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The propagation of a surface plasmon polariton on a planar metal surface perturbed byN equally spaced rectangular
grooves, each with the same width but with varying depths, is investigated by the finite-difference time-domain
method. For a linear dependence of the depth of the nth groove on n, the transmissivity of the surface plasmon
polariton and of the power radiated into the vacuum above the surface, as functions of its frequency, consist of
N equally spaced dips and peaks, respectively. These are the signatures of the surface plasmon polariton analog
of a Wannier–Stark ladder. © 2014 Optical Society of America
OCIS codes: (240.6680) Surface plasmons; (050.2770) Gratings; (070.7345) Wave propagation.
http://dx.doi.org/10.1364/OL.39.001613

In the 1950s, Wannier [1] re-examined the problem of the
motion of an electron in a periodic potential while it was
being accelerated by a constant, uniform, external elec-
tric field, a problem first studied by Bloch in 1928 [2]. He
found that the energy spectrum of the electron consists
of equidistant discrete energy levels in the presence of
the electric field, with the separation between consecu-
tive levels proportional to the electric field strength, in-
stead of the band structure it possesses in the absence of
the electric field. These equally spaced energy levels
have come to be called an electronic Wannier–Stark
ladder. Wannier’s prediction was confirmed in the labo-
ratory some 20 years later [3].
Closely related with a Wannier–Stark ladder are Bloch

oscillations, a periodic motion of the electrons under the
influence of the external field. A Wannier–Stark ladder is
the frequency domain counterpart of time-resolved Bloch
oscillations [4]. These oscillations were first observed
experimentally in 1992 [5,6].
In the years following this early work, experimental

and theoretical searches were conducted for simpler
systems, consisting of electrically neutral particles in-
stead of electrons displaying this phenomenon. In an
early effort of this kind, a Wannier–Stark ladder was ob-
served in a system consisting of atoms moving in an
accelerating optical lattice formed by two interfering
laser beams [7].
More recently, an optical Wannier–Stark ladder was

studied theoretically by Monsivais et al. [8], who investi-
gated the transmission of transverse electromagnetic
waves through a finite stratified structure whose dielec-
tric constant at a given frequency was the sum of a peri-
odic function of the coordinate normal to the interfaces
of the structure, and a linear function of that coordinate.
The transmission coefficient as a function of the angle
of incidence of the electromagnetic wave displayed a
Wannier–Stark ladder for some values of the parameters
characterizing the structure. The first experimental ob-
servation of an optical Wannier–Stark ladder was carried
out for a structure consisting of a linearly chirped Moiré
grating written in the core of an optical fiber [9].

Mechanical systems have been devised that display
analogs of Wannier–Stark ladders. These include strati-
fied elastic media in which the square of the shear wave
speed is a periodic function of the coordinate normal to
the interfaces of the structure, supplemented by a contri-
bution that increases linearly with that coordinate [10];
and rods with free ends whose cross sections vary in spe-
cial ways along their axes, such that their torsional oscil-
lations possess a frequency spectrum in the form of a
Wannier–Stark ladder [11]. The latter frequency spec-
trum has been measured experimentally [11].

In this Letter, we study theoretically the analog of a
Wannier–Stark ladder for a surface plasmon polariton.
Specifically, we examine the propagation of a surface
plasmon polariton of frequency ω across a planar metal
surface perturbed by N equally spaced rectangular
grooves, each of width l and varying depths hn�n �
0;…; N − 1�, separated by planar segments of length d.
The corresponding surface profile function ζ�x1� is de-
picted in Fig. 1, where the propagation direction of the
incident wave is indicated by an arrow on the left hand
side of the structure. The region x2 > ζ�x1� is vacuum
while the region x2 < ζ�x1� is a metal characterized by
an isotropic, complex, frequency-dependent dielectric
function ϵ�ω� � ϵ1�ω� � iϵ2�ω�. We work in the fre-
quency range in which the real part of ϵ�ω�, ϵ1�ω�, is
negative. The imaginary part of ϵ�ω�, ϵ2�ω� is non
negative, and is assumed to be much smaller than
jϵ1�ω�j. We will show that, for a particular choice for

Fig. 1. Surface structure employed to obtain a surface
plasmon polariton Wannier–Stark ladder.
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the dependence of the depth hn on the index n, the trans-
missivity of the surface plasmon polariton and the power
radiated into the vacuum as functions of its frequency,
display structures that have the form of a Wannier–Stark
ladder.
We first consider the design of the surface presented in

Fig. 1. We begin with an independent groove model [11]
in which each groove supports electromagnetic resonan-
ces independently from the other grooves. To obtain ana-
lytic expressions for the frequencies of these resonances,
we assume that a rectangular groove of width l and depth
h is cut into the planar surface of a metal, which we as-
sume to be silver. The width of the groove is l � 25 nm,
and its depth is h � 1000 nm. The dielectric function of
silver in the vicinity of the wavelength λ � 616 nm
was fitted to a Drude model expression ϵ�ω� �
1 − ω2

p∕�ω�ω� iγ��, and the values of the plasma fre-
quency ωp � 13.07 × 1015 rad∕s and the electron scatter-
ing frequency γ � 8.3607 × 1013 rad∕s [12] were
obtained. The transmittance, reflectance, and power
radiated into the vacuum region above the surface are
calculated as functions of the frequency of a surface
plasmon polariton incident normally on the groove
(see Fig. 2). In the case of TM-polarization, the nonzero
components H3, E1, E2 of the electromagnetic field in
this system are calculated within a 2D computational do-
main in the x1x2 plane, and each of the fields is repre-
sented by a 2D array. The radiated power P2 in the x2
direction is calculated by using the standard expression
in the form P2 � 1∕2

R
E2H�

3dx1, where the integration is
carried out along an observation line parallel to the x1
axis that is placed typically 1 μm above the metal–
vacuum interface, i.e. in the near field. The results were
obtained by using the OptiFDTD software [13], which
employs the finite-difference time-domain (FDTD) ap-
proach [14] and produces a direct numerical solution
of the time-dependent Maxwell’s curl equations. Both
the transmittance and the power radiated into the
vacuum reveal several well-defined dips and peaks,
respectively, which start to appear below the plasma
frequency when the depth of the groove surpasses a
threshold value.

By varying the depth of the groove, we have shown
that the frequencies of the dips associated with both
the radiated and transmitted power increase when h is
decreased. Namely, in Fig. 3 we present the dependence
of the frequencies associated with the second and third
lowest frequency dips in transmittance for a single
groove when h is varied in the range: 800 nm <
h < 1000 nm. If we label the frequencies of the resonan-
ces supported by the groove in the order of increasing
magnitude by ω�j��j � 1; 2;…� with ω�j�1� > ω�j�, then
we can make a linear fit to the depth dependence of
ω�j� of the form

ω�j��h� � ω�j�
0
�1� a�j��h∕h0��

1� a�j�
; (1)

where h0 � 1000 nm, and a�j� is a fitting parameter. If we
now define hn � h0�1� γ�j�n�, then the frequency of the
jth resonance in the nth groove �n � 0; 1;…� is given by

ω�j�
n � ω�j�

0

�
1� a�j�

1� a�j�
γ�j�n

�
: (2)

The differences between consecutive frequencies

Δω�j�
n � ω�j�

n�1 − ω�j�
n � ω�j�

0

a�j�

1� a�j�
γ�j� (3)

are then independent of n. The parameter γ�j� thus
mimics the role of the electric field strength in the elec-
tronic Wannier–Stark ladder, based on the jth resonance.
The values of the parameters a�2� and a�3� obtained from
the results presented in Fig. 3 are found to be a�2� �
−0.884 and a�3� � −0.848.

We now apply the preceding results to the propagation
of a surface plasmon polariton of frequency ω on the
structured metal surface depicted in Fig. 1. At the lowest
frequencies, when ω is of the order of ω�2�

0 , the j � 2 res-
onance in groove number 0 is excited. The modes in the
remaining N − 1 grooves are out of resonance, so that the
amplitude of the field decreases with increasing distance
from the groove 0. The resulting state is, therefore, local-
ized around this groove. When the frequency of the
incident surface plasmon polariton is increased by
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Fig. 2. Transmittance, reflectance, and power radiated into
the vacuum as functions of the normalized frequency of a
surface plasmon polariton incident normally on a groove of
width l � 25 nm and depth h � 1000 nm cut into a planar silver
surface.
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Fig. 3. Dependence of the j � 2 and j � 3 resonance frequen-
cies on the depth h of the groove of width l � 25 nm cut into a
planar silver surface.
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Δω�2�
1 , the j � 2 resonance in groove 1 will now be ex-

cited, and the j � 2 modes in the remaining grooves will
be out of resonance. The amplitude of the corresponding
state is, therefore, localized around this groove. The
same kind of result is obtained when the j � 2 resonance
in groove n is excited. Thus, we have produced a finite
Wannier–Stark ladder consisting of N localized states
with a constant difference in frequency given by
Eq. (3). These states are expected to manifest themselves
as nearly equally spaced dips when the transmissivity of
the surface plasmon polariton is plotted as a function of
its frequency. These dips are only nearly equally spaced
because the dielectric function of the metal is frequency
dependent, not constant, and this can modify the reso-
nance frequency. However, for resonance frequencies
in a narrow frequency range, within which the dielectric
function is a slowly varying function of frequency, the
departure of the frequency differences from constancy
is expected to be small.
We have calculated the power radiated into the vac-

uum and the transmissivity of a surface plasmon polar-
iton propagating on a silver surface on which N � 10
rectangular grooves have been ruled. We have chosen
to work in a frequency range that includes the frequency
of the second lowest frequency resonance in each
groove. The width of each groove is l � 25 nm and the
distance between consecutive grooves is d � 125 nm,
while the depth h0 is h0 � 1000 nm. The value of the
parameter a�2� for this resonance frequency was found

to be a�2� � −0.884. In Fig. 4(a), we plot the dependence
of the transmittance (dashed line) and the power
radiated into the vacuum (solid line) as functions of
the frequency of the surface plasmon polariton incident
on the array of 10 grooves of decreasing depth when
γ � −0.04 and where γ � γ�2�. We observe 10 peaks in
the radiated power at the frequencies ω�2�

n , n � 0;…; 9
in the frequency range between the two resonances
ω�2� and ω�3�, which correspond to the dips in the trans-
mittance at the same frequencies. To illustrate the
gradual modification of the frequency dependence of
the transmittance in this frequency range as the param-
eter jγj is increased, in Fig. 4(b) we plot this dependence
for several values of jγj in the range −0.04 ≤ γ ≤ 0. In the
case where γ � 0, the bandgaps associated with the cor-
responding finite periodic structure are indicated by
shaded areas. The frequency of the lower and upper
edges of each gap were determined from the dips and
peaks in the transmittance and in the radiated power, re-
spectively, in themanner described by López-Tejeira et al.
[15]. This curve demonstrates the difference between the
behavior of the transmittance associated with a periodic
array of 10 identical grooves and that of the single groove
shown in Fig. 2. We note that the transmittances for both
cases resemble each other to some extent, since the
interactions among the grooves in the case considered
are weak.

In Fig. 5, we show the dependence of the difference
between the frequencies of consecutive dips in the fre-
quency dependence of the transmittance as a function
of γ. It is seen to be very close to the linear dependence
expressed by Eq. (3) forΔω�3�

n ∕ωp � �ω�3�
n�1 − ω�3�

n �∕ωp, for
the values n � 0; 1; 2;…. The index n now labels the dips
in the transmittance, rather than the grooves, and
Δω�3�

n ∕ωp is, for all practical purposes, found to be inde-
pendent of n.

In conclusion, we have constructed an analog of a
Wannier–Stark ladder for surface plasmon polaritons.
We note that grooves with shapes other than rectangular
also support electromagnetic surface shape resonances
[16], so that the metal surfaces with surface profile func-
tions different than the one assumed here can also be
expected to display surface plasmon polariton Wannier–
Stark ladders. The observation of these ladders through
the use of a prism or grating coupler should be feasible.

Fig. 4. (a) Transmittance and the power radiated into the vac-
uum as functions of the normalized frequency. (b) Transmissiv-
ity of the surface plasmon polariton as a function of its
frequency for several values of the parameter γ.
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Fig. 5. Difference between the frequencies of consecutive
Wannier–Stark resonances as a function of γ.
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