
UC Irvine
ICS Technical Reports

Title
Reducing the small disjuncts problem by learning probabilistic concept descriptions

Permalink
https://escholarship.org/uc/item/4dq1d07d

Authors
Ali, Kamal M.
Pazzani, Michael J.

Publication Date
1992-12-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dq1d07d
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

E,educing the small disjuncts problem --- by learning probabilistic concept
description~

Kamal M,t\.li
~ "~r

ali@ics.uci.edu
Michael J Pazzani
pazzani@ics.uci.edu

Technical Report 92-111

December 17, 1992

z
09y
(' ;3

)1r1. ?.J, II/
('/, JJ

~ '. } j "

, '
(.

Reducing the small disjuncts problem
by learning probabilistic concept

descriptions
Kamal M Ali Michael J Pazzani

This paper presents a method for learning relational and at
tribute-value concepts based on maximum-likelihood
estimation. Greedy hill-climbing classifiers like FOIL and
FOCL build a few reliable clauses but many unreliable
clauses, referred to as small disjuncts. Small disjuncts are a
major source of error on independent test examples. We
introduce the system HYDRA which learns probabilistic rela
tional concepts and reduces contribution of error from small
disjuncts. We demonstrate the reduction of the small dis
juncts problem on various relational and attribute-value do
mains.

1. Introduction

Concept learners that form DNF concept descriptions have been shown to be prone

to the small disjuncts problem (Holte et al. , 1989). This is the problem where a

large proportion of the overall error on an independent training set can be attribut-

ed to clauses1 that were learned using a small number of positive examples. In noisy

domains, DNF concept learners typically learn a few reliable clauses (large dis

juncts) that cover many positive examples and many clauses (small disjuncts) that

cover few positive examples.

This paper presents the system HYDRA which builds probabilistic relational DNF

concept descriptions that reduce the effect of small disjuncts. Probabilistic relational

1. We will refer to clauses and disjuncts interchangeably.

target concepts are those that do not have necessary or sufficient conditions for the

target concept. For example, the concept C(X,Z) whose definition is given below,

does not have a necessary or sufficient concept description in predicate logic.

p(C(X,Z) IE(X,Y),F(Y,Z)) = 0.8

p(C(X,Z) 1-(E(X,Y),F(Y,Z))) = 0.1

First order concept learners whose concept language does not admit probabilistic ex

pressions will not learn a compact description for such concepts. Instead as the

number of training examples presented increases, they will form more and more

complex approximations to the target concept. HYDRA builds concept descriptions

by attaching likelihood ratios to each clause. HYDRA aims to estimate the reliabili

ty of a clause and then uses that to reduce the effect of small disjuncts. In Section

1.1 we briefly explain how the relational concept learner FOIL learns from data.

Section 1.2 compares HYDRA to previous work on the small disjuncts problem.

Section 1.3 shows that FOIL has a small disjuncts problem. HYDRA is derived from

FOIL (Quinlan, 1990), so Section 2 presents HYDRA and the semantics associated

with our formulation of clause reliability. We show HYDRA learns concept descrip

tions that have low error rates when compared to FOIL and other systems. Fur-

thermore, we present evidence in Section 3 that this increase in accuracy is due to

reducing the contribution of error from small disjuncts.

1.1 FOIL

FOIL builds a concept description that is a conjunction of Hom clauses2• It uses a

set of presupplied background relations to build a concept description such that

2. Some authors prefer to view such concept descriptions as DNF. Strictly speaking, the body of

the description (aAb-1C)A(<lAe-1C) is the DNF expression (aAb)v(dAe).

each positive training example3 of the target relation is covered by one or more

clauses and no negative example is covered by any clause. An example for a relation

consists of an ordered sequence of ground terms. We will refer to each term as a

component. FOIL uses a separate and conquer approach that involves filtering out

any examples covered by the current clause before presenting the remaining exam-

pies for learning of the next clause. This iterative process terminates when all posi-

tive training examples have been covered by at least one clause.

Each clause is started in the following manner: for each background relation FOIL

builds candidate literals consisting of the name of that background relation and a

subset of the variables in the head of the· clause. So if the target relation is

P(Vi, ... ,Vn) and FOIL is considering the background relation B which has arity m,

FOIL will consider all literals B(X1, ... ,Xm) where X1,. · ·Xm1::Y1,. · ·Yn.4 We will refer

to the sequence (X1,· · ·,Xm) as a variablization.

FOIL ranks each candidate literal by measuring the information that would be

gained if that literal was conjoined with the rest of the clause. If p denotes the

number of positive examples covered by the clause before conjoining with the

candidate literal, p+ the number of positive examples after the literal, n the number

of negatives before the literal and n+ the number of negatives after the literal, the

information gain attributed to that literal is:

Infonnation-gain(p,n,p+,n+) = p+[infonnation(p+,n+) - information(p,n)]

3. We will use the terms example and tuple interchangeably.

4. Literals where more than one of the X; map to the some Vj are included in this framework.

where

information(a,b) =lg(ab)
a+

After considering each variablization of each background relation, the best candi

date literal is conjoined to the clause. The positive and negative examples that

satisfy the new clause are then presented for learning the next literal. If no nega-

tive examples are covered by the new clause, FOIL removes the positive examples

covered by that clause before proceeding to learn the next clause.

An important point to note about the information gain heuristic is that it trades off

generality (the p+ term) versus the log of a function that aims to maximize discrim-

inability. Without the p+ term, the learner could build one clause per positive train-

ing example, satisfactorily covering all the positive examples and none of the nega-

tive examples, yet obtaining a concept description with very little generalizability.

HYDRA uses this same separate and conquer control strategy but learns a concept

description for each clause and attaches weights in the form of likelihood ratios to

each clause5• We discuss these ratios and HYDRA in detail in Section 2.

1.2 Previous Work

The work of Holte et al. (1989) demonstrates that various attribute-value learning.

systems on several domain are prone to the small disjuncts problems. Our work in-

dicates that FOIL is also prone to the small disjuncts problem on various relational

and attribute-value domains. One possible explanation for the fact that the error

5. HYDRA is derived from FOIL via FOCL. FOCL (Pazzani and Kibler, 1991) added to FOIL the
ability to use a prior domain theory.

contribtion of small disjuncts is greater than the error contribution of large dis

juncts may simply be attributable to the relatively large number of small disjuncts

learned. Our analysis compensates for this factor by comparing the proportion of er

rors of comission made by a set of clauses compared to the proportion of test exam

ples matched by that set of clauses. We find that clauses that match only a small

proportion of the test examples are responsible for a much larger proportion of the

total comissive error (Figure 1).

Our experiments over several noisy and non-noisy domains using FOIL indicate

that the propotion of errors made by clauses covering p or fewer examples is much

larger than the proportion of instance space covered by those clauses. Our hypothe

sis then is that the small disjuncts problems can be addressed by assigning lower

weights to small disjuncts.

One obvious approach that Holte et al. rejected was to eliminate disjuncts covering

fewer than a prescribed number of examples because such an approach may delete

significant small disjuncts. A disjunct is significant if it is part of the target concept

description. They also rejected approximations to statistical significance tests in

favor of a variable bias system that builds maximally general clauses to cover large

disjuncts and maximally specific clauses to cover small disjuncts. They categorize

the information gain bias (used in ID3 and CN2, for example) as a "maximum gen

erality" bias and show that using a maximum specificity bias to learn disjuncts cov

ering fewer than a preset threshold lowers the error rates of small disjuncts. They

test their method on the KPa 7KR chess endgame task and find that by using a

switchover threshold of 9 examples, the overall error rate is reduced from 7.2% to

C)IL. Dlnmlative
Comissive
Eu ms

80

60

40

20 __,.__. FOCL 90 Errors (Cumulati e)

HYDRA 90 Errors (Cumula ive)

Cumulative Error Distribution
given no small disjuncts problem

o--~ ~--~-.-~~~___,.--~....-~..-~--~--~--4
0 20 40 60 80 100

95 Cumulative Hatches on Test Set

Figure 1. Clauses from FOIL that match only 200Ai of examples from the test set cause

much more than 20% of the errors of comission. The problem is reduced for HYDRA.

Both algorithms were trained on 160 examples from the illegal chess domain with 5%

tuple noise added. A level of 6% tuple noise means the probabWty of assigning a random

value6 to a component of a tuple is 0.05. Each curve represent the average of 20 inde

pendent trials.

5.2% and that using a switchover threshold of 5 examples, the overall error rate

stays at 7.2% although the error rate of small disjuncts is reduced from 16% to 11%.

We have chosen to address the small disjuncts problem using a maximum-likelihood

estimation approach using weights which is described in Section 2.

6. The value is randomly selected from a uniform distribution over the set of legal values for
that component.

1.3 Evidence Of The Small Disjuncts Problem

Following the definition of the small disjuncts problem as given in Section 1.2, Fig

ure 1 illustrates the correlation between cumulative matches over the test set and

the cumulative comissive error distribution for FOIL on the illegal chess domain

(Muggleton et al, 1989). This pattern is repeated without failure on several non

noisy and noisy domains and on both artificial and natural data sets such as the

DNA promoters data set. If FOIL had no small disjuncts problem, it would have an

cumulative error curve similar to the ideal error distribution line shown in Figure 1.

2. Probabilistic Relational Concept Descriptions

Our motivation for developing HYDRA derives from two considerations. Firstly,

"real world domains" embody a variety of problems such as noisy relations and

noisy class labels, so learners that aim to build necessary and sufficient concept- des

criptions end up overfitting the data. Secondly, as Holte et al., have shown, the

error contributed by small clauses is disproportionate in the sense that such clauses

may be responsible for 80% of the overall comissive errors but match only 20% of

the test examples.

2.1 Knowledge Representation and Classification

Here we discuss the knowledge representation used to represent concepts and how

they are used in classification. The method of learning such concepts is presented in

Section 2.2. A concept is represented as a conjunctfon of Horn clauses. Each clause

has an associated weight representing the degree of logical sufficiency 7 (Duda,

Gaschnig & Hart, 1979) which that clause has for the target concept. A couple of

7. We will abbreviate this as LS.

such clauses for different classes are shown below.

a(X, Y) A b(Y,Z) --?Classi(X,Z) [LS= 3.5]

c(X, Y) A d(Y,Z) --?Classj(X,Z) [LS= 4.0]

For clauseij of Classi , given positive training examples ~+ and negative training ex-

amples ~-,the LS (degree of logical sufficiency) is estimated as follows.

Given a test example such as the following:

a(p,q) A b(q,r) A c(ij) A d(j,k) A

classification proceeds as follows. For each class, we want to estimate the probabili-

ty that that test example belongs to the class given that it has satisfied some clause

of that class. In order to do this, considering only clauses that are satisfied by the

current test example, for each class, we choose the clause with the highest LS value.

The clause with the highest LS value is chosen because it is most indicative of the

class. We do this for each class and assign the test example to the class whose repre

sentative clause has the highest LS value8• We will refer to this as optimistic likeli-

hood estimation. Another strategy for evaluating the degree to which satisfaction of

the clauses indicates membership in the class is to multiply together the LS values

of all the clauses within each class, the product being taken over clauses that are

satisfied by the test example. We will refer to this as pessimistic likelihood estima

tion. It assumes all the clauses are independent, given the data. Both these meth-

8. If the example satisfies no clause of any class, HYDRA guesses and assigns the test example to
the class that occurred with greatest frequency in the training data.

ods are empirically compared in Table 1.

2.2 Learning in HYDRA

FOIL aims to learn necessary and sufficient concept descriptions. HYDRA differs

from FOIL in three major ways. Firstly, HYDRA learns a concept description for

each class9• Secondly, HYDRA associates an estimate of the degree of logical

sufficiency with each learned clause. Thirdly, HYDRA uses a candidate literal

ranking metric that is aimed at learning probabilistic concept descriptions, rather

than using the information gain metric which is aimed at learning necessary and

sufficient concept descriptions. Learning a concept description per class is neces

sary when concept descriptions are going to compete to classify the test example.

HYDRA uses the same separate and conquer strategy used in FOIL. It forms claus-

es iteratively, removing examples covered by previous clauses in order to learn sub-

sequent clauses. HYDRA uses a different metric to rank candidate literals than that

used in FOIL. We define the LS-content of a literal covering p positive and n nega-

tive examples as follows:

ls-content(p,n,pj,o,nj,O) = ls(p,n,pj,o,nj,0)1-Upa

where a is a parameter to the system, Pj,o is the number of positive examples

remaining after the previousj-1 clauses have been built, and nj,O is the correspond-

ing number of negative examples.

9. We implemented a system MC-FOCL that only differs from FOCL in that it builds a concept de
scription for each class. This allows us to pinpoint which difference is responsible for any in
crease in accuracy. If clauses from more than one class claim a test example, MC-FOCL assigns
the test example to the class belonging to the claiming clause which covered the largest number
of positive training examples.

Using this metric HYDRA compares the LS-content before addition of the literal to

that after addition of the literal. If there are no literals that cause an increase in

LS-content, HYDRA completes the clause, otherwise it conjoins the literal and the

current clause and resets p and n to reflect the examples that satisfy the clause

with the new literal conjoined. LS-content trades off discriminability against

coverage as did information content. Setting ex. to 0 causes HYDRA to build many

clauses, none of which cover many examples. Setting ex. to 1 causes HYDRA to build

no clauses, effectively reducing HYDRA to guessing the class with the highest prior

probability estimate. For the experiments in Section 3, we set ex. to a neutral inter-

mediate value of 0.5.

After all the clauses have been learned. HYDRA forms an estimate of the logical

sufficiency odds multiplier lSij associated with each clause using the positive train-

ing examples ~+ and the negative training examples ~-.

HYDRA estimates the numerator and denominator from the training set using the

Laplace ratio (Kruskal and Tanur, 1978). According to Laplace's law of succession, if

a random variable X, whose domain consists of 2 values, has been observed to take

on a value v n; times out of N trials, the least biased estimate of P(X=v) is

(ni+ 1)/(N+2). In order to estimate Is .. we note that the set of p positive examles can
lJ

be split into 2 classes: those that satisfy the clause and those that do not. If p+ of the

p positive examples satisfy the clause, we can make the following estimation:

+ p++l
p(clause· ·=truel~) = --

iJ p+2

An analogous approximation can be made for the negative examples to yield

.. - + + - (p++ l)/(p+2)
lSiJ - ls(p ,n ,p,n) - (n++ l)/(n+Z)

Note that the Laplace ratio also has the convenient property that it does not assign

a LS of infinity to a clause that covers 0 negative training examples. A LS of infinity

means satisfaction of that clause is totally sufficient to classify the test example as a

member of the class associated with that clause. When a clause covers 0 negative

examples, the expression above assigns a LS value that is the proportion of positive

training examples covered by that clause multiplied by the number of negative ex

amples that the clause managed to exclude. When comparing two clauses from the

same class, each of which cover 0 negative examples the LS collapses to measuring

the positive coverage of the clause.

3. Experimental Results

In this section, we show that the three changes we have made to transform FOIL

into HYDRA significantly reduce prediction error rates in noisy domains although

they slightly increase error rates when learning a necessary and sufficient target

concept. We present evidence that HYDRA reduces the small disjuncts problem sug

gesting that a method that weighs unreliable clauses less heavily leads to lower

error rates. We also explore the effect of varying the a parameter and present a

method for reducing errors of omission made by HYDRA.

In our experiments we first compared FOIL to MC-FOIL; a system that we created

to isolate the effect of learning multiple concept descriptions. Thus, MC-FOIL only

differs from FOIL in that it learns one concept description for each class in the

training data. If a test example matches clauses from more than one class, the test

example is classified to the class whose clause covers the greater number of positive

training examples. The hope is that clauses covering more positive examples are

more reliable. MC-FOIL's accuracy on noisy data sets is significantly more accurate

than that of FOIL. This experiment tested to see the effect that learning more than

one concept description may have.

Next, we experimented to see what effect adding weights to clauses would have by

comparing HYDRA (using the information gain metric) to MC-FOIL (also using the

information gain metric). This change helped significantly on the promoters domain

but caused an increase in error rates when learning necessary and sufficient con

cepts. Finally, we compared HYDRA using information gain to HYDRA using ls

content. This helped lower error significantly on domains with tuple noise and the

promoters domain. It did not hurt accuracy on any domain. Altogether, these three

changes work in tandem to increase classification accuracy.

3.1 Description of the domains

We ran experiments on six variants (see Table 1) of the task of predicting whether a

chess board configuration was illegal where a board is represented as a 6-tuple con

sisting of the file and rank coordinates of a white king, white rook and a black king.

A board is labelled illegal if either king is in check or the 6-tuple represents more

than one piece occupying the same position. In order to form a description for

illegd(V1· · ·V6), HYDRA uses the relations near-file, between-file and equal-file, and

their rank counterparts. We also ran experiments on the "natural" domains of

breast-cancer recurrence, DNA promoter and lymphography. These domains have

been extensively used by attribute-value learners. Background relations for these

domains consist of equal, <, > as well as domain-specific relations such as the

nucleotide-family relation in the promoters domain. The last domain we studied is

the King-Rook King-Pawn (KPa7KR) domain which was also used by Holte et al. in

their study of small disjuncts.

3.2 Experimental comparison of HYDRA ·and FOIL

Table 1 shows that a method of assigning lower weights to less reliable clauses in

noisy domains and even in the non-noisy DNA domain (where the data is not noisy

but the target concept may not be expressible as a Hom theory) can yield concept

descriptions with lower error rates. The illegal tasks with 20% class noise mean

that on average, 20% of the training examples had their class labels randomly reas

signed.

HYDRA's accuracy is highly competitive wi~ other noise tolerant algorithms in all

but the cancer domain. HYDRA does better than the variable bias system of Holte et

al. on the KPa7KR domain and as well as the best algorithms10 on lymphography._

It also does better than Reduced-Error Pruning applied to FOIL (Brunk and Pazza

ni, 1990) and better than Reduced-Error Pruning on other domains we tested (Ali

and Pazzani, 1992). Furthermore, while Holte et al. were not able to reduce the

1 O. Bayesian classifiers with options and weights (Buntine, 1990).

Task Number of FOIL Optimistic Pessimistic
training accuracy likelihood likelihood
examples Estimation Estimation

Illegal with 20% 16011 83.9 (6.6) 91.8 (2.5) 91.7 (3.2)
Class noise 320 83.8 (4.6) 92.7 (4.6) 92.S (4.5)

Illegal with 5% 160 90.6 (5.0) 93.6 (3.4) 92.3 (4.0)
tuple noise 320 90.7 (3.8) 96.5 (2.7) 96.3 (2.3)

Noiseless Illegal 100 97.1 (3.3) 95.1 (3.5) 93.6 (4.3)
200 99.1 (0.9) 96.7 (2.7) 95.9 (2.6)

Lymphography 99 78.212 (4.2) 79.8 (5.4) 78.6 (5.8)
KPa7KR 200 90.3 (2.5) 94.7 (1.1)
Breastcancer 191 63.5 (4.3) 68.9 (4.0) 72.5 (2.2)
DNA 105 73.6 (44.3) 81.1 (39.3) 81.1 (39.3)

Table 1: Predictive accuracy rates of FOIL versus HYDRA. The figures ln parentheses are

sample standard deviations. For each task, the algorithm or set of algorithms that per-

formed the best are ln bold font. These accuracies include the "default rule" which ls to

guess the most frequently occurlng class. For each algorithm and each task, we ran 20

independent trials, each time using the number of examples shown for tralnlng and an

other 500.Ai of that number for testing. Standard deviations are high for the DNA task be-

cause we used leave-one-out testing on that domain.

overall error rate by replacing information gain with a selective specificity bias sys-

tem, HYDRA is able to attain significantly lower error rates, due in part to address

ing the small disjuncts problem.

Figures 1 and 2 illustrate that the small disjuncts problem is reduced by HYDRA. If

an algorithm's curve goes through the point .(20,80) that means that clauses match

ing 20% or less of the test examples made 80% of the errors of comission. Only one

"match" is attributed per test example. For FOIL, this attribution is made to the

11 . The training set sizes were chosen to allow comparisons with other algorithms that have
been run on this domain. Examples were drawn without replacement for all but the illegal
domain for which examples can be generated from a set of 86 examples. For the DNA domain,
we used the leave-one-out methodology to train on 105 of the 106 available examples.

12. This accuracy is for MC-FOIL because FOCL cannot be run on domains with more than two
classes and the lymphography data set contains four classes.

80

60

"II(,. Cumulative
Cmnissin
Eno.rs

40

20

20 40 60

---&--·
FOCL ~ Err rs (Cumulative)
HYDRA ~ E rors (Cumulativt)
Cumulative Error Distribution
given no small disjuncts problem

80 100

Figure 2. Comparison of the cumulative error distribution of FOn. and HYDRA to the

ideal cumulative error distribution on the DNA promoters domain.

first13 clause that is true on the test example. For HYDRA the example is attributed

to the clause with the highest LS value, considering only clauses that were satisfied

by the current test example. One can see from these graphs that for FOIL the

clauses that match on a small percentage of the test set produce a disproportionate

percentage of the total errors of comission. Note that these graphs only show the

distribution of error; in particular, two algorithms may have the same distribution

but very different overall error rates. In order to make a comparison between

algorithms it is necessary to compare overall accuracy (Table 1) as well as the distri-

bution of error.

13. For FOCL, clauses are examined in the order they were learned.

100

90

70
0

•
Accuracy 160,20
Accuracy 160,5

60-+-~-.-~--.~~..-~--~---~--...-~..-~--~---~--

o.o 0.2 0.4 alpha 0·6 0.8 1.0

Figure 3. Variation In accuracy as a function of vUying the degree to whch training data

ls fitted. The curve labeled "Accuracy 160,20" refers to training on 160 ezamples (from

the King-Rook-King domain) containing 20% class noise. Accuracy 160,5 refers to train

ing on 160 examples containing 5% tuple noise. Both curves represent averages over 15

trials. Bars correspond to one standard deviation In accuracy.

a.a. Effect of varying a

One of the major challenges in learning from noisy data is to avoid overfitting the

training data. Both the information gain metric used in FOIL and the ls-content

metric used in HYDRA trade off coverage against discriminability. However, this

trade off is made explicit in HYDRA through the use of the alpha parameter. Fig

ure 3 plots how varying alpha affects accuracy. Figure 3 presents preliminary evi-.

dence that the best value of alpha is one that neither over-fits the data (alpha= 0)

nor one that underfits the data (alpha = 1).

Task Accuracy without Omissions Accuracy with Omissions
Partial clauses Vector before Partial clauses Vector after

Partial clauses Partial clauses
IffiK 10 68.9 (9.1,10.7) 67.5 (1.2,0.8)
IffiK 20 71.9 (5.7,5.5) 68.3 (0.1,0.6)
IffiK 30 78.7 (4.5,6.0) 77.2 (0.4,1.2)
IffiK 50 81.0 (3.6,4.8) 83.1 (0.0,0.1)
IffiK 80 85.8 (4.9,3.8) 86.0 (0.0,0.0)
IffiK 160 90.6 (3.1,1.1) 92.5 (0.0,0.0)
IffiK 320 93.8 (0.5,0.3) 94.4 (0.0,0.0)
Cancer 66.6 (1.9,1.0) 67.5 (0.0,0.0)
Lymph. 81.4 (10. 7' 16.3,11.3,0.0) 83.5 (0,0.7,0,0)
KPa7Iffi 94.7 (2.5,3.3) 94.9 (0.0,0.0)
DNA 81.1 (13,21) 86.8 (0,1.9)

Table 2. Adding partial clauses helps except when the data ls sparse. KRK 10 refers to

data sets containing 10 training examples &om the King-Rook-King domain. All KRK

data sets had 20% class noise. These figures represent the averages of 20 trials.

3.4. Partial Clauses

Concept descriptions learned by HYDRA and FOIL suffer from large numbers of er-

rors of omission when learning M of N concepts (Spackman, 1988) or when learning

highly disjunctive concepts. On the DNA promoters domain for example, 13% of test

examples from the promoters class, and 21 % of test examples of the non-promoters

class failed to match any clause of any concept description learned by HYDRA. In

such cases HYDRA is forced to guess the most frequent class. A better alternative is

to determine ifthe example nearly matches some clause. We implemented this idea

by adding clauses that are derived from the clauses already learned by HYDRA. For

example, the clause a(X,Z) and b(Y ,X) and c(X,X) -7 concept(X,}} would give rise

to the following additional clauses:

a(X,Z) and b(Y,Z) -7 concept(}(,}}

a(X,Z) -7 concept(Y,Z)

These clauses serve as backup in case a test example does not satisfy any of the

original clauses. These clause, which we will refer to as "partial clauses" tend to

cover larger amounts of the instance space but tend to do a poorer job of discrimi-

nating positive from negative examples (and hence, have lower LS values). Table 2

gives a comparison of accuracies with and without "partial clauses"14• Table 2 indi-

cates that adding partial clauses helps a lot on the DNA domain and helps to small

er extents on other natural domains. Adding partial clauses only hurts accuracy

when learning from sparse data (few training examples). The omissions vector indi

cates the percentage of test examples that failed to match any clause of any concept

description. As expected, addition of partial clauses reduces components of these

vectors.

4. Conclusions and Future Work

We have presented a method using maximum likelihood estimation for reducing the

small disjuncts problem and thereby increasing predictive accuracy. This method

has been tested on domains requiring relational concept descriptions and those re-

quiring attribute-value concept descriptions. We plan to extend HYDRA to build

several independent15 concept descriptions per class and then combining evidence

from these models. This has been referred to as averaging multiple models (Bun

tine, 1991). We feel that learning multiple models will help HYDRA and further

reduce the problems that hill-climbing systems like FOIL and HYDRA experience in

noisy domains.

References

Ali K and Pazzani M. (1992). HYDRA: A noise-tolerant Relational Concept Learning Algo
rithm (Technical Report 92-85). hvine, CA: University of California, Department of Information

14. Average accuracies shown in Table 2 are slightly different from those shown in Table 1 be
cause the tables used different sets of runs of HYDRA.

15. Independent, given the training set.

and Computer Sciences.

Allen J., Thompson K. (1991). Probabilistic Concept Formation in Relational Domains. In

Proceedings of the Eighth International Workshop on Machine Learning. Evanston, IL. Morgan

Kaufmann.

Brunk C., Pazzani M. (1991). An Investigation of Noise-Tolerant Relational Concept Learning

Algorithms. In Proceedings of the Eighth International Workshop on Machine Learning. Evan

ston IL. Morgan Kaufmann.

Buntine W. (1990). A theory of learning classification rules. Doctoral dissertation. School of

Computing Science, University of Technology, Sydney, Australia.

Buntine W. (1991). Classifiers: A Theoretical and Empirical Study. In Proceedings of the Elev

enth International Joint Conference on Artificial Intelligence. Sydney, Australia: Morgan Kauf

mann.

Duda R., Gaschnig J. and Hart P. (1979). Model design in the Prospector consultant system

for mineral exploration. In D. Michie (ed.), Expert systems in the micro-electronic age. Edin

burgh, England. Edinburgh University Press.

Dzeroski S. and Bratko I. (1992). Handling noise in Inductive Logic Programming. In

Proceedings of the International Workshop on Inductive Logic Programming (/LP 92). Tokyo,

Japan. ICOT.

Holte R., Acker L. and Porter B. (1989). Concept Learning and the Problem of Small

Disjuncts. In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence. Detroit, MI. Morgan Kaufmann.

Kruskal W. H. and Tanur J.M. (1978). International Encyclopedia of statistics. New York,

NY: Free Press.

Muggleton S., and Feng C. (1990). Efficient induction of logic programs. In Proceedings of the

First Conference on Algorithmic Learning Theory. Tokyo, Japan. Ohmsha Press.

Pau.ani M. and Kibler D. (1991). The utility of knowledge in inductive learning. Machine

Learning, 9, l, 57-94.

Quinlan, R. 1990. Learning logical definitions from relations. Machine Learning, 5, 3, 239-266.

Spackman, K. (1988). Leaming Categorical Decision Criteria in Biomedical Domains. In

Proceedings of the Fifth International Conference on Machine Learning. Ann Arbor, MI.

Morgan Kaufmann.

