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Abstract

Learnability has been a topic of great interest in phonology.
In particular is the question of the relative learnability of pro-
cess interactions. In both historical and experimental domains,
researchers have noted that certain kinds of interactions are
harder to learn than others. In both domains, however, the re-
sults are seemingly in conflict. One potential source of the
conflicting outcome is the types of processes involved. In this
paper, we investigate the effect of process types on the learn-
ability of different interaction types, using an ideal minimum-
description-length learner (MDL). We find that the model in-
deed predicts different learnability outcomes for each interac-
tion type; however, the asymmetry is largely independent of
the process type. This computational model explains certain
elements of both the historical as well as some experimental
findings of the relative learnability of linguistics process inter-
actions, while contradicting other behavioral findings.

Keywords: Phonology, Bayesian, Linguistics

Introduction
The puzzle of understanding how humans acquire language
is a long-standing challenge within the linguistic and cogni-
tive sciences. Human language learning is marked by both
its depth and its speed: somehow, the child masters the en-
tire linguistic stack, from phonetics to semantics, all in less
than a decade. A long tradition within linguistics has focused
on partitioning language skills into different modules (mor-
phology, pragmatics, etc.), as this piecemeal approach makes
the problem more tractable (cf. Modularity of Mind (Fodor,
1983)). A complementary tradition within the cognitive sci-
ences is to carefully engineer artificial grammars and study
how humans acquire language patterns within these carefully
controlled micro-languages.

Here we computationally study how different grammatical
processes interact. We construct a space of artificial gram-
mars which probe linguistic phenomena within the domain of
phonology, the system which explores how sounds are cate-
gorized, how sounds change based on their context via phono-
logical processes, and how the these processes interact with
one another. There have been several behavioral studies that
have looked at the difference in the learnability of different
process interactions (Ettlinger, 2008; Kim, 2012; Brooks, Pa-
jak, & Bakovic, 2013; Prickett, 2019). Yet the direction of
the asymmetric learnability varies across experiments.

We thus seek to answer the following question: what prop-
erties of certain interactions cause them to be more or less

learnable, and what properties do not? We make the follow-
ing contributions:

• We compare the learnability profiles of pairs of nearly-
identical languages that differ only in the individual pro-
cesses involved. Our “map” of the space of process inter-
actions spans existing behavioral studies while suggesting
new as-yet unexplored studies, which we hope spurs fur-
ther investigation.

• We construct an ideal minimum-description-length learner
(MDL: (Solomonoff, 1964; Rissanen, 1978; Rasin, Berger,
Lan, & Katzir, 2018)) for rule-based phonology (Chomsky
& Halle, 1968). This model makes predictions about hu-
man linguistic generalization within this space of interac-
tions.

• We find that the model indeed aligns with certain princi-
ples of historical change and some behavioral evidence,
but contradicts others. Crucially, we find that the model
is indeed sensitive to the process types involved, but not in
a fashion that is compatible with the empirical evidence.

We begin first with some background on phonological pro-
cesses and their interactions. We then go over the empirical
data, as well as the artificial languages we will be using to
pursue the question laid out above. We will then present the
model, and conclude with the results of the simulations and a
comparison to the empirical data.

Linguistic background
One of the goals in generative phonology is characterizing
how infants acquire a phonological grammar from a set of
surface forms (e.g. words). A phonological grammar is
comprised of two essential parts: the mental representations
(also known as the underlying representation, or UR) and the
mapping from URs to observed surface strings. For exam-
ple, many languages insert a vowel between two consonants:
/batn/ → [batin]1. Some theories (Chomsky & Halle, 1968)

1Slashes ’/’ correspond to input strings, whereas square brack-
ets ’[]’ correspond to output strings (so-called surface strings). The
arrow ’→’ simply denotes that some input string becomes the out-
put string. If some phonological process applies, then the input and
outputs look different; if no process applies or if the process applies
vacuously, then the input and output are identical.
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represent these mappings as rules that sequentially apply to
transform the UR to its observed output:

X→ Y / A B (1)

A rule of the form as in (1) looks for instances of AXB, also
known as the structural description. If such an instance is
found, the rule transforms X into Y. For example, for an in-
sertion process, we have2

∅→ i / C C (2)

For /batn/, the rule looks through the string and locates an
instance in which the structural description is met - in this
case, sequences of two consonants: C∅C or CC - and inserts
[i] in the context. Since the bigram [tn] satisfies the structural
description of the rule, [i] is inserted, resulting in [batin].

While (2) corresponds to a single phonological process, in-
dividual processes may interact with one another. For exam-
ple, in addition to insertion, a language may have a process of
palatalization, where [t] becomes [tS] before [i]: t → tS / i
e.g. /bati/→ [batSi]. Given an underlying string /batn/, if we
first apply insertion, we generate intermediate [batin]. The
insertion of [i] creates an environment in which palatalization
can then apply, generating [batSin]. For the remainder of the
paper, we focus on two-process interactions; or, interactions
involving only two independent phonological processes.

There are two dimensions to which these interactions are
characterized: whether process A creates or eliminates the
environment for which process B applies, and whether pro-
cess A precedes or follows process B. For example, consider
the following rules:

A: W→ Y / X (3)
B: Y→ Z

The application of A in (3) generates the environment to
which B can then potentially apply. If A precedes B, A can
successfully create the environment for B. This is known as a
feeding interaction. In contrast, if B precedes A, then B will
not apply, as A occurred too late in the phonological interac-
tion. This is known as a counter-feeding interaction.

Consider now the following set of rules:

A: X→ Y (4)
B: W→ Z / X

Now, the application of process A in (4) eliminates the
environment for which B can apply; in A, transforming X
to Y necessarily prevents B from applying. If A precedes
B, A can successfully destroy the environment for which B
would have applied. This is known as a bleeding interaction.
In contrast, if B precedes A, then A cannot destroy the
environment for B. This is known as a counter-bleeding
interaction.

2C and V correspond to consonants and (vowels, respectively.
The empty set ∅ corresponds to nothing (i.e. no sound).

Table 1: Experimental results by process type combination

Experiment Results
Identity-Identity Ettlinger 2008 {CF, CB} > {F, B}
Deletion-Identity Prickett 2019 F > {B, CB} > CF

Process types, maximal utilization, and opacity. There
are roughly three types of phonological processes: iden-
tity, deletion, and insertion processes. Identity processes in-
volve changing an underlying feature [F] of a sound from
one value [αF] to another [−αF] (e.g. the voicing feature
of [p][−voice]→[b]+voice). Deletion processes involve deleting
individual phonemes (e.g. the deletion of [a] in /batai/ →
[bati]). Finally, insertion processes insert segments (e.g. the
insertion of [i] in /batn/ → [batin]. This characterization is
given in (5) below.

Identity: [αF]→ [−αF] (5)
Deletion: X→ ∅
Insertion: ∅→ Y

Researchers have noticed that different process interactions
are preferred over others (i.e. are more commonly found in
the world’s languages or easier to learn); in particular, within
the domains of historical change (Kiparsky, 1968, 1971) and
learnability (Ettlinger, 2008; Brooks et al., 2013; Kim, 2012;
Prickett, 2019). There have been several attempts at gener-
alizing this difference; in particular, that of the maximal uti-
lization (Kiparsky, 1968), and transparency (Kiparsky, 1971)
biases.

The maximal utilization bias stipulates that orders that
maximize the application of rules (i.e. feeding and counter-
bleeding) are preferred over orders in which fewer rules apply
(i.e. bleeding and counter-feeding). For example, in the case
of feeding such as in (3), both A and B sequentially applied
to produce the output. In contrast, for the bleeding order in
(4), only A applies, as the application of A destroyed the en-
vironment for B to apply.

The transparency bias partitions the space differently, with
interactions assigned as either transparent or opaque. Opaque
interactions correspond to one of two conditions: either
a sound that should have changed in some environment
does not on the surface, or a sound that should not have
changed because the environment was not met did change.
The counter-feeding and counter-bleeding interactions satisfy
each of the conditions laid out above, respectively. For exam-
ple, consider the rules in (3), and an input such as /WX/. If
B applies first, followed by A, we would get the output [YX].
On the surface, even though B’s structural description is met,
the process does not apply. This is contrast to both the feed-
ing and bleeding orders, in which we can observe the respec-
tive environments in which each individual process did or did
not apply. For example, given the same rules and input as
above, if A applies first, followed by B, we produce the out-
put [ZX]. We see the environments for which both A and B
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Table 2: Artificial language data

Feeding Bleeding Counter-feeding Counter-bleeding

Ident-Ident
A: e→ i / i
B: t→ d / i
/bat-e-i/→A [bat-i-i]→B [bad-i-i]

A: i→ e / e
B: t→ d / i
/bat-i-e/→A [bat-e-e]→B [bat-e-e]

B: t→ d / i
A: e→ i / i
/bat-e-i/→B [bat-e-i]→A [bat-i-i]

B: t→ d / i
A: i→ e / e
/bat-i-e/→B [bad-i-e]→A [bad-e-e]

Del-Ident
A: V→ ∅ / V
B: t→ d / i
/bat-a-i/→A [bat- -i]→B [bad- -i]

A: V→ ∅ / V
B: t→ d / i
/bat-i-a/→A [bat- -a]→B [bat- -a]

B: t→ d / i
A: V→ ∅ / V
/bat-a-i/→B [bat-a-i]→A [bat- -i]

B: t→ d / i
A: V→ ∅ / V
/bat-i-a/→B [bad-i-a]→A [bad- -a]

applied: (X). The bias stipulates preference for transparent
over opaque interactions.

When examining the empirical data, we observe support
for both both biases. In the domain of historical change,
there have been both observations of re-orderings from bleed-
ing by speakers of one generation to counter-bleeding in
the next, supporting the maximum utilization bias (Kiparsky,
1968) but also cases in the exact opposite direction, with
re-orderings from counter-bleeding to bleeding, supporting
the transparency bias (Kiparsky, 1971). Experimentally, par-
ticipants have exhibited different learnability patterns, even
when examining the same interaction types (e.g. feeding vs.
counter-feeding).

In Table 1, we observe the outcomes of two different ar-
tifical language learning studies, each producing seemingly
contradictory results. In Ettlinger (2008), it was found that
opaque interactions were easier to learn than transparent in-
teractions, contrary to both the maximal utilization and trans-
parency biases. In contrast, Prickett (2019) found evidence
of both the maximal utilization and transparency bias, condi-
tioned on what surface form the grammar must produce.

In the historical and experimental data, we observe
differences in the relative preference and learnability of
process interactions, with some evidence pointing to a
maximal utilization bias, some pointing to an transparency
bias, and some pointing to neither. However, in both, this
difference was conditioned on another factor: the types
of processes involved in the interaction. Historically, the
maximal utilization bias was supported primarily by inter-
actions featuring identity-identity languages, whereas the
transparency bias was supported primarily by interactions
featuring deletion-identity and insertion-identity languages.
Experimentally, the relative differences in learnability -
although not falling neatly into a pattern predicted by the
maximal utilization or transparency bias - also appear to
cross-cut this difference. Thus, we seek not only to deter-
mine whether an asymmetry between process interactions is
predicted by an ideal minimum-description-length learner,
but moreover examine how different processes involved in
those interactions (e.g. deletion-identity vs. identity-identity)
influence that asymmetry.

Artificial language data. Two artificial languages inspired
from the artificial data used by Prickett (2019) were con-
structed. They comprise the identity-identity languages and
deletion-identity languages. This is shown in Table 2. The

identity-identity languages are composed of a raising process,
in which [e] raises to [i] before another [i], and a voicing
process, in which [t] becomes [d] before [i]3. The deletion-
identity languages are comprised of a deletion process, in
which a vowel deletes before another vowel, as well as the
same voicing process as the identity-identity languages. The
languages were constructed to minimally deviate from each
other, except in terms of the process type involved. This will
allow us to detect whether process type affects the model pre-
dictions.

The data was organized into paradigms of surface, pro-
nounced speech. A paradigm consists of the root (e.g.
“walk”) in isolation, as well as conjugated forms (e.g.
“walk”, “walked”, etc.), formed from the concatenation of
the root and one or more suffixes (e.g. “walk-ed”). Roots
(RT) were of the form {b, p,k,g}{a, i}{t,d,k,g}, with sounds
equally distributed for each position. Two affixes were as-
signed for each language: /-e/ and /-i/ for the identity-identity
language, and /-a/ and /-i/ for the deletion-identity language.
Sample data of the feeding language for each process type is
given below4.

Identity-Identity
RT RT-e RT-i RT-e-i
bat bate badi badii
pit pite pidi pidii
gad gade gadi gadii
kik kike kiki kikii

Deletion-Identity
RT RT-a RT-i RT-a-i
bat bata badi badi
pit pita pidi pidi
gad gada gadi gadi
kik kika kiki kiki

3This specific process is a rare if not unattested phonological pat-
tern in language. This process is, however, isomorphic to other at-
tested phenomenon, such as palatalization, i.e. t→ tS / i.

4Note that the artificial language used in (Ettlinger, 2008) differs
from the one used in our simulation. Ettlinger’s artificial language
consists of the following processes: a plural suffix /-il/ surfaces as
[-el] when when the preceding vowel is [e], and [e] lowers to [a]
when the preceding vowel is [a].

A: -il→ -el / eC0 (6)
B: e→ a / aC0

Process A in (6) is unlike those described before in the paper, target-
ing the sound only in a specific suffix rather than across the entire
language. The interaction being observed does not appear to be a
phonological one, but a more complex interaction between two mod-
ules of the grammar - particularly, the morphology and the phonol-
ogy. This kind of interaction cannot be stated in purely phonolog-
ical terms, and such may produce results different from the results
achieved in the model.

1721



Model
Setup. In formal terms, our model observes (takes as in-
put) a set X of pronounced surface forms paired with their
constituent atomic meanings. For example, if the model ob-
serves the English past tense word “walked”, one such tuple
would be 〈/wOkt/,WALK + PAST〉, where WALK and PAST
are atomic meanings for “walk” and the past tense, respec-
tively. It infers (i.e. outputs) a sequence of K ordered rules,
written {rk}K

k=1, as well as a lexicon. The lexicon, written L,
is a function from a meaning atom to a sequence of phonemes
(its underlying representation). Together the rules and lex-
icon make a grammar. Given this notation, the constraint
C that the inferred grammar satisfies a particular example
〈 f ,m1 +m2 + · · ·mN〉 is

C(〈 f ,m1 +m2 + · · ·mN〉,{rk} ,L) =
1 [ f = PHONOLOGY(L(m1) ·L(m2) · · ·L(mN))] (7)

where: PHONOLOGY( f ) = r1(r2(r3(· · · f ))) (8)

While we generally seek grammars consistent with the in-
put data, this desiderata trades off against a bias for a par-
simonious grammar. One way of encoding this trade-off is
through so-called minimum-description-length (MDL) mod-
els. MDL is a method for finding a single model given a
dataset, which seeks to minimize the sum of the size of the
model and the size of the data given the model. We follow
the classic scheme of identifying the model with the gram-
mar, and the size of the data given the model as the size of
the lexicon needed given those rules (Ellis, Solar-Lezama, &
Tenenbaum, 2015; Rasin et al., 2018; Barke, Kunkel, Polikar-
pova, Meinhardt, et al., 2019). Because the lexicon can mem-
orize any surface forms that do not obey the rules, size of
lexicon measures compression of the data given the model.

As an MDL learner, our model works by jointly minimiz-
ing the total size of rules, lexicon, while also minimizing the
size of forms unexplained by this grammar. Thinking of the
rules as a model and the (form, meaning) pairs as observed
data, we jointly minimize the description-length size of the
model and the size of the data conditioned on the model:

MODELSIZE({rk}) = ∑
k

size(rk) (9)

DATASIZE(X ,{rk} ,L) = ∑
〈 f ,m〉∈X

size( f )︸ ︷︷ ︸
MDL...

(¬C(〈 f ,m〉,{rk} ,L)︸ ︷︷ ︸
...if datum unexplained

)

+ ∑
f∈range(L)

size( f ) (10)

Optimization. In general even finding any grammar
consistent with the data–let alone a parsimonious one–is
computationally intractable. We wish to study the behavior
of idealized MDL learners, independent of computational
implementation, thereby teasing apart the learning objectives
from process-level/performance-level (Chomsky, 2014) de-
tails. Therefore we adopt a sound and complete optimization
procedure using constraint-based program synthesis (Solar-
Lezama, 2008), which uses a Satisfiability Modulo Theories

(SMT (Barrett, Stump, & Tinelli, 2010)) solver. This compu-
tational technique guarantees exact solving of combinatorial
objectives such as those above, while sacrificing guarantees
on runtime. Concretely we use the Sketch program syn-
thesis engine (Solar-Lezama, 2008), which was also used
by (Zuidema et al., 2020) for inducing phonological rules.
Sketch can be used to compute Pareto optimal5 solutions to
the joint minimization of MODELSIZE and DATASIZE using
an SMT-enabled optimization algorithm. Note that unlike
other works examining Pareto optimal program synthesis
outputs (Schmidt & Lipson, 2009), our approach yields the
exact Pareto frontier, rather than post-hoc calculating the
frontier over the outputs of a heuristic search.

Generating predictions. Ultimately we are concerned not
with specific grammars output by the model, but rather with
what predictions those grammars make on unseen words. Af-
ter all, behavioral studies of language learning directly yield
statistics of human generalization, not rules and lexica.

To assess models and human behavior side-by-side we ask
the model to predict the pronounced forms of unseen test
words. Because the model may discover many Pareto optimal
grammars, we accomplish this through Bayesian model aver-
aging: for each grammar, we interpret its description length
as a negative log posterior probability, and integrate over the
space of Pareto optimal grammars:6

P({rk} ,L|X) ∝ 1 [〈{rk} ,L〉 Pareto optimal for X ]× (11)

P(X |{rk} ,L)P(L)∏
k

P(rk)

P(rk) ∝ exp(−αsize(rk)) (12)

P(L) ∝ ∏
f∈range(L)

exp(−βsize( f )) (13)

P(X |{rk} ,L) ∝ ∏
〈 f ,m〉∈X

exp(−γsize( f )(¬C(〈 f ,m〉,{rk} ,L)))

(14)

where hyperparameters α,β,γ trade-off between a preference
for small rules, small lexicon, and fit to data, respectively.

We are primarily concerned with the description length as-
signed by the model to held out test data, which is connected
to the above equations as follows. Given train/test data X /Y ,
we marginalize over Pareto optimal models:

size(Y |X) = ∑
{rk}

∑
L

DATASIZE(Y,{rk} ,L)P({rk} ,L|X)

(15)

5Formally, pareto optimality for multi-objective optimization
means not-strictly-worse than any other solution along all optimiza-
tion objectives. Intuitively, these are the grammars that a learner
might entertain depending on how it relatively weighs parsimony
and fit to data.

6Ideally one would integrate over the entire infinite space of all
grammars, but this is wildly intractable. These equations are written
up to a proportionality, which is licensed by the fact that there are
finitely many possible grammars/forms, so each probability distri-
bution is normalizable
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Figure 1: How hard does an ideal MDL learner predict each
language should be to acquire? We assess the model on held
out test data from each language and score it according to the
description length it assigns to this test data. Graphed above
are the average ranking of each language according to this
difficulty measure. Results averaged over different values of
the hyper parameters α,β,γ (Eq. 12-14) uniformly sampled
from [0,2]× [0,2]× [1,2]

Ultimately, we suggest that an adequate explanation of lin-
guistic generalization competence should assign higher de-
scription length to linguistic phenomena which are harder to
learn. This is because across many learning strategies, de-
scription length should be a good proxy for learning difficulty,
e.g. difficulty scales exponentially for enumerative learn-
ing strategies, and generally learning is harder for stochastic
methods as well. More broadly, description length is a proxy
for likelihood under the prior, so higher descriptions length
correlates to higher violations of prior expectations.

Results
We want to know whether the model finds it easier to learn the
same interactions that behavioral studies suggest humans eas-
ily acquire, and vice versa for difficult-to-learn interactions.
To answer the question of which interaction types are easier
to learn according to the model, we prepare parallel corpora
of train and test words from each language. We asked the
model to learn grammars from training words and measure
the description length it assigns to test words.

Figure 1 plots the difficulty of each process interaction by
process type (compare with Figure 2). As the relationship be-
tween the opaque and transparent interactions is most clear
(i.e. is a result of a simple re-ordering of rules), we focus
our comparison on this aspect. For the identity-identity lan-
guage, feeding and counter-bleeding interactions were found
to have a lower description length and thus easier to learn
than their counter-feeding and bleeding counterparts. For
the deletion-identity language, we again see that feeding and

Figure 2: Insight into how the model succeeds with some lan-
guages and struggles with other comes from visualization of
the space of possible grammars. Here we show Pareto opti-
mal grammars for two languages. Each point is a different
grammar. Top, easiest language to learn. Around the correct
grammar (red) one observes a sharp kink in the Pareto fron-
tier, which is where a Bayesian learner would tend to con-
centrate its posterior probability. Bottom shows an interme-
diate difficulty language. One observes a less dramatic kink
for the medium difficulty. The less prominent kink indicates
a broader, more diffuse and uncertain posterior distribution
over grammars.

counter-bleeding languages are easier to learn. These results
both conform to the maximal utilization bias.

We therefore observe an asymmetry in the learnability of
process interactions that implements a maximal utilization
bias, independent of the process types, and observe no sys-
tematic bias toward transparency. We stress that the model
holds no explicit knowledge of interaction types as well as
process types more broadly; the behavior of the model de-
pends only on the MDL framing, not on its algorithmic im-
plementation.

Why should we observe a maximum utilization bias? First
note that this bias says that, if rules apply all the time, then
they will be easier to learn. In MDL terms, introducing a new
rule “buys” more description length than it costs because the
rule is frequently used. Referencing Figure 2 top, there is a
sharp drop in the lexicon MDL at the correct grammar, be-
cause adding all the correct rules dramatically decreases the
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amount of surface forms memorized in the lexicon. From an
MDL perspective, we should not expect a transparency bias
when it comes at the expense of maximal utilization, indepen-
dent of process type. While this conforms to earlier analyses
of historical change (Kiparsky, 1968) as well as some behav-
ioral studies (Prickett, 2019), the model is unable to utilize
the process types involved in the interaction in order to derive
the transparency bias (Kiparsky, 1971). This is of potential
concern, as the results here seemingly violate more modern
analyses of these interaction, which tend to argue in favor of
an asymmetry partitioned based on the transparency of the
interaction rather than the utilization of the processes.

This suggests that a bias toward transparency, if MDL is
to be a viable account of language acquisition for phonology,
must come from the algorithmic implementation of linguistic
learning mechanisms, not the objective function of grammar
learning. In other words, this effect must hinge on linguis-
tic performance, instead of linguistic competence (Chomsky,
2014). Here we refer to Chomsky’s performance-competence
distinction, where performance refers to the actual fine-
grained behavioral characteristics of language acquisition and
use, while competence refers to its abstract characterization
in terms of representations and objectives. Absent a process-
level account, we propose that MDL learners cannot explain
this transparency bias, although they do suffice to explain a
maximal utilization bias.

Related work
There are other dominant models of learning phonology, such
as Maximum Entropy models (Goldwater & Johnson, 2003)
and the Gradual Learning Algorithm (Boersma & Hayes,
2001). Both Maximum Entropy models and the Gradual
Learning Algorithm more closely follow the formalism of
Optimality Theory (OT; (Smolensky & Prince, 1993)) as op-
posed to SPE-style rules, as we do here. OT is a more
popular and recent alternative to such rule-based phonology,
and Bayesian approaches have proved useful here for build-
ing computational learning accounts (Goldwater & Johnson,
2003; Doyle, Bicknell, & Levy, 2014). Here we worked out
the consequences of MDL learners in rule-based terms, leav-
ing study of other model families to future work.

MDL learners are one of very few models that are able
to jointly learn the underlying representations as well as the
mapping from the underlying to surface forms. These models
have seen a variety of success in modeling different morpho-
phonological phenomenon. An earliest application of MDL
to morpho-phonological learning is Rasin et al (2018). This
is a genetic algorithm that stochastically explores the space
of possible rules, and can, among other phenomena, dis-
cover opaque interactions. Notably, it exhibits the trans-
parency bias. We believe our findings here suggest that these
transparency biases must emerge not from the MDL fram-
ing, but from the implementation details of its stochastic
search. Complementary work (Barke, Kunkel, Polikarpova,
& Bergen, 2019) combines SMT-based methods with bottom-

up heuristics and has been applied to learning several dif-
ferent phonological phenomena, such as final devoicing and
epenthesis.

We emphasize that we are not concerned here with the ex-
act implementation of MDL learners. Instead we have built a
generic MDL model, and exactly solve for its optimal solu-
tions. By disentangling learning objectives from algorithmic
implementation, we can make a broader claim about what in-
ductive biases must necessarily emerge from the MDL fram-
ing, and what inductive biases must necessarily not emerge.

Discussion
Empirical investigations of phonological process learnability
had previously identified two contradictory learning biases:
(1) a bias toward transparency, and (2) toward maximal uti-
lization. We find that a minimum-description-length learner
suffices to capture only one of these learnability asymmetries,
and that these results are not based on the process type. Our
result is not tied to the specific implementation details of our
model. Our use of exact program synthesis guarantees ex-
haustive exploration of the space of grammars; our hyperpa-
rameter sweep shows that this result is insensitive to how dif-
ferent description lengths are balanced. This suggests that fu-
ture work should explore process-level models of phonologi-
cal performance, and not seek to explain transparency biases
in terms of ideal-observer models of linguistic competence.

Narrowly viewed, our work contributes to explaining a
puzzling finding in phonological process interactions, sug-
gesting that basic principles of inference such as minimum-
description-length are a part of solving this puzzle, but still
leave more to explain. Zooming further into phonology, this
invites additional questions as to whether different subclasses
of opacity, or subclasses of identity/deletion/insertion, are
easier/harder to learn. For example, as Table 1 suggests,
Insertion-Identity interaction phenomena are underexplored,
and indeed we are computationally investigating this at the
very moment: “mapping out” the space of interactions, sim-
ulating computational learners, and making predictions for
new behavioral studies.

Viewed broadly our work contributes to the body of litera-
ture showing that rational models can explain human learning
patterns (Tenenbaum, Kemp, Griffiths, & Goodman, 2011).
Yet there are limits to these ideal observer models (Marcus
& Davis, 2013). We hope this work helps further delineate
their strengths and weaknesses.
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