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ABSTRACT8

Presented here is a modular methodology for time-domain stochastic seismic wave propagation9

analysis. Presented methodology is designed to analyze uncertain seismic motions as an input,10

propagating through uncertain material. Traditional approach for uncertain wave propagation relies11

on models that include deep bedrock, local soil site, and their random process and random field12

information. Such models can become quite large and computationally intractable. The modular13

approach proposed herein features two step approach that allows separate consideration of the14

deep bedrock and local site along with corresponding random field information. The first step15

considers an auxiliary stochastic motions problem in the bedrock. Stochastic local site response16

can then be simulated in a reduced domain within certain depth from the surface. Application17

of uncertain seismic motions at depth, for local uncertain site response is done using stochastic18

effective forces developed through the Domain Reduction Method. By using Hermite polynomial19

chaos expansion to represent the non-Gaussian random field of material parameters and non-20

stationary random process of seismic motion, the proposed modular methodology is formulated21

using intrusive stochastic Galerkin approach, as seen in the Stochastic Elastic-Plastic Finite Element22

Method (SEPFEM).23
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Developed modular methodology is illustrated using a 1-D stochastic seismic wave propagation24

analysis with three cases, and simulation results are also verified with results from conventional25

approach.26

Keywords: Stochastic seismic wave propagation Modular methodology Domain reduction27

method Intrusive Galerkin stochastic finite element method Hermite polynomial chaos28

1 INTRODUCTION29

The necessity to account for inevitable uncertainties to predicted seismic behaviour has long30

been recognized in the earthquake engineering community (Moehle and Deierlein 2004), nonlinear31

seismic wave propagation analysis rarely accounts for uncertainties. This omission of uncertain,32

nonlinear wave propagation analysis results largely from the significant computational burden.33

There are two ways to improve the computational efficiency. The first one employs effective,34

artificial boundary conditions close to the surface soil site of interest, in order to reduce the size35

of computational domain of the model while following proper physics of wave propagation in36

infinite media, while the second one utilizes a highly efficient stochastic method to overcome the37

computational burden when extended to stochastic analysis.38

Significant progress has been made on development of artificial boundary for modelling wave39

propagation in reduced domain. Viscous boundary was first formulated by Lysmer and Kuhlemeyer40

(1969) for 1D wave propagation, where effective shear stress time history is input to the base with41

viscous dash-pots as non-reflecting boundary. Liu et al. (2006) extended the viscous boundary to42

viscous-spring boundary for 3D wave propagation. Excitations from far field could be approxi-43

mately input as equivalent normal and shear stress time history along the viscous-spring boundary.44

In addition, some global artificial boundaries, e.g., Lysmer andWaas (1972) and Kausel (1994), sat-45

isfy the radiation condition of infinite medium exactly but have complex formulations and are rarely46

used in practice. In the context of finite element method (FEM), Bielak et al. (2003) formulated Do-47

main Reduction Method (DRM) that can input seismic excitations as dynamically consistent nodal48

forces exerted on a single layer of elements surrounding the reduced FEM model. As an effective49

boundary, the DRM has been successfully applied to the simulation of near field seismic response50
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(Yoshimura et al. 2003; Kontoe et al. 2009) and earthquake soil structure interaction (Jeremić and51

Preisig. 2005; Jeremić et al. 2007; Jeremić et al. 2009; Jeremić et al. 2021; Isbiliroglu et al. 2015).52

Although use of the DRM significantly reduces the computational burden for deterministic wave53

propagation problems, stochastic seismic wave propagation considering inherent uncertainties is54

still challenging. To the best knowledge of the authors’, there is still no development on artificial55

boundary and reduced domain modelling technique in probabilistic context.56

The most straightforward way to handle the uncertainty is Monte Carlo method. All the above57

artificial boundary and reduced domain modelling technique are directly applicable. Monte Carlo58

method essentially generates statistically significant number of samples for input uncertainties of59

the model, and runs deterministic solver repeatedly for all the samples (Metropolis and Ulam60

1949). Results from deterministic runs are collected and analysed to obtain the statistics of61

response, see for example Shinozuka (1972), Fenton and Griffiths (2002), Fenton and Griffiths62

(2005) for applications of Monte Carlo method. However, Monte Carlo method is computationally63

intractable with its notoriously slow convergence rate, and requires extensive number of samples to64

reach satisfactory result with engineering accuracy. Alternative approaches, such as perturbation65

approach and stochastic collocation approach are also popular. Perturbation approach employs66

first order or second order Taylor expansions of random functions (Bourret 1962). Early works on67

stochastic seismic wave propagation through geologic media mainly rely on perturbation method68

(Manolis and Shaw 1996; Rahman and Yeh 1996; Zhang and Lou 2001). However, its application is69

limited to small uncertainties due to the utilization of only first or second order Taylor series (Sudret70

and Kiureghian 2000). Similar to the Monte Carlo method, stochastic collocation also repeatedly71

executes deterministic solver for all samples but the samples are judiciously selected by quadrature72

rules (Xiu and Hesthaven 2005; Babuška et al. 2007). Although the number of samples is much73

smaller than that of Monte Carlo method, the stochastic collocation method is still computationally74

expensive for high-dimensional problems because of the exponential increase of sample size in high75

dimensions (Xiu 2010; Berveiller et al. 2006). Note that the above-mentioned stochastic methods76

are not altering deterministic codes, and are all regarded as non-intrusive methods.77
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On the other hand, stochastic Galerkin method, which is an intrusive method and proposed78

by Ghanem and Spanos (1991), represents input uncertainties in polynomial functional form, e.g.,79

Hermite polynomial chaos expansion. Galerkin projection is performed to establish a generalized80

expanded linear system of equations, whose solutions are the coefficients of polynomial chaos81

expansion of uncertain response. Although the stochastic Galerkin method requires modifica-82

tion/redevelopment of the deterministic program, it can be shown that intrusive stochastic Galerkin83

method is advantageous over non-intrusive approaches in terms of computational efficiency (Xiu84

2010). Recently, a time-domain intrusive stochastic elastic-plastic finite element method was de-85

veloped by Sett et al. (2011), Wang and Sett (2016) using stochastic Galerkin method. Developed86

methodology can incorporate non-Gaussian random field for uncertain material parameters and87

non-stationary random process for uncertain seismic loads, and perform stochastic seismic wave88

propagation analysis (Wang and Sett 2019). Due to its computational efficiency, this paper extends89

the conventional deterministic domain reduction method (Bielak et al. 2003) to probabilistic regime90

within the framework of Galerkin stochastic finite element method. Established is a two-step mod-91

ular methodology for time-domain intrusive stochastic seismic wave propagation. It is expensive92

to perform conventional one-step stochastic seismic wave propagation in a holistic model including93

detailed modelling of both bedrock and local site, and their random field information. While in94

the proposed modular methodology, the first step considers stochastic seismic wave propagation95

where the bedrock is modelled in detail as a random field and the local site is only modelled as a96

deterministic field with coarse mesh. The second step performs stochastic nonlinear seismic wave97

propagation analysis in a reduced domain with detailed modelling of local random site. Connection98

of the two steps is a boundary layer whose response is recorded at the first step and again applied99

at the second step as effective stochastic earthquake forces for DRM.100

Novelty of this work lies in extending the deterministic DRM into stochastic context using101

intrusive stochastic Galerkin formulation. The deterministic DRM is a modular methodology to102

reduce computational burden in seismic wave propagation analysis. The extension to stochastic103

context, namely, the proposed modular methodology, inherits the advantage of deterministic DRM104
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which allows reduction of computational domain to improve simulation efficiency. Compared to105

the traditional approach with holistic model, the proposed modular approach benefits from separate106

consideration of random bedrock model and random local site model. Relatively large mesh size107

and time step can be adopted in the stochastic modelling of the first step, which needs to be108

performed only once. Only the second part of the computation needs to be repeated if any system109

parameters within local site need to be varied.110

Formulation of the time-domain intrusive stochastic finite element method (SFEM) is first111

introduced in section 2. Two-step modular methodology within SFEM is established by extending112

conventional domain reduction method to probabilistic regime. Salient features of the proposed113

modular methodology are illustrated through three examples. The first example assumes the only114

uncertainty to be shear modulus of bedrock and local site, and models them as non-Gaussian115

random fields. The second example assumes the only uncertainty to be the seismic motion and116

models it as a non-stationary random process. The third example accounts for uncertainties in both117

seismic motions and material parameters. Simulation results are presented in terms of marginal118

mean, marginal standard deviation, marginal probabilistic density function, and compared with119

conventional stochastic seismic wave propagation analysis using holistic model.120

2 FORMULATION OF TIME-DOMAIN INTRUSIVE STOCHASTIC FINITE ELEMENT METHOD121

The weak form of deterministic, dynamic finite element method with body force neglected, can122

be written as (Bathe 1996):123

∑
e

[ ∫
De

Nm(x)ρ(x)Nn(x)dΩ ün(t)+∫
De

∇Nm(x)D(x, t)∇Nn(x)dΩ un(t)−∫
De

Nm(x) f b(x, t)dΩ − fm(x, t)
]
= 0 (1)

where x denotes the location vector defined over the domain, N (x) is the finite element shape124

function, ρ(x) is the material density, D(x, t) is the tangent stiffness which should be updated125
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for nonlinear materials, f b(x, t) is the body force and f (x, t) represents all other external forces(126

traction, point load, etc.). ∑
e denotes the finite element assembly procedure over the discretized127

domain. The nodal displacement un(t), nodal acceleration ün(t) can be solved using a time128

integration scheme.129

To account for the uncertainties in the system, the above deterministic finite element is extended130

to stochastic finite element with the material parameters D(x, t) modelled as random fields and131

forcing functions f (x, t) modelled as random processes. FollowingWang and Sett (2016), material132

parameters D(x, t) and forcing functions f (x, t) can be represented by a multidimensional Hermite133

polynomial chaos expansion (PC) with the correlation structure quantified by Karhunen-Loève134

theorem. Since the quantification of a random field and random process follow the same procedure,135

the formulation is only illustrated for the random field below.136

Let D(x) denote a heterogeneous non-Gaussian random field that can be represented by a137

multidimensional Hermite polynomial chaos as:138

D(x, θ) =
P1∑
i=1

ai (x)Ψi ({ξr (θ)}) (2)139

where {ξr (θ)} denotes the set of independent zero-mean unit-variance Gaussian random variables,140

and {Ψ} is the PC basis set consisting of multidimensional orthogonal Hermite polynomials, while141

ai (x) is the coefficient for PC basis Ψi and x represents the location vector within the random field.142

Note that θ indicates randomness, and will be dropped to simplify notation. The total number of143

PC terms, P1, may be computed as P1 = (M1 + p1)!/(M1!p1!) where M1 denotes the dimension144

of PC expansion, i.e., the number of Gaussian variables in {ξr}, and p1 denotes the order of PC145

expansion.146

To this end, the main task is to quantify the marginal distributions and correlation functions of147

the randomfield. We beginwith themarginal distribution quantification by using a one-dimensional148

Hermite polynomial chaos as:149
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D(x, θ) =
p1∑

i=0
αi (x)Γi (γ(·, θ)) (3)150

where the set {Γ} consists of one-dimensional Hermite polynomials up to order p1 while the151

variable of polynomials is a zero-mean unit-variance Gaussian random field γ. The coefficient152

αi (x) is computed by 〈D Γi〉/〈Γ
2
i 〉 for each location while 〈·〉 denotes the ensemble operator.153

Note that 〈Γ2
i 〉 can be precomputed analytically, and 〈D Γi〉 can be evaluated using inverse CDF154

transformation technique (Xiu 2010).155

In addition, the covariance function of random field D(x) can also be derived in terms of the156

covariance function of γ(x) (Sakamoto and Ghanem 2002) as:157

CD(x1, x2) =
p∑

i=1
αi (x1)αi (x2)i!Cγ (x1, x2)i (4)158

After solvingEq. 4 to obtain the covariance function of γ(x),Cγ (x1, x2), Karhunen-Loève expansion159

is then employed to efficiently discretize the zero-mean unit-variance Gaussian random field γ. A160

generalized eigenvalue problem is formulated using finite element method to solve the Fredholm161

integral of the second kind with kernel Cγ (x1, x2), then, random field γ(x) may be written in terms162

of eigenvalues λ and eigenvectors y(x):163

γ(x, θ) =
M1∑
i=1

√
λiyi (x)√∑M1

m=1
{√
λmym(x)

}2
ξi (θ) (5)164

Note that only the first M1 eigenvalues and eigenvectors are selected for the Karhunen-Loève165

expansion, and the unit variance constraint is satisfied by normalization.166

Substituting Eq. 5 into Eq. 3, and equating the two representations of random field D(x), Eq.167

3 and Eq. 2, the PC coefficients {ai} can be found as:168

ai (x) =
p!
〈Ψ2

i 〉
αp(x)

p∏
j=1

√
λr( j) yr( j) (x)√∑M1

m=1
{√
λm ym(x)

}2
(6)169

Similarly, the random forcing function can also be represented using multidimensional Hermite170
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PC with dimension M2 and order p2 as:171

fm(t, θ) =
P2∑
j=1

fmj (t)Ψj ({ξr (θ)}) (7)172

where fmj (t) is the PC coefficient at time t for random forcing, and may be computed by following173

the same procedure as the random field. The output response processes, un(t, θ), ün(t, θ) can also174

be represented by multidimensional Hermite PC as:175

un(t, θ) =
P3∑

k=1
dnk (t)Ψk ({ξl (θ)}) (8)176

ün(t, θ) =
P3∑

k=1
d̈nk (t)Ψk ({ξl (θ)}) (9)177

where dnk (t), d̈nk (t) are the unknown PC coefficients that will be obtained through a stochastic178

Galerkin projection.179

After substitution of Eqs. 2, 7, 8, 9 into Eq. 1 and after application of stochastic Galerkin180

projection by multiplying both sides with Ψl , and after taking expectation, one obtains:181

P3∑
k=1
〈ΨkΨl〉

N̄∑
n=1

∫
De

Nm(x)ρ(x)Nn(x)dΩ d̈nk (t) +182

P3∑
k=1

P1∑
i=1
〈ΨiΨkΨl〉

N̄∑
n=1

∫
De

∇Nm(x)ai (x)∇Nn(x)dΩ dnk (t) =
P2∑
j=1
〈ΨjΨl〉 fmj (t)183

(10)184

where N̄ is the total number of nodes in the deterministic finite element domain. Note that Eq. 10185

is similar to the deterministic finite element formulation (Eq. 1) with additional wrapping indices186

about Hermite PC, consequently, the deterministic matrix assembly can be viewed as a block matrix187

and Eq. 10 can be assembled into a generalized matrix-vector form as:188
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Md̈ + Kd = F (11)189

whereM and K may be called the generalizedmass and stiffness matrices, while F, d, and d̈may be190

called the generalized force, displacement, and acceleration vectors, respectively. By introducing191

Rayleigh damping into the formulation, Eq. 11 can be rewritten as:192

Md̈ + Cḋ + Kd = F (12)193

where C is the generalized damping matrix, and it is constructed from K and M with two Rayleigh194

damping parameters. Newmark time integration algorithm may be utilized to solve Eq. 12, and the195

mean and standard deviation of response could be directly evaluated by using orthogonal property196

of Hermite PC. In addition, probability distribution of response is also available by using kernel197

density estimation with a significant number of generated samples.198

3 FORMULATION OF STOCHASTIC DOMAIN REDUCTION METHOD199

Conventional approach to simulate seismicwave propagation requires a holisticmodel including200

bedrock geology, and local site details (Graves and Pitarka 2010; Rodgers et al. 2018). If the seismic201

source is far away from the local site, the size of the model would become extremely large and202

computationally expensive.203

Domain reduction method (DRM) (Bielak et al. 2003; Yoshimura et al. 2003), provides a204

modular, two-step procedure to simulate large scale deterministic seismic wave propagation from205

far field to local site of interest. The DRM is first used to simulate seismic wave propagation206

within the deep bedrock, without modelling local site details, and response of boundary layer near207

the local site is recorded. Note that a coarse mesh can be adopted due high stiffness of the deep208

bedrock (Lysmer and Kuhlemeyer 1969; Watanabe et al. 2017). Then, a domain reduced model,209

with local site details is constructed for simulating local site response. Recorded response of210

the boundary layer from the first step is formulated into effective seismic forces. Those effective211

seismic forces are then applied on the elements of single boundary layer of the domain-reduced212
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model in a dynamically consistent way. The interior domain Ω, inside the boundary layer, includes213

all the local site details, while the exterior domain Ω+ is used to absorb outgoing waves. The key214

feature of DRM lies in the reduction of computational size to simulate earthquake seismic wave215

propagation response including local site details. In addition, changes of local site features would216

only require repeated simulations in its second step and that is much more efficient than traditional217

approach with a holistic model including the whole bedrock geology and local site. Detailed218

formulation of domain reduction method can be found in Bielak et al. (2003). Formulation of the219

first step is neglected herein since it is identical to traditional seismic wave propagation analysis.220

Traditional seismic wave propagation analysis constructs a holistic model which includes bedrock221

geology and local site, and the model is discretized using finite element which results in a dynamic222

equilibrium system of equation. In the second step, the domain reduction formulation can be223

written in matrix-vector form as:224


MΩii MΩib 0

MΩbi MΩbb + MΩ
+

bb MΩ
+

be

0 MΩ
+

be MΩ
+

ee




üi

üb

ω̈e


+


KΩii KΩib 0

KΩbi KΩbb + KΩ
+

bb KΩ
+

be

0 KΩ
+

be KΩ
+

ee




ui

ub

ωe


=


0

Fe f f
b

Fe f f
e


(13)225

226

where mass matrix M and stiffness matrix K are formulated with its subscripts i, b, e denoting227

interior domain, boundary layer, and exterior domain, respectively. Likewise, ui, ub and üi, üb are228

nodal displacement and acceleration at interior domain, boundary layer, respectively. The residual229

response we in exterior domain is formulated using transformation of variables (Bielak et al. 2003).230

The effective forces Fe f f
b and Fe f f

e are computed from the response of boundary layer elements in231

the first step, and can be written as:232

Fe f f
b = −MΩ

+

be ü0
e − KΩ

+

be u0
e

Fe f f
e = MΩ

+

eb ü0
b + KΩ

+

eb u0
b

(14)233
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where the superscript "0" denotes the nodal responses collected from simulation in the first step.234

Inspired by deterministic domain reduction method, a two-step modular methodology for235

time-domain stochastic seismic wave propagation is formulated herein. In addition to the spa-236

tial separation of exterior domain and interior domain, random field of the two domains are also237

probabilistically separated into exterior domain random field and interior domain random field.238

Similar to domain reduction method, the first step is a time-domain intrusive stochastic seismic239

wave propagation analysis with exterior domain modelled as a non-Gaussian random field, however240

in the first step, the interior domain is modeled as deterministic domain. In the second step, interior241

domain is modelled in detail as a random field, and the recorded stochastic response at boundary242

layer in the first step is applied as stochastic excitations.243

Substituting the Hermite PC representation of material parameter, external forcing, response244

processes (Eq. 2, 7, 8, 9) into Eq. 13, we obtain:245

P3∑
k=1
Ψk


MΩii MΩib 0

MΩbi MΩbb + MΩ
+

bb MΩ
+

be

0 MΩ
+

be MΩ
+

ee




d̈ik

d̈bk

ω̈ek


+246

P3∑
k=1

P1∑
m=1
ΨmΨkam(x)


KΩii KΩib 0

KΩbi KΩbb + KΩ
+

bb KΩ
+

be

0 KΩ
+

be KΩ
+

ee




dik

dbk

ωek


=

P2∑
j=1
Ψj


0

f e f f
bj

f e f f
e j


247

(15)248

249

To apply stochastic Galerkin projection, we multiply a Hermite PC Ψl , on both sides. An ensemble250

average of the equations can then be taken, so that expanded linear system of equations can be251

formulated as:252
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P3∑
k=1
〈ΨkΨl〉


MΩii MΩib 0

MΩbi MΩbb + MΩ
+

bb MΩ
+

be

0 MΩ
+

be MΩ
+

ee




d̈ik

d̈bk

ω̈ek


+253

P3∑
k=1

P1∑
m=1
〈ΨmΨkΨl〉am(x)


KΩii KΩib 0

KΩbi KΩbb + KΩ
+

bb KΩ
+

be

0 KΩ
+

be KΩ
+

ee




dik

dbk

ωek


=

P2∑
j=1
〈ΨjΨl〉


0

f e f f
bj

f e f f
e j


254

(16)255

Similar as in Eq. 13, we can assemble the linear system of equations, Eq. 16, into its matrix-vector256

form:257


MΩii MΩib 0

MΩbi MΩbb + MΩ
+

bb MΩ
+

be

0 MΩ
+

be MΩ
+

ee




d̈i

d̈b

ω̈e


+


KΩii KΩib 0

KΩbi KΩbb + KΩ
+

bb KΩ
+

be

0 KΩ
+

be KΩ
+

ee




di

db

ωe


=


0

F
e f f
b

F
e f f
e


(17)258

where boldface matrices and vectors indicate the expanded stochastic matrices and vectors from259

the assembly procedure. The content of stochastic matrices, MΩii , K
Ω
ii , and vectors, di, Fe f f

b in260

Eq. 17 are explicitly written in Equations 18 to 21 to illustrate the assembly procedure,261

MΩii =


〈Ψ1Ψ1〉MΩii . . . 〈Ψ1ΨP3〉M

Ω
ii

...
. . .

...

〈ΨP3Ψ1〉MΩii . . . 〈ΨP3ΨP3〉M
Ω
ii


(18)262
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KΩii =



P1∑
m=1
〈ΨmΨ1Ψ1〉am(x)KΩii . . .

P1∑
m=1
〈ΨmΨ1ΨP3〉am(x)KΩii

...
. . .

...
P1∑

m=1
〈ΨmΨP3Ψ1〉am(x)KΩii . . .

P1∑
m=1
〈ΨmΨP3ΨP3〉am(x)KΩii


(19)263

di =



di1

...

diP3


(20)264

F
e f f
b =



∑P2
j=1〈ΨjΨ1〉 f e f f

bj

...∑P2
j=1〈ΨjΨP3〉 f e f f

bj


(21)265

while other matrices and vectors in Eq. 17 are assembled in a similar fashion. Size of the stochastic266

matrix and vector is the size of its corresponding deterministic matrix and vector multiplied by267

the number of PC coefficients, P3. The expanded stochastic effective forcing vector can also be268

computed following Eq. 22, which is the expanded form of Eq. 14,269

F
e f f
b = −MΩ

+

be d̈0
e − KΩ

+

be d0
e

F
e f f
e = MΩ

+

eb d̈0
b + KΩ

+

eb d0
b

(22)270

where d̈0
e, d̈

0
b, d

0
e, d

0
b represents the simulated stochastic acceleration and displacement response271

vectors at the boundary layer in the first step. The expanded matrix-vector form system equations,272

Eq. 17, can be solved using Newmark time integration scheme. The formulation can also include273

viscous damping in the system, following Eq. 12. In addition, the proposed modular methodology274

may be also applicable to other type of interactions between two domains, e.g., hydro-mechanically275

coupled systems.276
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4 DEVELOPMENT OF THE STOCHASTIC BEDROCK INPUT MOTIONS277

To formulate stochastic effective forces using the above stochastic DRM, it is required to develop278

stochastic bedrock input motions. For a given site, several different ways have been proposed, e.g.,279

DRM forces can be computed from physics-based simulated ground motions over regional bedrock280

geology (Graves et al. 2011; Wang et al. 2017; Abell et al. 2018). However, these physics-281

based ground motion simulations can become computationally intractable when uncertainties in282

seismic source or bedrock geology need to be considered. For engineering practices, time domain283

uncertain input motions can be simulated using the stochastic method (Boore 2003). For example,284

Wang et al. (2020) proposed a methodology to simulate scenario-consistent time domain uncertain285

motions using stochastic Fourier amplitude spectra and Fourier phase derivative. It is also common286

practice to scale and select past-recorded seismic motions as the population of underlying uncertain287

seismic input by matching site-specific target spectrum.288

This paper utilizes the PEER online tool to select realistic ground motions by matching site-289

specific uniform hazard spectrum (UHS) (McGuire 1995) for hazard level of 10% probability of290

exceedance in 50 years for a target site latitude 34.5◦, longitude -118.2◦ in Los Angeles. Note291

that the proposed formulation is not only limited to stochastic motions generated from spectrum292

matching criteria, any stationary or nonstationary seismic motions can be incorporated. Two293

hundred past-recorded ground motions are selected from PEER online database and scaled for294

spectral matching. All motions are deconvoluted to the bottom of the bedrock model shown in295

the next section. The two hundred deconvoluted seismic motions are regarded as realizations296

of the non-stationary bedrock input random process motions. Figure 1 shows the time series of297

realizations and the mean response of the random process motions. It is observed that the mean of298

acceleration is relatively small compared to motion realizations, which is probably due to random299

phase property of seismic motion.300

Marginal mean, standard deviation and correlation structure of the seismic motion random pro-301

cess can be characterized through statistical analysis of these two hundred time series realizations.302

From the Kolmogorov-Smirnov test of these realizations, it is also found that the marginal distri-303
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Fig. 1. Time series realizations of the input bedrock random process motions

bution of the seismic motion random process is Gaussian. Therefore, the input stochastic motions304

are modelled as a non-stationary Gaussian random process and Hermite PC with order 1, that is305

sufficient to capture the marginal distribution. Hermite polynomial chaos (PC) Karhunen-Loève306

(KL) expansion, formulated in section 2, is performed to represent such a non-stationary Gaussian307

random process. Since the seismic random process is highly non-stationary, Hermite PC with308

dimension 150 is required to sufficiently capture the non-stationary statistics of the random process309

motions. Figure 2 verifies the correctness of Hermite PC-KL expansion. It can be seen that both310

marginal mean and standard deviation synthesized from Hermite PC representation are close to the311

statistics derived from the realizations of seismic motions.312

In addition to the marginal behaviour, Hermite PC-KL representation can also reproduce the313

correlation structure of the seismic motion random process, as shown in Figure 3. The PC314

represented random process motions would be used as uncertain bedrock input in the illustrative315

examples 2 and 3 in the next section.316

5 ILLUSTRATIVE EXAMPLES317
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Fig. 2. Marginal mean and standard deviation responses of the non-stationary input motion random
process: (a) Displacement, and (b) Acceleration.

In order to illustrate the proposed modular approach, 1-D seismic wave propagation analysis318

for an engineering site is performed. The site is located at latitude 34.5◦, longitude -118.2◦ in319

Los Angeles with 280m thick bedrock and 20m thick overlying soil. Input seismic excitations320

are applied at the bottom of the bedrock. Three examples are presented in this section. The first321

example considers uncertain ground shear modulus only. The second example considers uncertain322

seismic motions only, while the third example considers uncertainties in both input motions and323

material. In addition, conventional holistic stochastic seismic wave propagation analysis is also324

conducted for verification. A schematic illustration of the conventional holistic model is shown in325
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Fig. 3. Correlation structure of the non-stationary input motion random process: (a) Exact (b) PC
Synthesized.

Figure 4, and the two modular models in the proposed approach are shown in Figure 5.

2
0 

m

random process

local site
(detailed mesh)

random field

random field

2
80

 m

seismic motion

bedrock

Fig. 4. Holistic 1-D stochastic seismic wave propagation model using conventional approach.

326

Boundary layer should be located a distance away from local site with Dashpot at the bottom327

to absorb outgoing waves and avoid wave reflection. In order to determine a reasonable location328
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Fig. 5. 1-D stochastic seismic wave propagation model using modular approach: (a) Model 1 in
the first step; (b) Model 2 in the second step

of boundary layer, analyses with different distances to local site (10m, 20m, 30m) are performed.329

We found that for boundary layer located at 30m from the local site, good agreement with results330

from conventional approach is achieved, and the reflected waves at the boundary layer are mostly331

absorbed and residual waves are negligible Therefore, 30m to the local site is selected for the332

boundary layer location in the model. Noted that procedures to determine the boundary layer333

location is dependent on geology and it is recommended that numerical tests be performed in order334

to gain confidence in model geometry. In other words, analysts are encouraged to perform model335

verification in order to determine appropriate dimensions of the model. Note that the proposed336

modular approach is also applicable to 2-D and 3-D problems, and the employed 1-D model in this337

paper is to verify the proposed modular formulation.338

The uncertain shear modulus of the 20-meter local site is modelled as a homogeneous lognormal339

random field with marginal mean 100 MPa, coefficient of variation (COV) 30% and exponential340

correlation structure with correlation length of 5m. Similarly, shear modulus of bedrock is another341

18 Fangbo Wang, July 23, 2021



lognormal random field with marginal mean linearly increasing from top to bottom, 100 MPa to342

1000MPa, COV 20%, exponential correlation structure with correlation length of 100 m. Note that343

the two shear modulus random fields represent two distinct parts of the model, therefore, they are344

mutually independent. Simulations in this paper are run using a desktop with Intel Core i7-7700345

CPU @ 3.60 Hz processor.346

5.1 Example 1: Uncertain shear modulus with deterministic input motion347

We use Hermite PC with dimension 3, order 2 to quantify the lognormal random field of shear348

modulus of local site, and another Hermite PC of dimension 3 order 2 for the lognormal random349

field of shear modulus of bedrock. Since the two random fields are mutually independent, Hermite350

PC with dimension 6 order 2 should be used for the stochastic response. The input deterministic351

seismicmotion, as shown in Figure 6, is the deconvoluted groundmotion recorded at Devil’s canyon352

station of 1970 Lytle Creek Earthquake, that is selected by spectrally matching the site-specific353

design spectrum.354

Rayleigh damping ratio of 5% is used and the two Rayleigh parameters are computed by assign-355

ing 5% damping to the first and fourth natural frequencies of the site profile with no uncertainties356

(0.46 Hz, 2.6 Hz). By analyzing the natural frequencies with 1000 realizations of site profile, the357

damping ratio for the extreme case (the first natural frequency 0.23Hz) is 8.5% that is a bit higher358

than 5%. Therefore, the Rayleigh parameters that were used in modeling yield approximately 5%359

damping ratio in major modes and thus avoid unrealistic large damping ratios even for the extreme360

cases of site profile realizations.361

Figure 7 shows the simulated marginal mean and standard deviation of displacement and362

acceleration at the ground surface from both the conventional holistic approach and the proposed363

modular approach. Peaks of mean and standard deviation of displacement are 0.03m and 0.012m,364

respectively. The COV of ground displacement is approximately 40%, which is larger than input365

COV (30%) of shear modulus. Similarly, COV of ground acceleration is approximately 2 since366

peaks of mean and standard deviation of acceleration are 0.15g and 0.3g, respectively. Although367

the COV of input shear modulus is only 30%, COV of ground acceleration is nearly 2, and that is368
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quite unexpected from engineering judgment point of view. It can be seen that marginal mean and369

standard deviation of ground response from the proposed modular approach are in good agreement370

with results from the conventional holistic approach. Only slight difference is observed in the371

marginal standard deviation of acceleration at ground surface.372

The solved Hermite PC expansion of ground surface displacement at time 8.0 s is shown in373

Eq. 23. The Hermite PC expansion is dimension 6 order 2 with 28 PC coefficients, and the first374

seven PC terms are presented in Eq. 23 due to space limitation. It is observed that the first four PC375

coefficients from themodular approach agrees very well with those from the conventional approach.376

dcon(t = 8.0s) = (−58 − 7.87ξ1 − 2.99ξ2 + 1.90ξ3 + 0.61ξ4 + 0.03ξ5 + 0.02ξ6) × 10−4

dmod (t = 8.0s) = (−57 − 7.39ξ1 − 3.08ξ2 + 1.99ξ3 − 1.24ξ4 − 0.96ξ5 − 0.19ξ6) × 10−4
(23)377

In addition, the marginal probabilistic density function (PDF) of uncertain ground surface378

displacement at time 8.0 s is estimated by kernel density approach as shown in Figure 8. It is379

observed that the marginal PDF of ground displacement from the modular approach also matches380

well with the PDF from the conventional holistic approach, but shifts slightly to the right. The381

conventional approach takes 9.7 seconds while the modular approach takes 3.1 seconds.382
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Fig. 7. Simulated marginal mean and standard deviation of: (a) Displacement, and (b) Acceleration
at the ground surface when only shear modulus is uncertain.

21 Fangbo Wang, July 23, 2021



-8 -6 -4 -2 0 2

Displacement (m) 10
-3

0

100

200

300

400

500

600

P
D

F

Modular approach

Conventional approach

Fig. 8. Simulated marginal PDF of surface displacement at 8.0s when only shear modulus is
uncertain.

22 Fangbo Wang, July 23, 2021



5.2 Example 2: Deterministic shear modulus with uncertain input motions383

In the second example, we keep the shear modulus of the ground as deterministic and input384

the stochastic seismic motions presented in section 4. Stochastic seismic wave propagation is385

analyzed using both the conventional holistic approach and the proposed modular approach. Time-386

evolving marginal mean and standard deviation of surface displacement and acceleration from both387

approaches are compared in Figure 9.388
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Fig. 9. Simulated marginal mean and standard deviation of: (a) Displacement, and (b) Acceleration
at the surface when only bedrock input motions are uncertain.

The overlapping responses in Figure 9 confirm the validity of the proposed modular approach.389

The PDF of probabilistic displacement response at 8.0s is shown in Figure 10. Same as the390
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Fig. 10. Simulated marginal PDF of surface displacement at 8.0 s when only bedrock motion is
uncertain.

uncertain input motions, it is observed that the standard deviation responses of both displacement391

and acceleration are much larger than corresponding mean responses. The result from the proposed392

modular approach is also matching well with that from the conventional holistic approach except for393

slight difference on the peaks of PDF. The PDF of probabilistic surface displacement shows clear394

Gaussian nature. This is expected considering the input seismicmotion is a non-stationaryGaussian395

random process and the ground shear modulus is deterministic. In addition, the conventional396

approach takes 13.1 seconds while the modular approach takes 3.4 seconds.397
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5.3 Example 3: Uncertain shear modulus with uncertain input motion398

The third example considers both the shear modulus and input bedrock motions to be uncertain.399

The shear modulus random fields of local site and bedrock are identical to Example 1, which400

is represented by PC dimension 3 order 2 for each random field. The seismic motion random401

process is identical to Example 2, which is represented by PC dimension 150 order 1. Since402

two shear modulus random fields and input motion random process are mutually independent, the403

probabilistic response process is represented by Hermite PC dimension 156 order 2 to encompass404

the entire probability space.405

Figure 11 shows the second-order statistics of displacement and acceleration at the ground406

surface from stochastic finite element analysis. The marginal PDF of surface displacement at 8.0s
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Fig. 11. Simulated marginal mean and standard deviation of: (a) Displacement, (b) Acceleration
at the surface when both the shear modulus and input bedrock motions are uncertain.

407
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is shown in Figure 12. Similar to Example 1 and Example 2, good agreement of results from the
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Fig. 12. Simulated marginal PDF of surface displacement at 8.0 s when both shear modulus and
input bedrock motions are uncertain.

408

proposed modular approach and conventional holistic approach is observed for both time-evolving409

marginal mean, standard deviation and PDF of probabilistic surface response. It is also noted410

that the magnitude and shape of mean and standard deviation of ground surface response are411

close to those of uncertain input motions. This implies that the probabilistic system response412

from the stochastic wave propagation is dominantly controlled by the uncertain input excitations.413

This is confirmed by Figure 13 where probabilistic surface acceleration responses from example414

2 (uncertain motion) and example 3 (uncertain motion & modulus) are compared. It can be seen415

that introducing shear modulus uncertainty (20% COV) to the system with uncertain input motions416

would not make significant difference to the surface probabilistic response. There is some decrease417

in the mean acceleration response after incorporating modulus uncertainty. However, its influence418

is very small considering that the magnitude of standard deviation is much larger than the mean419

response. In addition, the conventional approach takes 3844.2 seconds while the modular approach420

takes 1010.6 seconds. Taking the simulation time in all three examples into account, the proposed421

modular approach is more than three times faster than the conventional approach.422
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Fig. 13. Simulated marginal mean and standard deviation of acceleration at ground surface:
Comparison of example 2 (uncertain motion) and example 3 (uncertain motion + modulus).
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6 CONCLUSIONS423

In this paper, a modular methodology is developed for time-domain intrusive stochastic mod-424

elling of non-stationary seismicwave propagation frombedrock to local site through inhomogeneous425

randommedium. Hermite polynomial chaos expansion is employed to quantify the uncertain mate-426

rial parameters and uncertain seismic motion. Uncertain seismic motions, resulting from uncertain427

input motions, are intrusively propagated through the uncertain material using Galerkin stochastic428

finite element method. The Hermite polynomial chaos expansion is capable of simulating any429

non-Gaussian and non-stationary random process or field. By formulating stochastic effective seis-430

mic input forces, conventional deterministic domain reduction method is mathematically extended431

to probabilistic regime. The novelty of the proposed methodology lies in the two-step modular432

approach to propagating uncertain motions, from uncertain input through uncertain material. The433

first step performs a stochastic wave propagation from random process input motions, through a434

detailed random field model of bedrock and a coarse deterministic local site model. The second step435

then involves stochastic simulation of a reduced domain containing detailed random field model436

of a local site, excited by uncertain effective forces developed using motions from the first step.437

Compared to the conventional holistic approach for stochastic seismic wave propagation, simulated438

domain in both steps is reduced and computationally tractable. The separation of uncertain local439

site from uncertain deep bedrock model is more practical since it enables efficient simulation with440

frequent modification and parametric study of local site conditions.441

A 1-D seismic wave propagation analysis with three cases is used to verify and illustrate the442

proposed methodology. Results show that simulated mean, standard deviation, and PDF of ground443

response is in good agreement with those from the conventional holistic approach. The proposed444

modular methodology offers a more efficient and practical approach to simulate stochastic seismic445

wave propagation. In addition, for 3D problems, developed methodology will provide even more446

efficiencies for stochastic seismic wave propagation modelling.447
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