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Sampling Assumptions and the Size Principle in Property Induction 
 

Philip M. Fernbach (philip_fernbach@brown.edu) 
Brown University Department of Cognitive and Linguistic Sciences, Box 1978 

Providence, RI 02912 USA 
 
 

Abstract 

The ‘size principle’ emphasized in recent Bayesian models of 
inductive generalization (Kemp & Tenenbaum, 2003; Sanjana 
& Tenenbaum, 2003; Tenenbaum & Griffiths, 2001) is tested 
in the domain of property induction. As predicted by the 
model, the size principle is obeyed more frequently when a 
strong sampling assumption is explicit than when sampling is 
weak or unspecified, but it is not followed consistently. This 
implies that, although people are sometimes sensitive to 
sampling assumptions as specified by the Bayesian 
framework, models based on a strong sampling assumption 
may not provide general accounts of property induction. 

Introduction 
From the time of their introduction in the 16th century until 
general acceptance in the 18th century, tomatoes were not 
widely eaten in Mediterranean Europe. Due to their 
morphological resemblance to the nightshade plant, they 
were assumed poisonous and avoided. This is a striking — 
if unsuccessful — example of a common strategy that 
human beings utilize to make sense of the world: to induce 
possession of a property by one category from another. 
Human beings perform these inductions naturally, often 
from few examples and even between categories that are 
prima facie dissimilar. Understanding the nature of this type 
of inference is a major project of cognitive science.  
 Empirical studies of property induction have been 
conducted since the mid 1970s using argument strength 
ratings for premise-conclusion pairs and blank predicates.  
Figure 1 provides an example.  
 
 Salmon have sesamoid bones 
 Lions have sesamoid bones 

Therefore Polar Bears have sesamoid bones 
 
Figure 1:  Property induction argument 
 
 A host of phenomena have been observed concerning how 
people evaluate the strength of such arguments (reviewed by 
Sloman & Lagnado, 2005).  Several models have been 
proposed to account for the phenomena. The models fall 
into two camps and as such are revealing of a deeper 
methodological divergence in cognitive science. On the one 
hand are models directly motivated by empirical work and 
aimed at the level of algorithm (Marr, 1982). The two best 
known were proposed in the 1990s (Osherson et al., 1990; 
Sloman, 1993) and rely on notions of similarity and feature 
matching. These models tend to be good explanatory 

accounts of the phenomena that have been studied but their 
scope is limited.  
 On the other hand are models which come from the 
tradition of rational analysis (Anderson, 1990). These 
models seek to identify the computational problem the 
system is trying to solve and propose an optimal solution. A 
common theme of the models of this type has been that they 
utilize the tools of Bayesian statistics. Heit (1998) was the 
first to apply the Bayesian framework to property induction, 
providing an account of several of the empirical phenomena. 
More recently a family of models has emerged that has 
advanced the project by introducing a principled likelihood 
calculation based on sampling assumptions, proposing a 
general method for generating a hypothesis space and 
attempting to ground the prior distribution in domain 
specific theories (Kemp & Tenenbaum, 2003; Tenenbaum 
& Griffiths, 2001; Sanjana & Tenenbaum, 2003). I refer to 
this family of models collectively as the Sampling Sensitive 
Bayesian (SSB) model.  
 In this paper I evaluate the approaches by testing a key 
prediction of the SSB model. The SSB model relies on a 
likelihood calculation that is dependent on assumptions 
about how the data are sampled. This implies that argument 
strength judgments should be sensitive to variations in 
sampling procedures. Specifically, the SSB model generally 
assumes that human property induction is best described 
using strong sampling (Kemp & Tenenbaum, 2003; Sanjana 
& Tenenbaum, 2000) an assumption that examples are 
drawn at random from the set of objects to which the 
predicate applies. This assumption leads to a ‘size 
principle,’ a preference for smaller hypotheses over larger 
ones given data that is consistent with both. If the size 
principle holds, then given more examples within a range, 
participants should be less willing to generalize outside of 
that range, a tendency that should manifest itself as an 
inductive non-monotonicity whereby adding similar 
premises decreases property induction to a dissimilar 
conclusion. This phenomenon is not predicted by either 
Osherson et al’s (1990) Similarity/Coverage (SC) model or 
Sloman’s (1993) Feature-Based (FB) model as neither of 
these models is sensitive to variations in sampling 
procedures.  
 To identify the source of this divergence I first present the 
similarity and feature-based models. I then present the SSB 
model and show how the size principle emerges from the 
model and why it does not apply to other models. Lastly I 
present an argument preference experiment designed at 
testing for the size principle and discuss the implications of 
the results.  
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Similarity and Feature-Based Models 

Similarity/Coverage The SC model is based on overall 
similarity judgments and assumes static category structure. 
Argument strength is assessed based on three factors. The 
first is the maximum similarity between the set of premise 
objects and the conclusion. The second is the similarity of 
the premise set to all of the members of the immediately 
super-ordinate category that contains both the premise and 
the conclusion, referred to as coverage. The third is a free 
parameter denoting the relative weight of similarity and 
coverage for an individual subject. Thus, an argument is 
considered strong to the extent that the premise objects are 
similar to the conclusion and the premise objects cover the 
super-ordinate category. The model accounts for a wide 
variety of empirical phenomena and provides a strong match 
to human data (Osherson et al, 1990).  

Feature-Based The FB model (Sloman, 1993) is expressed 
as an artificial neural network where input units represent 
values over a set of features and the output unit represents 
the presence or absence of some property. The activation of 
the output unit is determined by two things: the feature 
overlap of the premise and conclusion and the number (in 
the binary case) or the ‘magnitude’ (more generally) of 
salient features possessed by the conclusion. Thus an 
argument is considered strong if there is a great deal of 
overlap of the features of the premise and conclusion and 
the conclusion has few additional features. The FB model is 
not based on a notion of similarity. To the extent that 
similarity is based on feature overlap the model’s feature 
matching rule may approximate similarity, but the basis for 
generalization is featural, not similarity based. This is an 
important distinction from the SC model which gives 
computational primacy to the similarity calculation. 
Nonetheless, the empirical predictions of the FB model are 
similar to the SC model. One important exception is that the 
FB model never predicts non-monotonicity, that adding 
premises decreases argument strength, despite experimental 
evidence for it.   

Sampling Sensitive Bayesian Model 
The SSB model recasts the computational problem in 
statistical terms: Given data in the form of one or more 
premise objects that are examples of some concept, what is 
the probability that the conclusion object also belongs to 
that concept? The concept corresponds to the full set of 
objects to which the predicate applies (e.g. animals that 
have sesamoid bones).  
 The solution is offered by Bayes’ rule which stipulates 
how to update hypotheses in the light of data. The first step 
is to identify a hypothesis space, a set of groupings of 
objects which could conceivably correspond to the concept. 
A prior distribution is assigned to the hypotheses which 
denotes how likely each hypothesis is a priori. Next, using 
Bayes’ rule, the probability distribution is updated to take 
into account the data. Finally the status of the conclusion 
object with respect to the concept is calculated by adding up 

the posterior probabilities of the hypotheses to which the 
conclusion belongs.  Thus, an argument is considered strong 
to the extent that the conclusion is a member of hypotheses 
that have high posterior probability of corresponding to the 
concept. Note that unlike the SC and FB models, 
generalization is not based on comparing the premise to the 
conclusion directly, but rather is mediated by the concept 
corresponding to the true set of objects to which the 
predicate applies. 

Hypothesis Space and Prior The goal in specifying a 
hypothesis space is to identify those groupings of objects 
that humans would consider candidates for correspondence 
with the concept. This is a difficult task since objects are 
grouped differently based on domain. Sanjana and 
Tenenbaum (2003) propose a similarity-based hierarchical 
clustering approach where clusters and unions of clusters 
supply the hypothesis space. This is a reasonable and 
computationally tractable solution but it is imperfect since 
overall similarity ratings may often misrepresent the way 
objects are grouped depending on the predicate. For 
instance, a bat might be considered more similar to a bird 
overall, but biologically more similar to a whale. The source 
of the prior distribution is also a difficult issue as prior 
knowledge varies across domains and individuals. Sanjana 
and Tenenbaum (2003) posit a prior distribution motivated 
by rational principles such as preference for simplicity and 
recent work has attempted to ground the prior in domain-
specific theories (Kemp & Tenenbaum, 2003). Resolving 
these difficulties remains a major task for proponents of the 
Bayesian framework. 

Calculating the Posterior Distribution Bayes’ rule 
specifies that the posterior distribution over hypotheses is 
proportional to the prior distribution multiplied by the 
likelihood of the data given each hypothesis  
 
          ( ) ( ) ( )hphdpdhp ∝                               (1) 

 
where p (h│d) is the posterior probability that a hypothesis 
(h) corresponds to the set of objects that belong to the 
concept given some data (d), p(h) is the prior probability 
assigned to the hypothesis and p (d│h) is the likelihood of 
observing the data under that hypothesis. 
 Thus, given a hypothesis space and a prior distribution, all 
that is needed to calculate the posterior distribution is the 
likelihood, the probability distribution over hypotheses of 
observing the data given that each hypothesis is true and 
therefore corresponds to the concept. Calculation of the 
likelihood depends on how the data are sampled. Two 
sampling procedures are considered, weak and strong. Weak 
sampling implies that an example is sampled independently 
of the concept and then given a label specifying whether or 
not it belongs to the correspondent set of objects. Given 
weak sampling and data in the form of positive examples of 
the concept, the likelihood of observing the data given a 
hypothesis is 1 if the example belongs to the hypothesis and 
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0 otherwise and as such is a binary indication of whether the 
example is consistent with the hypothesis. 
 

                       
⎩
⎨
⎧ ∈

=
otherwise0
if1

)(
hd

hdp                             (2) 

 
 To clarify why this is so, take the scenario of a scientist 
trying to identify the group of animals that have property 
‘X’. To simplify the example suppose that there are twenty 
types of animals in the world, and one example of each 
type. All of the animals are vertebrates, but just five are 
mammals. Also assume that the scientist’s hypothesis space 
consists of just two hypotheses, that all vertebrates have 
property ‘X’, and that just mammals have it. To test these 
hypotheses, he chooses an animal from the set of twenty at 
random and tests it for the property. The animal that he 
selects happens to be a lion and he finds that it does indeed 
have property ‘X’. This is an instance of weak sampling. 
The data consists of an example (lion) and a label (‘has 
property ‘X’’) and the probability of the data is irrespective 
of the size of the hypothesis. If the larger hypothesis is true 
and all vertebrates have property ‘X’, the probability that 
the lion would be observed to have property ‘X’ is 1. 
Likewise, since lions are mammals, if the smaller 
hypothesis is correct, the probability that the lion would be 
observed to have property ‘X’ is also 1. So given weak 
sampling and data that is consistent with both hypotheses, 
the likelihood does not favor one over the other. 
 Strong sampling implies that the example is sampled at 
random explicitly from the set of objects to which the 
predicate applies. This makes the data more informative 
about the nature of that set since the probability of 
observing that example is tied to the size of the hypothesis. 
Specifically, the likelihood is the inverse of the size of the 
hypothesis if the data is consistent with the hypothesis and 0 
otherwise. In the case of more than one example drawn 
independently, the likelihood becomes the inverse of the 
size of the hypothesis raised to the number of examples  
 

                       
⎪⎩

⎪
⎨
⎧ ∈

=
otherwise0

if1
)(

hd
hhdp n                         (3) 

 
where │h│ is the number of objects in the hypothesis and n 
is the number of independently drawn examples. .  
 As an example of strong sampling imagine a slightly 
different scenario. The scientist is assessing the same two 
hypotheses but this time the animals have already been 
tested for the property and those possessing it placed 
together in a room. The scientist is allowed to randomly 
observe one animal from the room at a time. The first 
animal that he observes happens to be a lion. This is an 
example of strong sampling. The example is sampled at 
random from the set of objects that possess the property. 
Unlike under weak sampling, the probability of the data is 
not the same for the two hypotheses. Rather, if the smaller 

hypothesis were true he would have had a one out of five 
chance of observing a lion, whereas if the larger were true, 
only a one out of twenty chance.  

Size Principle Given the strong sampling assumption the 
likelihood of a hypothesis decreases exponentially in 
proportion to its size as new examples are encountered. As 
posterior probability is proportional to likelihood, this 
means that smaller hypotheses are favored over larger ones 
given data that are consistent with both (assuming that the 
larger hypothesis is not strongly favored a priori). 
Intuitively, this reflects that given random sampling from 
the concept, seeing a number of examples consistent with a 
smaller hypothesis would be a coincidence if the larger 
hypothesis were true and that the psychological plausibility 
of this coincidence decreases exponentially as more 
examples are added that are consistent with the smaller 
hypothesis.  
 To see how this bears on induction we return to the strong 
sampling scenario in which there are twenty animals, five of 
which are mammals. If the scientist observes several 
examples and each is a mammal, Bayes’ rule indicates that 
he should give high posterior probability to the smaller 
hypothesis relative to the larger one. The probability of 
inducing a property to a conclusion is the sum of the 
posterior probabilities of the hypotheses of which the 
conclusion is a member. Since the non-mammals are only 
members of one hypothesis and it has a low posterior 
probability, the scientist should be reluctant to generalize 
the property to the non-mammals. This tendency holds for 
scenarios with more realistic hypothesis spaces and sets of 
objects and can be stated more generally as an 
unwillingness to induce a property to a conclusion outside 
of a range given examples within that range.  
 In property induction tasks the size principle should 
manifest itself as a non-monotonicity whereby adding 
similar examples decreases the strength of an argument 
whose conclusion is dissimilar. This phenomenon is not 
predicted by either the SC or FB models. The SC model 
predicts non-monotonicity only in the case where adding a 
premise changes the super-ordinate category which is not 
the case for premises within a range and a conclusion 
outside of that range. The FB model never predicts non-
monotonicity because adding premises can neither decrease 
feature overlap nor decrease the magnitude of the 
conclusion. More generally, the Bayesian model is sensitive 
to sampling because the sampling procedure determines 
what can be inferred about the relationship between the 
hypothesis space and the concept. Since the FB and SC 
models do not rely on the notion of a hypothesis space nor 
of a concept, phenomena that stem from variations in 
sampling assumptions cannot be accommodated by the 
theories.    

Bayesian Model Claims It is helpful to view the assertion 
of a size principle in the SSB model as amounting to two 
related claims. The first claim is that judgments of argument 
strength should be sensitive to sampling procedure. This 
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claim is essential to the Bayesian model as it does not rest 
on a specific modeling assumption but on the general 
framework of the model.  

The second claim is that a strong sampling assumption is 
appropriate for describing the property induction task at 
issue. The status of this claim is controversial. Heit (2001) 
maintains that a non-monotonicity associated with adding 
premises is inconsistent with many of the findings in the 
literature; however, there is some evidence in favor of this 
phenomenon. Sanjana and Tenenbaum (2003) report a non-
monotonic effect consistent with the size principle in a 
property induction experiment, but the effect is small and 
their experiment departs from the standard property 
induction paradigm in several ways. Medin et al. (2003) 
also predict non-monotonicity with addition of similar 
premises but without relying explicitly on sampling. Rather, 
they hypothesize that participants assume that the premises 
are chosen so as to be informative of the category to which 
the predicate pertains. Adding premises that share a property 
will increase the association between that property and the 
predicate and weaken an argument if the conclusion does 
not possess the property. This is similar to the notion of 
strong sampling in that it implies that the experimenter 
purposefully chose the premises from the subset of objects 
to which the predicate applies. Medin et al. do report some 
non-monotonicities from adding premises, but the 
phenomenon does not hold across all their test items. 

Experiment 
To evaluate the two claims of the Bayesian model I 
conducted an experiment aimed at identifying if and when 
the size principle is manifested in property induction. I 
asked participants to choose between one-premise and three-
premise arguments given different cover stories which 
implied different sampling procedures.  
 The first claim was tested by contrasting judgments of 
groups given either weak sampling or strong sampling 
instructions. According to the SC and FB models, changing 
sampling assumptions should not alter judgments of 
argument strength. The SSB model, however, is sensitive to 
sampling and predicts non-monotonicities with strong 
sampling but not with weak sampling. To evaluate the 
second claim, the third group was given instructions that 
were vague about the sampling procedure as in the 
conventional task, enabling insight into people’s default 
assumption. 

Method 

Participants Participants were 41 Brown University 
graduate and undergraduate student volunteers assigned 
randomly to three groups, 14 to the ambiguous condition, 13 
to weak sampling, and 14 to strong sampling.  

Procedure All participants were given the same 10 
scenarios to judge. Four were test items and six were 
dummy scenarios created randomly to eliminate any 
demand characteristic. As in Figure 2, each scenario 

consisted of two arguments, labeled ‘A’ and ‘B’, and 
participants had to choose which was stronger on a scale of 
one to seven. The arguments consisted of premises that 
attributed some blank biological property to one, two or 
three animals and a conclusion attributing that property to 
raccoons. For the test items one argument contained three 
premises which were all animals very similar to one another 
and the other contained just one of those animals.  
 
A.  B. 

 
Lions secrete uric acid 
crystals   

House Cats secrete uric 
acid crystals 

    
Lions secrete uric acid 
crystals 

    
Tigers secrete uric acid 
crystals 

 
Raccoons secrete uric 
acid crystals  

 
Raccoons secrete uric 
acid crystals 

1 2 3 4 
 
5 6 7 

Strongly Prefer A  
 

Strongly Prefer B 
 
Figure 2:  Example argument strength scenario 

 Instructions were varied across groups to reflect different 
sampling assumptions. One group was given instructions 
that implied strong sampling, one weak sampling and one 
group was given ambiguous instructions. For the ambiguous 
group the instructions replicated the ones used in Osherson 
et al’s (1990) original study and asked participants to rate 
which argument was stronger assuming that the statements 
above the lines were facts and those below the lines 
conclusions that follow from those facts.  
 For both strong sampling and weak sampling groups, a 
cover story was used to explain how the facts were 
generated. The story involved two students each writing a 
paper about raccoons. Premises described facts the the 
students had uncovered in their research and the conclusion 
was the statement about raccoons that they were going to 
put into the paper. Participants were asked to rate which 
student was more justified in putting the conclusion into 
their paper.  
 The difference between the instructions for the strong 
sampling and weak sampling groups concerned the way the 
students conducted their research. In the strong sampling 
condition, the research was described as follows: “Albert 
and Bob both used the same book for the research, a book of 
biological facts. Each section of the book covers some 
property (e.g. animals with Sesamoid bones) and each page 
of the section contains a picture of an animal with that 
property. Albert and Bob got their facts by randomly 
flipping to pages in the appropriate section. So for example 
if Albert says that Lions have Sesamoid bones and Wolves 
have Sesamoid bones, he knows that because he looked in 
the section on Sesamoid bones and then flipped at random 
to a page and found a picture of a lion and then flipped at 
random to another page and found a wolf.” In the weak 
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sampling condition, the research was described as follows: 
“Albert and Bob got their facts by choosing an animal and 
finding out if that animal had some property (e.g. Sesamoid 
bones) and then choosing another animal and checking for 
the property and so on. The number of facts in each scenario 
represents how many animals they looked at in that 
scenario. So for example, if Albert says that Lions have 
Sesamoid bones and Wolves have Sesamoid bones, he 
knows that because he first looked at lions and found they 
had Sesamoid bones, and then chose to look at Wolves and 
found that they too had Sesamoid bones. Please note that in 
a particular scenario the animals listed are the only ones that 
were looked at.” 

Model Predictions The SC and FB models make no 
assumptions about sampling so make the same predictions 
regardless of instructions. The SC model predicts that three-
premise arguments (option A in Figure 2) should be judged 
stronger than the one-premise arguments (option B in Figure 
2) because the premises were chosen so that the three-
premise arguments had higher similarity and coverage than 
the one-premise arguments. In the case of the FB model, the 
three-premise arguments should be judged stronger or 
approximately the same. Adding premises so close within a 
range may not increase feature overlap measurably, but the 
one-premise arguments should never be favored. The SSB 
model predicts that one-premise arguments should be 
favored in the case of strong sampling due to the size 
principle. For weak sampling, three-premise arguments 
should be slightly favored because certain hypotheses, such 
as the one-premise animal alone (e.g. just lions secrete uric 
acid crystals), have been eliminated increasing the posterior 
distribution of hypotheses that include the conclusion. There 
is no prediction inherent in the Bayesian framework for the 
ambiguous condition as the model can be accommodated to 
weak or strong sampling depending on how the instructions 
are interpreted.  Kemp & Tenenbaum (2003) and Sanjana & 
Tenenbaum (2003) assume strong sampling, but the SSB 
model does not necessitate that assumption. 

Table 1: Prediction whether three-premise arguments or 
one-premise arguments should be judged stronger for each 
model across the three conditions.   

 
 Ambiguous Strong 

Sampling 
Weak 

Sampling 
Similarity/
Coverage 

3-Premise 3-Premise 3-Premise 

Feature-
Based 

3-Premise 
or Equal 

3-Premise 
or Equal 

3-Premise 
or Equal 

Bayesian Unspecified 1-Premise 3-Premise 

Results  
As predicted by the Bayesian Model, variation of sampling 
assumptions yielded a statistically significant treatment 
effect (one way ANOVA; F=5.97, p<.01). The direction of 
the effect was also in line with the Bayesian model. The 
strong sampling group displayed a greater preference for 

one-premise arguments than did the weak sampling or 
ambiguous groups and this result was significant (Figure 3). 
Pairwise t-tests indicated a statistically significant difference 
between the strong sampling group and the weak sampling 
groups (t=2.68, p<.01), and between the strong sampling 
and ambiguous groups (t=3.18, p<.01), but no difference 
between the ambiguous and weak sampling groups.  

4.1
4.94.8

1
2
3
4
5
6
7

Strong
Sampling

Weak
Sampling

Ambiguous

Figure 3:  Average preference for three-premise arguments 
on a 1-7 scale. A score of 7 implies that the three-premise 
argument was strongly preferred; a score of 1 implies that 
the one-premise argument was strongly preferred and a 
score of 4 implies that the one-premise and three-premise 
arguments were judged equally strong. 

 Though the strong sampling group showed a greater 
preference for the one-premise arguments than the weak 
sampling or ambiguous groups, all groups showed an 
overall preference for three-premise arguments. In other 
words, most participants regardless of group failed to 
display the size principle. Participants in the strong 
sampling group preferred the one-premise arguments 30% 
of the time versus 43% for the three-premise arguments. 
Weak sampling and ambiguous groups behaved similarly to 
one another preferring the three-premise arguments 
approximately 73% and 66% of the time respectively 
(Figure 4).  
 

13.5% 10.7%

26.8%

13.5% 23.2%

42.9%
73.1% 66.1%

30.4%
0%

25%

50%

75%

100%

Strong
Sampling

Weak
Sampling

Ambiguous

One-Premise Preferred Judged Equal
Three-Premise Preferred

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Percentage of scenarios in which three-premise 
arguments were judged stronger, one-premise arguments 
were judged stronger and arguments were judged equally 
strong across all three conditions.  
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Discussion 
The majority of participants across all conditions displayed 
a monotonic tendency given additional examples within a 
range and a conclusion outside of that range. The exception 
was that participants gave a significant percentage of non-
monotonic responses in the strong sampling condition. 
These results indicate that both types of models, the 
similarity and feature-based and the Bayesian, capture some 
aspect of property induction since sensitivity to sampling is 
predicted only by the Bayesian model, whereas a general 
monotonic tendency fits better with the SC and FB models. 
Both Heit (1998) and Kemp and Tenenbaum (2003) note an 
empirical correspondence between the Bayesian model and 
the similarity and feature-based models. They suggest that 
the two types of models may be best viewed as 
complementary rather than competitive. The SC model, for 
example, may be a heuristic-based approximation of the 
SSB model as implemented in human beings while the SSB 
model provides a computational level explanation of why 
the SC model should work. These results highlight an 
empirical lack of correspondence and therefore imply a 
somewhat different account.  
 There is a tension between positing a computational level 
model and making empirical predictions. If the algorithm 
that the system uses only approximates the optimal 
computation then it does not follow that phenomena 
predicted by the computational level model should be 
observed. Of course, the SSB model is only testable to the 
degree that it is committed to specific predictions.  The SSB 
model sets up the computation as a choice between 
hypotheses that is sensitive to sampling. While this 
characterization does provide new insights into the 
inductive process, people do not fully conform to it. Dual 
process theory (Evans & Over, 1996; Sloman, 1996; 
Stanovich & West, 2000) provides a possible solution. The 
size principle non-monotonicity may be attributable to an 
effortful rule-based reasoning process, whereas the more 
common monotonic response is a result of the intuitive 
process. According to this account, The SC and FB models, 
or some other relatively simple heuristic, represent an 
intuitive associative process that occurs effortlessly and 
sometimes leads to counter-normative results. The SSB 
model, in contrast, provides the computational level account 
of how the rule-based system goes about integrating 
sampling information and other considerations into an 
evaluation of candidate hypotheses.  This would explain 
both why some people were sensitive to the sampling 
manipulation and why most people were not on the 
assumption that only a minority put in the required effort 
and had the necessary skills to solve the problem. 
 The second claim evaluated in this paper, that strong 
sampling is appropriate for describing human property 
induction, has little support in these data. Not only did few 
people follow the size principle given explicitly strong 
sampling, but ambiguous instructions almost invariably 
resulted in monotonicity.  It may well be that strong 
sampling is the default assumption for other inductive tasks, 

but for the types of stimuli used in this experiment, adding 
premises within a range did not generally weaken property 
induction to a conclusion outside of that range.  
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