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Abstract
Objective: Identification of EEG waveforms is critical for diagnosing Lennox–
Gastaut Syndrome (LGS) but is complicated by the progressive nature of the 
disease. Here, we assess the interrater reliability (IRR) among pediatric epilep-
tologists for classifying EEG waveforms associated with LGS.
Methods: A novel automated algorithm was used to objectively identify epochs 
of EEG with transient high power, which were termed events of interest (EOIs). 
The algorithm was applied to EEG from 20 LGS subjects and 20 healthy controls 
during NREM sleep, and 1350 EOIs were identified. Three raters independently 
reviewed the EOIs within isolated 15-second EEG segments in a randomized, 
blinded fashion. For each EOI, the raters assigned a waveform label (spike and 
slow wave, generalized paroxysmal fast activity, seizure, spindle, vertex, mus-
cle, artifact, nothing, or other) and indicated the perceived subject type (LGS or 
control).
Results: Labeling of subject type had 85% accuracy across all EOIs and an IRR 
of κ =0.790, suggesting that brief segments of EEG containing high-power wave-
forms can be reliably classified as pathological or normal. Waveform labels were 
less consistent, with κ =0.558, and the results were highly variable for differ-
ent categories of waveforms. Label mismatches typically occurred when one re-
viewer selected “nothing,” suggesting that reviewers had different thresholds for 
applying named labels.
Significance: Classification of EEG waveforms associated with LGS has 
weak IRR, due in part to varying thresholds applied during visual review. 
Computational methods to objectively define EEG biomarkers of LGS may im-
prove IRR and aid clinical decision-making.
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1  |   INTRODUCTION

Lennox–Gastaut Syndrome (LGS) is a severe, childhood-on-
set epileptic encephalopathy that often evolves from earlier 
epilepsies such as infantile epileptic spasms syndrome (IESS). 
LGS is characterized by (1) the presence of multiple seizure 
types, (2) cognitive impairment, and (3) the presence of in-
terictal epileptiform activity in the electroencephalogram 
(EEG), such as slow spike–wave (<2.5 Hz) and generalized 
paroxysmal fast activity (GPFA), a unique waveform that is 
primarily seen in LGS during NREM sleep.1 In addition to 
their importance for diagnosis, these waveforms can also be 
biomarkers of treatment response in LGS. For example, a 
decrease in GPFA burden has been associated with similar 
reductions in diary-recorded seizures,2 and continuous spike 
and wave pattern during slow wave sleep has been associ-
ated with neurodevelopmental disabilities.3 Identifying in-
terictal epileptiform activity can also help classify the type of 
epilepsy and help clinicians manage anticonvulsants.4

The prompt diagnosis of LGS is critical for seizure con-
trol and maximizing long-term neurocognitive outcomes.5–7 
However, because the onset of LGS is often insidious, it can 
be difficult to define a single timepoint at which LGS begins. 
Experts may disagree as to whether EEG abnormalities are 
sufficiently severe to substantiate a diagnosis of LGS, which 
may delay diagnosis and effective treatment. Interpretation 
of individual EEG waveforms is inherent to this decision, 
and low interrater reliability (IRR) could be a significant 
contributing factor. The reliability of identifying interictal 
epileptiform discharges has been shown to be limited, as in-
dividual experts apply different thresholds in their decisions 
to mark events.8 A consensus has also not yet been reached 
on the defining characteristics of GPFA, as studies using vi-
sually marked events report different values of GPFA ampli-
tude, duration, and frequency across subjects.9,10 One group 
developed an automated detector that defined GPFA as a 
low-frequency component (0.3–3 Hz) plus a high-frequency 
component (8–20 Hz); in comparison to manually marked 
GPFA, the detector was found to return a high number of 
false-positive detections.11 This further highlights a lack of 
characterization of the specific waveform features used in 
the visual analysis of LGS EEG, which is a barrier to devel-
oping objective biomarkers of LGS. Given these uncertain-
ties, the goal of this study was to evaluate the rater accuracy 
and IRR of automatically detected EEG waveforms in both 
healthy controls and patients with LGS.

2  |   METHODS

2.1  |  Subject information

Approval for this retrospective study was obtained from 
the Institutional Review Boards at the Children's Hospital 

of Orange County (CHOC) and the University of California 
Los Angeles (UCLA), with the requirement for informed 
consent waived. Twenty subjects diagnosed with LGS (7 
females, median age 7.4 years, age range 1.0–18.8 years) 
were retrospectively identified using ICD 9 and 10 diag-
nostic codes from the clinical record at CHOC, with visits 
and EEG studies performed between January 2012 and 
June 2020. The electroclinical diagnosis of LGS was con-
firmed by a board-certified pediatric epileptologist. The 
median time from seizure onset to EEG collection in the 
cohort was 4.2 years and the median time from LGS di-
agnosis to EEG collection was 0.1 years (Supplementary 
Table S1). Twenty healthy control subjects (8 females, me-
dian age 8.2 years, age range 1.0–17.7 years) were selected 
from a cohort of fifty subjects collected in a prior study. 
The twenty healthy subjects were selected such that they 
were approximately age-matched to the LGS group. The 
cohort of fifty control subjects was retrospectively identi-
fied from the clinical record at UCLA with visits between 
February 2014 and July 2018.12 Controls were included 
if they had (1) no known neurological disorders, (2) a 
normal overnight video-EEG, (3) EEG events that were 
not seizures and were deemed neurologically normal by 
the attending neurologist, and (4) no use of anti-seizure 
medications. There were no significant differences in age 
between control and LGS subjects (P = 0.672, Student's t-
test); the breakdown by sex was approximately the same 
between both groups.

2.2  |  EEG acquisition and preprocessing

All EEG data were recorded using the Nihon Kohden 
EEG acquisition system, with nineteen scalp electrodes 
placed according to the international 10–20 system (Fp1, 
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, 
Fz, Cz, Pz). The data were recorded at a sampling rate of 
200 Hz or downsampled to 200 Hz. For each LGS subject, 
an EEG clip of NREM sleep lasting 10 minutes containing 

Key point

•	 A 15-second EEG segment containing at least 
one high-power waveform can be reliably clas-
sified as pathological or normal.

•	 Labeling of subject type (epilepsy vs. control) 
had Cohen's kappa κ = 0.790, while labeling in-
dividual EEG waveforms had κ = 0.558.

•	 Many mismatches in EEG waveform labels oc-
curred when one rater selected “nothing,” indi-
cating different thresholds between raters.
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no arousals or artifacts was selected. First, periods of 
NREM sleep were identified between the times of 12:00–
4:00 AM by a pediatric epileptologist (MR). Three subjects 
were not asleep during this time window; one subject had 
NREM sleep from 4:00–6:00 AM and two subjects had 
NREM sleep from 6:00 PM to 12:00 AM the night before. 
Then, using an automated artifact detection algorithm, 
the first clean 10-minute clip of NREM sleep was selected 
for analysis. For each control EEG recording, a pediatric 
epileptologist clipped 20–30 minutes of NREM EEG using 
a randomization method to select the time point, as de-
scribed in Smith et  al. (2021).12,13 For each subject, one 
10-minute clip of clean, continuous, NREM sleep EEG 
with no automated or clinically detected artifacts was 
selected for analysis. All EEG data were re-referenced to 
the common average and filtered with a zero-phase shift 
digital filter from 0.5–55 Hz. All electronic data were dei-
dentified and analyzed offline using custom MATLAB 
(Mathworks) scripts.

2.3  |  Identifying EEG events of interest

The EEG data were first prewhitened in the time domain 
using first-order backward differencing to counteract 
the expected 1/f decrease in power.14–16 The time-var-
ying power spectrum of the EEG for frequencies from 1 
to 50 Hz was subsequently obtained using the Stockwell 
transform,17 in increments of 1 Hz.

We then identified regions of high power in the 
time-varying power spectrum that exceeded a threshold of 
250, which corresponded to a z-score of 1.69 for the EEG 
power and resulted in selection of 4.6% of all time-fre-
quency values. This relatively low value for the threshold 
was chosen to ensure that all relevant waveforms, partic-
ularly epileptiform activity, would be captured. This fixed 
threshold was used across all frequency bands and sub-
jects, as the prewhitening step served to normalize the 

power across frequency bands and between LGS and con-
trol subjects.

For each EEG, we defined events of interest (EOIs) to 
be regions of high power in the time-varying power spec-
trum that were continuous in time (Figure 1). Specifically, 
a single EOI consisted of consecutive time points in which 
the power for at least one frequency exceeded the thresh-
old, with a minimum duration of 100 milliseconds. This 
minimum length was chosen to fully capture the duration 
of an epileptic spike, the shortest abnormal waveform we 
expected to see. Note that epileptic spikes and other sharp 
waveforms will appear to have a longer duration in the 
time-varying power spectrum, such that even a 20 milli-
second spike can have a time-frequency duration exceed-
ing 100 milliseconds (Supplementary Figure  S1). EOIs 
were identified in the EEG data from the Fz electrode, as 
the frontocentral location should be minimally impacted 
by eye movements and muscle artifact and maximally sen-
sitive to events such as sleep spindles and GPFAs.10

2.4  |  Time-frequency image features for 
each EOI

For each EOI, we calculated six features using the time-
varying power spectrum. We first defined the time-varying 
power spectrum as Xt,f ,e where t  is time, f  is frequency, 
and e is the electrode at which the EEG was measured 
(Figure  1B). We then defined a time-frequency image 
(TFI) to be the time-frequency representation of a single 
EOI. Specifically, the TFI was the set of ordered doublets 
whose power in an electrode e exceeded the threshold T:

Two examples of EOIs and their associated TFIs are 
shown in Figure 1C. Given these definitions, the six fea-
tures were as follows:

(1)TFIe =
{
(t, f ) ∣ Xt,f ,e > T

}

F I G U R E  1   A representative example of EOI identification. (A) 10 minutes of artifact-free EEG were selected from each subject; a 
sample of 10 seconds is shown here. (B) The time-varying power spectrum was calculated for the entire EEG clip after prewhitening. (C) 
EOIs were identified as consecutive time points in which the EEG power exceeded a threshold. For a single EOI, the set of points in the 
time-frequency space that exceeded the threshold was defined as the time-frequency image (TFI). Here, two different TFIs are shown, one in 
green and one in orange.
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1.	 Height (Figure  2A): The height was defined by the 
highest frequency minus the lowest frequency in the 
TFI for electrode Fz:

The height ranged from 1 to 50 Hz, as the frequencies 
ranged from 1 Hz to 50 Hz.

2.	 Duration (Figure  2B): EOI duration corresponded to 
the TFI length in seconds in electrode Fz and was 
defined by:

3.	 Spread (Figure 2C,D): The EOI spread measured how 
many other electrodes had TFIs that overlapped the 
Fz TFI in time and frequency. A spread of 1/19 = 0.05 
indicated that no other scalp electrodes exhibited high 
EEG power (exceeding the threshold) at the same 
time and frequency as the Fz electrode. A spread of 
1 indicated that all other electrodes exhibited high 
EEG power at the same time-frequency points as the 
Fz electrode. The spread was defined by:

where |||
{
TFIFz ∩ TFIe

}||| is the cardinality of the intersection 
between TFI sets for Fz and electrode e, nElec is the total 
number of EEG electrodes, and |||

{
TFIFz

}||| is the cardinality 
of the TFI in Fz.

4.	 Density (Figure  2E): The density was the area of 
the TFI, normalized by the duration and the maxi-
mum possible height (here 50 Hz). A density of 
1/50 = 0.02 indicated that the EOI had high power 
at a single frequency at each time point, and a den-
sity of 1 indicated that all possible frequencies ex-
ceeded the power threshold at all time points. The 
density was defined by:

where nFreq is the number of frequencies analyzed and fs is 
the sampling rate.

5.	 Mean Power (MP, Figure  2F): For each Fz EOI, 
the mean power was calculated across all time-fre-
quency points that exceeded the threshold:

where (t, f ) consists of all ordered doublets within TFIFz.

6.	 Frequency of Peak Power (FPP, Figure  2G): The 
FPP was the frequency at which the EOI had the 
maximum power:

The FPP ranged from 1 to 50 Hz, based on the frequency 
range included in the time-varying power spectrum.

2.5  |  Clustering analysis

Prior to clustering, each feature was normalized by con-
verting the values to a z-score based on the mean and 
standard deviation of each feature across all control and 
LGS EOIs. Control and LGS EOIs were collectively parti-
tioned into twelve different clusters using K-means.18 Each 
EOI was treated as a single observation; each observation 
consisted of six variables, which were the z-scores of the 
features: height, duration, spread, density, MP, and FPP. A 
large number of clusters was used to ensure that all combi-
nations of TFI features were represented, thus resulting in 
a broad distribution of EOIs for visual analysis. For organi-
zational purposes, the clusters were named in descending 
order based on the sum of the six TFI feature z-scores, such 
that cluster one had the highest sum of the six TFI feature 
z-scores, and cluster twelve had the lowest sum.

2.6  |  Visual analysis of EOIs

To ensure the selection of a representative distribution 
of EOIs for visual classification, 120 EOIs were randomly 
selected from each cluster (60 from LGS patients and 60 
from control subjects). If a cluster contained fewer than 
sixty control or LGS EOIs, the remaining EOIs were se-
lected from the other cohort. Cluster one consisted of 
only 30 EOIs, and all EOIs were included in this cluster. 
In total, 1350 out of 11 708 EOIs were selected for visual 
analysis. Three board-certified pediatric epileptologists 
(DA, DS, SH) from two different institutions (CHOC and 
UCLA) each classified 900 of the 1350 EOIs, so each EOI 
was independently classified by two different raters. The 
order of EOIs was randomized. For each EOI, raters were 
given a fifteen-second segment of EEG, starting 10 sec-
onds prior to the EOI and ending 13 seconds after the EOI 

(2)Height =maxf
({
TFIFz

})
−minf

({
TFIFz

})
+ 1

(3)Duration =maxt
({
TFIFz

})
−mint

({
TFIFz

})

(4)Spread =

∑nElec
e=1

���
�
TFIFz ∩ TFIe

����
nElec∗

���
�
TFIFz

����

(5)Density =

|||
{
TFIFz

}|||
nFreq∗Duration∗ fs

(6)MP =

∑
(t,f )∈TFIFz

Xt,f ,Fz

���
�
TFIFz

����

(7)FPP = argmaxf
(
Xt,f ,Fz

)



180  |      HU et al.

F I G U R E  2   Examples of TFIs and time-varying power spectrum features: (A) height, (B) duration, (C) high spread, (D) low spread, (E) 
density, (F) mean power, and (G) frequency of peak power. For all features except spread, an example of a high value is shown at the top of 
the subfigure, and an example of a low value is shown at the bottom. The spread is visually represented using electrodes adjacent to Fz, with 
high and low spreads shown in separate subfigures. Yellow regions indicate where the Fz TFI overlaps with the TFIs in adjacent electrodes, 
while light blue regions indicate where the Fz TFI does not overlap with the TFIs in adjacent electrodes.

F I G U R E  3   An example of the blinded visual analysis of an EEG EOI. The EOI is indicated by the horizontal red line. For each EOI, the 
rater selected a subject type and a waveform type. The user interface also included the option to increase and decrease the EEG amplitude 
scale and change the reference montage between a common average reference montage and a longitudinal bipolar montage.
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began, with a red line indicating when the EOI started and 
ended (Figure 3). Raters were blinded to the subject type, 
subject number, and the time at which the EEG segment 
was recorded. For each EOI, raters were asked to deter-
mine (1) the subject type, which could be either a control 
or LGS subject and (2) the waveform type, which could 
be spike and slow wave (SSW), GPFA, seizure, sleep spin-
dle, vertex sharp, muscle, artifact, other event, or nothing. 
EOIs were viewed and classified using a custom GUI that 
was designed using MATLAB in consultation with the 
clinical team.

2.7  |  Statistical analysis

The IRR reflects the proportion of consistent ratings be-
tween clinicians that are not accounted for by chance. IRR 
was calculated for both subject type and waveform type 
and was assessed using Cohen's Kappa19 and intraclass 
correlation coefficient (ICC).20 Cohen's Kappa ranges from 
negative one to one, with −1.00-0.00 = “no agreement”; 
0.01–0.20 = “slight”; 0.21–0.40 = “fair”; 0.41–0.60 = “mod-
erate”; 0.61–0.80 = “substantial”; and 0.81–1.00 = “almost 
perfect or perfect” IRR.21 The ICC was calculated using a 
2-way mixed-effects model, where an ICC greater than 0.7 
is generally considered adequate and an ICC greater than 
0.9 is considered excellent. The consistency in subject la-
bels and waveform labels between raters was measured 
using the EOI agreement rate (EAR)22:

where A represents the set of EOIs labeled with a specific 
subject or waveform type by reviewer A, and B represents 
the set of EOIs of the same subject or waveform type labeled 
by reviewer B.

For the subject type, we also determined the accuracy 
of the visual classification relative to the ground truth of 
whether the subject had been diagnosed with LGS or not. 
The accuracy of the subject type labels was calculated as 
a percentage based on the subject type from which each 
EEG EOI originated.

3  |   RESULTS

3.1  |  Automated EOI detection identified 
a broad range of waveform types from all 
subjects

A total of 11 708 EOIs were detected using the process de-
scribed in Section  2.3, with 6744 EOIs coming from the 
twenty control subjects (ncontrols = 365.0 [259.0–443.0] 

EOIs per subject; reported as the median [Q1-Q3] for all 
results) and 4964 EOIs coming from the twenty LGS sub-
jects (nLGS = 232.5 [156.0–324.5]). The minimum number 
of EOIs for a single subject was 49, and the maximum 
number of EOIs was 560. There were no clusters composed 
of EOIs from a single subject; on average, each subject 
contributed EOIs to 8.5 different clusters (Supplementary 
Figure  S2). Each cluster was characterized by a differ-
ent combination of the six features (Supplementary 
Figure  S3). For example, the EOIs in cluster one had a 
long duration and high spread, while EOIs in cluster two 
had high density and high mean power. Some clusters 
had low values of all features; this was expected, as EOIs 
were identified using a relatively low power threshold to 
maximize the sensitivity of initial detection. The broad 
distribution of EOIs across subjects and clusters and the 
unique characterization of each cluster based on the six 
features suggest that our algorithm was successful in iden-
tifying a broad range of waveforms that were well-repre-
sented in both LGS and control subjects. Clustering EOIs 
using a power threshold of 200 (7.7% of the data) and 300 
(3.0% of the data) produced qualitatively similar clusters 
(Supplementary Figure S4). For the visual analysis, 60% of 
the EOIs (n = 813 out of 1350) were from LGs subjects, and 
40% (n = 537) were from control subjects.

3.2  |  Classification of subject type was 
accurate and consistent between raters

The IRR for the determination of subject type (ie, LGS 
vs. control) associated with each EOI was favorable, with 
κ = 0.790 and ICC = 0.790 (95% confidence interval [CI] 
0.769–0.809) across the 1350 EOIs selected for visual 
analysis (Table  1). Both control and LGS subject labels 
had similar agreement between raters, with an EAR of 
0.806 and 0.813, respectively (Table  2). The mean accu-
racies for subject classification were 84.4%, 84.7%, and 
86.0% for the three reviewers, with significantly lower 
accuracies for EOIs from LGS subjects compared to EOIs 
from control subjects for all three raters (Supplementary 
Table  S2; P < 0.05, Mann–Whitney U-test). There were 
no significant differences in accuracy between the three 
raters across all LGS and control subjects (P > 0.05, Mann–
Whitney U-test; 3 of 3 comparisons).

3.3  |  Interrater reliability for waveform 
type was inadequate, with some very low 
agreement rates

The IRR for waveform type had κ values ranging from 
0.538 to 0.572, with a mean value of 0.558 (Table 1). The 

(8)EAR =
|{A ∩ B}|
|{A ∪ B}|
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ICC between raters was also below adequate, with an 
ICC of 0.669 (CI 0.638–0.698). The highest number of 
consistent ratings between reviewers were for EOIs la-
beled as SSWs (n = 338, EAR = 0.710), nothing (n = 391, 
EAR = 0.592), and sleep spindles (n = 118, EAR = 0.490), 
although the EAR values for nothing and sleep spindles 
did not indicate high levels of agreement. The high num-
ber of EOIs labeled “nothing” further confirms the highly 
sensitive nature of the automated algorithm for identifica-
tion of waveforms. The EAR values for other waveforms, 
such as GPFAs (n = 35 with matching labels, EAR = 0.285) 
and vertex waves (n = 11, EAR = 0.122), were low, indi-
cating significant disagreement in identifying LGS wave-
forms and sleep architecture, respectively (Table 2).

Mismatches in waveform labeling mostly occurred 
when one rater classified the EOI as nothing (Figure 4). Of 
the 439 EOIs with a disagreement in waveform labels be-
tween the two reviewers, 270 EOIs (61.5%) were labeled as 
nothing by one reviewer. This happened most frequently 
for nonepileptiform waveforms; for example, mismatched 
labels of spindle/nothing occurred 83 times, and labels 

of vertex/nothing occurred 54 times, accounting for a 
total of 31.2% of all EOIs with mismatched labels. Of the 
waveform types typically associated with epilepsy, SSWs 
had the highest EAR, but 37.0% of all SSWs with mis-
matched labels occurred when one rater marked nothing. 
For GPFAs, the mismatches occurred when the second 
rater chose SSW (38.6%), muscle artifact (21.6%), nothing 
(18.2%), and sleep spindles (12.5%).

4  |   DISCUSSION

The present study evaluated the rater accuracy and IRR 
of EEG waveforms in both healthy controls and patients 
with LGS. The visual classification of 1350 EOIs by three 
pediatric epileptologists demonstrated favorable inter-
rater agreement in identifying control vs. LGS EEG, using 
a 15-second segment of deidentified EEG. The IRR and 
EAR for waveform type were low, particularly in crucial 
EEG waveforms such as GPFA and spindles. Mismatched 
labels for waveforms most frequently occurred when one 

Label type Rater Count Agreement Kappa ICC 95% CI

Subject A-B 450 0.907 0.813 0.814 0.780–0.843

A-C 450 0.916 0.831 0.831 0.798–0.859

B-C 450 0.862 0.725 0.725 0.678–0.767

All 1350 0.895 0.790 0.790 0.769–0.809

Waveform A-B 450 0.671 0.560 0.627 0.567–0.681

A-C 450 0.682 0.572 0.685 0.633–0.731

B-C 450 0.671 0.538 0.697 0.646–0.741

All 1350 0.675 0.558 0.669 0.638–0.698

Note: The three visual reviewers are listed as raters A, B, and C.

T A B L E  1   Interrater reliability 
for classification of subject type and 
waveform type for EEG EOIs.

Category

EOI agreement rate (n)

A-B A-C B-C All

Subject type Control 0.831 (248) 0.834 (229) 0.757 (255) 0.806 (732)

LGS 0.828 (244) 0.853 (259) 0.759 (257) 0.813 (760)

Waveform type SSW 0.720 (168) 0.727 (154) 0.682 (154) 0.710 (476)

GPFA 0.400 (25) 0.378 (45) 0.151 (53) 0.285 (123)

Seizure 0.000 (1) 0.000 (3) 0.000 (0) 0.000 (4)

Spindle 0.500 (82) 0.480 (100) 0.492 (59) 0.490 (241)

Vertex 0.100 (40) 0.053 (19) 0.194 (31) 0.122 (90)

Muscle 0.360 (25) 0.000 (15) 0.000 (18) 0.155 (58)

Artifact 0.111 (9) 0.167 (12) 0.000 (11) 0.094 (32)

Nothing 0.561 (205) 0.577 (215) 0.631 (241) 0.592 (661)

Other 0.023 (43) 0.100 (30) 0.065 (31) 0.058 (104)

Note: The three visual reviewers are indicated by A, B, and C. The number in parentheses represents the 
number of EOIs given that subject or waveform label by either reviewer.

T A B L E  2   EOI agreement rate for 
subject type and waveform type.
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of the raters labeled the EOI as nothing, suggesting that 
reviewers had different tolerances for variation in indi-
vidual waveforms relative to a stereotypical appearance. 
These results highlight EEG features that can be robustly 
identified, as well as those with high levels of disagree-
ment between experts. This can guide future work on 
objectively defining such waveforms and evaluating their 
utility as biomarkers of diagnosis and treatment response, 
which will ultimately improve the long-term outcomes of 
patients with LGS.

Our results are in line with prior IRR studies on EEG 
event classification. For example, raters had κ =0.43 in 
marking epileptiform events vs. benign paroxysmal activ-
ity.23 Another study had clinical experts score 13 262 can-
didate interictal epileptiform discharges in epilepsy and 
control subjects that were clustered into groups with simi-
lar morphologies.8 This study reported an IRR of κ =0.487 
for the interictal epileptiform activity score, and the authors 
suggested that the requirement to make binary decisions, 
rather than assigning probabilities, contributed to the level 
of disagreement. These findings are consistent with our re-
sult that most mismatched labels occurred when one rater 
classified an EOI as a meaningful EEG waveform while an-
other rater other classified it as nothing.

4.1  |  Automated waveform detection 
in subjects

In all subjects, the automated process for EEG analysis 
identified transient waveforms with high power. Of the 
794 EOIs with rater agreement, epileptiform waveforms 
such as SSWs and GPFAs came from fifteen LGS (two 
control) and eight LGS (zero control) subjects, respec-
tively. In contrast, normal sleep EEG waveforms such 

as spindles and vertex waves were only seen in three 
LGS (eighteen controls) and zero LGS (nine controls), 
respectively. This is consistent with a prior LGS sleep 
study, which reported an absence of sleep spindles in 
most LGS subjects.24 Sleep spindles and vertex waves 
may also be difficult to recognize in LGS subjects due to 
the presence of frequent epileptiform discharges during 
NREM sleep.24–26

4.2  |  Rater accuracy for subject 
identification

The accuracy for classifying subject type was generally 
good across all three raters, with an average accuracy of 
85% across all EOIs. The rater accuracy was similar be-
tween controls and LGS subjects in clusters one through 
six, where raters had a mean classification accuracy of 
96.5% for control EOIs and an accuracy of 91.3% for LGS 
EOIs. However, the rater accuracy in clusters seven 
through twelve was 95.3% in controls, compared to 
64.3% in LGS subjects. This difference was expected, as 
control subject EEG should only contain normal physi-
ological waveforms, which are unlikely to be mistaken 
for epileptiform activity. In contrast, LGS subjects have 
both epileptiform waveforms and normal physiologi-
cal waveforms, of which the latter are likely to result 
in mismarking of an EOI as coming from a control sub-
ject. Because LGS EOIs more frequently occurred in 
clusters one through six, rater accuracy for EOIs from 
LGS subjects decreased as the cluster number increased, 
with cluster twelve having the lowest accuracy by far 
(Supplementary Table S3).

4.3  |  Interrater reliability in waveform 
classification

The combined, blinded rating of both LGS and control 
subject EOIs in the same study provides an important 
benchmark for IRR of EEG waveforms. Using an ap-
proximately equal mix of physiological and pathologi-
cal EOIs, let us accurately measure how frequently an 
EOI might be interpreted as benign or even “nothing” 
and prevented bias toward choosing labels associated 
with pathological waveforms. However, this broad mix 
of EOIs coupled with the use of nine different labels for 
visual analysis could have contributed to the low values 
of IRR and EAR for waveform classification. To verify 
that this was not the case, we recalculated the metrics 
using three broader categories consisting of: (1) patho-
logical (SSW, GPFA, seizure), (2) physiological (spindle, 
vertex), and (3) others (muscle, artifact, none, other). 

F I G U R E  4   Confusion matrix for waveform classification. 
Most disagreements were due to one rater labeling the EOI as 
nothing while the second rater labeled the EOI as something else.
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The use of fewer labels did not substantially improve IRR 
(κ =0.558 to κ =0.628) or the EAR (pathological = 0.724, 
physiological = 0.447, others = 0.623) (Supplementary 
Figure  S5). The similarities in rater agreement when 
using broad categories suggest that the disagreement be-
tween clinicians is not due to subtle differences between 
waveform types.

4.4  |  Limitations

There are several limitations to our study related to the 
EOI detection and subject data. First, the EOI detection 
was accomplished using the Fz channel, which captures 
the frontocentral activity typical of spindles, GPFA, and 
generalized activity, but is insensitive to localized tran-
sients occurring elsewhere on the head. Second, the EEG 
clips were not selected from a specific stage of sleep. Short 
clips of EEG may not be representative of a subject's brain 
activity over longer periods of time, as paroxysmal events 
such as GPFAs and SSWs may appear infrequently or not 
at all within a 10-minute time window. However, both 
limitations would only affect the number of different types 
of waveforms in the data set and not the raters' ability to 
classify them.

The LGS subjects used in this study had a wide range 
of ages and were diverse in terms of seizure and LGS du-
ration and severity of EEG findings. This could have af-
fected our results in a few ways. This could be seen as a 
strength of the study, as the rater accuracy for labeling 
EEG segments as LGS or control was quite high, despite 
the diversity of the LGS cohort. However, it is possible that 
the accuracy could have been higher in a more homoge-
neous cohort. With respect to estimation of IRR, drawing 
individual EEG EOIs from this broad cohort ensured that 
raters labeled the full spectrum of possible EEG wave-
forms associated with LGS. Because of this, there were 
likely “nonstandard” examples of different waveform 
types, which could have reduced the IRR. However, this 
represents a realistic scenario, where each EEG requires 
robust and accurate visual interpretation, regardless of 
whether its features are typical.

Rater accuracies may have also been affected by the 
difficulty of classifying individual waveforms compared 
to conventional EEG visual analysis. The GUI was de-
signed to mimic standard clinical viewing software, but 
EOI labeling was done using fifteen seconds of isolated 
EEG, without having the full EEG study for context. We 
compensated for this by allowing raters to use the entire 
segment of EEG as context, but this may have influenced 
some labels by introducing other salient EEG features 
within the segment. For example, an EOI with short du-
ration (~100 ms) may not initially look significant, but if 

an epileptiform discharge occurs later in the 15-second 
segment, the rater may be more likely to choose a label 
associated with a pathological waveform. While the use 
of a deidentified short EEG segment instead of the entire 
study can reduce bias, future studies may want to evaluate 
clinically marked waveforms in tandem with automated 
EOI detections to compare the differences between these 
two methods. Agreement may be higher in paradigms 
in which raters assign subject type based on review of 
full-length clinical EEG, rather than 15-second samples. 
Conversely, in paradigms with diverse patient composi-
tion (eg, a cohort including normal controls, patients with 
LGS, and patients with other forms of epilepsy), the iden-
tification of patients with LGS may be more challenging 
and IRR is likely to be lower.

4.5  |  Future work

Given the stated limitations of this work, there are three 
questions that could be addressed by subsequent studies, 
using the same computational analysis and visual mark-
ing framework. (1) Is disagreement between raters more 
likely to occur when there is high uncertainty about the 
selected label? This could be answered by having raters 
indicate their level of certainty for each waveform label. If 
label mismatches occur when raters have high certainty, 
this could indicate a fundamental disagreement about 
how standard waveforms should be defined. (2) If raters 
are provided with greater context for each EEG EOI, does 
this improve the interrater reliability? For example, raters 
could assess multiple EOIs from a given subject, with the 
ability to view all EOIs prior to labeling them. This could 
be done using all EOIs from a single subject, or it could be 
subdivided by clusters (eg, label cluster 1 EOIs from sub-
ject 1, then cluster 1 EOIs from subject 2, etc.). In theory, 
this should improve the IRR, particularly for established 
biomarkers such as epileptiform discharges and the slow 
spike and wave pattern; results for newer biomarkers such 
as GPFA may be more varied. (3) What is the reliability 
of visual labeling in a more realistic scenario in which 
the patient may have a type of epilepsy other than LGS? 
Labeling an EOI as “GPFA” is likely to be considerably 
easier when the rater knows that the subject either has 
LGS or is a healthy control. Therefore, this study could 
be repeated using a broader cohort including the various 
types of epilepsy that are most common in this age group, 
as well as healthy controls.

Improvements could be made to the computational 
algorithm used for EEG EOI selection, as well. Future 
implementations could utilize multiple channels in the 
time-frequency analysis, rather than focusing on only 
channel Fz. Moreover, the use of EEG clips longer than 
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10 minutes would increase the likelihood of capturing 
waveforms such as GPFA and SSW in each subject.

5.   |   CONCLUSIONS

This work is a first step toward understanding the visual 
interpretation of EEG waveforms relevant to LGS. The 
IRR reported here should be considered as a baseline level 
of reliability, given the stringent blinding and randomiza-
tion used for visual marking. Future studies should ad-
dress the impact of modifying these factors, such as the 
amount of EEG context provided and the direct compari-
son to other forms of epilepsy, to deepen our understand-
ing of this complex topic.
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