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Abstract

Purpose: To present a theoretical framework that rigorously defines and analyzes key concepts and quan-

tities for velocity selective arterial spin labeling (VSASL).

Theory and Methods: An expression for the VSASL arterial delivery function is derived based on (1)

labeling and saturation profiles as a function of velocity and (2) physiologically plausible approximations of

changes in acceleration and velocity across the vascular system. The dependence of labeling efficiency on

the amplitude and effective bolus width of the arterial delivery function is defined. Factors that affect the

effective bolus width are examined, and timing requirements to minimize quantitation errors are derived.

Results: The model predicts that a flow-dependent negative bias in the effective bolus width can occur when

velocity selective inversion (VSI) is used for the labeling module and velocity selective saturation (VSS) is

used for the vascular crushing module. The bias can be minimized by choosing a nominal labeling cutoff

velocity that is lower than the nominal cutoff velocity of the vascular crushing module.

Conclusion: The elements of the model are specified in a general fashion such that future advances can be

readily integrated. The model can facilitate further efforts to understand and characterize the performance

of VSASL and provide critical theoretical insights that can be used to design future experiments and develop

novel VSASL approaches.

Keywords: arterial spin labeling, velocity selective, acceleration
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1 Introduction

Velocity-selective arterial spin labeling (VSASL) labels blood based on its velocity. While the key features of

VSASL have been described in prior work [1, 2, 3], a detailed mathematical model describing the interaction

between the labeling process and the velocity profile of the vasculature has been lacking. Furthermore,

although there have been qualitative descriptions of the VSASL arterial delivery function [1], a clearly defined

quantitative description has not been previously presented. Without a suitable analytical framework, it has

been difficult for the field to resolve certain open issues, such as the lack of consensus regarding a “unified

generic definition” for cutoff velocity [3]. To address this gap, we present a theoretical framework that

rigorously defines and analyzes key concepts and quantities that have been previously been addressed in

a largely qualitative fashion. We focus on single module VSASL, which is currently the most widely used

implementation of VSASL [3]. A preliminary version of this work was presented in [4].

As the Theory section is rather involved, we start with a guide to the theoretical subsections. After

reviewing the basic structure and timing of a typical VSASL scan, we introduce passband and saturation

functions in Section 2.1 as representations of the labeling and vascular crushing operations, respectively. We

first consider the matched case where these functions are implemented with the same pulse sequence module,

such as in the initial saturation-based implementation of VSASL [1]. In Section 2.2 we go on to consider

the mismatched case where the functions are implemented with different pulse sequence modules, such as

in recent inversion-based implementations [2], and introduce the notion of an effective saturation function

– this Section could be skimmed on an initial reading. We introduce the concept of a boundary velocity in

Section 2.3 and build upon it to define the VSASL arterial delivery function in Section 2.4. Adjustments to

the definition that take into account arterial blood volume terms are addressed in Section 2.5, but can be

passed over on an initial read. In Section 2.6 we incorporate the effects of longitudinal relaxation to derive

a general expression for the VSASL magnetization difference as a function of time – this section can serve

as a reasonable point to pause and consolidate a basic understanding of the model.

In Sections 2.7 through 2.10, we define and examine quantities that are important for assessing systematic

errors in cerebral blood flow (CBF) estimates obtained with VSASL. These include: (i) effective bolus width,

(ii) cumulative time integral, (iii) transit delay, and (iv) labeling efficiency. Conditions to achieve the desired

effective bolus width are presented in Section 2.11, followed by an examination of bolus width errors due

to transit delays and module mismatch in Sections 2.12 and 2.13, respectively. Finally, in Sections 2.14

and 2.15, we introduce adaptations to the model to include spatial variations in transit delays, clarify the

contributions of arterial blood volume components, and further refine the conditions required for minimizing

bolus width errors. Details of the Bloch simulations and an additional assessment of the mismatch error are
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then briefly described in the Methods and Results sections, and areas for future work are addressed in the

Discussion.

2 Theory

We begin by considering a global model in which all functions depend solely on velocity with no explicit

dependence on spatial location. Because the key distinguishing feature of VSASL is that the labeling is

designed to be largely independent of spatial location, this serves as a natural starting point. We then build

upon the insight gained from the global model to consider a local model that incorporates the dependence of

velocity on voxel location and size. Expressions are largely derived and presented without relaxation effects,

as these can be readily incorporated at a later stage, as shown in Section 2.6. A glossary of key functions and

variables is provided in Table 1. Detailed derivations and supplementary material are provided in Supporting

Information (SI).

We adopt the naming conventions of [3], where the bolus duration τ denotes the time between the

labeling/control module (LCM) and the vascular crushing module (VCM), TI (inflow time) denotes the time

between the labeling module and the image acquisition module, and PLD denotes the post-labeling delay

between the VCM and the image acquisition module. In the labeling condition, the LCM implements either

velocity selective saturation (VSS) or inversion (VSI) with module widths of TVSS and TVSI, respectively.

The VCM typically implements VSS. To simplify the presentation we will assume that both the LCM and

VCM act instantaneously such that TVSS = TVSI = 0, and TI = τ +TVSS + PLD = τ + PLD.

For the global model, we denote Q0 as the overall blood flow in units of ml/s entering and exiting the

cerebrovascular system. The cross-sectional mean blood flow velocity v̄ varies along the vascular system,

decelerating on the arterial side and accelerating on the venous side. To simplify the notation, we will use

the symbol v without a bar to denote mean velocity, reserving the v̄ notation to instances where its use

provides additional clarity to a derivation. Due to conservation of mass, the overall blood flow at any point

in the vascular tree is independent of the mean velocity, i.e. Q(v) = Q0.

2.1 Passband and saturation functions

We model the creation of VSASL magnetization difference at time t = 0 with a unit-less passband function

p(v) = (−1)Z (c(v)− l(v)) (1)
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where c(v) and l(v) model the normalized actions as a function of velocity v of the control and labeling

modules, respectively, and Z = 0 or 1 for functions l(v) that aim to perturb spins (saturation or inversion)

at velocities above or below, respectively, a specified cutoff velocity [3]. The labeling function l(v) is either

a labeling saturation function ls(v) or an inversion function li(v) for VSS and VSI, respectively. The VCM

is applied at time t = τ , and its effects on magnetization are modeled with a saturation function s(v).

As discussed below, VSASL labeling efficiency depends on both the amplitudes and shapes of the passband

and saturation functions. It is thus useful to express the passband function as the product

p(v) = Pa · pref(v) (2)

of an amplitude term Pa that represents the steady state value of the passband function and a reference

passband function pref(v) that starts at p(0) = 0 and approaches a value of 1.0 for velocities above a labeling

cutoff velocity vl. The amplitude term is bounded above by its ideal value Pa ≤ Pa⋆, where Pa⋆ denotes the

amplitude of an ideal passband function and is equal to 1.0 and 2.0 for VSS and VSI, respectively. Similarly,

the saturation function can be written as the product

s(v) = S0 · sref(v) (3)

of an amplitude term S0 = s(0) and a reference saturation function sref(v) that starts at sref(0) = 1.0 and

approaches zero for velocities above a VCM cutoff velocity vc. The amplitude term is bounded above by

its ideal value S0 ≤ S0⋆, where S0⋆ = 1.0 for ideal VCM. A commonly implemented reference saturation

function is sref(v) = sinc(v/vc) [1].

For most VSS implementations, the labeling and VCM saturation functions are implemented with iden-

tical pulse sequence modules, so that ls(v) = s(v) = S0 · sref(v)). In addition, factors such as T2 relaxation

that reduce the amplitude of the saturation function also reduce the amplitude of the control response, so

that c(v) = S0 [5]. The resulting passband function is then p(v) = S0 · (1 − sref(v)) = Pa · pref(v) where

Pa = S0 and pref(v) = (1− sref(v)). An example of this for a BIR8 pulse is shown in SI Figure S1.

Example VSS reference passband functions pref(v) = 1− sref(v) and saturation functions sref(v) (all with

vc = 2.0 cm/s) are shown in Figure 1(a,b). The sref(v) = sinc(v/vc) function has a soft cutoff and represents

a realistic saturation profile under the assumption of laminar flow [1]. In contrast, both the rect function

sref(v) = rect(v/(2vc)) and windowed cosine function sref(v) = cos(πv/(2vc)) ·rect(v/(2vc)) have hard cutoffs

and cannot be achieved in practice, but are useful for assessing the behavior of ideal profiles with abrupt

and smooth transitions, with the windowed cosine serving as a good approximation for the main lobe of the

sinc function.
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2.2 Effective reference saturation function

To analyze cases where the LCM and VCM use different modules (e.g. VSI where li(v) ̸= s(v)), it is useful

to define an effective reference saturation function as

sref,E(v) = 1− p(v)/Pa (4)

where sref,E(0) = 1.0 and approaches zero for velocities above the labeling cutoff velocity vl. Note that with

this definition we can express the passband function as

p(v) = Pa · pref(v) = Pa · (1− sref,E(v)) (5)

As will be discussed in detail in Section 2.13, mismatches between sref,E(v) and sref(v) can lead to VSASL

quantitation errors. Note when the LCM and VCM use identical modules (as in the VSS examples above),

the passband functions are of the form p(v) = Pa · (1 − sref(v)), so that sref,E(v) = sref(v) and there is no

mismatch (but see also Discussion for cases where implementing a mismatch for VSS may be of interest).

We next consider sref,E(v) for ideal VSI, where the desired passband function is p(v) = 2·(1−rect(v/(2vl))).

This can can be achieved with an ideal control c(v) = −1 and a perfect labeling inversion function li(v) =

1−2·rect(v/(2vl)) that inverts all spins (li(v) = −1) for |v| ≤ vl while leaving spins with |v| > vl unperturbed

(li(v) = 1). Since p(v) has the form of Eq. 5, we can see from inspection that sref,E(v) = rect(v/(2vl)). Note

that the perfect labeling inversion function can be written as li(v) = 1− 2 · sref,E(v).

Under the assumption of laminar flow, currently implemented VSI labeling inversion functions can achieve

perfect inversion at zero velocity (li(0) = −1.0) but approach an asymptotic value li(v) → K that is less than

the desired ideal value of 1.0 for v > vl [3, 5]. This behavior can be modeled as li(v) = K − (1 +K)sref,E(v)

where |K| ≤ 1.0 and K = 1 yields the expression for perfect inversion written above. Assuming c(v) = −1,

the resulting passband function is p(v) = (K + 1)(1 − sref,E(v)) with amplitude Pa = (K + 1) ≤ 2.0. In

practice, sref,E(v) is derived with Eq. 4 where p(v) and Pa are estimated with Bloch simulations or analytical

approximations. As with VSS, factors that reduce the value of both the VSI control and inversion functions

can be modeled with further reductions in Pa.

Figure 2(a,b) shows VSI passband functions p(v) and effective reference saturation functions sref,E(v)

with nominal labeling cutoff velocities of vl = 1.2 and 2 cm/s using the definition from [3] (see Methods

for details on Bloch simulation of the sinc FTVSI module). In this case we can approximate the passband

amplitude as Pa = 1.7647 for both responses (see SI Appendix A.8) and compute the effective saturation

responses (blue and red curves in panel (b)) using Eq. 4. The VCM saturation response (sinc saturation
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implemented with BIR8 pulse) with vc = 2 cm/s (yellow curve) is shown for comparison. Note that there

is a considerable mismatch (sref(v) ̸= sref,E(v)) between the VCM saturation response and the effective

saturation response when the cutoff velocities (vc = vl = 2 cm/s) are the same.

2.3 Boundary Velocity

In characterizing cerebral perfusion, the goal is to accurately measure the rate of delivery of arterial blood

to the capillary beds in brain tissue. To first order, we can say that arterial blood has been delivered to

the capillary beds when it has decelerated down to the mean velocity of capillary blood. For the model, we

define a boundary velocity vb such that arterial blood is said to be delivered at time t when it has decelerated

from its initial velocity v(0) to a lower velocity v(t) = vb. With this definition, the appropriate boundary

velocity for the global model is vb = vcap, where we assume that the mean capillary velocity for normal CBF

levels is vcap = 0.1 cm/s, consistent with the range reported in a recent study [6]. However, higher values of

vb may also be physiologically valid, especially in light of microscopic imaging evidence indicating that up to

50% of oxygen extraction may occur in the parenchymal arterioles [7]. For example, setting vb = 0.4 would

correspond to an arteriole that has a diameter of ∼ 10 microns [8] and represents a point in the arteriolar

tree at which substantial oxygen extraction may have already occurred [7]. To simplify the presentation, we

will assume vb = vcap for the global model, since choosing a lower bound on vb ensures delivery to the brain

tissue. For the local model discussed in Section 2.14, multiple values of vb can be defined for each voxel,

where each value represents the mean velocity of a feeding arteriole at the physical border of the voxel.

2.4 Arterial Delivery Function

To derive an expression for the delivery of labeled arterial blood magnetization in the global model, we first

consider the magnetization that flows across the boundary velocity v = vb at a time t ≥ 0, where the LCM is

applied at t = 0. This corresponds to labeled magnetization Q0 · p(va(t,vb)) where va(t,vb) ≥ vb denotes the

velocity at labeling time t = 0 of arterial blood that will have decelerated to vb at time t ≥ 0. As described in

SI Appendix A.1, an expression for va(t,vb) can be derived from the arterial acceleration aa(v) as a function

of velocity, and an example is shown by the red curve in Figure 3b assuming vb = vcap. The form of the

acceleration function is addressed in SI Section S.1.1.

The VCM saturation applied at t = τ affects all spins regardless of whether or not they have crossed the

velocity boundary. The effect can be modeled by multiplying Q0 · p(va(t,vb)) by s(va(τ − t,vb)) to yield the
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arterial delivery function

ca,0(t, vb) = Q0 · p(va(t,vb)) · s(va(t− τ ,vb)) (6)

= Q0 · Pa · S0 · pref(va(t,vb)) · sref(va(t− τ ,vb)) (7)

where the 0 in the subscript of ca,0(t, vb) indicates that longitudinal relaxation effects are not included. Note

that over the interval [0, τ), the term t− τ < 0, so that va(t− τ ,vb) ≤ vb represents the velocity at time τ of

blood that crossed the v = vb threshold at an earlier time t and will have therefore decelerated to a velocity

less than vb. Thus, for this interval, the multiplication by s(va(t − τ ,vb)) represents the saturation at time

τ of blood that has already crossed the v = vb threshold. Over the interval [τ,TI], the term t − τ ≥ 0, so

that va(t − τ ,vb) ≥ vb represents the velocity at time τ of blood that will cross the v = vb threshold at a

later time t. For this interval, multiplication by s(va(t − τ ,vb)) represents the saturation at t = τ of blood

that has yet to decelerate to vb. Examples of va(t, vb) and va(t− τ, vb) for vb = vcap and vb = 2.0 cm/s are

shown in SI Figure S2.

Example arterial delivery functions (normalized by Q0) are shown in Figure 1c using the reference VSS

passband and saturation functions (with vc = 2 cm/s) from Figure 1(a,b), with Pa = S0 = 1, vb = 0.1 cm/s,

and va(t,vb) computed using the acceleration model parameters presented in SI Section S.1.1. Additional

examples using the VSI passband functions and sinc saturation function from Figure 2(a,b) are shown in

Figure 2c.

2.5 Arterial Blood Volume Component

The arterial delivery function accounts for the delivery of arterial blood at velocities v ≥ vb that has been

labeled at t = 0. However, when vb > vcap, it does not account for labeling of arterial blood that can occur

when the passband function does not have a hard cutoff and |p(v)| > 0 in the velocity range [vcap, vb]. In

addition, it does not account for labeling of blood in the capillary and venous components. These additional

terms can be modeled as blood volume components that are initially created by the LCM at t = 0 and then

modified by the VCM at t = τ . As shown in SI Appendix A.6, the capillary Vcap and venous Vv volume

components are typically negligible.

The volume of arterial blood in the range [vcap, vb] is equal to Q0 · ∆tb where ∆tb is the time required

for blood to decelerate from vb to vcap (i.e. va(∆tb, vcap) = vb). Note that by definition, the arterial volume

term is zero for the global model (since vb = vcap and ∆tb = 0). Thus, we only need to consider it when

examining the local model.
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Weighting each time increment of blood according to the value of the passband function evaluated at

each increment’s initial velocity, we obtain the following expression for the arterial blood volume Va created

by the LCM at t = 0:

Va(0) = Q0 ·
∫ ∆tb

0

p(va(u, vcap))du (8)

where the variable of integration u spans the interval [0,∆tb], and an example of this integral for vb = 1

cm/s is indicated by the magenta area in Figure 4a. At t = τ , the VCM will saturate each time increment

of labeled blood volume according to the velocity that it has decelerated to. This can be expressed as

Va(τ) = Q0 ·
∫ ∆tb

0

p(va(u, vcap))s(va(u− τ, vcap))du (9)

Note that for τ > ∆tb, the saturation term s(va(u − τ, vcap)) = s(vcap), reflecting the fact that all of the

blood in the interval [vcap, vb] has had time to decelerate down to vcap. If this condition is satisfied then

Va(τ) = Q0 · s(vcap) ·
∫ ∆tb

0

p(va(u, vcap))du ≈ S0 · Va(0) (10)

since sref(vcap) ≈ 1.0 and therefore s(vcap) ≈ S0 for most implementations.

2.6 Delivery of Magnetization Difference

Bringing together the terms described in the prior two sections, we can write the overall delivery function

without relaxation effects as the sum

c0(t) = ca,0(t, vb) + Va(0) · δ(t) + (Va(τ)− Va(0)) · δ(t− τ) (11)

where δ(t) denotes the Dirac delta function and (i) the term ca,0(t, vb) represents the delivery of arterial

blood that starts off at velocities v ≥ vb and decelerates to vb at times t ≥ 0, (ii) the initial arterial blood

volume term Va(0) · δ(t) represents arterial blood in the range [vcap, vb] that is labeled at time t = 0 and

is not included in the ca,0(t, vb) term, and (iii) the term (Va(τ) − Va(0)) · δ(t − τ) represents the change in

the arterial volume term due to the application of the VCM at t = τ . As noted above, the volume terms

are zero for the global model (since vb = vcap), and thus need to be considered only for the local model

(see Section 2.14). In addition, for cases where s(v) ≈ 1 for v ∈ [vcap, vb] and τ > ∆tb, the VCM has

negligible effect on the arterial blood volume term, so that Va(τ) ≈ Va(0), and thus the volume change term

(Va(τ)− Va(0)) · δ(t− τ) is approximately zero.

Incorporating the effects of longitudinal relaxation into the delivery function yields

c(t) = e−t/T1bc0(t) = e−t/T1bca,0(t) + Va(0) · δ(t) + (Va(τ)− Va(0)) · δ(t− τ)e−τ/T1b (12)

9
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where T1b denotes the T1 of blood, and we assume that there is no outflow of labeled blood and a minimal

effect of tissue exchange on the relaxation rate, consistent with the assumptions stated in the ASL white

paper [9]. Convolution of the delivery function with a residue function r(t) = e−t/T1b [10] then leads to an

expression for the difference in magnetization delivered at time t

∆M(t) = M0b · c(t) ∗ r(t) =

M0b · e−t/T1b

(
Va(0) +

∫ t

0
ca,0(u, vb)du

)
0 ≤ t < τ

M0b · e−t/T1b

(
Va(τ) +

∫ t

0
ca,0(u, vb)du

)
t ≥ τ

(13)

where M0b denotes the equilibrium magnetization density of arterial blood.

2.7 Effective bolus width

For the delivery of an ideal VSASL bolus by some time TI ≥ τ , it is sufficient to satisfy the following

two conditions: (B1)
∫ TI

0
ca,0(t)dt = Q0 · Pa⋆ · S0⋆ · τ and (B2) Va(τ) = 0, where Pa⋆ = 1 or 2 for ideal

saturation or inversion, respectively, and S0⋆ = 1.0 for ideal VCM. When these conditions are satisfied, the

magnetization difference can be written as ∆M(TI) = Q0 · Pa⋆ · S0⋆ · τ · M0b · e−TI/T1b . We first examine

Condition B1. As noted above, Va(τ) = 0 for the global model, and so we need only consider the impact of

volume terms in the local model, which is addressed in Section 2.14.

Note that for Condition B1, the righthand term can be written as Q0 ·Aideal where Aideal = Pa⋆ · S0⋆ · τ

represents the ideal area under the delivery curve normalized by Q0. In practice, the actual normalized area

under the curve can be written as the effective area

Aeff = Pa · S0 · τeff (14)

where

τeff ≡ 1

Q0 · Pa · S0

∫ TI

0

ca,0(t)dt (15)

is the effective bolus width. With these definitions, we have

∆M(TI) = Q0 ·Aeff ·M0b · e−TI/T1b , (16)

and an estimate of Q0 can be formed based on measurement of ∆M(TI) and estimates of Aeff, M0b and T1b.

Note that deviations of the effective area Aeff from the ideal area Aideal reflect two effects: (1) the

amplitude Pa · S0 of the normalized delivery function is less than the ideal amplitude Pa⋆ · S0⋆, and (2) the

effective bolus width τeff, which depends on the shape of the normalized delivery function, differs from the

desired bolus width τ .
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2.8 Cumulative time integral and transit delay

The effective area Aeff represents the cumulative normalized signal that been delivered at a specific time

t = TI. To visualize the dynamic accumulation of signal, it is helpful to also consider the normalized

cumulative time integral

Ca,0(t) =
1

Q0τ

∫ t

0

ca,0(u)du (17)

as a function of time t. Note that Ca,0(TI) = Pa · S0 · τeff/τ and thus the ideal value of this quantity is

Ca,0(TI) = Pa⋆ · S0⋆ = 1.0 for VSS and 2.0 for VSI. For the global model where Va(0) = Va(τ) = 0, the

magnetization difference is related to the normalized cumulative time integral as follows

∆M(t) = M0b · e−t/T1b ·Q0 · τ · Ca,0(t) (18)

In both Figures 1 and 2, panel (d) shows the normalized cumulative time integrals Ca,0(t) of the VSS and

VSI arterial delivery functions shown in panel (c) of the respective figures, with additional VSI examples

shown in SI Figure S4a. In addition, plots of normalized magnetization differences ∆M(t)/(M0bQ0τ) =

exp−t/T1b · Ca,0(t) for VSS and VSI are shown in SI Figures S3 and S4, respectively. Note that because

vc > vb in the examples above, the cumulative time integrals reach their steady-state value after some delay

following the application of the VCM at time τ . This delay is the transit time ∆t required for arterial

magnetization to decelerate from vc to vb, and is indicated by the interval between the red (t = τ) and green

(t = τ +∆t) vertical lines in Figures 1c and 2c.

We can compute the transit delay as follows:

∆t =

∫ vb

vc

1

aa(v)
dv (19)

For the above examples, ∆t = 372 ms based on the assumed arterial acceleration model parameters for

Q0 = 750 ml/min (see SI Section S.1.1).

At t = τ +∆t = 1.77, the normalized cumulative time integrals for the rect and cosine tapered profiles

both attain the ideal value of 1.0, while the normalized cumulative integral for the sinc profile is very close

(1.007) to the ideal value. The approach to and deviation from the ideal value for VSS is further discussed

in Section 2.12. In contrast, the VSI cumulative time integrals fall short of reaching the ideal value of 2.0,

reflecting two factors: (1) Pa < Pa⋆ and (2) a mismatch error that results in τeff < τ (see Section 2.13 and

Figure 6 for details).

Note that for VSS with matched LCM and VCM (i.e. ls(v) = s(v)), the transit delay can be viewed as

either the time for the leading edge of the arterial delivery function to reach a post-LCM steady state value
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(e.g. 1.0 for delivery functions in Figure 1(c)) or as the time for the trailing edge to fall to a post-VCM

steady state value (typically 0.0). However, this is not the case for the VSI delivery functions in Figure 2(c),

due to the use of different modules for the LCM and VCM. Since it is the trailing edge that determines the

final approach to steady state of the cumulative time integrals for both VSS and VSI, we have chosen to

show the transit delay associated with the trailing edge.

2.9 Connection with labeling efficiency

Following the definition from [3], the ideal VSASL labeling efficiency can be written as

αideal =
Pa⋆ · S0⋆ · τ

2τ
(20)

which is equal to 0.5 for perfect VSS and 1.0 for perfect VSI. The actual labeling efficiency is

α =
Aeff

2τ
=

Pa · S0 · τeff
2τ

= αideal ·
Pa · S0

Pa⋆ · S0⋆
· τeff

τ
= αideal ·

Pa · S0

Pa⋆ · S0⋆
·
(
1 +

∆τeff
τ

)
(21)

where ∆τeff = τeff − τ is the bolus width error. Thus, the deviation in labeling efficiency from its ideal

value reflects deviations in both the amplitude Pa · S0 and effective width τeff of the normalized arterial

delivery curve from their respective ideal values of Pa⋆ · S0⋆ and τ .

2.10 CBF Estimation Error

As noted below Equation 16, an unbiased CBF estimate can be written as

Q̂0 =
∆M(TI) · eTI/T1b

Aeff ·M0b
=

∆M(TI) · eTI/T1b

2τ · α ·M0b
(22)

If the estimate uses a value of A′
eff that differs from the actual value Aeff, then the resulting estimate Q̂′

0 is

biased. The fractional error of the biased estimate can be written as

∆Q̂0

Q̂0

=
Q̂′

0 − Q̂0

Q̂0

=
Aeff

A′
eff

− 1 =
Pa · S0

P ′
a · S′

0

τeff
τ ′eff

− 1 (23)

where the primed variables represent the assumed values associated with A′
eff. Note that the fractional error

may also expressed as ∆Q̂0/Q̂0 = α/α′ − 1. To isolate the error due solely to the bolus width error, we can

consider the case where the assumed values of Pa and S0 are equal to their actual values but the assumed

effective bolus width τ ′eff = τ is equal to the ideal bolus width. In this case the resulting fractional error in

the CBF estimate
Q̂′

0 − Q̂0

Q̂0

=
τeff
τ

− 1 =
∆τeff
τ

(24)

directly corresponds to the fractional bolus width error.
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2.11 Effective bolus width for matched LCM and VCM

Using Eqs. 5, 7, and 15, the effective bolus width can be written as

τeff =

∫ TI

0

pref(va(t, vb)) · sref(va(t− τ, vb))dt (25)

=

∫ TI

0

(1− sref,E(va(t, vb))) · sref(va(t− τ, vb))dt (26)

While Eq. 26 can be used to compute τeff for arbitrary functions sref(v) and sref,E(v), it is also useful to gain

some theoretical insight into the conditions needed to achieve τeff = τ (and hence satisify condition B1).

We first consider VSS with matched LCM and VCM such that sref,E(v) = sref(v) and pref(v) = 1−sref(v).

As shown in SI Appendix A.2, sufficient conditions to obtain τeff = τ are as follows:

Condition W1: sref(v) = 0 for |v| ≥ vc where the cutoff velocity vc ≤ va(τ, vb)

Condition W2: PLD ≥ ∆t,

where the transit delay ∆t was defined in Eq. 19.

For typical values of τ on the order of one second or more, the term va(τ, vb) approaches maximum arterial

velocities (e.g. 30 cm/s as shown in Figure 3), and Condition W1 can be approached with recommended

values of vc (e.g. 2 cm/s) [3]. Note that implicit in condition W1 is the requirement that ∆t ≤ τ . Thus, an

alternate viewpoint is that the transit times ∆t associated with recommended vc values are less than typical

values of τ .

Condition W2 requires that the PLD be chosen greater than the transit time ∆t. For example, using the

value computed in Section 2.8, the requirement is that PLD ≥ 372 ms for the global model. As discussed

below in Section 2.15, transit delays for the local model will typically be smaller than those for the global

model, and thus the required PLD will also be smaller.

To gain an intuitive understanding of conditions W1 and W2, it is helpful to consider the normalized

VSS arterial delivery curve (using a windowed cosine saturation function) that is depicted by the blue curve

in Figure 4a. Note that Condition W1 is strictly satisfied since the windowed cosine is zero for v > vc.

As a result, the delivery curve goes to zero at t = τ + ∆t. Furthermore, Condition W2 is satisfied since

PLD = ∆t, as denoted by the interval between the red (t = τ) and green (t = TI) dotted vertical lines. The

effective bolus width is simply the area under the blue curve (since Pa = S0 = 1.0) over the interval [0,TI].

The desired bolus width τ is the area of the dashed green rectangle. When conditions W1 and W2 are met,
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the leading and trailing edges of the arterial delivery function are complementary, such that the additional

area accrued under the trailing edge (area A) compensates for the missing area in the green rectangle (area

B), resulting in τeff = τ . Note that the importance of the complementary nature of the leading and trailing

edges was first noted in [1]. In SI Figure S5a, the arterial delivery curve using a sinc saturation function

does not strictly satisfy condition W1 because the sinc function does not have finite support. Nevertheless,

due to the oscillating nature of the sinc function, the effective bolus width turns out to be very close to τ ,

as discussed further in the next section.

2.12 Errors related to transit delay

When condition W1 is satisfied but W2 is not, then the resulting bolus width error ∆τeff = τeff − τ that

occurs when PLD ≤ ∆t is too small can be considered an error related to the transit delay. As shown in SI

Appendix A.3, this error can be written as

∆τeff = −
∫ ∆t

PLD

sref(va(t, vb))dt (27)

For an ideal s(v) = rect(v/(2vc)), the error can be written as

∆wb,rect =

PLD−∆t 0 ≤ PLD < ∆t

0 PLD ≥ ∆t

(28)

The solid red curve in Figure 5a shows an example of this error term ∆τeff,rect as a function of PLD, assuming

vb = 0.1 cm/s and vc = 2.0 cm/s, with a normalized version ∆τeff,rect/τ in panel b. The error curve is negative

for PLD < ∆t and goes to zero when PLD ≥ ∆t. Note that for all other saturation functions sref(v) that

satisfy condition W1, the magnitude of the error |∆τeff| ≤ |∆τeff,rect| when PLD < ∆t is bounded by the error

for the rect saturation function (since all valid saturation functions also satisfy |sref(v)| ≤ 1 for |v| ≤ vc).

As an example, the magnitude of the normalized error for the windowed cosine profile (solid yellow lines in

Figure 5 ) is uniformly smaller than that of the rect profile.

For sref(v) = sinc(v/vc), condition W1 can only be approximately satisfied because the sinc function

does not have finite support. However, due to the oscillating nature of the sinc function, condition W1

is approximately approached on average, resulting in a normalized bolus width error (solid blue curve in

Figure 5b) that is quite small (less than 1%) when PLD ≥ ∆t.
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2.13 Bolus width error due to LCM and VCM mismatch

In Sections 2.11 and 2.12 we considered VSS with matched LCM and VCM, such that sref,E(v) = sref(v). For

current VSI implementations, the LCM and VCM use different pulse sequence modules so that sref,E(v) ̸=

sref(v). In addition, as addressed in the Discussion, there may be VSS applications where it may be of

interest to have different responses for the LCM and VCM.

As shown in SI Appendix A.4, the bolus width error when there is a mismatch in responses can be written

as

∆τeff =

∫ max(vl,eff,vc)

vb

(sref,E(v)− sref(v))

aa(v)
dv (29)

where we introduce the notation vl,eff to denote the LCM effective cutoff velocity for which sref,E(vl,eff) ≈ 0.

As discussed below, vl,eff is generally larger than the nominal cutoff velocity vl for VSI passband functions.

In Figure 2b we showed the effective reference saturation function sref,E(v) corresponding to a VSI

passband function p(v) with vl = 2 cm/s. Following the convention adopted in prior work [3, 5], the nominal

cutoff velocity is defined such that p(vl) = 1.0. Applying the definitions from Section 2.1, this corresponds

to pref(vl) = 1/Pa and sref,E(vl) = 1−1/Pa, where Pa is the steady-state value of p(v). For the example VSI

passband function, the steady-state value is Pa = 1.7647, resulting in pref(vl) = 0.567 and sref,E(vl) = 0.433.

As shown in Figure 2b, sref,E(v) approaches zero at velocities greater than vl, so that vl,eff > vl. Most current

VSI implementations use a VCM with a reference saturation response of the form sref(v) = sinc(v/vc) with

vc = vl. Reflecting the mismatch (vl,eff > vc) in the effective cutoff velocities of the LCM and VCM, sref,E(v)

has a broader response than sref(v) (see also Figure 2b for comparison), and the resulting bolus width error

∆τeff in Eq. 29 is negative (since aa(v) < 0). For the specific parameters and responses shown in Figure 2b,

the error is ∆τeff = −107 ms (∆τeff/τ = −7.6%). The negative error reflects the premature saturation by the

VCM of labeled spins that have decelerated to the range [vc, vl,eff] at time t = τ and were otherwise destined

to be delivered to the boundary velocity vb after t = τ . Essentially, the mismatch in cutoff velocities results

in a premature clipping of the bolus such that τeff < τ .

The mismatch may be also be viewed as rising from the fact that the leading and trailing edges of the

arterial delivery function are not complementary. This lack of complementarity is highlighted in Figure 6a,

where the additional area accrued under the trailing edge (area A) is less than missing area in the green

rectangle (area B), resulting in τeff < τ .

The discussion above suggests that choosing a LCM with vl < vc may lead to a better match to the sinc

VCM profile. Indeed, Figure 2b shows that the width of sref,E(v) with vl = 1.2 cm/s is similar to that of
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sref(v) with vc = 2 cm/s. Due to the better matching of the response profiles, the resulting error (∆τeff = −9

ms; ∆τeff/τ = −0.6%)) is negligible. The improved match between the profiles leads to leading and trailing

edges that come closer to complementing each other. This is highlighted in Figure 6b, where the additional

area accrued under the trailing edge (area A) better matches the missing area in the green rectangle (area

B).

The mismatch examples considered so far have assumed a normal flow condition with global CBF equal

to 750 ml/min. In Figure 6(c,d), we consider the complementarity of the leading and trailing edges for a low

flow case (460 ml/min) (see Methods for additional low flow parameters). For vl = vc = 2 cm/s, the mismatch

between the areas A and B is greater than for the normal flow case, leading to a larger error ∆τeff = −191 ms

(∆τeff/τ = −13.6%). The larger error reflects the decrease in the magnitude of aa(v) that occurs with slower

arterial blood flow (see SI Methods and Figure S8a). This decrease leads to an increase in the magnitude of

the integrand term 1/aa(v) that multiplies the integrand difference term (sref,E(v)− sref(v)) in Eq. 29. In

contrast, for vl = 1.2 cm/s, there is a relatively good match between areas A and B, resulting in a negligible

error ∆τeff = −3 ms (∆τeff/τ = −0.2%), comparable to that observed for the normal flow case. The relative

insensitivity to CBF level reflects the fact that changes in the magnitude of aa(v) become less important

when the saturation profiles are better matched such that the difference term (sref,E(v)− sref(v)) ≈ 0 is

relatively small. Thus, when there is a mismatch in LCM and VCM saturation responses, the bolus width

error appears to be more sensitive to CBF level as compared to when the mismatch is minimized. Additional

examples of the VSI mismatch error are presented in the Results section.

2.14 Local Model

For the local model, we allow for the boundary velocity to vary with the voxel position and also consider

multiple feeding arterioles into each voxel, each with its own boundary velocity. Note that the global model

may be considered a limiting case of the local model in which all voxels have feeding arterioles with the

same boundary velocity vb = vcap. While this limit cannot be achieved in practice, it could conceivably be

approached in the case of extremely high resolution imaging where the dimensions of the voxels becomes

small enough that the majority of voxels will only be fed by very small arterioles.

We start by considering a voxel located at position r = [ x y z ] with dimensions L = [∆x ∆y ∆z ] and

defining a position-dimension vector r̃ = [ r L ], where L is independent of position for most cases of interest.
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The arterial flow into the voxel can be written as the sum of the flow from N(r̃) arterial vessels

Q0(r̃) =

N(r̃)∑
i=1

Q0,i(r̃) = Q0(r̃)

N(r̃)∑
i

fi(r̃) (30)

where Q0,i(r̃) denotes the flow from the ith vessel and the fractional flow of the ith vessel is defined as

fi(r̃) = Q0,i(r̃)/Q0(r̃). The corresponding labeled inflow delivery function for the ith vessel is defined as

ca,0,i(r̃, t) = Q0(r̃) · fi(r̃) · p (va(t, vb,i(r̃))) · s (va(t− τ, vb,i(r̃))) (31)

where vb,i(r̃) denotes the space and vessel dependent boundary velocity. Summing over the number of vessels

yields the overall arterial inflow delivery function for each voxel:

ca,0,in(r̃, t) =

N(r̃)∑
i=1

ca,0,i(r̃, t) (32)

A subtle but important aspect of the local model is that the arterial delivery inflow function does not

fully account for the delivery of arterial blood to brain tissue in a voxel. As shown in SI Appendix A.5 for

the case of a single feeding arteriole (N(r̃) = 1), delivery to the capillary bed in a voxel represents the sum

of a term that depends on the arterial delivery inflow function and the arterial volume term described in

Section 2.5, which accounts for labeled blood that is already in the voxel at t = 0. A consequence of this

phenomenon is that the PLD requirements for the local model are typically less than those of the global

model, since we only need to wait for blood to decelerate to a voxel’s physical boundary velocities, which

are generally greater than the capillary velocity. Ignoring macrovascular outflow (which is addressed in the

SI), blood that has crossed the voxel’s physical boundaries will ultimately reach the capillary beds. Thus,

as long as the PLD is greater than the transit times from vc to the physical boundary velocities, the VSASL

signal will accurately reflect CBF. Examples of this behavior are shown in Figure 4 and SI Figure S5.

2.15 PLD Requirements for the Local Model

For an arteriole that ultimately delivers blood to the capillary bed in voxel, the PLD requirement is simply

PLD > ∆ti(r̃) where ∆ti(r̃) is the time required to decelerate from vc to the specified vb,i(r̃). In practice,

we will want to set a PLD that satisfies this requirement over a range of anticipated values for vb,i(r̃). This

suggests a requirement of the form:

PLD > T (fvb
(v;L), vc) (33)

where, for a given value of vc, the function T (·) (e.g. mean, max, median) returns a summary transit delay

based on the probability density function fvb
(v;L) of vb over all locations r̃ and vessel indices i ∈ {1, ..N(r̃)}
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at a given dimension L. As addressed further in the Discussion section, we expect that the mean of the

density function will decrease as the voxel size decreases. However, further work will be needed to generate

suitable approximations of fvb
(v;L), as well to examine the effect of different choices for T (·).

As an example of the application of Eq. 33, we consider the estimated transit delays shown in Figure 7

for both normal and low flow conditions and three values of vc, where for each value of vc the transit

delays to a range of boundary velocities vb ∈ [vcap, vc] are plotted. If we assume a uniform distribution

of boundary velocities in the interval [1, 2] cm/s and let T (·) compute the mean transit delay over these

boundary velocities, then the resulting requirements for vc values of 2, 4, and 6 cm/s are that the PLD is

greater than 69 ms, 207 ms, and 288 ms, respectively, for the normal flow condition, and greater than 116

ms, 348 ms, and 483 ms, respectively, for the low flow condition.

3 Methods

Estimation of parameters for the acceleration models is described in SI Section S.2. Bloch simulations and

laminar flow integration were performed using code from the ISMRM 2022 VSASL Bloch Simulation Tutorial

[11]. The BIR8 option with vc = 2 cm/s was used to simulate the VSS module and the sinc FTVSI option

was used to simulate the VSI module with vl values of 1, 1.2, 2, 2.5, 4, and 6 cm/s. Key parameters were

maximum B1 = 20 µT , maximum gradient 50 mT/m, maximum gradient slew rate 150 T/m/s, T1 and

T2 set to ∞, and velocity span of 0 to 60 cm/s with a velocity increment of 0.001 cm/s. Arterial delivery

functions were obtained using either the BIR8 or sinc FTVSI profiles for the LCM and the BIR8 profile for

the VCM. To facilitate evaluating performance over a wider range of vl values, an empirical approximation

for the sinc FTVSI response was derived as described in SI Appendix A.8. This approximation was then

used to simulate the LCM VSI responses for vl ranging from 0.5 cm/s to 6 cm/s with an increment of 0.1

cm/s. For each of the vl values, arterial delivery functions were obtained using a sinc VCM with vc values

of 2, 4, and 6 cm/s. Delivery functions and associated metrics were computed for both normal and low flow

conditions.

Results

Figure 8 shows bolus width errors for arterial delivery functions computed using the sinc FTVSI approxima-

tion LCM for vl values ranging from 0.5 cm/s to 6 cm/s and sinc VCM with vc values of 2, 4, and 6 cm/s,
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with errors for normal and low flow conditions shown in panels (a) and (b), respectively. The errors obtained

when vl = vc are indicated by the red crosses and range from -57 to -97 ms for normal flow and increased

to a range of -169 to -216 ms for the low flow case. Note that the errors obtained when using the FTVSI

approximations were slightly different but within 10 ms of those obtained using the Bloch simulations (i.e.

plots shown in Figures 2 and 6). For each value of vc, the green x’s indicate the values of vl that minimize

the average error across the normal and low flow cases. These optimal vl values are 1.2, 2.5, and 4 cm/s for

vc values of 2, 4, and 6 cm/s, respectively, with associated average errors ranging from 2 to 4 ms. Note that

for vc values of 4 and 6 cm/s the low average errors at the optimal values reflect the partial cancelation of

small errors with opposite signs for the normal and low flow cases. The VCM sinc saturation profiles are

shown by the solid lines in Figure 8c, and for each value of vc the FTVSI effective saturation profile for the

optimal vl value is shown by a dash-dot line with the same color as the associated sinc profile. In addition,

FTVSI effective saturation profiles for vl = vc values of 2 and 6 cm/s are shown by the dotted lines (note

that vl = 4 cm/s is also the optimal value for vc = 6 cm/s and so this curve is not replotted). As discussed

above in Section 2.13, the reduction in bolus width error when using an optimal value of vl reflects the

better match between the sinc VCM saturation profile and the FTVSI LCM effective saturation response as

compared to the poorer match obtained when using vl = vc.

4 Discussion and Conclusion

We have presented a general mathematical model for VSASL that can serve as a framework for both obtaining

a deeper understanding of current issues and supporting future analysis efforts. The model rigorously defines

the VSASL arterial delivery function, with an explicit description of both blood flow and volume effects. We

have used the model to express the dependence of labeling efficiency on both the amplitude and effective

bolus width of the arterial delivery function and have examined the factors that affect the effective bolus

width. The elements of the model are specified in a general fashion, such that as additional knowledge is

gained, these advances may be used to improve the predictive power of the model. For example, in this

work we have used simple but physiologically plausible models for arterial and venous acceleration. Future

improvements in these acceleration models can be readily integrated into the framework.

Based on the model predictions, we found that there is a potential flow-dependent negative bias in the

VSI effective bolus width when setting vl = vc with the current definitions of these parameters [3], with the

magnitude of the bias becoming larger for lower CBF. We also showed that choice of an optimal vl < vc

could minimize this bias and make it fairly robust to CBF levels. We introduced the concept of an effective
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saturation function and demonstrated how a reduction in bias was associated with better matching of the

LCM effective saturation function to the VCM saturation function. Future experimental work to validate

these theoretical predictions and determine if the negative bias is significant in practice would be of great

interest. In addition, since achieving lower vl values can be challenging for current VSI implementations,

the development of alternate approaches for matching the LCM effective saturation and VCM saturation

profiles would be of interest.

In most current VSS implementations the LCM and VCM saturation profiles are matched. However,

there may be future applications where it is desirable to use saturation profiles with different cutoff velocities,

leading to a mismatch between the LCM and VCM profiles and bias in the effective bolus width. It is possible

that characterizing the bias over a range of cutoff velocity pairs may provide information about the volume

of arterial blood in various velocity ranges.

In the local model version of the current work, we considered delivery of blood to the physical boundary

of a voxel and considered a few example cases. Further work to characterize the distribution of boundary

velocities as a function of voxel size would be useful for specification of the local model PLD requirement

stated in Eq. 33. It likely that the mean boundary velocity (and associated parameters such as mean diameter

and number of feeding vessels) will decrease with voxel size. As noted in Section 2.14, in the extremely high

resolution limit the boundary velocity of the feeding vessels for the majority of voxels will approach the

capillary velocity, in which case the local model converges to the global model. In the present work, we

focused on a few example cases (see SI) as pointers to how the framework can be applied to take into

account local model features. These cases can serve as the basis for more complicated models that include

features such as arterioles that loop around and re-enter a voxel.

One of the advantages of VSASL is its greater insensitivity to vascular transit delays, as compared to

spatial ASL approaches. When the cutoff velocity is chosen to be low enough so that the labeling occurs

within the voxel, it has been typically assumed that the transit delay is zero [1, 12]. As noted in Section 2.11,

one of the requirements for accurate quantification is that PLD ≥ ∆t. With the assumption that ∆t = 0,

we can set PLD = 0, which is the current recommendation of the ISMRM perfusion study group [3]. In this

work we explicitly define the transit delay as the time required for arterial blood to decelerate from vc to

vb, and thus we expect there to be non-zero transit delays whenever vc > vb. Based on the discussion in the

previous paragraph, we also expect the transit delay to increase as both the voxel size and mean boundary

velocity decreases. While there is some experimental evidence that supports the existence of non-zero transit

delays in VSASL [13, 14], more work in this area is warranted. For example, because the predicted transit

delays depend on the acceleration profile over the interval [vb, vc], it may be possible to roughly characterize
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the profile by measuring transit delays over a range of vc values (where the distribution of vb values is

assumed to not vary across scans within a session when the spatial resolution is fixed). These types of

measurements could also potentially be used in future experimental studies to assess how the acceleration

profile and other parameters of the model (such as the distribution of boundary velocities) might vary across

conditions, including aging and cerebrovascular diseases such as Moyamoya.

In our model we have used simple acceleration models that relate mean acceleration to mean velocity.

These simple models assume a monotonic decrease in mean velocity as blood enters through the arterial

tree and a monotonic increase as blood exits through the venous tree. As discussed in SI Sections S.1.1

and S.2, the general form of the simple model is well supported by prior experimental and theoretical work.

However, it important to keep in mind that detailed studies of flow patterns in realistic vessels [15, 16, 17],

while relatively sparse, suggest that velocity profiles are extremely complex, especially at bifurcations, where

it likely that deceleration and acceleration may be nonlinear. In addition, velocity profiles have been shown

to exhibit a dependence on cardiac phase [17, 18, 19], with significant deviations from laminar flow profiles.

Finally, since most current VSASL implementations use a single velocity encoding gradient direction [3], the

effective labeling efficiency may vary across the length of a vessel as the angle to the gradient changes, leading

to non-monotonic changes in the labeled velocity component along the vascular tree. While these effects

may largely average out over space and time for a typical VSASL experiment, a greater understanding of the

effects would be of interest for future work. Furthermore, it is likely that characterizing the spatiotemporal

complexity of flow patterns may be critical for developing a model for acceleration-sensitive ASL [20].

Following prior work [3, 1], we have assumed a laminar flow profile for the computation of the passband

p(v) and saturation s(v) functions. We have then assumed that the magnetization difference that is delivered

as a function of time is described by the time required to move from a given initial mean velocity (e.g.

va(t, vb)) to the boundary velocity vb. However, this assumption does not take into account the variation

in transit times that may be experienced by blood at different radial locations within a vessel. Prior work

examining dispersion effects in spatial ASL [21, 22, 23, 24, 25] suggests that the variation in transit times

across layers due to laminar flow may be largely confined to the larger vessels followed by “plug-flow-like”

transit times in the smaller vessels, possibly reflecting rapid mixing across layers and the complex flow effects

described in the previous paragraph. SI Appendix A.7 sketches out a general approach for extending the

definition of the passband function to incorporate distributions describing the dependence of transit times on

radial position and vessel mean velocity. This extended approach requires detailed modeling of microvascular

flow and parameters that may not yet be available in the literature. Further work will be needed to determine

if the extended approach offers significant advantages over the simple approach used in this paper, especially

given the likelihood that the simple approach offers a reasonable first order approximation of average behavior
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over the range of parameter distributions describing the microvascular system.

In this paper we have focused on single module VSASL, which is currently the mostly widely used

implementation. Recent work has shown that dual module VSASL approaches can offer significant gains in

performance [26, 27]. As compared to single module VSASL, the creation of the magnetization difference in

dual module VSASL is more complicated and does not lend itself to a description by the passband function

used in this work. Future extensions of the model to describe dual module VSASL would be of interest,

especially if the dual module approach gains more widespread adoption.

The definition of the arterial delivery function in Eq. 7 implicitly assumes that the application of the

VCM determines the end of the arterial bolus. Since the maximum available bolus width may be lower in

physiological states with high velocity or cases where there is limited spatial coverage of the VSASL labeling

pulse, the available bolus width may be less than τ [28]. Extensions of the current model to model this effect

would be of interest. This would most likely entail introducing a joint dependence on velocity and space into

the passband function that would allow for an estimation of the physical bolus width.

In conclusion, we have introduced a mathematical model that clearly and rigorously defines key concepts

in VSASL that have previously been addressed in a largely qualitative fashion. We anticipate that by

providing a fundamental framework for analyzing VSASL, this work will greatly facilitate further efforts to

understand and characterize the performance of VSASL and provide critical theoretical insights that can be

used to design future experiments and develop novel VSASL approaches.

5 Data Availability Statement

Analysis code and files to generate the figures and results presented in this paper will be made available

upon publication through the Open Science Framework DOI:10.17605/OSF.IO/WKM54.

SI Figure Captions

Figure S1 (a) Bloch simulated BIR8 label and control profiles with either T1 = T2 = ∞ for reference profiles

(lref(v) and cref(v)) and T1 = 1660 ms and T2 = 150 ms for l(v) and c(v). As compared to the reference

profiles, l(v) and c(v) are both scaled by a factor of Pa = 0.92 (see Methods for additional simulation

parameters). (b) Passband functions pref(v) = cref(v) − lref(v) and p(v) = c(v) − l(v) corresponding to the
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label and control profiles shown in panel (a). Note that p(v) = Pa · pref(v) as shown by the matching of the

red solid curve and yellow dotted curve.

Figure S2 Plots of va(t, vb) (solid) and va(t − τ, vb) (dash) for vb = vcap = 0.1 cm/s (red) and vb = 2.0

cm/s (magenta) calculated using the arterial acceleration model parameters from Section S.1.1. The black

vertical line indicates t = τ . At t = τ , we have va(t − τ, vb) = va(0, vb) = vb, and hence the intersection of

the va(t− τ, vb) dashed curves with the black vertical line occur at the points (τ, vb). For vb = 2.0 cm/s, this

point is indicated by the intersection of the black vertical line with the horizontal magenta line. For times

t ≤ τ , the argument t− τ is negative, resulting in va(t− τ, vb) taking on values less than or equal to vb.

Figure S3 Plots of normalized magnetization difference ∆̂M = ∆M(t)/(M0bQ0τ) for VSS with sinc (blue),

rect (red), and windowed cosine (yellow) saturation functions and Pa = S0 = 1. The dotted purple line shows

the exponential decay curve exp(−t/T1b) with T1b = 1660 ms. Note that the ∆̂M curves can be written as

the product ∆̂M = exp(−t/T1b) ·Ca,0(t) of the exponential decay curve and the normalized cumulative time

integral Ca,0(t) curves shown in Figure 1d. Since the Ca,0(t) curves approach their steady-state value of 1.0

at t = τ +∆t, the ∆̂M curves follow the exponential decay curve exp(−t/T1b) for t ≥ τ +∆t.

Figure S4 (a) Normalized cumulative time integrals Ca,0(t) for VSI with vl = 1.2 cm/s and vl = 2 cm/s for

both normal (red, blue) and low flow conditions (yellow, purple), with S0 = 1.0 and Pa = 1.7647 (black dotted

line). (b) Plots of normalized magnetization difference ∆̂M = ∆M(t)/(M0bQ0τ) = exp(−t/T1b) · Ca,0(t)

The dotted black line shows the curve Pa · exp(−t/T1b) where T1b = 1660 ms. Note that the Ca,0(t) curves

for vl = 1.2 cm/s approach the steady-state value of Pa at t = τ +∆tnormal and t = τ +∆tlow for normal

and low flow conditions, respectively. As a result, the ∆̂M curves for vl = 1.2 approximately follow the

exponential decay curve Pa · exp(−t/T1b) for t ≥ τ + ∆tnormal and t ≥ τ + ∆tlow for normal and low flow

conditions, respectively. The lower relative amplitudes of both the Ca,0(t) and ∆̂M curves for vl = 2.0 cm/s

reflect the effects of the mismatch discussed in Section 2.13.

Figure S5 Arterial delivery components for the global and local models, assuming VSS with a sinc saturation

function. (a) When considering delivery to the capillary beds, the transit delay ∆t is the time for blood

to decelerate from the vc = 2 cm/s to vcap = 0.1 cm/s. As long as PLD ≥ ∆t, the leading and trailing

edges are complementary and the areas A and B match. As a result, the integral of the arterial delivery

function (solid blue curve) over the interval [0,TI] is equal to the area of the rectangle (dashed green line)

and τeff = τ . (b) In the local model, ∆t is the time required to decelerate to from vc = 2 cm/s to vb = 1

cm/s. As long as PLD ≥ ∆t, then areas A and B match. In addition, the error term e1 is approximately

matched by the labeled blood volume component (magenta arrow) injected at t = 0, so that the τeff ≈ τ .
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This volume component is equal to the magenta area in panel (a), where ∆tb is the time needed to decelerate

from vb to vcap.

Figure S6 Arterial delivery functions (panels a, c, e) and cumulative delivery signals (panels b, d, f) for the

local model case examples, assuming sinc VSS with vc = 2 cm/s. Note that the arterial delivery functions

are normalized by Q0(r̃), and the cumulative delivery signals include the effect of an initial arterial volume

term for vessels that deliver blood to the capillary bed. Case 1 (panels a, b): two arterioles with different

boundary velocities (0.4 cm/s and 1.5 cm/s) deliver blood to the capillary bed. Case 2 (panels c, d): an

arteriole passes through the voxel with entry and exit velocities of 1.5 cm/s and 0.4 cm/s, respectively. Case

3 (panels e ,f): arteriole that branches into two child arterioles, with one delivering blood to the capillary

bed and the other exiting the voxel. See text for additional details.

Figure S7 Arterial delivery functions (panels a, c, e) and cumulative delivery signals (panels b, d, f) for

the local model case examples, assuming windowed cosine VSS with vc = 2 cm/s. Note that the arterial

delivery functions are normalized by Q0(r̃), and the cumulative delivery signals include the effect of an

initial arterial volume term for vessels that deliver blood to the capillary bed. Case 1 (panels a, b): two

arterioles with different boundary velocities (0.4 cm/s and 1.5 cm/s) deliver blood to the capillary bed. Case

2 (panels c, d): an arteriole passes through the voxel with entry and exit velocities of 1.5 cm/s and 0.4 cm/s,

respectively. Case 3 (panels e, f): arteriole that branches into two child arterioles, with one delivering blood

to the capillary bed and the other exiting the voxel. See text for additional details.

Figure S8 (a) Arterial aa(v) (red, brown) and venous av(v) (blue, light blue) acceleration functions

with parameters described in Section S.1.1 for normal (solid) and low flow (dash) conditions. (b) Arterial

va(t, vcap) (red, brown) and venous vv(t, vcap) (blue, light blue) velocity as a function of time for normal

(solid) and low flow (dash) conditions). For both panels, the Murray’s law regime applies for velocities below

14 cm/s. In panel (b), symbols and dashed lines show values in this regime from the vascular model adapted

from [29].

Figure S9 Percent error in CBF estimates for (a) normal flow and (b) low flow cases, obtained with

Equation 24 using bolus width errors from Figure 8 and τ = 1.4 s. Each curve shows the percent error as a

function of FTVSI LCM cutoff velocity vl for a given value of sinc VCM cutoff velocity vc. Errors obtained

when vl = vc are indicated by the red crosses. For each vc curve, the green x’s indicate the error at optimal

vl values that minimize the average error across normal and low flow conditions.

Figure S10 Approximations to the VSI passband functions. (a) Solid lines show Bloch simulated VSI

passband functions for vl = 2.0 cm/s and vl = 1.2 cm/s prior to laminar flow integration, while the dotted
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lines show the corresponding approximations from Eq. A.19. (b) Differences between the simulated passband

functions and the approximations. (c) Solid lines show Bloch simulated VSI passband functions after laminar

flow integration, while dotted lines show corresponding approximations from Eq. A.20. (d) Differences

between the simulated passband functions and the approximations with laminar flow integration. Note that

the velocity range for the top two rows is double that of the bottom two rows, and the errors shown in (d)

are an order of magnitude less than those in (b).
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Symbol Description

τ Bolus duration

PLD Post-labeling delay

TI Inflow time

VSS Velocity selection saturation

VSI Velocity selection inversion

vl, vl,eff Label/Control module (LCM) nominal and effective cutoff velocities

vc Vascular crushing module (VCM) cutoff velocity

p(v) Passband function: p(v) = Pa · pref(v)

s(v) Saturation function: s(v) = S0 · sref(v)

sref,E(v) Effective saturation function: sref,E(v) = 1− p(v)/Pa

pref(v) Reference Passband function with pref(∞) = 1

sref(v) Reference Saturation function with sref(0) = 1

Pa Steady state value of p(v); with ideal value Pa⋆ = 1 for VSS and 2 for VSI

S0 Initial value s(0); with ideal value S0⋆ = 1

aa(v) Arterial acceleration function

av(v) Venous acceleration function

va(t, vb) Arterial delivery velocity function

vv(t, vcap) Venous outflow velocity function

vb, vb,i(r̃) Boundary velocity

vcap Mean capillary velocity

Va Arterial blood volume

ca,0(t, vb), ca,0,i(r̃, t) Arterial delivery function

Q0, Q0,i(r̃) Blood flow

τeff Effective bolus width; with ideal value τ

Aeff Effective bolus area; with ideal value Aideal = Pa⋆ · S0⋆ · τ

α Labeling efficiency; with ideal value αideal = 0.5 for VSS and 1.0 for VSI

∆t Transit delay

Table 1: Glossary of key functions and variables. Functions and variables that have a local model version

are indicated by a dependence on the position-dimension variable r̃ and vessel index i.
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Figure 1: (a,b) Example VSS reference passband pref(v) = 1 − sref(v) and saturation sref(v) functions.

Reference saturation functions: sinc(v/vc), rect(v/(2vc)), and windowed cosine sref(v) = cos(πv/(2vc)) ·

rect(v/(2vc)), all with vc = 2.0 cm/s. (c) Normalized arterial delivery functions ca,0(t)/Q0 corresponding to

the reference passband and saturation functions shown above and assuming Pa = S0 = 1, vb = 0.1 cm/s,

and τ = 1.4 s. (d) Cumulative time integrals
∫ t

0
ca,0(u)du/(Q0τ), where the ideal value for VSS is 1.0. The

red and green dotted vertical lines indicates t = τ and TI = τ + PLD, respectively, with PLD equal to ∆t,

the transit time required to decelerate from vc to vb.
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Figure 2: (a) Bloch simulated passband functions p(v) for sinc FTVSI LCM vl = 1.2 cm/s (blue) and 2

cm/s (red). The dotted line indicates the steady state value Pa. (b) Effective saturation functions computed

as sref,E(v) = 1 − p(v)/Pa functions. Bloch simulated BIR8 VCM saturation function with vc = 2 cm/s

shown for comparison in yellow. (c) Normalized arterial delivery functions ca,0(t)/Q0 corresponding to the

passband and saturation functions shown above and assuming vb = 0.1 cm/s and τ = 1.4 s. (d) Cumulative

time integrals
∫ t

0
ca,0(u)du/(Q0τ), where the ideal value for VSI is 2.0. The red and green dotted vertical

lines indicates t = τ and TI = τ + PLD, respectively, with PLD equal to ∆t, the transit time required to

decelerate from vc to vb.
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Figure 3: (a) Arterial aa(v) (red) and venous av(v) (blue) acceleration functions with parameters described in

SI Section S.1.1. (b) Arterial va(t, vcap) (red) and venous vv(t, vcap) (blue) velocity as a function of time. For

the arterial velocity curve, the time axis indicates the arrival time t at the boundary velocity of blood with

initial velocity va(t, vcap). For example, blood with an initial velocity va(1.0, vcap) ≈ 24 cm/s is predicted to

decelerate to vb = vcap at t = 1.0 s. For both panels, the Murray’s law regime applies for velocities below 14

cm/s. In panel (b), symbols and dashed lines show values in this regime from the vascular model adapted

from [29].
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Figure 4: Arterial delivery components for the global and local models, assuming VSS with a windowed

cosine saturation function and PLD = ∆t. (a) When considering delivery to the capillary beds, the transit

delay ∆t is the time for blood to decelerate from the vc = 2 cm/s to vcap = 0.1 cm/s. As long as PLD ≥ ∆t,

the leading and trailing edges are complementary and the areas A and B match. As a result, the integral of

the arterial delivery function (solid blue curve) is equal to the area of the rectangle (dashed green line) and

τeff = τ . (b) In the local model, ∆t is the time required to decelerate to from vc = 2 cm/s to vb = 1 cm/s.

As long as PLD ≥ ∆t, then areas A and B match. In addition, the error term e1 is approximately matched

by the labeled blood volume component (magenta arrow) injected at t = 0, so that the τeff ≈ τ . This volume

component is equal to the magenta area in panel (a), where ∆tb is the time needed to decelerate from vb to

vcap. 32
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Figure 5: (a) VSS bolus width error ∆τeff and (b) normalized VSS bolus width error ∆τeff/τ as a function

of PLD for sinc (blue), rect (red), and windowed cosine (yellow) profiles assuming τ = 1.4 s, vb = 0.1 cm/s,

vc = 2.0 cm/s, and acceleration function shown in Figure 3.
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Figure 6: Complementarity of the leading and trailing edges of VSI arterial delivery functions for (a,b)

normal flow and (c,d) low flow conditions. (a,c) When vl = vc = 2 cm/s, the leading and trailing edges are

not complementary. As a result, the additional area (A) accrued under the trailing edge is less than the

area (B) excluded by the leading edge, such that the area under the blue curve (up to the green line) is less

than the area of the rectangle (dashed green line), resulting in τeff < τ and a negative bolus width error

∆τeff < 0. The area mismatch and hence the magnitude of the bolus width error is greater for the low flow

case. (b,d) When vl = 1.2 cm/s and vc = 2 cm/s, the leading and trailing edges nearly complement each

other, such that areas A and B are more similar, and the area under the blue curve (up to the green line) is

approximately equal to the area of the rectangle (dashed green line), resulting in ∆τeff ≈ 0 for both normal

and low flow cases. The red and green dotted vertical lines indicates t = τ and TI = τ +PLD, respectively,

with PLD equal to ∆t, the transit time required to decelerate from vc to vb. See text for additional details.
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Figure 7: Estimated transit delays versus boundary velocity for normal (solid) and low flow (dot) conditions.

For each curve, the transit delays are the times required for arterial blood to decelerate from the specified

value of vc to a range of vb values, where vb ∈ [vcap, vc].

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.08.28.555232doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.555232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Bolus width errors for (a) normal flow and (b) low flow cases. Each curve shows the bolus width

error as a function of FTVSI LCM cutoff velocity vl for a given value of sinc VCM cutoff velocity vc. Errors

obtained when vl = vc are indicated by the red crosses. For each vc curve, the green x’s indicate the error at

optimal vl values that minimize the average error across normal and low flow conditions. (c) Comparison of

effective saturation responses. The solid curves show the sinc saturation responses, and the dash-dot curves

show the FTVSI effective saturation responses for the corresponding optimal vl values. The dotted lines

show the FTVSI effective saturation responses for values of vl = vc. Note that vl = vc = 4 cm/s is an

optimal match for vc = 6 cm/s, and so is shown only once. Versions of panels a and b that convert the bolus

width errors to the percent error in CBF estimates are shown in SI Figure S9.
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