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Article

Predicting antimicrobial resistance in Pseudomonas
aeruginosa with machine learning-enabled
molecular diagnostics
Ariane Khaledi1,2,†, Aaron Weimann2,3,4,† , Monika Schniederjans1,2,‡, Ehsaneddin Asgari3,5,‡,

Tzu-Hao Kuo3, Antonio Oliver6, Gabriel Cabot6, Axel Kola7, Petra Gastmeier7, Michael Hogardt8,

Daniel Jonas9, Mohammad RK Mofrad5,10, Andreas Bremges3,4 , Alice C McHardy3,4,§,* &

Susanne Häussler1,2,§,**

Abstract

Limited therapy options due to antibiotic resistance underscore
the need for optimization of current diagnostics. In some bacterial
species, antimicrobial resistance can be unambiguously predicted
based on their genome sequence. In this study, we sequenced the
genomes and transcriptomes of 414 drug-resistant clinical Pseu-
domonas aeruginosa isolates. By training machine learning classi-
fiers on information about the presence or absence of genes, their
sequence variation, and expression profiles, we generated predic-
tive models and identified biomarkers of resistance to four
commonly administered antimicrobial drugs. Using these data
types alone or in combination resulted in high (0.8–0.9) or very
high (> 0.9) sensitivity and predictive values. For all drugs except
for ciprofloxacin, gene expression information improved diagnostic
performance. Our results pave the way for the development of a
molecular resistance profiling tool that reliably predicts antimicro-
bial susceptibility based on genomic and transcriptomic markers.
The implementation of a molecular susceptibility test system in
routine microbiology diagnostics holds promise to provide earlier
and more detailed information on antibiotic resistance profiles of
bacterial pathogens and thus could change how physicians treat
bacterial infections.
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Introduction

The rise of antibiotic resistance is a public health issue of great-

est importance (Cassini et al, 2019). Growing resistance hampers

the use of conventional antibiotics and leads to increased rates

of ineffective empiric antimicrobial therapy. If not adequately

treated, infections cause suffering, incapacity, and death, and

impose an enormous financial burden on healthcare systems

and on society in general (Alanis, 2005; Gootz, 2010; Fair &

Tor, 2014). Despite growing medical need, FDA approvals of

new antibacterial agents have substantially decreased over the

last 20 years (Kinch et al, 2014). Alarmingly, there are only few

agents in clinical development for the treatment of infections

caused by multidrug-resistant Gram-negative pathogens (Bush &

Page, 2017).

Pseudomonas aeruginosa, the causative agent of severe acute

as well as chronic persistent infections, is particularly problem-

atic. The opportunistic pathogen exhibits high intrinsic antibiotic

resistance and frequently acquires resistance-conferring genes via
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horizontal gene transfer (Lister et al, 2009; Partridge et al, 2018).

Furthermore, the accelerating development of drug resistance due

to the acquisition of drug resistance-associated mutations poses a

serious threat.

The lack of new antibiotic options underscores the need for opti-

mization of current diagnostics. Diagnostic tests are a core compo-

nent in modern healthcare practice. Especially in light of rising

multidrug resistance, high-quality diagnostics becomes increasingly

important. However, to provide information as the basis for infec-

tious disease management is a difficult task. Antimicrobial suscepti-

bility testing (AST) has experienced little change over the years. It

still relies on culture-dependent methods, and as a consequence,

clinical microbiology diagnostics is labor-intensive and slow.

Culture-based AST requires 48 h (or longer) for definitive results,

which leaves physicians with uncertainty about the best drugs to

prescribe to individual patients. This delay also contributes to the

spread of drug resistance (Oliver et al, 2015; López-Causapé et al,

2018).

The introduction of molecular diagnostics could become an alter-

native to culture-based methods and could be critical in paving the

way to fight antimicrobial resistance. Identification of genetic

elements of antimicrobial resistance promises a deeper understand-

ing of the epidemiology and mechanisms of resistance and could

lead to a timelier reporting of the resistance profiles as compared to

conventional culture-based testing. It has been demonstrated that

for a number of bacterial species, antimicrobial resistance can be

highly accurately predicted based on information derived from the

genome sequence (Gordon et al, 2014; Bradley et al, 2015; Moradi-

garavand et al, 2018). However, in the opportunistic pathogen

P. aeruginosa even full genomic sequence information is insuffi-

cient to predict antimicrobial resistance in all clinical isolates (Kos

et al, 2015). Pseudomonas aeruginosa exhibits a profound pheno-

typic plasticity mediated by environment-driven flexible changes in

the transcriptional profile (Dötsch et al, 2015). For example,

P. aeruginosa adapts to the presence of antibiotics with the overex-

pression of the mex genes, encoding the antibiotic extrusion

machineries MexAB-OprM, MexCD-OprJ, MexEF-OprN, and

MexXY-OprM. Similarly, high expression of the ampC-encoded

intrinsic beta-lactamase confers antimicrobial resistance (Haenni

et al, 2017; Juan et al, 2017; Goli et al, 2018; Martin et al, 2018).

Those transcriptional responses are frequently fixed in clinical

P. aeruginosa strains, e.g., due to mutations in negative regulators

of gene expression (Frimodt-Møller et al, 2018; Juarez et al, 2018).

Thus, the isolates develop an environment-independent resistance

phenotype. Up-regulation of intrinsic beta-lactamases as well as

overexpression of efflux pumps that contribute to the resistance

phenotype makes gene-based testing a challenge, because it is diffi-

cult to predict from the genomic sequence, which (combinations of)

mutations would lead to an up-regulation of resistance-conferring

genes (Llanes et al, 2004; Fernández & Hancock, 2012; Schnieder-

jans et al, 2017).

In this study, we investigated whether we can reliably predict

antimicrobial resistance in P. aeruginosa using not only genomic

but also quantitative gene expression information. For this purpose,

we sequenced the genomes of 414 drug-resistant clinical P. aerugi-

nosa isolates and recorded their transcriptional profiles. We built

predictive models of antimicrobial susceptibility/resistance to four

commonly administered antibiotics by training machine learning

classifiers. From these classifiers, we inferred candidate marker

panels for a diagnostic assay by selecting resistance- and susceptibil-

ity-informative markers via feature selection. We found that the

combined use of information on the presence/absence of genes,

their sequence variation, and gene expression profiles can predict

resistance and susceptibility in clinical P. aeruginosa isolates with

high or very high sensitivity and predictive value.

Results

Taxonomy and antimicrobial resistance distribution of 414 DNA-
and mRNA-sequenced clinical Pseudomonas aeruginosa isolates

A total of 414 P. aeruginosa isolates were collected from clinical

microbiology laboratories of hospitals across Germany and at sites

in Spain, Hungary, and Romania (Fig 1A). For all isolates, the

genomic DNA was sequenced and transcriptional profiles were

recorded. This enabled us to use not only the full genomic informa-

tion but also information on the gene expression profiles as an input

to machine learning approaches.

We inferred a maximum likelihood phylogenetic tree based on

variant nucleotide sites (Fig 1B). The tree was constructed by

mapping the sequencing reads of each isolate to the genome of the

P. aeruginosa PA14 reference strain and then aligning the consensus

sequences for each gene. The isolates exhibited a broad taxonomic

distribution and separated into two major phylogenetic groups. One

included PAO1, PACS2, LESB58, and a cluster of high-risk clone

ST175 isolates; the other included PA14, as well as one large cluster

of high-risk clone ST235 isolates. Both groups comprised several

further clades with closely related isolates of the same sequence

type as determined by multilocus sequencing typing (MLST).

Next, we recorded antibiotic resistance profiles for all isolates

regarding the four common anti-pseudomonas antimicrobials, tobra-

mycin (TOB), ceftazidime (CAZ), ciprofloxacin (CIP), and mero-

penem (MEM) (Bassetti et al, 2018; Cardozo et al, 2019; Tümmler,

2019) using agar dilution method. Most isolates of our clinical

isolate collection exhibit antibiotic resistance against these four

antibiotics (Fig 1C, Dataset EV1). One-third had a multidrug-resis-

tant (MDR) phenotype, defined as non-susceptible to at least three

different classes of antibiotics (Magiorakos et al, 2012).

Machine learning for predicting antimicrobial resistance

We used the genomic and transcriptomic data of the clinical

P. aeruginosa isolates to infer resistance and susceptibility pheno-

types to ceftazidime, meropenem, ciprofloxacin, and tobramycin

with machine learning classifiers. For each antibiotic, we included

all respective isolates categorized as either “resistant” or “suscepti-

ble”. For the genomic data, we included sequence variations (single

nucleotide polymorphisms; SNPs, including small indels) and gene

presence or absence (GPA) as features. In total, we analyzed

255,868 SNPs, represented by 65,817 groups with identical distribu-

tions of SNPs across isolates for the same group, and 76,493 gene

families with presence or absence information, corresponding to

14,700 groups of identically distributed gene families. 1,306 of these

gene families had an indel in some isolate genomes, which we

included as an additional feature. We evaluated SNP and GPA
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groups in combination with gene expression information for 6,026

genes (Fig 2).

For each drug, we randomly assigned isolates to a training set that

comprised 80% of the resistant and susceptible isolates, respectively,

and the remaining 20% to a test set. Parameters of machine learning

models were optimized on the training set and their value assessed

in cross-validation, while the test set was used to obtain another

independent performance estimate. As bacterial population structure

A

C

B

Figure 1. Geographic and phylogenetic distribution of 414 clinical Pseudomonas aeruginosa isolates used in this study.

A Geographic sampling site distribution, where circle size is proportional to the number of isolates from a particular location.
B Phylogenetic tree of the clinical isolates and seven reference strains (blue dots). A PA7-like outgroup clade including two clinical isolates is not shown. Abundant high-

risk clones are indicated by green bars. Scale bar: 0.04.
C Antimicrobial susceptibility profiles against the four commonly administered antibiotics tobramycin (TOB), ceftazidime (CAZ), ciprofloxacin (CIP), and meropenem

(MEM) determined by agar dilution according to Clinical & Laboratory Standards Institute Guidelines (CLSI, 2018).
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can influence machine learning outcomes, e.g., it has been shown

before in Escherichia coli that phylo-groups’ specific markers alone

could be used to predict antibiotic resistance phenotypes with accu-

racies of 0.65–0.91, depending on the antibiotic (Moradigaravand

et al, 2018), we also assessed performance while accounting for

population structure based on sequence types through a block cross-

validation approach. We trained several machine learning classifi-

cation methods on SNPs, GPA, and expression features individually

and in combination for predicting antibiotic susceptibility or resis-

tance of isolates and evaluated the classifier performances. We deter-

mined MIC (minimal inhibitory concentration) values of all clinical

isolates with agar dilution according to CLSI guidelines (CLSI, 2018)

to use as the gold standard for evaluation purposes.

We calculated the sensitivity and predictive value of resistance

(R) and susceptibility (S) assignment, as well as the macro F1-score,

as an overall performance measure based on a classifier trained on

a specific data type combination. The sensitivity reflects how good

that classifier is in recovering the assignments of the underlying

gold standard, representing the fraction of susceptible, or resistant,

samples, respectively. The predictive value reflects how trustworthy

the assignments of this particular classifier are, representing the

fraction of correct assignments of all susceptible or resistant

assignments, respectively. The F1-score is the harmonic mean of the

sensitivity and predictive value for a particular class, i.e., suscepti-

ble or resistant. The macro F1-score is the average over the two F1-

scores.

We used the support vector machine (SVM) classifier with a

linear kernel, as in Weimann et al (2016), to predict sensitivity or

resistance to four different antibiotics. Parameters were optimized

in nested cross-validation, and performance estimates averaged over

five repeats of this setup. The combined use of (i) GPA, (ii) SNPs,

and (iii) information on gene expression resulted in high (0.8–0.9)

or very high (> 0.9) sensitivity and predictive values (Fig 3).

Notably, the relative contribution of the different information

sources to the susceptibility and resistance sensitivity strongly

depended on the antibiotic. To assess the effect of the classification

technique, we compared the performance of an SVM classifier with

a linear kernel to that of random forests and logistic regression,

which we and others have successfully used for related phenotype

prediction problems (Asgari et al, 2018; Her & Wu, 2018; Wheeler

et al, 2018). For this purpose, we used the data type combination

with the best macro F1-score in resistance prediction with the SVM.

We evaluated the classification performance in nested cross-valida-

tion and on a held-out test dataset. In addition, we performed a

phylogeny-aware partitioning of our dataset, to assess the phyloge-

netic generalization ability of our technique.

The performance of the SVM in random cross-validation was

comparable to logistic regression (macro F1-score for the SVM:

0.83 � 0.06 vs. logistic regression: 0.84 � 0.06), but considerably

better than the random forest classifiers (0.67 � 0.14;

Appendix Figs S1 and S2, Dataset EV2). The performance on the

held-out dataset was in a comparable range (SVM: 0.87 � 0.07;

logistic regression: 0.90 � 0.04; random forest 0.71 � 0.16). We

furthermore observed similar macro F1-scores inferred in the phylo-

genetically selected cross-validation (SVM: 0.87 � 0.07; logistic

regression: 0.86 � 0.07; random forest 0.72 � 0.13), which

suggests only a minor influence of the bacterial phylogeny on the

classification performance. The performance on the phylogenetically

selected held-out dataset was again comparable, though perfor-

mance for the random forest deteriorated in comparison with the

cross-validation results (SVM: 0.86 � 0.06; logistic regression

0.83 � 0.06; random forests 0.56 � 0.03).

Ciprofloxacin resistance and susceptibility based on SVMs could

be correctly predicted with a sensitivity of 0.92 � 0.01 and

0.87 � 0.01, and with simultaneously high predictive values of

0.91 � 0.01 and 0.90 � 0.01, respectively, using solely SNP infor-

mation. The sensitivity of 0.80 � 0.04 and 0.79 � 0.02 and predic-

tive value of 0.73 � 0.01 and 0.76 � 0.02 to predict ciprofloxacin

susceptibility and resistance based exclusively on gene expression

data were also high. However, there was no added value of using

information on gene expression in addition to SNP information for

the prediction of susceptibility/resistance toward ciprofloxacin.

For the prediction of tobramycin susceptibility and resistance,

the machine learning classifiers performed almost equally well

when the three input data types (SNPs, GPA, and gene expression)

were used individually (values > 0.8). SNP information was predic-

tive of tobramycin resistance; however, it did not further improve

the classification performance when combined with the other data

types. GPA information alone was the most important data type for

classifying tobramycin resistance and susceptibility providing

 

 

gene presence/
absence (GPA)

gene expres-
sion (EXPR)

validation (20%)

block 1
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block 4

block 3
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training (80%)
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....
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per drug
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Figure 2. Training and validating a diagnostic classifier for antimicrobial
susceptibility prediction for four different drugs based on genomic (GPA/
SNPs) and transcriptomic profiles (EXPR).

The best data type combination was determined using 80% of the data in
standard and phylogenetically informed cross-validation (cv) and further
validated on the remaining 20% of the data.
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sensitivity values of 0.84 � 0.01 and 0.95 � 0.01 and predictive

values of 0.88 � 0.01 and 0.93 � 0.01, respectively. The perfor-

mance of GPA-based prediction increased further when gene expres-

sion values were included (P-value of a one-sided t-test: �0.0069

based on the macro F1-score as determined in repeated cross-valida-

tion; sensitivity values of 0.89 � 0.01 and 0.94 � 0.01 for resistance

and susceptibility prediction, respectively, and predictive values of

0.88 � 0.01 and 0.95 � 0.01).

For the correct prediction of meropenem resistance/susceptibil-

ity, gene presence/absence was most influential (sensitivity values

of 0.87 � 0.01 and 0.84 � 0.01 for resistance and susceptibility

prediction, respectively, and predictive values of 0.92 � 0.00 and

0.74 � 0.01). As observed for tobramycin, the use of genome-wide

information on GPA and of information on gene expression in

combination increased the sensitivity to detect resistance as well as

susceptibility to meropenem to 0.91 � 0.02 and 0.86 � 0.01 and

C
A

Z
C

IP
M

E
M

TO
B

0.4 0.6 0.8

F1−macro

sensitivity S

sensitivity R

F1−macro

sensitivity S

sensitivity R

F1−macro

sensitivity S

sensitivity R

F1−macro

sensitivity S

sensitivity R

EXPR

EXPR+SNPs

GPA

GPA+EXPR

GPA+EXPR+SNPs

GPA+SNPs

SNPS

Figure 3. Evaluation of AMR classification with a support vector machine (R: resistant; S: susceptible) using different performance metrics and data types
(EXPR: gene expression; GPA: gene presence or absence; and SNPs: single nucleotide polymorphisms) or combinations thereof.

Each individual panel depicts the results for one of four different anti-pseudomonal antibiotics (CAZ, CIP, MEM, and TOB). The solid vertical line in the box plots represents
the median, the box limits depict the 25th and 75th percentile, and the lower and upper hinges include values within� 1.5 times the interquartile range. Values outside that
range were plotted as solid dots.
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the predictive values to 0.93 � 0.01 and 0.81 � 0.03, respectively

(P-value of a one-sided t-test: 0.004).

For ceftazidime, using only information on gene presence/

absence revealed a sensitivity of susceptibility/resistance prediction

of 0.69 � 0.01 and 0.66 � 0.01, and predictive values of

0.66 � 0.01 and 0.67 � 0.01, respectively. Adding gene expression

information considerably improved the performance of susceptibil-

ity and resistance sensitivity to 0.83 � 0.02 and 0.81 � 0.02 and

predictive values of 0.81 � 0.02 and 0.83 � 0.01 (P-value of a one-

sided t-test 7.1 × 10�7). In summary, for tobramycin, ceftazidime,

and meropenem combining GPA and expression information gave

the most reliable classification results, whereas for ciprofloxacin we

found that only using SNPs provided the best performance (Table 1

and Dataset EV3). Thus, for the remainder of the manuscript, we

will focus on the results obtained with classifiers trained on those

data type combinations.

A candidate drug resistance marker panel

We determined the minimal number of molecular features required

to obtain the highest macro F1-score for each drug. We inferred the

number of features contributing to the classification from the

number of non-zero components of the SVM weight vectors, using a

standard cross-validation setup. For each value of the C parameter,

which controls the amount of regularization imposed on the model,

the cross-validation procedure was repeated five times (Fig 4,

Dataset EV4). Performance of antimicrobial resistance prediction

peaked for the candidate classifiers using between 50 and 100

features. Notably, the ciprofloxacin classifier required only two

SNPs until the learning curve performance was almost saturated,

whereas classifiers of drugs that included expression and gene

presence/absence markers required more features (> 50) to reach

saturation.

Next, we determined the C parameter resulting in the least

complex SVM model within one standard deviation of the peak

performance, i.e., with the best macro F1-score and as few as possi-

ble features for each drug (Friedman et al, 2001). We chose our

candidate marker panel for each drug as the set of all non-zero

features and designated the respective model as the most suitable

diagnostic classifier. We used SNP information for ciprofloxacin

resistance and susceptibility prediction and the combination of GPA

and expression features for tobramycin, meropenem, and ceftazi-

dime. We refer to each of these classifiers as the candidate classifier

for susceptibility and resistance prediction for a particular drug.

The ciprofloxacin candidate marker panel contained 50 SNPs.

The meropenem, ceftazidime, and tobramycin marker lists

consisted of 93, 37, and 59 expression and GPA features. The

complete list of candidate markers for the prediction of resistance

against the four antibiotics is given in Dataset EV5. This list

includes the candidate markers of the three input features namely

GPA, gene expression, and SNPs alone and in combination.

Table 2 is a shortlist of the panel markers for each drug based on

the data combination that had allowed us to train the most reli-

able classifier.

To test the performance of the candidate marker panel-based

classifiers on an independent set of clinical P. aeruginosa isolates,

we used them to predict antibiotic resistance for the samples of the

test dataset (Fig 5, Dataset EV6). On this held-out data, we obtained

an F1-sore for all drugs that was similarly high as before: Namely

this was 0.95 for meropenem, 0.77 for ceftazidime, and 0.96 for

tobramycin, using gene expression and gene presence/absence

features, and 0.87 for ciprofloxacin using SNP information. These

results indicate that the diagnostic classifiers have good generaliza-

tion abilities when applied to new samples. We observed more vari-

ability across drugs than in nested cross-validation, which is

expected due to the smaller size of the test set.

Improvement of assignment accuracy with increasing
sample numbers

We next investigated how prediction performance depended on the

number of samples used for classifier training. We trained the SVM

classifiers on random subsamples of different sizes of the full

dataset with 414 isolates. For each model, we recorded the macro

F1-score in five repeats of 10-fold nested cross-validation (Fig 6).

The classification performance saturates for all our classifiers well

before using all available training samples, suggesting that when

adding more isolates for resistance classification, the classification

performance would improve only very slowly. Markers potentially

remaining undiscovered in our study might have very small effect

sizes, requiring much larger dataset sizes for their detection. Inter-

estingly, the number of samples required until the performance

curve plateaued depends on the drugs and data types used. For

ciprofloxacin, the performance of susceptibility/resistance predic-

tion based on SNPs saturated quickly, likely due to the large impact

of the known mutations in the quinolone resistance-determining

region (QRDR), whereas the classifiers for the other three drugs,

which were trained on expression and gene presence/absence infor-

mation, required more samples until the F1-score plateaued. For

these classifiers, the dispersion of the macro F1-score for subsets of

the data with fewer samples is also considerably higher than for the

ciprofloxacin SNP models.

Table 1. Performance of support vector machine (SVM) classifier to predict sensitivity or resistance to four different antibiotics.

Antibiotic
Markers
used

Sensitivity
(resistance)

Sensitivity
(susceptibility)

Predictive value
(resistance)

Predictive value
(susceptibility) F1-score

Number
of markers*

CAZ GPA+EXPR 0.83 � 0.02 0.81 � 0.02 0.81 � 0.02 0.83 � 0.01 0.82 � 0.01 37

TOB GPA+EXPR 0.89 � 0.01 0.94 � 0.01 0.88 � 0.01 0.95 � 0.01 0.92 � 0.01 59

MEM GPA+EXPR 0.91 � 0.02 0.86 � 0.01 0.93 � 0.01 0.81 � 0.03 0.87 � 0.01 93

CIP SNPs 0.92 � 0.01 0.87 � 0.01 0.91 � 0.01 0.90 � 0.01 0.90 � 0.01 50

*The number of markers indicates the number of (combined) features that resulted in the least complex SVM model within one standard deviation of the peak
performance, i.e., with the best macro F1-score and as few as possible features for each drug.
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Performance estimation stratifying by sequence type suggests
some influence of the bacterial phylogeny on the prediction

In P. aeruginosa, different phylo-groups might contain different

antibiotic resistance genes or mutations alone or in

combinations. Thus, if there was an association of distinct resis-

tance-conferring genes with certain phylo-groups, our machine

learning approach might identify markers that distinguish

between different phylo-groups rather than between susceptible

and resistant clinical isolates. In Figs EV1–EV4, we show

CAZ CIP MEM TOB

#m
arkers

F
1−

score_m
acro

0.001 0.01 0.1 0.50.001 0.01 0.1 0.50.001 0.01 0.1 0.50.001 0.01 0.1 0.5

0

50

100

150

0.4

0.6

0.8

SVM C parameter

optimal model

non−optimal model

Figure 4. The number of features used by the support vector machine classifier (top panels) and corresponding classification performance (bottom panels)
varies with the hyperparameter C.

The C parameter is inversely related to the number of markers being included in the model, i.e., lower values for the C parameter yield models with less features. The SVM
resistance/susceptibility classifier was evaluated in five repeats of 10-fold nested cross-validation. Each panel depicts the results for a different drug (CAZ, CIP, MER, and TOB)
based on the best data type combination (GPA+EXPR/SNPs). The model with the fewest features within one standard deviation of the maximal performance was selected as
the most suitable diagnostic classification model (red) (Dataset EV5). The solid vertical line in the box plots represents the median, the box limits depict the 25th and 75th

percentile, and the lower and upper hinges include values within � 1.5 times the interquartile range. Values outside that range were plotted as solid dots.
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Table 2. The top 15 candidate markers ranked according to the contribution of each marker to the support vector machine classifier for each drug
based on the best performing combination of data types.

Drug Data type PA14/CARD gene_id PA14/CARD gene_acc Prokka/Roary gene_id SNP position

TOB (GPA_EXPR) GPA A7J11_00271 qacEdelta1 emrE

GPA A7J11_02078 sul1 folP_2_indel

GPA PA14_04410 ptsP ptsP

GPA group_282

GPA PA14_20840 group_14073

GPA group_20477

EXPR PA14_15450 traJ

GPA PA14_15100 mepM_1

GPA A7J11_02078 sul1 folP_2

GPA group_8948

GPA group_51714

EXPR PA14_38410 amrB

GPA PA14_18565 alg8 alg8

GPA group_3462

GPA group_17749

MEM (GPA_EXPR) GPA group_596_indel/oprD_1

GPA PA14_51880 oprD oprD_4_indel

EXPR PA14_46070 gbuA

EXPR PA14_05550 oprM

GPA group_3638

EXPR PA14_51880 oprD

GPA group_6217/pknK_1

EXPR PA14_05540 mexB

EXPR PA14_07630

EXPR PA14_63090 lldD

GPA PA14_11960 yabI_indel

EXPR PA14_70940 betA

GPA group_6280

GPA group_15876

GPA group_10960

CIP (SNPs) SNP PA14_23260 gyrA 2015001

SNP PA14_65605 parC 5845617

SNP PA14_55600 4947631

SNP PA14_56040 5004892

SNP PA14_30960 traG 2690138

SNP PA14_31010 2694327

SNP PA14_29390 2545634

SNP PA14_41560 nasA 3710561

SNP PA14_18260 fruK 1567193

SNP PA14_30910 trbE 2685860

SNP PA14_30960 traG 2689741

SNP PA14_59210 5274257

SNP PA14_44640 3974007

SNP PA14_41110 3665768

SNP PA14_15460 merA 1310089
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susceptibility and resistance of each isolate in the context of the

phylogenetic tree as predicted by the diagnostic classifier and

based on AST for each of the drug. To assess whether our

predictive markers are biased by the phylogenetic structure of

the clinical isolate collection, we assessed classification robust-

ness in a block cross-validation approach. Here, isolates of

phylo-groups with differing sequence types as determined by

MLST were grouped into blocks and all isolates of a given block

were only allowed to be either in the training or test folds

(Figs 2 and 5). In addition, instead of using a random assign-

ment of strains into test and training dataset, we analyzed the

performance only allowing strains in a test dataset corresponding

to the block cross-validation training dataset with sequence types

that were not already included in this training dataset. For all

classifiers including our candidate diagnostic classifiers, we

found that the block cross-validation performance estimates were

slightly lower than those obtained using a sequence type-

unaware estimation (F1-score difference between ~ 0.03 and 0.05

for the diagnostic classifiers). This was particularly apparent for

some suboptimal data type combinations, such as for predicting

tobramycin resistance using SNPs or gene expression, where a

substantially lower discriminative performance was achieved in

block- compared to random cross-validation (macro F1-score dif-

ference > 0.1, Dataset EV3). Interestingly, we observed that the

ranking of the performance by data type remained almost identi-

cal for all drugs. Overall, the performance estimates we obtained

using this phylogenetically insulated test dataset were compara-

ble to the block cross-validation estimates, only tobramycin resis-

tance prediction using classifiers trained fully or partly on SNPs

dropped considerably in performance.

In summary, this confirmed that the various P. aeruginosa

phylogenetic subgroups possess similar mechanisms and molecular

markers for the resistance phenotype and that the identified mark-

ers are largely distinctive for resistance/susceptibility instead of

phylogenetic relationships using most data type combinations.

Despite the observed independence of the presence of genetic

resistance markers and bacterial phylogeny, for some antibiotics

and data types we also found a non-negligible phylo-group-depen-

dent performance effect. This underlines the importance of assess-

ing the impact of the phylogeny on the antimicrobial resistance

prediction.

Misclassified isolates are more frequent near the
MIC breakpoints

We tested whether we could detect an overrepresentation of

misclassified samples among the samples with a MIC value close to

the breakpoints compared to samples with higher or lower MIC

values, selecting samples from equidistant intervals (in log space)

around the breakpoint. We report only the strongest overrepresen-

tation for each drug after multiple testing correction. For ciproflox-

acin, significantly more samples with a MIC between 0.5 and 8

were misclassified (31 of 139 samples (22%)) than samples with a

MIC smaller than 0.5 or larger than 8 (7 of 219 samples (3%))

(Fisher’s exact test with an FDR-adjusted P-value of 6.2 × 10�8;

Fig 7). For ceftazidime, we found that 46 of 177 samples (26%)

with a MIC between 4 and 64 were misclassified whereas only 21 of

157 (13%) of samples with a MIC smaller or higher than those

values were misclassified (adjusted P-value: 0.014). For mero-

penem, we found that 26 of 207 samples (13%) with a MIC

between 1 and 16 were misclassified, but only 8 of 147 (5%) of all

samples with a MIC smaller or higher than those values were

misclassified (adjusted P-value: 0.05). For tobramycin, no signifi-

cant difference was found.

Table 2 (continued)

Drug Data type PA14/CARD gene_id PA14/CARD gene_acc Prokka/Roary gene_id SNP position

CAZ (GPA_EXPR) EXPR PA14_10790 ampC

GPA A7J11_02078 sul1 folP_2

GPA group_8955

EXPR PA14_48900

GPA PA14_00810 group_13626

EXPR PA14_15770

GPA group_3462

GPA PA14_33690 pvdE yojI

GPA group_23010

GPA petE_indel

EXPR PA14_31240

EXPR PA14_53500

GPA group_5517

GPA PA14_22650 group_14516_indel

GPA group_63043

For gene presence/absence (GPA) markers, we provide the gene id and accession based on PA14 reference genome gene family member or based on the
Comprehensive Antibiotic Resistance Database (CARD) (Jia et al, 2017). Otherwise, we include the gene name or id of each marker as generated by the bacterial
genome annotation tool Prokka (Seemann, 2014) and protein family clustering software Roary (Page et al, 2015). Expression markers are based on the PA14
genome, too. For short nucleotide polymorphisms (SNPs), we report the genome position in the reference PA14 genome.
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Discussion

One of the most powerful weapons in the battlefield of drug-resistant

infections is rapid diagnostics of resistance. Earlier and more detailed

information on the pathogens’ antimicrobial resistance profile has the

potential to change antimicrobial prescribing behavior and improve

the patient’s outcome. The demand for faster results has initiated

investigation of molecular alternatives to today’s culture-based clini-

cal microbiology procedures. However, for the successful implemen-

tation of robust and reliable molecular tools, it is critical to identify
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Figure 5. Performance of the support vector machine (SVM) classifier for antimicrobial resistance and susceptibility prediction for different data types,
different drugs, and different evaluation schemes.

The SVM performance was summarized by the F1-score and is shown for standard cross-validation (standard_cv, blue) and cross-validation using phylogenetically
related blocks of isolates (block_cv, red) based on the training dataset (80% of the isolates) and for the validation dataset (green; 20% of the isolates). EXPR: gene
expression; GPA: gene presence and absence with indel information. SNPs: short nucleotide polymorphisms. The solid vertical line in the box plots represents the
median, the box limits depict the 25th and 75th percentile, and the lower and upper hinges include values within � 1.5 times the interquartile range. Values outside
that range were plotted as solid dots.
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the entirety of the molecular determinants of resistance. Failure to

detect resistance can lead to the administration of ineffective or

suboptimal antimicrobial treatment. This has direct consequences for

the patient and poses significant risks especially in the critically ill

patient. Conversely, failing to identify susceptibility may result in the

avoidance of a drug despite the fact that it would be suitable to treat

the pathogen, in the extreme case leading to patient death due to a

lack of known treatment options. Overtreatment could also be a

consequence and the needless use of broad-spectrum antibiotics. This

drives costs in the hospital, puts patients at risk for more severe side

effects, and may contribute to the development of drug resistance by

applying undesired selective pressures.

In this study, we show that without any prior knowledge on the

molecular mechanisms of resistance, machine learning approaches
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Figure 6. Classification performance improves and plateaus with the number of training samples used.

A support vector machine-based resistance/susceptibility classifier was trained on differently sized and randomly drawn subsamples from our isolate collection and
evaluated in five repeats of a 10-fold nested cross-validation. Each panel depicts the results for a different drug (CAZ, CIP, MEM, and TOB) based on the best data type
combination (GPA+EXPR/SNPs). The solid vertical line in the box plots represents the median, the box limits depict the 25th and 75th percentile, and the lower and upper
hinges include values within � 1.5 times the interquartile range. Values outside that range were plotted as solid dots.
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using genomic and transcriptomic features can provide high antibi-

otic resistance assignment capabilities for the opportunistic

pathogen P. aeruginosa. The performance of drug resistance predic-

tion was strongly dependent on the antibiotic.

Ciprofloxacin resistance and susceptibility prediction mostly

relied on SNP information. Particularly, two SNPs in the quinolone

resistance-determining region (QRDR) of gyrA and parC had the

strongest impact on the classification (Dataset EV3). This is an

expected finding as quinolone antibiotics act by binding to their

targets, gyrase, and topoisomerase IV (Bruchmann et al, 2013); and

target-mediated resistance caused by specific mutations in the encod-

ing genes is the most common and clinically significant form of resis-

tance (del Barrio-Tofiño et al, 2017). Although the sensitivity to

predict resistance and susceptibility from only gene expression data

MEM

GPA+EXPR

TOB

GPA+EXPR

CAZ

GPA+EXPR

CIP

SNPs
0.

06

0.
12

5

0.
25 0.

5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0.
06

0.
12

5

0.
25 0.

5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0

25

50

75

0

25

50

75

MIC

#i
so

la
te

s

misclassified correctly classified intermediate (not classified)

Figure 7. Number of samples misclassified and correctly predicted by the support vector machine resistance and susceptibility classifier (SVM) grouped by
their minimum inhibitory concentration.

Each panel depicts the results for a different anti-pseudomonal drug (CAZ: ceftazidime; CIP: ciprofloxacin; MEM: meropenem; TOB: tobramycin) for the best data type
combination (GPA+EXPR/SNPs). Misclassified and correctly classified samples for the training dataset (80%) were inferred in a 10-fold cross-validation. An SVM trained on
the training dataset was used to predict resistance/susceptibility of the test samples (20%). The number of misclassified samples in the training (80%) and test set was
aggregated.
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were also high toward ciprofloxacin, there was no added value of

using information on gene expression in addition to SNP informa-

tion. Nevertheless, for the design of a diagnostic test system, it might

be of value to include also gene expression information as a fail-safe

strategy. Interestingly, among the gene expression classifiers that

were associated with ciprofloxacin susceptibility/resistance, we

found prtN, which is involved in pyocin production. Enhanced

pyocin production is, as the SOS response, induced under DNA-

damaging stress conditions (Migliorini et al, 2019) and was recently

reported to contribute to ciprofloxacin resistance (Fan et al, 2019).

For the prediction of tobramycin susceptibility and resistance,

the machine learning classifiers performed almost equally well

when the three input data types (SNPs, GPA, and gene expression)

were used individually (sensitivity and predictive values > 0.8).

Remarkably, the combined use of the GPA and the gene expres-

sion datasets improved the classification performance. Although

SNP information also was predictive of tobramycin resistance, it

did not further improve the classification performance when

combined with the other feature types. GPA information alone was

the most important data type for classifying tobramycin resistance

or susceptibility. The majority of aminoglycoside-resistant clinical

isolates harbor genes encoding for aminoglycoside-modifying

enzymes (AMEs). The AMEs are very diverse but are usually

encoded by genes located on mobile genetic elements, including

integrons and transposons. In accordance, the presence of respec-

tive markers that indicate the presence of these mobile elements

was found to be strongly associated with tobramycin resistance

(e.g., qacEdelta1, sul1, or folP). However, the most influential

discriminator was the presence of the emrE gene. EmrE has been

described to directly impact on aminoglycoside resistance by medi-

ating the extrusion of small polyaromatic cations (Li et al, 2003).

Second, we identified the presence of ptsP (encoding phospho-

enolpyruvate protein phosphotransferase) as an important marker

for tobramycin resistance. This gene has previously already been

associated with tobramycin resistance in a transposon mutant

library screen (Schurek et al, 2008).

The performance of GPA-based prediction increased further

when gene expression values were included. We found, e.g., amrB

(mexY), which encodes a multidrug efflux pump known to confer to

aminoglycoside resistance (Westbrock-Wadman et al, 1999; Lau

et al, 2014), as one of the top candidates within the marker panel.

This confirms that expression of efflux pumps is an important bacte-

rial trait that drives the resistance phenotype in P. aeruginosa.

Tobramycin resistance/susceptibility was also associated with an

altered expression or SNPs within genes involved in type 4 pili

motility (pilB pilV2, pilC, and pilH) and the type three secretion

system (pcr genes). Although the connection to tobramycin resis-

tance might be not exactly obvious, it has been proposed that

surface motility can lead to extensive multidrug adaptive resistance

as a result of the collective dysregulation of diverse genes (Sun et al,

2018).

For the correct prediction of meropenem resistance/susceptibil-

ity, gene presence/absence was most influential. Interestingly, in

contrast to tobramycin resistance classification, we observed a

substantial accumulation of indels in specific marker genes. Among

these marker genes were ftsY, involved in targeting and insertion of

nascent membrane proteins into the cytoplasmic membrane, czcD,

encoding a cobalt–zinc–cadmium efflux protein, and oprD.

Inactivation of the porin OprD is the leading cause of carbapenem

non-susceptibility in clinical isolates (Köhler et al, 1999). As

expected, also a decreased oprD gene expression in the resistant

group of isolates was identified as an important discriminator. Inter-

estingly though, the most important gene expression marker was

not the down-regulated oprD, but an up-regulation of the gene

gbuA, encoding a guanidinobutyrase in the arginine dehydrogenase

pathway, in the meropenem-resistant group of isolates. It is known

that arginine metabolism plays a critical role during host adaptation

and persistence (Hogardt & Heesemann, 2013). Interestingly, it was

also described before that GbuA is linked to virulence factor expres-

sion and the production of pyocyanin (Jagmann et al, 2016). Our

results indicate that up-regulation of gbuA might be the result of a

non-fully functional OprD porin. Since OprD has been shown to be

involved in arginine uptake (Tamber & Hancock, 2006), one might

speculate that lack of arginine due to a non-functional OprD triggers

the expression of gbuA to compensate for the fitness defect of the

oprD mutant.

Furthermore, components encoding the MexAB-OprM efflux

pump (mexB, oprM) were identified as important features associated

with resistance. This efflux pump is known to export beta-lactams,

including meropenem (Li et al, 1995; Srikumar et al, 1998; Cler-

mont et al, 2001).

As observed for tobramycin, the correct prediction of ceftazidime

resistance/susceptibility was strongly influenced by both gene

expression values (here ampC, fpvA, pvdD, and algF) and gene pres-

ence/absence (including the presence of mobile genetic elements).

While AmpC is a known intrinsic beta-lactamase, able to hydrolyze

cephalosporins (Lister et al, 2009), the association of ceftazidime

resistance with expression variations in fpvA, pvdD, and algF,

involved in the uptake of iron and the production of alginate,

respectively, is less clear. Interestingly, sequence variations in regu-

lators such as AmpR, AmpG, AmpD (including AmpD homologs),

and mpl and alteration in penicillin-binding proteins such as PBP4

(dacB) have been described to trigger constitutive ampC overexpres-

sion (Bagge et al, 2002; Juan et al, 2005, 2006; Schmidtke &

Hanson, 2008; Moya et al, 2009; Balasubramanian et al, 2012;

Cabot et al, 2018). AmpR, however, does not only control ampC

expression but has also been described to be a global regulator of

resistance and virulence in P. aeruginosa and to be an important

acute–chronic switch regulator (Balasubramanian et al, 2015). As

such, AmpR is also involved in the regulation of alginate production

as well as iron acquisition via siderophores. This might explain why

expression of fpvA, pvdD, and algF was found to be associated with

ceftazidime resistance.

Since we did not identify any of the previously described

sequence variations in the various regulators of ampC expression by

the use of the machine learning approach, we re-analyzed them in

more detail. Interestingly, we identified a small number of isolates

in the resistant group (11 of 165) harboring an R504C substitution

in the gene ftsI (PBP3). Mutations in PBP3 have been described to

represent an AmpC-independent resistance evolution in vitro and

occur upon beta-lactam treatment in vivo (Cabot et al, 2016, 2018;

López-Causapé et al, 2017). Particularly, the R504C substitution has

been found in clinical cystic fibrosis isolates and is contributing to

ceftazidime resistance (López-Causapé et al, 2017). However, all

but three of our CAZ-resistant isolates with a R504C mutation in ftsI

likewise showed a strong ampC overexpression, most likely
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explaining why ftsI was not identified as a discriminative marker

in our analysis, despite clearly harboring resistance-associated

mutations.

Adding information on the gene expression considerably

improved the performance of susceptibility and resistance sensitiv-

ity for ceftazidime, which was not observed in a similar scale for

any other antibiotic.

Interestingly, although we recognized widely overlapping resis-

tance profiles for all antibiotics (Fig EV5), we did not observe a

strong co-resistance bias in the identified markers. For example,

among the best performing classifiers for meropenem, ceftazidime,

and tobramycin, there were only overlapping markers between

ceftazidime and tobramycin. These included expression of

PA14_15420 and presence of A7J11_02078/sul1/folP_2, group_282,

group_3462, and group_5517 which account for 5/59 and 5/37 of

the total features or 14.7%/17.1% of the total weight of the ceftazi-

dime and tobramycin SVM classifiers, respectively. Group_282,

group_3462, and group_5517 genes are hypothetical genes. Sul1,

which is located on mobile elements (usually class 1 integrons),

could indicate that the shared signal of the tobramycin and ceftazi-

dime classifiers is due to resistance genes being found on the same

resistance cassettes, as class 1 integrons carrying beta-lactamases as

well as aminoglycoside-modifying enzymes are frequently detected

(Poirel et al, 2001; Fonseca et al, 2005).

In conclusion, we demonstrate that extending the genetic

features (SNPs and gene presence/absence) with gene expression

values is key to improving performance. Thereby, relative contribu-

tion of the different categories of biomarkers to the susceptibility

and resistance sensitivity strongly depended on the antibiotic. This

is in stark contrast to the prediction of antibiotic resistance in many

Enterobacteriaceae, where knowledge of the presence of resistance-

conferring genes, such as beta-lactamases, is usually sufficient to

correctly predict the susceptibility profiles. However, analysis of the

gene expression marker lists revealed that the resistance phenotype

in the opportunistic pathogen P. aeruginosa (and possibly also in

other non-fermenters) is multifactorial and that alterations in gene

expression can alter the resistance phenotype quite substantially.

Intriguingly, we found that the performance of our classifiers

improved if the isolates exhibited MIC values that were not close to

the breakpoint. This was especially apparent for ciprofloxacin. It has

been demonstrated that patients treated with levofloxacin for blood-

stream infections caused by Gram-negative organisms for which MICs

were elevated, yet still in the susceptible category, had worse

outcomes than similar patients infected with organisms for which

MICs were lower (Defife et al, 2009). A possible explanation for treat-

ment failure could be the presence of first-step mutations in gyrA that

lead to MIC values near the breakpoint. If subjected to quinolones,

those isolates can rapidly acquire second-step mutations in parC that

would then exhibit a fully resistant phenotype. An additional explana-

tion might also be that generally, MICs have a low level of repro-

ducibility (Turnidge & Paterson, 2007; Juan et al, 2012; Javed et al,

2018). A non-accurate categorization due to uncertainty in testing

near the MIC breakpoint can explain failure in the assignment of drug

resistance by the machine learning classifiers.

Capturing the full repertoire of markers that are relevant for

predicting antimicrobial resistance in P. aeruginosa will require

further studies, to expand the predictive power of the established

marker lists. The remaining misclassified samples in our study on

the basis of these marker lists represent a valuable resource to

uncover further spurious resistance mutations.

The broad use of molecular diagnostic tests promises more

detailed and timelier information on antimicrobial-resistant pheno-

types. This would enable the implementation of early and more

targeted, and thus more effective antimicrobial therapy for

improved patient care. Importantly, a molecular assay system can

easily be expanded to test for additional information such as the

clonal identity of the bacterial pathogen or the presence of critical

virulence traits. Thus, availability of molecular diagnostic test

systems can also provide prognostic markers for disease outcome

and give valuable information on the clonal spread of pathogens in

the hospital setting. However, to realize the full potential of the

envisaged molecular diagnostics, clinical studies will be needed to

demonstrate that broad application of such test systems will have

an impact in clinical decision-making, provide the basis for more

efficient antibiotic use, and also decrease the costs of care.

Materials and Methods

Strain collection and antibiotic resistance profiling

Our study included 414 clinical P. aeruginosa isolates provided by

different clinics or research institutions: 350 isolates were collected

in Germany (138 at the Charité Berlin (CH), 89 at the University

Hospital in Frankfurt (F), 39 at the Hannover Medical School

(MHH), and 84 at different other locations). Sixty-two isolates were

provided by a Spanish strain collection located at the Son Espases

University Hospital in Palma de Mallorca (ESP), and two samples

originated from Hungary and Romania, respectively.

All clinical isolates were tested for their susceptibility toward the

four common anti-pseudomonas antibiotics tobramycin (TOB),

ciprofloxacin (CIP), meropenem (MEM), and ceftazidime (CAZ).

Minimal inhibitory concentration (MIC) testing and breakpoint

determination were performed in agar dilution according to Clinical

& Laboratory Standards Institute (CLSI) Guidelines (CLSI, 2018).

MIC testing was performed in triplicates for all isolates. If results

varied, up to five replicates were used. Only isolates with at least

three matching results were included in the study. Most of the

isolates were categorized as multidrug-resistant (resistant to three or

more antimicrobial classes, Dataset EV1). As reference for differen-

tial gene expression and sequence variation analysis, the UCBPP-

PA14 strain was chosen.

Colony screening

To rule out possible contaminations, all isolates were continuously

re-streaked at least twice from single colonies. Only isolates with

reproducible outcomes in phenotypic tests were included in the final

panel, which furthermore passed DNA sequencing quality control

(> 85% sequencing reads mapped to P. aeruginosa UCBPP-PA14

reference genome, total read GC content of 64–66%).

RNA sequencing

For comparable whole-transcriptome sequencing, all clinical isolates

and the UCBPP-PA14 reference strain were cultivated at 37°C in LB
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broth and harvested in RNAprotect (Qiagen) at OD600 = 2. Sequenc-

ing libraries were prepared using the ScriptSeq RNA-Seq Library

Preparation Kit (Illumina), and short read data (single end, 50 bp)

were generated on an Illumina HiSeq 2500 machine creating on

average 3 million reads per sample. The 414 samples were distrib-

uted across 24 independent sequencing pools. We assessed possible

batch effects using triplicates of the PA14-wt (Appendix Fig S3). The

majority of the genome was very stably expressed across the repli-

cates (Pearson correlation coefficient ≥ 0.94).

The reads were mapped with Stampy [v1.0.23; (Lunter & Good-

son, 2011)] to the UCBPP-PA14 reference genome (NC_008463.1),

which is available for download from the Pseudomonas Genome

database (http://www.pseudomonas.com). Mapping and calcula-

tion of reads per gene (rpg) values were performed as described

previously (Khaledi et al, 2016). Expression counts were log-trans-

formed (to deal with zero values, we added one to the expression

counts).

DNA sequencing

Sequencing libraries were prepared from genomic DNA using the

NEBNext Ultra DNA Library Prep Kit (New England Biolabs) and

sequenced in paired-end mode on Illumina HiSeq or MiSeq machi-

nes, generating either 2 × 250 or 2 × 300 bp reads. On average,

2.89 million reads were generated per isolate (ranging from 653,062

to 21,086,866 reads with at least 30 times total genome coverage per

isolate). All reads were adapter and quality-clipped using fastq-mcf

(Andrews, 2010).

SNP calling

DNA sequencing reads were mapped with Stampy as described

above (see RNA sequencing). For variant calling, SAMtools, v0.1.19

(Li et al, 2009), was used. We noticed that sometimes sequencing

errors (particularly around indels) tended to influence calling accu-

racy (e.g., a SNP was called although the nucleotide chance

appeared only in a fraction of the reads). For correction of these

obvious errors, we implemented an additional step where nucleo-

tide positions were converted into the most likely sequence accord-

ing to the most frequently occurring nucleotide at this position.

Phylogeny

Paired-end reads (read length 150, fragment size 200) of eight

reference genomes were simulated using art_illumina (v2.5.8)

with the default error profile at 20-fold coverage (Huang et al,

2012). Together with our 414 clinical isolates, the sequencing

reads were mapped to the coding regions of reference genome

UCBPP-PA14 by BWA-MEM (v0.7.15) (preprint: Li, 2013).

SAMtools (v1.3.1) (Li et al, 2009) and BamTools (Barnett et al,

2011) (v2.3.0) were used for indexing and sorting the aligned

reads, respectively, followed by variant calling using FreeBayes

(v1.1.0) (preprint: Garrison & Marth, 2012). The consensus coding

sequences were computed by BCFtools (v1.6) (Li, 2011) and then

sorted into families by corresponding reference regions. A gene

family was excluded if the gene sequence of any of its member

differed by more than 10% in lengths as compared to the length

of the reference genome gene family. Totally, 5,936 families were

retained. The sequences of each family were aligned by MAFFT

(v7.310) (Katoh & Standley, 2013), and the alignments were

concatenated. SNP sites that were only present in a single isolate

were removed from the alignment. The final alignment was

composed of 558,483 columns, and the approximately maximum

likelihood phylogeny was then inferred by FastTree (v2.1.10,

double precision) (Price et al, 2010).

Pan-genome analysis and indel calling

The trimmed reads were assembled with SPAdes, v.3.0.1, using

the –careful parameter (Bankevich et al, 2012). The assembled

genomes were annotated using Prokka (v1.12) (Seemann, 2014)

using the metagenome mode of Prokka for gene calling, as we had

noticed that genes on resistance cassettes were often missed by the

standard isolate genome gene calling procedure. The gene

sequences were clustered into gene families using Roary (Page

et al, 2015). We observed that Roary frequently clustered together

gene sequences of drastically varying lengths due to indels or start

and stop codon mutations in those gene sequences and frequently

also splits orthologous genes into more than one gene family. To

overcome this behavior, we modified Roary to require at least

95% alignment coverage in the BLAST step (https://github.com/

hzi-bifo/Roary).

For matching the Prokka annotation and the reference annota-

tion of the PA14 strain, we used bedtools (Quinlan, 2014) to search

for exact overlaps of the gene coordinates. In a second step, we

identified all Roary gene families that contained a PA14 gene. To

identify insertions and deletions in the Roary gene families, we

extracted nucleotide sequences for each gene family and used

MAFFT (Katoh & Standley, 2013) to infer multiple sequence align-

ments. We restricted this analysis to gene families present in at

least 50 strains. Then, we used MSA2VCF (https://github.com/lin

denb/jvarkit/) for calling variants in the gene sequences and

restricted the output to insertion and deletions of at least nine

nucleotides.

Support vector machine classification

For applying cross-validation, the dataset was split once randomly

and once phylogenetically informed (see below) into k-folds (k set

to 10, unless specified otherwise). Classifier hyperparameters were

optimized on a k � 1 fold-sized partition, and performance of the

optimally parameterized method was determined on the left out k

fraction of the data. This was performed for all possible k partitions,

assignments summarized, and final performance measures obtained

by averaging.

Comparison of different machine learning classifiers

We used the training set for hyperparameter tuning of the classi-

fiers, i.e., a linear SVM, RF, and LR, optimizing the F1-score in 10-

fold cross-validation and then evaluated the best trained classifier

on the held-out set. The expression features (EXPR) and any combi-

nation of features with another data type (GPA and SNPs) were

transformed to have zero mean and unit variance, whereas binary

features (GPA, SNPs, and GPA+SNPs) were not transformed. The

RF classifier was optimized for the macro F1-score over different
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hyperparameters: (i) the number of decision trees in the ensemble,

(ii) the number of features for computing the best node split, (iii)

the function to measure the quality of a split, and (iv) the minimum

number of samples required to split a node. The logistic regression

and the linear SVM were optimized for the macro F1-score over: (i)

the C parameter (inverse to the regularization strength) and (ii)

class weights (to be balanced based on class frequencies or to be

uniform over all classes). Subsequently, we measured the perfor-

mance of the optimized classifiers over accordingly generated, held-

out sets of samples.

In clinical practice, P. aeruginosa strains isolated from patients

are likely to include sequence types that are already part of our

isolate collection. To obtain a more conservative estimate of the

performance of the antimicrobial susceptibility prediction, we also

validated the classifiers on a held-out dataset composed of entirely

new sequence types and also selected the folds in cross-validation

to be non-overlapping in terms of their sequence types (block cross-

validation). For partitioning the isolate collection into sequence

types, we used spectral clustering over the phylogenetic similarity

matrix (preprint: von Luxburg, 2007). We obtained this matrix by

applying a Gaussian kernel over the matrix of distances between

isolates based on the branch lengths in the phylogenetic tree.

Multilocus sequence typing

Consensus fastq files for each isolate were created with SAMtools to

extract the seven P. aeruginosa relevant MLST gene sequences

(acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE). Sequence type

information was obtained from the P. aeruginosa MLST database

(https://pubmlst.org/paeruginosa/; Jolley & Maiden, 2010).

Implementation

We encapsulated the sequencing data processing routines in a

stand-alone package named seq2geno2pheno. The SVM classifi-

cation was conducted with Model-T, which is built on scikit-learn

(Pedregosa et al, 2011) and was already used as the prediction

engine in our previous work on bacterial trait prediction (Weimann

et al, 2016). seq2geno2pheno also implements a framework to use a

more broader set of classifiers, which we used to compare different

classification algorithms for drug resistance prediction. Finally, we

created a repository that includes scripts to re-produce the figures

and analyses presented in this paper using the aforementioned

packages.

Data availability

• RNA-Seq data: Gene Expression Omnibus GSE123544 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123544)

• Figure generation and analyses scripts: GitHub (https://github.

com/hzi-bifo/Predicting_PA_AMR_paper)

• Sequencing data processing and classifier comparison software:

GitHub (https://github.com/hzi-bifo/seq2geno2pheno)

• SVM classification software: GitHub (https://github.com/hzi-bifo/

Model-T)

• DNA-Seq data: Sequence Read Archive PRJNA526797 (https://

www.ncbi.nlm.nih.gov/sra/?term=PRJNA526797)

• Direct input for training the machine learning classifiers (genomic

features and resistance data tables): Zenodo https://doi.org/10.

5281/zenodo.3464542 (https://zenodo.org/record/3464542#.Xf

YShRtCeUk)

Expanded View for this article is available online.
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The paper explained

Problem
Limited therapy options due to the emergence and spread of multi-
drug resistance leave clinicians with uncertainty about which drug to
prescribe. Inadequate initial therapy, however, may cause suffering or
death of infected patients, promotes further resistant development,
and imposes an enormous financial burden on healthcare systems
and on society in general.

Results
We integrated genomic, transcriptomic, and phenotypic data on
antibiotic resistance profiles of 414 clinical Pseudomonas aeruginosa
isolates and used a machine learning-based approach to identify sets
of molecular markers that allowed a reliable prediction of antibiotic
resistance against four antibiotic classes. Using information on (i) the
presence or absence of genes, (ii) sequence variations within genes,
and (iii) gene expression profiles alone or in combinations resulted in
high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values.
Importantly, transcriptome data significantly improved the prediction
outcome as compared to using genome information alone. Identified
biomarkers included known antibiotic resistance determinants (e.g.,
gyrA, ampC, oprD, efflux pumps) as well as markers previously not
associated with antibiotic resistance.

Impact
Our findings demonstrate that the identification of molecular markers
for the prediction of antibiotic resistance holds promise to change
current resistance diagnostics. However, gene expression information
may be required for highly sensitive and specific resistance prediction
in the problematic opportunistic pathogen P. aeruginosa.
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