5f8d)

• QUAST 5.0.0 (commit de6973bb)

The Human (but not the Human+) assembly was generated with the earlier Flye version

2.3.2 (released on Feb 20 2018) to provide a fair comparison with the Canu and MaSuRCA

assemblies (which were not updated since the release of Flye 2.3.2). We note that the Human

assembly using the latest Flye version 2.3.5 has NGA50 = 7.3 Mb and improves over the Flye

2.3.2 assembly (NGA50 = 6.3Mb). Human+ was assembled using the latest Flye and Canu

versions (as of September 2018).

Information about running time and memory usage. Table 2.3 provides information on

the running time and memory usage of various SMS assemblers for the Yeast and Worm datasets

Flye took 5,000 CPU hours to generate assemblies of the Human+ dataset using an

Intel(R) Xeon(R) 8164 CPU @ 2.00GHz. RAM usage was 500GB at peak. The Canu authors

reported 30,000 CPU hours of run-time using a cluster with 48-core Intel(R) Xeon(R) CPU @

2.5GHz with 128 Gb of RAM each (24 nodes) and two 80-core 1 Tb machines. The memory usage

of a single job did not exceed 120GB. The MaSuRCA authors reported needing approximately

50,000 CPU hours.

2.7.3 Assemblies of the Metagenome dataset

Table 2.4 presents information about the Flye and Canu assemblies of the Metagenome

dataset.
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Table 2.3: Running time and memory usage of various SMS assemblers. We used a desktop
machine with an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (up to 8 threads available) for
the Yeast dataset assemblies and a single computational node with an Intel(R) Xeon(R) CPU
X5680 @ 3.33GHz for the WORM dataset assemblies (up to 24 threads available). Since we
performed the ABruijn polishing step on the Miniasm output, the running time for Flye and
Miniasm are given for runs with and without contig polishing; e.g., 25m (9m) for Flye in the
case of Yeast-PacBio dataset indicates 9m without polishing and 25 m with polishing.

Dataset Assembler Wall clock time Peak RAM
Yeast-PacBio Flye (w/o polishing) 20m (9m) 7G

12 Mb genome, 31x Canu 80m 5G
8 threads max Falcon 62m 10G

HINGE 9m 5G
Miniasm (w/o polishing) 16m (1m) 5G

Yeast-ONT Flye (w/o polishing) 19m (12m) 7G
12 Mb genome, 31x Canu 184m 6G

8 threads max Falcon 103m 11G
HINGE 11m 8G

Miniasm (w/o polishing) 31m (3m) 5G
Worm Flye (w/o polishing) 128m (77m) 30G

100 Mb genome, 40x Canu 780m 41G
24 threads max Falcon 945m 18G

HINGE 803m 52G
Miniasm (w/o polishing) 290m (10m) 23G

Synthetic metagenomic datasets often contain genomes with inaccurate references that

present problems for follow-up benchmarking efforts [Nurk et al., 2017]. To estimate the expected

number of misassemblies caused by the differences between the assembled and reference bacterial

strains, we performed the assembly of each of 17 bacteria separately (separate assemblies) by

binning the initial reads using alignments to the references and running Flye and Canu on

the resulting set of reads (see Table S3). Six out of 17 separate assemblies (R. sphaeroides,

A. baumannii, B. cereus and B. vulgatus) were fragmented into 2-4 contigs per chromosome

(by both Flye and Canu), while the remaining 11 resulted in a single contig per chromosome.

Nevertheless, metaQUAST reported 92 misassemblies in total for the Flye separate assemblies

(and 103 misassemblies for Canu). The misassemblies reported for Flye and Canu were highly

correlated: 80% of Flye (70% of Canu) misassembly breakpoints had a matching breakpoint in
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Table 2.4: Information about of the Flye and Canu assemblies of the Metagenome dataset.
Statistics were computed using MetaQUAST v5.0 with default parameters for the bacterial
genomes. Entries in bold highlight five assemblies where Flye significantly improved on Canu
and four assemblies where Canu significantly improved on Flye. Flye and Canu produced 84
and 99 misassemblies in total, respectively.

Flye Canu

bacteria
length
(kb) coverage % assembled

NGA50
(kb)

NGA50
(kb) % assembled

NGA50
(kb)

NGA50
(kb)

A. baumannii 3,976 40 99.8 906 18 99.8 906 19
A. odontolyticus 2,393 41 99.5 622 6 99.8 1,285 5

B. cereus 5,224 25 99.8 2,716 4 99.5 581 4
B. vulgatus 5,163 46 99.6 832 18 98.9 539 20

D. radiodurans 3,060 52 99.5 253 25 99.6 224 27
E. faecalis 2,793 43 99.9 2,738 0 99.9 2,747 0

E. coli 4,640 46 99.9 4,637 0 99.9 4,643 0
H. pylori 1,667 317 100 165 2 100 1,314 3
L. gasseri 1,894 83 97.9 898 1 97.7 969 1

L. monocytogenes 2,944 98 96.4 2,008 0 100 1,507 1
P. acnes 2,560 65 100 2,560 0 100 2,566 0

P. aeruginosa 6,264 55 99.9 4,001 3 99.9 3,998 9
R. sphaeroides 4,131 24 99.4 2,006 1 90.1 54 0

S. aureus 2,872 66 98.2 1,003 0 100 1,543 2
S. epidermidis 2,499 59 99.7 1,276 1 100 2,465 2
S. agalactiae 2,160 42 98.8 1,836 0 99.9 2,159 0

S. mutans 2,032 82 99.9 1,554 0 99.9 1,085 3

the Canu (Flye) contigs (two breakpoints are matching if their reference coordinates are within

1 kb; note that a single misassembly might have two breakpoints). We thus concluded that

the misasemblies reported by metaQUAST were mainly caused by the differences between the

genomes in the Metagenome sample and the reference genomes rather than assembly artifacts.

2.7.4 Human segmental duplications identified by Flye

After all unique edges are removed from the assembly graph of the Human+ dataset,

it breaks into connected components formed by repeat edges and reveals putative segmental

duplications (which might also include short edges corresponding to unresolved common repeats).

Figure 2.9 shows the distribution of lengths of repeat edges exceeding 5 kb and the distributions

of lengths of ultra-long segmental duplications (longer than 50 kb).

We illustrate how Flye resolves unbridged repeats using all five unbridged repeats of

multiplicity two in the assembly graph of the HUMAN+ dataset constructed by Flye (Table 2.6).

Flye resolved all five repeats, which range in length from 37 kb to 152 kb, in coverage from 26x
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Table 2.5: Analysis of the separate assemblies of 17 genomes from the Metagenome dataset.
Initial reads were binned into 17 groups using alignments to their respective references. Flye
and Canu produced 92 and 104 misassemblies in total, respectively. Statistics were computed
using MetaQUAST v5.0. All genomes but the six marked with * (R. sphaeroides, A. baumannii,
B. cereus, B. vulgatus, D. radiodurans and P. aeruginosa) were assembled into a single contig per
chromosome. Six of the remaining 11 Flye assemblies (marked with +) had no misassemblies
compared to the reference. Canu generated four assemblies without reported errors.

Flye Canu

bacteria
length
(kb) coverage % assembled

NGA50
(kb)

NGA50
(kb) % assembled

NGA50
(kb)

NGA50
(kb)

A. baumannii* 3,976 40 99.8 906 21 99.8 906 18
A. odontolyticus 2,393 41 99.8 1,286 4 99.8 1,285 5

B. cereus* 5,224 25 99.6 4,948 3 99.8 4,625 3
B. vulgatus* 5,163 46 99.3 832 21 99.2 1,112 28

D. radiodurans* 3,060 52 99.6 253 31 99.5 222 31
E. faecalis+ 2,793 43 99.9 2,738 0 99.9 2,745 0

E. coli+ 4,640 46 99.9 4,638 0 99.9 4,643 0
H. pylori 1,667 317 100 1,123 2 100 1,617 2
L. gasseri 1,894 83 97.9 1,729 1 97.8 961 4

L. monocytogenes+ 2,944 98 100 2,944 0 100 2,151 1
P. acnes+ 2,560 65 100 2,560 0 100 2,566 0

P. aeruginosa* 6,264 55 99.8 1,982 2 99.9 3,998 6
R. sphaeroides* 4,131 24 99.9 2,669 2 99.9 2,578 0

S. aureus 2,872 66 99.8 2,665 1 100 1,571 2
S. epidermidis 2,499 59 100 2,498 1 100 1,319 2
S. agalactiae+ 2,160 42 99.7 2,155 0 99.9 1,602 1

S. mutans+ 2,032 82 99.9 2,032 0 99.9 1,546 1

Figure 2.9: The distribution of lengths of segmental duplications (SDs) longer than 50 kb
for the assembly graph constructed for the Human+ dataset (left) and the lengths of all other
repeat edges (right). (Left) 39 out of 81 SDs (48%) longer than 50 kb were resolved using
standard ONT reads. Ultra-long reads resolved an additional 20 SDs (28%) in this range of SD
lengths. (Right) Only edges varying in length from 5 kb to 50 kb contributed to the histogram.
In addition to these edges, there are 213 (90) repeat edges with length exceeding 50 kb before
repeat resolution (after repeat resolution with ultra-long reads). Note that while a similar figure
in the main text describes the lengths of SDs (connected components formed by repeat edges),
this figure describes the length of individual repeat edges.
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to 31x, and in divergence from 1.77% to 7.76%.

All resolved repeats correspond to known segmental duplications in the human genome.

The sequences of the constructed repeat copies preferentially mapped to specific copies of

segmental duplications, showing that our method is successful even in the presence of Single

Nucleotide Polymorphisms (SNVs). For example, repeat 902 aligns to two 50 kb regions of

chromosome X (separated by 65 kb), which are annotated as segmental duplications.

The diploid nature of the human genome may add some complications to the repeat reso-

lution procedure, especially if many SNVs are present in the repeat. However, if the divergence

of the repeat significantly exceeds the fraction of SNVs, the described algorithm will still be able

to resolve the unbridged repeat. Since the divergence of repeats analyzed in Table S4 (above

4%) significantly exceeds the fraction of SNVs in the human genome (0.1%), SNVs do not

significantly affect our approach. However, in the case of unbridged repeats with low divergence

(e.g., below 1%), our algorithm has to be modified to take SNVs into account. When the algorithm

is extended to repeats of higher multiplicity, it will automatically resolve haplotypes for diploid

and polyploid genomes since they will simply be treated as additional repeat copies.

2.7.5 Inconsistent pairwise alignments

[Pevzner et al., 2004] introduced the concept of alignment-based de Bruijn graphs (A-

Bruijn graphs) and applied them for repeat characterization and genome assembly. They further

described the transformation of an A-Bruijn graph into a repeat graph that is particularly simple

in the case of consistent alignments as described below.

Each multiple alignment of m sequences induces
(m

2

)
pairwise alignments. A set of

pairwise alignments (described by the repeat plot) is consistent if its alignments can be combined

into a single multiple alignment that induces each pairwise alignment in the set. The concept of

multiple alignment is usually defined for the case of aligning multiple sequences rather than for

aligning a sequence against itself. Below we describe the concept of a multiple self-alignment of
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Table 2.6: Resolving unbridged repeats of multiplicity two in the assembly graph of the Human+
dataset. The assembly graph of the Human+ dataset has five unbridged repeats of multiplicity
two. The identifier of each unbridged repeat is given by its edge identifier in the assembly graph.
All repeats have been resolved. The “coverage” is calculated as the total length of reads covering
the repeat divided by the repeat length, divided by the multiplicity of the repeat. The “divergence”
is calculated based on the alignment of constructed repeat consensus sequences, dividing the
total number of substitutions and indels by the total number of matches, substitutions, and
indels (if the forward and reverse consensus sequences do not overlap, then the mean divergence
of the forward and reverse sequences is calculated, weighted by the length of the sequences).
“Maximal gap” refers to the maximum of all distances between adjacent confirmed divergent
positions. “Remaining gap” refers to the length of the repeat remaining without separate
consensus sequences for each copy after Flye has “moved into the repeat” from both the forward
and reverse directions. In the case that the forward and reverse consensus sequences overlap, the
remaining gap is set to 0.

repeat ID
length
(kb) coverage divergence

tentative
div. pos.

confirmed
div. pos.

maximal
gap (kb)

remaining
gap (kb)

cis
reads

trans
reads

625 152 27x 5.36% 29713 3256 79.2 32.2 2 12
902 51 28x 1.77% 5694 1541 0.7 0 43 13
1018 86 26x 6.77% 17509 11360 0.7 0 17 154
1075 37 28x 3.05% 4379 1406 0.3 0 38 136
1233 49 31x 7.76% 11786 8590 0.3 0 45 2

a genome and define the notion of consistent pairwise self-alignments. This notion is important

since A-Bruijn graphs result in a simple repeat graph in the case of consistent self-alignments but

in a more complex graph in the case of inconsistent self-alignments (see [Pevzner et al., 2004] for

a discussion of complications arising from inconsistent self-alignments).

A multiple self-alignment of a single sequence is a partition of its positions into non-

overlapping subsets, with each subset corresponding to a column of the multiple self-alignment.

For example, a multiple self-alignment of the sequence ACTGGCTGACT can be represented as a

partition of its 11 positions into six “painted” subsets: A0C1T2G3G4C5T6G7A8C9T10. Figure 2.10

visualizes such a partitioning as a multiple self-alignment where each column represents positions

from the same subset:

Every pair of numbers i < j in the same column of the multiple self-alignment defines

a point (i, j) in the two-dimensional plot. For example, the leftmost column in Figure A5

corresponds to a point (0,8) and the rightmost column corresponds to points (2,6), (2,10), and

(6,10). The collection of all such points defines the dot plot of the multiple self-alignment. We
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Figure 2.10: Multiple self-alignment defined by the partitioning of A0C1T2G3G4C5T6G7A8C9T10
into six subsets (left) and the corresponding dot-plot (right). In difference from the traditional
representation of a multiple alignment (where each entry represents a nucleotide or a dash in
the multiple alignment matrix), each entry in the multiple self-alignment matrix represents a
position in the sequence or a dash.

refer to a rectangle in the dot plot with lower left corner (x,y) and upper right corner (x′,y′)

as (x,y,x′,y′). A pairwise alignment between segments (x,x′) and (y,y′) of a genome defines

a set of two-dimensional points in the rectangle (x,y,x′,y′) corresponding to matches in this

alignment. A multiple self-alignment and a pairwise alignment between segments (x,x′) and

(y,y′) are consistent if the dot plot of the multiple self-alignment coincides with the dot plot of

the pairwise alignment within the rectangle (x,y,x′,y′). A set of pairwise alignments is consistent

if there exists a multiple self-alignment that is consistent with all pairwise alignments in this set,

and inconsistent otherwise.

2.7.6 Inconsistent alignments result in excessively complex repeat graphs

Figure 2.11 presents an example of inconsistent pairwise alignments and illustrates that

they result in a repeat graph that differs from the repeat graph shown in Figure 2.2 of the main text.

In difference from the graph in Figure 2.2, the graph in Figure 2.11 is not alignment-compatible;

e.g., the repeat A+B corresponds to a single path in Figure 2.2 but two paths in Figure 2.11.
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Although it may appear to be a minor annoyance in the case of the toy example in Figure 2.11,

inconsistent alignments may result in excessively complex repeat graphs in the case of real

genomes, making it difficult to analyze repeats in the genome. While it is easy to make the

pairwise alignments consistent in the simple case shown in Figure 2.11 (by adding a missing

diagonal), transforming inconsistent pairwise alignments into consistent ones is a challenging

task in the case of real genomes.

The approximate repeat graph in Figure 2.11 has seven vertices (since there exist seven

projections of alignment endpoints to the main diagonal), in contrast to the approximate repeat

graph in Figure 2.2 of the main text that has eight vertices. This deficiency of the approximate

repeat graph in Figure 2.11 motivates the algorithm for extending the set Breakpoints that is

described in the main text. Note that the middle point of the long diagonal in Figure 2.11

represents an invalid point since only one of its projections (shown as a purple point) belongs to

the set of seven endpoint projections on the main diagonal. The algorithm described in the main

text adds the missing projection to the set Breakpoints and results in the same approximate repeat

graph as shown in Figure 2.2 in the main text.

2.7.7 The challenge of assembling contigs into a repeat graph

The ABruijn algorithm constructs a set of contigs but does not attempt to assemble them

into even longer contigs (e.g. by utilizing ultra-long reads) and stops short of constructing the

repeat graph of the genome [Lin et al., 2016]. We note that contig assembly (let alone constructing

the repeat graph based on contigs) is a non-trivial problem. Although it may appear that contig

assembly can be achieved by simply utilizing existing long read assemblers, [Bankevich and

Pevzner, 2016] reported that Celera [Myers et al., 2000], Minimus [Treangen et al., 2013], and

Lola [Sharon et al., 2015] assemblers produced suboptimal assemblies of contigs generated

using TruSeq Synthetic Long Reads (TSLR) technology. Their attempts to modify the short read

assembler SPAdes [Bankevich et al., 2012] for TSLR assembly improved on the results of Celera,
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Figure 2.11: Inconsistent pairwise alignments result in an incorrect repeat graph (as compared
to the graph shown in Figure 2.2 in the main text), thus necessitating an extension of the set of
alignment endpoints. (Left) Alignment-paths for two pairwise self-alignments within a genome
XABYABZBU. Only two out of three pairwise alignments between instances of a mosaic repeat
(AB, AB, and B) are shown since the third alignment did not pass the percent identity threshold,
resulting in an inconsistent set of pairwise alignments. Alignment endpoints are clustered
together if their projections on the main diagonal coincide or are close to each other (clusters of
closely located endpoints for d = 0 are painted with the same color). This clustering reveals three
clusters with seven breakpoints on the main diagonal. (Top right) Projections of the clustered
endpoints on the main diagonal define seven vertices of the approximate repeat graph. (Middle
right). Gluing breakpoints that belong to the same clusters. (Bottom right) Gluing parallel
edges in the resulting graph (parallel edges are glued if there exists an alignment between their
sequences), which results in an approximate repeat graph that is not alignment-compatible.
(Right) Extending the set Breakpoints by adding an additional point to the longest diagonal
(shown as a star). Since the middle point of the longer alignment-path is invalid (its vertical
projection on the main diagonal belongs to the set Breakpoints but its horizontal projection does
not), we have added the missing projection to the set Breakpoints (shown as a purple square).
Adding this breakpoint is equivalent to breaking the longer alignment-path into two subpaths (the
breakage position is shown as a purple star). As a result of the breakpoint extension procedure,
the approximate repeat graph constructed based on the extended set Breakpoints coincides with
the approximate repeat graph shown in Figure 2.2 of the main text.

Minimus, and Lola but stopped short of constructing the contig-based repeat graph.

Similar challenges remain unresolved in the case of short reads. Although popular short

read assemblers construct the assembly graph of single reads (before resolving repeats using

paired reads), they output a set of contigs (after the repeat resolution step) rather than an assembly

graph that utilizes information about paired reads. For example, SPAdes [Bankevich et al.,

2012] constructs the assembly graph of single reads, uses it together with paired reads for repeat

resolution, and outputs the resulting contigs [Prjibelski et al., 2014]. A better option would be to
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construct the assembly graph of these contigs (which is less tangled than the assembly graph of

individual reads) and to apply the repeat resolution step again to this graph. Another advantage of

this (less tangled) contig-based assembly graph lies in applications relating to hybrid assembly,

e.g., co-assembly of short and long reads [Antipov et al., 2015, Wick et al., 2017]. However,

although some studies attempted to construct the assembly graph from contigs or directly from

paired reads [Vyahhi et al., 2012], the popular short read assemblers have failed to incorporate

this approach into their pipelines so far.

2.7.8 FlyeWalk algorithm

The FLYEWALK algorithm (shown below) computes alignments (within the Overlap,

MAPREADS, and EXTENDREAD procedures) using the longest jump-subpath approach [Lin et al.,

2016]. In difference from other SMS assemblers, FLYEWALK does not generate all-versus-all

pairwise alignments between reads (a major time bottleneck) since reads that align to a newly

assembled disjointig are removed from the set UNPROCESSEDREADS.

Given a chain of reads ChainOfReads formed by reads Read1 ... Readn, we define

prefix(Readi) as the overlapping region between consecutive reads Readi−1 and Readi in the

chain and suffix(Readi) as the suffix of the i-th read after the removal of prefix(Readi) (note

that suffix(Read1) coincides with Read1). We define concatenate(ChainOfReads) as the concate-

nate suffix(Read1) ... suffix(Readn) of read suffixes in this chain. The CONSENSUS procedure

constructs an initial draft sequence (disjointig) of a chain ChainOfReads by constructing concate-

nate(ChainOfReads). Afterwards, all reads from the dataset are aligned to the draft disjointig

sequence using minimap2 [Li, 2018] and the consensus of the aligned reads is formed by taking

the majority vote. This procedure reduces the error rate in the draft disjointig sequence from 13%

to 1-5%, depending on the contig coverage. The follow-up polishing step reduces the error rate to

0.1% when the coverage exceeds 30×.

EXTENDREAD is run in a single thread but multiple EXTENDREAD procedures are run
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function FLYEWALK(AllReads, MinOverlap)
Disjointigs← empty set of contigs
UnprocessedReads← AllReads
for each Read in UnprocessedReads do

ChainOfReads← EXTENDREAD(UnprocessedReads, Read, MinOverlap)
DisjointigReads← MAPREADS(AllReads, ChainOfReads, MinOverlap)
DisjointigSequence← CONSENSUS(AllReads, DisjointigReads, MinOverlap)
add DisjointigSequence to Disjointigs
remove DisjointigReads from UnprocessedReads

end for
return Disjointigs

end function
function EXTENDREAD(UnprocessedReads, Read, MinOverlap)

ChainOfReads← sequence of reads consisting of a single read Read
while forever do

NextRead← FINDNEXTREAD(UnprocessedReads, Read, MinOverlap)
if NextRead = /0 then

return ChainOfReads
else

add NextRead to ChainOfReads
Read← NextRead
remove OVERLAP(Read) from UnprocessedReads

end if
end while

end function

algorithm 1: Pseudocode of the FLYEWALK algorithm. FLYEWALK iteratively extends each
unprocessed read and organizes the selected reads into a chain. Each such chain contributes to
a disjointig and FLYEWALK outputs the set of all disjointigs resulting from such extensions.
EXTENDREAD generates a random walk in the assembly graph, which starts at a given read and
constructs a chain of overlapping reads that contribute to a constructed disjointig. It terminates
when there are no unprocessed reads overlapping the current read by at least MinOverlap
nucleotides. FINDNEXTREAD finds an unprocessed read that overlaps with the given read by at
least MinOverlap nucleotides and returns an empty string if there are no such reads. MAPREADS

finds all reads that align to a given chain of reads over their entire length with the possible
exception of a short suffix and/or prefix of length at most MinOverlap. CONSENSUS constructs
the consensus of all reads that contribute to a given disjointig. OVERLAP finds all reads that
overlap a given read by at least MinOverlap nucleotides.

in parallel for each read that is not in UnprocessedReads. When one of the EXTENDREAD

procedures finishes, the algorithm checks if the returned disjointig has a significant overlap (by

more than 10% of its length) with one of the previously constructed disjointigs from Disjointigs.
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If such an overlap is found, the new disjointig is discarded and the reads from this disjointig are

returned to the set UnprocessedReads. This parallelization significantly speeds up FLYEWALK

for assemblies that contain many contigs.

2.7.9 Flye constructs an accurate assembly graph from error-prone dis-

jointigs

There exist two tours in the assembly graph for the E. coli strain NCTC9964 shown in

Figure 2.4 (middle) of the main text: the correct genomic tour formed by edges IN1, REP, OUT1,

and REP′ (the corresponding complementary tour is formed by the complementary edges REP,

OUT2, REP′, and IN2) and the incorrect tour formed by edges IN1, REP, OUT2, and REP′ (the

corresponding complementary tour is formed by edges IN2, REP, OUT1, and REP′).

Although paths IN1→ REP→ OUT2→ REP′ and IN2→ REP→ OUT 1→ REP′ form

incorrect disjointigs, they are however assembled in the correct assembly graph by Flye. Below

we explain why an arbitrary set of paths (disjointigs) constructed by FLYEWALK results in a

correct assembly graph. Although our arguments apply to the punctilious repeat graph, the

construction of the approximate repeat graph follows a similar logic, and the Results section

demonstrates that these graphs constructed by Flye also result in accurate assemblies.

Let Genome be an (unknown) genomic sequence of an (unknown) length with an (un-

known) alignment matrix Alignments. Let Strings = {s(1), ...,s(t)} be a covering set of strings for

Genome, and A(i, j) be the alignment snapshot, i.e., the sub-matrix of Alignments for substrings

s(i) and s( j). Given a concatenate Strings∗ = s(1)∗ s(2)∗ ...∗ s(t) of all t substrings (with delim-

iters), their t ∗ (t−1)/2 pairwise alignment snapshots A(i, j) can be combined together to form

the alignment matrix Alignment* of the entire concatenate. We emphasize that the coordinates of

the strings s(1), ...,s(t) and their ordering in the sequence Genome are unknown.

[Pevzner et al., 2004] demonstrated that RepeatGraph(Genome, Alignments) coincides

with the repeat graph RepeatGraph(Strings*, Alignments*) of a concatenate of all substrings (in
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any order) for any covering set of substrings. As we explain below, this result implies that the

Flye assembly of inaccurate disjointigs generated by FLYEWALK results in an accurate assembly

graph. For simplicity, we assume that chimeric reads have been removed and that no read is

contained within another read.

Consider the set of disjointigs {disjointig1,disjointig2, ...,disjointigt} constructed by FLY-

EWALK and map all reads to all these disjointigs. Since FLYEWALK utilizes all reads, each read

will be mapped to one or more disjointigs. We now concatenate all reads starting from reads in

the first disjointig, followed by reads in the second disjointig, etc., resulting in the sequence of

reads:

{s(1,1),s(1,2), ...,s(1,n1)},{s(1,1),s(2,1), ...,s(2,n2)}, ...,{s(t,1),s(t,1), ...,s(t,nt)} (2.1)

where s(i, j) stands for the j-th read in the i-th disjointig (reads are ordered in the increasing order

of their starting positions in each disjointig).

Since all reads are included in this concatenate, the repeat graph constructed from this

concatenate coincides with the repeat graph of the genome [Pevzner et al., 2004]. Since the

repeat graph does not depend on the order in which the reads are glued, we will perform gluing

in two stages. At the first stage, we will perform some (but not all) gluing operations on reads

from the first disjointig, followed by some gluing operations on reads from the second disjointig,

etc. Specifically, with respect to the i-th disjointig, we will only glue overlapping reads within

this disjointig (i.e., reads s(i,n) and s(i,m) if n < m and read s(i,m) starts before read s(i,n)

ends) and will only apply gluing operations to their overlap. Note that the first gluing stage does

not necessarily includes all gluing operations applicable to reads from the i-th disjointig, e.g.,

non-overlapping reads within this disjointig may share sufficiently long alignments that however

do not contribute to the first-stage gluing.
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The first-stage gluing of reads that were sampled from a single disjointig results in the

consensus of this disjointig constructed by FLYEWALK. Thus, the application of such “intra-

disjointig” gluing operations to all disjointigs results in the set of disjointigs {disj1,disj2, ...,disjt}.

Note that only some but not all gluing operations have been performed at this point; e.g., inter-

disjointig gluing has not been applied yet. Therefore, the second-stage gluing of all disjointigs

constructed by FLYEWALK (some of them may be misassembled) results in the same assembly

graph as gluing all reads, and thus results in the repeat graph of the genome.

2.7.10 Constructing the repeat graph from substrings of a genome

The repeat graph construction algorithm assumes that the genome Genome and the two-

dimensional matrix Alignments (defining the pairwise alignments between similar substrings

of the genome) are given. Any two substrings of the genome define a rectangle in the matrix

Alignments that we refer to as an alignment snapshot imposed by these substrings. Given a set of

substrings from Genome, [Pevzner et al., 2004] asked whether the repeat graph can be constructed

from their pairwise snapshots without knowing Genome and the entire matrix Alignments. This

question is relevant to genome assembly when the Genome and Alignments are unknown but the

alignments between substrings of the genome (reads) can be computed as an approximation of

alignment snapshots.

A set of substrings of a genome forms a covering set if, for every pair of consecutive

positions in Genome, there exists a substring containing these positions. [Pevzner et al., 2004]

demonstrated that if substrings of a genome (reads) form a covering set, then gluing an arbitrary

concatenate of these substrings (separated by delimiters), according to their alignment snapshots,

produces the same repeat graph as gluing the entire Genome.

This result holds for the ideal case when the alignment snapshots are inherited from the

matrix Alignments representing all self-alignments of Genome. Since Genome and the matrix

Alignments are unknown in the case of genome assembly, the alignment snapshot between two
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substrings (reads) is computed as their pairwise alignment rather than derived as the corresponding

rectangle in the Alignments matrix. This pairwise alignment may differ from the alignment

snapshot; for example, an alignment between two reads overlapping by a single nucleotide will

be captured in their alignment snapshot (since it is a part of a larger matrix Alignments) but not in

their pairwise alignment since it does not pass a statistical significance threshold. That is why

[Pevzner et al., 2004] introduced a more stringent condition for the concept of the covering set of

substrings: for each m consecutive positions in Genome (where m is a pre-defined threshold),

there must exist a substring (read) spanning all these positions. This condition explains why it is

important that Flye generates disjointigs satisfying the overhang property.

2.7.11 Aligning reads to the assembly graph

Flye aligns all reads to the constructed assembly graph using the concept of common

jump-subpaths [Lin et al., 2016]. First, each read is matched against the edges of the assembly

graph. For each repeat edge in the assembly graph, we store all copies of the corresponding repeat

(from the original disjointigs), rather than a single consensus of all sequences contributing to this

repeat edge. We then match a read to all these copies and select the best alignment to improve the

recruitment of reads to the edges of the assembly graph. If a read is aligned to multiple edges in

the assembly graph, we find a maximum scoring path in the graph formed by such edges using

dynamic programming.

2.7.12 Identifying repeat edges in the assembly graph

After constructing the assembly graph, Flye aligns all reads to this graph and forms a

read-path for each read. Given the alignments of all reads against the assembly graph, Flye

computes the mean depth of coverage cov across the entire assembly graph and classifies an edge

as low-coverage (if its coverage is below 2∗ cov) and high-coverage (if its coverage is at least
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2∗ cov). While most low-coverage edges are unique (traversed only once in the genomic tour),

some of them are repetitive since the coverage varies along the genome.

To improve the classification of unique and repetitive edges in the assembly graph, Flye

reclassifies some edges using information about the read-paths. An edge e′ in the assembly

graph is a successor of an edge e if it follows e in one of the read-paths. A low-coverage edge is

classified as unique if it has a single successor. All other edges (i.e., high-coverage edges and

low-coverage edges with multiple successors) are classified as repetitive.

To avoid classifying chimeric connections in the assembly graph as successor edges and

to minimize the influence of misaligned reads, Flye imposes an additional restriction on the

edge to classify it as a successor: a fraction of the reads supporting a successor (among all reads

contributing to the successor of a given edge) should exceed N percent of the fraction of the reads

supporting the most frequent successor (the default value is N = 20%).

We used the Flye C. elegans assembly to estimate the accuracy of Flye’s classification of

unique and repetitive edges. For each edge in the C. elegans assembly graph, we found whether it

is unique or repetitive in the reference genome by aligning the edge to the entire reference genome

and checking whether there exists a single alignment (unique edge) or multiple alignments

(repetitive edge). This analysis revealed that the C. elegans assembly graph has 339 unique and

219 repetitive edges. Flye has misclassified 5 out of 219 repetitive edges as unique (2%) and 22

out of 339 unique edges as repetitive (6%). Note that only errors of the first type (misclassifying

repeat edges as unique) lead to potential misassemblies during the repeat resolution step. Errors

of the second type (classifying unique edges as repeat edges) do not lead to misassemblies but

may potentially negatively affect the contiguity of the assembly since misclassified unique edges

do not contribute to repeat resolution. This is however not a critical shortcoming in practice since

long reads often bridge these misclassified edges.
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2.7.13 Additional details on untangling assembly graphs

The maximum weight matching defines the set of edges in the transition graph; Flye

additionally checks each of the inferred edges as follows. For each edge (u,v) from the matching,

it computes the total weight TotalWeight of all edges in the transition graph adjacent to u or v.

If transition(u,v)< TotalWeight/2, the edge is classified as weak and is consequently ignored.

Weak edges typically arise from long repeats that may be bridged by a few reads in an ambiguous

way.

Flye iteratively untangles edges and finds maximum weight matchings until no extra

repeats can be resolved. Note that a repeat of multiplicity t may require less than t untangling

operations to be completely resolved. For example, a repeat edge REP of multiplicity 2 in the

assembly graph (with incoming edges IN1 and IN2 and outgoing edges OUT1 and OUT2) may

only have bridging reads traversing IN1, REP, and OUT1 but not IN2, REP, and OUT2. However,

using bridging reads to untangle IN1 and OUT1 (essentially forming a single edge from edges

IN1, REP, and OUT1), turns the sequence of edges IN2, REP, and OUT2 into a non-branching

path and thus completely untangles the repeat.

Note that some short edges are reclassified as long during this process and that some

repetitive edges are reclassified as unique during the next iteration of the algorithm (for example,

if they were a part of a bigger mosaic repeat that was partially resolved).

2.7.14 Revealing variable positions within repeats

To reveal the variable positions within a repeat (a repeat edge in the assembly graph), we

map all reads to the consensus sequence of the repeat and generate a multiple alignment of all

reads that are contained within or overlap with the repeat. Afterwards, we determine the second

most frequent nucleotide in each column of the multiple alignment and define the substitution

rate in this column as the number of occurrences of the second most frequent nucleotide divided
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by the total number of reads covering this column (note the difference between the concepts of

substitution rate here and in [Lin et al., 2016]. We define the deletion and insertion rates in each

column as in [Lin et al., 2016]. If the substitution, deletion, or insertion rate for a column exceeds

a predefined threshold, the corresponding position is called a tentative divergent position. The

repeat divergence is estimated by dividing the total number of tentative divergent positions by

the length of the repeat. See Appendix 2.7.4 for a discussion on how repeat divergence can be

affected by diploidy.

Below we construct the distribution of substitution, deletion, and insertion rates in non-

divergent positions, compare it with the distribution of substitution, deletion, and insertion rates

in divergent positions, and select a threshold that separates these two distributions. To construct

these distributions, we selected the 22 kb long repeat (repeat REP in Figure 2.4) in the assembly

graph of the EC9964 dataset (other repeats result in very similar distributions). Since this repeat

has many variations between two repeat copies, (943 substitutions (4.3%), 346 deletions (1.6%),

and 226 insertions (1.0%)), we manually resolved it with high confidence. A position in this repeat

is classified as variable if it corresponds to a substitution, deletion, or insertion, and non-variable

otherwise.

We mapped reads from the EC9964 dataset to the consensus of the REP repeat and

calculated the substitution, deletion, and insertion rates. Figure 2.12 illustrates that variable

positions feature higher substitution, deletion, and insertion rates than non-variable positions

within a repeat. We thus identify tentative divergent positions based on mutation rates by selecting

a mutation rate threshold that provides a good separation between the two distributions (0.1, 0.2,

and 0.3 for substitutions, deletions, and insertions, respectively). This results in the identification

of 924 out of 943 substitutions, 270 out of 346 deletions and 54 out of 226 insertions for the

REP repeat. At the same time, we misclassified 81 non-variable positions as divergent (61

substitutions, 5 deletions, and 15 insertions), resulting in a false positive rate of 0.4%. In all, we

identified 1329 tentative divergent positions, which leads to a divergence estimate of 6.0%, a
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slight underestimation of the true divergence rate of 6.9%.

Figure 2.12: Separating variable and non-variable positions within repeats using substitution,
deletion, and insertion rates computed for the REP repeat in the EC9964 dataset. Substitution
(top), deletion (middle), and insertion (bottom) rates at each position in the multiple alignment
of reads. Blue (red) bars represent mutation rates for non-variable (variable) positions. The
number of positions with a given mutation rate (y-axis) is shown in a logarithmic scale. The
cutoffs 0.1, 0.2, and 0.3 result in a good separation between variable and non-variable positions
for substitutions, deletions, and insertions, respectively.

Table 2.7 provides details about Flye performance on the unbridged repeats from the

Bacteria dataset.

2.7.15 Additional details on the unbridged repeat resolution approach

Initially, the unbridged repeat resolution algorithm recruits all reads traversing edges

IN1 and REP (IN2 and REP) to the first (second) repeat copy and computes the consensus of

each repeat copy using the recruited reads. Since the recruited reads do not span the entire

edge REP, we only construct two consensus sequences corresponding to prefixes of REP where

there is substantial read coverage by the recruited reads. We require at least minCoverage for
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Table 2.7: Resolving unbridged repeats of multiplicity two in genomes from the Bacteria dataset.
The results of repeat resolution after running Flye for 11 out of 21 genomes from the Bacteria
datasets that contain repeats of multiplicity two. The label of each dataset denotes the bacterial
species, its strain, and the ID number of the repeat edge found in the assembly graph (e.g.
EC5052-7, EC5052-8, and EC5052-9 refer to 3 repeats with IDs “7”, “8”, and “9” present in
the assembly graph for the E. coli NCTC5052 dataset). Bolded labels refer to repeats resolved
by Flye. The * refers to a repeat of multiplicity 3. The “coverage” is calculated as the total
read length divided by the repeat length, divided by the multiplicity of the repeat (comparable
to the coverage of a normal genomic sequence of multiplicity one). The “divergence” is
calculated based on the alignment of constructed repeat consensus sequences, dividing the total
number of substitutions and indels by the total number of matches, substitutions, and indels
(if the forward and reverse consensus sequences do not overlap, then the mean divergence
of the forward and reverse sequences is calculated, weighted by the length of the sequences).
“Maximal distance between divergent positions” refers to the maximal distance between adjacent
confirmed divergent positions. “Remaining gap” refers to the length of the repeat remaining
without separate consensus sequences for each copy after we have “moved into the repeat” from
both the forward and reverse directions (note that it is 0 if the forward and reverse consensus
sequences overlap).

repeat ID
length
(kb) coverage divergence

tentative
div. pos.

confirmed
div. pos.

maximal
gap (kb)

remaining
gap (kb)

cis
reads

trans
reads

EC4450-29 11 159x 7.33 657 594 0.4 0 1219 42
KN5052-10 38 98x 1.12 376 250 20.8 0 0 0
KN5052-20 31 96x 2.67 826 676 17.3 0 1 0
EC7921-6 13 82x 11.51 1629 1338 0.3 0 215 814
EC9002-3 50 137x 5.91 3401 3064 0.9 0 2460 437
EC9006-8 22 94x 1.24 218 131 11.7 0 0 0
EC9006-9 14 78x 2.81 676 597 1.8 0 256 15

EC9006-10 16 93x 5.25 2843 2610 0.8 0 912 80
EC9007-5 24 140x 0.33 2467 37 14.6 5.0 0 0
EC9012-7 14 63x 19.22 2784 2552 1.3 0 599 42

EC9012-12 37 74x 3.12 1973 1601 2.0 0 1126 13
EC9016-4 17 47x 8.45 2586 2340 2.4 0 462 34
EC9016-5 24 58x 1.30 1210 203 21.5 0.3 0 0
EC9103-4 4 131x 6.62 340 314 0.4 0 135 87
KN9657-9 36 61x 0.08 186 3 35.7 4.3 0 0
EC9964-5 34 73x 6.20 2333 2179 0.9 0 64 892
EC9964-6 22 80x 4.17 1675 1522 1.7 0 12 649

EC11022-7 30 60x 1.44 1661 1491 6.3 0 2 602
EC11022-8 25 64x 0.37 165 17 10.1 0 0 0
SA11962-6 8 159x 11.39 613 562 0.5 0 1089 16

SA11962-8* 13 214x 0.77 154 100 4.1 0 40 42
KL12158-7 13 46x 0.06 50 0 12.7 0 0 0

each repeat copy to ensure that consensus sequences are sufficiently accurate (the default value

of minCoverage = 10). Both consensus sequences are truncated to the length of the shortest

consensus sequence to prevent bias in the read recruitment process in future iterations. In the case

of the REP repeat in the EC9964 dataset, we constructed two consensus sequences corresponding

to 8.6 kb long prefixes of REP with divergence 9.8% (Figure 2.4). As a result, we now have
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two consensus sequences for the entire edge REP that differ in some of the first 8.6 kb but

coincide in the remaining part. The two constructed consensus sequences serve as two templates

for recruiting reads to specific repeat copies in successive iterations. In this way, we gradually

construct the consensus sequences from only reads that have been assigned to a specific repeat

copy with high confidence.

This brief description hides some details, e.g., it is not clear why we identified the set of

putative divergent positions since these positions have not been mentioned in the description of

the algorithm. In reality, the constructed consensus sequences of prefixes of two repeat copies

may have errors since the read coverage of these prefixes may be as low as the default parameter

minCoverage = 10×. Indeed, the consensus sequences are expected to have a high 7.5% error

rate when the coverage is as low as 5−10× [Lin et al., 2016]. Since these error-prone consensus

sequences serve as two templates for recruiting reads to specific repeat copies in successive

iterations, the read recruitment is compromised. We thus recruit reads to specific repeat copies

based only on tentative divergent positions in the repeat. Since these positions were identified

based on all reads (full coverage) rather than only reads contributing to a given template (coverage

as low as minCoverage), they provide a more reliable standard for read recruitment.

Below we provide a description of various steps during the unbridged repeat resolution:

Evaluating the tentative divergent positions. We map all classified reads again, this

time to two consensus copies of the repeat (rather than a single consensus copy as in the initial

iteration) to construct a more accurate alignment. We further utilize the set of tentative divergent

positions that were identified at the initial stage of the algorithm. We consider the consensus

sequence of each repeat copy and compare the most frequent symbols (A,C,G,T,− occurring

in the set of already classified reads for each repeat copy at each tentative divergent position. If

the most frequent symbol at a position differs for two repeat copies, then that position is called a

confirmed divergent position. The most frequent symbols of all the confirmed divergent positions

for a certain repeat copy represent a “signature” of this copy. Since some positions within a
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repeat may not have been reached by the two consensus sequences yet, they remain classified as

tentative divergent positions.

Assigning reads to various repeat copies. We now map all unclassified reads to two

consensus copies of the repeat and utilize the confirmed divergent positions to assign unclassified

reads to a specific repeat copy. For each read, we compute its vote for each repeat copy as

the number of confirmed divergent positions at which the symbol of the read agrees with the

consensus of this repeat copy (all other positions are ignored). The read is assigned to a specific

repeat copy if its vote for this copy is larger than the vote for another copy by a minimum threshold

(the default value is three). The read remains unassigned in the case of ties.

Constructing new consensus sequences for each repeat copy. We use all reads that

have been assigned to a specific repeat copy to construct a new consensus sequence for this copy.

The consensus is only constructed up to where the coverage of the reads is at least minCoverage

in both repeat copies to ensure that consensus sequences are accurate, and then both consensus

sequences are truncated to the length of the shortest consensus sequence. The algorithm then

proceeds to the next iteration unless no new reads mapping to the original repeat consensus were

classified or all of the consensus sequences are identical to those in the previous iteration, in

which cases it terminates.

Although we discussed the algorithm as “moving forward” into the repeat (e.g., moving

ahead from edges IN1 and IN2 in Figure 2.4), the same procedure is performed by moving

backward in the opposite direction (e.g., moving backwards from edges OUT1 and OUT2 in

Figure 2.4), or equivalently, moving forward along the reverse complement of the repeat. There

are two stopping rules for the described algorithm: (i) when the prefix of the repeat resulting from

moving forward overlaps with the suffix of the repeat resulting from “moving backward” and

(ii) when the prefix and the suffix both stop extending but still do not overlap. At this point, a

consensus sequence has been constructed for both prefix and suffix of each repeat copy and a set

of confirmed divergent positions for each repeat copy has been obtained.
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As the repeat consensus sequences have been extended forward and backward (Figure 2.4),

this procedure may result in the emergence of linking reads, i.e., reads that are assigned to both a

repeat copy originating from one of the incoming edges (IN1 or IN2) and a repeat copy originating

from one of the outgoing edges (OUT1 or OUT2). Linking reads are grouped depending on which

incoming/outgoing edges they are assigned to: IN1 and OUT1, IN2 and OUT2, IN1 and OUT2,

or IN2 and OUT1. We further classify all linking reads into one of two categories called cis

(IN1/OUT1 and IN2/OUT2) and trans (IN1/OUT2 and IN2/OUT1) since there are only two ways

to resolve the repeat.

If the number of linking reads in one of the categories exceeds a threshold (the default

value is five) and exceeds the number of linking reads in another category by at least a factor of

two, all reads in the “winning” category are assigned to the corresponding repeat copies and the

consensus of each repeat copy is computed based on all reads assigned to this copy.

If our attempts to resolve the repeat did not result in the emergence of linking reads or

if the conditions above on the number of linking reads do not hold, the repeat is classified as

unresolved (note that some resolvable repeats may be classified as unresolved). Note that even in

the case of unresolved repeats, our algorithm still finds more accurate consensus sequences for

the prefixes and suffixes of the repeat.

Our analysis of the Bacteria dataset suggests that a repeat can usually be classified as

resolvable based on the following two criteria:

The divergence rate exceeds a minimum divergence threshold. Based on simulated

data, we set up a minimum 0.1% divergence threshold, i.e. at least one divergent position per each

1000 nucleotides on average. When the divergence rate falls below 0.1%, there is often a shortage

of reads covering multiple divergent positions, which is necessary for successful repeat resolution.

To determine the minimum divergence threshold for which the repeat resolution algorithm could

be applied successfully, we simulated several repeats of multiplicity two of length 10 kb, 20 kb,

and 40 kb, with divergence rates ranging from 0.01% to 0.45%. Variations between the different
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copies of these repeats were introduced by adding substitutions and indels randomly to both

copies until the desired divergence rate was reached. Next, we simulated PB reads from these

repeats with coverage 100X, mean error rates of 15%, and read lengths between 5 kb and 15 kb.

When the repeat resolution algorithm was applied to these datasets, we found that all simulated

repeats with divergence rate greater than 0.1% were successfully resolved. We thus chose 0.1%

to be the minimum divergence threshold.

The distance between consecutive putative divergent positions does not exceed the

maximum distance threshold. If consecutive divergent positions are 15 kb apart but the maximal

read length is 10 kb, there will be no reads spanning these positions that can be used for repeat

resolution. Moreover, it turns out that the maximal read length is too optimistic of a threshold,

since the repeat may still be unresolvable even if consecutive divergent positions are less than the

length of a read away. For example, although there are many divergent positions in a 24 kb long

repeat of multiplicity two in the EC9007 dataset, there exists a 8 kb gap between consecutive

divergent positions (located at positions 15,002 and 23,150 from the start of the repeat). The

repeat is classified as unresolved since there is only one read spanning this gap, which does not

provide a confident pairing of the incoming and outgoing edges for this repeat. On the other

hand, we found that selecting the average read length as the threshold is too lenient. Based on our

analysis of the Bacteria dataset, we set the default threshold for the maximal distance between

consecutive divergent positions as twice the average read length, which varies from 12 kb to 20

kb in the Bacteria datasets.

If either of the above criteria does not hold, the repeat is classified as unresolvable.
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Chapter 3

Metagenome assembly using long-reads

3.1 Abstract

Long-read sequencing technologies have substantially improved the assemblies of many

isolate bacterial genomes as compared to the fragmented assemblies produced from short-read

technologies. However, assembling complex metagenomic datasets remains a challenge even for

state-of-the-art long-read assemblers. To address this gap, we present the metaFlye assembler and

demonstrate that it generates contiguous and accurate assemblies for metagenomic datasets. In

contrast to short-read metagenomics assemblers, metaFlye captures many full-length 16S RNA

genes within long contigs, thus providing new opportunities for analyzing the microbial “dark

matter of life”. We also demonstrate that metaFlye improves full-length plasmid reconstructions

as well as enables co-assembly of multiple metagenomes together for comprehensive analysis of

metagenomic time series.
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3.2 Introduction

Bacterial genome assemblies produced from long Single Molecule Sequencing reads

(generated using Pacific Biosciences or Oxford Nanopore sequencing technologies) are substan-

tially more contiguous compared to short-read assemblies [Phillippy, 2017, Jain et al., 2018,

Schmid et al., 2018]. In contrast, early long-read metagenomic studies reported lower yields and

reduced read lengths compared to isolate bacterial assemblies, which made it difficult to generate

high-quality assemblies and suggested that sample preparation protocols have to be optimized

to utilize long reads in metagenomic studies [Tsai et al., 2016, Driscoll et al., 2017]. However,

the recent improvements in high molecular weight DNA extraction techniques have enabled the

sequencing of complex metagenomes with deep coverage and increased read lengths [Moss and

Bhatt, 2018, Nicholls et al., 2019, Bertrand et al., 2019, Kafetzopoulou et al., 2019, Charalampous

et al., 2019, Somerville et al., 2018]. Although these improved protocols have already been

used for analyzing complex bacterial communities [Stewart et al., 2018, Arumugam et al., 2019,

Hiraoka et al., 2019, Lin et al., 2019, Bickhart et al., 2019], there is still no specialized long-read

metagenomic assembler. Indeed, although some long-read assemblers [Chin et al., 2016, Li, 2016,

Koren et al., 2017, Kamath et al., 2017, Kolmogorov et al., 2019, Ruan and Li, 2019] have been

applied to metagenomic datasets, none of them were designed to handle the specific challenges

of metagenome assembly. This is unfortunate since long-read metagenomic assemblies have

the potential to greatly improve upon the contiguity of short-read assemblies and address their

inherent limitations, such as strain resolution [Goltsman et al., 2018], detection of horizontal gene

transfer [Guo et al., 2015], search for new candidate phyla [Eloe-Fadrosh et al., 2016], and the se-

quencing of novel plasmids and viruses [Arredondo-Alonso et al., 2017, Paez-Espino et al., 2016].

Metagenomic assembly presents additional computational challenges compared to the assembly

of isolates due to the highly non-uniform coverage of the various species and strains comprising

the sample, the presence of long intra-genomic and inter-genomic repeats [Li et al., 2015, Nurk
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et al., 2017], and additional difficulties involved in plasmid and virus reconstruction [Antipov

et al., 2015, Page and Seemann, 2019]. We recently developed a fast long-read genome assembler,

Flye, and showed that it produces accurate and contiguous assemblies [Kolmogorov et al., 2019].

Here we describe a metaFlye algorithms for long-read metagenome assembly, benchmark it using

a diverse set of bacterial communities, and demonstrate that it improves over state-of-the-art long

read assemblers that were not optimized for metagenome assembly.

3.3 Methods

3.3.1 Metagenomic long-read assembly challenges

The original Flye algorithm first attempts to approximate the set of genomic k-mers (k-

mers that appear in the genome) by selecting solid k-mers (high-frequency k-mer in the read-set).

It further uses solid k-mers to efficiently detect overlapping reads, and build contigs [Kolmogorov

et al., 2019]. This approach excludes most erroneous k-mers (that appear in reads but not in the

genome) from consideration and reduces the memory footprint of the k-mer index. However, in a

metagenome setting, this approach would favor high-abundance species, while low-abundance

species will have a reduced number of solid k-mers (if any), and thus will fail to be assembled.

To address this limitation, we introduce a new approach to solid k-mer selection, which combines

global k-mer counting with analyzing local k-mer distributions (see Methods).

Flye initially constructs the repeat graph from input reads, in which each family of long

genomic repeats is collapsed into a single path in the graph [Kolmogorov et al., 2019]. It further

classifies edges in the repeat graph as unique and repetitive and simplifies the graph by untangling

most repeat edges using bridging reads. The original repeat edge classification algorithm assumes

the uniform coverage of unique edges, and thus is not applicable to metagenome assembly. Here

we introduce a new algorithm that reliably detects repeat edges in the metagenomic assembly

graph in an iterative manner.
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In addition to the challenges of assembling bacterial chromosomes, there are additional

difficulties in assembling short plasmids that are typically covered only by a small number of

reads. Below we show that such plasmids often remain undetected by existing assemblers and

describe an algorithm that recovers unassembled plasmids from long-read sequencing data.

3.3.2 Solid k-mer selection in metagenome assemblies

The Flye algorithm [Kolmogorov et al., 2019] selects solid k-mers as follows (the typical

k-mer size is 15 or 17 nucleotides for PacBio and ONT reads). In the first pass through all reads,

the algorithm counts frequencies of k-mer hashes using a fixed-size array of counters. In the

second pass, k-mers with pre-computed frequencies higher than a threshold (typically equal to

2 or 3) are counted using the cuckoo hash table [Li et al., 2014]. Given the computed k-mer

frequency table and an estimated genome size |G|, the algorithm selects the |G| most frequent

k-mers, and sets a frequency threshold t as the minimum frequency among the selected k-mers.

The selected threshold t separates solid k-mers (that are indexed) from erroneous ones (that are

discarded).

This strategy typically results in a relatively small misclassification rate; e.g., in a typical

isolate bacterial project only ≈ 5% of unique genomic k-mers (true k-mers from the genome)

are missing from the set of solid k-mers, and only ≈ 10% of unique solid k-mers represent

non-genomic k-mers. However, although it works well in genomic assemblies, it is not suitable

for metagenomic assemblies, because there is no frequency threshold that robustly separates

genomic from non-genomic k-mers (due to the uneven species coverage). Below, we describe an

alternative strategy for solid k-mer selection and benchmark it using both isolate and metagenome

datasets.

Similarly to the uniform coverage mode in Flye, metaFlye also starts with counting k-mers

in all reads. Although high-frequency k-mers are still expected to represent genomic k-m ers,

non-genomic k-mers arising from reads in high-abundance species often outnumber genomic
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k-mers from low-abundance species. Given a per-nucleotide error rate ε in reads, we estimate the

probability of a k- mer in a read to be error-free as E = e−kε , under a Poisson error distribution

model. Thus, the expected number of solid k-mers in a read is E · |read|. For each read, metaFlye

selects a frequency threshold f , so that there are at least E · |read| k-mers in this read with

frequency at least f and indexes k-mers above this threshold using a hash table. Similarly to other

k-mer counting/indexing tools, metaFlye keeps the canonical representation of each k-mer, which

is defined as the lexicographical minimum of the forward and reverse-complement of the k-mer.

We evaluated the uniform and metagenome k-mer selection modes using two bacterial

datasets, for which true k-mers were extracted from the available references. The first set of

PacBio reads from an E. coli isolate (at 50× coverage) contains 254.2M (million) k-mers, out

of which 56.7M (22%) are genomic. In the uniform k-mer selection mode, Flye indexed 55.3M

genomic k-mers (97% of all genomic k-mers) and 5.0M non-genomic (erroneous) k-mers. In

the metagenome selection mode, metaFlye indexed 50.3M genomic k-mers (89%) and 22M

non-genomic k-mers.

We further used the HMP dataset (described below) to evaluate the k-mer selection in

metagenome mode. We focused on the two least abundant genomes in the mixture – B. cereus

and R. sphaeroides – which had coverage 2-fold below the median species coverage. These

two bacteria contributed to 83M genomic k-mers in the reads. In uniform coverage mode, Flye

selected only 33.2M (40%) of their genomic k-mers. In contrast, metaFlye selected 71M (86%)

of genomic k-mers in metagenome coverage mode.

3.3.3 Identifying repeats in the metagenome assembly graph

In difference from contigs (that are expected to represent contiguous segments of a

genome), metaFlye first builds error-prone disjointigs that represent arbitrary paths in the assembly

graph, but can be generated much faster than traditional contigs. To fix potential misassemblies

within disjointigs, Flye constructs the repeat graph from disjointigs by collapsing each family of
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long repeats into a single path in the graph [Kolmogorov et al., 2019]. metaFlye further classifies

each edge of the metagenome assembly graph as unique (its sequence appears only once in a

single genome) or repetitive (the edge sequence appears multiple times in a single genome or is

shared by multiple genomes). Flye uses this classification to identify bridging reads (that start

and end at different unique edges) and resolves repeats using bridging reads [Kolmogorov et al.,

2019]. Thus, the contiguity of Flye assemblies critically depends on its ability to correctly classify

unique and repetitive edges of the assembly graph.

a a

b

b

c

c

d d

X ZY
Path 1: aXa
Path 2: bXYZb
Path 3: cXYZc
Path 4: dZd

Figure 3.1: An example of a mosaic repeat. The subgraph of an assembly graph is formed by
four distinct genome sub-paths. Edges are shown in color (for repeats of multiplicity 2 or 3),
or in black (for unique edges of multiplicity 1). Although the edge Y is a part of the mosaic
repeat, Flye may classify it as a unique edge since it has a single predecessor (X) and a single
successor (Z). The metaFlye repeat detection algorithm will classify X and Z as repetitive on
the first iteration (since they have three predecessors / successors). On the second iteration, Y
will be classified as a repeat, since there exist reads that start at Y and continue into multiple
predecessors / successors of X and Z , thus revealing that Y is a repeat.

The Flye algorithm first aligns all reads to the assembly graph, computes the mean

coverage of each edge and represents all reads as read-paths (paths in the assembly graph).

Afterwards, it captures the lion’s share of the repeat edges by simply classifying all high-coverage

edges (with coverage exceeding the mean coverage by a factor of 1.75) as repetitive. However,

since there are possible variations in coverage along the genome, this procedure mis-classifies

some repetitive edges as unique. To improve the classification of such edges, Flye additionally

checks whether all read-paths through a unique edge continue into a single successor edge (a

similar test is done for predecessor edges). If there are multiple successors or predecessors, the

edge is re-classified as repetitive.

Although this approach works well in genomic assemblies, it is not suitable for metage-
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nomic assemblies since the edge coverage is not a reliable predictor of the edge multiplicity.

Without the coverage test, the read-paths criteria might fail to identify repetitive edges that belong

to mosaic repeats, since it only checks one immediate predecessor and successor of each edge

(Figure 3.1). To address this pitfall, we substitute the “diverged read-paths” approach in Flye by

the “repeat detection” approach in metaFlye (described below) to identify repeat edges in the

metagenome assembly graph without using coverage information.

Initially, all edges in the assembly graph are labeled as unique. The algorithm iterates

through all edges and may change their classification into repetitive as described below. Thus, at

each intermediate iteration, the assembly graph may contain both unique and repetitive edges.

Given a read-path through an edge e, metaFlye defines the next unique edge in this path

as a successor of e (note that the original algorithm considers any edge as a successor). A set

of all read-paths through an edge defines either a single or multiple successors. To account for

chimeric reads, metaFlye filters out successors that are supported by less than MaxSucc/delta

reads, where MaxSucc is the number of reads for a successor with the highest support and delta

is a threshold (the default value of delta = 5). If an edge has multiple successors or predecessors,

it is classified as repetitive. The described test is performed iteratively on the entire set of edges,

until no new edges are classified as repetitive.

Intuitively, in a mosaic repeat, the first iteration of the test will classify some of its

edges as repetitive, but consecutive iterations extend the set of repeats (Figure 3.1). For a faster

convergence of the algorithm, we traverse edges of the graph in the increasing order of their

length, as short edges are more likely to be repetitive (two iterations are typically sufficient).

3.3.4 Assembling short plasmids

We distinguish between short (shorter than a threshold L with a default value of 10 kb)

and long plasmids (of length at least L). Sequencing of short plasmids is an important task

since they represent a large fraction (≈ 30%) of all plasmids in the RefSeq database. However,
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although existing long-read assemblers perform well in assembling long circular plasmids (longer

than the typical read length), our benchmarking revealed that they often miss short plasmids.

Paradoxically, the longer the reads, the more plasmids remain unassembled.

To assemble short plasmids, metaFlye first aligns all reads to the assembled contigs and

then extracts unaligned reads (reads with an aligned fraction below 50%). It further extracts single

unaligned reads and pairs of unaligned reads that assemble into circular sequences. metaFlye

focuses on single reads and pairs of reads because short plasmids are typically fully covered by a

single read or a pair of reads.

Given the set of unaligned reads, metaFlye constructs a set of short cyclocontigs by first

selecting all self-overlapping reads, i.e., reads that have overlapping prefixes and suffixes. To

further extend the set of cyclocontigs, it considers all pairs of reads and selects pairs (A,B) such

that B overlaps A and A overlaps B. This collection of constructed (unpolished) cyclocontigs may

contain duplicates that represent the same circular plasmid. To extract unique sequences from this

collection, metaFlye again performs an all-vs-all alignment of all the constructed cyclocontigs,

finds similar ones and clusters them so that each cluster represents a unique circular sequence.

metaFlye filters out single-read clusters (which are likely to represent artifacts from the extraction

of unaligned reads). It then selects a representative for each cluster, polishes the representative

using all reads contributing to the cluster as described in [Lin et al., 2016], and adds these

sequences to the final assembly output.

3.4 Results

3.4.1 Benchmarking using mock metagenomic datasets

We benchmarked metaFlye, Canu [Koren et al., 2017], miniasm [Li, 2016] and wt-

dbg2 [Ruan and Li, 2019] using Pacific Biosciences (PacBio) and Oxford Nanopore Technology

(ONT) mock metagenomic datasets, for which closely related reference genomes are available.
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We also ran the FALCON assembler [Chin et al., 2016] on the PacBio datasets, but not on the

ONT datasets (since FALCON requires PacBio-specific information as input). For each mock

metagenome, we used metaQUAST [Mikheenko et al., 2018] to evaluate the statistics of the

combined references (Table 3.1) as well as to compute the separate statistics for each species

present in the sample (Figure 3.2). Figure 3.4 additionally shows NGAx plots for all datasets.

Because miniasm outputs contigs with a high per-nucleotide error rate, we performed one round

of contig polishing using Racon [Vaser et al., 2017].

Generating assemblies. We used the following options to generate all assemblies:

• metaFlye was run using the “--meta --plasmids” option for all datasets. The minimum

overlap parameter for metaFlye was manually set to 2 kb for the cow rumen assembly.

We found that 13% of PacBio reads in the cow rumen dataset contained more than one

PacBio subread (reads with multiple polymerase passes). To split those chimeric reads,

we developed a small program called pbclip (https://github.com/fenderglass/pbclip) and

applied it to the PacBio data before running metaFlye.

• Miniasm was run using its default parameters for all datasets.

• Canu was run using parameters recommended for metagenome assembly: “corOutCover-

age=10000 corMhapSensitivity=high corMinCoverage=0 redMemory=32 oeaMemory=32

batMemory=200”.

• Wtdbg2 was run using the default parameters for the HMP dataset. However, since the

Zymo datasets had higher read coverage as well as low-abundance species, we increased

the k-mer frequency coverage range using “--node-max 1000 -e 2” as suggested by the

developers. This resulted in an increase in the total assembly length as compared to the

default settings (from 28 Mb to 55 Mb for the ZymoEven dataset, and from 12.6 Mb to

23.4 Mb for the ZymoLog dataset).
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(A) HMP

(B) ZymoEven

(C) ZymoLog

Reference Coverage

NGA50 (Mb)Reference Coverage

NGA50 (Mb)

Reference Coverage NGA50 (Mb)

metaFlye Canu miniasm wtdbg2 metaFlye Canu miniasm wtdbg2
B. subtilis (516x) 99.9 99.7 99.6 98.6 2.87 0.5 2.03 0.68
C. neoformans (10x) 85.6 83.7 39 42.8 0.037 0.041 - -
E. coli (220x) 99.9 99.9 97.9 88.5 4.07 1.33 0.2 0.18
E. faecalis (464x) 100 99.9 99.9 97.3 2.91 0.91 2.84 0.29
L. fermentum (528x) 99.9 99.9 99.8 98.8 1.67 0.27 1.91 1.67
L. monocytogenes (525x) 99.9 99.2 99.4 98.6 2.16 0.2 2.85 1.63
P. aeruginosa (155x) 99.9 99.8 99.9 89.3 6.73 1.57 4.44 0.7
S. aureus (445x) 100 99.9 99.1 97 2.78 0.83 2.15 0.42
S. cerevisiae (17x) 87.3 87 81.3 79.4 0.17 0.13 0.032 0.051
S. enterica (227x) 99.9 99.9 98.2 89 3.62 2.41 0.2 0.15

metaFlye Canu FALCON miniasm wtdbg2 metaFlye Canu FALCON miniasm wtdbg2
A. baumannii (63x) 99.9 99.8 95.3 99.4 99 0.9 0.9 0.44 0.76 0.31
A. odontolyticus (79x) 99.8 99.7 95.5 98.6 99.1 0.62 0.58 0.1 0.61 0.22
B. cereus (39x) 99.9 99.9 88.8 98.9 97.9 4.92 1.22 0.068 3.27 0.19
B. vulgatus (80x) 99.5 99.1 99.1 98.6 98.4 0.83 0.54 0.52 0.53 0.45
C. beijerinckii (49x) 99.9 99.9 92.9 98.2 97.8 1.46 3.48 0.1 0.89 0.26
D. radiodurans (83x) 99.3 99.3 98 98.3 99.2 0.77 0.63 0.7 1.14 1.18
E. coli (67x) 99.9 99.9 99.7 99.1 99.7 4.63 4.64 3.86 4.61 4.62
E. faecalis (75x) 99.9 99.9 99.8 99.2 99.6 2.73 2.74 1.54 2.71 1.91
H. pylori (477x) 100 100 12.2 99.8 99.3 1.14 0.95 - 0.9 1.04
L. gasseri (128x) 97.6 97.8 97.8 97 96.4 0.88 1.82 1.41 1.8 0.66
L. monocytogenes (124x) 100 100 100 99.6 100 2.94 2.65 2.94 2.93 2.47
N. meningitidis (102x) 98.5 98.9 98.5 97.9 98 1.55 1.68 2.23 0.43 0.53
P. acnes (100x) 100 100 100 99.2 99.9 2.56 2.56 2.55 2.54 2.55
P. aeruginosa (81x) 100 99.9 99.8 98.8 99.9 3.99 3.99 3.4 3.68 3.97
R. sphaeroides (42x) 99.9 99.9 23.5 98.2 97.4 1.41 2.15 - 2.47 0.25
S. agalactiae (67x) 99.7 99.9 99.8 99.3 98.8 2.15 1.92 2.14 2.14 0.59
S. aureus (110x) 99.9 100 100 99.1 99.9 1.8 2.4 2.05 1.39 1.49
S. epidermidis (95x) 100 100 100 99.4 99.8 2.03 2.46 2.36 2.01 0.5
S. mutans (134x) 99.9 100 100 99.3 99.2 2.03 1.28 0.68 1.19 1.67

metaFlye Canu miniasm wtdbg2 metaFlye Canu miniasm wtdbg2
B. subtilis (37x) 99.4 99.5 98.8 98.8 0.75 0.36 0.73 0.77
C. neoformans (0.003x) - - - - - - - -
E. coli (2x) 26.1 17.9 0.3 15.4 - - - -
E. faecalis (0.08x) 0.2 0.1 0.1 0.4 - - - -
L. fermentum (0.2x) 0.2 0.2 0.1 - 3.05 0.39 2.97 0.033
L. monocytogenes (3960x) 99.9 99.7 99 87.6 6.81 6.76 2.56 0.72
P. aeruginosa (158x) 99.9 99.9 99.8 98.8 - - - -
S. aureus (0.006) 0.5 - 0.2 - 0.009 0.044 - -
S. cerevisiae (7x) 49.2 80.2 11 40.1 - - - -
S. enterica (2x) 22.8 15.1 - 12.3 - - - -

Figure 3.2: Per-species statistics for the mock metagenomic datasets. Reference coverage and
NGA50 statistics were computed using metaQUAST. The read coverage for each species are
given in the brackets after the species name. NGA50 values are not reported for assemblies with
reference coverage below 50%.

• FALCON was run using a configuration file recommended for bacterial assemblies.

3.4.2 Analyzing HMP assemblies

The Human Microbiome Project (HMP) mock dataset represents a mock human gut

microbiome formed by 22 bacteria with known reference genomes sequenced using PacBio reads
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(total length 6.8 Gb and N50 = 6.7 kb). Nineteen of these bacteria have read coverages ranging

from 39x (B. cereus) to 477× (H. pylori). Since the remaining three genomes (M. smithii, C.

albicans, and S. pneumoniae) have low coverage (below 1×), they were excluded from further

analysis.

Table 3.1: Assembly statistics and benchmarks for the mock metagenomic datasets. To eval-
uate the HMP assemblies, we excluded three references with coverage below 1x from the
metaQUAST analysis. In the case of the ZymoEven datasets, all ten reference genomes were
used. In the case of the ZymoLog GridION dataset, only four reference genomes with read
coverages above 3x (L. monocytogenes, P. aeruginosa , B. subtilis, and S. cerevisiae) were used.
In the case of the ZymoLog GridION dataset, five bacteria and one yeast references were used.
Two yeast genomes (S. cerevisiae and C. neoformans) were excluded from the misassembly
counts analysis in all Zymo datasets because of the many apparent differences between the
reference and the assembled strains. Miniasm contigs were polished using Racon. Statistics
were computed using metaQUAST 5.0.2 with the minimum contig length set to 5 kb. All tools
were benchmarked on a computational node with 52 Intel Xeon 8164 CPUs. Reference coverage
is the percentage of the reference genome covered by assembled contigs. NGA50 is the NG50
statistic computed for contigs that are broken at their misassembly breakpoints.

Dataset description Assembler
Total
length Contigs

Reference
coverage NGA50

Mis-
assemblies

CPU
hours

HMP metaFlye 66.2 Mb 85 99.8% 1.77 Mb 67 45
6.8 Gb PacBio, Canu 68.2 Mb 180 99.7% 1.82 Mb 122 756

19 bacterial references FALCON 60.0 Mb 388 90.3% 0.76 Mb 116 150
miniasm 66.5 Mb 95 99.6% 1.48 Mb 74 11
wtdbg2 65.5 Mb 187 98.7% 0.66 Mb 104 4

ZymoEven GridION metaFlye 65.5 Mb 637 94.6% 526 kb 2 9 90
14 Gb ONT, Canu 65.7 Mb 807 95.6% 272 kb 36 4,590
8 bacterial & miniasm 51.9 Mb 998 80.4% 83 kb 26 67

2 yeast references wtdbg2 54.2 Mb 1101 75.9% 75 kb 11 5
ZymoLog GridION metaFlye 23.6 Mb 363 75.2% 407 kb 10 112

16 Gb ONT, Canu 26.9 Mb 433 90.2% 187 kb 57 38,800
3 bacterial & miniasm 15.6 Mb 122 56.5% 209 kb 43 299

1 yeast references wtdbg2 23.0 Mb 668 56.6% 14 kb 20 13
ZymoLog PromethION metaFlye 70.3 Mb 527 94.6% 647 kb 11 1,000

146 Gb ONT wtdgb2 25.7 Mb 313 39.4% - 30 12
8 bacterial

2 yeast references
ZymoLog PromethION metaFlye 38.4 Mb 284 95.4% 3 Mb 34 4,500

148 Gb ONT, wtdgb2 17.3 Mb 385 32.8% - 31 16
5 bacterial

1 yeast references

The metaFlye, Canu and miniasm assemblies resulted in high reference coverage (ranging

from 99.6% for miniasm to 99.8% for metaFlye) and NGA50 (ranging from 1.48 Mb for miniasm
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to 1.82 Mb for Canu). The number of misassemblies varied from 67 for metaFlye to 122 for

Canu. The wtdbg2 and FALCON assemblies had reduced reference coverage (98.6% and 89.9%,

respectively) and lower contiguity(NGA50 = 0.66 Mb and 0.76 Mb, respectively). The reduced

coverage and contiguity were mainly associated with bacteria with abundances that deviated from

the median dataset coverage the most (B.cereus, R. shaeroides, C. beijerinckii and H. pylori; see

Figure 3.2), highlighting the challenge of assembling metagenomics datasets with uneven species

abundance.

metaFlye assembled all 14 known plasmids that have been previously identified in the

HMP dataset [Antipov et al., 2019]. Miniasm, Canu, FALCON and wtdbg2 missed one, two,

four, and four plasmids, respectively. Most of the missed plasmids were shorter than 5 kb and

were fully covered by a single read, illustrating the additional complications in reconstructing

short plasmids. Overall, plasmid reconstruction using long reads showed substantial improvement

over short-read metagenomic assemblers: the metaplasmidSPAdes short-read plasmid assembler

reconstructed only seven out of the 14 plasmids from the same sample [Antipov et al., 2019].

Figure 3.3: Bandage visualizations of the Zymo assemblies using metaFlye. Graph edges are
colored according to their reference alignments. (a) The ZymoEven PromethION assembly. (b)
The ZymoLog PromethION assembly.
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3.4.3 Analyzing Zymo assemblies

The ZymoBIOMICS Microbial Community Standards datasets represent mock metage-

nomic datasets generated using ONT reads with an N50 of 5 kb [Nicholls et al., 2019]. The

ZymoEven mock community consists of eight bacteria with abundance 12% and two yeast

species with abundance 2%. The ZymoLog dataset represents the same microbial community

with abundances distributed as a log scale from 89.1% (Listeria monocytogenes) to 0.000089%

(Staphylococcus aureus). Each of the two communities were sequenced using GridION (total

read lengths of 14 Gb and 16 Gb for the ZymoEven and ZymoLog datasets, respectively) and

PromethION (total read lengths of 146 Gb and 148 Gb for the ZymoEven and ZymoLog datasets,

respectively). Since the provided reference assemblies of the two yeast species (S. cerevisiae and

C. neoformans) were highly fragmented, we substituted them with the closest complete reference

strains from NCBI (YJM1307 and JEC21, respectively). Because of the structural differences

between the references and the assembled strains, we ignored misassemblies from these yeast

genomes in the total count of misassemblies.

The Canu and metaFlye assemblies of the ZymoEven GridION dataset covered 95.6%

and 94.6% of the combined reference length (in contigs of length 5 kb and higher), and improved

over the miniasm and wtdbg2 assemblies (80% and 76%, respectively). metaFlye, compared to

Canu, showed better contiguity (NGA50 = 526 kb and 272 kb, respectively) and accuracy (29

and 36 misassemblies, respectively). Figure 3.2 illustrates that metaFlye and miniasm produced

similar assemblies for most of the bacterial species; however, miniasm produced more fragmented

assemblies for the yeast species.

The ZymoLog GridION dataset contains only four species with read coverage above

3×: L. monocytogenes (3960×), P. aeruginosa (158×), B. subtilis (38×) and S. cerevisiae (7×).

metaFlye reconstructed over 99% of the three most abundant bacteria and 49% of S.cerevisiae.

Miniasm assembled a smaller fraction of S.cerevisiae (10%), and wtdbg2 generated a highly

fragmented assembly of the abundant L. monocytogenes. Canu produced the best coverage of the
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S.cerevisiae genome (80%), however the assembly was highly fragmented. Overall, metaFlye

showed the best contiguity, followed by miniasm and Canu ( NGA50 = 407 Kb, 209 Kb and 187

Kb, respectively; see Figure 3.2). The number of misassemblies varied from 10 for metaFlye to

57 for Canu (Table 3.1).

metaFlye assembled PromethION runs of both ZymoEven and ZymoLog communities

in 1,000 and 4,500 CPU hours, respectively (Table 3.1). In the ZymoEven dataset, all bacterial

genomes but two were assembled into single circular contigs (the assemblies of L. monocytogenes

and E. faecalis resulted in three contigs since they share an unresolved repeat of length 35 kb).

The contiguity of the C. neoformans and C. cerevisiae assemblies (NGA50) increased by a

factor of 2 as compared to the GridION assembly. For the ZymoLog dataset, the cumulative

reference coverage of all species in metaFlye assembly increased from 38% to 58%. In particular,

S.cerevisiae coverage increased from 49% to 87% and the previously unassembled E. coli and S.

enterica genomes had over 99% coverage in the PromethION assembly. This improvement in the

reconstruction of underrepresented species highlights the benefits of generating deep coverage

datasets for long-read metagenome sequencing. Bandage visualizations [Wick et al., 2015] of the

metaFlye GridION assemblies are shown in Figure 3.3.

The wtdbg2 assembly of the ZymoEven PromethION dataset was smaller than its GridION

assembly (26 Mb vs 54.2 Mb, respectively), which might be a result of read subsampling

procedures implemented in this assembler. Similarly, the ZymoLog assembly size was reduced

from 23.4 Mb for GridION to 17.3 Mb for PromethION. Since the Canu running time on the

Zymo PromethION datasets was estimated as 50,000+ CPU hours, it was impractical to run it

on the available hardware. We also did not attempt to run miniasm, since the estimated size of

the minimap2 alignment in PAF format was 20 Tb (projected from 200 Gb for the GridION

ZymoEven dataset).
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Figure 3.4: NGAx / NGx plots for different datasets generated using metaQUAST. (A-C) NGA
statistics were computed for the datasets with available references. (D) NG plot of the cow
rumen dataset with the genome size set to 1 Gb. (E) NG plot of the 19 human stool samples
combined, with genome size set to 800 Mb.

3.4.4 Analyzing cow rumen assemblies

We assembled a cow rumen dataset consisting of PacBio reads (total read length 52.2

Gb with N50 9 kb) and compared the metaFlye assembly against the Canu assembly that was

generated in the original study [Bickhart et al., 2019]. Both assemblies were polished using
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short reads with two rounds of Pilon polishing in indel correction mode [Walker et al., 2014].

The metaFlye and Canu assemblies had total lengths of 1,260 Mb and 1,035 Mb contained in

contigs longer than 5 kb, respectively. Prodigal [Hyatt et al., 2010] predicted 1,431,527 full

(38,376 partial) genes in the metaFlye assembly, and 1,191,681 full (95,679 partial) genes in

the Canu assembly. The NG50 was 44 kb for metaFlye and 19 kb for Canu for a hypothetical

metagenome size of 1 Gb (Figure 3.4d). The NGx statistics should be evaluated with caution

since (in difference from NGAx statistics) it does not account for possible misassemblies (NGA50

statistics cannot be computed since the reference cow rumen genomes are unknown). However,

our analysis of mock datasets suggest that metaFlye is more accurate than Canu.

We used Barrnap (https://github.com/tseemann/barrnap) to identify 581 and 422 full-

length 16S rRNA genes in metaFlye and Canu assemblies, respectively. We further clustered

these genes at 95% identity using vsearch 2.13.4 [Rognes et al., 2016] to reveal the fine-grained

taxonomic composition of the microbial community. Singletons were removed, because they

likely represent poorly polished copies of 16S genes rather than separate 16S genes. This

clustering resulted into 105 and 78 OTUs for metaFlye and Canu assemblies, respectively

(with 71 OTUs in common). Taxonomic assignment was performed against the SILVA132

full-length rRNA database [Quast et al., 2012] using the SILVA ACT service. 25 representative

sequences showed < 90% alignment identity to the closest hit in the Silva database, suggesting

that they likely represent novel members of Synergistetes, Kiritimatiellaeota, Tenericutes and

Bacteroidetes. This analysis demonstrates that, in contrast to short-read assemblers that typically

fail to reconstruct full-length 16S RNAs due to the assembly fragmentation, long-read assemblers

show a great potential in analyzing the microbial “dark matter of life” [Lloyd et al., 2018] by

capturing many 16S RNA genes within long contigs (up to 374 kb long in the metaFlye cow

rumen assembly).

plasmidVerify [Antipov et al., 2019] and VirSorter [Roux et al., 2015] identified 52

putative plasmids and 37 viruses from the circular contigs in the metaFlye assembly. Among
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them, seven plasmids and two viruses were identified using only the plasmid detection algorithm

aimed at short plasmids and described in the Methods section. All but three of the identified

plasmids and viruses did not have significant BLAST matches (E-value < 0.001) against the

NCBI database, thus potentially representing novel sequences. The Canu assembly had fewer

putative plasmids among its circular contigs (39 versus 52) but more viruses (87 versus 37) as

compared to the metaFlye assembly. Interestingly, there was little overlap between the plasmids

(only 8) and viruses (only 10) identified in the metaFlye and Canu assemblies, suggesting that

there may be a synergy between these two tools.

3.4.5 Analyzing human microbiome assemblies

[Bertrand et al., 2019] introduced a metagenome assembly pipeline OPERA-MS that

combines short- and long-read assembly with MAG clustering using the available bacterial

reference databases. The authors showed that OPERA-MS improves assembly contiguity by

an order of magnitude as compared to short read-only methods. Below we benchmark the

performance of long-read assemblers (metaFlye and Canu) using the 19 human gut metagenomic

datasets generated in this study. We also demonstrate that metaFlye enables co-assembly of

multiple metagenomics datasets together for analyzing metagenomic time series sampled across

space and samples. We show that co-assembly increases the total assembly length while preserving

its contiguity as compared to the assemblies of individual samples.

We analyzed all available samples from the ENA database (project ID: PRJEB29152) and

excluded samples with low coverage depth, which resulted in 19 datasets (Table 3.2) with varying

total read lengths (from 1.6 Gb to 8.0 Gb) and assembly sizes (from 5 Mb to 114 Mb in contigs

that had read coverage above 5x). We used Pilon to polish each of the 19 assemblies separately

using Illumina reads. In sum, metaFlye and Canu assembled 999 Mb and 835 Mb of sequence;

Prodigal predicted 1,446,584 and 1,215,605 full-length genes in these assemblies, respectively.

metaFlye assembled more sequence (compared to Canu) in 15 out of 19 samples (Figure 3.5a),
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Table 3.2: metaFlye and Canu assemblies of 19 human stool samples. Only contigs with ONT
read coverage above 5x were retained for both the metaFlye and Canu assemblies. Contigs
were further polished using Pilon in indel correction mode. The NG50 statistic was calculated
based on a genome size equal to the minimum of the metaFlye and Canu total assembly lengths.
Genes were predicted using Prodigal.

Sample Total read Assembly size (Mb) NG50 (kb) Longest contig (Mb) Predicted genes
ID length (Gb) metaFlye Canu metaFlye Canu metaFlye Canu metaFlye Canu
01 3.18 32 29 29 54 1.8 1.7 51,417 46,242
02 2.66 17 14 175 193 3.4 4.8 30,355 26,231
03 5.37 104 75 417 201 4.0 4.5 174,904 131,270
05 4.22 79 64 69 62 1.8 1.4 111,519 92,408
06 1.99 5 5 1,230 891 1.8 1.2 6,081 6,393
07 7.99 66 64 286 286 3.1 2.0 77,477 72,531
08 2.53 35 37 44 147 0.45 1.4 61,802 61,830
09 1.00 32 25 60 48 0.65 1.1 44,940 36,995
10 5.86 87 70 119 110 3.0 2.9 116,611 94,394
11 4.25 75 53 611 475 4.4 5.8 110,900 75,748
14 4.30 53 43 109 149 1.5 1.7 65,841 55,274
15 1.63 57 45 73 68 3.8 1.7 81,672 65,642
16 2.57 20 35 25 75 0.62 1.3 30,396 53,033
17 4.93 56 45 126 208 1.8 1.9 74,711 58,382
18 2.52 35 28 57 115 0.42 1.0 57,320 46,043
19 5.17 45 35 129 145 1.8 3.9 78,523 60,235
21 7.25 40 54 25 14 0.34 0.13 60,235 75,161
22 2.67 32 27 663 794 3.3 4.9 47,686 38,476
23 5.23 113 74 105 64 2.4 2.4 169,168 119,317

and the NG50 statistic was comparable for both assemblers in most of the datasets (Figure 3.5b;

Figure 3.4e). metaFlye processed all samples in 1,020 CPU hours, while the Canu assembly took

15,200 CPU hours. Similarly to the cow rumen metagenome analysis, we extracted and clustered

full-length 16S RNAs and revealed 109 and 84 OTUs (excluding singletons) for the metaFlye

and Canu assemblies, respectively (all 84 OTUs from the Canu assembly were also recovered by

metaFlye).

To investigate the sequence overlap between the samples, we used SibeliaZ [Minkin and

Medvedev, 2019] to produce multi-way whole genome alignments between all samples. A contig

region is called unique if it does not align to any other contig region in another sample, and

shared, otherwise. The percentage of unique regions varied from 7% to 73% in various samples

(Figure 3.5a), highlighting the differences in sample compositions. This analysis revealed that 510

Mb out of a total of 999 Mb in the metaFlye assembly represent non-redundant core sequences

(400 Mb out of 835 Mb in Canu assemblies also represent core sequences).
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3.4.6 Co-assembly of multiple metagenomes

To investigate how the difficulty of metagenome assembly scales with the increasing

complexity of the sample, we compared separate metaFlye assemblies of all 19 samples with

the multi-metagenomic mixed metaFlye assembly of all reads from all samples (comprising a

total length of 75.6 Gb) that took 570 CPU hours and resulted in 549 Mb of total contig length.

The mixed assembly was slightly larger than the total core sequence length of the 19 separate

assemblies (510 Mb), likely due to (i) the recovery of species whose coverage was too low

in the separate samples but had sufficient depth of coverage in the mixed sample, and (ii) the

presence of related bacterial strains that were collapsed in the whole genome alignment. To

compare the sequence content, we aligned the reads from each sample to the mixed and separate

metaFlye contigs using minimap2 [Li, 2018]. The fraction of reads aligned to both the mixed

and separate assemblies ranged from 42% to 80% across the 19 separate assemblies, while the

fraction of reads aligned to the separate, but not the mixed assemblies ranged from 2% to 8%

(Figure 3.5c). This confirms that the mixed and all of the separate assemblies (combined together)

had similar sequence content. For each long contig from each separate assembly (longer than 50

Kb), we selected a contig from the mixed assembly with the best alignment to evaluate change

in contiguity. Within each sample, we computed the ratio between the lengths of separate and

mixed contigs for those pairs (Figure 3.5d). For all samples, the contig length rate distribution

was centered around one, suggesting that on average the contiguity of the mixed assembly is

comparable to the (easier) assemblies of the separate samples.

3.5 Discussion

Although long-read metagenomics is a promising direction for untangling complex bacte-

rial communities, it faces difficult algorithmic challenges. We developed the long-read metage-

nomic assembler metaFlye and benchmarked it using both mock and real metagenomic communi-

107



(A) (B)

(C) (D)

1 2 3 5 6 7 8 9 10 11 14 15 16 17 18 19 21 22 23
Sample ID

0

20

40

60

80

100

120

A
ss

em
bl

ed
 s

eq
ue

nc
e,

 M
b

Flye shared

Flye unique

Canu shared

Canu unique

1 2 3 5 6 7 8 9 10 11 14 15 16 17 18 19 21 22 23
Sample ID

0

200

400

600

800

1000

1200

1400

N
G

50
, K

b

Flye

Canu

1 2 3 5 6 7 8 9 10 11 14 15 16 17 18 19 21 22 23
Sample ID

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

ne
d 

re
ad

s 
fr

ac
tio

n

Mixed and separate

Only in separate

Only in mixed

1 2 3 5 6 7 8 9 10 11 14 15 16 17 18 19 21 22 23
Sample ID

10-3

10-2

10-1

1

101

102

103

S
ep

ar
at

e 
to

 m
ix

ed
 c

on
tig

 le
ng

th
 r

at
e

Figure 3.5: Analysis of 19 human stool metagenomic samples. The numbering of the 19
samples follows the numbering of the samples analyzed in [Bertrand et al., 2019]. (a) Total
contig lengths for the metaFlye and Canu assemblies (only contigs with coverage above 5x were
considered). (b) The NG50 length distribution. For each sample, the minimum of the metaFlye
and Canu assembly sizes was selected as the genome size for calculating the NG50. (C) The
fraction of aligned reads (with minimum alignments of at least 75% of the reads length) in
metaFlye assemblies. Each read was aligned against a separate and a mixed assembly. (D) The
length ratios of the contigs from the separate assemblies to the corresponding contigs from the
mixed assembly. The distributions of the length ratios within each sample are centered around 1.

ties. Most long-read assemblers generated contigs covering a large fraction of the reference for the

HMP mock dataset, with the metaFlye, Canu and miniasm assemblies being the most contiguous.

However, miniasm and wtdbg2 tended to have difficulty assembling species with large deviations

in coverage (as in the Zymo datasets), while the Canu assemblies showed reduced contiguity and

an increased number of assembly errors. With respect to the running time, metaFlye was 10- to

300-fold faster than Canu on the various datasets. Only metaFlye and wtdgb2 were able to scale

to the 150 Gb PromethION runs, but the wtdbg2 PromethION assemblies were less complete and
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more fragmented compared to its corresponding GridION assemblies.

Our analysis of the cow rumen dataset revealed that long-read assemblers greatly improve

on short-read assemblers with respect to the full-length sequencing of 16S RNA genes, plasmids

and viruses. The metaFlye and Canu assemblies of this dataset confirmed the trend that we

observed with the mock metagenomes: that the metaFlye assembly tends to be more contiguous

(in terms of the NGx statistics). Since the number of assembly errors is not known, it remains

unclear what the gap is between the NGAx and NGx statistics for both assemblers.

It was recently demonstrated [Bertrand et al., 2019] that combining short and long read

assembly techniques with the information from bacterial reference databases provide an order of

magnitude improvement in contiguity as compared to de novo short-read assemblies. We arrived

at the same conclusion for long-read-only assemblies. It is possible that combining metaFlye with

an external MAG assembly pipeline (such as OPERA-MS) will further improve the assembly

quality. We demonstrated that co-assembly of multiple microbiome samples improves on separate

sample-by-sample assemblies with respect to total assembly length, while having comparable

contiguity. This enables new approaches to long-read-based analysis of metagenomic time series.

Although metaFlye is currently limited to assembling long reads only, we plan to extend

it to assembling hybrid datasets that combine long and short reads. The existing bacterial and

metagenomic hybrid assemblers, such as hybridSPAdes [Antipov et al., 2015], Unicycler [Wick

et al., 2017], and Opera-MS [Bertrand et al., 2019] first assemble short reads using SPAdes or

metaSPAdes and further scaffold the resulting contigs by overlaying either individual or multiple

long reads to resolve repeats in the short-read assembly graph. All these approaches are based on

constructing the short-read metagenomic assembly graph that is significantly more fragmented

than the long-read assembly graph generated by metaFlye. Thus, it seems more logical to

implement an alternative hybrid metagenomic approach based on (i) assembling long-read into

contigs, (ii) assembling short reads into contigs, and (iii) combining long-read and short-read

contigs and assembling them together using Flye.
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Software versions used.

• Flye: 2.4.2

• Canu: 1.8

• FALCON: pb-falcon 0.2.5

• Miniasm: 0.3

• Wtdbg2: 2.3

• QUAST: 5.0.2

Data availability. The described datasets are available from the corresponding locations:

• HMP mock dataset: https://github.com/PacificBiosciences/DevNet/wiki/Human Microbiome

Project MockB Shotgun

• Zymo datasets: https://github.com/LomanLab/mockcommunity

• Cow rumen dataset : NCBI SRA repository under Bioproject PRJNA507739

• Human stool samples: ENA project PRJEB29152

• The assemblies and metaQUAST evaluations used in this study are available at: https:

//doi.org/10.5281/zenodo.2801953

Code availability. metaFlye is freely available as a part of the Flye package at: https:

//github.com/fenderglass/Flye. The pbclip tool for PacBio subread splitting is available from:

https://github.com/fenderglass/pbclip.
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