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USING PERTURBED QR FACTORIZATIONS TO SOLVE

LINEAR LEAST-SQUARES PROBLEMS

HAIM AVRON, ESMOND NG, AND SIVAN TOLEDO

Abstract. We propose and analyze a new tool to help solve sparse
linear least-squares problems minx ‖Ax − b‖2. Our method is based on
a sparse QR factorization of a low-rank perturbation Â of A. More pre-
cisely, we show that the R factor of Â is an e�ective preconditioner for
the least-squares problem minx ‖Ax−b‖2, when solved using LSQR. We
propose applications for the new technique. When A is rank de�cient
we can add rows to ensure that the preconditioner is well-conditioned
without column pivoting. When A is sparse except for a few dense rows
we can drop these dense rows from A to obtain Â . Another application
is solving an updated or downdated problem. If R is a good precon-
ditioner for the original problem A, it is a good preconditioner for the
updated/downdated problem Â. We can also solve what-if scenarios,
where we want to �nd the solution if a column of the original matrix
is changed/removed. We present a spectral theory that analyzes the
generalized spectrum of the pencil (A∗A, R∗R) and analyze the appli-
cations.

1. Introduction

This paper shows that the R factor from the QR factorization of a per-
turbation Â of a matrix A is an e�ective least-squares preconditioner for A.
More speci�cally, we show the R factor of the perturbation is an e�ective
preconditioner if the perturbation can be expressed by adding/or dropping
a few rows from A or if it can be expressed by replacing a few columns.

If A is rank de�cient or highly ill-conditioned, the R factor of a perturba-
tion Â is still an e�ective preconditioner if Â is well-conditioned. Such an
R factor can be used in LSQR (an iterative least-squares solver [29]) to e�-
ciently and reliably solve a regularization of the least-squares problem. We
present an algorithm for adding rows with a single nonzero to A to improve
its conditioning; it attempts to add as few rows as possible.

We also show that if an arbitrary preconditioner M is e�ective for Â∗Â
(where Â∗ is the adjoint of Â), in the sense that the generalized condition

number of (Â∗Â,M) is small, then M is also an e�ective preconditioner
for A∗A. This shows that we do not necessarily need the R factor of the
perturbation Â; we can use M as a preconditioner instead.

The paper provides a comprehensive spectral analysis of the generalized
spectrum of matrix pencils that arise from row and column perturbations.
The analysis shows that if the number of rows/columns that are added,
dropped, or replaced is small, then most of the generalized eigenvalues are 1
(or lie in some interval when R is not an exact factor). We bound the number
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of runaway eigenvalues, which are the ones that are not 1 (or outside the
interval), which guarantees rapid convergence of LSQR.

These results generalize a simple observation. Let A be a given matrix
and let Â =

[
A
B

]
. Then(

Â∗Â
)−1

A∗A = (A∗A + B∗B)−1 A∗A

= (A∗A + B∗B)−1 (A∗A + B∗B − B∗B)

= I − (A∗A + B∗B)−1 B∗B .(1.1)

The rank of second term on the last line is at most the rank of B, so if B

has low rank, then
(
Â∗Â

)−1
A∗A is a low-rank perturbation of the identity.

A symmetric rank-k perturbation of the identity has at most k non-unit
eigenvalues, which in exact arithmetic guarantees convergence in k iterations
in several Krylov-subspace iterations. Therefore, the Cholesky factor of Â∗Â
(which is also the R factor of Â) is a good least-squares preconditioner for
A. The same analysis extends to the case where we drop rows of A. This
idea has been used by practitioners [19].

We generalize this result in additional ways: to the case where Â is
singluar, to column exchanges, and to preconditioners for Â rather than
its R factor. We also bound the size of the non-unit eigenvalues, which is
important when A is rank de�cient.

The rest of this paper presents relevant background, our spectral analysis
of perturbed factorizations, an algorithm for choosing the perturbations, and
numerical results.

2. Background

2.1. LSQR, an Iterative Krylov-Subspace Least-Squares Solver. LSQR
is a Krylov-subspace iterative method for solving the least-squares prob-
lem minx ‖Ax − b‖2. The method was developed by Paige and Saunders in
1982 [29].

The algorithm is based on the bidiagonalization procedure due to Golub
and Kahan [21]. A sequence of approximations {xk} is generated such that
the residual ‖Axk − b‖2 decreases monotonically. The sequence {xk} is, an-
alytically, identical to the sequence generated by the conjugate gradients
algorithm [24, 13] applied to A∗A. Therefore, the convergence theory of con-
jugate gradients applied to A∗A applies directly to the behavior of LSQR. In
particular, the convergence of LSQR is governed by the distribution of the
eigenvalues of A∗A (and can be bounded using its condition number). An-
other useful observation, which we will use extensively, is that if the matrix
A∗A has l distinct eigenvalues, then LSQR will converge in at most l itera-
tions (this is a simple consequence of the minimization property of conjugate
gradients).

The relationship between the condition number and the convergence of
LSQR and the relationship between the number of distinct eigenvalues and
convergence of LSQR are essentially a special case of a result given by
[28] Theorem 2.3 (Ng attributes the result to Van der Vorst). This result
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analyzes the convergence of Conjugate Gradients when all but k + r eigen-
values lie outside a given interval. The result can also be adapted to singular
matrices and LSQR, and it is used in Section 5.

In this paper we use the preconditioned version of LSQR. Given an easy-
to-invert preconditioner R, we have

min
x

‖Ax − b‖2 = min
x

‖AR−1Rx − b‖2 .

This allows us to solveminx ‖Ax−b‖2 in two phases. We �rst solveminy ‖AR−1y−
b‖2 and then solve Rx = y. The �rst phase is solved by LSQR. The con-
vergence is now governed by spectrum (set of eigenvalues) of R−∗A∗AR−1,
which is hopefully more clustered than the spectrum of A∗A. The spectrum
of R−∗A∗AR−1 is identical to the set of generalized eigenvalues A∗Ax =
λR∗Rx. We analyze these generalized eigenvalues.

2.2. Sparse QR Factorizations. In some of the applications that we de-
scribe below, the preconditioner is the R factor from a QR factorization of
a perturbation of A.

The main approach to exploiting the sparsity of A in a QR factorization
is to attempt to minimize the �ll in the R factor. Since the R factor of A
is also the Cholesky factor of A∗A, we can use an algorithm that reduces
�ll in sparse Cholesky by symmetrically permuting the rows and columns of
A∗A [18]. Such a permutation is equivalent to a column permutation of A.
Many algorithms can compute such a permutation without ever computing
A∗A or its sparsity pattern [15, 9].

When A is well-conditioned it is possible to solve the least-squares problem
minx ‖Ax − b‖2 using the QR factorization of A. When A is ill-conditioned
it may be useful to regularize the equation by truncating singular values that
are too small [7]. A cheaper but e�ective regularization method approximates
the truncated solution using a rank revealing QR factorization of A [10, 11].

Designing a sparse rank revealing QR factorization is a challenging task.
There are basically two techniques to compute a rank revealing QR factor-
ization. The �rst method, which is guaranteed to generate a rank revealing
factorization, is to �nd a regular QR factorization and re�ne it to a rank
revealing factorization [10]. In the sparse setting the correction phase can
be expensive and can produce considerable �ll. We can also �nd a rank re-
vealing QR factorization using column pivoting [20]. This method can fail
to produce a rank revealing factorization, but it usually does [17]. When
A is sparse, extensive column pivoting destroys the �ll reducing preorder-
ing, hence increasing �ll. Column pivoting also requires more complex data
structures and reduces the value of the symbolic analysis phase of the fac-
torization.

Sparse rank-revealing QR factorizations do use column pivoting, usually
with heuristics to restrict pivot selection (to avoid catastrophic �ll). The
heuristic nature of the pivot selection has a price: the ability of these fac-
torizations to reveal rank is reduced compared to strict pivoting [12, 30].
Some algorithms [5, 1] address this problem by adding a correction phase at
the end. The restricted pivoting in the �rst phase is aimed at reducing the
amount of work that is needed in the second phase. We use this correction
idea in one of our algorithms.
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A sparse QR algorithm can be organized in three ways. The method
of George and Heath [18] rotates rows of A into R using Givens rotations.
The multifrontal method [26] uses Householder re�ections, and so does the
left-looking method [14]. It is not possible to incorporate column pivoting
into methods that are based on rotating rows into R, because there is no
way to estimate the e�ect of pivoting on a particular column. Consequently,
column-pivoting QR factorizations are column-oriented, not row oriented,
in which case Householder re�ections are usually used rather than Givens
rotations.

3. Preliminaries

In this section we give some basic de�nitions in order to establish termi-
nology and notation. These de�nitions are not new. We also restate known
theorems that we will use extensively in our theoretical analysis.

De�nition 3.1. Let S and T be n-by-n complex matrices. We say that a
scalar λ is a �nite generalized eigenvalue of the matrix pencil (pair) (S, T ) if
there is a vector v 6= 0 such that

Sv = λTv

and Tv 6= 0. We say that ∞ is a in�nite generalized eigenvalue of (S, T ) if
there exists a vector v 6= 0 such that Tv = 0 but Sv 6= 0. Note that ∞ is an
eigenvalue of (S, T ) if and only if 0 is an eigenvalue of (T, S). The �nite and
in�nite eigenvalues of a pencil are determined eigenvalues (the eigenvector
uniquely determines the eigenvalue). If both Sv = Tv = 0 for a vector v 6= 0,
we say that v is an indeterminate eigenvector, because Sv = λTv for any
scalar λ.

Throughout the paper eigenvalues are ordered from smallest to largest.
We will denote the kth eigenvalue of S by λk(S), and the kth determined
generalized eigenvalue of (S, T ) by λk(S, T ). Therefore λ1(S) ≤ · · · ≤ λl(S)
and λ1(S, T ) ≤ · · · ≤ λd(S, T ), where l is the number of eigenvalues S has,
and d is the number of determined eigenvalues that (S, T ) has.

The solution of the least-squares equation minx ‖Ax − b‖2 is also the so-
lution of the equation A∗Ax = A∗x. Matrix A∗A is Hermitian positive
semide�nite. The LSQR method is actually a Krylov-space method on A∗A,
and a preconditioner for the method is Hermitian positive semide�nite too.
Therefore, the matrix pencils that we will consider in this paper are Hermit-
ian positive semide�nite (H/PSD) pairs.

De�nition 3.2. A pencil (S, T ) is Hermitian positive semide�nite (H/PSD)
if S is Hermitian, T is Hermitian positive semide�nite, and null(T ) ⊆ null(S).

The generalized eigenvalue problem on H/PSD pencils is, mathematically,
a generalization of the Hermitian eigenvalue problem. In fact, the generalized
eigenvalues of an H/PSD can be shown to be the eigenvalues of an equiva-
lent Hermitian matrix. The proof appears in the Appendix. Based on this
observation it is easy to show that other eigenvalue properties of Hermitian
matrices have an analogy for H/PSD pencils. For example, an H/PSD pencil,
(S, T ), has exactly rank(T ) determined eigenvalues (counting multiplicity),
all of them �nite and real.
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A useful tool for analyzing the spectrum of an Hermitian matrix is the
Courant-Fischer Minimax Theorem [22].

Theorem 3.3. (Courant-Fischer Minimax Theorem) Suppose that S ∈ Cn×n

is an Hermitian matrix, then

λk(S) = min
dim(U)=k

max
x ∈ U
x 6= 0

x∗Sx

x∗x

and

λk(S) = max
dim(V )=n−k+1

min
x ∈ V
x 6= 0

x∗Sx

x∗x
.

As discussed above, the generalized eigenvalue problem on H/PSD pencils
is a generalization of the eigenvalue problem on Hermitian matrices. There-
fore, there is a natural generalization of Theorem 3.3 to H/PSD pencils,
which we refer to as the Generalized Courant-Fischer Minimax Theorem.
We now state the theorem. For completeness the proof appears in the Ap-
pendix.

Theorem 3.4. (Generalized Courant-Fischer Minimax Theorem) Suppose
that S ∈ Cn×n is an Hermitian matrix and that T ∈ Cn×n is an Hermitian
positive semide�nite matrix such that null(T ) ⊆ null(S). For 1 ≤ k ≤
rank(T ) we have

λk(S, T ) = min
dim(U) = k
U ⊥ null(T )

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T ) = max
dim(V ) = rank(T ) − k + 1

V ⊥ null(T )

min
x∈V

x∗Sx

x∗Tx
.

4. Spectral Theory

The generalized spectrum of (A∗A,A∗A) is very simple: the pencil has
rank(A) eigenvalues that are 1 and the rest are indeterminate. This section
characterizes the structure of spectra of perturbed pencils, (A∗A,A∗A +
B∗B − C∗C) and (A∗A, Ã∗Ã), where A =

[
D E

]
and Ã =

[
D F

]
.

These perturbations of A∗A shift some of the eigenvalues of (A∗A,A∗A).
We call the eigenvalues that moved away from 1 runaway eigenvalues. This
section analyzes these runaway eigenvalues, which govern the convergence of
LSQR when a factorization or an approximation of the perturbed matrix is
used as a preconditioner.

To keep the notation simple, we de�ne the symmetric product A∗A, where
A is an m-by-n matrix, to be the n-by-n zero matrix when m = 0.
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4.1. Counting Runaway Eigenvalues. We begin by bounding the num-
ber of runaway eigenvalues. We show that when B, C, E, and F have low
rank, the generalized eigenvalue 1 has high multiplicity in these pencils. We
also bound the multiplicity of zero and indeterminate eigenvalues. The �rst
result that we present bounds the number of runaways (and other aspects
of the structure of the spectrum) when we add and/or subtract a symmetric
product from a matrix. The result can be generalized to characterize also
indeterminate and in�nite eigenvalues, but we omit this analysis since it is
not relevant to our applications.

Theorem 4.1. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some
1 ≤ k + r < n. The following claims hold:

(1) In the pencil (A∗A,A∗A + B∗B − C∗C), at most k + r generalized
determined eigenvalues may be di�erent from 1 (counting multiplici-
ties).

(2) If 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C) and
A∗A+B∗B−C∗C is full rank then the multiplicity of the zero eigen-
value is exactly dim null(A).

Proof. We prove most of the claims by showing that if v is an eigenvector of
the pencil (A∗A,A∗A+B∗B−C∗C) corresponding to the eigenvalue λ, then
the relationship of v to the null spaces of A and the relationship of B∗Bv to
C∗Cv, determine λ in the following way:

v ∈ null(A) v 6∈ null(A)
B∗Bv = C∗Cv indeterminate λ = 1
B∗Bv 6= C∗Cv λ = 0 λ 6= 0 and λ 6= 1

If v ∈ null(A) and B∗Bv = C∗Cv then clearly both A∗Av = 0 and
(A∗A+B∗B−C∗C)v = 0 so v is an indetermined eigenvector of (A∗A,A∗A+
B∗B − C∗C).

Let v 6∈ null(A) be a vector such that B∗Bv = C∗Cv. Therefore

(A∗A + B∗B − C∗C) v = A∗Av 6= 0 ,

so v must be a �nite generalized eigenvector of (A∗A,A∗A + B∗B − C∗C)
that corresponds to the eigenvalue 1.

If v ∈ null(A) and B∗Bv 6= C∗Cv, then A∗Av = 0 and (A∗A + B∗B −
C∗C)v = A∗Av +B∗Bv−C∗Cv = B∗Bv−C∗Cv 6= 0, so v is an eigenvector
corresponding to 0.

If v 6∈ null(A) and B∗Bv 6= C∗Cv, then λ can be neither 0 nor 1. It
cannot be 0 because A∗Av 6= 0. It cannot be 1 because that would imply
B∗Bv −C∗Cv = 0 which is a contradiction to the assumption that B∗Bv 6=
C∗Cv.

To establish Claim 1 notice that if v ∈ null(B) ∩ null(C) then clearly
B∗Bv = C∗Cv. So, if v is a determined generalized eigenvector correspond-
ing to a eigenvalue di�erent from 1, then v /∈ null(B) ∩ null(C). There-
fore, the dimension of the space spanned by these vectors is bounded by
dim((null(B)∩ null(C))⊥) ≤ k + r, which bounds the number of such eigen-
values.
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We now turn our attention to Claim 2. Assume that A∗A + B∗B − C∗C
is full rank and 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C).
The multiplicity of the eigenvalue 0 follows from the fact that every 0 6=
v ∈ null(A) satis�es A∗Av = 0 and (A∗A + B∗B − C∗C)v 6= 0 (because
A∗A + B∗B − C∗C has full rank). Therefore, v is indeed a generalized
eigenvector. The converse is true from the table, and the fact that B∗Bv 6=
C∗Cv for every vector v. ¤

The second result of this section characterizes the generalized spectra of
symmetric products that are formed by modifying a set of columns in a
given matrix A. We denote the columns of A that are not modi�ed in the
factorization by D, the columns that are to be modi�ed by E, and the new
value in those columns by F .

Theorem 4.2. Let D ∈ Cm×n and let E ∈ Cm×k and F ∈ Cm×k for some
1 ≤ k < n. Let

A =
[
D E

]
∈ Cm×(n+k)

and let

Ã =
[
D F

]
∈ Cm×(n+k) .

In the pencil (A∗A, Ã∗Ã), at least n− k generalized �nite eigenvalues are 1.

Proof. Expanding A∗A and Ã∗Ã, we obtain

A∗A =
[
D∗

E∗

] [
D E

]
=

[
D∗D D∗E
E∗D E∗E

]
and

Ã∗Ã =
[
D∗

F ∗

] [
D F

]
=

[
D∗D D∗F
F ∗D F ∗F

]
.

Let S be the vector space in Cn+k de�ned by

S =
{[

v
0

]
: v ∈ Cn such that E∗Dv = F ∗Dv

}
.

Clearly, dimS = dim null(E∗D − F ∗D) = n − rank(E∗D − F ∗D). The
matrix E∗D − F ∗D has k rows so rank(E∗D − F ∗D) ≤ k, which implies
dimS ≥ n − k.

Let v be a vector such that E∗Dv = F ∗Dv. The vector

[
v
0

]
is a gener-

alized eigenvector of (A∗A, Ã∗Ã) corresponding to the eigenvalue 1, because

A∗A

[
v
0

]
=

[
D∗D D∗E
E∗D E∗E

] [
v
0

]
=

[
D∗Dv
E∗Dv

]
=

[
D∗Dv
F ∗Dv

]
=

[
D∗D D∗F
F ∗D F ∗F

] [
v
0

]
= Ã∗Ã

[
v
0

]
.

Since S is a subset of the generalized eigenspace of (A∗A, Ã∗Ã) corresponding
to the eigenvalue 1, the multiplicity of 1 as a generalized eigenvalue is at least
dimS ≥ n − k. ¤
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4.2. Runaways in a Preconditioned System. We now show that if a
preconditioner M is e�ective for a matrix A∗A, then it is also e�ective for
the perturbed matrices A∗A + B∗B −C∗C and Ã∗Ã. If the rank of the ma-
trices B, C, E, and F is low, then most of the generalized eigenvalues of the
perturbed preconditioned system will be bounded by the extreme generalized
eigenvalues of the unperturbed preconditioned system. In other words, the
number of runaways is still guaranteed to be small, but the non-runaways are
not necessarily at 1: they can move about the interval whose size determines
the condition number of the original preconditioned system. Theorem 2.3
in [28] shows that this spectral characterization guarantees rapid conver-
gence; in exact arithmetic, after an iteration for each row in B and C, the
convergence rate bound is governed by the unperturbed condition number
(after two iterations for every column exchanged for column perturbations).

Theorem 4.3. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some
1 ≤ k + r < n. Let M ∈ Cn×n be an Hermitian positive semide�nite matrix.
Suppose that null(M) ⊆ null(A∗A), null(M) ⊆ null(B∗B) and null(M) ⊆
null(C∗C). If

α ≤ λ1(A∗A,M) ≤ λrank(M)(A
∗A, M) ≤ β .

then

α ≤ λr+1(A∗A+B∗B−C∗C,M) ≤ λrank(M)−k(A
∗A+B∗B−C∗C,M) ≤ β .

Proof. Denote t = rank(M). We prove the lower bound using the second
equality of Theorem 3.4. Let p = rank(C), we have

λp+1(A∗A+B∗B−C∗C,M) = max
dim(U) = t − p
U ⊥ null(M)

min
x∈U

x∗(A∗A + B∗B − C∗C)x
x∗Mx

.

We prove the bound by showing that for one speci�c U , the ratio for any
x ∈ U is at least α. This implies that the minimum ratio in U is at least α,
and that the maximum over all admissible subspaces U is also at least α.

Let U = null(C∗C)∩range(M). Because M is Hermitian positive semide�-
nite, null(M) ⊥ range(M). This implies that U ⊥ null(M). Since null(M) ⊆
null(C∗C), we have dim(U) = t − p (here we use range(C∗C) ⊆ range(M)).
For every x ∈ U we have x∗(A∗A + B∗B − C∗C)x = x∗(A∗A + B∗B)x ≥
x∗A∗Ax, so

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≥ x∗A∗Ax

x∗Mx

≥ min
x∈range(M)

x∗A∗Ax

x∗Mx

= λ1(A∗A,M)
≥ α .

Therefore,

min
x∈U

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≥ α ,
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so λp+1(A∗A + B∗B −C∗C,M) ≥ α. Since p = rank(C) ≤ r we have shown
that

λr+1(A∗A + B∗B − C∗C,M) ≥ λp+1(A∗A + B∗B − C∗C,M) ≥ α .

For the upper bound we use a similar strategy, but with the �rst equality
of Theorem 3.4. Let l = rank(B), we have

λt−l(A∗A+B∗B−C∗C,M) = min
dim(V ) = t − l
V ⊥ null(M)

max
x∈V

x∗(A∗A + B∗B − C∗C)x
x∗Mx

.

Let V = null(B∗B)∩ range(M). Since M is Hermitian positive semide�nite
V ⊥ null(M) and dim(V ) = (n − l) − (n − t) = t − l. For every x ∈ V we
have x∗(A∗A + B∗B − C∗C)x = x∗(A∗A − C∗C)x ≤ x∗A∗Ax, so

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≤ x∗A∗Ax

x∗Mx

≤ max
x∈range(M)

x∗A∗Ax

x∗Mx

= λt(A∗A,M)
≤ β .

Since

max
x∈V

x∗(A∗A + B∗B − C∗C)x
x∗Mx

≤ β ,

we have λt−l(A∗A + B∗B − C∗C,M) ≤ β, and since l = rank(B) ≤ k we
have shown that

λt−k(A∗A + B∗B − C∗C,M) ≤ λt−l(A∗A + B∗B − C∗C,M) ≤ β .

¤

We now give the analogous theorem when columns are modi�ed.

Theorem 4.4. Let D ∈ Cm×n and let E ∈ Cm×k and F ∈ Cm×k for some
1 ≤ k < n. Let

A =
[
D E

]
∈ Cm×(n+k)

and let

Ã =
[
D F

]
∈ Cm×(n+k) .

Let M ∈ C(n+k)×(n+k) be an Hermitian positive semide�nite matrix, such
that null(M) ⊆ null(A∗A) and null(M) ⊆ null(Ã∗Ã). Suppose that

α ≤ λ1(A∗A,M) ≤ λrank(M)(A
∗A, M) ≤ β .

Then we have

α ≤ λk+1(Ã∗Ã,M) ≤ λrank(M)−k(Ã
∗Ã,M) ≤ β .

Proof. We denote t = rank(M) and r = rank(E∗D − F ∗D) ≤ k (because
E∗D−F ∗D has k rows). We prove both sides by applying Theorem 3.4. We
de�ne the linear subspace of Cn+k

U =
{[

v
0

]
: v ∈ Cn andE∗Dv = F ∗Dv

}
∩ range(M) .
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Clearly, U is a linear space and U ⊥ null(M). For any

[
v
0

]
∈ null(M), the

vector v ∈ Cn satis�es E∗Dv = F ∗Dv = 0, because null(M) ⊆ null(A∗A)
and null(M) ⊆ null(Ã∗Ã). This implies that set of v's for which v ∈

null(E∗D − F ∗D) contains the set of v's for which

[
v
0

]
∈ null(M). This

allows us to determine the dimension of U ,

dim(U) = dim null(E∗D − F ∗D) − dim
({

v ∈ Cn :
[

v
0

]
∈ null(M)

})
= (n − r) − (n − t)
= t − r .

It is easy to see that for every x ∈ U we have A∗Ax = Ã∗Ãx, so

x∗Ã∗Ãx

x∗Mx
=

x∗A∗Ax

x∗Mx

≥ min
x∈range(M)

x∗A∗Ax

x∗Mx

= λ1(A∗A,M)
≥ α .

Since, by the second equality of the Theorem 3.4,

λr+1(Ã∗Ã,M) = max
dimU = t − r
U ⊥ null(M)

min
x∈U

x∗Ã∗Ãx

x∗Mx
,

we conclude that λk+1(Ã∗Ã,M) ≥ λr+1(Ã∗Ã,M) ≥ α. Similarly, for every
x ∈ U ,

x∗Ã∗Ãx

x∗Mx
=

x∗A∗Ax

x∗Mx

≤ max
x∈range(M)

x∗A∗Ax

x∗Mx

= λt(A∗A,M)
≤ β .

Since, by the �rst equality of the Theorem 3.4,

λt−r(Ã∗Ã,M) = min
dimU = t − r
U ⊥ null(M)

max
x∈U

x∗Ã∗Ãx

x∗Mx
,

we conclude that λt−k(Ã∗Ã,M) ≤ λt−r(Ã∗Ã,M) ≤ β. ¤

4.3. Using the Simple Spectrum of A∗A to Bound the Magnitude

of Runaways. In some cases it is useful to know that runaway eigenvalues
are either very small or very close to 1. For example we want to ensure that
if we perturb an ill-conditioned A∗A to a well-conditioned A∗A + B∗B, the
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numerical rank of A∗A and of (A∗A,A∗A + B∗B) are the same, up to an
appropriate relaxation of the rank threshold. We need the following lemma.

Lemma 4.5. Suppose that S ∈ Cn×n is an Hermitian matrix and that T ∈
Cn×n is an Hermitian positive de�nite matrix. For all 1 ≤ k ≤ n we have

λk(S)
λn(T )

≤ λk(S, T ) ≤ λk(S)
λ1(T )

.

Proof. Let u1, . . . , un be a set of orthonormal eigenvectors corresponding
to λ1(S), . . . , λn(S). Using the subspaces Uk = span {u1, . . . , uk} and Vk =
sp {uk, . . . , un} in the �rst and second inequality of Theorem 3.4 respectively
gives the two bounds. ¤

We now state and prove the main results.

Theorem 4.6. Let A ∈ Cm×n and let B ∈ Ck×n for some 1 ≤ k < n.
Assume that A∗A + B∗B is full rank. Denote α = ||A∗A||2. If there are d
eigenvalues of A∗A that are smaller than or equal to εα for some 1 > ε > 0,
then d generalized eigenvalues of (A∗A,A∗A + B∗B) are smaller than or
equal to εκ(A∗A + B∗B).

Proof. We denote S = A∗A and T = A∗A + B∗B. We �rst note that
λn(T ) ≥ λn(S) ≥ α. By the lemma,

λk(S, T ) ≤ λk(S)
λ1(T )

=
λk(S)λn(T )
λn(T )λ1(T )

=
λk(S)
λn(T )

κ(T )

≤ λk(S)
α

κ(T ) .

For any k such that λk(S) ≤ εα, we obtain the desired inequality. ¤

Theorem 4.7. Let A ∈ Cm×n and let B ∈ Ck×n for some 1 ≤ k < n.
Assume that A∗A + B∗B is full rank. Denote α = ||A∗A||2 and suppose that
||B∗B||2 ≤ γα. If there are d eigenvalues of A∗A that are larger than or equal
to ηα for some 1 > η > 0 then d generalized eigenvalues of (A∗A,A∗A+B∗B)
are larger than or equal to η/(1 + γ).

Proof. We use the same notation as in the previous proof. We have λn(T ) ≤
||A∗A||2 + ||B∗B||2 ≤ (1 + γ)α. Therefore

λk(S, T ) ≥ λk(S)
λn(T )

≥ λk(S)
(1 + γ)α

,

which gives the desired bound for any k such that λk(S) ≥ ηα. ¤
The theorems show that the numerical rank of the preconditioned system

is the same as of the original system, up to an appropriate relaxation of
the rank threshold. Suppose that after the dth eigenvalue there is a big
gap. That is, there are d eigenvalues of A∗A are smaller than εα, and the
remaining n − d are larger than ηα, where α is the largest eigenvalue of
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A∗A. The ratio between the largest eigenvalue and the dth smallest is at
least 1/ε, and between the largest eigenvalue and the (n − d)th largest is
at most 1/η. Recall that 1 is the largest eigenvalue of (A∗A,A∗A + B∗B).
Therefore, the ratio between the largest eigenvalue of the pencil and the d
smallest is at least κ−1(A∗A + B∗B)/ε, and the ratio between the largest
eigenvalue of (A∗A,A∗A+B∗B) and the n−d largest eigenvalues is at most
(1+γ)/η. Therefore if B∗B is not too large relative to A∗A, and A∗A+B∗B
is well-conditioned, then the ratios are roughly maintained.

In Section 6 below we present an e�cient algorithm that �nds a B such
that ||B∗B||2 ≤ m||A∗A||2 and κ(A∗A + B∗B) ≤ τ2, where τ ≥ n + 1 is a
given threshold, and a slightly more expensive algorithm that only requires
τ ≥

√
2n and guarantees ||B∗B||2 ≤ ||A∗A||2.

5. Applications To Least-Square Solvers

This section describes applications of the theory to the solution of linear
least-squares problems. We show that we can often obtain useful algorithms
by combining a sparse QR factorization of a modi�ed matrix with a precon-
ditioned iterative solver. We focus on improving the utility and e�ciency of
sparse QR factorizations, not on the more general problem of �nding e�ective
preconditioners.

In all the applications, we compute the R factor of a QR factorization of a
modi�ed matrix and use it as a preconditioner in LSQR. Our spectral theory
in Section 4 shows that the preconditioned system has only a few runaway
eigenvalues. We then can use Theorem 2.3 in [28] to bound the number of
iterations.

5.1. Dropping Dense Rows for Sparsity. The R factor of A = QR is
also the Cholesky factor of A∗A. Rows of A that are fairly dense cause A∗A
to be fairly dense. Hence, R will be dense. In the extreme case, a completely
dense row in A causes A∗A and R to be completely dense (unless there are
exact cancellations, which are rare). This happens even if the other rows of
A all have a single nonzero.

If A has few rows that are fairly dense, we recommend that they be
dropped before the QR factorization starts. More precisely, these rows
should be dropped even before the column ordering is computed. If we
dropped k dense rows, we expect LSQR to converge in at most k + 1 itera-
tions (see subsection 2.1).

Heath [23] proposed a di�erent method for handling dense rows (see also [8]
and [27]), in which the dominant costs are the factorization of the �rst m
rows of A (same as in our approach), k triangular solves with R∗, and a dense
QR factorization of an (n + k)-by-k matrix. In most cases (e.g., when R is
denser than A), the asymptotic cost of the two methods is similar; there are
also cases in which one method is cheaper than the other (in both directions).

5.2. Updating and Downdating. Updating a least-squares problem in-
volves adding rows to the coe�cient matrix A and to the right-hand-side b.
Downdating involved dropping rows. Suppose that we factored the original
coe�cient matrix A, that updating added additional rows represented by
a matrix B, and that downdating removed rows of A that are represented
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by a matrix C. The coe�cient matrix of the normal equations of the up-
dated/downdated problem is A∗A + B∗B −C∗C. As long as this coe�cient
matrix is full rank and the number of rows in B and C is small, Theorem 4.1
guarantees that the R factor of A is an e�ective preconditioner.

5.3. Adding Rows to Solve Numerically Rank-De�cient Problems.

We propose two methods for solving numerically rank-de�cient problems.

5.3.1. Using an Iterative Method. When A is rank de�cient, there is an entire
subspace of minimizers of ‖Ax − b‖2. When A is full rank but highly ill-
conditioned, there is a single minimizer, but there are many x's that give
almost the same residual norm. Of these minimizers or almost-minimizers,
the user usually prefers a solution with a small norm.

The factorization A = QR is not useful for solving rank-de�cient and ill-
conditioned least-squares problems. The factorization is backward stable,
but the computed R is ill-conditioned. This usually causes the solver to
produce a solution x = R−1Q∗b with a huge norm. This also happens if we
use R as a preconditioner in LSQR: the iterations stop after one or two steps
with a solution with a huge norm. Even after the �rst iteration the solution
vector has a huge norm.

The singular-value decomposition (SVD) and rank-revealing QR factoriza-
tions can produce minimal-norm solutions, but they are di�cult to compute.
The SVD approach is not practical in the sparse case. The rank-revealing
QR approach is practical ([30, 5, 1, 12, 23]), but sparse rank-revealing QR
factorizations are complex and only a few implementations are available.

The approach that we propose here is to add rows to the coe�cient matrix
A to avoid ill-conditioning in R. That is, we dynamically add rows to A to
avoid ill-conditioning in R. The factor R is no longer the R factor of A, but
the R factor of a perturbed matrix

[
A
B

]
, where B consists of the added rows.

Section 6 outlines an algorithm for dynamically adding rows to A, so that
the R factor of the perturbed matrix will not be ill-conditioned.

The well-conditioned R factor of the perturbed matrix is then used as a
preconditioner for LSQR. The convergence threshold of LSQR allows the user
to control a trade-o� between the norm of the residual and the norm of the
solution. Suppose that the user wishes to �nd a minimizer of minx ‖Āx−b‖2,
where Ā has the same singular value decomposition as A except that the k
smallest singular values of A are replaced by 0. When LSQR's convergence
threshold is larger than r = σn−k/σ1, it computes such a minimizer [29].

When the R factor of
[

A
B

]
is used as a preconditioner, correct truncation

at σn−k depends on the preconditioned system preserving the singular gap
above σn−k. This is why the results in subsection 4.3 are important: they
guarantee this preservation.

In exact arithmetic, the number of rows in B bounds the number of iter-
ations in LSQR. It may be smaller if the runaway eigenvalues are clustered.

5.3.2. Using a Direct Method. If the number of rows in B is exactly the same
as the number of singular values we wish to truncate, and if A∗A + B∗B is
well-conditioned, then a direct method can �nd an approximation of a small-
norm minimizer. Let A ∈ Cm×n and let B ∈ Ck×n. Let

[
A
B

]
= QR and P =[

Im×m 0m×k

]
. We show that if the k smallest singular values of A are
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small enough then x̂ = R−1(PQ)∗b is close to a minimizer of minx ‖Āx−b‖2,
as de�ned above.

We start with a simple lemma that forms the basis to our method.

Lemma 5.1. Let A ∈ Cm×n and let B ∈ Ck×n. Suppose that rank(A) =
n − k and that

[
A
B

]
has full rank. Let

[
A
B

]
= QR be a QR factorization of[

A
B

]
. All the singular values of AR−1 are exactly 0 or 1.

Proof. The singular values of AR−1 are the square root of the eigenvalues
of R−∗A∗AR−1. The eigenvalues R−∗A∗AR−1 are exactly the eigenvalues
of (A∗A,R∗R). It is easy to see that R∗R = A∗A + B∗B. If we apply
Claim 2 of Theorem 4.1 we conclude that the multiplicity of the 0 eigenvalue
of (A∗A, R∗R) is exactly dim null(A) = n−rank(A) = k, and the multiplicity
of the 1 eigenvalue of (A∗A, R∗R) is exactly n− rank(B) = n−k. Therefore,
n eigenvalues of (A∗A,R∗R), which are all the eigenvalues of (A∗A,R∗R),
are either 0 or 1. ¤

We now show our claim for the case that A is exactly rank de�cient by
k, so Ā = A. This is a simpler case than the case where the k smallest
singular values are small but not necessarily zero. In this case the vector
x̂ = R−1(PQ)∗b is an exact minimizers of minx ‖Āx − b‖2.

Lemma 5.2. Let A ∈ Cm×n, B ∈ Ck×n and b ∈ Cm×r. Suppose that
rank(A) = n − k and

[
A
B

]
has full rank. Let

[
A
B

]
= QR be a QR factoriza-

tion of
[

A
B

]
. Let P =

[
Im×m 0m×k

]
. The vector x̂ = R−1(PQ)∗b is a

minimizer of minx ‖Ax − b‖2.

Proof. We show that ŷ = Rx̂ = (PQ)∗b is the minimum norm solution to
miny ‖AR−1y − b‖2. The minimum solution norm to miny ‖AR−1y − b‖2 is

ymin =
(
AR−1

)+
b .

According to Lemma 5.1 the singular values of AR−1 are exactly 0 and 1.
Therefore, (

AR−1
)+ =

(
AR−1

)∗
.

Notice that
AR−1 = P

[
A
B

]
R−1 = PQRR−1 = PQ .

Therefore, ymin = (PQ)∗b = ŷ. ¤
We now analyze the case where A is has k small but possibly nonzero

singular values. In this case, x̂ = R−1(PQ)∗b is not necessarily a minimizer
of minx ‖Ax−b‖2 and, more importantly, not even a minimizer of minx ‖Āx−
b‖2. But if

[
Ā
B

]
= Q̄R̄, then the vector ẑ = R̄−1(PQ̄)∗b is a minimizer of

minx ‖Āx − b‖2. If the truncated singular values are small enough, then
the pairs (Q,R) and (Q̄, R̄) will be closely related because they are QR
factorizations of nearby matrices. Therefore, x̂ and ẑ should not be too far
from each other. The next theorem shows that this is indeed the case.

Theorem 5.3. Let A ∈ Cm×n, B ∈ Ck×n and b ∈ Cm. Let Ā be the matrix
with the same singular value decomposition as A except that the k smallest
singular values are truncated to 0. Denote

C =
[

A
B

]
andD =

[
Ā
B

]



SOLVING LINEAR LEAST SQUARES USING PERTURBED QR 15

Assume that C and D are both full rank. Let C = QR be a QR factorization
of C and D = Q̄R̄ be the QR factorization of D. Denote

δ =
σn−k+1(A)
σmin(C)

where σn−k(A) is the kth smallest singular value of A and σmin(C) is the
smallest singular value of C. Let P =

[
Im×m 0m×k

]
. De�ne the solutions

x̂ = R−1(PQ)∗b

and

ẑ = R̄−1(PQ̄)∗b .

Then, provided that δ < 1,

‖x̂ − ẑ‖2

‖x̂‖2
≤ δ

1 − δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
where

r = b − Ax̂ .

Before we prove the theorem, we explain what it means. The algorithm
computes x̂ and can therefore compute r = b − Ax̂. The theorem states
that if δ is small (which happens when C is well conditioned and A has k
tiny singular values) and R is not ill conditioned and not too large, and the
norm of r is not too large, then x̂ is a good approximation of the minimizer
ẑ that we seek. The quantity that is hard to estimate in practice is δ, which
depends on the small singular values of A. Therefore, the method is useful
mainly when we know a-priori the number of small singular values of A.

Proof. Notice that x̂ is the solution of minx ‖Cx − P ∗b‖2 and that ẑ is the
solution of minx ‖Dx−P ∗b‖2. Furthermore, we can write D = C+∆C where
‖∆C‖2 ≤ σn−k+1(A). If we de�ne ε = σn−k+1(A)/‖C‖2 then κ(C)ε = δ < 1
and ‖∆C‖2 ≤ ε‖C‖2. We can apply a variant of result from Wedin [31] (see
Theorem 20.1 in [25] for the speci�c version that we use) and conclude that

‖x̂ − ẑ‖2

‖x̂‖2
≤ δ

1 − δ

(
2 + (κ(R) + 1)

‖r‖2

‖R‖2‖ẑ‖2

)
.

¤

5.4. Solving What-If Scenarios. The theory presented in this paper al-
lows us to e�ciently solve what-if scenarios of the following type. We are
given a least squares problem min ‖Ax−b‖2. We already computed the min-
imizer using the R factor of A or using some preconditioners. Now we want
to know how the solution would change if we �x some of its entries, without
loss of generality xn−k+1 = cn−k+1, . . . , xn = cn, where the ci's are some
constants. We denote A =

[
D E

]
, where E consists of k columns. To solve

the what-if scenario, we need to solve min ‖Dx1:n−k − (b − Ec)‖2. We solve

instead min ‖Ãx − (b − Ec)‖2 where Ã =
[
D 0

]
, a matrix that we obtain

from A by replacing the last k columns by zeros. Clearly, the last k entries of
x do not in�uence the norm of the residual in this system, so we can ignore
them. By Theorem 4.2, for small k the factor or the preconditioner of A is
e�ective for this least-squares system as well.
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6. An Algorithm for Perturbing to Improve the Conditioning

In this section we show an algorithm that perturbs a given input matrix
A to improve its conditioning. The algorithm only adds rows, which all
have a single nonzero. The algorithm �nds the perturbation during and
after a standard Householder QR factorization (the technique applies to any
column-oriented QR algorithm). Therefore, it can be easily integrated into
a sparse QR factorization code; unlike rank-revealing QR algorithms, our
algorithm does not exchange columns.

The goal of the algorithm is to build an R whose condition number is below
a given threshold τ , with as few modi�cations as possible. More speci�cally,
the goal is to �nd a B ∈ Ck×n and upper triangular R ∈ Cn×n such that

(1) A∗A + B∗B = R∗R,
(2) The Cholesky factors of A∗A and A∗A + B∗B are structurally the

same (except for accidental cancellations),
(3) κ(R) ≤ τ , and
(4) k is small.

We ensure that the �rst goal is met as follows. If, during the factorization of
column j, the algorithm �nds that it needs to add a row to B, it adds a row
with zeros in columns 1 to j − 1. This ensures that the �rst j − 1 columns
computed so far are also the factor of the newly-perturbed matrix. (In fact,
, which are the main focus of this paper. We use these results throughout
the paper.it always adds a row with a nonzero only in column j.)

By restricting the number of non-zeros in each row of B to one, we auto-
matically achieve the second goal, since B∗B is diagonal.

The algorithm works in two stages. In the �rst stage, the matrix is per-
turbed during the Householder QR factorization. In step j, we factor column
j, and then run a condition-number estimator to detect ill-conditioning in
the leading j-by-j block of R. If this block is ill-conditioned, we add a row
to B, which causes only Rj,j to change. A trivial condition estimation tech-
nique is to estimate the large singular value of A using its one or in�nity
norm, and then to estimate the smallest singular value using the smallest
diagonal element in R. This method, however, is not always reliable. There
are incremental condition estimators for triangular matrices that are e�cient
and more reliable [4, 6, 3, 16].

Let cA = ||A||1 be an estimation of the norm of A. Other norms can be
used, and will modify some of the values below. All the rows of B will be
completely zero except a single non-zero, which we set to ±cA. Each row
of B has a di�erent nonzero column. It follows that B∗B is diagonal with
||B||2 = cA. Therefore,

||R||2 =
√

||R∗R||2 =
√

||A∗A + B∗B||2
≤

√
||A∗A||2 + ||B∗B||2

≤
√

nc2
A + c2

A

≤ cA

√
n + 1 .

Therefore, we add a row to B whenever the incremental condition estimator
suspects that ||R−1||2 > τ/cA

√
n + 1. If we estimate cA = ||A||2 directly
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(using power iteration), we only need to ensure that ||R−1||2 > τ/cA

√
2, so

we can use fewer perturbations.
Condition estimators can fail to detect ill-conditioning. For example, if

we estimate ‖R−1‖2 ≈ 1/minj Rj,j , it will not perturb the following matrix
at all. Let

Tn(c) = diag(1, s, . . . , sn−1)


1 −c −c · · · −c
0 1 −c · · · −c

. . .
...

...
... 1 −c
0 . . . 0 1


with c2 + s2 = 1 with c, s > 0. For n = 100 the smallest diagonal value of
Tn(0.2) is 0.13, but its smallest singular value is O(10−8) [22].

Better condition estimators will not fail on this example, but they may
fail on others. It is relatively easy to safeguard our algorithm against failures
of the estimator. A few inverse iterations on R∗R will reliably estimate the
smallest singular value. Inverse iteration is cheap because R is triangular.
If we �nd that R is still ill-conditioned, we add more rows to B and rotate
them into R using Givens rotations. The resulting factorization remains
backwards stable.

To �nd a perturbation that will reduce the number of tiny singular values,
we �nd an approximation of the smallest singular value and a corresponding
right singular vector of R. Suppose that σ and v are such a pair, with
||v||2 = 1 and ||Rv||2 = σ. Let i be the index of the largest absolute value
in v. Since ||v||2 = 1 we must have |vi| ≥ 1/

√
n. We add to B a row b∗,

bj =

{
cA j = i

0 j 6= i

We now have ∥∥∥∥[
R
b∗

]
v

∥∥∥∥
2

≥ ‖b∗v‖2

= |b∗v|
≥ cAvi

≥ cA/
√

n .

If τ ≥ n + 1 then ∥∥∥∥[
R
b∗

]
v

∥∥∥∥
2

≥
√

n + 1cA

τ
,

and the number of singular values that are smaller than
√

n + 1cA/τ is re-
duced by one. We repeat the process until all singular values are large
enough. If we estimate cA = ||A||2 directly (using power iteration), then the
constraint on τ can be relaxed to τ >

√
2n.

The combination of a less-than-perfect condition estimation with the kinds
of perturbations that we use during the factorization (rows with a single
nonzero) can potentially lead to a cascade of unnecessary perturbations.
Suppose that the jth column of the matrix is dependent (or almost depen-
dent) on the �rst j − 1 columns, but that the condition estimator missed
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this and estimated that the leading j-by-j block of R is well conditioned.
Suppose further that after the factorization of column j + 1, the condition
estimator �nds that the leading (j+1)-by-(j+1) block of R is ill conditioned
(it is). Our algorithm will perturb column j +1, which does not improve the
conditioning of R. This can keep on going. From now on, R remains ill con-
ditioned, so whenever the condition estimator �nds that it is, our algorithm
will perturb another column. These perturbations do not improve the con-
ditioning but they slow down the iterative solver. Situations like these are
unlikely, but in principle, they are possible. Therefore, we invoke the con-
dition estimator before and after each perturbation. If a perturbation does
not signi�cantly improve the conditioning, we refrain from further perturba-
tions. We will �x the ill conditioning by perturbing R after it is computed
(it may also be possible to use inverse iteration to produce a more reliable
perturbation during the factorization rather than wait until it is complete).

7. Numerical Examples

In this section we give simple numerical examples for the applications
described in Section 5. The goal is to illustrate the bene�ts of the tools
developed in this paper.

7.1. Dropping Dense Rows for Sparsity; Updating. Consider the ma-
trix

A =


α1

. . .

αn

β1 · · · βn

 ,

for some (real or complex) α1, . . . , αn and β1, . . . , βn. Suppose that we want
to �nd the least squares solution to minx ||Ax−b||2. The R factor of the QR
factorization of A will be completely full, because A∗A is full. Therefore,
solving the equation using the QR factorization will take Θ(n3) time. If the
equation is solved using LSQR then every iteration will cost Θ(n) operations,
but the number of iterations done is proportional to κ(A). The value of κ(A)
can be very large for certain values of α1, . . . , αn and β1, . . . , βn.

Our analysis suggests a new method for solving the problem. We can
remove the last row of A and form the preconditioner R = diag(α1, . . . , αn).
Our analysis shows that when solving the equation using LSQR precondi-
tioned by R only 2 iterations will be done. Each iteration still cost Θ(n)
operations, amounting to a linear time algorithm for solving the equation.
In general, if there are m ¿ n full rows, an application of LSQR with a
preconditioner that is only the diagonal will converge in m iterations, each
of them with Θ(nm) operations. The total running time will be Θ(nm2),
while regular LSQR will complete in Θ(n2m) operations, and a QR based
algorithm will complete in a Θ(n3) operations. With Heath's method [23]
the total running time will be Θ((n + m)m2). We conducted experiments
that validate this analysis.

7.2. Adding Rows to Solve Rank-De�cient Problems. Consider the
matrix A and vector b generated by the following commands in matlab:
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rand('state', 0);

m = ceil(n/4);

A0 = rand(n, m);

[U,Sigma1,V] = svd(A0, 0);

Sigma = diag(10 .^ [linspace(1, -4, m-1) -12]);

A1 = U*Sigma*V';

A = [A1 rand(n, m)];

b = rand(m, 1);

The codes builds a n × n
2 matrix A, which is ill-conditioned (κ ≈ 1012 and

norm around 1). We wish to solve the least squares problem min ‖Ax− b‖2.
The matrix is built so that column n/4 is close to a linear combination of the
columns to its left. The �rst command resets the random number generator
so that in each run will generate the same matrix and vector.

A QR factorization without pivoting generates a very small diagonal value
(around 10−12) in position (n

4 , n
4 ) of R. Using the factorization to solve

minx ‖Ax − b‖2 leads to a solution with norm around 1011. In many cases,
the desired solution is the minimizer in the subspace that is orthogonal to
right singular vectors of A that correspond to singular values around 10−12

and smaller. We refer to such solution as a truncated solution. A QR factor-
ization without pivoting is useless for �nding the truncated solution or an
approximation of it.

One way to compute a low-norm almost-minimizer of the truncated prob-
lem is to use a rank-revealing QR. If A is dense (as in our example), this is
an e�ective solution. Rank-revealing QR factorization algorithms have also
been developed for sparse matrices, but they are complex and sometimes
expensive (since they cannot control sparsity as well as non-rank-revealing
algorithms) [12, 30, 5].

In our example, running LSQR with a convergence threshold of r = 10−10

(for n = 100) led to an acceptable solution (with norm around 103). With
r = 10−15, LSQR returned a solution with norm 1011, clearly not a good
truncated solution. Due to the ill-conditioning of A many iterations are
required for LSQR to converge. Even with r = 10−10, LSQR converged
slowly, taking 423 iterations to converge.

We propose to use instead the algorithm described in Section 6 to generate
an e�ective preconditioner that allows LSQR to solve the truncated problem.
We generated two preconditioners using the two versions of our algorithm,
one with cA = ||A||1 and the other with cA = ||A||2. We set the threshold
τ to 1010. In both cases a single row was added with a single nonzero in
column 25. The need to add a row was detected, in both cases, using the
incremental condition estimator during the initial QR factorization. With
cA = ||A||1 the condition number of the factor was κ(R) ≈ 3.41× 105, while
with cA = ||A||2 the condition number was κ(R) ≈ 1.78 × 105. When using
R as a preconditioner to LSQR with threshold 10−10 a single iteration was
enough to converge in both cases. The norm of the minimizer x was of order
103 in both cases.

The di�erent methods that produced solutions with norm around 103

produced di�erent solution vectors x with slightly di�erent norms (even the
two preconditioned LSQR methods). To see why, let v be the singular vector
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that corresponds to the singular value 10−12. LSQR uses the norm ||A∗(Ax−
b)||2 as a stopping criterion. Adding ρv to a vector x changes ||A∗(Ax− b)||2
by at most ρ× 10−24, so even a large ρ rarely a�ects this stopping criterion.
Therefore, di�erent methods can return di�erent solutions, say x and x+ρv,
possibly with ρ À ‖x‖. Such solutions are very di�erent from each other,
but with norms and residual norms that both di�er by at most ρ × 10−12.
Both solutions are good, but they are di�erent; this is a re�ection of the ill
conditioning of the problem.

8. Conclusions

This paper presented theoretical analysis of certain preconditioned least-
square solvers. The solvers use a preconditioner that is related to a low-rank
perturbation of the coe�cient matrix. The perturbation can be the result of
an updating or downdating (following the computation of a preconditioner
or a factor of the original coe�cient matrix), of dropping dense rows, or of
an attempt to make the preconditioner well conditioned when the coe�cient
matrix is ill conditioned or rank de�cient. We note that further research is
required to determine how to drop rows e�ectively in sparse QR factoriza-
tions; we only gave here evidence that this idea can be e�ective, but we did
not provide a row-dropping algorithm.

The paper also proposed a speci�c method to perturb a QR factorization
of an ill-conditioned or rank-de�cient matrix.

Our theoretical analysis uses a novel approach: we count the number of
generalized eigenvalues that move away from a cluster of eigenvalues (some-
times consisting only of the value 1) due to perturbations. This allows us to
bound the number of iterations in iterative least-squares solvers like LSQR,
which are implicit versions of Conjugate Gradients on the normal equations.

This approach complements the more common way of bounding iteration
counts in optimal Krylov-subspace solvers, which is based on bounding the
condition number of the preconditioned system.

We have also presented limited experimental results, which are meant
to illustrate the use of the techniques rather to establish their e�ectiveness
or e�ciency. We plan to design and implement a sparse QR factorization
code that will incorporate these techniques, but this is beyond the scope
of this paper. Once we have an implementation for the sparse case, we
plan to perform extensive testing of the technique that this paper analyzes
theoretically.
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Appendix: Proof of the Generalized Courant-Fischer Minimax

Theorem

We begin by stating and proving a generalization of the Courant-Fischer
Theorem for pencils of Hermitian positive de�nite matrices.

Theorem 8.1. Let S, T ∈ Cn×n be Hermitian matrices. If T is also positive
de�nite then

λk(S, T ) = min
dim(U)=k

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T ) = max
dim(V )=n−k+1

min
x∈V

x∗Sx

x∗Tx
.

Proof. Let T = L∗L be the Cholesky factorization of B. Let U be some k-
dimensional subspace of Cn, let x ∈ U , and let y = Lx. Since T is Hermitian
positive de�nite (hence nonsingular), the subspace W = {Lx : x ∈ U} has
dimension k. Similarly, for any k-dimensional subspace W , the subspace
U =

{
L−1x : x ∈ W

}
has dimension k. We have

x∗Sx

x∗Tx
=

x∗L∗L−∗SL−1Lx

x∗L∗Lx
=

y∗L−∗SL−1y

y∗y
.

By applying the Courant-Fischer to L−∗SL−1, we obtain

λk(L−∗SL−1) = min
dim(W )=k

max
y∈W

y∗L−∗SL−1y

y∗y

= min
dim(U)=k

max
x∈S

x∗Sx

x∗Tx
.
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The generalized eigenvalues of (S, T ) are exactly the eigenvalues of L−∗SL−1

so the �rst equality of the theorem follows. The second equality can be
proved using a similar argument. ¤

Before proving the generalized version of the Courant-Fischer Minimax
Theorem we show how to convert an Hermitian positive semide�nite problem
to an Hermitian positive de�nite problem.

Lemma 8.2. Let S, T ∈ Cn×n be Hermitian matrices. Assume that T is also

a positive semide�nite and that null(T ) ⊆ null(S). For any Z ∈ Cn×rank(T )

with range(Z) = range(T ), the determined generalized eigenvalues of (S, T )
are exactly the generalized eigenvalues of (Z∗SZ,Z∗TZ).

Proof. We �rst show that Z∗TZ has full rank. Suppose that Z∗TZv = 0. We
have TZv ∈ null(Z∗). Therefore, TZv ⊥ range(Z) = range(T ). Obviously
TZv ∈ range(T ), so we must have v = 0. Since null(Z∗TZ) = {0}, the
matrix Z∗TZ has full rank.

Suppose that λ is a determined eigenvalue of (S, T ). We will show that
it is a determined eigenvalue of (Z∗SZ,Z∗TZ). The pencil (Z∗SZ,Z∗TZ)
has exactly rank(Z∗TZ) determined eigenvalues. We will show that Z∗TZ
is full rank, so the pencil (Z∗SZ,Z∗TZ) has exactly rank(T ) eigenvalues.
Since the pencil (S, T ) has exactly rank(T ) determined eigenvalues, each of
them an eigenvalue of (Z∗SZ,Z∗TZ), this will conclude the proof.

Now let µ be an eigenvalue of (Z∗SZ,Z∗TZ). It must be determined,
since Z∗TZ has full rank. Let y be the corresponding eigenvector, Z∗SZy =
µZ∗TZy, and let x = Zy. Now there are two cases. If µ = 0, then SZy =
Sx = 0 (since Z∗ has full rank and at least as many columns as rows). The
vector x is in range(Z) = range(T ), Tx 6= 0. This implies that µ = 0 is also
a determined eigenvalue of (S, T ).

If µ 6= 0, the analysis is a bit more di�cult. Clearly, TZy ∈ range(T ) =
range(Z). But range(Z) = range(Z∗+) [2, Proposition 6.1.6.vii], so Z∗+Z∗TZy =
TZy [2, Proposition 6.1.7]. We claim that SZy ∈ range(Z). If it is not, it
Zy must be in null(T ) ⊆ null(S), but µ would have to be zero. Therefore,
we also have Z∗+Z∗SZy = SZy, so by multiplying Z∗SZy = µZ∗TZy by
Z∗+ we see that µ is an eigenvalue of (S, T ). ¤

We are now ready to prove Theorem 3.4, the generalization of the Courant-
Fischer Minimax Theorem. The technique is simple: we use Lemma 8.2 to
reduce the problem to a smaller-sized full-rank problem, apply Theorem 8.1
to characterize the determined eigenvalues in terms of subspaces, and �nally
show a complete correspondence between the subspaces used in the reduced
pencil and subspaces used in the original pencil.

Theorem. (Generalized Courant-Fischer Minimax Theorem) Let S, T ∈
Cn×n be Hermitian matrices. Assume that T is also a positive semide�nite
and that null(T ) ⊆ null(S). For 1 ≤ k ≤ rank(T ) we have

λk(S, T ) = min
dim(U) = k
U ⊥ null(T )

max
x∈U

x∗Sx

x∗Tx
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and

λk(S, T ) = max
dim(V ) = rank(T ) − k + 1

V ⊥ null(T )

min
x∈U

x∗Sx

x∗Tx
.

Proof. Let Z ∈ Cn×rank(T ) have range(Z) = range(T ). We have

λk(S, T ) = λk(Z∗SZ,Z∗TZ) = min
dim(W ) = k

max
x∈W

x∗Z∗SZx

x∗Z∗TZx

and

λk(S, T ) = λk(Z∗SZ,Z∗TZ) = max
dim(W ) = rank(T ) − k + 1

min
x∈W

x∗Z∗TZx

x∗Z∗TZx
.

The leftmost equality in each of these equations follows from Lemma 8.2 and
the rightmost one follows from Theorem 8.1.

We now show that for every k-dimensional subspace U ⊆ Cn with U ⊥
null(T ), there exists a k-dimensional subspace W ⊆ Crank(T ) such that{

x∗Sx

x∗Tx
: x ∈ U

}
=

{
y∗Z∗SZy

y∗Z∗TZy
: y ∈ W

}
,

and vice versa. The validity of this claim establishes the min-max side of
the theorem.

We �rst need to show that k ≤ rank(T ). This is true because every vector
in U is in range(T ), so its dimension must be at most rank(T ).

De�ne W =
{

y ∈ Crank(T ) : Zy ∈ U
}
. Let b1, . . . , bk be a basis for U .

Because U ⊥ null(T ), bj ∈ range(T ), so there is a yj such that Zyj = bj .
Therefore, dimension of W is at most k. Now let the vectors yi's be a basis
of W and de�ne bi = Zyi. The bi's span U , so there are at most k of them,
so the dimension of W is at least k. Therefore, it is exactly k.

Every x ∈ U is orthogonal to null(T ), so it must be in range(T ). There ex-
ist a y ∈ Crank(T ) such that Zy = x. So we have x∗Sx/x∗Tx = y∗Z∗SZy/y∗Z∗TZy.
Combining with the fact that y ∈ W , we have shown inclusion of one side.
Now suppose y ∈ W . De�ne x = Zy ∈ U . Again we have x∗Sx/x∗Tx =
y∗Z∗SZy/y∗Z∗TZy, which shows the other inclusion.

Now we will show that for every k-dimensional subspace W there is a
subspace U that satis�es the claim. De�ne U = {Zy : y ∈ W}. Because Z
has full rank, dim(U) = k. Also, U ⊆ range(Z) = range(T ) so U ⊥ null(T ).
The equality of the Raleigh-quotient sets follows from taking y ∈ W and
x = Zy ∈ U or vice versa. ¤
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Appendix: Spectral Analysis with Misaligned Null Spaces

In this appendix we prove a more general version of Theorem 4.1.

Theorem 8.3. Let A ∈ Cm×n and let B ∈ Ck×n and C ∈ Cr×n for some
1 ≤ k + r < n. De�ne

χ =
[

B
C

]
.

The following claims hold:

(1) In the pencil (A∗A,A∗A + B∗B − C∗C), at most rank(χ) ≤ k + r
generalized determined eigenvalues may be di�erent from 1 (counting
multiplicities).

(2) If 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C) and
A∗A+B∗B−C∗C is full rank, then (a) the pencil (A∗A, A∗A+B∗B−
C∗C) does not have indeterminate eigenvectors, (b) the multiplicity
of the eigenvalue 1 is exactly dim null(χ) ≥ n − k − r, and (c) the
multiplicity of the zero eigenvalue is exactly dim null(A).

(3) The sum pencil (A∗A,A∗A+B∗B) cannot have an in�nite eigenvalue
and all its eigenvalues are in the interval [0, 1].

Proof. First, notice that v ∈ null(χ) if and only if v ∈ null(B) ∩ null(C).
We prove most of the claims by showing that if v is an eigenvector of the
pencil (A∗A,A∗A + B∗B − C∗C) corresponding to the eigenvalue λ, then
the relationship of v to the null spaces of A and the relationship of B∗Bv to
C∗Cv, determine λ in the following way:

v ∈ null(A) v 6∈ null(A)
B∗Bv = C∗Cv indeterminate λ = 1
B∗Bv 6= C∗Cv λ = 0 λ 6= 0 and λ 6= 1

If v ∈ null(A) and B∗Bv = C∗Cv then clearly both A∗Av = 0 and
(A∗A+B∗B−C∗C)v = 0 so v is an indetermined eigenvector of (A∗A,A∗A+
B∗B − C∗C).

Let v 6∈ null(A) be a vector such that B∗Bv = C∗Cv. Therefore

(A∗A + B∗B − C∗C) v = A∗Av 6= 0 ,

so v must be a �nite generalized eigenvector of (A∗A,A∗A + B∗B − C∗C)
that corresponds to the eigenvalue 1.

If v ∈ null(A) and B∗Bv 6= C∗Cv, then A∗Av = 0 and (A∗A + B∗B −
C∗C)v = A∗Av +B∗Bv−C∗Cv = B∗Bv−C∗Cv 6= 0, so v is an eigenvector
corresponding to 0.

If v 6∈ null(A) and B∗Bv 6= C∗Cv, then λ can be neither 0 nor 1. It
cannot be 0 because A∗Av 6= 0. It cannot be 1 because that would imply
B∗Bv −C∗Cv = 0 which is a contradiction to the assumption that B∗Bv 6=
C∗Cv.

To establish Claim 1 notice that if v ∈ null(B) ∩ null(C) = null(χ) then
clearly B∗Bv = C∗Cv. So, if v is a determined generalized eigenvector
corresponding to a eigenvalue di�erent from 1, then v /∈ null(χ). Therefore,
the dimension of the space spanned by these vectors is bounded by rank(χ) ≤
k + r, which bounds the number of such eigenvalues.
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We now turn our attention to Claim 2. Assume that A∗A + B∗B − C∗C
is full rank and 1 is not a generalized eigenvalue of the pencil (B∗B,C∗C).
Since A∗A + B∗B − C∗C is full rank then for every vector v 6= 0 we have
(A∗A+B∗B−C∗C)v 6= 0, so vector v cannot be an indetermined eigenvector
of (A∗A,A∗A+B∗B−C∗C), and the pencil has no indetermined eigenvalues.
The multiplicity of the eigenvalue 1 follows from the fact that if v is a general-
ized eigenvector corresponding to 1 then we must have B∗Bv = C∗Cv. Since
1 is not a generalized eigenvalue of the pencil (B∗B,C∗C) then we must have
B∗Bv = C∗Cv = 0. Therefore, the space of eigenvectors corresponding to 1
is exactly null(χ). The multiplicity of the eigenvalue 0 follows from the fact
that every 0 6= v ∈ null(A) satis�es A∗Av = 0 and (A∗A+B∗B−C∗C)v 6= 0
(because A∗A + B∗B − C∗C has full rank). Therefore, v is indeed a gener-
alized eigenvecctor. The converse is true from the table.

We now show that Claim 3 holds. In the sum pencil (A∗A,A∗A + B∗B),
λ cannot be in�nite. Suppose for contradiction that it is. Then (A∗A +
B∗B)v = 0 but A∗Av 6= 0. We get v∗(A∗A + B∗B)v = 0, but v∗(A∗A +
B∗B)v = v∗A∗Av + v∗B∗Bv > 0. To show that the generalized eigenvalues
are in the range [0, 1], notice that if λ 6= 0 is a �nite generalized eigenvalue
of (A∗A,A∗A + B∗B) then there exist a vector v 6= 0 such that

λ =
v∗A∗Av

v∗(A∗A + B∗B)v

=
v∗A∗Av

v∗A∗Av + v∗B∗Bv
.

Since both v∗A∗Av and v∗B∗Bv are greater than or equal to 0 the claim
follows immediately.

For completeness, we also characterize the in�nite eigenvectors of the pen-
cil (A∗A, A∗A + B∗B − C∗C). Such an eigenvector v satis�es

A∗Av 6= 0
(A∗A + B∗B − C∗C) v = 0 ,

or
(A∗A + B∗B)v = C∗Cv 6= 0 .

Thus, v is a generalized eigenvector of (A∗A + B∗B,C∗C) corresponding to
the eigenvalue 1. ¤
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