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Abstract: Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its
impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications
early and ensure the mother’s and her unborn baby’s health and well-being. Different studies have
thus far proposed maternal health monitoring systems. However, they are designed for a specific
health problem or are limited to questionnaires and short-term data collection methods. Moreover,
the requirements and challenges have not been evaluated in long-term studies. Maternal health
necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this
paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health
monitoring during pregnancy and postpartum. The system consists of various data collectors to track
the mother’s condition, including stress, sleep, and physical activity. We carried out the full system
implementation and conducted a real human subject study on pregnant women in Southwestern
Finland. We then evaluated the system’s feasibility, energy efficiency, and data reliability. Our results
show that the implemented system is feasible in terms of system usage during nine months. We also
indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring
and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the
presented system with the current healthcare system.

Keywords: Internet of Things; wearable device; maternal health; remote health monitoring

1. Introduction

Maternity care aims to ensure the health and well-being of both the pregnant woman
and her fetus. Maternal health has a great impact on the infant during the pregnancy
but also in the future. In addition, health complications during pregnancy, for example,
hypertensive disorders or gestational diabetes, may resonate with corresponding health
problems in the pregnant woman’s later life [1–3]. Hence, maternity care is essential to
promote long-term health at the population level as well as preventing acute pregnancy
complications in individuals. Regular check-up during pregnancy is essential to detect
abnormalities and to prevent additional complications, injuries or even death [4].

Traditionally, blood pressure, blood glucose and urine tests have been the main
concrete parameters to follow during pregnancy, as well as the growth of the uterus and
maternal weight gain. To support a healthy lifestyle, maternity care providers also need
to provide counseling about other lifestyle and self-management matters, for example,
physical activity and sleep. However, these are not yet systematically monitored [5].
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There is a need to ubiquitously monitor pregnant women’s health to early detect possible
complications and improve health parameters [6–8]. Moreover, continuous monitoring
of different health parameters enables gaining fine-grained quantitative data that could
provide a better understanding of pregnancy.

Technological advancements in Information and Communication Technology (ICT) are
transforming the way healthcare is delivered. In particular, the IoT is an emerging paradigm in
modern ICT that exploits various sensing, communication, and computing infrastructures to
offer an advanced network of objects anywhere and anytime [9–11]. This paradigm, coupled
with big data analytics and artificial intelligence, can be incorporated into healthcare services,
providing remote health monitoring for individuals 24/7. Such a monitoring system can
collect data from the user and her/his environment, transmit the data to remote servers,
analyze the data and provide recommendations and feedback accordingly.

IoT-based systems can provide cost-efficient health monitoring services for pregnant
women in everyday settings [12]. Recent studies show that such remote health monitoring
systems can improve health outcomes for both mother and baby during pregnancy and the
postpartum [13,14].

Many attempts have thus far been conducted to provide remote health monitoring for
pregnant women. Several studies leverage subjective methods, where mothers are inquired
about their health and well-being [15–17]. These methods are mostly restricted to scheduled
phone-interviews and Internet-based questionnaires, which might be inaccurate [18]. In other
studies, various parameters such as blood pressure and weight are periodically collected from
pregnant women at home. These works are also bounded to limited data collection [19,20].
In addition, mobile applications and wearable electronics are utilized to continuously collect
health parameters during and after pregnancy, targeting specific pregnancy-related issues
such as sleep disturbances, physical activity and hypertension [21–23].

Even though the existing works in the literature employ IoT-based systems to perform
remote maternal monitoring, they are narrowly focused on a specific health problem,
equipped with limited sensing capabilities and, most notably, tested in a short period of
time during pregnancy. Moreover, implementation challenges of such maternal long-term
IoT-based systems have not investigated thus far. Feasibility of a mobile application during
pregnancy [20] and a wristband during pregnancy and postpartum [6] have been studied
in the literature.

To be able to operate for a long period of time, data collection in an IoT-based monitor-
ing system needs to address several key implementation challenges including: (1) feasibility
and usability; (2) energy consumption and efficiency; and (3) reliability and accuracy. Defi-
ciency in delivering any of these characteristics results in diminished users’ quality of of
experience [6,24–29].

In this paper, we present a long-term IoT-based health monitoring system to continu-
ously and remotely offer various services during pregnancy and postpartum. Our system
employs heterogeneous subjective and objective data collection techniques to track mothers’
health status. Subsequently, the data are stored and analyzed remotely, and the processed
data are delivered to the health providers. We carried out a full system implementation for
a real human subject study providing health monitoring during pregnancy and postpartum.
The implemented system allows the monitoring of stress, sleep and physical activity of
pregnant women. We also integrated various AI-based and machine learning methods
into the system in a holistic way, providing a data analysis pipeline. This pipeline contains
deep learning-based quality assessment of data [30], personalized modeling, missing data
imputation and anomaly detection [21,31]. We then evaluate and discuss the challenges
in implementing and deploying the presented remote maternal monitoring system. In
summary, the contributions of this paper are as follows:

• We present a feasible long-term IoT-based maternal monitoring system used dur-
ing pregnancy and postpartum. We investigate both system level and user level
requirements (e.g., energy efficiency and feasibility) to enhance user experience.

• We implemented a proof-of-concept monitoring system for a real human subject study.
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• We analyzed and evaluated the challenges in implementing such monitoring systems,
including feasibility, reliability, energy efficiency and integration of the presented
system with the current healthcare system.

• We integrated AI-based methods previously proposed by the authors into the presented
system in a holistic way for analyzing the data and providing monitoring services.

The rest of this paper is organized as follows. In Section 2, we outline the state-of-
the-art long-term maternal monitoring. In Section 3, we describe monitoring services that
can be provided by long-term IoT-based maternal monitoring systems. Section 4 discusses
the presented architecture and our implementation for the high-risk pregnancy study.
Evaluation of the presented system and discussion of the technical challenges are provided
in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

In this section, we briefly discuss state-of-the-art IoT-based healthcare systems de-
signed for maternal health monitoring.

There is a large body of literature introducing remote monitoring services in pregnancy.
Most of these studies use questionnaires to track mother’s health condition [32] or inves-
tigate certain issues or health problems during pregnancy such as hypertension [23,33],
preterm birth [14], gestational diabetes [34] and sleep disturbances [21]. Few works have
exploited long-term IoT-based health monitoring in pregnancy and postpartum.

Some studies tailored self-reports along with wearable devices for a short period of time
to monitor pregnant women. For example, Tsai et al. [15] investigated the correlation of
sleep problems and health-related quality of life using questionnaires and wrist actigraphy
(a non-invasive method for monitoring sleep and activity) for seven days in each trimester.
Other studies track different parameters in pregnant women, such as blood pressure, weight
and blood glucose, to monitor hypertension [19] and diabetes [34]. In [19], mothers with
gestational hypertension were recruited to use home blood pressure monitoring. If values
were higher than a specified threshold, mothers would be referred to visit hospitals.

Smartphone applications have been introduced to notify mothers in case of high-risk
situations. Krapf et al. [35] developed a mobile application to collect recorded values
of blood pressure and weight from mothers and notify mothers in case of abnormality
detection. Allahem et al. [14] proposed a framework to monitor pregnant women with
high risks of premature birth. They aimed to reduce preterm birth by collecting uterine
contractions through a body sensor and informing women via a mobile application if the
collected information was above some personalized thresholds. In [23], the authors used
a smartphone-based system enabled by a Naive Bayes Classifier, performing real-time
decision-making.

Wearable devices have also been utilized to collect maternal health parameters con-
tinuously. In [33], a model is proposed for hypertension monitoring during pregnancy. In
this study, a commercial wristband was leveraged to monitor heart rate, step count and
sleep. The proposed model was evaluated in a healthcare center for three months. Pregnant
women were satisfied with this model, as they could monitor their own health in a non-
invasive way. In [21], the authors presented an IoT-based monitoring system for objective
sleep quality assessment. They used a smart wristband to collect sleep information from
mothers continuously and provide a personalized model indicating the degradation of
sleep quality according to each person’s data. Kumar et al. [13] proposed an architecture
for health monitoring during pregnancy, considering the needs for adaptation of the system
based on collected health data.

These studies utilize IoT-based systems for maternal health monitoring. However,
they are restricted to specific health issues in a short period of time or performed with limited
data collection methods. An IoT-based maternal health monitoring system is required,
enabling continuous and long-term monitoring of a mother’s health conditions. Such
monitoring should provide a holistic view of mothers’ health, promoting healthy lifestyles
in pregnancy and reducing the risk factors for health in pregnancy. For example, preterm
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birth complications are the most frequent cause of neonatal death [36], occurring in most
cases without pre-known cause [37]. Such health issues could be tracked and uncovered by
collecting and analyzing various parameters such as stress-related factors and behaviors in
pregnancy [36].

Moreover, there are studies to investigate the feasibility of long-term maternal monitoring
systems. Marko et al. [20] assessed the use of a mobile application for six months during
pregnancy. The mobile application was connected with a blood pressure device and a digital
weight scale. This monitoring was conducted for eight women with low-risk pregnancies.
Grym et al. [6] also evaluated the feasibility of using a smart wristband by conducting a case
study on maternal health to monitor 20 pregnant women for seven months.

There is a need to investigate the use of maternal health monitoring systems from
different perspectives [6,28,38,39]. These systems should provide a high level of quality
attributes (e.g., feasibility, reliability and energy efficiency) to satisfy the requirements of
the long-term monitoring and improve user experience. In this regard, the technical and
practical challenges should be evaluated for health monitoring scenarios outside clinical
settings. Moreover, AI and machine learning-based methods should be utilized in a holistic
way to assess the quality of data, impute missing data and make personalized maternal
health monitoring.

3. Long-Term IoT-Based Maternal Monitoring Services

This section outlines long-term maternity care services, i.e., physical activity monitor-
ing, sleep monitoring and stress monitoring, which could be offered by IoT-based systems
for maternal remote health monitoring.

3.1. Physical Activity Monitoring

Moderate physical activity is vital for a pregnant woman’s general well-being and quality
of life [40]. In addition, physical activity reduces the risks of obstetric complications [41]. It
is well known that the level of physical activity decreases as pregnancy progresses [42] and
subjective reports tend to overestimate the volume and intensity of activity [43]. Continuous
objective monitoring would provide individualized and detailed information about the
woman’s physical activity, and her counseling could be tailored according to her needs.
Therefore, monitoring would support both the care provider and the pregnant woman.

3.2. Sleep Monitoring

Sleep disorders are pervasive in pregnant women, and the most prevalent period is
during the third trimester [44]. Frequent urination and difficulty in finding a comfortable
position disturb sleep [45]. Sleep disorders during pregnancy have been associated with the
risk of preterm birth [46], gestational hyperglycemia [47] and mood disorders [48]. Total
sleep time decreases gradually during pregnancy, but some women experience acute sleep
deprivation in labor and the early postpartum period [48]. Similar to monitoring of physical
activity, continuous sleep monitoring would provide individualized sleep information, and
tailored sleep counseling would support a healthy circadian rhythm, which, by implication,
could also support diet and weight management [49].

3.3. Stress Monitoring

Pregnant women can experience stress about daily hassles but also related to the
pregnancy itself: e.g., due to physical symptoms, bodily changes or the health of the fetus.
A high level of maternal prenatal stress seems to increase the risk of adverse pregnancy
outcomes such as hypertensive disorders, depression and preterm birth [50,51]. Based on
recent studies, it is also known that stress during pregnancy may have long-term impacts
on the infant and mother–infant interaction [52,53]. Thus, these issues should not be
underestimated in maternity care. Continuous long-term monitoring of stress might help
pregnant women to identify and possibly even manage their stress better. Maternity care
providers could also target the right interventions for women whose level of stress is high.
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4. Maternal Health and Well-Being Monitoring System

In this section, we present an IoT-based system designed for long-term maternal health
monitoring during pregnancy and postpartum. The presented architecture is shown
in Figure 1. This system enables the monitoring of pregnant women continuously and
integrates subjective and objective data collected from the mothers, thus providing a holistic
view of mothers’ conditions. The monitoring system consists of four layers: perception
layer, gateway (i.e., fog/edge layer) layer [54,55], cloud layer and application layer. In the
perception layer, physiological well-being information is collected from mothers, exploiting
various types of sensors. Collected data are sent to the cloud layer through the gateway
layer. The cloud layer stores and analyzes the data and provides processed data for
visualization. The application layer visualizes health information to the users. It also
enables the researchers to communicate with the mothers. In the following, we briefly
describe the four layers.

Perception Layer

Gateway Layer

 Wearable Device

Smartphone

Portable Device

Background 

Information

Smartphone

Router

Cloud Layer

Data 

Storage

Data 

Analysis

Application Layer

Web Application

Mobile Application

Researcher

Figure 1. IoT-based maternal health monitoring system.

4.1. Perception Layer

The perception layer collects the mother’s health data using several types of data
sources. The data sources can be divided into wearable devices, smartphones, periodic
portable devices and background information.

4.1.1. Wearable Devices

Wearables such as smart rings, smartwatches and Holter monitors are the main
data collectors in such IoT systems for objective data acquisition. These devices contain
sensors to measure bio-signals continuously, e.g., Photoplethysmogram (PPG) (PPG is a
non-invasive optical method which can be used for acquiring heart rate and heart rate
variability) [56], accelerometer and gyroscope. The signals are then analyzed to obtain
various health-related parameters—such as stress, sleep and physical activity—providing
maternity care services. In maternal IoT-based systems, the objective is to monitor health
parameters for a long period of time, so the selected wearable device should be small, easy-
to-use and energy-efficient while satisfying different quality attributes such as feasibility
and usability. Moreover, the device should be feasible to use even if the participant gains
weight rapidly or has swelled.

4.1.2. Smartphone

Smartphones can perform data collection in the monitoring, as they include various
sensors such as accelerometer, gyroscope and magnetometer. These sensors are used to
track physical activity and sleep. Moreover, patterns of smartphone usage, e.g., call dura-
tion, number of text messages, etc., can be another data source showing some psychological
problems [57].

In addition, smartphones can act as a bridge between the users and health providers,
enabling two-way communications. In this regard, smartphones are tailored to perform
subjective data collection, using Internet-based self-report questionnaires and momentary
ecological assessments. Such data can be used for screening and diagnosis purposes. To
enable self-reported data collection, a mobile application is needed, by which questions
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are delivered to the users at different time intervals (e.g., daily or weekly). Moreover,
users could send other health information, ask technical questions about the system or
communicate with a nurse/physician when needed.

4.1.3. Portable Devices for Periodic Monitoring

Periodic/episodic portable devices refer to devices used to measure physiological
parameters once a day or once a week. Some physiological parameters, such as weight,
change slowly. In addition, parameters such as blood pressure and blood glucose cannot
be measured continuously in a noninvasive and clinically reliable way [58,59]. Periodic
portable devices measure such parameters and transmit the values directly to the cloud, or
users can manually report the values via the mobile application.

4.1.4. Background and Demographic Information

Background and demographic information is another data source containing mothers’
information, which could assess the risk of health complications during pregnancy and
postpartum. For example, having a previous miscarriage or preterm birth increases the
preterm birth risk in future pregnancies [60]. In addition, ethnicity, age, weight before
pregnancy, diagnosed diseases and mother’s lifestyle can increase the risk of pregnancy
complications, thus needed for personalization purposes. This information can be collected
from mothers through the mobile application or hospital information services if proper
agreements and consents are provided.

4.2. Gateway Layer

The gateway layer provides interoperability between the perception and the cloud lay-
ers. The gateway’s primary purpose is transmitting collected data from mothers’ personal
area network to the cloud server. The gateway can be a router or a smartphone. Moreover,
smart gateways [61] can be used to provide other services at the edge, such as local data
analysis, data compression, embedded data mining, reliability and security.

4.3. Cloud Layer

The cloud layer consists of a remote server that receives collected data from the
perception layer through the gateway layer. It provides secure central storage to store a
massive volume of health data. In addition, it enables performing big data analytic and
machine learning algorithms to find trends and anomalies in the collected data. It provides
personalized health monitoring and alarm notifications by analyzing individuals data.
Moreover, the cloud server can be used as a server part in a client-server paradigm to
visualize the data for the caregivers and mothers.

4.4. Application Layer

The application layer provides the interface to the end-users for easily interacting with
the system. This layer provides web applications and cross-platform mobile applications
for monitoring and visualizing data, as well as means for two-way communication between
the researchers and mothers. The web application provides a dashboard for caregivers to
monitor and interact with mothers’ in real-time. In addition, mothers can use the cross-
platform mobile application to monitor their own health data, which can lead to better
self-management.

5. Implementation

In this section, we describe the setup and our case study of a IoT-based maternal
health monitoring system.

5.1. Perception Layer

Data sources used in our implemented system includes a smartwatch, a cross-platform
mobile application, a blood pressure device, and background information.
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5.1.1. Wearable Devices

The Samsung Gear Sport smartwatch [62] is selected in this study, considering access
to raw data, battery life, configurability of the data collection, adequate built-in memory
and waterproofness. The watch includes one built-in inertial measurement unit (IMU) and
one PPG sensor.

The Gear Sport watch runs an open-source Tizen operating system (OS) [63], which
enables us to develop our smartwatch applications for a customized data collection. We
developed several data collection services in the C programming language, which run with
no user interaction. These services can be used for any wearable or smartwatch that runs
Tizen OS, such as the Samsung Galaxy, Active and Active2 smartwatches [64].

In this monitoring, the PPG signal is acquired to extract heart rate and heart rate
variability (HRV) parameters. We programmed the watch to collect the PPG signal for
12 min every second hour, considering the watch’s battery life (see Section 6.3). Acceleration
data and daily activity data (e.g., step counts) provided by the watch are also acquired to
track participants’ physical activity and sleep.

Moreover, we develop an application enabling users to upload collected data to the
server through the WiFi connection. A data compression method is also used to reduce
bandwidth usage. During the monitoring, the participants are asked to continuously wear
the device and upload the collected data to the server using the application frequently
(e.g., daily).

5.1.2. Smartphone

We developed a cross-platform mobile application for smartphones to collect self-
report data, including momentary ecological assessments using random, daily and weekly
questionnaires. The mobile application includes components for delivering health pa-
rameters (such as blood pressure), requesting technical supports, collecting background
information, sending push notifications and reminders and providing communication
services if the user has any concerns regarding her health condition. The cross-platform
mobile application is developed using the Angular 2 technology [65] and Cordova [66],
which are open-source and platform-independent frameworks. Moreover, considering the
security aspects of the monitoring, the participants are authenticated using token-based
authentication and authorized to access the mobile application. Different interfaces of the
proposed cross-platform mobile application are shown in Figure 2.

5.1.3. Portable Devices for Periodic Monitoring

The participants were asked to measure their blood pressure at least once a week and
send the data through the mobile application to the server, as shown in Figure 2d. In this
regard, an OMRON M3 Intellisense blood pressure device [67] was given to each participant
at the beginning of the monitoring. The selected blood pressure device is clinically validated.
Moreover, the cuff supports the 360 accuracy feature, providing accurate reading regardless
of cuff placement on the arm. This feature enables non-expert users to collect accurate
measurements [68].

5.1.4. Background and Demographic Information

Using the cross-platform application, we sent a self-report questionnaire to the par-
ticipants to collect their background information. The questionnaire is designed to gain
insights into their diagnosed diseases, previous miscarriage or preterm birth, lifestyle and
perceived stress.
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(a) Home page (b) Notification

(c) Questionnaire (d) Blood pressure
Figure 2. Different interfaces of the cross-platform mobile application leveraged in our monitoring.

5.2. Gateway Layer

There are two types of gateway devices used in this monitoring. The first device
is the smartphone. Our mobile application is a client–server application that uses the
smartphone’s Internet connectivity to send data from the application to the server. The
second gateway device is a WiFi router, providing Internet connection for the smartwatches
during the monitoring.

5.3. Cloud Layer

We used Apache 2 [69], an open-source, cross-platform web server, and Flask [70]
for developing our server. Flask is an open-source Python WSGI (Web Server Gateway
Interface) framework that provides scalability and flexibility. It also speeds up the de-
velopment. We exploited the MongoDB [71] to store the data. MongoDB is a NoSQL
database that provides flexibility in the variety and types of stored data. An SSL API
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(Secure Sockets Layer Application Programming Interface) was also utilized to provide
secure communication.

Our server provides user management, data management and data analysis. The user
management module is responsible for creating new user accounts, modifying current
users, assigning proper access levels to the users and allocating a set of questions to the
users. In this setup, an authorized user can add, modify and delete the questions and
schedule a time for certain notifications and reminders. The data are stored anonymously
in the server to ensure the user’s privacy.

The data management module receives data from the mothers through the mobile
application and the wristbands. The server implements an authentication mechanism. Then,
the validity of the received data is checked. The user is notified to re-upload the data in case
of errors occurring. No personal data are sent to the server concerning the users’ privacy.
Moreover, the users need to be authenticated and authorized for accessing the data.

The data analysis module is responsible for analyzing the collected subjective and
objective data in this monitoring system. This module provides stress, physical activity
and sleep monitoring services.

Stress monitoring service in this system is provided by monitoring heart rate and HRV
parameters. Studies have shown that the HRV parameters are linked to the autonomic
nervous system activity changes associated with the level of stress [72]. Mental stress
increases the LF (power in low-frequency range) and decreases the HF (Power in high-
frequency range). Psychological stress is also significantly associated with an increase in
the LF/HF ratio. Another important HRV parameter is SDNN (standard deviation of all
normal IBIs), which is an index of resilience against stress. Moreover, in stressful conditions,
RMSSD (root mean square of the successive differences), AVNN (average of normal IBIs)
and LF/HF decrease and HF value increases in the short-term HRV measurements (see
more details in [72,73]). Different HRV parameters used by this IoT-based system for stress
monitoring are presented in Table 1. Therefore, the PPG signal is utilized to derive heart
rate and HRV parameters. The heart rate is extracted by counting the number of heartbeat
peaks in the signal. Moreover, we obtain the HRV parameters by extracting the variation
of inter-beat interval (IBI) in the PPG signal. The IBI is the duration of two successive
heartbeat peaks in the signal.

Table 1. HRV parameters.

Variable Units Description

NN interval ms Normal inter-beat interval
RMSSD ms The square root of the mean of the sum of the squares of differences between adjacent NN intervals
AVNN ms Average of NN intervals
SDNN ms Standard deviation of all NN intervals

LF ms2 Power in low-frequency range (0.04–0.15 Hz)
HF ms2 Power in the high-frequency range (0.15–0.4 Hz)

LF/HF - LF/HF

Sleep monitoring service uses hand movement and step counts data provided by the
smartwatch to extract sleep parameters, including total sleep time (TST), sleep efficiency
(SE) and wake after sleep onset (WASO) [74]. Physical activity monitoring service also
leverages step counts and wearing time data to estimate the daily physical activity and
sedentary time of the participants. Figure 3 shows a one month sample of the collected
data from one participant (randomly selected) during pregnancy.
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Figure 3. A one month sample of collected data from one participant during pregnancy.

The data analysis module consists of various artificial intelligence and machine learn-
ing algorithms to assess the quality of data, detect anomalies, find trends and create
personalized models, to mention a few [21,30,31]. The data collection is performed in
everyday settings while the mothers engage in various physical activities. Therefore, the
collected data (particularly PPG) are susceptible to environmental noises and motion ar-
tifacts. Quality assessment methods are utilized to differentiate reliable and unreliable
data [30]. Consequently, reliable data are used for further analysis and decision-making.
Moreover, machine learning algorithms are exploited to train patients’ models, by which
trends and changes are evaluated throughout the pregnancy and postpartum [21]. We inte-
grate previously proposed methods by the authors in a holistic way to provide a pipeline
for data processing, deep learning-based PPG quality assessment [30], machine learning-
based missing data imputation [31], personalized modeling, and anomaly detection [21].
Figure 4 depicts the data analysis pipeline in more detail.

PPG quality 

assessment

Sleep validation and 

adjustment

Rule-based physical 

activity validation

PPG quality 

improvement

Stress parameters

(HRV values)

Sleep parameters

Physical activity 

parameters

Missing data 

imputation

Personalized 

modeling
Collected data

Figure 4. Data analysis pipeline.
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5.4. Application Layer

We developed a web application using Angular 2, by which we were able to reuse
the components of our mobile application in the development. The implemented web
application enables the researchers to monitor the collected data. The trends and changes
can be observed via different daily/weekly plots in the web application. A view of our
web application is illustrated in Figure 5.

Figure 5. A view of our web application showing deep sleep of one participant.

6. Evaluation and Discussion

In this study, 28 women with high-risk pregnancies were monitored during pregnancy
and three months postpartum using the presented system. We evaluate the presented
system in terms of feasibility, reliability of the measurements and energy consumption.
Moreover, we discuss the potential, limitations and practical challenges of our system.
Finally, we investigate the possibility of integrating the presented system into the current
healthcare system.

Study Design and Participants: This study was conducted on women with high-risk
pregnancies, exploiting the presented IoT-based system. The participants were recruited
via advertisements in maternity clinics in Southwestern Finland and social media in
2019. Interested pregnant women contacted the researchers via email. The eligibility
criteria for participants were: (1) greater or equal to 18 years of age; (2) 12–15 gestational
weeks; (3) singleton pregnancy; (4) previous late miscarriage (12–22 gestational weeks) OR
previous preterm birth (22–36 gestational weeks); and (5) ability to understand Finnish.

In addition, the participants had to have a smartphone (Android or iOS) and accept
wearing a smartwatch from the recruitment until three months after the delivery. The
eligible women were asked to participate in a face-to-face meeting with researchers, in
which the details of the study procedures were provided. After the written informed
consent, the devices, including a smartwatch and a blood pressure device, with instructions
were delivered to the participants. In addition, a mobile application developed for this
study was installed on their smartphones. Thirty-two pregnant women with high-risk
pregnancies were recruited in this study. Four women withdrew from the study during the
data collection period. Thus, the final sample size in this study was 28 pregnant women.
Participants had a median of 13.4 weeks of gestation at the beginning of the monitoring.
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6.1. Feasibility

The feasibility of using the IoT-based system for a long period of time (i.e., nine
months) and usability of the data collectors for mothers are important considerations in
such long-term studies. In the following, we investigate the feasibility of wearing the
smartwatches and using our mobile application to answer the daily questions and send the
blood pressure measurements, considering the average usage of devices.

6.1.1. Wearable Device Usage

In this section, we examine the average wearing time of the smartwatch per day
during pregnancy and postpartum, showing its usability in our study.

The average daily wearing-time during pregnancy and postpartum for all participants
is shown in Figure 6. Six participants experienced preterm birth as their pregnancies lasted
fewer than 37 weeks. One participant was not allowed to use the wristband at work, thus
having a minimum average wearing time. Three participants were hospitalized due to
pregnancy complications for several days, having a restriction in using the smartwatch.
Moreover, the data collection was interrupted due to technical issues, e.g., server failures.
The data of twelve participants were lost for (on average) four days.

The watch wearing-time decreased on average during the pregnancy. In the postpar-
tum period, the wearing-time increased for most of the participants during the first weeks.
Two participants could not use the device after the delivery due to the restrictions of the
Neonatal intensive care unit (NICU). The average wearing time during pregnancy was
17.01 ± 4.20 h/day, and it decreased to 13.72 ± 5.71 h/day after the delivery.
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Figure 6. Smartwatch wearing time during pregnancy and postpartum of the 28 high-risk pregnant women.

In a feasibility study of using smart wristband during pregnancy, Grym et al. [6] showed
that the average wearing time during pregnancy was 17.3 h/day and for one month after
delivery was 14.4 h/day. Our results are in accordance with this study. However, the wearing
time in our study is slightly lower than their findings. This can be explained due to the
hospitalization of the mothers with high-risk pregnancies in our study. Consequently, the
data collection using the smartwatch is feasible during pregnancy and postpartum.

6.1.2. Cross-Platform Mobile Application Usage

We investigate the average usage of our cross-platform mobile application in the moni-
toring from two aspects: answering the daily questionnaires and uploading blood pressure
values through the mobile application. Figure 7 shows the average application usage for
the participants during pregnancy and postpartum. On average, the application usage
decreased during pregnancy. Similar to the wearing time of the smartwatch, application
usage increased after the second week of the postpartum period. However, it decreased
in the following weeks. In this study, the participants answered 5493 daily questions,
including 3879 answers during pregnancy and 1614 answers in postpartum. The average
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application usage for answering daily questions was 67.5% of the days in pregnancy and
57.0% of the days in postpartum.

The participants were also asked to measure their blood pressure once a week. Figure 8
illustrates the average number of blood pressure measurements per week for all the
participants during our study. One participant measured her blood pressure almost every
day, as she had preeclampsia (a disorder of pregnancy associated with high blood pressure)
in her previous pregnancy. We remove this participant before averaging the number of
measurements considering this high measurement rate as an outlier.

On average, the participants (excluding one with previous preeclampsia) measured
their blood pressure 0.74 times in a week during pregnancy and 0.29 times per week after
delivery. Ten participants did not perform any blood pressure measurement after delivery.
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Figure 7. Average mobile application usage (participants engagement in answering daily questions) during pregnancy and
postpartum of the 28 high-risk pregnant women.
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Figure 8. Weekly average number of measuring blood pressure of the 28 high-risk pregnant women during pregnancy
and postpartum.

To the best of our knowledge, the feasibility of daily self-report questionnaires using
a mobile application during pregnancy and postpartum has not been investigated. Our
results show 5.44 times/week of blood pressure measurement and mobile application
usage, which is similar to results in [20]. In consequence, the data collection using the
mobile application in daily usage is feasible during pregnancy and postpartum.

6.2. Robustness and Reliability of Measurement

Remote monitoring systems need robust and reliable measurements (i.e., data collec-
tion) to provide accurate and reliable decision/risk estimation. The PPG signals collected
from wristbands are highly affected by motion artifacts and environmental situations.
These noises can result in low-quality signals, which may lead to unreliable health risk
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decisions. Unfortunately, such low-quality PPG signals are highly probable in these long-
term health monitoring systems, as the users are engaging in various physical activities.
Therefore, it is essential to ensure an acceptable quality of PPG signals in such systems.

In our setup, the Gear sport smartwatch provides raw PPG signals with a maximum
sampling frequency of 20 Hz. The signals are processed to obtain the heart rate and HRV
parameters of the mothers. We customized our watch to perform reliable measurements by
configuring the frequency and duration of the data collection. It should be noted that, in
such long-term monitoring, there is a trade-off between the availability/reliability of the
measurements and the energy consumption of the data collectors.

6.2.1. Duration of PPG Signal Recording

As mentioned, the PPG signal is collected to obtain the heart rate and HRV parameters
of the participants. The duration of each signal record highly impacts the accuracy and
reliability of the heart rate and HRV parameters. An accurate heart rate is obtained using
a 60-s window of PPG signal. However, according to the literature, there are different
standards of measurement for the HRV parameters [75–77]:

• Twenty-four-hour recordings (referred as long-term HRV analysis) are used to derive
HRV parameters.

• Five-minute recordings (referred as short-term HRV analysis) are utilized to obtain
HRV parameters.

• Less-than-five-minute recordings (referred as ultra-short-term HRV analysis) are
exploited to extract some of the HRV parameters.

In an ideal situation, the 24-h recordings should be performed in the maternal mon-
itoring, reflecting the overall changes of the heart rate under non-specific conditions.
Unfortunately, the 24-h PPG signal collection is inapplicable in existing wearable devices
due to battery constraints. The PPG signal is acquired by emitting light (i.e., green light in
our device) to the skin surface and collecting the light reflection. Sensing energy consump-
tion, including the photoemitter (LED) and photodetector, considerably affects the watch’s
battery life (see more details in Section 6.3).

Therefore, we programmed the watch to collect PPG signal in a regular and consistent
manner, enabling the 5-min recordings throughout the monitoring. The watch was con-
figured to record the PPG signal for 12 min every second hour, including 2 min of sensor
calibration (i.e., unreliable data) and two 5-min recordings. In this setup, we selected two
consecutive 5-min recordings to remove low-quality PPG signals in each record, reducing
the impact of noise and motion artifacts on the HRV parameters to ensure the reliability of
the collected HRV parameters by collecting sufficient PPG signals for analyses.

6.2.2. Sampling Frequency of the PPG Signal

The sampling frequency of the PPG signal also influences the accuracy and reliabil-
ity of the heart rate and HRV values. Heart rate can be obtained by extracting cardiac
frequency (i.e., 0.5–3 Hz) from the PPG signal exploiting filter-based techniques. How-
ever, a higher sampling frequency is required to derive HRV parameters. The accuracy of
these parameters was investigated in the literature by comparing different PPG signals
(5–10,000 Hz sampling frequency) with an Electrocardiogram (ECG) signal (10,000 Hz sam-
pling frequency) as the golden standard [78]. It was shown that HRV parameters—related
to the stress level such as RMSSD, LF, HF and AVNN—necessitate PPG signal collection
with at least 20 Hz as the sampling frequency.

In our setup, we selected the sampling frequency of the PPG signals as 20 Hz to
guarantee an acceptable accuracy of heart rate and HRV parameters. Subsequently, we can
reliably obtain stress-related HRV parameters using this system.

6.3. Energy Consumption

Energy consumption is an important issue in a remote health monitoring system
consisting of devices with limited batteries. In such devices, battery-powered sensors
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collect and transmit the data continuously, consuming considerable energy. Particularly,
in long-term monitoring, the battery life of wearables (i.e., the time a device works before
its battery requires to be recharged) could significantly impact the system’s feasibility
and usability. There is a wide variety of energy efficiency methods in the literature for
addressing energy consumption in IoT-based systems [79–82].

One of the drawbacks of the PPG method (including a light source and a light sensor)
is its high energy consumption [26,83]. In our setup, the battery life of the smartwatch is
highly affected by: (1) the PPG collection duration (discussed in Section 6.2.1); (2) the PPG
sampling frequency; and (3) the time intervals between the PPG collection. We examined
the battery life of the smartwatch by collecting 12 min of PPG signals in different intervals.
In this regard, three smartwatches were utilized to record the signals. The watches were in
flight mode with no movement during the tests to reduce the usage bias. Figure 9 indicates
the average results for different intervals. In the case of PPG signal collection in the 15-min
interval, the battery lasted only 25 h. However, the battery life increased to 157 h in the
240-min intervals. In our case study, we selected 2-h intervals to guarantee 2–3-days of
battery life of the watch during the monitoring. It should be noted that the device usage
also reduces the battery life due to other watch’s functions, including Bluetooth connection
with the smartphone and the physical activity application. This battery life results in
feasible long-term monitoring and acceptable effort in everyday settings data collection.
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Figure 9. Battery life time of the watch for different intervals. Each interval contains 12 min of PPG
signal collection.

6.4. Practical Challenges

Various practical and technical challenges arise in the era of long-term remote health
monitoring. These challenges can be investigated from different perspectives, such as user
experience and integration of the system with newer technologies.

One major challenge is keeping the users motivated in the long-term. Several studies
show that social interaction, personalized monitoring, usability in daily life settings, and
the design of the long-term intervention enhance user experience and keep the participants
motivated to continue the monitoring [24,84,85].

For usability, the wearable devices in such systems should require reasonable effort to
use and be comfortable in everyday life settings [24]. Moreover, the system should have
satisfactory monitoring functions and interfaces. For this purpose, we chose a wearable
device that can be easily used in indoor and outdoor activities. The monitoring services
offered by the presented system are known to be effective in improving pregnant women’s
well-being (see Section 3). Our monitoring applications also require minimum interaction
with the participants. However, the participants need to upload the data manually. We
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provide technical supports to the participant in the case of technical problems. Moreover,
we notified the participants if they had forgotten to upload the data for two weeks. In
future work, data uploading will be automatic and real-time to improve user experience.

Another effort required by the user is charging the device. We discuss this in Section 6.3,
optimizing user effort and data collection. Frequent charging of the device also increases the
missing data and affects the reliability of the system.

Moreover, in the long-term, the technology evolves, and the system needs to be
integrated with newer technologies. We designed and developed our software programs in
the server and the application (client) sides using the best practice software development
methodologies and frameworks, such as RESTful API, Flask, Angular 2 and MongoDB.
This approach enables us to integrate our system with newer technologies and devices
easily. Moreover, the wearable device used in this system runs Tizen OS, which supports
backward compatibility. Therefore, our developed applications for the smartwatch could
work adequately regardless of minor and major updates of the OS. We also developed
an application for restarting all of our monitoring applications on the smartwatch. The
participants could use the app whenever they have some troubles using the watch or
uploading the data. In future work, we will integrate Validic API in our system to easily
collect data from various wearable and monitoring devices [86].

6.5. Integration to The Current Healthcare System

Current maternity care in Finland is based on appointed meetings and physical
measurements by the healthcare professionals. The remote monitoring system described
in this paper could bring a new element to traditional maternity care. Monitoring would
enable pregnant women to control the measurements and, by implication, possibly engage
the women better in their self-care [87,88]. Moreover, this system would also change the
work of maternity care professionals; thus, tight collaboration with them will be needed if
establishing new elements into their work. Based on the previous study, maternity care
professionals, as well as pregnant women, are interested in using remote monitoring, at
least with certain groups of women. The safety of the pregnant woman and her unborn
infant was considered the most serious challenge in remote monitoring.

Importantly, the new system should be assimilated as part of the previous system to
enhance the implementation [39]. Globally, the WHO recommends using digital technolo-
gies to enhance the coverage and quality of health services [89]. In developing countries,
digital technology also plays a significant role in supporting services for maternal and child
health. Thus, the IoT systems could enable countries of all kinds to develop their care [90].

Our implemented IoT-based system was limited to the health monitoring of pregnant
women with no feedback to the mothers. For future work, we plan to perform risk predic-
tion and detect various health problems during pregnancy and postpartum. Moreover, we
need to evaluate this system for personalized intervention to reduce the risk or prevent
adverse health problems in pregnancy. We also considered the interoperability of our
collected data with the clinical healthcare system. Our applications used RESTful API,
presenting data in JSON format. JSON files can be easily converted to other types of data.
In future work, we will consider providing data in HL7 format [91] for integration with the
clinical system.

7. Conclusions

Maternal health monitoring is important to ensure the health and well-being of the
mother and her child, as many health complications occur during pregnancy with a
lifetime effect on their health. In the literature, some studies exploited IoT-based systems
for maternal monitoring, although they were limited to specific health problems, short-
term data collection or self-report questionnaires. In this study, we first presented an
IoT-based maternal monitoring system, providing services such as physical activity, sleep
and stress monitoring throughout pregnancy and postpartum. Then, we implemented and
evaluated the presented system with a real human subject study on high-risk pregnant
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women. This system utilized various data collectors, including a cross-platform mobile
application and a smartwatch, to collect bio-signals and self-report data. The collected data
were stored and analyzed in the cloud server. We discussed the feasibility of the system,
considering the usage of the smartwatch and the mobile application. Our results show
that participants, on average, used the smartwatch 17.01 ± 4.20 h/day during pregnancy
and 13.72 ± 5.71 h/day in postpartum. The average application usage for answering daily
questions was 67.5% of the days in pregnancy and 57.0% of the days in postpartum. These
results show the feasibility of the implemented system in terms of interacting with the
system (mobile application usage and smartwatch wearing time by participants). We also
evaluated the system in terms of the energy efficiency of the smartwatch and the reliability
of the collected data. Our findings show acceptable energy consumption of the watch in
long-term monitoring as well as a reliable PPG-based analysis. Moreover, we investigated
the integration of the presented system with the current healthcare system. As future
work, we will address the energy efficiency and reliability by proposing an adaptive data
collection technique leveraging the participant’s activity, health status and stress level.
Moreover, we will consider adding other services to the monitoring system such as diet
and preeclampsia monitoring and providing feedback to the users. We will also provide
APIs enabling adding several wearable devices and interoperability with clinical healthcare
systems. In addition, future work should consider evaluating attributes (e.g., latency and
availability) related to the real-time services or intervention.
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