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ABSTRACT OF THE DISSERTATION

Essays in Bayesian Econometrics and Game Theory

By

Jieyu Gao

Doctor of Philosophy in Economics

University of California, Irvine, 2024

Associate Professor Ivan Jeliazkov, Chair

This dissertation comprises three chapters that expand upon Bayesian econometrics and

game theory. Chapter 1 integrates heteroskedasticity into various models including regres-

sion discontinuity design, the Rubin causal (Roy-type) model, propensity score matching,

and inverse probability weighting within a Bayesian framework. The practical adequacy of

our modeling techniques is assessed through formal Bayesian model comparisons. Simulation

studies evaluate the impact of neglected heteroskedasticity and the efficacy of our proposed

methods, while their practical applicability is examined through three applications. Specifi-

cally, we investigate the impact of academic probation on subsequent academic performance,

the effect of Medigap on healthcare expenditures, and the influence of COVID-19 vaccination

on mental well-being. These applications highlight the consequences of misspecification and

underscore the importance of addressing risks associated with omitted heteroskedasticity.

Chapter 2 introduces a Bayesian treatment model that incorporates self-selection and mul-

tiple outcomes. We discuss marginal likelihood estimation for formal model comparison and

validate our approach through simulation results. We then apply the model to two datasets,

examining the influence of insurance on healthcare utilization. In particular, we analyze

the impact of Medigap policies on healthcare expenditure using 1987 National Medical Ex-

penditure Survey (NMES) data and the effect of types of private insurance on healthcare

utilization using 1996 Medical Expenditure Panel Survey (MEPS) data. Our analysis indi-

x



cates weak evidence supporting selection bias in both applications. In Chapter 3, we delve

into the analysis of a price signaling game that integrates consumer learning. The chapter de-

lineates the perfect Bayesian equilibrium for sellers and employs the undefeated equilibrium

refinement to determine optimal choices. Furthermore, our analysis encompasses compara-

tive statics, examining how variations in the probability of type revelation, initial customer

review scores, and the quality of both high and low-quality seller products impact the ex-

pected return for sellers. Collectively, these chapters offer methodological advancements in

Bayesian econometrics and game theory, and provide insights into real-world phenomena

across various industries.
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Chapter 1

The Impact of Heteroskedasticity in

Observational Studies of Causal

Effects

There is a large and rapidly growing causal inference literature, yet little is known about

the impact of heteroskedasticity in popular causal settings. In observational studies where

the presence of heteroskedasticity can not be ruled out with certainty, its effects on treat-

ment assignment and response generation must be studied not only because they can be of

interest in their own right, but also because omitted heteroskedasticity can interact with

nonlinearities in each case and impact the bias and consistency properties of estimators

which can not be corrected by standard error adjustments. Our approach is Bayesian and

involves modeling whose practical adequacy is addressed through model comparisons. We

extend the methodology underlying well-known settings such as the regression discontinuity

designs, the Rubin causal (Roy-type) model, propensity score matching, and inverse probabil-

ity weighting. Key features of that methodology include flexible modeling, the development

of customized computationally efficient estimation algorithms, the ability to recover various
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functions of the treatment parameters, and improved efficiency of estimation. Simulation

studies demonstrate the effects of omitted heteroskedasticity and gauge the adequacy of our

proposed modeling and estimation methods, while their practical applicability is studied in

three applications. In particular, we examine the effect of academic probation on subse-

quent academic performance, the influence of Medigap on healthcare expenditures, and the

impact of COVID-19 vaccination on mental well-being. These applications illustrate the

consequences of misspecification and provide strong evidence that the dangers of omitted

heteroskedasticity should not be ignored.

1.1 Introduction

The formulation of an identification framework through which the observed outcomes for the

treated and untreated units can be compared plays a crucial role in observational studies of

causal effects. This importance is underscored by challenges arising from non-random treat-

ment assignments, unobserved confounders, or the inherent missingness of counterfactual

outcomes at the unit level. A variety of parametric, semi-parametric, and nonparametric

approaches have been proposed in the literature that have dealt with the effects of contin-

uous, binary, and categorical treatments in non-experimental settings in both classical and

Bayesian contexts. Regression discontinuity, Rubin causal (a.k.a. Roy-type) models, and

matching estimators, among others, have been proposed and implemented in applications.

Classical approaches have tended to center around estimators that are robust to potential

misspecifications of the data-generating process (DGP), which is often not explicitly stated,

and inference is asymptotic. The Bayesian methods adopted in this paper, consider the

DGP directly and explicitly, leading to finite-sample inferences; possible misspecification is

handled by allowing for flexible modeling and conducting formal model comparisons and

specification searches.
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The Bayesian literature on treatment effect estimation encompasses a diverse array of mod-

els. One strand of this literature has focused on estimating treatment effects in continuous

and discrete (binary, ordinal, and count) instrumental variable models (Koop and Tobias,

2004; Mintz, Currim and Jeliazkov, 2013; Li and Tobias, 2014; Vossmeyer, 2014a), settings

with sequential outcomes Munkin (2011), as well as models with nonparametric endogeneity

(Kline and Tobias, 2008; Chib, Greenberg and Jeliazkov, 2009). Chan and Tobias (2015)

propose methods for analyzing models with imperfect instruments which are not necessar-

ily excluded from the primary regression equation of interest. Moreover, models embodying

both endogeneity and sample selection have been presented in Chib, Greenberg and Jeliazkov

(2009), Vossmeyer (2014b), and Vossmeyer (2016) (see also van Hasselt, 2014).

Work has also been done within the broader potential outcomes framework for causal analy-

sis offered by the Rubin causal model Rubin (1974, 1977, 1978, 2004, 2005), often referred to

as a Roy-type model following the work of Roy (1951). Bayesian research in cross-sectional

settings encompasses both continuous and discrete outcome variables, while considering bi-

nary or categorical treatments (see, e.g., Munkin and Trivedi, 1999; Chib and Hamilton,

2000; Munkin, 2003; Munkin and Trivedi, 2003; Deb, Munkin and Trivedi, 2006; Li and

Tobias, 2008, 2011). Extensions to longitudinal settings have been addressed in Chib and

Hamilton (2002) and Jacobi, Wagner and Frühwirth-Schnatter (2016). Estimation has been

approached both by explicitly simulating the counterfactuals from their joint distribution

with the observed outcomes (Li, Poirier and Tobias, 2004) and by solely involving the ob-

served outcomes Chib (2007). Heckman, Lopes and Piatek (2014) proposed a method to

model the joint distribution of potential outcomes by introducing a latent factor into the

analysis.

Following the seminal work of Rosenbaum and Rubin (1983) and Rosenbaum (1987), sub-

stantial attention has also been directed toward the development and application of methods

centered around the conditional probability of receiving treatment, known as the propen-

3



sity score (Dehejia and Wahba, 1999; Imai and van Dyk, 2004; Brand and Halaby, 2006;

Zhao, 2008; Caliendo and Kopeinig, 2008; An, 2010; Zhao, van Dyk and Imai, 2020; Chaud-

huri and Howley, 2022; Chesnaye et al., 2022; Duan et al., 2023). A recent review of these

methodologies is offered in Rosenbaum and Rubin (2022). Propensity score matching (PSM)

and inverse probability of treatment weighting (IPTW) estimators have found application

across a broad range of settings. The framework is elegant and theoretically powerful; yet, in

practice, results from its implementation have often been mixed. Because propensity score

misspecification can compromise the efficacy of PSM and IPTW methods, model uncertainty

is a pivotal challenge that warrants formal consideration in empirical practice.

There has also been a recent surge in interest in causal analysis within the regression dis-

continuity design (RDD) framework. The RDD approach, introduced in Thistlethwaite and

Campbell (1960) aims to address causal inference in a quasi-experimental setting where

treatment assignments are based on an ancillary variable crossing a known cutoff, with a

discontinuous treatment assignment rule at this cutoff point. Sharp RDD has a strict rule

for treatment assignment based on the cutoff, whereas in fuzzy RDD the assignment is prob-

abilistic. There are many different applications and extensions in the literature (see Hahn,

Todd and Van der Klaauw, 2001; Calonico, Cattaneo and Titiunik, 2014a,b; Cattaneo, Frand-

sen and Titiunik, 2015; Dong, 2015; Dong and Lewbel, 2015; Fletcher and Tokmouline, 2018;

Dong, 2019; Wright, 2020; Dong, Lee and Gou, 2023, among others), yet Bayesian analysis

has been relatively recent (Chib and Jacobi, 2016; Branson et al., 2019; Geneletti et al.,

2019; Chib, Greenberg and Simoni, 2023). RDD methods continue to evolve rapidly, offering

new perspectives and analytical tools in the study of causal relationships.

Despite the large and rapidly expanding body of causal methodology, the ramifications of

heteroskedasticity in many popular treatment models remain poorly understood. One recent

exception is the work of Ferman and Pinto (2019) who show that the presence of heteroskedas-

ticity can severely impede the performance of standard methods, even in straightforward

4



linear specifications such as difference-in-differences, especially when confronted with small

data sets. In non-linear contexts, including those mentioned earlier, the detrimental effects

of heteroskedasticity in treatment assignment and response generation are expected to be

amplified by any non-linearity and affect not only the efficiency, but also the bias and consis-

tency properties of traditional estimators. This challenge underscores the need for a deeper

study of the effects of heteroskedasticity, the development of new methodologies, and their

careful implementation in applications.

In this chapter, we pursue these objectives by integrating heteroskedasticity into models

within RDD, the Rubin causal (Roy-type) model, and the PSM and IPTW estimation

frameworks. In each setting, we present customized Markov chain Monte Carlo (MCMC)

simulation algorithms that are used for the estimation of the model parameters, includ-

ing the treatment effects, as well as for estimating marginal likelihoods for the purpose of

model comparisons. Marginal likelihood estimation is approached by calling upon exist-

ing techniques, when those are available, and by developing novel computationally efficient

approaches when needed, e.g., in multi-block samplers that would otherwise be computa-

tionally costly. Furthermore, in each case we conduct targeted simulation studies in order to

illustrate the effects of heteroskedasticity and demonstrate the performance of the estimation

and model comparison algorithms. Finally, we employ the techniques in several applications

to gauge their practical relevance. In particular, we study the effect of academic probation

on subsequent academic performance, the influence of Medigap on healthcare expenditures,

and the impact of COVID-19 vaccination on mental well-being in the UK.

The rest of the chapter is organized as follows. In Section 1.2, we build upon and extend ex-

isting Bayesian methods for the regression discontinuity designs in which we couple nonpara-

metric modeling of the running variable with a model for heteroskedasticity. In Section 1.3,

we develop modeling and estimation techniques for the analysis of a heteroskedastic Rubin

causal model, while Section 1.4 focuses on PSM and IPTW estimation under heteroskedas-

5



ticity. Each section presents MCMC estimation algorithms, assesses the performance and

impact of heteroskedasticity through simulations, and applies them in practical scenarios.

Section 1.5 offers concluding remarks.

1.2 Regression Discontinuity Design

This section considers heteroskedastic variants of the RDD framework and provides the nec-

essary estimation and model comparison techniques. Key parts of the methodology, e.g., the

sampling of heteroskedasticity parameters and the approach for estimating the marginal like-

lihood, will continue to play a pivotal role in subsequent sections. Nonparametric functions

are employed to safeguard against misspecification while improving efficiency by capitalizing

on the entirety of available data (cf. Branson et al., 2019; Chib, Greenberg and Simoni,

2023), as opposed to limiting the analysis to only a subset of observations near the cutoff

point. Techniques are developed for both continuous and binary outcomes.

In the sharp RD setting, the treatment Ti ∈ {0, 1} for unit i = 1, . . . , n is determined by

a running variable wi and a known cutoff w∗ such that Ti = 1{wi ≥ w∗}. The potential

outcomes of unit i are continuous and are denoted by yi0 and yi1 for Ti = 0 and Ti = 1,

respectively, and are assumed to be generated by the additive specification

yij = gj(wi) + x′iβj + εij, εij ∼ N
(
0, σ2

ij

)
, ln(σ2

ij) = z′iγj, for j ∈ {0, 1}, (1.1)

where we observe yi = (1− Ti) yi0 + Tiyi1. Heterogeneity is allowed to depend on some

collection of variables zi that could include, but is not necessarily limited to, the variables in

{xi, wi, Ti} and their interactions. Extensions beyond normality can be pursued through scale

mixtures of normals (Andrews and Mallows, 1974) or Dirichlet process mixtures (Ferguson,

1973; Antoniak, 1974).
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The model specified in equation (1.1) is one of structural change between the treated and

untreated samples; thus, intuitively, estimation can simply be performed separately within

each sub-sample. However, estimation has typically been performed under the assumption

β0 = β1, which emphasizes the discontinuity in the running variable and, if confirmed by the

data, makes inference more precise (the assumption will be examined in the application in

Section 1.2.3). In the literature, the RD average treatment effect (RD ATE) is defined as

∆SRD ≡ lim
w↓w∗+

E (Y1|w, xi)− lim
w↑w∗−

E (Y0|w, xi)

= lim
w↓w∗+

E (g1(w) + x′iβ1)− lim
w↑w∗−

E (g0(w) + x′iβ0) ,

(1.2)

which, in the special case when β1 = β0, leads to

∆SRD = lim
w↓w∗+

g1(w)− lim
w↑w∗−

g0(w) . (1.3)

The function gj(·) plays a crucial role in this setting and is modeled nonparametrically with

only local penalties for smoothness in order to mitigate the potential for undue influence of

values of w far from w∗ on the estimated values of gj(·) close to w∗ (Gelman and Imbens,

2019). Flexible functional modeling can be implemented through a variety of approaches

including B-splines, regression splines, natural splines, truncated power series, or wavelets,

among others (for a review, see, e.g., Ruppert, Wand and Carroll, 2003; Ahamada and

Flachaire, 2010). Here we focus on flexible modeling through Gaussian random fields Poirier

(1973); Shiller (1984); Williams (1998); Fahrmeir and Lang (2001); Koop and Poirier (2004);

Koop, Poirier and Tobias (2005); Rue and Held (2005); Chib and Jeliazkov (2006); Chan and

Jeliazkov (2009a); Jeliazkov (2013); Branson et al. (2019) because it allows for smoothing

at every observed value of the running variable (instead of a coarser set of knots), while

retaining key desirable computational properties. Extensions of the model in (1.1) to an

additive nonparametric mean structure for the covariates xi can be implemented as in Koop,

Poirier and Tobias (2005), Panagiotelis and Smith (2008), or Jeliazkov (2013). Chib and
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Greenberg (2010) combine nonparametric mean and error distribution modeling.

To facilitate the derivations, arrange the data {Ti, yi, wi, xi}ni=1 so that observations 1 ≤

i ≤ n0 belong to the control group, while the n1 units i ∈ [n0 + 1, n] pertain to the

treated group. Let y0 ≡ (y1, . . . , yn0)
′, w0 ≡ (w1, . . . , wn0)

′, y1 ≡ (yn0+1, . . . , yn)′, and

w1 ≡ (wn0+1, . . . , wn)′. To define gj(·), denote the unique ordered values of wj as vj, i.e.,

v0 = (w0,min, . . . , w
∗)′ = (v01, . . . , v0m0)

′, v1 = (w∗, . . . , w1,max)′ ≡ (v11, . . . , v1m1)
′, with mj

being the number of elements in vj. Note that the cutoff w∗ appears in both v0 and v1 to

enable computation of g0(w∗) and g1(w∗).

The function evaluations gj =
(
g (vj1) , . . . , g

(
vjmj

))′ ≡ (
gj1, . . . , gjmj

)′
, j ∈ {0, 1}, are

modeled as a second order Markov process

gjl =

(
1 +

hjl
hjl−1

)
gjl−1 −

hjl
hjl−1

gjl−2 + µjl,

where hjl ≡ vjl − vjl−1, µjl ∼ N
(
0, τ 2

j hjl
)

and the process is initialized at

gj1
gj2

 |τ 2
j ∼ N


gj10

gj20

 , τ 2
jGj0

 ,

where Gj0 is a 2 × 2 symmetric positive definite matrix and τ 2 is a smoothness parameter

whose magnitude determines the penalty to deviations from a locally linear relationship.

Letting

Hj =



1

1

hj3
hj2
−(1 +

hj3
hj2

) 1

. . . . . . . . .

hjm
hjm−1

−(1 +
hjm
hjm−1

) 1


, Σj =



Gj0

hj3

. . .

hjm


,
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we obtain the joint distribution gj|τ 2
j ∼ N

(
gj0, τ

2
jK
−1
j

)
, where gj0 = H−1

j (gj10, gj20, 0, . . . , 0)′

and Kj = H ′jΣ
−1
j Hj. Of key importance is the fact that K is a banded and operations

involving it are of order O(n) (Fahrmeir and Lang, 2001; Chib and Jeliazkov, 2006). With

this definition of gj, j ∈ {0, 1}, stacking the model in (1.1), we can write

yj = Qjgj +Xjβj + εj, εj ∼ N (0,Ωj) , Ωj = diag
(
{σ2

ij}
nj
i=1

)
, ln(σ2

ij) = z′iγj,

where Qj is a n×m incidence matrices with entries Qj (i, k) = 1 if wji = vjk, and 0 otherwise.

The model is completed by the prior distributions

gj|τ 2
j ∼ N

(
gj0, τ

2
jK
−1
j

)
, τ 2

j ∼ IG (κj0/2, dj0/2) , βj ∼ N (bj0, Bj0) , γj ∼ N (γj0,Γj0) ,

(1.4)

which, combined with the sampling density

f
(
y|g0, g1, τ

2
0 , τ

2
1 , β0, β1, γ0, γ1

)
= fN (y0|Q0g0 +X0β0,Ω0) fN (y1|Q1g1 +X1β1,Ω1) ,

lead to a joint posterior distribution that can be sampled by the MCMC algorithm presented

in Algorithm 1. Precision-based algorithms are used for sampling gj, whereas efficient simu-

lation of γj is obtained by a Metropolis-Hastings (MH) step with proposal density based on

iteratively reweighted least squares (Chan et al., 2006; Gu et al., 2009; Gamerman, 1997; Nott

and Leonte, 2004). This approach is considerably faster than conventional tailoring by opti-

mization at every MCMC step and is obtained by constructing a Student’s t proposal density

q (γj|γ̂j, Vj) = fTν (γj|γ̂j, Vj) with ν degrees of freedom, where eij = (yij − gj(wi)− x′iβj) and

ηij = z′iγj + (e2
ij − σ2

ij)/σ
2
ij, ηj =

(
η1j, . . . , ηnj

)′
Vj =

(
Γ−1

0j +
1

2
Z
′

jZj

)−1

, γ̂j = Vj

(
Γ−1
j0 γj0 +

1

2
Z ′jηj

)
.

(1.5)

The treatment effects in equations (1.2) and (1.3) can be computed by averaging over the
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output of the MCMC sampler and, if needed, the empirical distribution of the covariates

{xi, wi, zi} in the neighborhood of w∗. The homoskedastic model results in the special case

when zi = 1. The overall approach is also easily adaptable to binary outcomes yi as discussed

next.

Algorithm 1 (Semi-parametric Sharp RDD)

(1) Sample
[
gj|yj, βj, τ 2

j , γj
]
∼ N

(
ĝj, Ĝj

)
, where ĝj = Ĝj

(
1
τ2j
Kjgj0 +Q′jΩ

−1
j (yj −Xjβj)

)
and Ĝj =

(
Kj
τ2j

+Q′jΩ
−1
j Qj

)−1

, j = 0, 1.

(2) Sample [βj|yj, gj, γj] ∼ N
(
β̂j, B̂j

)
, where β̂j = B̂j

(
B−1
j0 bj0 +X ′jΩ

−1
j (yj −Qjgj)

)
and

B̂j =
(
B−1
j0 +X ′jΩ

−1
j Xj

)−1
, j = 0, 1. If β0 = β1, sample [β|y, g0, g1, γ0, γ1] ∼ N

(
β̂, B̂

)
,

where β̂ = B̂
(
B−1

0 b0 +X ′Ω−1 (y −Qg)
)
, B̂ =

(
B−1

0 +X ′Ω−1X
)−1

, y = (y′0, y
′
1)′, g =

(g′0, g
′
1)′, X =

(
X0

X1

)
, and Ω =

(
Ω0 0
0 Ω1

)
.

(3) Sample
[
τ 2
j |gj

]
∼ IG

(
κj0+mj

2
,
dj0+(gj−gj0)′K(gj−gj0)

2

)
, j = 0, 1.

(4) Sample [γj|yj, gj, βj], j = 0, 1, using an MH step by drawing a proposed γ†j ∼
q (γj|γ̂j, Vj), where γ̂j and Vj are computed in (1.5) using the current value of γj.

Also use γ†j in equation (1.5) to produce γ̂†j . Accept the proposed γ†j with probability

α(γj, γ
†
j |yj, gj, βj) = min

{
1,
f(yj|gj, βj, γ†j )π(γ†j |γj0,Γj0)

f(yj|gj, βj, γj)π(γj|γj0,Γj0)

q(γj|γ̂†j , Vj)
q(γ†j |γ̂j, Vj)

}
,

otherwise repeat the current value γj in the next MCMC iteration.

To handle binary outcomes yi ∈ {0, 1}, we use data augmentation (Albert and Chib, 1993)

and introduce the latent variables y∗i such that yi = 1{y∗ ≥ 0} and

y∗ij = gj(wi) + x′iβj + εij, εij ∼ N
(
0, σ2

ij

)
, ln(σ2

ij) = z′iγj, for j ∈ {0, 1} . (1.6)

For identification purposes, the vector zi, which plays a role in determining the variance, does

not include a constant term (Gu et al., 2009). The variance in the homoskedastic version of
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the model is fixed at 1 and is not estimated.

The complete data likelihood can be expressed as

f
(
y, y∗|g0, g1, β0, β1, γ0, γ1, τ

2
0 , τ

2
1

)
=
∏
i:Ti=0

((
fN
(
y∗i |g0(wi) + x′iβ0, σ

2
i0

)
1{y∗i ≥ 0}

)yi
×
(
fN
(
y∗i |g0(wi) + x′iβ0, σ

2
i0

)
1{y∗i < 0}

)1−yi
)

×
∏
i:Ti=1

((
fN
(
y∗i |g1(wi) + x′iβ1, σ

2
i1

)
1{y∗i ≥ 0}

)yi
×
(
fN
(
y∗i |g1(wi) + x′iβ1, σ

2
i1

)
1{y∗i < 0}

)1−yi
)
,

which, combined with the priors in (1.4) produces the joint posterior that is sampled in

Algorithm 2. Note that Algorithms 1 and 2 are closely related, but the latter makes use

of the suitably generated latent {y∗i } instead of the observed {yi}; both algorithms also

trivially handle homoskedasticity. Finally, for computing RD ATE in equations (1.2)-(1.3)

in the case of a binary outcome, it is helpful to recognize that E (Yj|w, xi, zi) is given by

Φ
(

(gj(w) + x′iβj)/
√

exp (z′iγj)
)

, which is averaged over the MCMC draws and covariates

{xi, wi, zi} for wi in a neighborhood of w∗. Accounting for both covariate variability and

estimation uncertainty is critical in this context because of the inherent nonlinearity of the

estimand (see, e.g., Verlinda, 2006; Jeliazkov and Vossmeyer, 2018).

The heteroskedastic framework can also be extended to the fuzzy RD context. This ex-

tension involves the introduction of an unobserved discrete confounding variable s which

categorizes individuals into three distinct types: (1) compliers (denoted as C) who take the

treatment when assigned, i.e., Ti = 1{wi ≥ w∗}, (2) never-takers (denoted as N ) who con-

sistently abstain from treatment, and (3) always-takers (denoted as A) who always opt for

the treatment. The presence of defiers, individuals whose behavior is opposite that of com-

pliers, is ruled out. Chib, Greenberg and Simoni (2023) show that the Bayesian fuzzy RD
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Algorithm 2 (Semi-parametric Sharp RDD with Binary Outcomes)

(1) Sample
[
gj|y∗j , βj, τ 2

j , γj
]
∼ N

(
ĝj, Ĝj

)
, where Ĝj =

(
Kj
τ2j

+Q′jΩ
−1
j Qj

)−1

and ĝj =

Ĝj

(
1
τ2j
Kjgj0 +Q′jΩ

−1
j

(
y∗j −Xjβj

))
, j = 0, 1.

(2) Sample
[
βj|y∗j , gj, γj

]
∼ N

(
β̂j, B̂j

)
, where β̂j = B̂j

(
B−1
j0 bj0 +X ′jΩ

−1
j

(
y∗j −Qjgj

))
and B̂j =

(
B−1
j0 +X ′jΩ

−1
j Xj

)−1
, j = 0, 1. If β0 = β1, sample [β|y∗, g0, g1, γ0, γ1] ∼

N
(
β̂, B̂

)
, where β̂ = B̂

(
B−1

0 b0 +X ′Ω−1 (y∗ −Qg)
)
, B̂ =

(
B−1

0 +X ′Ω−1X
)−1

, y∗ =(
y∗
′

0 , y
∗′
1

)′
, g = (g′0, g

′
1)′, X =

(
X0

X1

)
, and Ω =

(
Ω0 0
0 Ω1

)
.

(3) Sample
[
τ 2
j |gj

]
∼ IG

(
κj0+mj

2
,
dj0+(gj−gj0)′K(gj−gj0)

2

)
, j = 0, 1.

(4) Sample
[
γj|y∗j , gj, βj

]
, j = 0, 1, using an MH step by drawing a proposed γ†j ∼

q (γj|γ̂j, Vj), where ei = y∗i − gj(wi)− x′iβj and γ̂j and Vj are computed in (1.5) using

the current value of γj and y∗j . Also use γ†j in equation (1.5) to produce γ̂†j . Accept the

proposed γ†j with probability

α = min

{
1,
f(y∗j |gj, βj, γ

†
j )π(γ†j |γj0,Γj0)q(γj|γ̂†j , Vj)

f(y∗j |gj, βj, γj)π(γj|γj0,Γj0)q(γ†j |γ̂j, Vj)

}
.

otherwise repeat the current value γj in the next MCMC iteration.

(5) Sample
[
y∗ij|yij, gj, βj, γj

]
∼ TNBi (gj (ωi) + x′iβj, exp (z′iγj)), i = 1, . . . , n, j = 0, 1,

where Bi = (−∞, 0] if yi = 0, and Bi = (0,∞) if yi = 1.

model can then be viewed as a mixture model over the latent categories which form a basis

for category-specific modeling of functions, parameters, and heteroskedasticity relationships.

The heteroskedastic model and related estimation algorithm details are presented in A.2, but

our study reveals an important caveat that must be kept in mind when working with this

class of models. In particular, it is well known that the likelihood function of mixture models

can be ill-behaved even in simple cases, and can exhibit multimodality and singularities, and

estimation algorithms can exhibit misclassification and label switching when the clusters are

not well-separated (Celeux, 1998; Frühwirth-Schnatter, 2006, 2011). While some regulariza-
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tion in the Bayesian context can be achieved through the prior, and larger samples can be

beneficial, much care is needed in practical applications because the severity of the afore-

mentioned problems is rarely known a priori. In fact, our simulations reveal cases in which

the estimates recover the true data-generating process very well, but also point to instances

where misclassification and label switching can lead to erroneous parameter and treatment

effect estimates. The effect of heteroskedasticity can also be ambiguous, since lower variances

can serve to increase cluster separation and improve identification, and vice versa. While the

methods proposed in Frühwirth-Schnatter (2001) and Frühwirth-Schnatter and Kaufmann

(2008) could be employed in this context, their applicability in high-dimensional contexts

with multiple non-parametric functions has not been studied. Therefore, we urge practi-

tioners to thoroughly review their findings before drawing definitive conclusions in fuzzy RD

designs.

1.2.1 Bayesian Model Comparison and Marginal Likelihood Esti-

mation

In the presence of multiple competing models, each reflecting alternative hypotheses about

the data y, Bayesian model comparison provides a systematic approach for addressing model

uncertainty. Specifically, by Bayes’ formula, the posterior probability of model Ms can be

expressed as

P (Ms|y) ∝ P (Ms)m(y|Ms),

where P (Ms) represents the prior probability of model Ms and m(y|Ms) denotes the

marginal likelihood m(y|Ms) =
∫
f(y|θs,Ms)π(θs|Ms) dθs, where f(y|θs,Ms) is the likeli-

hood function and π(θs|Ms) is the prior density on the parameters θs in model Ms. An

important approach for estimating the marginal likelihood was introduced by (Chib, 1995)

13



based on the recognition that

m(y|Ms) =
f(y|θs,Ms) π(θs|Ms)

π(θs|y,Ms)
, (1.7)

which holds for any θs in the parameter space. The terms in the numerator of equation (1.7)

are often available directly, so the primary challenge is in estimating the posterior density

π(θs|y,Ms) in the denominator of equation (1.7). In practice, the right-hand side of equa-

tion (1.7) is evaluated at some appropriate point θ∗s , typically taken to be the posterior mean

or mode.

Marginal likelihoods, and their ratios known as Bayes factors (Kass and Raftery, 1995),

serve as a cornerstone for implementing Bayesian model comparison. The approach exhibits

a number of desirable properties. For instance, it provides finite-sample model probabilities

that can be used for model averaging or model choice, and does not demand that competing

models be nested, enhancing its applicability across diverse model structures. In addition, it

exhibits appealing asymptotic behavior, giving rise to the well-known information criterion

proposed by Schwarz (1978). An often underappreciated aspect of marginal likelihoods is

that they provide a measure of sequential out-of-sample predictive fit, which can be seen by

writing

m(y|Ms) =
n∏
i=1

m(yi|{yj}j<i,Ms)

=
n∏
i=1

∫
f(yi|{yj}j<i, θs,Ms)π(θs|{yj}j<i,Ms) dθs.

Thus, model adequacy, as indicated by the marginal likelihood, corresponds to cumulative

out-of-sample predictive performance. This assessment involves evaluating the fit of yi based

on the posterior density, utilizing data {yj}j<i up to the ith data point. Unlike in-sample

measures conditioned on the entire dataset y or split-sample comparisons sensitive to sample

selection, the marginal likelihood remains unaffected by permutations in the order of data.
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Thus, model adequacy, as captured by the marginal likelihood, corresponds to its cumulative

out-of-sample predictive record where the fit of yi is measured with respect to the posterior

density using data {yj}j<i up to the ith data point. This is in sharp contrast to in-sample

measures of fit that condition on the entire data set y, or split-sample comparisons in which

the outcome may depend on the choice of estimation and comparison samples. In contrast,

the marginal likelihood is invariant to permutations in the indices of the data, so that the

same m(y|Ms) will be obtained if the data are arbitrarily rearranged.

To simplify the notation in the remainder of our discussion, we suppress the model in-

dicator Ms and focus on the case where the parameter vector consists of several blocks

θ = (θ′1, . . . , θ
′
B)′. To handle this case, the posterior density in the denominator of (1.7),

evaluated at the point θ∗, can be decomposed as

π(θ∗|y) = π(θ∗1|y) π(θ∗2|y, θ∗1) · · · π(θ∗B|y, θ∗1, . . . , θ∗B−1),

where individual components π(θ∗b |y, {θ∗s}(s<b)) on the right-hand side can be evaluated as

π(θ∗b |y, {θ∗s}(s<b)) = E
{
π
(
θ∗b |y, {θ∗s}(s<b), {θs}(s>b)

)}
(1.8)

when the full-conditional density π(θ∗b |y, {θ∗s}(s<b), {θs}(s>b)) is known (Chib, 1995), or as

π(θ∗b |y, {θ∗s}(s<b)) =
E
{
α
(
θb, θ

∗
b |y, {θ∗s}(s<b), {θs}(s>b)

)
q
(
θb, θ

∗
b |y, {θ∗s}(s<b), {θs}(s>b)

)}
E
{
α
(
θ∗b , θb|y, {θ∗s}(s<b), {θs}(s>b)

)}
(1.9)

when the full-conditional density is non-standard and sampling requires the MH algorithm

(Chib and Jeliazkov, 2001). The expectation in equation (1.8) is with respect to the

distribution π
(
{θs}(s>b)|y, {θ∗s}(s<b)

)
, whereas the expectations in the numerator and de-

nominator of equation (1.9) are evaluated using the distributions π
(
{θs}(s≥b)|y, {θ∗s}(s<b)

)
and q

(
θ∗b , θb|y, {θ∗s}(s<b), {θs}(s>b)

)
π
(
{θs}(s>b)|y, {θ∗s}(s<b)

)
, respectively. Estimation of the
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marginal likelihood could, therefore, become computationally intensive as it requires addi-

tional simulation of {θs}(s≥b) in reduced runs where {θ∗s}(s<b) are held fixed.

To deal with this problem and improve computational efficiency, we group all parameter

blocks that are sampled from known densities into the set ψ = {ψ1, . . . , ψR}, whereas latent

data and parameters that are sampled from non-standard distributions are denoted by ξ.

We propose an estimation of the joint ordinate of the blocks in ψ based on the invariance

condition of Markov chains (Ritter and Tanner, 1992; Jeliazkov and Lee, 2010) as

π (ψ∗|y) = E {K (ψ, ψ∗|y, ξ)} , (1.10)

where K(·) represents the Gibbs transition kernel

K (ψ, ψ∗|y) =
R∏
r=1

π
(
ψ∗r |y, {ψ∗s}(s<r), {ψs}(s>r), ξ

)
,

with draws of (ψ, ξ) ∼ π(ψ, ξ|y) obtained in the main MCMC run. This method avoids

the computation of the ordinates for {ψ1, . . . , ψR} individually, which obviates the need for

reduced runs for those densities. In the sharp RDD case, ψ = {β0, β1, g0, g1, τ
2
0 , τ

2
1 }, while

ξ = γ with γ = {γ0, γ1} for continuous outcomes and ξ = {γ, {y∗i0}, {y∗i1}} when outcomes

are binary. The marginal likelihood in the sharp RDD case with continuous outcomes can

be succinctly expressed as

m̂ (y) =
f (y|ψ∗, γ∗) π (ψ∗, γ∗)

π (ψ∗|y) π (γ∗|y, ψ∗)
,

where π(ψ∗|y) can be estimated using equation (1.10) with draws from the main MCMC

run, and π(γ∗|y, ψ∗) is obtained by equation (1.9), which requires a single reduced run. The

binary data case is handled analogously, but includes integration over the latent {y∗ij} (Chib

and Jeliazkov, 2001).
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In addition to the RDD case, the methodology introduced here will be applied to mod-

els addressed later in this paper; these implementations will involve either straightforward

simplification or direct adaptation of the techniques presented in this section.

1.2.2 Simulation Study

In this section, we conduct targeted simulations to assess the influence of ignored het-

eroskedasticity, evaluate the performance of the MCMC algorithm, and examine the ef-

fectiveness of the proposed model comparison approach. We simulate the data from the

model in (1.1) for three sample sizes, n = 500, 5000, 50000. We let g0 (w) = 1− sin (w + 1) +

(w + 1)2, g1 (w) = −1− sin (w) +w2,where w is uniformly generated from an evenly spaced

grid within the range of -1 to 1. The parameters βj and γj exhibit different values in

these samples. Specifically, for the sample where n = 500, the parameter values are

as follows: β0 = (0.48,−1.30, 0.15,−0.18, 0.36)′, β1 = (0.12,−0.71, 2.52, 0.02, 0.33)′, γ0 =

(−0.71, 0.27,−0.14)′, and γ1 = (−0.81, 0.37, 1.32)′. For the sample where n = 5000, the

values are: β0 = (0.88, 2.10,−0.70,−0.00,−1.00)′, β1 = (−0.08, 0.29, 0.42,−1.80, 0.19)′,

γ0 = (0.10, 0.14,−0.82)′, and γ1 = (0.44, 0.08, 0.71)′. Lastly, for the sample where n = 50000,

the parameter values are: β0 = (−0.04,−1.99, 0.08, 0.55, 0.65)′, γ0 = (−1.01,−0.51,−0.82)′,

β1 = (−0.76, 0.20,−1.24, 2.36,−1.24), γ1 = (−0.52, 0.60, 0.88)′. The covariates xi are gen-

erated from independent standard normal distributions of dimension 5. The covariates zi

consist of a constant term and the first columns of xi and wi.

We report means, standard deviations, and 95% credible intervals of the posterior distri-

bution for the treatment effect in each model. Additionally, we present marginal likelihood

estimates to facilitate model comparisons. We also report the RD ATE estimates, standard

errors, and 95% confidence intervals provided by RDRobust (Calonico et al., 2017).

The marginal likelihood and the estimated treatment effect are presented in Table 1.1. The
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heteroskedastic model is supported by the data in all scenarios. As the sample size increases,

both homoskedastic and heteroskedastic models yield point estimates that approach the

true treatment effect. However, as the sample size increases, the evidence in favor of the

heteroskedastic model grows based on the marginal likelihood estimates reported in Table 1.1.

The Bayesian models provide more precise estimates than RDRobust, because the latter

relies only on data around the cutoff (sample sizes are reported in Table 1.1). Sensitivity

analysis was performed to study the impact of the prior distributions on the parameter

estimates and their variability; the results, presented in Table A.1 in A.1, show no impact

on the point estimates and demonstrate that the reduction in variability is not an artifact

of the priors.

Table 1.1: RD ATE with Continuous Outcomes, β1 6= β0

n Model ∆SRD ∆̂SRD SD 95% CI ln(m(y)) (n0,n1)

500
Homosk. −2.24 −2.36 0.25 (−2.87,−1.88) −765.22 (230, 270)
Heterosk. −2.24 −2.26 0.18 (−2.61,−1.92) −617.77 (230, 270)
RDRobust −2.24 −2.63 0.68 (−4.18,−1.07) (49, 68)

5000
Homosk. −2.22 −2.04 0.13 (−2.29,−1.79) −8711.93 (2480, 2520)
Heterosk. −2.22 −2.10 0.11 (−2.31,−1.89) −7929.93 (2480, 2520)
RDRobust −2.22 −2.19 0.21 (−2.71,−1.72) (955, 994)

50000
Homosk. −2.21 −2.20 0.04 (−2.28,−2.12) −68715.40 (24873, 25127)
Heterosk. −2.21 −2.20 0.03 (−2.26,−2.14) −59044.64 (24873, 25127)
RDRobust −2.21 −2.06 0.07 (−2.20,−1.88) (7983, 8124)

SD: Standard deviation for the Bayesian methods; Standard Error for RDRobust.
CI: Credible Interval for the Bayesian methods; Confidence Interval for RDRobust.

A second set of simulations was conducted under the restriction β0 = β1, with all other

parameters sampled as before. The results, presented in Table 1.2, support the aforemen-

tioned conclusions, namely that the heteroskedastic model yields more efficient estimates

RDRobust and the homoskedastic specification.

To demonstrate the pitfalls of only employing data within a small band around w∗, we
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Table 1.2: RD ATE with Continuous Outcome Variable, β1 = β0

n Model ∆SRD ∆̂SRD SD 95% CI ln(m(y)) (n0,n1)

500
Homosk. −2.16 −2.31 0.228 (−2.76,−1.87) −784.62 (238, 262)
Heterosk. −2.16 −2.40 0.176 (−2.74,−2.05) −680.02 (238, 262)
RDRobust −2.16 −2.39 0.225 (−2.86,−1.82) (72, 80)

5000
Homosk. −2.16 −2.10 0.113 (−2.32,−1.88) −7811.57 (2529, 2471)
Heterosk. −2.16 −2.11 0.110 (−2.33,−1.90) −7621.34 (2529, 2471)
RDRobust −2.16 −1.92 0.160 (−2.22,−1.50) (2424, 2576)

50000
Homosk. −2.16 −2.15 0.039 (−2.22,−2.07) −54592.15 (24815, 25185)
Heterosk. −2.16 −2.16 0.029 (−2.21,−2.10) −48880.91 (24815, 25185)
RDRobust −2.16 −2.15 0.032 (−2.21,−2.06) (7429, 7479)

present a study with a sample size n = 5000 from the model in (1.1), where g0 (w) =

sin (w)+exp
(
−20 (w + 0.5)2), g1 (w) = 1.2−sin (w)−exp

(
−20 (w − 0.5)2), γ0 = (−2, 2, 1)′,

γ1 = (−2, 2,−1)′, β0 = −0.37, and β1 = −2.13. In this case, the cutoff point w∗ is in a

low-density region of w presented in Figure 1.1. The covariate xi is sampled from a standard

normal distribution, and the covariates zi consist of a constant term, ||wi| − 1.5|, and xi.

In this scenario, the paucity of observations around the cutoff is compounded by more

pronounced heteroskedasticity in that region. The generated data passed the density test

(McCrary, 2008) with p-value 0.4655.

Figure 1.1: Data and Running Variable Density with Sparse Data around w∗

(a) Data (b) Running Variable Density

The estimated RD ATE is provided in Table 1.3. The estimated parameter ĝ0 and ĝ1

19



can be found in Figure 1.2. In this context, the estimates from the homoskedastic model

can be adversely affected by the outliers near the cutoff point, which ultimately resulted

in dramatically distorted RD ATE estimates. On the other hand, the figure shows that

the heteroskedastic model can estimate the true function well, owing to the fact that the

data points are properly weighted. In this scenario, RDRobust yielded a notably wide 95%

confidence interval, primarily due to the drastically smaller number of data points near the

cutoff. We take this as a warning about the importance of accounting for the behavior of

both w and the error variances around the cutoff w∗ in determining the merits of alternative

estimators.

Table 1.3: RD ATE with Sparse Data around w∗

Model ∆SRD ∆̂SRD SD 95% CI ln(m(y)) (n0,n1)

Homosk. 1.20 2.21 0.42 (1.38, 3.02) −7642.76 (2489, 2511)
Heterosk. 1.20 1.32 0.40 (0.53, 2.09) −6066.56 (2489, 2511)
RDRobust 1.20 2.10 0.87 (−0.15, 4.12) (202, 190)

Figure 1.2: Estimated Functions ĝj in Sample with Sparse Data around w∗

Finally, we simulate data for settings with binary outcomes using (1.6) with g0 (w) = 1 −

sin (w + 1) + (w + 1)2, g1 (w) = −1− sin (w) +w2, γ0 = γ1 = 2, and w is uniformly sampled

from a grid within the range of -1 to 1. The remaining parameters for the scenario with n =

500 are as follows: β0 = (−0.10, 1.66,−0.70)′, and β1 = (−1.19, 1.32, 0.79). In the case of n =
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5000, the corresponding values are: β0 = (1.74, 0.16, 0.02)′, and β1 = (1.15,−0.60,−1.87).

Lastly, for the scenario with n = 50000, the parameter values are β0 = (1.53,−0.13, 0.06)′,

and β1 = (0.24, 2.00,−0.81)′. The covariates xi are sampled from independent standard

normal distributions with a dimension of 3, and the covariate zi consists of ||wi| − 1.5|.

Estimates of the nonparametric functions ĝ0 and ĝ1 are depicted in Figure 1.3. Table 1.4

presents the estimated RD ATE and log-marginal likelihoods. As the sample size increases,

the heteroskedastic model provides a closer approximation, whereas both the homoskedas-

tic model and RDRobust exhibit inconsistencies while also significantly understating the

estimation variability. The impact of ignoring heteroskedasticity is amplified when the non-

linear features of the model become more prominent. With larger samples, the evidence in

support of the heteroskedastic specification grows stronger as demonstrated by the marginal

likelihood results in Table 1.4.

Figure 1.3: Estimated Functions ĝj with Binary Outcomes

(a) n = 500 (b) n = 5000 (c) n = 50000

1.2.3 Application: The Effect of Academic Probation on Student

Performance

Academic probation is commonly used as a catalyst to motivate students and improve effort

levels. Fletcher and Tokmouline (2018) and Wright (2020) employed RDD to evaluate the

impact of academic probation on academic performance. We use public data from the Texas

21



Table 1.4: RD ATE with Binary Outcomes

n Model ∆SRD ∆̂SRD SD 95% CI ln(m(y)) (n0,n1)

500
Homosk. −0.23 −0.19 0.10 (−0.39,−0.01) −306.18 (262, 238)
Heterosk. −0.23 −0.24 0.10 (−0.43,−0.04) −301.29 (262, 238)
RDRobust −0.23 −0.23 0.13 (−0.54, 0.08) (109, 91)

5000
Homosk. −0.26 −0.22 0.04 (−0.31,−0.14) −2811.87 (2529, 2471)
Heterosk. −0.26 −0.30 0.05 (−0.39,−0.20) −2770.39 (2529, 2471)
RDRobust −0.26 −0.22 0.05 (−0.34,−0.12) (941, 932)

50000
Homosk. −0.26 −0.17 0.02 (−0.20,−0.13) −27844.76 (24815, 25185)
Heterosk. −0.26 −0.26 0.02 (−0.30,−0.22) −27470.87 (24815, 25185)
RDRobust −0.26 −0.18 0.02 (−0.22,−0.14) (6949, 7155)

Higher Education Opportunity Project (THEOP) to study the impact of academic probation

on students’ academic performance. We performed analysis employing both homoskedastic

and heteroskedastic models, using model comparison techniques to assess their practical

relevance in this context.

The treated group consists of students who received academic probation at the end of their

first semester. The outcome variables are the students’ GPA in two subsequent semesters

as well as their graduation status. We use the longitudinal administrative data from the

University of Texas, Austin, for students admitted from 1991 through 2000. Students are

placed on probation (the treatment) if their cumulative GPA falls below 2.0; such students

must raise their GPA above the threshold or face dismissal from the university. Covariates

in this setting include the student’s gender, citizenship, race, standardized SAT score, high

school decile, an indicator of private high school attendance, and an indicator if the student

has a major in the first semester. Summary statistics for the data are presented in Tables 1.5,

1.6 and 1.7.

One key underlying assumption for the sharp RD design is that the students near the thresh-

old can not manipulate their GPA. Following McCrary (2008), a density test of the running

variable was performed, resulting in a t-statistic of −1.00 and a corresponding p-value of
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Table 1.5: Summary Statistics, Second Semester GPA Data

Control (n0 = 37980) Treated (n1 = 5789)

Variable Mean SD Mean SD

Female 0.52 0.50 0.39 0.49
Non US Citizen 0.00 0.05 0.00 0.04
Minority 0.03 0.18 0.07 0.25
SAT 0.08 1.00 −0.40 0.91
Second Decile 0.26 0.44 0.31 0.46
Third Decile 0.12 0.32 0.21 0.41
Fourth Decile or Below 0.08 0.28 0.22 0.42
Private High School 0.05 0.22 0.05 0.21
Has Major 0.75 0.43 0.70 0.46
Second semester term GPA 3.00 0.76 2.03 0.89
First semester term GPA 3.21 0.55 1.34 0.50

Table 1.6: Summary Statistics, Third Semester GPA Data

Control (n0 = 36738) Treated (n1 = 4366)

Variable Mean SD Mean SD

Female 0.52 0.50 0.39 0.49
Non US Citizen 0.00 0.05 0.00 0.04
Minority 0.03 0.18 0.07 0.25
SAT 0.07 1.00 −0.40 0.92
Second Decile 0.26 0.44 0.31 0.46
Third Decile 0.12 0.32 0.21 0.41
Fourth Decile or Below 0.08 0.27 0.23 0.42
Private High School 0.05 0.22 0.05 0.22
Has Major 0.76 0.43 0.69 0.46
Third semester term GPA 2.95 0.81 2.17 0.89
First semester term GPA 3.21 0.54 1.41 0.45

0.32. Therefore, there is no evidence to suggest that students manipulate their GPA to

avoid the treatment. Additionally, since the GPA data is rounded to the nearest tenth, it is

possible that some students with GPA of [1.95, 2.05) are misclassified. To address this issue,

students who have a first semester cumulative GPA of exactly 2.0 are eliminated from the

sample (Fletcher and Tokmouline, 2018), although their covariates X and Z can be retained

for evaluating the averages that define treatment effects.
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Table 1.7: Summary Statistics, Graduation Data

Control (n0 = 38525) Treated (n1 = 6494)

Variable Mean SD Mean SD

Female 0.52 0.50 0.39 0.49
Non US Citizen 0.00 0.05 0.00 0.04
Minority 0.03 0.18 0.07 0.25
SAT 0.08 1.00 −0.38 0.92
Second Decile 0.26 0.44 0.31 0.46
Third Decile 0.12 0.32 0.21 0.41
Fourth Decile or Below 0.08 0.28 0.23 0.42
Private High School 0.05 0.22 0.05 0.21
Has Major 0.75 0.43 0.69 0.46
4-Year Graduation 0.53 0.50 0.13 0.33
Graduation 0.80 0.40 0.33 0.47

Our analysis centers on the effect of heteroskedasticity and sidesteps potential complications

that may arise due to sample selection or endogeneity related to the decision to stay in

school (see, e.g., Dong, 2019). Such complications are unlikely to be important at short time

horizons, such as the second and third semesters, where we see a strong impact on GPA,

but could be relevant in the longer run where our results are inconclusive. In particular, the

estimated functions ĝ0 and ĝ1 are represented in Figure 1.4, whereas estimates of the RD

ATE and the marginal likelihoods are provided in Table 1.8. Notably, academic probation is

practically relevant with a considerable positive effect on subsequent semester GPAs in all the

Bayesian models, while the estimated impact from RDRobust is not always of the expected

sign, and lacks statistical significance. The impact of academic probation on graduation rates

is indeterminate according to the results of all models. Additionally, the marginal likelihoods

suggest that the heteroskedastic model, with the constraint that β0 = β1, is preferred in all

scenarios.
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Table 1.8: Impact of Academic Probation on Student Performance

Outcome Model ∆̂SRD SD 95% CI ln(m(y)) (n0,n1)

GPA, 2nd

Semester

Homosk. 0.17 0.05 (0.08, 0.27) −42714.08 (37980, 5789)
Homosk., β0 = β1 0.17 0.05 (0.07, 0.27) −42677.36 (37980, 5789)
Heterosk. 0.17 0.06 (0.06, 0.28) −41248.43 (37980, 5789)
Heterosk., β0 = β1 0.17 0.06 (0.06, 0.28) −41211.59 (37980, 5789)
RDRobust −0.14 0.10 (−0.45, 0.26) (1937, 3030)

GPA, 3rd

Semester

Homosk. 0.16 0.06 (0.05, 0.27) −44410.90 (36738, 4366)
Homosk., β0 = β1 0.14 0.06 (0.03, 0.26) −44383.80 (36738, 4366)
Heterosk. 0.14 0.06 (0.02, 0.26) −43617.56 (36738, 4366)
Heterosk., β0 = β1 0.12 0.04 (0.01, 0.24) −43592.42 (36738, 4366)
RDRobust −0.14 0.11 (−0.43, 0.34) (1671, 2824)

4-Year
Grad.

Homosk. −0.02 0.02 (−0.06, 0.03) −27659.71 (38525, 6494)
Homosk., β0 = β1 −0.03 0.02 (−0.07, 0.02) −27631.28 (38525, 6494)
Heterosk. −0.03 0.02 (−0.07, 0.02) −27642.73 (38525, 6494)
Heterosk., β0 = β1 −0.03 0.02 (−0.07, 0.01) −27619.22 (38525, 6494)
RDRobust −0.03 0.05 (−0.30, 0.08) (2022, 3138)

Grad.

Homosk. 0.02 0.02 (−0.03, 0.07) −21773.71 (38525, 6494)
Homosk., β0 = β1 0.01 0.02 (−0.03, 0.06) −21752.81 (38525, 6494)
Heterosk. 0.01 0.02 (−0.04, 0.05) −21754.73 (38525, 6494)
Heterosk., β0 = β1 0.01 0.02 (−0.04, 0.06) −21749.15 (38525, 6494)
RDRobust −0.01 0.06 (−0.30, 0.14) (2022, 3138)

1.3 Rubin Causal (Roy-Type) Model

In this section, we introduce a potential outcome framework (Roy, 1951; Rubin, 1974, 1977,

1978, 2004, 2005) with self-selection for estimating the treatment effect, following the ap-

proach outlined in Chib (2007). We assume that there are two potential outcome variables

y0 and y1 for the treated and untreated states. The binary treatment status T is determined

by a latent variable T ∗ and T = 1{T ∗ > 0}. We also assume that there is heteroskedasticity

in both the treatment assignment and the outcome. The model can be represented as

yi = Xiβ + εi, εi ∼ N (0,Ωi) ,
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Figure 1.4: Academic Probation: Estimated Nonparametric Functions

(a) Second-Semester GPA (b) Third-Semester GPA

(c) 4-Year Graduation Rate (d) Graduation Rate

where

yi =


T ∗i

yi0

yi1

 , Xi =


x′iT 0 0

0 x′i0 0

0 0 x′i1

 , β =


βT

β0

β1

 , and ε =


εiT

εi0

εi1

 .
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Let Nj denote the set {i : Ti = j} and nj to denote the cardinality of Nj, j ∈ {0, 1}. The

covariance matrix Ωi is given by

Ωi =


ωiTT ωi0T ωi1T

ωi0d ωi00 ωi01

ωi1d ωi01 ωi11

 ,

but due to the missing counterfactuals, ωi01 is not identified. To deal with this feature

of the model, estimation can proceed either by augmenting the MCMC sampler with the

missing counterfactuals (Li, Poirier and Tobias, 2004) or by solely involving the observed

outcomes Chib (2007). We pursue the latter approach, but develop an algorithm, which,

relative to the approach of Chib (2007), simplifies estimation by not involving MH steps

in the homoskedastic case. To prepare the groundwork for our subsequent discussion, we

introduce the following notation

Ωi0 =

ωiTT ωiT0

ωi0T ωi00

 , Ωi1 =

ωiTT ωiT1

ωi1T ωi11

 , J0 =

I 0 0

0 0 I

 , J1 =

0 I 0

0 0 I

 ,

X̃i0 =

x′iT 0

0 x′i0

 , X̃i1 =

x′iT 0

0 x′i1

 , ỹi0 =

T ∗i
yi0

 , ỹi1 =

T ∗i
yi1

 .

Thus we have J0β = (β′T , β
′
0)′ and J1β = (β′T , β

′
1)′. The complete data density is given by

f (y0, y1, T
∗|β0, β1,Ω0,Ω1) =

[ ∏
i∈N0

f (ỹi0|β0,Ωi0)1{T ∗i ≤ 0}

]

×

[∏
i∈N1

f (ỹi1|β1,Ωi1)1{T ∗i > 0}

]
.

In the homoskedastic model, we impose the normalization ωTT = 1 for identification purposes
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and define the following quantities

Ω0 =

 1 ωT0

ω0T ω00

 , Ω1 =

 1 ωT1

ω1T ω11

 ,

Ω22·1 = ω11 − ω1TωT1, Ω22·0 = ω00 − ω0TωT0.

Because of the unit restrictions in Ω0 and Ω1, we work directly with the quantities Ω22·j and

wjT , from which Ω0 and Ω1 can be recovered (Dreze and Richard, 1983; Munkin and Trivedi,

2003; Chib, Greenberg and Jeliazkov, 2009; Vossmeyer, 2016), and let Ω22·j ∼ IG (rj/2, Rj/2)

and ωjT |Ωjj·2 ∼ N (qj,Ω22·j), j = 0, 1, and β ∼ N (b0, B0). Algorithm 3 presents a Gibbs

sampler for this homoskedastic model that is based on simulation from fully tractable den-

sities and does not require any MH steps.

To extend the model to the case of multivariate heteroskedasticity, allowing for changing

variances in both treatment assignment and the potential outcomes, we decompose the co-

variance matrices (Chan and Jeliazkov, 2009b) as

Ωi0 = L0Gi0L
′
0, Ωi1 = L1Gi1L

′
1,

where, for j = 0, 1,

Lj ≡

 1 0

ajT 1

 , Gij ≡

λiT 0

0 λij

 .

The model can be rewritten asT ∗i
yij

 =

x′iT 0

0 x′ij


βT
βj

+ Lj

ψiT
ψij

 ,where

ψiT
ψij

 ∼ N (0, Gij) , (1.11)

with heterogeneity allowed to depend on observables through λij = exp(z′ijγj), λiT =
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Algorithm 3 (Rubin Causal (Roy-Type) Model with Homoskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 ỹi0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 ỹi1

)
,

and B̂ =

(
B−1

0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 X̃i0J0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 X̃i1J1

)−1

.

(2) Sample T ∗i ∼ TNBi (µiT j, ω̂TT ), where Bi = (−∞, 0] if i ∈ N0, Bi = (0,∞) if i ∈ N1,
µiT j = x′iTβT + ωjTω

−1
jj

(
yij − x′ijβj

)
, and ω̂22 = 1− ωjTω−1

jj ωjT , j = 0, 1.

(3) For j = 0, 1, π (ωjT |Ω22·j, β, yi, zi) = fN (ωjT |qt,Ω22·j)
∏

i∈Nj fN
(
yij|µij|2,Ω22·j

)
,

where µij|2 = x′ijβj + ωjT (T ∗i − x′iTβT ). Thus the posterior distribution for ωjT

is ωjT ∼ N (q̂j, ω̂22·j), where ω̂22·j =
(

Ω−1
22·j +

(∑nj
i=1

(
ε2
iTΩ−1

22·j
))−1

)−1

, and q̂j =

ω̂22·j
(
Ω−1

22·jqt + Ω−1
22·j
∑nj

i=1 εiT εij
)
, where εij ≡ yij − x′ijβj and εiT ≡ T ∗i − x′iTβT .

(4) For j = 0, 1,

π (Ω22·j|ωjT , β, yi, T ∗) = π (Ω22·j) fN (ωjT |qt,Ω22·j)
∏
i∈Nj

fN
(
yij|µij|2,Ω22·j

)
.

The posterior distribution is as follows: Ω22·j ∼ IG
(
r̂j
2
,
R̂j
2

)
, where r̂j = rj + 1 + nj,

and R̂j = Rj + (ωjT − qt)2 +
∑
i∈Nj

(εij − ωjT εiT )2.

exp(z′iTγT ). The prior distributions are specified as

β ∼ N (b0, B0) , γj ∼ N (γ0j,Γ0j) , γT ∼ N (γ0T ,Γ0T ) , ajd ∼ N (a0j, A0j) ,

and the estimation algorithm is detailed in Algorithm 4. In our model, the average treatment

effect (ATE) and the average treatment effect on the treated (ATT) are defined as

ATE = E(Y1 − Y0) = E(x′iβ1 − x′iβ0), ATT = E(Y1 − Y0|D = 1) = E(x′i1β1 − x′i1β0),

and can be estimated using the MCMC output.

The marginal likelihood can be estimated using the approach introduced in Section 1.2.1. We
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Algorithm 4 (Rubin Causal (Roy-Type) Model with Heteroskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 ỹi0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 ỹi1

)
,

and B̂ =

(
B−1

0 +
∑
i∈N0

J ′0X̃
′
i0Ω−1

0 X̃i0J0 +
∑
i∈N1

J ′1X̃
′
i1Ω−1

1 X̃i1J1

)−1

.

(2) Sample T ∗i ∼ TN (µiT j, ω̂iTT ), where T ∗i ∈ (−∞, 0) if i ∈ N0, T ∗i ∈ [0,∞) if i ∈ N1,
µiT j = x′iTβT + ωijTω

−1
ijj

(
yij − x′ijβj

)
, and ω̂iTT = ωiTT − ωijTω−1

ijjωijT , j = 0, 1.

(3) Sample ajT ∼ N
(
âj, Âj

)
, j = 0, 1, where Âj =

(
A−1

0j +
∑nj

i=1 ψ
′
iTλ
−1
ij ψiT

)−1
and âj =

Âj
(
A−1

0j a0j +
∑nj

i=1 ψ
′
iTλ
−1
ij uij

)
, where uij ≡ yij − x′ijβj.

(4) Sample [γT |T ∗, βT , a0T , a1T ] using an MH step by drawing a proposal value γ†T ∼
q (γT |γ̂T , VT ), where ei = T ∗i − x′iTβT and γ̂T and VT are defined similarly to (1.5)
using the current value of γj and T ∗i . Also use γ†T in equation (1.5) to produce γ̂†j and

accept the proposed γ†T with probability

α = min

1,
f
(
T ∗i |a0T , a1T , βT , γ

†
T

)
π
(
γ†T |γT0,ΓT0

)
q
(
γT |γ̂†T , VT

)
f(T ∗i |a0T , a1T , βT , γT )π (γT |γT0,ΓT0) q

(
γ†T |γ̂T , VT

)
 .

otherwise the current value γT is repeated in the next MCMC iteration.

(5) Let eij =
(
yij − x′ijβj − ajTψiT

)
, ηij = z′ijγj +

e2ij−ωijj
ωijj

, and ηj =
(
η1j, . . . , ηnjj

)′
and

sample [γj|ajT , βj] similarly to Step (4).

compute the posterior ordinate of parameters with known densities using equation (1.10),

and with non-standard densities using equation (1.9). Future extensions of this framework

to cases where a system of outcomes, possibly involving endogeneity, incidental truncation,

multiple selection mechanisms, or unknown covariate functions in the treated and untreated

states can be pursued along the lines of Chib, Greenberg and Jeliazkov (2009) and Vossmeyer

(2016).
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1.3.1 Simulation Study

In this section, we performed a simulation study with the aim of achieving the same goals

as outlined in Section 1.2.2. We generate simulated data from the model in (1.11) for

three different sample sizes: n = 500, 5000, and 50000. We let a0T = −0.2, a1T = 0.2.

The parameter values vary depending on the sample size. For the sample with n = 500,

the parameters are γ0 = (1.04, 0.15)′, γ1 = (−1.70, 0.15)′, γd = (0.99, 1.30)′, and β =

(−0.20, 0.79, 0.18, 1.08, 0.38,−1.21, 1.82)′. For n = 5000, the parameter values are γ0 =

(1.13, 0.14)′, γ1 = (−0.62, 0.78)′, γd = (−0.44, 0.92)′, and β = (0.58, 0.33,−0.01,−0.76,

−0.28,−1.26,−0.69)′. For the sample where n = 50000, the values are γ0 = (−0.05,−0.51)′,

γ1 = (0.06, 0.71)′, γd = (0.84,−0.60)′, and β = (−0.62, 0.94, 0.20, 1.59, 0.45,−0.12,−0.82)′.

The covariates xi0 comprise a constant term and a variable generated from a standard nor-

mal distribution with a dimension of 2. The covariates xi1 mirrors xi0, while xiT includes xi0

and a new variable generated from a standard normal distribution with a dimension of 3.

We report mean, standard deviations, and 95% credible intervals of the posterior distribution

for the estimated treatment effects in each model. The estimated ATE and ATT are summa-

rized in Table 1.9. In all cases, the heteroskedastic model is supported in all scenarios based

on the marginal likelihood results. These findings highlight that ignoring heteroskedasticity

leads to inconsistent and biased ATE and ATT estimates.

1.3.2 Application: The Effect of Medigap on Healthcare Expen-

diture

In this application, we consider the influence of private health insurance on healthcare expen-

ditures of the elderly using the Medical Expenditure Panel Survey (MEPS). For individuals

aged 65 and above, Medicare provides coverage, but some seniors opt to purchase private
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Table 1.9: Treatment Effect Results Using Rubin Causal (Roy-Type) Model

n Model True Mean SD 95% CI ln(m(y))

500
Heterosk.

ATE −2.36 −2.30 0.19 (−2.68,−1.93) −798.15
ATT −1.50 −1.47 0.25 (−1.96,−0.97)

Homosk.
ATE −2.36 −1.54 0.29 (−2.11,−0.98) −853.74
ATT −1.50 −0.82 0.36 (−1.53,−0.11)

5000
Heterosk.

ATE −0.49 −0.47 0.15 (−0.75,−0.16) −7073.77
ATT −0.57 −0.54 0.15 (−0.83,−0.21)

Homosk.
ATE −0.49 −1.48 0.34 (−2.17,−0.81) −8108.51
ATT −0.57 −1.56 0.36 (−2.29,−0.86)

50000
Heterosk.

ATE −1.70 −1.67 0.03 (−1.74,−1.61) −77644.71
ATT −2.68 −2.66 0.03 (−2.72,−2.60)

Homosk.
ATE −1.70 −3.18 0.04 (−3.26,−3.10) −90039.30
ATT −2.68 −3.33 0.03 (−3.39,−3.27)

insurance known as Medigap to supplement their Medicare benefits. Medigap policies typi-

cally offer enhanced coverage compared to the basic Medicare policy, and individuals often

choose them in anticipation of reducing out-of-pocket healthcare costs.

We partition the data into two distinct subsets. One sample spans the years 2018 to 2019

prior to the COVID-19 pandemic, and the other comprises survey data from 2020. This

division accounts for the potential impact of the pandemic on individuals’ behavior. In

our study, we assess the impact of acquiring Medigap policies on out-of-pocket healthcare

expenditures, employing both heteroskedastic and homoskedastic models.

We incorporate self-perceived health status variables, the number of chronic conditions,

location, and various demographic variables as covariates that influence healthcare expen-

ditures. We assume that family income only affects the purchase of private insurance, and

does not alter health care utilization directly. Variable definitions and summary statistics

are presented in Table 1.10. In the regression, age is standardized, and due to excessive right

skew, expenditure (in thousands of dollars) is stabilized using the square root transformation

(Amaratunga and Cabrera, 2001). Additionally, we consider models where the variance of

32



treatment assignment depends on family income, and the variance of healthcare expenditure

depends on age and the number of chronic conditions. In this application, heteroskedastic-

ity remains our primary focus, although modeling could be generalized to explicitly model

the choice of specific Medigap plans based on their anticipated healthcare expenditures and

accommodate the potential endogeneity of the Medicaid variable.

Table 1.10: Variable Definitions and Summary Statistics, Medigap Policies Data

2020 2018-19
(n = 5019) (n = 10226)

Variables Description Mean SD Mean SD

Age Age 73.52 6.24 73.65 6.42
Faminc Family income (as % of poverty

line)
4.11 3.88 4.19 3.90

Num Visit # of office-based provider visits 10.11 14.53 12.19 16.63
Num Chron # of chronic conditions 3.93 2.26 3.82 2.25
Exchlth 1 if self-perceived health is excellent 0.16 0.37 0.17 0.38
Poorhlth 1 if self-perceived health is poor 0.04 0.19 0.05 0.22
Excmhlth 1 if self-perceived mental health is

excellent
0.28 0.45 0.30 0.46

Poormhlth 1 if self-perceived mental health is
poor

0.02 0.14 0.02 0.15

Employed 1 if employed 0.20 0.40 0.19 0.39
Private 1 if has private insurance 0.43 0.50 0.46 0.50
Northeast 1 if lives in northeastern U.S. 0.18 0.38 0.17 0.38
Midwest 1 if lives in midwestern U.S. 0.21 0.41 0.21 0.41
West 1 if lives in western U.S. 0.24 0.43 0.24 0.43
Male 1 if male 0.44 0.50 0.45 0.50
Black 1 if African American 0.12 0.33 0.13 0.33
Married 1 if married 0.50 0.50 0.53 0.50
College 1 if has a college degree 0.33 0.47 0.30 0.46
Medicaid 1 if covered by Medicaid 0.14 0.35 0.14 0.34
Anylim 1 if has a condition which limits

daily living activities
0.48 0.50 0.47 0.50

Expenditure Total amount paid by self or family 1434 6413 1496 4391

The estimated ATE and ATT are presented in Table 1.11. Both models suggest a negative

impact of Medigap on healthcare expenditure. The marginal likelihood results recommend

the heteroskedastic model for both samples. The detailed coefficient estimates are not in-
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cluded in this dissertation due to space limitations but can be provided upon request.

Table 1.11: Impact of Medigap Policies on Healthcare Expenditure

Year Model Mean SD 95% CI ln(m(y))

2018, 2019
Homosk.

ATE −0.15 0.02 (−0.19, −0.11) −15073.28
ATT 0.03 0.02 (−0.01, 0.07)

Heterosk.
ATE −0.19 0.03 (−0.24, −0.13) −9742.19
ATT −0.05 0.03 (−0.11, 0.00)

2020
Homosk.

ATE −0.24 0.03 (−0.30, −0.18) −7655.27
ATT −0.06 0.03 (−0.12, −0.01)

Heterosk.
ATE −0.19 0.04 (−0.26, −0.12) −4941.65
ATT −0.05 0.04 (−0.12, 0.02)

1.4 Propensity Score

Let p(x) ≡ Pr(T = 1|x) denote the propensity score, which represents the conditional

probability of assignment to the treatment given the covariates x (Rosenbaum and Rubin,

1983). Two popular methods that utilize propensity scores to deal with selection bias are

propensity score matching and inverse probability of treatment weighting (IPTW). The key

ideas behind these models are captured in Figure 1.5. Specifically, Figure 1.5a depicts

the key assumption of selection on observables, whereas Figure 1.5b demonstrates that the

fundamental problem of estimating treatment effects is caused by the missing counterfactuals.

In practice, we have the observed treated and untreated outcomes denoted by the rectangles

in Figure 1.5b, whereas the dashed ovals are the unobserved counterfactuals. The idea behind

matching observations on the basis of the propensity score is to generate sub-samples from

the observed treated and untreated groups that are comparable to one another as a means

of uncovering the unobserved counterfactuals and estimating the desired treatment effect.

In this section, we introduce a model to estimate the propensity score with heteroskedasticity.

Then we discuss the impacts of ignored heteroskedasticity in two settings: propensity score
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matching and IPTW. Both models are employed to assess the treatment effect of COVID-19

vaccination on mental well-being.

Figure 1.5: Selection on Observables and Missing Counterfactuals

(a) Selection on Observables

X

T Y

(b) Potential Outcomes

Y1 Y0

Y0Y1

ATT

ATU

Propensity score matching (Rosenbaum and Rubin, 1983) is a popular method for estimat-

ing causal treatment effects. The approach is instrumental in mitigating selection bias by

leveraging the propensity score as a balancing score that effectively enables the creation of

comparable control and treatment groups.

The approach is valid when x ⊥⊥ T |p(x). To see this, note that by the definition of

the propensity score, we have that f (T |p (x) , x) = f (T |p (x)), whereby f (x|p (x) , T ) =

f(T |p(x),x)f(x|p(x))
f(T |p(x))

= f (x|p (x)). In this sense, conditioning on the propensity score generates

“balanced” samples of treated and untreated units with similar characteristics x. Crucially,

however, proper specification of the propensity score is required for the theory to hold, so

that the search for a p(x) that is supported by the data serves as the motivation for our

study, especially as it relates to possibly omitted heteroskedasticity.

Researchers employ inverse probability of treatment weighting (IPTW) to counteract non-

randomization challenges in observational studies (Rosenbaum, 1987). Successful applica-

tion of this model necessitates accurate specification of the propensity score (Chesnaye et al.,

2022), thereby highlighting the essential inclusion of heteroskedasticity in propensity score

estimation. We assign weights to individual observations by taking the inverse of the prob-

ability associated with their respective actual treatment status. In other words, we can
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calculate the average treatment effect as

ˆATE =
1

n

n∑
i=1

TiYi
p(xi)

− 1

n

n∑
i=1

(1− Ti)Yi
1− p(xi)

.

To study this issue, we employ a heteroskedastic model for the propensity score. Owing to

the nonlinearity of the setting, Jensen’s inequality implies that erroneously omitting het-

eroskedasticity will impact the bias and consistency properties of estimators and can not be

dealt with by simply adjusting the standard errors. For i = 1, . . . , n, the heteroskedastic

probit model is specified as

Ti = 1{T ∗i > 0} = 1{x′iβ + νi > 0}, νi ∼ N
(
0, σ2

i

)
. (1.12)

We impose the constraint that the variance of νi equals 1 in the homoskedastic model for

identification purpose. In the heteroskedastic model, we assume that var(νi) = exp (z′iγ)

and for identification zi does not include a constant term. We specify the prior distributions

β ∼ N (b0, B0) and γ ∼ N (γ0,Γ0). Algorithms 5 and 6 provide details on the propensity

score estimation following the frameworks provided Albert and Chib (1993) and Gu et al.

(2009), which also allow for possible extensions to settings with heterogeneity or categorical

treatments.

Algorithm 5 (Bayesian Propensity Score Estimation with Homoskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i∈N

xiT
∗
i

)
, and B̂ =

(
B−1

0 +
∑
i∈N

xix
′
i

)−1

.

(2) Sample T ∗i ∼ TNBi (x′iβ, 1), where Bi = (−∞, 0] if Ti = 0, and Bi = (0,∞) if Ti = 1.

An estimate of the marginal likelihood for the homoskedastic and heteroskedastic models is

obtained as a straightforward special case of the approach presented in Section 1.2.1.
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Algorithm 6 (Bayesian Propensity Score Estimation with Heteroskedasticity)

(1) Sample β ∼ N
(
b̂, B̂

)
, where b̂ = B̂

(
B−1

0 b0 +
∑
i

xi exp(z′iγ)−1T ∗i

)
, and B̂ =(

B−1
0 +

∑
i

xi exp(z′iγ)−1x
′
i

)−1

.

(2) Sample T ∗i ∼ TNBi (x′iβ, exp(z′iγ)), where Bi = (−∞, 0] if Ti = 0, and Bi = (0,∞) if
Ti = 1.

(3) Sample [γ|β, T ∗] using an MH step by drawing a proposal value γ† ∼ q (γ|γ̂T , VT ),
where ei = T ∗i −x′iβ and γ̂ and V are defined similarly to (1.5) using the current value
of γj and T ∗i . Also use γ†T in equation (1.5) to produce γ̂†j and accept the proposed γ†T
with probability

α = min

1,
f
(
T ∗i |β, γ

†
T

)
π
(
γ†|γ0,Γ0

)
q
(
γ|γ̂†, V

)
f(T ∗i |β, γ)π (γ|γ0,Γ0) q (γ†|γ̂, V )

 .

otherwise the current value γ is repeated in the next MCMC iteration.

1.4.1 Simulation Study

In this section, we performed simulation studies to test the effectiveness of the MCMC and

marginal likelihood algorithms of the propensity score estimation, and to study the impact

of ignored heteroskedasticity in both the propensity score matching and IPTW settings.

1.4.1.1 Simulation: Propensity Score Matching

We illustrate that neglected heteroskedasticity can lead to the emergence of imbalanced

samples. The specification of a model with heteroskedasticity is one step in addressing mis-

specification in addition to other possible approaches that can be taken, such as considering

the problem of variable selection or misspecification of the mean function.

The simulation study is based on the data in Dehejia and Wahba (1999), which comes
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from the National Supported Work Demonstration (NSW) and the panel study of income

dynamics (PSID). The treatment T is the NSW participation. We believe that the variables

age (age), years of education (educ), high school degree status (nodegree), race (Black or

Hispanic), marital status (married), real earnings in 1975 (RE75), and real earnings in

1974 (RE94) will affect the outcome variable of interest. There are 185 observations in the

treatment group and 2490 observations in the control group. We assume that treatment

assignment is generated as

Ti ={−2− 0.17agei − 0.001educi + 0.3744nodegreei − 0.9630marriedi + 1.2285blacki+

1.219hispanici − 0.000005RE74i − 0.0001RE74i + νi > 0}, νi ∼ N(0, agei).

The standardized mean difference (SMD) calculated as X̄T−X̄C√
(S2
T+S2

C)/2
, where X̄T and X̄C are

the sample averages, and ST and SC are the standard deviations for the treatment and

control groups, respectively, is often used as a balance measure (Rosenbaum and Rubin,

1985; Thoemmes, 2012), with SMD exceeding 0.1 being considered as a sign of imbalance

(Zhang et al., 2019). We employ nearest neighbor matching with replacement with a radius of

0.2 times the standard deviation of the estimated propensity score (Austin, 2011; Chaudhuri

and Howley, 2022).

Empirical researchers typically proceed by incorporating higher-order and interaction terms

to improve the balance of the matched samples if it failed in the beginning (Dehejia and

Wahba, 1999; Caliendo and Kopeinig, 2008). Thus, we consider three models in this section:

the correctly specified heteroskedastic model, the homoskedastic model with all covariates,

and the extended homoskedastic model incorporating all covariates, age squared (age2),

and interactions between age and other covariates. Figure 1.6 shows the SMD before and

after matching. Before matching, the covariates are imbalanced. The heteroskedastic model

effectively enhances balance within both the ATE and ATT samples. In this example,

the homoskedastic model falls short of achieving balance in the ATT estimation sample.
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However, by including higher order and interaction terms, the balance is improved.

Figure 1.6: Balance Score Results (SMD)

(a) SMD (ATE) (b) SMD (ATT)

1.4.1.2 Simulation: Inverse Probability of Treatment Weighting

In this section, we illustrate that neglected heteroskedasticity can lead to biased and incon-

sistent treatment effect estimates. We generate simulated data from the model described

in (1.12), where β = (0.9, 1.2,−1.2)′ and γ = 0.6. The covariates xi include a constant term

and two variables sampled from independent truncated normal distributions with a range

of (1,+∞), having a mean of 1 and a variance of 1. The covariate zi comprises the second

column of xi.

Table 1.12 summarizes the estimated ATE, and Figure 1.7 depicts the histogram of the

estimated ATE. Marginal likelihood results consistently favor the heteroskedastic model in

all scenarios. These findings demonstrated that the ignored heteroskedasticity can lead to

biased and inconsistent ATE estimates. When the sample size increases, the heteroskedastic

model accurately represents the ATE, whereas the homoskedastic model estimates fail to

capture the true effect.
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Table 1.12: Average Treatment Effect Results Using IPTW

n Model True Mean SD 95% CI ln(m(y))

500 Heterosk. −2.66 −2.36 0.46 (−3.35,−1.70) −247.68
Homosk. −2.66 −3.24 1.21 (−6.25,−1.96) −252.71

5000 Heterosk. −2.77 −2.83 0.15 (−3.14,−2.56) −2421.02
Homosk. −2.77 −3.17 0.21 (−3.61,−2.80) −2434.46

50000 Heterosk. −2.81 −2.82 0.05 (−2.92,−2.73) −23005.06
Homosk. −2.81 −3.36 0.09 (−3.54,−3.20) −23116.63

Figure 1.7: Treatment Effect Distribution Using IPTW

(a) n = 500 (b) n = 5000 (c) n = 50000

1.4.2 Application: The Effect of COVID-19 Vaccination on Men-

tal Well-Being

Chaudhuri and Howley (2022) evaluate the impact of COVID-19 vaccination on mental

health. The treatment variable is an indicator of whether subject i received any dose of

a COVID-19 vaccine. This is a sample of waves 7 and 8 of the COVID-19 survey by the

UK Household Longitudinal Study (University of Essex, Institute for Social and Economic

Research, 2021). This survey includes the vaccination, demographic and mental health

information of 21, 985 survey participants. The outcome variable in this study is assessed

using the GHQ-12 questionnaire, which is designed to evaluate an individual’s mental health

condition through a series of 12 questions. Each question in the GHQ-12 is rated on a

four-point scale. The resulting GHQ scores can range from 0 to 36. In the context of this
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particular sample, we follow Chaudhuri and Howley (2022) and reverse the GHQ scores to

improve the interpretability, such that the score is directly proportional to the level of mental

well-being in the evaluated individuals. Summary statistics of key variables are presented in

Table 1.13, and analysis by propensity score matching and IPTW methods are presented in

Sections 1.4.2.1 and 1.4.2.2.

Table 1.13: Summary Statistics, COVID-19 Vaccination Data

Control (n0 = 12423) Treated (n1 = 9562)

Variables Mean SD Mean SD

GHQ-12 23.14 6.15 24.04 5.64
Age 49.19 15.64 61.67 13.84
Born in UK 0.87 0.34 0.90 0.30
Clinically Vulnerable 0.34 0.47 0.56 0.50
Male 0.42 0.49 0.41 0.49
Key Worker 0.25 0.43 0.25 0.43
Couple 0.69 0.46 0.73 0.44
Willingness to Take Vaccine 0.91 0.29 0.95 0.22

1.4.2.1 Application: Propensity Score Matching

We estimated treatment effects using four models. The first one is a heteroskedastic model

with variance var(νi) = exp(z′iγ), while the second model is more parsimonious with variance

var(νi) = agei. The third model is a homoskedastic model with all the covariates, and the

fourth model incorporates age2
i as well as interaction terms between age and the other

covariates.

The estimated impact of COVID-19 vaccination on mental well-being is presented in Table

1.14. The marginal likelihood results suggest that the heteroskedastic model with var(νi) =

exp (z′iγ) fits the data best. These results suggest that COVID-19 vaccination is expected to

improve mental health. Figure 1.8 and 1.9 show the SMD before and after matching. The

figures show that for the ATE samples, all the models can improve the balance. For the
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Table 1.14: Impact of COVID-19 Vaccination on Mental Health (PSM)

ATE ATT
Model Mean SD 95% CI Mean SD 95% CI ln(m(y))

Heterosk.
(exp(z′iγ))

1.20 0.22 (0.76, 1.64) 2.59 0.47 (1.68, 3.52) −7687.86

Heterosk.
(age2

i )
0.52 0.12 (0.30, 0.77) 1.36 0.22 (0.92, 1.80) −9337.68

Homosk. 0.39 0.12 (0.15, 0.61) 1.15 0.22 (0.72, 1.60) −8753.30
Homosk.
(Higher-order)

0.36 0.13 (0.13, 0.64) 0.94 0.23 (0.51, 1.46) −8030.50

ATT samples, the heteroskedastic model with var(νi) = exp (z′iγ) performs better than the

alternatives.

Figure 1.8: COVID-19 Vaccination SMD (ATE Sample)

1.4.2.2 Application: Inverse Probability of Treatment Weighting

We computed the Average Treatment Effect (ATE) utilizing both a heteroskedastic model

and a homoskedastic model to assess the impact of COVID-19 vaccination on mental well-

being, as outlined in Table 1.15. The marginal likelihood strongly supports the heteroskedas-

tic model, and its estimate closely aligns with the findings from propensity score matching.
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Figure 1.9: COVID-19 Vaccination SMD (ATT Sample)

However, the ATE distribution’s standard deviation, significantly larger than that in the

propensity score matching section, renders the impact of COVID-19 vaccination less pre-

cise than the propensity score matching method. The table also demonstrates a well-known

problem with inverse probability estimators, namely their large variance because there is no

guarantee that the inverse probability must be bounded. Moreover, the estimated treatment

effect in the homoskedastic model lacks interpretability, because it lies entirely outside the

range of the mental health score [0, 36]. This underscores the importance of heteroskedas-

ticity in this context.

Table 1.15: Impact of COVID-19 Vaccination on Mental Health (IPTW)

Model Mean SD 95% CI ln(m(y))

Heterosk. 3.45 1.85 (−0.33, 6.98) −7633.95
Homosk. 54.23 8.34 (40.25, 72.39) −8753.28
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1.5 Conclusion

This chapter has studied the impact of heteroskedasticity in regression discontinuity designs,

potential outcome models, and propensity score matching. Because of the nonlinearities in

these contexts, the question of whether heteroskedasticity is present has to be addressed

directly, as it can lead to bias and inconsistency with consequences can not be handled

by correcting the standard errors. In our Bayesian context, we treat the presence of het-

eroskedasticity as a question of model uncertainty. On the computational side, we develop

new computationally efficient simulation-based estimation algorithms tailored to each setting

and discuss their implementation in computing marginal likelihoods to enable formal model

comparison. Moreover, we propose an approach for reducing the number of reduced MCMC

runs required for marginal likelihood estimation in settings with multiple parameter blocks.

Simulation studies have been provided in order to evaluate the empirical consequences of

omitted heteroskedasticity, assess the performance of the proposed estimation algorithms,

and validate the proposed model comparison techniques. Our investigation has revealed that

when non-linearity is pronounced, ignoring heteroskedasticity can result in biased estimates

of treatment effects. We also find that the proposed MCMC methods perform well and can

recover the true parameters and models used in generating the data.

To assess the practical applicability and relevance of our methods, this chapter has devoted

considerable attention to several applications. In particular, we have explored the impact of

academic probation on students’ academic performance, the effects of Medigap policies on

out-of-pocket healthcare expenditures, and the influence of COVID-19 vaccination on men-

tal well-being. RDD results suggest that academic probation improves subsequent semester

GPA, while exhibiting no discernible impact on graduation status. Using a Rubin causal

model (Roy-type model) in our second application, we find that Medigap policies are ex-

pected to reduce out-of-pocket healthcare expenditures. Finally, results from propensity
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score matching and inverse probability of treatment weighting indicate that COVID-19 vac-

cination improved the mental well-being of vaccine recipients in the UK. Based on model

comparisons in each application, we found that heteroskedastic models were favored in all

settings. The results emphasize the importance of allowing for heteroskedasticity in ob-

servational observational studies of causal effects and demonstrate that the presence of

heteroskedasticity can be uncovered through model comparisons. While our analysis has

primarily centered on the effects of heteroskedasticity, we believe that other concerns such

as sample selection or endogeneity may also be present in many settings. We intend to

study their impact, as well as their interactions with heteroskedasticity, on treatment effect

estimation in future work.
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Chapter 2

Bayesian Analysis of a Self-selection

Model with Multiple Outcomes

We develop a Bayesian treatment model that incorporates self-selection and accommodates

multiple outcomes. We discuss the estimation of marginal likelihood or formal model com-

parison. To validate our approach, we test the algorithm and model comparison techniques

through simulation results. Subsequently, we employ our model on two datasets, enabling

us to analyze the influence of insurance on healthcare utilization. Specifically, we estimate

the impact of Medigap policies on healthcare expenditure using the 1987 National Medical

Expenditure Survey (NMES) data and the impact of different types of private insurance on

healthcare utilization using the 1996 Medical Expenditure Panel Survey (MEPS) data. Our

results reveal weak evidence supporting selection bias in both applications.
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2.1 Introduction

This chapter introduces a parametric self-selection Bayesian model featuring a binary treat-

ment and two distinct outcome variables—one count and the other continuous. Allowing for

endogenous selection, we are interested in studying the treatment impact on the conditional

mean of the outcome variables. By leveraging this model, we conducted an empirical inves-

tigation into the influence of private insurance on healthcare expenditures and the frequency

of physician office visits across two datasets.

Sample selection arises when the observed sample does not accurately represent the broader

population of interest, introducing bias into estimators. Heckman (1979) highlighted the con-

sequential inconsistency and bias resulting from ignoring sample selection and introduced

Heckman correction as a remedy. In the context of treatment models, we typically only ob-

serve treated outcomes for individuals in the treated group and untreated outcomes for those

in the untreated group, potentially leading to sample selection bias if selection decisions are

non-random. Addressing this challenge, Chib, Greenberg and Jeliazkov (2009) pioneered a

Bayesian model capable of analyzing data afflicted by both sample selection and endogeneity

issues.

Many papers discussed possible selection concerns in the health insurance industry. Cut-

ler and Zeckhauser (1998) examined evidence suggestive of adverse selection, shedding light

on its implications. Keane and Stavrunova (2016) advanced a model aimed at estimating

moral hazard and selection dynamics within the Medigap market, revealing a weak adverse

selection alongside notable moral hazard effects, especially among individuals with better

health conditions. Sapelli and Vial (2003) studied the self-selection using the Chilean physi-

cian visits data and hospital days data. They found some evidence supporting the existence

of self-selection. Nghiem and Graves (2019) endeavored to estimate the impact of moral

hazard and selection biases within Australia’s private insurance landscape, unearthing evi-
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dence indicative of advantageous selection tendencies, wherein risk-averse individuals exhibit

a heightened propensity to procure health insurance coverage.

On the other hand, Reschovsky, Kemper and Tu (2000) posited that there exists minimal

disparity in hospital utilization across various insurance plan types. Cardon and Hendel

(2001) found that there is no discernible evidence of asymmetric information significantly

influencing insurance plan choices. Munkin and Trivedi (2003) found weak evidence of self-

selection in their model estimating the impact of health insurance on healthcare utilization.

We expand upon the potential outcome methodology employed in Munkin and Trivedi (2003)

by relaxing the assumption of constant treatment effects. This enhancement allows for a more

nuanced exploration of treatment effects. Incorporating insights from Bayesian research by

Albert and Chib (1993), Chib, Greenberg and Winkelmann (1998) and Chib, Greenberg and

Jeliazkov (2009), we use the Markov chain Monte Carlo (MCMC) method to estimate the

parameters. Our methodology was applied to two datasets to investigate the influence of

public or private health insurance on healthcare expenditure and the frequency of doctor’s

office visits. Specifically, we analyzed the 1996 Medical Expenditure Panel Survey (MEPS)

and the 1987 National Medical Expenditure Survey (MEPS) data to gain insights into these

impacts. Additionally, we conducted estimations using three alternative parsimonious mod-

els to provide a comprehensive comparative analysis. To facilitate model comparison, we

computed the marginal likelihood for each model.

The remainder of the chapter is structured as follows. In Section 2.2, we delineate the

model, its corresponding estimation algorithm, and the model comparison technique. In

Section 2.3, we present the simulation results. Section 2.4 discusses the empirical findings.

Finally, Section 2.5 concludes the paper.
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2.2 Model

This section considers a potential outcome framework with self-selection for estimating the

treatment effect for multiple outcomes. The binary treatment variable is represented by Di,

where Di = 1 if subject i receives treatment and Di = 0 if subject i is in the control group.

For each i in the sample, we denote the potential outcomes for the count and continuous

outcome variables as yj1i and yj2i respectively, where j = 0, 1 signifies the treatment status.

We assume that

yj1i ∼ Poisson(µji), j = 0, 1.

For each i in the sample, the observed response is expressed as

y1i = y01i + (y11i − y01i)Di,

y2i = y02i + (y12i − y02i)Di.

We assume that Di = 1{d∗i ≥ 0}, where d∗i represents a latent variable that determines the

values of Di. Additionally, we let xd1i to denote the covariates for yd1i, xd2i to denote the

covariates for yd2i, where d = 0, 1. Lastly, we use xdi to denote the covariates for d∗i .

The model can be represented as

gi = Xiβ + εi, εi ∼ N(0,Ω), (2.1)
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where

gi = (d∗i , ln (µ0i) , y02i, ln (µ1i) , y12i)
′ , Xi =



x′di 0 0 0 0

0 x′01i 0 0 0

0 0 x′02i 0 0

0 0 0 x′11i 0

0 0 0 0 x′12i


,

β = (β′d, β
′
01, β

′
02, β

′
11, β

′
12)
′
, εi = (εdi, ε01i, ε02i, ε11i, ε12i)

′ .

If d∗i ≥ 0, we observe (ln (µ1i) , y12i); otherwise, we observe (ln (µ01) , y02i). We define the

vectors g0i = (d∗i , ln (µ0i) , y02i)
′ and g1i = (d∗i , ln(µ1i), y12i)

′. The covariates matrix is given

by

X1i =


x′di 0 0

0 x′11i 0

0 0 x′12i

 , X0i =


x′di 0 0

0 x′02i 0

0 0 x′12i

 .

The covariance matrix is represented as

Ω =



1 ωd01 ωd02 ωd11 ωd12

ω01d ω01 ω012 ω0111 ω0112

ω02d ω021 ω02 ω0211 ω0212

ω11d ω1101 ω1102 ω11 ω112

ω12d ω1201 ω1202 ω121 ω12


.

Due to missing data, we cannot identify Ω0111, Ω0112, Ω0211, and Ω0212. To address this

identification issue, we assume that Ωd = 1.
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Thus the covariance matrix that can be identified is expressed as

Ω =



1 ωd01 ωd02 ωd11 ωd12

ω01d ω01 ω012 . .

ω02d ω021 ω02 . .

ω11d . . ω11 ω112

ω12d . . ω121 ω12


.

We introduce the following notation

Ω0 =


1 ωd01 ωd02

ω01d ω01 ω012

ω02d ω021 ω02

 =

 1 Ω012

Ω021
Ω011
(2×2)

 , Ω1 =


1 ωd11 ωd12

ωd11 ω11 ω112

ω12d ω121 ω12

 =

 1 Ω112

Ω121
Ω111
(2×2)

 ,

J0 =


I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

 , J1 =


I 0 0 0 0

0 0 0 I 0

0 0 0 0 I

 ,

Ω22·0 = Ω011 − Ω021Ω012, Ω22·1 = Ω111 − Ω121Ω112.

Given the unit restriction, we directly handle the quantities Ω22·0, Ω22·1, Ω012, and Ω112, from

which we subsequently recover Ω0 and Ω1 (Munkin and Trivedi, 2003; Chib, Greenberg and

Jeliazkov, 2009; Vossmeyer, 2016).

Thus for i in the control group, we have

g0i ∝ |Ω0|−1/2 exp

(
−1

2
(g0i −X0iJ0β)′Ω−1

0 (g0i −X0iJ0β)

)
,
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and for i in the treated group, we have

g1i ∝ |Ω1|−1/2 exp

(
−1

2
(g1i −X1iJ1β)′Ω−1

1 (g1i −X1iJ1β)

)
.

The complete data density function is given by

f(y1, y2, d
∗, ln(µ)|β,Ω0,Ω1) = f(ln(µ), y2, d

∗|θ)f(y1| ln(µ))

=

[ ∏
i:Di=1

fN(gi1|β,Ω1)f
(
y11i| ln(µ1i)

)
1{d∗i ≥ 0}

]

×

[ ∏
i:Di=0

f(g0i|β,Ω0)f
(
y01i| ln(µ0i)

)
1{d∗i < 0}

]
.

The prior distribution for β is specified as β ∼ N(b0, B0). We let Ω22·0 ∼ IW (r0, R0),

Ω22·1 ∼ IW (r1, R1), Ω012|Ω22·0 ∼ N (q0,Ω22·0), and Ω112|Ω22·1 ∼ N (q1,Ω22·1).

In our model, the average treatment effect (ATE) and the average treatment effect on the

treated (ATT) for outcome Y1 and Y2 are defined as

ATE1 = E (Y11i − Y01i) = E (x′11iβ11 − x′01iβ01) ,

ATE2 = E (Y12i − Y02i) = E (x′12iβ12 − x′02iβ02) ,

ATT1 = E (Y11i − Y01i|Di = 1) = E (x′11iβ11 − x′11iβ01) ,

ATT2 = E (Y12i − Y02i|Di = 1) = E (x′12iβ12 − x′12iβ02) .

These quantities can be estimated using the MCMC output.
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2.2.1 Markov chain Monte Carlo (MCMC) Algorithm

In this section, we delve into the Markov chain Monte Carlo (MCMC) simulation algorithm

tailored for our model. We derive the conditional distribution for each parameter and provide

a comprehensive discussion of the sampling methodology employed.

2.2.1.1 Sampling β

The posterior distribution for β is N(b, B), where

b = B

(
B−1

0 b0 +
∑
i∈N0

J ′0X
′
0iΩ
−1
0 g0i +

∑
i∈N1

J ′1X
′
1iΩ
−1
1 g1i

)
,

and

B =

(
B−1

0 +
∑
i∈N0

J ′0X
′
0iΩ
−1
0 X0iJ0 +

∑
i∈N1

J ′1X
′
i1Ω−1

1 X1iJ1

)−1

.

2.2.1.2 Sampling d∗i

We sample d∗i ∼ TNBi (µdji,Ωdj), where Bi = (−∞, 0) if Di = 0, and Bi = [0,+∞) if Di = 1,

µdji = x′diβd+Ωj12 (Ωj11)−1 ( ln(µji)−x′j1iβj1, yj2i−x′j2iβj2
)′

, and Ωdj = 1−Ωj12 (Ωj11)−1 Ωj21,

j = 0, 1.

2.2.1.3 Sampling ln(µit)

The conditional distribution of ln(µji) given yj1i, yj2i, d
∗
i and all the parameters is

(ln(µji)|yj2i, d∗i , β,Ωj) ∼ N
(
µ1|2,ji, σ1|2,j

)
,

53



where µ1|2,ji = x′j1iβj1 + Ω̃j12

(
Ω̃j22

)−1 (
d∗i −x′diβd, yj2i−x′j2iβj2

)′
, Ω̃j12 = (ωj1d, ωj12), σ1|2,j =

ωj1 − Ω̃j12(Ω̃j22)−1Ω̃j21, and Ω̃j22 =

 1 ωdj2

ωj2d ωj2

, j = 0, 1. Thus the posterior distribution

for ln(µit) is specified as

π (ln(µji)|yj1i, yj2i, d∗i , β,Ωj) ∝ fN
(
µ1|2,ji, σ1|2,j

)
f (yj1i| ln (µji))

= fN
(
µ1|2,ji, σ1|2,j

) µyj1ie−µji
yj1i!

.

We use a random walk Metropolis-Hasting algorithm to sample the ln (µji). We use ln (µji)
∗

to denote the proposed value. The proposed density is denoted as q (ln (µji) , ln (µji)
∗) =

fN

(
ln(µji)

∗| ln (µji) ,
((
σ1|2,j

)−1
+ y−1

j1i

)−1
)

. The acceptance rate is thus defined as

α (ln (µji) , ln (µji)
∗) = min

{
π (ln (µji)

∗ |yj1i, yj2i, β, d∗i ,Ωj) q
(
ln (µji) , ln

(
µ∗ji
))

π (ln (µji) |yi1t, yi2t, β, zi,Ωj) q (ln (µji)
∗ , ln (µji))

, 1

}

= min

{
π (ln (µji)

∗ |yj1i, yj2i, β, d∗i ,Ωj)

π (ln (µji) |yj1i, yj2i, β, d∗i ,Ωj)
, 1

}
.

We generate a random number p from a uniform distribution U(0, 1). If p ≤ α, the proposed

value is accepted; otherwise, it is rejected.

2.2.1.4 Sampling Ωj21

The conditional distribution of Ωj21, j = 0, 1, is given by

π (Ωj21|Ω22·j, β, ln(µji), ln(yj2i), d
∗
i ) ∝ π (Ωj21|Ω22·j) π

(
(ln(µji), yj2i)

′ |d∗i
)

= fN (qj,Ω22·j)
∏
i:Di=j

fN
(
(ln (µji) , yj2i)

′ |µ2|3,ji,Ω22·j
)
,

where µ2|3,ji =
(
x′j1iβj1, x

′
j2iβj2

)′
+ Ωj21 (d∗i − x′diβd).
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Thus, the posterior distribution for Ωj21 is specified as Ωj21 ∼ N
(
q̂j, Σ̂j

)
, where Σ̂j =(

ε′jdεjd (Ω22·j)
−1 + (Ω22·j)

−1)−1
, q̂ = Σ̂

(
(Ω22·j)

−1 ε
′
jεjd + (Ω22·j)

−1 qj
)
, εjd = d∗i − Xdβd, and

εj = (ln (µj)−Xj1βj1, yj2 −Xj2βj2).

2.2.1.5 Sampling Ω22·j

We sample Ω22·j, j = 0, 1, from the distribution specified as

π (Ω22·j|Ωj21, β, ln(µji), yj2i, d
∗
i ) ∝ π (Ω22·j) π (Ωj21|Ω22·j) π

(
(ln (µji) , ln (yj2i))

′ |d∗i
)

= π (Ω22·j) fN (qj,Ω22·j)
∏
i:Di=j

fN
(
(ln (µji) , yj2i)

′ |µ2|3,ji,Ω22·j
)

∝ |Ω22·j|
rj+4+nj

2 × exp

(
− 1

2

(
tr

[(
Rj + (Ωj21 − qj) (Ωj21 − qj)′

+
∑
i:Di=j

(εji − Ωj21εjdi) (εji − Ωj12εjdi)
′
)

(Ω22·j)
−1

]))
,

where n0 represents the sample size of the control group, and n1 denotes the sample size

of the treated group. Thus, we sample Ω22·j from a inverse Wishart distribution, defined

as Ω22·j ∼ IW (r̂j, R̂j), where r̂j = rj + 1 + nj, and R̂j = Rj + (Ωj21 − qj) (Ωj21 − qj)′ +∑
i:Di=j

(εji − Ωj21εjdi) (εji − Ωj21εjdi)
′.

2.2.2 Bayesian Model Comparison

Bayesian model comparison offers a systematic approach for comparing multiple competing

models. According to Bayes’ formula, the posterior probability for a given model, denoted

as Mc, is expressed as

π (Mc|y) ∝ π (Mc)m (y|Mc) ,

whereMc signifies the prior probability of modelMc, while m (y|Mc) denotes the marginal

likelihood.
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According to Chib (1995), the marginal likelihood can be estimated at a specific parameter

value θ∗c in the parameter space, as

m (y|Mc) =
f (y|Mc, θ

∗
c ) π (θ∗c |Mc)

π (θ∗c |Mc, y)
.

In our model, θc = {β,Ω22·0,Ω012,Ω22·1,Ω112} ≡ {ψ1, ψ2, ψ3, ψ4, ψ5}. For simplicity, we will

omit the notation Mc in the subsequent discussions. The likelihood in this model can be

decomposed as

f(y|θ∗c ) =

( ∏
i:Di=0

f (y02i|θ∗c ) f (ln (µ0i) , d
∗
i |y02i, θc) f (y01i| ln (µ0i)) f (Di|d∗i )

)

×

( ∏
i:Di=1

f (y12i|θ∗c ) f (ln(µ1i), d
∗
i |y12i, θc) f (y11i| ln (µ1i)) f (Di|d∗i )

)
,

where f (y02i|θ∗c ) and f (y12i|θ∗c ) are straightforward to compute, while the remaining terms

can be estimated using the importance sampling method. We employ a Student-t distribution

with 5 degrees of freedom as the proposal distribution.

The posterior ordinate π (θ∗c |y) can be calculated utilizing the Markov Chain’s invariant

condition (Ritter and Tanner, 1992; Jeliazkov and Lee, 2010), expressed as

π (θ∗c |y) = E (K (θc, θ
∗
c ) |y, ξ) ,

where xi denotes the set of latent data, and K (·) represents the Gibbs transition kernel

defined as

K (θc, θ
∗
c |y) = π5

r=1π (ψ∗r |y, {ψ∗s}s<r, {ψs}s>r, ξ)

where (ψ, ξ) are obtained in the main MCMC run.

”In this paper, we contrast our primary model, designated as M0, with several more parsi-

monious alternatives: M1, which is the baseline model M0 with constraints Ω012 = Ω112 =
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(0, 0), M2, a model featuring a constant treatment effect, and M3, an extension of M2 where

Ω12 = (0, 0) is imposed.

It’s important to note that M2 offers a more parsimonious version of M0. The specific model

details for M2 are provided in B.1.

2.3 Simulation

In this section, we conduct a simulation study to evaluate both the performance of the MCMC

algorithm and the effectiveness of the proposed model comparison approach. We randomly

generated 10, 000 observations from the model M0 using Equation 2.1, and estimated the

model using the method introduced in the previous session. The simulation parameters

were selected for illustrative purposes, aiming to demonstrate the methods’ effectiveness in

estimating the true parameters. The parameters are specified as

Ω =



1 0.55 0.34 0.46 −0.19

0.55 1.04 −0.13 −0.05 −0.56

0.34 −0.13 0.32 0.30 0.17

0.46 −0.05 0.30 0.71 −0.12

−0.19 −0.56 0.17 −0.12 0.64


,

βd = (−0.5, 1,−0.5)′, β01 = (−0.5, 0.5)′, β11 = (0.5,−0.5)′, β02 = (1,−1)′ and β12 = (−1, 1)′.

The covariates are x01i = (1, ν1i)
′, x11i = x02i = x12i = x01i, and xdi = (1, ν1i, ν2i)

′, where ν1i

and ν2i are sampled from two independent standard normal distribution.

We estimated the generated data using 10, 000 iterations with a burn-in period of 1000

iterations. We reported the mean and standard deviation of the posterior distribution for the

parameters, along with the 95% credible interval. The 95% credible intervals are derived from

57



Table 2.1: Simulation Parameters Estimates Using M0 and M1

M0 M1

True Mean SD 95% CI Mean SD 95% CI

CONST −0.5 −0.49 0.02 (−0.52,−0.46) −0.49 0.02 (0.52,−0.46)
ν1 1 0.98 0.02 (0.94, 1.02) 0.98 0.02 (0.94, 1.02)
ν2 −0.5 −0.49 0.02 (−0.52,−0.47) −0.49 0.02 (−0.52,−0.46)
CONST −0.5 −0.53 0.03 (−0.59,−0.46) −0.83 0.03 (−0.89,−0.77)
ν1 0.5 0.45 0.03 (0.38, 0.51) 0.23 0.03 (0.18, 0.27)
CONST 1 0.99 0.01 (0.97, 1.01) 0.82 0.01 (0.81, 0.84)
ν1 −1 −1.01 0.01 (−1.03,−0.99) −1.11 0.01 (−1.13,−1.10)
CONST 0.5 0.48 0.06 (0.36, 0.63) 0.91 0.02 (0.87, 0.95)
ν1 −0.5 −0.49 0.04 (−0.56,−0.42) −0.68 0.02 (−0.73,−0.64)
CONST −1 −1.01 0.05 (−1.11,−0.93) −1.18 0.02 (−1.22,−1.15)
ν1 1 1.01 0.03 (0.96, 1.06) 1.08 0.02 (1.05, 1.11)
ω01 1.04 1.11 0.06 (0.99, 1.23) 0.94 0.05 (0.85, 1.04)
ω012 −0.13 −0.13 0.01 (−0.16,−0.11) −0.21 0.01 (−0.23,−0.18)
ω02 0.32 0.31 0.01 (0.30, 0.33) 0.28 0.00 (0.27, 0.29)
ωd01 0.55 0.58 0.05 (0.48, 0.67)
ωd02 0.34 0.32 0.02 (0.28, 0.35)
ω11 0.71 0.68 0.04 (0.60, 0.75) 0.59 0.03 (0.54, 0.64)
ω112 −0.12 −0.12 0.02 (−0.16,−0.09) −0.09 0.01 (−0.12,−0.06)
ω12 0.65 0.64 0.02 (0.61, 0.67) 0.63 0.01 (0.60, 0.65)
ωd11 0.46 0.43 0.06 (0.29, 0.55)
ωd12 −0.19 −0.17 0.04 (−0.25,−0.08)

Table 2.2: Simulation Treatment Effects Using M0 and M1

M0 M1

True Mean SD 95% CI Mean SD 95% CI

ATE1 1.01 1.02 0.07 (0.88, 1.17) 1.74 0.04 (1.67, 1.82)
ATT1 0.33 0.38 0.07 (0.25, 0.52) 1.13 0.04 (1.05, 1.21)
ATE2 −2.01 −2.02 0.05 (2.12,−1.93) −2.02 0.02 (−2.06,−1.98)
ATT2 −0.66 −0.65 0.04 (−0.73,−0.58) −0.53 0.02 (−0.57,−0.50)

ln(m(y)) −27622.50 −27803.92

the converged empirical estimate distribution by extracting the 2.5% and 97.5% quantiles.

The estimated parameter values are presented in Tables 2.1 and 2.3. From the results, it

is evident that model M0 accurately estimates the parameters, whereas all other models

exhibit less effective performance. The findings regarding treatment effects are summarized
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Table 2.3: Simulation Parameters Estimates Using M2 and M3

M2 M3

Mean SD 95% CI Mean SD 95% CI

CONST −0.34 0.01 (−0.37,−0.32) −0.34 0.01 (−0.37,−0.32)
ν1 −0.01 0.01 (−0.03, 0.01) −0.01 0.01 (−0.03, 0.02)
ν2 −0.03 0.01 (−0.05,−0.01) −0.03 0.01 (−0.06,−0.01)
CONST −1.43 0.07 (−1.55,−1.29) −0.88 0.02 (−0.93,−0.83)
ν1 −0.14 0.02 (−0.18,−0.10) −0.12 0.02 (−0.15,−0.08)
D 2.82 0.16 (2.47, 3.10) 1.37 0.03 (1.31, 1.44)
CONST 1.25 0.04 (1.17, 1.33) 1.13 0.01 (1.11, 1.16)
ν1 −0.33 0.01 (−0.35,−0.30) −0.33 0.01 (−0.36,−0.31)
D −1.67 0.11 (−1.90,−1.46) −1.37 0.03 (−1.42,−1.32)
ω1 1.33 0.10 (1.14, 1.53) 0.87 0.03 (0.82, 0.93)
ω12 −0.56 0.05 (−0.66,−0.48) −0.46 0.02 (−0.50,−0.43)
ω2 1.24 0.02 (1.20, 1.29) 1.22 0.02 (1.18, 1.25)
ωd1 −0.85 0.09 (−1.00,−0.66)
ωd2 0.19 0.07 (−0.06, 0.32)

Table 2.4: Simulation Treatment Effects Using M2 and M3

M2 M3

True Mean SD 95% CI Mean SD 95% CI

ATE1 1.01 2.82 0.16 (2.47, 3.10) 1.37 0.03 (1.31, 1.44)
ATT1 0.33
ATE2 −2.01 −1.67 0.11 (−1.90,−1.46) −1.37 0.03 (−1.42,−1.32)
ATT2 −0.66

ln(m(y)) −35832.09 −35832.91

in Tables 2.2 and 2.4. Additionally, we present the posterior distribution of ATE1, ATE2,

ATT1, and ATT2 in Figures 2.1 and 2.2. Model M0 demonstrates accurate estimations of

the treatment effects compared to the other models, which exhibit less effective performance

in this regard. Based on the marginal likelihood results, model M0 emerges as the favored

choice.
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Figure 2.1: Simulation ATE Histograms

(a) ATE1 (b) ATE2

Figure 2.2: Simulation ATT Histograms

(a) ATT1 (b) ATT2

2.4 Empirical Application

We apply our model to analyze two datasets to investigate the impact of insurance on

healthcare utilization. The first dataset is sourced from the 1987-1988 National Medical

Expenditure Survey (NMES), encompassing data on the U.S. elderly population with positive

medical expenditures. The second dataset is derived from the 1996 Medical Expenditure

Panel Survey (MEPS), comprising non-elderly individuals privately insured with positive

medical expenditures. Table 2.5 provides a summary of statistics and variable definitions for

both datasets.
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Table 2.5: Variable Definition and Summary Statistics

Variable Data set NMES MEPS
Number of Observations 3680 5368

Definition Mean SD Mean SD

VIS # of physician office visits 6.88 6.87 4.88 5.98
EXP Expenditure on physician office visits 422.8 785.5 499.5 1047.5
EXCH =1 if self-perceived health is excellent 0.09 0.29 0.32 0.47
POORH =1 if self-perceived health is poor 0.14 0.34 0.02 0.15
CHRON # of chronic conditions 2.02 1.42 0.80 1.12

ADL
=1 if has a condition which limits 0.21 0.40
activities of daily living

INJURY
# of injuries which limit 0.41 0.82
activities of daily living since 1996

NE =1 if lives in northeastern U.S. 0.19 0.39 0.21 0.40
MID =1 if lives in midwestern U.S. 0.26 0.44 0.25 0.43
WEST =1 if lives in western U.S. 0.19 0.39 0.21 0.41
AGE age in years (divided by 10) 7.40 0.62 4.14 1.25
BLACK =1 if is African American 0.10 0.31 0.10 0.30
FEMALE = 1 if female 0.61 0.49 0.58 0.49
MARR = 1 if the person is married 0.56 0.50 0.68 0.47
SCH # of years of education 10.6 3.5 13.32 2.58
FAMINC Family income in $1,000 25.8 30.1 59.11 39.02
EMPL =1 if the person is employed 0.10 0.30 0.82 0.38

PRIVATE
=1 if covered by 0.80 0.40
private health insurance

MCAID =1 if covered by Medicaid 0.09 0.28

INSUR
=0 if covered by HMO 0.51 0.50
= 1 if FFS

SEMP =1 if self-employed 0.09 0.28
SIZE size of the company 127.5 177.8
LOC =1 if multiple locations 0.52 0.50
GOVT = 1 if the company is governmental 0.18 0.39

2.4.1 Private Insurance

Our first application aims to examine the influence of private insurance on the number of

physician office-based visits and the associated office-based total expenditures. We obtained

data from 3, 680 observations of elderly Americans from the 1987 National Medical Expendi-

ture Survey (NMES). The definitions of variables and summary statistics can be referenced
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in Table 2.5.

Individuals aged 65 and older are typically covered by Medicare, which caters to a broad

spectrum of healthcare services. Some individuals opt to supplement this coverage with

private insurance, particularly if they have chronic health conditions or poor health status.

Table 2.6: MCMC Parameters Estimates Using M0 (NMES)

INS VIS(0) EXP(0) VIS(1) EXP(1)

Mean SD Mean SD Mean SD Mean SD Mean SD

CONST −0.20 0.34 1.69∗ 0.42 4.71∗ 0.60 1.11∗ 0.23 4.15∗ 0.31
EXCH 0.07 0.10 0.02 0.15 −0.01 0.20 −0.19∗ 0.06 −0.18∗ 0.07
POORH −0.05 0.07 0.32∗ 0.08 0.35∗ 0.12 0.33∗ 0.05 0.37∗ 0.07
CHRON −0.03 0.02 0.14∗ 0.02 0.12∗ 0.03 0.14∗ 0.01 0.13∗ 0.02
ADL −0.20∗ 0.07 0.16∗ 0.08 0.32∗ 0.12 0.07 0.04 −0.01 0.06
NE 0.12 0.07 0.07 0.10 0.10 0.13 0.10∗ 0.04 0.27∗ 0.06
MID 0.27∗ 0.07 −0.08 0.10 −0.23 0.15 0.03 0.04 0.03 0.06
WEST −0.15∗ 0.07 0.22∗ 0.10 0.50∗ 0.14 0.06 0.05 0.27∗ 0.06
BLACK −0.80∗ 0.07 0.09 0.12 0.30 0.24 −0.19∗ 0.07 −0.45∗ 0.10
MALE −0.01 0.06 −0.01 0.08 −0.08 0.11 −0.02 0.03 0.01 0.05
MARR 0.25∗ 0.06 −0.07 0.09 −0.14 0.13 −0.01 0.04 0.07 0.05
SCH 0.11∗ 0.01 −0.01 0.02 −0.03 0.03 0.03∗ 0.01 0.06∗ 0.01
AGE −0.01 0.04 −0.11∗ 0.05 −0.09 0.07 −0.02 0.03 0.00 0.04
EMPL 0.10 0.09 0.08 0.14 −0.04 0.20 −0.02 0.05 −0.01 0.07
MCAID 0.17∗ 0.08 0.21∗ 0.10 0.20 0.12 0.20 0.16
FAMINC 0.00∗ 0.00
ωj1 0.59∗ 0.07 0.54∗ 0.02
ωj12 0.85∗ 0.11 0.75∗ 0.03
ωj2 1.70∗ 0.30 1.40∗ 0.05
ωdj1 −0.20 0.17 0.15∗ 0.05
ωdj2 −0.64 0.39 0.70∗ 0.07

We apply our model to assess the influence of private insurance on the number of physi-

cian office-based visits and associated expenditures. We incorporate covariates such as self-

perceived health status, number of chronic conditions, disability status, geographic location,

demographic factors, and insurance variables into the equations determining the number of

physician office visits and healthcare expenditures. While there may be heterogeneous effects

attributable to various types of private insurance policies, our primary focus is on investi-
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gating the overall impact of Medigap plans. We assume that family income influences the

purchase of private insurance but does not directly affect healthcare utilization. Additionally,

we assume that Medicaid has no impact on the selection equation once family income has

been controlled for. We report the posterior mean and standard deviation for the parameter

Table 2.7: MCMC Parameters Estimates Using M1 (NMES)

INS VIS(0) EXP(0) VIS(1) EXP(1)

Mean SD Mean SD Mean SD Mean SD Mean SD

CONST −0.24 0.35 1.81∗ 0.40 5.09∗ 0.53 1.24∗ 0.22 4.64∗ 0.30
EXCH 0.06 0.10 0.03 0.14 0.02 0.19 −0.19∗ 0.05 −0.19∗ 0.07
POORH −0.06 0.07 0.31∗ 0.08 0.33∗ 0.11 0.33∗ 0.05 0.41∗ 0.07
CHRON −0.04 0.02 0.13∗ 0.02 0.10∗ 0.03 0.14∗ 0.01 0.14∗ 0.02
ADL −0.24∗ 0.07 0.14 0.08 0.23∗ 0.10 0.09∗ 0.04 0.07 0.06
NE 0.15∗ 0.07 0.08 0.09 0.16 0.12 0.09 0.04 0.23∗ 0.06
MID 0.29∗ 0.07 −0.04 0.09 −0.10 0.13 0.01 0.04 −0.04 0.05
WEST −0.17∗ 0.07 0.20∗ 0.09 0.43∗ 0.12 0.07 0.05 0.30∗ 0.06
BLACK −0.85∗ 0.08 −0.02 0.07 −0.06 0.10 −0.11 0.07 −0.14 0.09
MALE −0.04 0.06 −0.01 0.08 −0.09 0.11 −0.02 0.04 0.02 0.05
MARR 0.27∗ 0.06 −0.03 0.08 0.00 0.10 −0.03 0.04 −0.01 0.05
SCH 0.11∗ 0.01 0.01 0.01 0.02 0.01 0.02∗ 0.01 0.03∗ 0.01
AGE 0.00 0.04 −0.11∗ 0.05 −0.08 0.07 −0.02 0.03 0.00 0.04
EMPL 0.09 0.10 0.10 0.14 0.04 0.19 −0.02 0.05 −0.02 0.07
MCAID 0.16∗ 0.07 0.20∗ 0.10 0.20 0.12 0.23 0.16
FAMINC 0.01∗ 0.00
ω1 0.54∗ 0.04 0.53∗ 0.02
ω12 0.73∗ 0.05 0.71∗ 0.02
ω2 1.31∗ 0.07 1.24∗ 0.03

estimated. The results are summarized in Table 2.6, 2.7, 2.8, and 2.9. Coefficients signif-

icantly different from zero at the 95% confidence level are highlighted using asterisks. It’s

worth noting that the standard deviation for the control group is larger than that obtained

for the treatment group. This discrepancy arises from the fact that only 20% of the sample

comprises the control group. Due to the larger standard deviations in the control group,

certain coefficients that are not substantially different from zero in the control group appear

significant in the treated group. These include variables such as EXCH, NE, and SCH in

both the doctor’s visit and expenditure equations. Conversely, estimates for coefficients of
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other variables, such as ADL and MCAID, are significant in the control group but not in

the treated group.

Table 2.8: MCMC Parameters Estimates Using M2 (NMES)

INS VIS EXP

Mean SD Mean SD Mean SD

CONST −0.23 0.35 1.30∗ 0.22 4.58∗ 0.29
EXCH 0.06 0.10 −0.17∗ 0.05 −0.17∗ 0.07
POORH −0.06 0.08 0.32∗ 0.04 0.38∗ 0.06
CHRON −0.04 0.02 0.13∗ 0.01 0.13∗ 0.01
ADL −0.24∗ 0.07 0.09∗ 0.04 0.11∗ 0.05
NE 0.14∗ 0.07 0.09∗ 0.04 0.22∗ 0.05
MID 0.29∗ 0.07 0.01 0.04 −0.04 0.05
WEST −0.17∗ 0.07 0.09∗ 0.04 0.32∗ 0.05
BLACK −0.84∗ 0.08 −0.09 0.07 −0.12 0.09
MALE −0.04 0.06 −0.01 0.03 0.00 0.04
MARR 0.26∗ 0.06 −0.03 0.04 −0.01 0.05
SCH 0.11∗ 0.01 0.02∗ 0.01 0.03∗ 0.01
AGE 0.00 0.04 −0.04 0.03 −0.02 0.03
EMPL 0.08 0.10 −0.02 0.05 −0.02 0.06
MCAID 0.18∗ 0.06 0.23∗ 0.08
FAMINC 0.01∗ 0.00
PRIVATE 0.11 0.20 0.26 0.23
ω1 0.53∗ 0.02
ω12 0.72∗ 0.02
ω2 1.26∗ 0.03
ωd1 0.04 0.11
ωd2 0.03 0.13

We estimated the treatment effects and marginal likelihood using the four models, with the

results summarized in Tables 2.10 and 2.11. The treatment effects estimated are not signif-

icant in the unrestricted modelsM0 andM2, under the endogeneity assumption. However,

the treatment effects estimated are significantly positive for the restricted models M1 and

M3. This suggests that after accounting for the correlation between insurance and utiliza-

tion, private insurance has no significant impact on healthcare utilization, indicating the

presence of selection bias. We observed significant estimates for the covariance components

ωd11 and ωd12 for the treated group in model M0 to support the statement. However, the
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Table 2.9: MCMC Parameters Estimates Using M3 (NMES)

INS VIS EXP

Mean SD Mean SD Mean SD

CONST −0.24 0.36 1.27∗ 0.20 4.55∗ 0.26
EXCH 0.06 0.10 −0.17∗ 0.05 −0.16∗ 0.07
POORH −0.06 0.07 0.32∗ 0.04 0.38∗ 0.06
CHRON −0.04 0.02 0.14∗ 0.01 0.13∗ 0.01
ADL −0.24∗ 0.07 0.10∗ 0.04 0.11∗ 0.05
NE 0.14 0.07 0.08∗ 0.04 0.21∗ 0.05
MID 0.29∗ 0.07 0.00 0.04 −0.05 0.05
WEST −0.17∗ 0.07 0.09∗ 0.04 0.33∗ 0.06
BLACK −0.85∗ 0.08 −0.07 0.05 −0.10 0.07
MALE −0.04 0.06 −0.01 0.03 0.00 0.04
MARR 0.26∗ 0.06 −0.03 0.03 −0.01 0.04
SCH 0.11∗ 0.01 0.02∗ 0.00 0.03∗ 0.01
AGE 0.00 0.04 −0.04 0.02 −0.02 0.03
EMPL 0.08 0.10 −0.02 0.05 −0.02 0.06
MCAID 0.19∗ 0.06 0.23∗ 0.08
FAMINC 0.01∗ 0.00
PRIVATE 0.18∗ 0.04 0.32∗ 0.06
ω1 0.53∗ 0.02
ω12 0.71∗ 0.02
ω2 1.26∗ 0.03

Table 2.10: Impact of Medigap Policies on Healthcare Utilization UsingM0 andM1 (NMES)

M0 M1

Mean SD 95% CI Mean SD 95% CI

ATE1 0.45 0.26 (−0.09, 0.97) 0.20 0.05 (0.10, 0.29)
ATT1 0.49 0.27 (−0.09, 1.04) 0.20 0.05 (0.10, 0.31)
ATE2 1.06 0.59 (−0.23, 1.88) 0.32 0.06 (0.20, 0.44)
ATT2 1.17 0.63 (−0.20, 2.04) 0.32 0.07 (0.19, 0.45)

ln(m(y)) −16176.61 −16248.05

estimates for ωd01 and ωd02 in M0, as well as the estimates for ωd1 and ωd2 in model M2,

are not significant. Thus, we remain uncertain about the presence of selection bias. Based

on the marginal likelihood results, model M3 is favored over the other competing models.

Notably, this model suggests a positive impact of Medigap policies on healthcare utilization,
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Table 2.11: Impact of Medigap Policies on Healthcare Utilization UsingM2 andM3 (NMES)

M2 M3

Mean SD 95% CI Mean SD 95% CI

ATE1 0.11 0.20 (−0.28, 0.47) 0.18 0.04 (0.10, 0.27)
ATE2 0.26 0.23 (−0.20, 0.68) 0.32 0.06 (0.20, 0.43)

ln(m(y)) −16156.89 −16147.03

indicating the presence of a moral hazard issue.

2.4.2 FFS or HMO

In this application, we compare the impact of selecting different types of private insurance on

healthcare utilization using data from the 1996 Medical Expenditure Panel Survey (MEPS).

The sample comprises individuals aged between 16 and 65. We are comparing two categories

of private insurance: indemnity plans (FFS) and HMO plans. FFS is a payment system where

patients pay for services upfront and are later reimbursed by the insurance company. This

arrangement can potentially lead to the overuse of healthcare services, as doctors may be

incentivized to prescribe more treatments or services. The definitions and summary statistics

for the variables are available in Table 2.5.

The treatment variable INSUR equals 1 if the insurance type is indemnity plans (FFS)

and 0 if it’s HMO. Similar to the previous section, we assume that employment-related

variables, such as company size, location, self-employment status, and family income, solely

influence the selection of private insurance and do not directly impact healthcare utilization.

This assumption is grounded in reality, as many individuals have limited options for health

insurance plans, often tied closely to their employment circumstances.

The posterior mean and standard deviation for the four models are summarized in Ta-

bles 2.12, 2.13, 2.14, and 2.15. Coefficients significant at the 95% level are highlighted with
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Table 2.12: MCMC Parameters Estimates Using M0 (MEPS)

INS VIS(0) EXP(0) VIS(1) EXP(1)

Mean SD Mean SD Mean SD Mean SD Mean SD

CONST 0.01 0.12 −0.12 0.14 3.80∗ 0.19 0.28∗ 0.13 3.38∗ 0.17
EXCH 0.10 0.04 −0.28∗ 0.04 −0.18∗ 0.05 −0.17∗ 0.04 0.00 0.05
POORH −0.04 0.12 0.37∗ 0.12 0.43∗ 0.17 0.23∗ 0.11 0.32 0.16
CHRON 0.00 0.02 0.21∗ 0.02 0.22∗ 0.02 0.23∗ 0.01 0.27∗ 0.02
INJURY 0.01 0.02 0.17∗ 0.02 0.24∗ 0.03 0.12∗ 0.02 0.11∗ 0.03
BLACK −0.21∗ 0.06 −0.08 0.06 −0.18∗ 0.08 −0.16∗ 0.07 −0.32∗ 0.09
FEMALE −0.07 0.04 0.39∗ 0.04 0.38∗ 0.05 0.30∗ 0.04 0.33∗ 0.05
MARR 0.05 0.04 −0.07 0.04 −0.10∗ 0.05 0.00 0.04 0.01 0.06
SCH 0.00 0.01 0.03∗ 0.01 0.04∗ 0.01 0.02∗ 0.01 0.03∗ 0.01
EMPL −0.16∗ 0.05 0.03 0.05 0.02 0.07 −0.14∗ 0.05 −0.18∗ 0.06
AGE 0.08∗ 0.02 −0.01 0.02 0.06∗ 0.02 0.05∗ 0.02 0.14∗ 0.02
NE −0.11∗ 0.05 0.14∗ 0.05 0.02 0.07 0.09 0.05 0.07 0.07
MID 0.12∗ 0.05 −0.10 0.05 −0.25∗ 0.07 −0.03 0.04 −0.06 0.06
WEST −0.40∗ 0.05 0.09 0.05 0.13 0.07 −0.09 0.06 −0.29∗ 0.07
SIZE −0.00∗ 0.00
GOVT 0.04 0.04
LOC −0.03 0.04
SEMP 0.05 0.06
FAMINC −0.00∗ 0.00
ωj1 0.83∗ 0.06 0.59∗ 0.03
ωj12 1.01∗ 0.08 0.87∗ 0.05
ωj2 1.60∗ 0.10 1.89∗ 0.10
ωdj1 −0.72∗ 0.06 0.20∗ 0.05
ωdj2 −0.62∗ 0.11 0.97∗ 0.07

asterisks. All four models consistently estimate a significant positive impact of variables

POORH, CHRON , INJURY , FEMALE, and SCH on healthcare expenditure and the

frequency of doctors’ office visits, in both the control group and the treated group. Moreover,

they estimate a significant negative impact of variable EXCH on healthcare utilization in

both groups.

According to Table 2.12, the estimated covariance between insurance selection and healthcare

utilization is significantly different from zero in model M0. Specifically, the covariance is

negative in the control group and positive in the treated group. However, the estimated
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Table 2.13: MCMC Parameters Estimates Using M1 (MEPS)

INS VIS(0) EXP(0) VIS(1) EXP(1)

Mean SD Mean SD Mean SD Mean SD Mean SD

CONST 0.00 0.12 0.47∗ 0.12 4.30∗ 0.16 0.45∗ 0.12 4.14∗ 0.15
EXCH 0.11∗ 0.04 −0.23∗ 0.04 −0.14∗ 0.05 −0.18∗ 0.04 −0.07 0.05
POORH 0.01 0.12 0.42∗ 0.11 0.47∗ 0.16 0.24∗ 0.10 0.35∗ 0.14
CHRON 0.01 0.02 0.22∗ 0.02 0.22∗ 0.02 0.23∗ 0.01 0.27∗ 0.02
INJURY 0.01 0.02 0.18∗ 0.02 0.25∗ 0.03 0.12∗ 0.02 0.11∗ 0.03
BLACK −0.21∗ 0.06 −0.20∗ 0.06 −0.28∗ 0.07 −0.12 0.07 −0.17∗ 0.08
FEMALE −0.07 0.04 0.36∗ 0.04 0.35∗ 0.05 0.31∗ 0.04 0.37∗ 0.05
MARR 0.02 0.04 −0.06 0.04 −0.10 0.05 0.00 0.04 0.00 0.05
SCH 0.00 0.01 0.03∗ 0.01 0.04∗ 0.01 0.02∗ 0.01 0.04∗ 0.01
EMPL −0.14∗ 0.06 −0.08 0.05 −0.08 0.07 −0.10∗ 0.04 −0.03 0.06
AGE 0.08∗ 0.02 0.02 0.02 0.08∗ 0.02 0.04∗ 0.02 0.08∗ 0.02
NE −0.12∗ 0.05 0.09 0.05 −0.03 0.06 0.11∗ 0.05 0.15∗ 0.06
MID 0.15∗ 0.05 −0.04 0.05 −0.20∗ 0.06 −0.05 0.04 −0.16∗ 0.06
WEST −0.43∗ 0.05 −0.07 0.05 −0.03 0.06 −0.03 0.05 −0.03 0.07
SIZE −0.00∗ 0.00
GOVT −0.02 0.05
LOC −0.05 0.05
SEMP 0.12 0.07
FAMINC 0.00 0.00
ωj1 0.53∗ 0.02 0.54∗ 0.02
ωj12 0.74∗ 0.03 0.74∗ 0.02
ωj2 1.35∗ 0.04 1.32∗ 0.04

covariance between insurance selection and healthcare utilization is not significant in model

M2, as indicated in Table 2.14. Furthermore, the estimated covariance parameters for models

M1, M2, and M3 are similar to each other, as illustrated in Tables 2.13, 2.14, and 2.15.

The estimated treatment effects and marginal likelihood are summarized in Tables 2.16 and

2.17. Model M0 predicted a positive treatment effect of the FFS plan on the frequency

of physician office visits, while the impact on healthcare out-of-pocket expenditure remains

unclear. However, the estimated treatment effects using all the other models are not signifi-

cant. Based on the results usingM1, after restricting that the correlation between insurance

selection and healthcare utilization is 0, the average treatment effects estimates are no longer
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Table 2.14: MCMC Parameters Estimates Using M2 (MEPS)

INS VIS EXP

Mean SD Mean SD Mean SD

CONST 0.00 0.12 0.49∗ 0.16 4.34∗ 0.22
EXCH 0.11∗ 0.04 −0.20∗ 0.03 −0.09∗ 0.04
POORH 0.00 0.12 0.33∗ 0.08 0.40∗ 0.11
CHRON 0.01 0.02 0.22∗ 0.01 0.25∗ 0.02
INJURY 0.01 0.02 0.14∗ 0.01 0.17∗ 0.02
BLACK −0.22∗ 0.06 −0.17∗ 0.05 −0.26∗ 0.07
FEMALE −0.07 0.04 0.33∗ 0.03 0.36∗ 0.03
MARR 0.03∗ 0.04 −0.03 0.03 −0.05 0.04
SCH 0.00 0.01 0.03∗ 0.00 0.04∗ 0.01
EMPL −0.14∗ 0.06 −0.10∗ 0.04 −0.07 0.06
AGE 0.08∗ 0.02 0.03∗ 0.01 0.09∗ 0.02
NE −0.12∗ 0.05 0.10∗ 0.04 0.05 0.05
MID 0.15∗ 0.05 −0.04 0.04 −0.16∗ 0.05
WEST −0.42∗ 0.05 −0.06 0.06 −0.06 0.08
SIZE −0.00∗ 0.00
GOVT −0.01 0.05
LOC −0.06 0.05
SEMP 0.11 0.07
FAMINC −0.00 0.00
INSUR −0.07 0.25 −0.25 0.38
ω1 0.56∗ 0.03
ω12 0.76∗ 0.03
ω2 1.39∗ 0.06
ωd1 0.04 0.16
ωd2 0.18 0.24

significant. This suggests some evidence of selection bias. However, the difference between

the treatment effects estimated by models M2 and M3 is not readily apparent. Thus, the

presence of selection bias remains uncertain. According to the marginal likelihood results,

the constant treatment model, M2, is recommended.
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Table 2.15: MCMC Parameters Estimates Using M3 (MEPS)

INS VIS EXP

Mean SD Mean SD Mean SD

CONST 0.00 0.12 0.46∗ 0.09 4.19∗ 0.11
EXCH 0.11∗ 0.04 −0.21∗ 0.03 −0.10∗ 0.04
POORH 0.01 0.12 0.33∗ 0.08 0.41∗ 0.11
CHRON 0.01 0.02 0.22∗ 0.01 0.25∗ 0.02
INJURY 0.01 0.02 0.14∗ 0.01 0.16∗ 0.02
BLACK −0.21∗ 0.06 −0.16∗ 0.04 −0.23∗ 0.06
FEMALE −0.07 0.04 0.33∗ 0.03 0.36∗ 0.03
MARR 0.02 0.04 −0.03 0.03 −0.05 0.04
SCH 0.00 0.01 0.03∗ 0.00 0.04∗ 0.01
EMPL −0.15∗ 0.06 −0.09∗ 0.03 −0.05 0.04
AGE 0.08∗ 0.02 0.03∗ 0.01 0.09∗ 0.01
NE −0.12∗ 0.05 0.10∗ 0.03 0.06 0.04
MID 0.15∗ 0.05 −0.05 0.03 −0.18∗ 0.04
WEST −0.43∗ 0.05 −0.06 0.04 −0.02 0.05
SIZE −0.00∗ 0.00
GOVT −0.02 0.05
LOC −0.05 0.05
SEMP 0.12 0.07
FAMINC −0.00 0.00
INSUR −0.00 0.02 0.03 0.03
ω1 0.54 0.01
ω12 0.74 0.02
ω2 1.34 0.03

Table 2.16: Impact of FFS on Healthcare Utilization Using M0 and M1 (MEPS)

M0 M1

Mean SD 95% CI Mean SD 95% CI

ATE1 0.42 0.07 (0.28, 0.55) −0.01 0.03 (−0.06, 0.04)
ATT1 0.45 0.07 (0.31, 0.58) −0.01 0.03 (−0.06, 0.05)
ATE2 −0.22 0.11 (−0.44,−0.01) 0.03 0.03 (−0.03, 0.10)
ATT2 −0.17 0.11 (−0.39, 0.05) 0.03 0.03 (−0.03, 0.10)

ln(m(y)) −23497.00 −23586.72
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Table 2.17: Impact of FFS on Healthcare Utilization Using M2 and M3 (MEPS)

M2 M3

Mean SD 95% CI Mean SD 95% CI

ATE1 −0.07 0.25 (−0.60, 0.42) 0.00 0.02 (−0.05, 0.04)
ATE2 −0.25 0.38 (−0.84, 0.63) 0.03 0.03 (−0.03, 0.10)

ln(m(y)) −23493.22 −23497.67

2.5 Conclusion

In conclusion, this chapter has introduced a parametric self-selection model with multiple

outcomes within a Bayesian framework to estimate the impact of health insurance on health-

care expenditures. Our model incorporates two outcomes: the number of doctor’s office visits

and healthcare expenditure. We develop a simulation-based estimation algorithm for param-

eter estimation. Additionally, we propose an approach to estimate the marginal likelihood

for model comparison.

Simulation studies have been conducted to evaluate the performance of the MCMC algorithm

and the model comparison techniques. Based on the results, our algorithm can accurately

estimate the true parameters, and the model comparison results corroborate the true model.

We have employed this model in two empirical applications and compared the results with

those obtained using three other, more parsimonious models. Our findings provide some

weak evidence supporting the presence of selection bias in both applications.
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Chapter 3

Product Pricing with Consumer

Learning

We analyze a price signaling game incorporating consumer learning. Initially, buyers are

uninformed about the quality of the seller’s product. We introduce a probability factor

determining the likelihood of the seller’s type being fully disclosed before trading. Opti-

mal strategies for sellers are outlined. We employ the undefeated equilibrium refinement to

determine optimal choices. Furthermore, our analysis includes comparative statics, investi-

gating the impact of variations in the probability of type revelation, initial customer review

scores, and the quality of both high and low-quality seller products on the expected return

for sellers.

3.1 Introduction

Consumers frequently encounter challenges when trying to distinguish between the quality

discrepancies among various brands. As a result, they tend to associate higher prices with
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superior quality. Nonetheless, the proliferation of the internet and online shopping platforms

has empowered consumers to leverage customer reviews as a valuable resource for assessing

product quality. In this study, we propose a model that delves into optimal pricing strategies

within the context of consumer reviews, wherein customers interpret pricing as a signaling

mechanism.

Many researchers found evidence supporting the positive correlation between price and prod-

uct quality (Mastrobuoni, Peracchi and Tetenov, 2014). Bagwell and Riordan (1991) found

that high and declining prices signal high-quality products within a dynamic game frame-

work. Milgrom and Roberts (1986) presents a signaling game using both price and uninfor-

mative advertisement as signals. Wolinsky (1983) and Delacroix and Shi (2013) studied the

price signaling game with endogenously chosen price and signal pairs. Our model extends

this by incorporating the consumer’s learning process from previous production outcomes.

Additionally, in their model, the cost of production is higher if the product quality is higher.

In our model, the cost of production is the same for both the high-quality and low-quality

productions to eliminate this factor. In contrast to Bose et al. (2006) exploration of dy-

namic monopoly pricing where buyers learn from each other’s purchase decisions, our model

assumes buyers learn from the review scores. Bar-Isaac (2003) examined the influence of

reputation on the longevity of sellers. Their model featured a mechanism where consumers

determined the price of the product, with the seller having the option to either accept or

decline the offer. In contrast, our model employs pricing as a signal of product quality. This

model is more relevant to many real-world markets where sellers typically set prices prior to

purchase.

In our model, a seller interacts with multiple buyers within a monopolistic setting. The seller

determines the price of the product, with the constraint that only a single unit can be sold.

Buyers possess limited information regarding the product’s quality from this seller and rely

on consumer reviews and posted prices to update their beliefs about the seller’s quality.
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Following a similar framework to the model outlined in Delacroix and Shi (2013), our model

incorporates the possibility that, with a certain probability, consumers may acquire com-

plete information about the seller’s type during the second stage after the seller posts the

price. This scenario mirrors real-world situations where the true quality of a product may

become publicly known after its release, perhaps through product quality investigations or

disclosures.

For the sake of simplicity and ease of analysis, we adopt a single time period setting within

stage two of our model. While we acknowledge that this may not perfectly capture all real-

world dynamics, it still offers valuable insights. We anticipate that future extensions of our

model could relax this constraint by incorporating a continuous time setting, allowing for a

more nuanced exploration of the dynamics over time.

We characterize our model within the context of asymmetric information, wherein the seller

possesses perfect information regarding its own type, while buyers lack full information about

the seller’s type.

We adopt the lexicographically maximum sequential equilibrium (LMSE) or undefeated equi-

librium to refine the multiple equilibria (Mailath, Okuno-Fujiwara and Postlewaite, 1993),

which is widely used in the signaling games (see Taylor, 1999; Fishman and Hagerty, 2003;

Jiang et al., 2016; Bajaj, 2018; Jiang and Yang, 2019; Wu, Zhang and Xie, 2020; Li, Tian

and Zheng, 2021). This refinement allows us to select the most profitable equilibrium from

the seller’s perspective among all the equilibria.

This model finds application in numerous scenarios where buyers cannot observe the prod-

uct’s quality perfectly prior to purchase, and they rely on the price set by the seller as an

indicator of quality. For example, with the widespread availability of the Internet, numer-

ous review websites have emerged, offering evaluations and rankings for various products.

Consumers can readily access consumer review scores for specific products and infer product
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quality by considering both the listed price and the scores they encounter.

The rest of the chapter is organized as follows. In Section 3.2 we introduce our model settings

and the equilibria and the refinement. In Section 3.3 we conduct a comparative analysis to

examine the characteristics of the equilibrium. Section 3.4 offers concluding remarks.

3.2 Model

Consider a market comprising a single seller and multiple buyers. The seller is assumed to

be risk-neutral and can fall into one of two categories: high-quality (denoted as H-type) or

low-quality (denoted as L-type). We let S denote the seller. The marginal cost of producing

the good is the same for both types of sellers, which is normalized to 0. The H-type seller can

make a successful production with probability g and the L-type seller can make a successful

production with probability b, where 1 > g > b > c > 0.

Buyers’ valuation of a success is 1 and of a failure is 0. Each buyer can consume at most one

unit of the product. Each buyer is capable of consuming at most one unit of the product,

and they are considered homogeneous and price-takers. We assume a single consumer in

each period, with all buyers being rational. We use B to denote the buyers. The success or

failure of the product can be determined after it has been produced and the trade is realized.

In a one-period market, the seller S is born with an initial common belief λ representing the

probability that the seller is of the H-type. S has perfect information about their type, and

subsequently sets a price p for its product. The seller’s type is fully revealed to the public

with probability φ. The buyer B enters the market and observes the price set by S. Upon

observing this price and other available information, B updates their belief regarding the

seller’s type denoted as µ. Subsequently, B decides to make a purchase if the observed price

p is less than or equal to the expected value of the product, calculated as µg + (1− µ) b.
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If B chooses to proceed with the purchase, S produces one unit of the product, and the

transaction is completed. Following the consumption of the good by B, the outcome of the

production is revealed to the public.

We assume that if S sets a price p different from p∗ (λ)—where p∗ (λ) represents the equi-

librium price determined by the H-type seller—the resulting posterior belief µ is set to zero.

Conversely, if the posted price matches the equilibrium price, S is then identified as an H-

type seller with a non-zero probability, in other words, µ > 0. It’s evident that S would

select a price p ∈ [b, g].

The expected payoff function for the L-type seller is given by

V L (p, µ) = (1− φ) p1 {p ≤ µg + (1− µ) b}+ φb1 {p = b} ,

where with probability φ, the trade only occurs if the price posted is b. Similarly, the

expected payoff function for the H-type seller is expressed as

V H(p, µ) = (1− φ) p1 {p ≤ µsg + (1− µ) b}+ φp,

where with probability φ, the trade occurs as long as the posted price p is less than or equal

to g.

We employ backward induction to determine the equilibrium in this model. Initially, we solve

for the set of perfect Bayesian equilibria, after which we apply the undefeated equilibrium

refinement to further refine the equilibrium set.
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3.2.1 Perfect Bayesian Equilibrium

In this section, we use backward induction to solve for the equilibrium for this model. We

discuss three potential types of equilibrium, including separating equilibrium, semi-pooling

equilibrium, and pooling equilibrium.

3.2.1.1 Separating Equilibrium

To attain the separating equilibrium, the L-type opts to set a price b with µ = 0, while the

H-type seller selects a price p∗(λ) 6= b with µ = 1. Establishing this equilibrium necessitates

making it prohibitively expensive for the L-type seller to imitate the pricing strategy of the

H-type seller. In essence, this requires that b ≥ (1 − φ)p∗(λ). This implies that p∗ (λ) ≤{
b

1−φ , g
}

. If φ > g−b
g

, p∗ (λ) ≤ g; otherwise, p∗ (λ) ≤ b
1−φ .

This result intuitively aligns with expectations, as when the probability of type revelation is

significantly high, it becomes more costly for the L-type seller to mimic the pricing strategy

of the H-type seller. This is due to the increased likelihood that the trade will not occur,

making it less profitable for the L-type seller to deviate from their own pricing strategy.

3.2.1.2 Semi-pooling Equilibrium

To achieve the semi-pooling equilibrium, the L-type seller faces a situation of indifference

between setting the price b and mimicking the pricing strategy of the H-type seller. We let

d (λ) denote the probability that the L-type seller mimics the H-type seller. This implies

that b = (1− φ) p∗ (λ), or p∗ (λ) = b
1−φ . This equilibrium exists only under conditions where

φ < g−b
g

and µ ≥ φb
(1−φ)(g−b) , where µ = λ2

λ2+(1−λ2)d(λ2)
. This condition implies that d(λ) ≤

λg(1−φ)−λb
(1−λ)bφ

. Therefore, in the semi-pooling equilibrium, when φ ≤ g−b
g

, the H-type seller

selects the price p∗(λ) = b
1−φ , while the L-type seller posts a price of b

1−φ with probability
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d(λ) ≤ λg(1−φ)−λb
(1−λ)bφ

, and chooses the price b with probability 1− d (λ).

3.2.1.3 Pooling Equilibrium

The pooling equilibrium exists when both types of sellers set the same price. In this scenario,

the updated belief µ equals λ, as both types of sellers set the same price with certainty, leading

to no further revelation of information of the seller’s type. Within this equilibrium, the L-

type seller benefits by emulating the pricing strategy of the H-type seller. This suggests that

b ≤ (1− φ) p∗ (λ), or equivalently, p∗ (λ) ≥ b
1−φ , which also infers that φ ≤ g−b

g
. This con-

dition occurs because when the probability of revelation is sufficiently low enough, it’s more

advantageous for the L-type to mimic the H-type seller. Moreover, the buyer’s willingness to

pay is µg+ (1− µ) b, or equivalently, λg+ (1− λ) b. Thus, we derive p∗ (λ) ≤ λg+ (1− λ) b.

This also implies that λ ≥ bφ
(1−φ)(g−b) In summary, when φ ≤ g−b

g
and λ ≥ bφ

(1−φ)(g−b) , the

pooling equilibrium price p∗(λ) ∈
[

b
1−φ , λg + (1− λ) b

]
.

3.2.2 Refinement

In this section, we leverage the undefeated equilibrium (Mailath, Okuno-Fujiwara and Postle-

waite, 1993) to refine the perfect Bayesian Equilibria discussed in Section 3.2.1. An equilib-

rium is undefeated if and only if no alternative equilibrium exists wherein either the H-type

seller finds it more beneficial to deviate to a separating equilibrium, or both types of sellers

have incentives to deviate to a pooling equilibrium. The undefeated equilibrium serves as

a commonly employed refinement tool in signaling games. It enables us to select the equi-

librium that maximizes the profit of the H-type seller—an important consideration in many

market scenarios.

If φ > g−b
g

, the separating equilibrium price for the H-type seller lies in the interval (b, g],
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while the L-type seller consistently sets the price at b. Among the set of separating perfect

Bayesian equilibria, the optimal choice is made based on maximizing the profit of the H-type

seller.

In this scenario, imagine the H-type seller initially setting p∗ (λ) within the range (b, g], while

the L-type seller sets the price to be b. In this situation, the H-type seller will deviate to an

equilibrium where p∗ (λ) = g. Consequently, all other separating equilibria, except the one

where p∗ (λ) = g, are defeated. Since only the separating equilibria can exist in this scenario,

the undefeated equilibrium is that the H-type seller would set a price p∗ (λ) = b
1−φ , and the

L-type seller would set a price b.

If φ ≤ g−b
g

, all three types of equilibria become feasible. The separating equilibrium price

for the H-type seller is within the range of
(
b, b

1−φ

]
. All the separating equilibria where the

H-type seller’s price p∗ (λ) < b
1−φ are defeated by the equilibrium where the H-type seller

sets the price b
1−φ and the L-type seller posts the price b. Thus, the separating equilibrium

price for the H-type seller is b
1−φ .

Among the semi-pooling equilibria, we argue that all the other equilibria are defeated by the

equilibrium where the H-type seller sets the price p∗ (λ) = b
1−φ . Suppose that the H-type

seller deviates to another semi-pooling equilibrium where p∗ (λ) < b
1−φ ; in such a case, they

would be strictly worse off since the optimal profit is achieved by setting the price at b
1−φ .

Similarly, all the other pooling equilibrium is defeated by the one where the H-type seller

sets the price λg + (1− λ) b. Suppose the seller sets a price p∗(λ) < λg + (1− λ) b, both

types of the seller would benefit from deviating to the pooling equilibrium where they set

the price p∗ (λ) = λg + (1− λ) b.

When λ < bφ
(1−φ)(g−b) , only the semi-pooling equilibrium and the separating equilibrium are

feasible. In this scenario, both the H-type and L-type seller finds themselves indifferent

between the two equilibria. When λ ≥ bφ
(1−φ)(g−b) , the pooling equilibrium becomes feasible.
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In this scenario, the pooling equilibrium defeats both the separating and the semi-pooling

equilibria. This is because the price in the pooling equilibrium, λg + (1− λ) b, is weakly

greater than the price in the separating and semi-pooling equilibrium, b
1−φ . Consequently,

the H-type seller would be better off staying in the pooling equilibrium.

To summarize, in scenarios where φ > g−b
g

, the separating equilibrium with p∗ (λ) = g

stands as the undefeated equilibrium. In cases where φ ≤ g−b
g

and λ < bφ
(1−φ)(g−b) , both the

separating and semi-pooling equilibria with p∗ (λ) = b
1−φ emerge as undefeated equilibria.

Conversely, in scenarios where φ ≤ g−b
g

and λ ≥ bφ
(1−φ)(g−b) , the pooling equilibrium with

p∗(λ) = λg+ (1− λ) b prevails as the undefeated equilibrium. These results are summarized

in Figure 3.1.

Figure 3.1: Undefeated Equilibrium
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3.3 Comparative Statics

In the preceding section, we demonstrated that equilibrium prices are contingent on variables

λ, φ, g, and b. In this section, we delve into the comparative statics analysis of these

equilibria.

Proposition 1

We denote the expected payoffs at equilibrium as
(
πH , πL

)
, where πH represents the equilib-

rium expected return for the H-type seller, and πL signifies the equilibrium expected return

for the L-type seller. We have

1. ∂πH

∂φ
≥ 0, and ∂πL

∂φ
≤ 0;

2. ∂πH

∂λ
≥ 0, and ∂πL

∂λ
≥ 0;

3. ∂πH

∂g
≥ 0, and ∂πL

∂g
≥ 0;

4. ∂πH

∂b
≥ 0, and ∂πL

∂b
≥ 0.

The first part of the condition indicates that the equilibrium expected return for both seller

types exhibits a weak increase as the probability of type disclosure rises, while the equilibrium

expected return for the L-type seller decreases in response to the probability of disclosure.

Since we normalized the cost of production to be 0, the expected return for the H-type seller

is just the price they set. We illustrate the changes using Figure 3.2.

Based on the figure, consider a seller, denoted as a, is born in the region C where the pooling

equilibrium prevails as the undefeated equilibrium. The equilibrium expected return for the

H-type seller is λg+ (1− λ) b, and for the L-type seller is πL = (1− φ) (λg + (1− λ) b)) > b.

If we increase the value of φ while the seller remains in region C, we find ∂πH

∂φ
= 0 and

∂πL

∂φ
= − (λg + (1− λ) b) < 0.
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Figure 3.2: φ Increases

Suppose we increase φ by δ, leading the seller to transition to point a′ in region B. In

this region, either the semi-pooling or the separating equilibrium prevails as the undefeated

equilibrium, with the expected return being b for the L-type seller and b
1−φ for the H-type

seller. Additionally, in region B, we observe that λ < bφ
(1−φ)(g−b) and φ < g−b

g
, implying

g > b
1−φ > λg+(1− λ) b. Hence, transitioning from region C to region B leads to an increase

in the expected return of the H-type seller and a decrease in that of the L-type seller.

Furthermore, consider the scenario where we increase the value of φ while the seller remains

in region B. In this case, the expected return for the H-type seller would increase because

∂ b
1−φ
∂φ

> 0, while the expected return for the L-type seller would remain unchanged.

Considering the further increase of φ by δ′, this transition moves the seller to point a′′ in
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region A. In this region, the separating equilibrium is the undefeated equilibrium, charac-

terized by the H-type seller setting the price at g and the L-type seller setting it at b. In

region A, the expected return for the H-type seller is g, representing the highest possible

expected return for this type of seller, while the L-type seller’s expected return remains at b.

Consequently, transitioning from region B to A results in an increase in the expected return

for the H-type seller, with no change in the return for the L-type seller.

In summary, the expected return for the H-type seller experiences a weak increase as φ rises,

whereas the expected return for the L-type seller decreases with an increase in φ. This

intuition aligns with real-life scenarios, where a higher likelihood of type disclosure before

a purchase benefits the H-type seller due to reduced signaling efforts, while simultaneously

disadvantaging the L-type seller.

The second part of Proposition 1 indicates that both types of sellers would experience a weak

benefit from an increase in the initial reputation parameter λ. We illustrate the changes in

Figure 3.3.

Referring to the figure, We consider a seller, labeled as a, born in region B. If we increase

the value of λ while seller a remains in the same region, the expected return for both the

H-type seller and the L-type seller would remain unchanged, at b
1−φ and b respectively.

If we increase the value of λ by δ, the seller a moves to position a′ within region C. In this

scenario, the expected return for both the H-type seller and the L-type seller increases to

λg + (1− λ) b and (1− φ) (λg + (1− λ) b) respectively. As discussed in Section 3.2.1, we

know that in this region, λg + (1− λ) b > b
1−φ , and (1− φ) (λg + (1− λ) b) > b. Therefore,

the expected return for both types of sellers increases.

If we increase φ while the seller a remains in the region C, the expected return for both

types of sellers increases. This is because ∂λg+(1−λ)b
∂λ

= g − b > 0, and ∂(1−φ)(λg+(1−λ)b)
∂λ

=

(1− φ) (g − b) > 0.
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Figure 3.3: λ Increases

Similarly, if a seller is situated in the region A, the expected return for the H-type seller

remains at g and for the L-type seller stays at b as λ increases.

Therefore, the expected return for both types of sellers experiences a weakly increase as λ

increases. This aligns with the intuition that both types of sellers would benefit from higher

review scores.

The third part of Proposition 1 suggests that both types of sellers benefit from quality

improvements in the H-type seller’s product. We illustrate these changes using Figure 3.4.

Suppose we increase the value of g to g′, where g′ > g. As a result, the region ∆1, previously

within region A, now belongs to part of region B. Simultaneously, the region ∆2 and ∆3,

previously within region B and A respectively, become part of region C. We define the
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regions as A′ = A \ (∆1 ∪∆3), B′ = (B \∆2) ∪∆1, and C ′ = C ∪∆2 ∪∆3.

Figure 3.4: g Increases

Suppose a seller a is born in region ∆1 with the expected return for the H-type seller being

g, and for the L-type seller being b. When we increase g to g′, the expected return for the

H-type seller becomes b
1−φ , where g < b

1−φ < g′. Meanwhile, the expected return for the

L-type seller remains at b. Thus, during this transition, as g increases, the expected return

for the H-type seller increases while that for the L-type seller remains the same.

We then consider a seller a born in region ∆2, with the expected return for the H-type seller

being b
1−φ and for the L-type seller being b. If we increase g to g′, the updated expected return

at the undefeated pooling equilibrium for the H-type seller becomes λg′ + (1− λ) b > b
1−φ ,

and that of the L-type seller becomes (1− φ) (λg′ + (1− λ) b) > b. Thus, as g increases,
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both types of sellers in region ∆2 would benefit.

Similarly, consider a seller a born in region ∆3, with the expected return for the H-type seller

being g and for the L-type seller being b. If we increase the value of g to g′, the updated

expected return at the undefeated pooling equilibrium becomes λg′ + (1− λ) b > b
1−φ > g,

while that of the L-type seller becomes (1− φ) (λg′ + (1− λ) b) > b. Thus, as g increases,

both types of sellers in region ∆3 would be better off.

Suppose we increase g to g′. For a seller a remaining in region A′, the expected return for

the H-type seller becomes g′ > g, while for the L-type seller, it remains b. For a seller a

staying in region C ′, the expected return for both types of sellers increases. This is because

∂λg+(1−λ)b
∂g

= λ > 0, and ∂(1−φ)(λg+(1−λ)b)
∂g

= (1 − φ)λ > 0. For a seller a remaining in region

B′, the expected return for both types of sellers remains unchanged.

In conclusion, as g increases, the expected return for both types of sellers experiences a weak

increase.

The final part of Proposition 1 indicates that both types of sellers would benefit from an

increase in the product quality of the L-type seller. We illustrate these changes using Fig-

ure 3.5. Suppose we increase the value of b to b′, where b′ > b. Consequently, the regions ∆1

and ∆3, previously within regions B and C respectively, become part of region A. Simulta-

neously, the region ∆2, previously within region C, becomes part of region B. We define the

updated regions as A′ = A ∪∆1 ∪∆3, B′ = (B \∆1) ∪∆2, and C ′ = C \ (∆2 ∪∆3).

Suppose a seller a is born in region ∆1. If the seller is of the H-type, their expected return at

the undefeated equilibrium is b
1−φ , while for the L-type seller, it remains b. If we increase the

value of b to b′, the updated expected return at the undefeated equilibrium for the H-type

seller becomes g > b
1−φ , and for the L-type seller, it becomes b′ > b. Thus, both types of

sellers experience a benefit from the increase in b.
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Figure 3.5: b Increases

We consider a seller a born in region ∆3, with the expected return for the H-type seller being

λg + (1− λ) b and for the L-type seller being (1− φ) (λg + (1− λ) b). If we increase b to b′,

the expected return for the H-type seller becomes g ≥ λg + (1− λ) b, and for the L-type

seller it becomes b′. Based on the discussion in Section 3.2.1, one can deduce that in this

region b′

1−φ > λg+(1− λ) b′ > λg+(1− λ) b, which also implies b′ > (1− φ) (λg + (1− λ) b).

Thus, both types of sellers benefit from the increase in b.

We now consider a seller a born in region ∆2, where the expected return for the H-type is

λg+(1− λ) b, and for the L-type seller, it’s (1− φ) (λg + (1− λ) b). Suppose we increase the

value of b to b′. The new equilibrium expected return for the H-type seller becomes b′

1−φ , and

for the L-type seller, it’s b′. As discussed previously, we have b′ > (1− φ) (λg + (1− λ) b),
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indicating the L-type seller benefits from the increase. Also, based on the previous discussion

in Section 3.2.1, we know that in this region, b′

1−φ > λg + (1− λ) b′, implying b′

1−φ > λg +

(1− λ) b. Thus, both types of sellers benefit from the increase.

Suppose we increase b to b′. For a seller a in region A′, the expected return for the H-type

seller remains g, while for the L-type seller it increases to b′ > b. In region C ′, the expected

return for both types of sellers increases. This is because ∂λg+(1−λ)b
∂b

= 1 − λ ≥ 0, and

∂(1−φ)(λg+(1−λ)b)
∂b

= (1− φ) (1− λ) ≥ 0. Similarly, in region B′, the expected return for both

types of sellers increases since
∂ b

1−φ
∂b

= 1
1−φ ≥ 0, and ∂b

∂b
= 1 > 0.

Hence, as b increases, both the H-type and L-type sellers are better off.

3.4 Conclusion

Our model extends the signal game by incorporating the review score, a significant aspect

in online markets where customers rely on both price and customer scores to gauge seller

quality. Additionally, we introduce a probability factor representing the likelihood of the

seller’s quality being fully disclosed to the public. This aspect becomes particularly pertinent

in scenarios where government interventions may occur to investigate and reveal product

quality information.

We have discovered that when the probability of quality revelation is low, the pooling equi-

librium emerges as the undefeated equilibrium under conditions of sufficiently high customer

reviews. Conversely, when customer reviews are not favorable, the separating or semi-pooling

equilibrium prevails. However, in instances where the probability of type revelation is high,

the separating equilibrium becomes the undefeated equilibrium. This is due to the significant

cost incurred by low-quality sellers in attempting to mimic high-quality sellers.
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We have showed the comparative statics of a seller’s expected payoff concerning the prob-

ability of type revelation, the initial customer review rate, the quality of the high-quality

seller’s product, and the quality of the low-quality seller’s product. We observe that the

H-type seller benefits from an increase in the probability of type revelation, whereas the

L-type seller experiences a loss. We also demonstrate that both types of sellers benefit from

higher customer reviews, as well as from an increase in the quality of both high-quality and

low-quality seller’s products.
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Appendix A

Supplementary Material for Chapter 1

A.1 Additional Simulation Results for Sharp RDD

Table A.1: Prior Sensitivity Analysis

n Model ∆SRD ∆̂SRD SD 95% CI

500
Homosk. −2.24 −2.37 0.25 (−2.87,−1.88)
Heterosk. −2.24 −2.41 0.23 (−2.87,−1.97)
RDRobust −2.24 −2.63 0.68 (−4.18,−1.07)

5000
Homosk. −2.22 −2.04 0.13 (−2.29,−1.79)
Heterosk. −2.22 −2.09 0.11 (−2.30,−1.88)
RDRobust −2.22 −2.19 0.21 (−2.71,−1.72)

50000
Homosk. −2.21 −2.20 0.04 (−2.28,−2.12)
Heterosk. −2.21 −2.20 0.03 (−2.26,−2.14)
RDRobust −2.21 −2.06 0.07 (−2.20,−1.88)
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Figure A.1: Estimated Functions ĝ with Continuous Outcome Variable

(a) β1 = β0, N = 500 (b) β1 = β0, N = 5000 (c) β1 = β0, N = 50000

(d) β1 6= β0, N = 500 (e) β1 6= β0, N = 5000 (f) β1 6= β0, N = 50000

A.2 Fuzzy RDD

Here we provide details behind the specification of a heteroskedastic fuzzy RD model, outline

the corresponding estimation algorithm, and offer a simulation study of its performance. In

the fuzzy RD setting, the combinations of treatments and unit types in the fuzzy RD case

are summarized in Table A.2. A general model that allows for category-specific functions,

Table A.2: Fuzzy RD Data

w < w∗ w ≥ w∗
T = 0 C, N N
T = 1 A C, A
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parameters, and heteroskedasticity relationships is specified as

s = C : T = 1{w ≥ w∗}, yij = gj (wi) + x′iβj + εij, εij ∼ N
(
0, σ2

ij

)
, ln

(
σ2
ij

)
= Z ′ijγj,

s = A : T = 1, yiA = gA (wi) + x′iβA + εiA, εiA ∼ N
(
0, σ2

iA
)
, ln

(
σ2
iA
)

= Z ′iAγA,

s = N : T = 0, yiN = gN (wi) + x′iβN + εiN , εiN ∼ N
(
0, σ2

iN
)
, ln

(
σ2
iN
)

= Z ′iNγN ,

Pr(s) = qs > 0 for s ∈ {C,A,N} and qC + qA + qN = 1, j = 0, 1.

(A.1)

The RD ATE is defined as

∆FRD ≡ lim
z↓τ+

E (Y1|w, xi, s = C)− lim
z↑τ−

E (Y0|w, xi, s = C)

= lim
w↓w∗+

E (g1(w) + x′iβ1)− lim
w↑w∗−

E (g0(w) + x′iβ0) .

The likelihood function is expressed as

L =
∏

i:Ti=0,wi<w∗

(
qCfN

(
yi|g0(wi) + x′iβ0, σ

2
i0

)
+ qNfN

(
yi|gN (wi) + x′iβN , σ

2
iN
))

∏
i:Ti=0,wi≥w∗

qNfN
(
yi|gN (wi) + x′iβN , σ

2
iN
) ∏
i:Ti=1,wi<w∗

qAfN
(
yi|gA(wi) + x′iβA, σ

2
iA
)

∏
i:Ti=1,wi≥w∗

(
qCfN

(
yi|g1(wi) + x′iβ1, σ

2
i1

)
+ qAfN

(
yi|gA(wi) + x′iβA, σ

2
iA
))
.

The prior distribution of q = (qA, qN , qC) is given by q ∼ Dir (nA0, nN0, nC0). All other

parameters follow the priors discussed previously. The unknown functions gs are modeled

analogously to Section 1.2 for the different subsets of data. The posterior distribution for

the type variables si, i = 1, . . . , n, is specified as

Pr
(
si = C|yi, gj, βj, τ 2

j , γj
)
∝ qcfN

(
yi|gi(wi) + x′iβj, σ

2
ij

)
, j = 0, 1,

Pr
(
si = N|yi, gN , βN , τ 2

N , γN
)
∝ qNfN

(
yi|gN (wi) + x′iβN , σ

2
iN
)
,

Pr
(
si = A|yi, gA, βA, τ 2

A, γA
)
∝ qAfN

(
yi|gA(wi) + x′iβA, σ

2
iA
)
.

(A.2)
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The joint posterior distribution can be sampled as in Algorithm 7.

Algorithm 7 (Semi-parametric Fuzzy RDD)

(1) Sample the type variables {si} from the posterior distribution in Equation (A.2).

(2) Sample q = (qA, qN , qC) ∼ Dir (nA0 + nA, nN0 + nN , nC0 + nC), where nA, nN and nC
are the sample sizes of the observations that are categorized into always-takers, never-
takers and compliers correspondingly in the previous step.

(3) We update gj, j = 0, 1, using the samples that were categorized as compliers in the pre-

vious step. We sample
[
gj|yj, βj, τ 2

j , γj
]
∼ N

(
ĝj, Ĝj

)
, where Ĝj =

(
Kj
τ2j

+Q′jΩ
−1
j Qj

)−1

and ĝj = Ĝj

(
1
τ2j
Kjgj0 +Q′jΩ

−1
j (yj −Xjβj)

)
. We repeat this step for all the compliers

and never-takers to sample [gA|yA, βA, τ 2
A, γA] and [gN |yN , βN , τ 2

N , γN ].

(4) Sample [βj|yj, gj, γj] ∼ N
(
β̂j, B̂j

)
, j = 0, 1, where B̂j =

(
B−1
j0 +X ′jΩ

−1
j Xj

)−1
, and

β̂j = B̂j

(
B−1
j0 bj0 +X ′jΩ

−1
j (yj −Qjgj

)
. Sample [βA|yA, gA, γA], and [βN |yN , gN , γN ] in

a similar way.

(5) Sample
[
τ 2
j |gj

]
∼ IG

(
κj0+mj

2
,
dj0+(gj−gj0)′Kj(gj−gj0)

2

)
, j = 0, 1. Repeat this step to

sample [τ 2
A|gA] and [τ 2

N |gN ].

(6) Sample [γj|yj, gj, βj], j = 0, 1, using an MH step by drawing a proposal value γ†j ∼
q (γj|γ̂j, Vj), where γ̂j and Vj are computed as in (1.5) using the current value of γj.

Also use γ†j in equation (1.5) to produce γ̂†j and accept the proposed γ†j with probability

α(γj, γ
†
j |yj, gj, βj) = min

{
1,
f(yj|gj, βj, γ†j )π(γ†j |γj0,Γj0)

f(yj|gj, βj, γj)π(γj|γj0,Γj0)

q(γj|γ̂†j , Vj)
q(γ†j |γ̂j, Vj)

}
,

otherwise the current value γj is repeated in the next MCMC iteration. We repeat this
step for always-takers and never-takers to sample [γA|yA, gA, βA] and [γN |yN , gN , βN ].

We conducted a simulation study to assess the algorithm’s performance and evaluate the

influence of heteroskedasticity within the framework of the fuzzy RD model. We sample

the data from the model specified in Equation (A.1). The simulated data are visualized in

Figure A.2.
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In the first sample, the data points for each group exhibit clear distinctions, with parameter

values set as follows: n = 5000, qc = 1
2
, qa = qn = 1

4
, γ0 = γ1 = γa = γn = (−2, 1)′, g0 (w) =

5.5+3w2, g1 (w) = 6.5+3w2, gA (w) = 2+2w+3 exp (−w2), and gN (w) = 2+w+2 sin (−5w),

along with β0 = (−1.51,−0.38,−2.34, 0.19,−1.15)′, β1 = (0.42,−0.03,−0.24, 0.83, 0.43)′,

βA = (0.40,−1.17,−0.35, 0.02,−0.97)′, and βN = (0.85, 1.24, 0.80,−0.07,−0.57)′. Covari-

ates xi are drawn from independent standard normal distributions with a dimension of 5,

while covariate zi comprises a constant term and ||wi| − 1.5|.

In the second sample, the data points for each group are intermingled. The parame-

ter values are β0 = (0.88, 2.10,−0.70,−0.00,−1.00)′, β1 = (−0.08, 0.29, 0.42,−1.80, 0.19)′,

βA = (−0.55, 0.60, 0.11,−1.18, 0.86)′, βN = (−0.29,−0.01, 1.68, 0.67,−1.04)′, g0 (w) = w2,

g1 (w) = 0.5 + w2, gA (w) = w + 2 exp(−w2), and gN (w) = w + sin (−5w). All remaining

parameters are kept consistent with those specified for the first sample.

The nonparametric functions estimated for each group are presented in Figures A.3 and A.4.

In this context, it is important to highlight the possibility of misclassification and label

switching, which can occur when the clusters are not well-separated (Celeux, 1998). Hence,

we advise practitioners to carefully examine their results prior to drawing definitive conclu-

sions in applications where clusters are not well-separated, as there is no current consensus

solution to the problems present in this context.

Figure A.2: Fuzzy RDD Simulated Data

(a) Well-separated Sample (b) Poorly-separated Sample
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Figure A.3: Well-Separated Data

(a) Heteroskedastic (b) Homoskedastic

Figure A.4: Poorly-Separated Data

(a) Heteroskedastic (b) Homoskedastic
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Appendix B

Supplementary Material for Chapter 2

B.1 M2 Model Specification

In this section, we outline the model for M2. Assume we have a sample comprising of

n independent observations, where y1i and y2i represent the outcome variables, where y1i

denotes the discrete potential outcome variable, while y2i represents the potential continuous

outcome variable. Let Di denote the treatment status for individual i, with Di = 1{d∗i ≥ 0},

where d∗i represents a latent variable. Furthermore, let x1i denote the covariates for y1i,

x2i denote the covariates for y2i, and xdi represent the covariates that determines d∗i for

individual i. We assume that

y1i ∼ Poisson (µi) .

The model can be represented as

gi = Xiβ + εi,
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where

gi = (d∗i , ln (µi) , y2i)
′ , Xi =


x′di 0 0

0 x′1i 0

0 0 x′2i

 ,

β = (β′d, β
′
1, β

′
2)′ and εi = (εdi, ε1i, ε2i)

′. Assume that εi ∼ N (0,Ω), where

Ω =


1 ωd1 ωd2

ω1d ω1 ω12

ω2d ω21 ω2

 =

 1 Ω12

Ω21
Ω11
(2×2)

 .

The complete data density function is expressed as

f (y1, y2, D, ln(µ)|β,Ω) =
n∏
i=1

f (gi|β,Ω) f (y1i| ln (µ1i))1{d∗i ∈ Bi},

where Bi = (−∞, 0) if Ti = 0 and Bi = [0,+∞) if Ti = 1.

Define

Ω22 = Ω11 − Ω21Ω12.

Because of the unit restriction, direct sampling of Ω isn’t feasible. As detailed in Section 2.2,

we instead sample Ω22 and Ω12 and subsequently reconstruct the covariance matrix Ω ac-

cordingly. The estimation algorithm for this model closely resembles the one presented in

Section 2.2.1 and the model proposed by Munkin and Trivedi (2003), hence its omission in

this section.
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