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Firs t  paragraph 

While experimental studies have suggested that non-coding ultraconserved DNA elements 

are central nodes in the regulatory circuitry that specifies mammalian embryonic 

development, the possible functional relevance of their >200bp of perfect sequence 

conservation between human-mouse-rat remains obscure 1,2.  Here we have compared the in 

vivo enhancer activity of a genome-wide set of 231 non-exonic sequences with ultraconserved 

cores to that of 206 sequences that are under equivalently severe human-rodent constraint 

(ultra-like), but lack perfect sequence conservation.  In transgenic mouse assays, 50% of the 

ultraconserved and 50% of the ultra-like conserved elements reproducibly functioned as 

tissue-specific enhancers at embryonic day 11.5.  In this in vivo assay, we observed that 

ultraconserved enhancers and constrained non-ultraconserved enhancers targeted expression 

to a similar spectrum of tissues with a particular enrichment in the developing central 

nervous system.  A human genome-wide comparative screen uncovered ~2,600 non-coding 

elements that evolved under ultra-like human-rodent constraint and are similarly enriched 

near transcriptional regulators and developmental genes as the much smaller number of 

ultraconserved elements.  These data indicate that ultraconserved elements possessing 

absolute human-rodent sequence conservation are not distinct from other non-coding 

elements that are under comparable purifying selection in mammals and suggest they are 

principal constituents of the cis-regulatory framework of mammalian development. 
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Main Text 

The last common ancestor of human and rodents lived ~75 million years ago 3 and yet the 

human genome contains 256 non-coding “ultraconserved” elements of ≥200bp that are 

perfectly conserved in mouse/rat presumably due to extreme purifying selection 1.  Their 

depletion in segmental duplications and copy number variant regions 4 as well as their 

reduced frequency of derived alleles in the human population 2,5 further point toward a 

pivotal functional role of these elements.  In sharp contrast, the identity of ultraconserved 

elements as a distinct class of genomic function has been challenged by the observation that 

more rigorous comparative genomic methods (e.g.,  6,7) can identify additional sequences 

with similar conservation properties by some measures, but lacking extended perfect 

sequence conservation.  Moreover, while human-rodent, human-mouse-dog and human-

chicken genome comparisons each identify several hundred ultraconserved elements, there is 

limited overlap in the catalogs of elements identified by these comparisons 4.  Another 

feature of ultraconserved elements that undercuts their relevance as a distinct class is that 

they are almost invariably embedded in larger blocks of constrained sequence, suggesting 

that they exist not as independent units of biological function but as somewhat arbitrary 

fragments of larger functional modules.  In the absence of comprehensive experimental data 

it remains unclear whether the absolute sequence conservation of ultraconserved elements is 

indicative of a unique role or if they are merely a functionally indistinct fraction of a much 

larger set of extremely constrained elements. 

To explore the functional uniqueness of non-coding ultraconserved elements, we identified 

a large number of human-rodent conserved elements that are under similar evolutionary 

constraint as regions containing ultraconservation.  We compared the entire set of these 
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elements, the majority of which lack perfectly conserved regions of ≥200bp, to the small 

subset that overlap ultraconserved elements to identify possible properties specifically 

associated with ultraconservation, including their degree of constraint in other mammalian 

species and their enrichment near genes with certain functions.  Moreover, we examined the 

ability of a genome-wide set of non-exonic ultraconserved elements and more than 200 

ultra-like constrained elements to drive tissue-specific in vivo expression in transgenic mouse 

embryos, a property that has previously been proposed to be a predominant function 

associated with non-coding ultraconservation 8-11. 

In an initial comparative genomic assessment of ultraconservation, we found substitutions 

in 79% of these elements in other mammalian species (Fig. 1), indicating that their absolute 

conservation between human and rodents is at least partially a matter of ascertainment bias, 

rather than absolute intolerance of nucleotide substitutions.  This finding further challenges 

the possible uniqueness of ultraconserved elements and raises the possibility that they 

represent only a subset of a larger group of elements with similar properties.  In an attempt 

to identify elements with ultra-like conservation, we used a statistical measure of human-

mouse-rat constraint 12 with scoring parameters optimized through multiple genome-wide 

scans (see methods) to generate a constraint-ranked set of conserved non-coding sequences.  

When we compared these elements to the distribution of non-exonic ultraconserved 

elements, we found that the constraint scores of ultraconserved regions are distributed over 

a surprisingly wide range and a much larger number of elements appear similarly constrained 

(Fig. 2).  We identify a population of 2,614 human-rodent constrained elements that overlap 

or include 234 (91%) of all 256 non-exonic ultraconserved elements.  To ascertain the ultra-

like conservation of these elements independently from the scoring scheme used for their 
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identification, we determined their branch length and rejected substitution counts 6 in 

human, rodents and five additional mammalian species (Suppl. Fig. 1).  We find that 

extremely constrained elements that contain or do not contain regions of ultraconservation 

have similar characteristics by these two widely used comparative genomic measures, 

confirming their ultra-like nature.  While an order of magnitude more numerous than non-

exonic ultraconserved elements, the highly constrained non-coding regions identified here 

are enriched near genes of a small subset of functional categories.  As for ultraconserved 

elements, these functions include transcriptional regulation and development 1 and, in 

particular, development of the nervous system (Fig. 3; see suppl. table 4 for a list of all 

significantly enriched functions).  Taken together, comparative analysis as well as the 

genome-wide distribution suggest that ultraconservation identifies a small subset of genome 

regions that are equally constrained and have similar properties, but the majority of which 

lack regions of ultraconservation.  

To test whether such apparent equivalence at the sequence level is also associated with 

similar functional properties, we focused on transcriptional enhancer activity during 

embryonic development.  We used a transgenic mouse assay to determine the embryonic in 

vivo enhancer activities of 155 human genome regions that include non-coding 

ultraconserved elements and combined these data with a previously reported smaller data 

set 10 to establish a genome-wide compendium of enhancer activities for this class of non-

coding elements (suppl. table 1).  A total of 231 transgenic assays was considered, in which 

the tested human genome fragments included 245 of all 256 non-exonic ultraconserved 

elements (12 constructs contained 2 or 3 adjacent ultraconserved regions).  Only elements 

that drove reporter gene expression reproducibly in the same anatomical structure in at least 
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three e11.5 mouse embryos resulting from independent transgenic integration events were 

considered enhancers.  We found that half (115/231) of the ultraconserved regions drove 

reporter gene expression in various tissues of the developing mouse embryo, often in a 

tightly spatially restricted manner and with subregions of the central nervous system among 

the most frequently targeted structures (Fig. 4a). 

To determine whether such an enrichment in embryonic enhancers is specifically 

associated with the presence of ultraconserved regions in highly human-rodent constrained 

sequences, we also tested the enhancer activities of 206 non-coding sequences that have 

ultra-like human-rodent constraint scores, but lack regions of ultraconservation.  Of note, 

these regions were selected blind to evolutionary conservation depth (i.e. detectable 

sequence conservation in non-mammalian species), but purely based on their human-rodent 

constraint scores.  Using identical scoring criteria as for the ultraconserved elements, we 

found that 102 of these 206 elements (50%) are tissue-specific enhancers at e11.5.  As with 

ultraconserved elements, the patterns driven by these enhancers are highly reproducible 

among embryos resulting from different transgene integration events and often highly 

restricted in their spatial boundaries (Suppl. Fig. 2).  We did not find significant differences 

between the ultraconserved and non-ultraconserved elements regarding the overall 

distribution of the targeted anatomical structures (Fig. 4a).  We observed multiple cases of 

ultraconserved and non-ultraconserved elements driving virtually identical patterns when 

scrutinized at higher resolution (Fig. 4b), as well as dozens of patterns driven by non-

ultraconserved elements for which no counterpart was found among ultraconserved 

elements (Suppl. Fig. 2), highlighting the value of ultra-like constraint for the discovery of 

tissue-specific reagents.  Our findings indicate that extreme human-rodent constraint 
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identifies genome regions that are in their entirety highly enriched in embryonic enhancers, 

while the ultraconserved subset within this population was neither found to be enriched in 

enhancers targeting specific tissues nor to be generally more enriched in developmental 

enhancers. 

Ultraconserved elements appear to have become virtually “frozen” during mammalian 

evolution 1 and their perfect, uninterrupted sequence identity between human and rodents is 

suggestive of them representing the pinnacle of extreme non-coding sequence conservation 

in mammals.  The identification of several thousand elements with ultra-like human-rodent 

constraint indicates, however, that the relatively small number of ultraconserved elements 

may be more likely due to their definition by a simple percent-identity-plot approach 13 than 

to a uniquely high degree of constraint.  If enrichment in enhancer activity is considered as a 

measure, a direct comparison within the population of extremely human-rodent constrained 

elements identified in this study indicates that non-coding ultraconserved elements do not 

represent the very tail of a distribution spectrum of human-rodent conservation, but merely 

a subset of a ten-fold larger population of elements under similar constraint and with 

equivalent regulatory function.  Through the analysis of embryonic in vivo enhancer activities 

of more than 400 of these elements, this study provides a window into a portion of the 

human cis-regulome that appears to be severely constrained throughout the mammalian 

clade.  Since these elements are defined independent of their conservation in non-

mammalian vertebrate species, we expect that hundreds of additional tissue-specific 

enhancers remain to be discovered in this category of extreme conservation and many will 

be unique to mammals and thus not be detectable by comparison with evolutionarily more 

distant vertebrate species.  The association of extreme human-rodent sequence conservation 
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with enhancer activity, independent from presence of ultraconservation, suggests that the 

population of ultra-like constrained elements identified here constitutes a core cis-regulatory 

framework of mammalian development.
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Methods 

Substitutions in mammalian species.  We examined the 256 non-coding human-rodent 

ultraconserved elements for substitutions relative to human in chimpanzee, rhesus, dog, 

horse or cow using the 28-species vertebrate multiz alignment 14 available from the UCSC 

Genome Bioinformatics website 15.  This alignment includes the following genome 

assemblies used in this analysis: hg18 (human, NCBI Build 36.1), panTro2 (Chimpanzee 

Sequencing and Analysis Consortium, March 2006 assembly), rheMac2 (Macaque Genome 

Sequencing Consortium, January 2006 assembly), canFam2 (Broad Institute and Agencourt 

Bioscience, May 2005 assembly), bosTau3 (Baylor College of Medicine, August 2006 

assembly) and equCab1 (Broad Institute, January 2007 assembly).  Positions in the human 

genome that were substituted in multiple other lineages were nevertheless counted only 

once.  Only aligned positions of high sequence quality (quality score ≥30) were included in 

the count of human-rodent ultraconserved positions substituted in other mammalian 

lineages (Fig. 1).  Although this quality-score filter eliminates the majority of errors, it is still 

possible that a small fraction of the human-rodent ultraconserved positions that appear to be 

substituted in other mammals are actually sequencing artifacts.  To estimate the impact of 

sequencing errors at high-quality positions, we assumed that each such non-human position 

generated a spurious mismatch with probability given by 10-(quality-score/10) (see 16) which yielded 

an estimated total of 2.5 spurious mismatches over all 256 non-exonic ultraconserved 

elements, far smaller than the observed total of 673 mismatched positions. 

Identification of human-rodent constrained elements.  Whole-genome global alignment of human 

(hg16, NCBI Build 34), mouse (mm4, NCBI Build 32) and rat (rn3, Rat Genome Sequencing 
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Consortium, June 2003 assembly) was performed using MLAGAN 17 and the VISTA 

alignment pipeline 18.  Evolutionarily conserved regions in this alignment were identified 

using Gumby 12, and conserved regions were filtered for any overlap with UCSC genes, 

RefSeq genes, RNA genes, sno/microRNAs, human mRNAs or spliced ESTs (as annotated 

at http://genome.ucsc.edu) to define a genome-wide set of human-rodent conserved non-

coding sequences.  This procedure was tested at multiple settings of the Gumby R-ratio 

parameter (expected local-neutral/conserved branch length ratio).  To identify a genome-

wide set of elements with ultra-like conservation, a value of R=50 was chosen (see 

supplemental methods), and a P-value threshold of 1e-40 yielded 2,614 non-coding human-

rodent ultra-like elements genome-wide. 

Branch length, rejected substitution counts and distribution correction.  Phylogenetic branch lengths 

(substitution rates) were estimated for each conserved element using fastDNAml 19 and the 

above-mentioned 28-way whole-genome alignment, after masking nucleotides of low 

sequence quality in the draft genome assemblies.  Local “neutral” substitution rates were 

similarly estimated based on aligned non-coding non-conserved positions within the 10-kb 

flanks of conserved elements (see supplemental methods).  Rejected substitutions in each 

lineage were calculated as the product of the length of the conserved element in human and 

the difference between the within-element and local neutral substitution rates.  When binned 

by conservation P-value, the ultra-like conserved elements broadly resembled the subset 

within the same bin that overlap ultraconserved elements (data not shown).  A simple 

average of evolutionary rates across all 2,614 conserved elements would not reflect this, since 

their P-value distribution is skewed towards the high end, relative to the subset that overlaps 

ultraconserved regions (Fig. 2).  We therefore corrected for this distribution bias by dividing 
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ultra-like conserved elements among 10 P-value bins, and calculating the average of bin 

averages, rather than the average over all individual measurements.  In effect, distribution-

corrected statistics summarize the average relation within any given P-value bin between all 

ultra-like elements and the subset overlapping ultraconserved elements. 

Gene Ontology (GO) analysis of neighboring genes.  Each non-coding element was assigned to the 

nearest neighboring RefSeq gene based on distance to the 5' or 3' end of the transcript, 

resulting in 851 unique genes neighboring ultra-like constrained elements and 162 unique 

genes neighboring non-exonic ultraconserved elements.  The expected number of neighbor 

genes with any particular GO biological process annotation, as well as the binomial 

enrichment P-value relative to this expectation, was calculated using L2L 20.  Standard 

deviations about the expected value were based on the approximation that random sampling 

yields a Poisson distribution of genes in any particular GO category.     

Cloning of highly constrained regions.  All enhancer candidate regions were PCR amplified from 

human genomic DNA (Clontech) using primers designed to amplify the regions listed in 

supplemental tables 1 and 2.  Where possible, primers were designed to include several 

hundred base pairs of the sequence flanking the ultraconserved and/or highly constrained 

core region.  In 12 cases, neighboring ultraconserved regions were amplified and assayed in a 

single construct, resulting in 231 constructs encompassing 245 of the 256 non-exonic 

ultraconserved elements originally described 1.  206 additional highly constrained elements 

were selected based on their extreme P-values (average genome-wide rank 343) and the 

absence of overlap with regions of ultraconservation, but blind to the identity of neighboring 

genes or their conservation in other species than human/mouse/rat.  All PCR fragments 

were cloned into pENTR (Invitrogen), transfered into an Hsp68 promoter-LacZ reporter 
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vector containing a Gateway cassette using LR recombination (Invitrogen; 10,21,22) and 

sequence validated. 

Transgenic enhancer assay.  Transgenic mice were generated as previously described 21 in 

accordance with protocols approved by the Lawrence Berkeley National Laboratory.  

Embryos were collected at e11.5 and stained for LacZ activity.  A minimum reproducibility 

of 3 embryos resulting from independent transgenic integration events with the same 

staining pattern in at least one anatomical structure was required for positive elements.  If no 

consistent pattern was observed although a minimum of 5 transgenic embryos was obtained 

(in absence of LacZ activity confirmed by yolk sac genotyping), elements were defined as 

negative.  Detailed imagery and anatomical annotations for all enhancers are available at 

http://enhancer.lbl.gov. 
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Supplemental  Methods 

Gumby R parameter.  The test statistic used by the Gumby algorithm to assess the statistical 

significance (P-value) of an evolutionarily constrained element is a heuristic likelihood-ratio 

score.  This log-odds score compares the likelihood of the observed aligned segment under 

constrained (slower than neutral) evolution to that under the local neutral substitution rate.  

It is therefore necessary to define in advance the degree of constraint one expects to observe 

by specifying the value of the Gumby R parameter, which is the expected factor by which 

the local neutral rate exceeds the rate of constrained evolution in functional sequences 

(strictly speaking, Gumby is parametrized by the ratio of mismatch frequencies, which is not 

exactly the same as the ratio of substitution rates, though the difference is small in the case 

of eutherian sequence comparisons).  The actual constrained sequences identified in the 

human genome at any given setting of R will not necessarily evolve R times slower than the 

local neutral rate.  In other words, the R-value of any particular constrained sequence 

identified by Gumby (Robs) is not the same as the parametric R used to score all constrained 

sequences in the genome (Rpar).  However, setting Rpar to a higher value will indeed shift the 

spectrum of identified constrained elements towards higher Robs.  In the limit, as Rpar
 tends to 

infinity, no substitutions or indels will be allowed inside constrained elements, and 

ultraconserved elements will be detected as the most significantly conserved set in the 

genome. 

Extremely conserved elements at different settings of Rpar.  We set an extreme P-value threshold of 1e-

40, and evaluated the whole-genome sets of constrained non-coding elements obtained at 6 

different settings of Rpar, ranging from 5 to 10,000 (Supp. Table 5).  The 6 whole-genome 
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sets of extremely constrained non-coding elements are available at http://pga.jgi-

psf.org/Gumby/CNS_sets.  The number of extremely conserved elements detected at this 

P-value threshold decreased monotonically from 5,467 at Rpar = 5 to 919 at Rpar = 10,000.  In 

contrast, the number of the 256 non-exonic human-rodent ultraconserved sequences 

overlapped by these elements remained approximately the same, fluctuating in the range 

from 215 to 234. 

Comparison of extremely conserved elements to human-rodent non-exonic ultraconserved elements (nUCs).  

In order to compare the evolutionary properties of all extremely conserved non-coding 

elements to those of the subset that overlap human-rodent ultraconserved sequences, we 

examined three measures of evolutionary constraint: human element length L, Robs and 

rejected substitutions 6.  Robs was calculated for each conserved element as the local “neutral” 

(background) substitution rate SBG divided by the substitution rate Sc within the element.  SBG 

was calculated for each element by maximum likelihood from the alignment of all non-

conserved non-coding positions within 10 kb of either edge of the conserved element, where 

“non-coding” means not contained within human UCSC genes, RefSeq genes, RNA genes,  

sno/microRNAs, mRNAs or spliced ESTs and “non-conserved” means not contained 

within “most conserved” elements defined by phastCons 7 in the 28-way multiz alignment 

available from the UCSC Genome Browser (http://genome.ucsc.edu).  Overlapping flanking 

regions of neighboring conserved elements were merged.  Since the extreme and 

ultraconserved elements were identified on the basis of human-rodent alignments, 

evolutionary rates estimated in those lineages are subject to ascertainment bias.  SBG, Sc and 

Robs
  were therefore estimated solely on the basis of branches in the human-rhesus-mouse-

rat-dog-horse-cow phylogenetic tree that are not contained in the human-mouse-rat tree.  
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Positions of low sequence quality (quality score < 30) in rhesus, dog, horse and cow were 

masked in all sequence alignments.  The rejected substitution count Srej for each conserved 

element was estimated as Srej = (SBG-Sc) x L.  

For each set of extreme conserved elements defined by a particular value of Rpar, the 

distribution-corrected (see methods) average length, Robs and rejected-substitution count Srej 

were calculated, both for the entire set of conserved elements and for the subset of 

conserved elements that overlaps nUCs.  In order to maintain consistency in the accuracy of 

bin averages used in the distribution correction procedure, conserved elements were divided 

among 10 P-value bins in such a way that each bin contained approximately the same 

number of nUC-overlapping conserved elements.  We shall from now on refer exclusively to 

distribution-corrected averages of non-coding element length, Robs and Srej. 

As expected, the average length of conserved elements (i.e., the average of bin averages) 

decreased monotonically as Rpar was increased from 5 to 10,000, while the degree of 

constraint Robs of the conserved elements increased (supp. table 5).  The average rejected 

substitution score decreased significantly with increasing Rpar, since rejected substitutions 

depend more strongly on element length than on degree of constraint, once the degree of 

constraint Robs exceeds 2.  Conserved elements as a whole were generally 3-6% longer than 

their nUC-overlapping subset though 14-28% less constrained in terms of substitutions per 

nucleotide.  The disparity in per-nucleotide constraint between all ultra-like elements and 

those that overlap nUCs decreased as Rpar was increased from 5 to 10,000, with the average 

Robs of all ultra-like elements reaching 86% of the value for ultra-like elements overlapping 

nUCs.  This trend towards convergence of the two sets at high values of Rpar is as expected, 

since ultra-like elements become 100% conserved, i.e. ultraconserved as Rpar tends to infinity. 
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Finally, the set of all ultra-like conserved elements is marginally more constrained on average 

than the subset overlapping nUCs by the rejected substitution criterion (supp. table 5), with 

the difference ranging from 1-6%.  This is largely due to the shorter length of nUC-

overlapping conserved elements relative to all conserved elements in any given P-value bin, 

but also partly because ultraconserved elements tend to lie in regions of marginally slower 

neutral evolutionary rate (data not shown). 

Optimizing Rpar for Gumby whole-genome run.  To determine a suitable value of Rpar for defining a 

single whole-genome set of extremely conserved elements, two criteria were considered: a) 

similarity of constraint between all conserved elements and nUC-overlapping elements and 

b) enhancer predictivity.  Here, enhancer predictivity was defined as the correlation 

coefficient between enhancer status of a conserved element (0 for negatives and 1 for 

positives in the transgenic assay) and its Gumby conservation score (log10(1/P-value)).  To 

quantify enhancer predictivity, we examined the results of all enhancer assays of 

ultraconserved elements, together with additional elements reported in ref. 10.  Enhancer 

predictivity of the conservation score was found to decrease monotonically from 0.29 to 

0.23 as Rpar was increased from 5 to 10,000 (supp. table 5).  Thus, enhancer predictivity 

favors low values of Rpar.  Indeed, it is evident from the lack of a significant correlation 

between ultraconserved element length and success in the enhancer assay (data not shown) 

that extremely high values of Rpar, which have the effect of scoring conserved elements by 

the length of the largest perfectly conserved block, result in poorer enhancer predictivity.  

On the other hand, similarity of constraint between all ultra-like elements and the subset that 

overlaps nUCs favors high settings of Rpar, if one uses Robs as the measure of constraint.  As a 

tradeoff between enhancer predictivity and per-nucleotide constraint, an intermediate value 
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of Rpar=50 was therefore selected for defining the reference set of extremely human-rodent-

constrained non-coding sequences in the human genome. 



Visel et al. – Ultraconservation identifies a small subset of extremely constrained developmental enhancers 

-19- 

References  

1. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321-

5 (2004). 

2. Katzman, S. et al. Human genome ultraconserved elements are ultraselected. Science 

317, 915 (2007). 

3. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse 

genome. Nature 420, 520-62 (2002). 

4. Derti, A., Roth, F.P., Church, G.M. & Wu, C.T. Mammalian ultraconserved elements 

are strongly depleted among segmental duplications and copy number variants. Nature 

Genetics 38, 1216-1220 (2006). 

5. Drake, J.A. et al. Conserved noncoding sequences are selectively constrained and not 

mutation cold spots. Nat Genet 38, 223-7 (2006). 

6. Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic 

sequence. Genome Res 15, 901-13 (2005). 

7. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and 

yeast genomes. Genome Res 15, 1034-50 (2005). 

8. de la Calle-Mustienes, E. et al. A functional survey of the enhancer activity of 

conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res 

15, 1061-72 (2005). 

9. Poulin, F. et al. In vivo characterization of a vertebrate ultraconserved enhancer. 

Genomics 85, 774-81 (2005). 

10. Pennacchio, L.A. et al. In vivo enhancer analysis of human conserved non-coding 

sequences. Nature 444, 499-502 (2006). 

11. Ghanem, N. et al. Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark 

different progenitor cell populations in the ganglionic eminences and different subtypes of 

adult cortical interneurons. J Neurosci 27, 5012-22 (2007). 

12. Prabhakar, S. et al. Close sequence comparisons are sufficient to identify 

human cis-regulatory elements. Genome Res 16, 855-63 (2006). 



Visel et al. – Ultraconservation identifies a small subset of extremely constrained developmental enhancers 

-20- 

13. Hardison, R.C., Oeltjen, J. & Miller, W. Long human-mouse sequence alignments 

reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res 7, 

959-66 (1997). 

14. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset 

aligner. Genome Res 14, 708-15 (2004). 

15. Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic Acids Res 31, 51-4 

(2003). 

16. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. 

Error probabilities. Genome Res 8, 186-94 (1998). 

17. Brudno, M. et al. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple 

alignment of genomic DNA. Genome Res 13, 721-31 (2003). 

18. Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M. & Dubchak, I. VISTA: 

computational tools for comparative genomics. Nucleic Acids Res 32, W273-9 (2004). 

19. Olsen, G.J., Matsuda, H., Hagstrom, R. & Overbeek, R. fastDNAmL: a tool for 

construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput 

Appl Biosci 10, 41-8 (1994). 

20. Newman, J.C. & Weiner, A.M. L2L: a simple tool for discovering the hidden 

significance in microarray expression data. Genome Biol 6, R81 (2005). 

21. Nobrega, M.A., Ovcharenko, I., Afzal, V. & Rubin, E.M. Scanning human gene 

deserts for long-range enhancers. Science 302, 413 (2003). 

22. Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic 

mice. Development 105, 707-14 (1989). 

 

 



Visel et al. – Ultraconservation identifies a small subset of extremely constrained developmental enhancers 

-21- 

Figures  

 

 

 

 

 

Fig. 1: Most ultraconserved elements are not perfectly conserved in other mammals.  

Nucleotide substitutions in 256 non-exonic human-rodent ultraconserved elements 1 in five 
additional placental mammalian genomes were considered (chimpanzee, rhesus, dog, horse, 
cow).  203 elements (79%) have at least one position substituted in other mammals, 153 

(60%) have two or more substituted positions and excessive substitutions at five or more 
positions were observed in 43 (17%) cases.  Additional cases of imperfect sequence 
conservation due to insertions and deletions were not considered.  
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Fig. 2: Ultraconservation identifies a small fraction of elements that are under 

similar constraint.  More than 2,600 extremely human-rodent constrained elements are 

identified at a constraint score threshold of ≥40, of which more than 2,300 are not defined 
as ultraconserved.  Of the 500 most human-rodent constrained non-coding elements 

(score ≥74.7), 350 (70%) do not contain or overlap regions of ultraconservation.  Overlap 
with possibly exonic 1 ultraconserved regions is not indicated in the graph. 
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Fig. 3: Enrichment near genes involved in transcriptional regulation, general 

development and nervous system development.  The function (GO, biological process) 
of the closest neighboring gene of each conserved element was considered.  Observed 

numbers of genes in each category were compared to the number expected based on all 
annotated RefSeq genes.  Additional significantly enriched categories are listed in 
supplemental table 4.  Enrichment P-values are based on the binomial distribution.  Error 
bars indicate ±1 standard deviation. 
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Fig. 4: Highly constrained enhancers target expression to similar tissues 

independent of ultraconservation.  a) Binning of patterns driven by ultraconserved (top) 
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and ultra-like constrained (bottom) enhancers into broad anatomical domains does not 
reveal significant differences for any structure (all p-values >0.05, Fisher’s exact test with 
Bonferroni correction for multiple hypothesis testing).  Enhancers targeting expression to 
more than one region are reported in each respective category.  b) Examples of extremely 

constrained enhancers that contain (left) or do not contain (right) regions of 
ultraconservation, but drive highly similar expression patterns.  Arrows indicate viewing 
angle of insets, only one representative embryo per enhancer is shown; all patterns were 
reproducible in at least two additional embryos resulting from independent transgenic 
integration events.  DRG, dorsal root ganglia.  Genomic coordinates for all enhancers are 
provided in supplemental tables 1 and 2.  
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Supplemental  Figures  

 

 

 

Suppl. Fig. 1: Extreme conservation of ultra-like constrained elements throughout 

the mammalian clade.  a) substitution rate and b) rejected substitutions of 2,614 non-
coding elements with ultra-like constraint (left) and the subset that overlaps non-exonic 
ultraconserved regions (right).  c) elements that overlap non-exonic ultraconserved regions 
are 5% shorter (left), have a 34% higher branch length ratio (center), and 6% less rejected 
substitutions in placental mammals (rhesus, dog, horse, cow, but excluding human, mouse, 
rat).  All average values were corrected for distribution bias (see methods).  
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Suppl. Fig. 2: Ultra-like constraint identifies a human-rodent constrained core set of 

enhancers independent of ultraconservation.  Examples of ultra-like constrained 
enhancers that contain (uc+) or do not contain (uc-) regions of ultraconservation and drive 
expression in a) subregions of the midbrain, hindbrain and neural tube and b) subdomains of 
the developing limb.  Only one representative transgenic embryo per enhancer is shown; all 
patterns were reproducible in at least two additional embryos resulting from independent 
transgenic integration events. 

 




