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Classification of Structural MRI Images in Alzheimer’s
Disease from the Perspective of Ill-Posed Problems
Ramon Casanova*, Fang-Chi Hsu, Mark A. Espeland, for the Alzheimer’s Disease Neuroimaging

Initiative"

Department of Biostatistical Sciences, Wake Forest School of Medicine, North Carolina, United States of America

Abstract

Background: Machine learning neuroimaging researchers have often relied on regularization techniques when classifying
MRI images. Although these were originally introduced to deal with ‘‘ill-posed’’ problems it is rare to find studies that
evaluate the ill-posedness of MRI image classification problems. In addition, to avoid the effects of the ‘‘curse of
dimensionality’’ very often dimension reduction is applied to the data.

Methodology: Baseline structural MRI data from cognitively normal and Alzheimer’s disease (AD) patients from the AD
Neuroimaging Initiative database were used in this study. We evaluated here the ill-posedness of this classification problem
across different dimensions and sample sizes and its relationship to the performance of regularized logistic regression (RLR),
linear support vector machine (SVM) and linear regression classifier (LRC). In addition, these methods were compared with
their principal components space counterparts.

Principal Findings: In voxel space the prediction performance of all methods increased as sample sizes increased. They
were not only relatively robust to the increase of dimension, but they often showed improvements in accuracy. We linked
this behavior to improvements in conditioning of the linear kernels matrices. In general the RLR and SVM performed
similarly. Surprisingly, the LRC was often very competitive when the linear kernel matrices were best conditioned. Finally,
when comparing these methods in voxel and principal component spaces, we did not find large differences in prediction
performance.

Conclusions and Significance: We analyzed the problem of classifying AD MRI images from the perspective of linear ill-
posed problems. We demonstrate empirically the impact of the linear kernel matrix conditioning on different classifiers’
performance. This dependence is characterized across sample sizes and dimensions. In this context we also show that
increased dimensionality does not necessarily degrade performance of machine learning methods. In general, this depends
on the nature of the problem and the type of machine learning method.
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Introduction

In the past, it has been argued that when classifying brain

structural MRI (sMRI) images, the performance of machine

learning techniques is greatly affected by the curse of dimension-

ality (CoD). The term CoD was introduced by Richard Bellman

while working on optimization problems [1]. He pointed out that

some problems become intractable as the number of the variables

increases. For example, a Cartesian grid in 10 dimensions with

spacing of 0.1 on the unit cube will have 1010 points, 20

dimensions lead to 1020 points, and so on. He concluded that if the

goal was to estimate a function on a grid generated from a few

dozen dimensions, one would need to evaluate it trillions of times,

rendering the problem intractable. In other words, as the

dimension increases, the number of samples needed to keep the

same density grows exponentially. A consequence is that it is only

feasible to sample high-dimensional spaces very sparsely; this is

known as the empty space phenomenon [2]. CoD effects also
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occur in different technical areas such as function estimation,

numerical integration, and machine learning. In the context of

machine learning applications, it usually refers to the degradation

in performance of machine learning algorithms with the increase

of dimension. In such cases, researchers typically adopt approach-

es to first reduce the dimensionality of data before applying

machine learning algorithms, as is the common practice in the

field of early prediction of Alzheimer’s disease (AD) using

neuroimaging data. Examples include the Spatial Pattern of

Abnormalities for Recognition of Early AD (SPARE-AD) and

Structural Abnormality Index (STAND), based on classifiers

estimated using sMRI images. In these cases, the dimensions of

the original voxel space is first markedly reduced using approaches

such as image processing operations [3,4], region of interests

(ROI) [5,6], principal components analysis (PCA) [7], or ROI with

a priori knowledge [8,9].

Recent work provides evidence that dimension reduction for

classifying brain MRI images may not be necessary to achieve a

high level of prediction performance in some situations. Reports in

the fMRI literature [10,11] and especially those related to

classification of structural MRI images using ADNI data, provided

evidence that linear classifiers may be robust to increased

dimensionality. Several researchers [12–14] solved classification

problems of large size (up to 3|105) using linear kernel support

vector machines (SVMs). The use of kernel methods implies a

dimension reduction, since the optimization problem is solved in

the space spanned by the kernel which is of dimension equal to the

sample size [15]. Recently, an important contribution towards

understanding the role of sample size and feature selection in the

context of neuroimaging high-dimensional problems was made by

Chu and colleagues [8,14]. Using ADNI data, they studied the

performance of the linear kernel SVM method [12] combined

with different strategies for feature selection and sample size; most

previous studies, by contrast, operated with fixed sample sizes. The

study included the high-dimensional case of selecting 3|105

voxels by thresholding a gray matter (GM) image template. In this

last situation, there was very little improvement in classification

accuracy when feature selection was combined with the linear

SVM. In addition, they found that feature selection based on a

priori knowledge, such as selecting only the voxels falling in the

hippocampal and parahippocampal tissue, produced significantly

greater classification accuracies.

We have recently proposed solving similar structural MRI

classification problems associated with AD following a different

path, which is based on large-scale regularization. We use

regularized logistic regression (RLR) based on a coordinate-wise

descent technique as implemented in the GLMNET library [16].

Unlike other approaches these classification methods operate

directly in the voxel space using regularization with sparsity

properties. In previous work using ADNI data we varied the

number of variables between 5|105{2|106 by using different

study customized templates [17,18] while keeping the sample size

fixed (N = 98), and obtained excellent prediction performance and

interpretability. Different versions of regularization methods with

sparsity properties have been applied before in the context of

fMRI data analysis to solve problems of much lower dimensions.

For example, elastic net regularized least squares have been

applied to problems of prediction of purchases [19] and to analyze

the Pittsburgh-EBC-Group (PBAIC) competition data using Least

Angle Regression optimization [20]. Ryali and colleagues extend-

ed the coordinate-descent method proposed by [21] to implement

RLR with L1 penalty to the elastic net case [11]. They applied it to

discriminate between musical and speech stimuli. In all these cases,

analyses were carried out with fixed sample sizes and input spaces

based on region of interest (ROI) data or a voxel space with fixed

dimension on the order of 104.

Most of the methods described above that are capable of

handling sMRI or fMRI high dimensional data are related, in one

way or another to regularization theory. Regularization techniques

have been widely adopted by machine learning researchers

because of their capacity to deal with problems with small sample

sizes and large numbers of variables, situations for which

traditional statistical techniques are not well suited [22,23].

Regularization discovery is usually credited to Tikhonov, who

developed it while working on numerical solutions to integral

equations [24]. He proposed it to deal with ‘‘ill-posed’’ problems

[25]. The great French mathematician Hadamard defined at the

beginning of the 20th century [26] a well-posed problem as one

whose solution fulfilled three properties: 1) existence, 2) uniqueness

and 3) a continuous dependence on the data (stability). He wrongly

postulated the non-existence of practical problems that did not

follow his definition of well-posed. However, ill-posed problems

(those that break one of Hadamard’s three properties) are

commonly found in many scientific areas such as astronomy,

tomography, image processing, oil and mine prospecting, brain

research and genetics. The basic idea behind Tikhonov’s

regularization paradigm was to minimize a functional composed

of two terms: 1) a loss term, which drives the fidelity of the solution

to the patterns present in the data, and 2) a regularization or

penalty term, constraining the solution to some predefined

functional spaces with specific smoothness properties. In addition,

a regularization parameter controls the tradeoff between these two

criteria. According to Vapnik the discovery of the regularization

principles by Tikhonov, Ivanov, Phillips and others was one of the

more important discoveries that led to a revolution in data analysis

and the creation of statistical learning theory [27]. Several

important learning machines, such as RLR, SVM, and ridge

regression, are considered to be particular cases of the original

Tikhonovian paradigm, where the loss and the regularization

terms take different forms with respect to the original Tikhonov

functional [28–30]. For example, SVM is associated with the so-

called hinge loss function, while the binomial deviance and least

square loss functions are characteristic of the RLR and the ridge

regression, respectively. Different types of penalties generate

different versions of these learning machines.

Although regularization methods are often applied to deal with

the sMRI image classification problems, it is rare to find in the

literature an analysis of this problem ill-posedness, even though

regularization techniques were first created to deal with the ill-

posedness of practical problems. The present study provides a view

of the classification of MRI images from the perspective of linear

ill-posed problems. For these the degree of ill-posedness is linked to

the conditioning and structure of singular values of the linear

kernel matrices [31,32]. We study the impact of conditioning of

linear kernel matrices across sample sizes and dimensions on the

behavior of three linear classifiers when solving neuroimaging

problems of very high dimensions. Our analyses evaluate the

impact of dimension (number of variables) and sample size on

linear kernel matrix conditioning and their relationship to linear

learning machines that operate directly in the voxel space. We

provide a detailed performance evaluation of RLR with sparsity

regularization implemented via coordinate descent techniques

across sample sizes and dimensions showing that it is not only

practical for solving these high-dimensional problems in neuro-

imaging but also renders excellent results in terms of prediction

performance comparing very well with SVM approaches [12]

previously used by other researchers. In addition, we study the

linear regression classifier (LRC) [10] to help elucidate why these

Analysis of Ill-Posedness of sMRI Classification
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machine learning methods are less affected by the CoD than may

be expected. Finally, we compare the performance of these

techniques with counterparts based on principal components

analysis (PCA), a very popular dimension reduction technique in

neuroimaging applications [5,33] and biomedical applications in

general.

Materials and Methods

ADNI database
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year public

private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California –

San Francisco. ADNI is the result of efforts of many coinvestiga-

tors from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50 sites

across the U.S. and Canada. The initial goal of ADNI was to

recruit 800 adults, ages 55 to 90, to participate in the research.

These would include approximately 200 cognitively normal older

individuals to be followed for 3 years, 400 people with MCI to be

followed for 3 years and 200 people with early AD to be followed

for 2 years. For up-to-date information, see www.adni-info.org.

ADNI Participants
We used ADNI subject data collected from 50 clinic sites that

had their own individual IRB approval. Study subjects gave

written informed consent at the time of enrollment for data

collection, storage and research and completed questionnaires

approved by each participating sites’ Institutional Review Board

(IRB). The data were anonymized before being shared. We used

baseline structural MRI data from 727 subjects. Of these, 205

were cognitively normal controls (CN), 171 had AD, and 351 had

mild cognitive impairment (MCI) at baseline [34]. The MCI

subjects were included only to generate the study- customized

template. In previous work, we observed increases in classifiers’

performance when MCI subjects were also used to generate the

study-customized template [18]. All classification analyses were

carried out using only CN and AD participants. To reduce noise,

we decided before the experiments to discard 17 subjects who were

CN at baseline but converted to other cognitive status during the

36 months follow-up, leaving 188 CN subjects. Demographic

information for the ADNI participants used in the analyses was

briefly summarized in Table 1.

Structural MRI data processing
We used baseline 1.5 T T1-weighted MRI data as described in

the ADNI acquisition protocol [35]. The ADNI protocol acquires

2 sets of structural data at each visit. These are rated for image

quality and artifacts by ADNI investigators [35]. To enhance

standardization across sites and platforms, the best quality data set

then undergoes additional pre-processing, including corrections

for gradient non-linearity [36] and intensity non-uniformity [37].

In the present study, these optimally pre-processed images were

downloaded from the ADNI database and used for subsequent

analyses. The images were segmented and normalized using the

Statistical Parametric Mapping (SPM) software package. Segmen-

tation of the original images into gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) images was performed using

the NewSegment tool. Normalization was carried out using

Diffeomorphic Anatomical Registration using Exponentiated Lie

algebra (DARTEL) method [38]. First, a study-customized

template was generated of the 727 images using the default

parameters. Second, GM, WM, and CSF images were then

warped to the template, modulated and smoothed using an

isotropic Gaussian kernel of 4 mm. The final resolution of the

images was 1:5 mm isotropic. Only the GM images were used in

this study.

Regularization methods in the GLMNET library
We evaluated the performance of logistic regression with elastic

net regularization as implemented in the GLMNET library [16].

Our software implementation is based on MATLAB, where the

GLMNET library is called using a freely available MATLAB

wrapper developed by Hui Jiang (http://www-stat.stanford.edu/

,tibs/glmnet-matlab/). The general form of the optimization

problem solved by the library is of the form:

min
b0,b[Rp

C(b0,b,xi,yi)zlP(b), ð1Þ

C(b0,b,x,y)~
1

N

XN

i~1

yi(b0zxT
i b){ log (1ze

b0zxT
i

b
� �

), ð2Þ

P(b)~
Xp

j~1

1{að Þ
2

b2
j zaDbj D

� �
, ð3Þ

where xi[Rp is the ith sample or feature vector containing the GM

voxels entering the analysis, p is the number of voxels entering the

analysis, yi[ 0,1f g is the ith label (0 for cognitively normal

participants, 1 for participants with Alzheimer’s disease),

b0,b[Rp are the parameters of the model, and l is the

regularization parameter. The regularization scheme described

by Eq.(1) contains two terms: a loss term C(b0,b,x,y) and a

penalty term P called elastic net penalty, which is a linear

combination of L1 and L2 penalties. The regularization parameter

l establishes a trade-off between the two terms in Eq.(1) while the

regularization parameter a regulates the weight of the two

Table 1. Demographic data of the ADNI participants used in
this study.

Cognitive
Status Number Mean Age (std) Sex (M/F)

Mean MMSE
(std)

CN 205 76.1 (5.0) 112/93 29.1 (1.0)

MCI 351 75.1 (7.3) 228/123 27.1 (1.8)

AD 171 75.5 (7.7) 95/76 23.4 (2.0)

doi:10.1371/journal.pone.0044877.t001

Analysis of Ill-Posedness of sMRI Classification
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penalties in Eq.(3). Both parameters are estimated from the data as

explained below.

Support Vector Machines (SVM)
This is the most common classification technique used to

analyze sMRI data [3,12,38–41]. There are many sources

describing in detail the principles behind SVM [42,43]; we refer

the reader to those while here we briefly describe our implemen-

tation and also provide an equivalent representation based on the

representer theorem [44] that will be referred later to in our

discussion.

Kloppel and colleagues used hard-margin (HM) and soft margin

(SM) linear SVM to classify structural MRI images [12,45]. We

follow a similar approach to the SM-SVM model, using the kernel

approach based on the LIBSVM library [46] implementation. GM

images after normalization and thresholding are vectorized and

treated as samples. A linear kernel matrix K is generated by

computing the inner products across all examples. This is provided

to the LIBSVM library as a pre-computed kernel. For the SM-

SVM the optimization of parameter C was carried out using the

CV described below.

SVM based on the representer theorem and the properties of

the reproducing kernel Hilbert spaces [30,44] can be considered a

regularization method. It can be represented as:

min
b0,a

XN

i~1

1{yi(b0zaK)½ �zzlaT Ka, ð5Þ

where l plays the role of regularization parameter, K is the linear

kernel XX T , X is a N|p matrix containing in each row the

imaging information corresponding to one subject and

½�z~ max (0,1{yi(b0zaK)) is the hinge loss function. Alterna-

tively, using the eigen decomposition of K (USUT ) it can be

written as:

min
b0,b

XN

i~1

1{yi(b0zUb)½ �zzlbT S{1b, ð6Þ

where U is a square matrix containing the eigenvectors and S a

diagonal matrix containing the eigenvalues. Eqs.(5–6) describe the

dependence of a linear SVM on the linear kernel matrix and its

singular values. Note that in this case the SVM penalizes more

strongly contributions coming from the eigenvectors associated

with smaller eigenvalues. The penalty in Eq.(6) has been called the

generalized ridge penalty [43]. Note also that K is symmetric and

therefore positive semi-definite which implies that singular and

eigenvalues decompositions are the same.

Linear regression classifier
The linear regression classifier is estimated by solving the least

squares problem:

min
b0,b[Rp

XN

i~1

yi{(b0zbT x)
� �2

This has the general analytical solution

b̂b~Xzy~(X T X )zX T y~X T (XX T )zy~X T Kzy, ð7Þ

where+indicates Moore-Penrose pseudo-inverse, X is a N|p
matrix containing in each row the imaging information corre-

sponding to one subject, XX T is the linear kernel matrix,

yi[ {1,1f g and b̂b[Rpz1. Transformations in Eq.(7) are based on

well-known properties of the pseudo-inverse [47,48]. Similar to the

linear SVM, the linear regression classifier (LRC) depends on the

linear kernel matrix which is highlighted in Eq.(7) by designating

XX T as K (same as in Eq.(5)). Differently from the SVM, the

pseudo-inverse penalizes or removes the influence of singular

vectors associated to singular values equal zero. If the matrix K is

invertible, then+can be replaced by -1 in the last expression in

Eq(7). We used the MATLAB command pinv for Eq.(7). Once the

model is fitted the final decision function for this classifier is

ŷyi~
{1, if (b̂b0zb̂bT x)v0

1, if (b̂b0zb̂bT x)§0

(
ð8Þ

where ŷyi is the estimated label.

Principal Component Space Analyses
Principal component analysis (PCA) is a powerful tool for

dimension reduction that is often used in biomedical applications

to deal with high-dimensional problems. After standardization of

the data, we used the princomp MATLAB function to project the

GM imaging data (matrix X) corresponding to CN and AD ADNI

participants into principal component space. The performance of

LRC, RLR and SVM are evaluated. To estimate the SVM we did

not follow the kernel implementation described above, instead we

used the LIBLINEAR library (version 1.8). It provides a fast

implementation of the SVM with L2 regularization based on

coordinate descent techniques [49]. Regularized methods in

combination with PCA have been used before to predict stroke

outcomes [50] and for imaging genetics analyses [51].

Evaluation of classifier performance and parameter
optimization

To evaluate classifier performance, in all cases we reserved a

fixed dataset of 100 randomly selected participants (50 CN and 50

AD) for testing. Training datasets were randomly generated based

on the remaining CN and AD participants. To estimate the

optimal values of the regularization parameters both in voxel and

PC spaces, we combined 10-fold cross-validations (CV) and grid

search. For RLR we set the parameter a in Eq.(3) to 0.001. We

then optimized the value of the parameter l using the grid given

by l~5,10,20,30:::80,90,100,200,500,1000 and for SV-SVM we

used 2{22,2{20,2{18 . . . 2{8 . . . 222
� �

: to tune the parameter C.

For both methods at each grid point, the classifier was trained

using 9 tenths of the training dataset and its performance was

assessed using the fold left for testing by estimating the

classification accuracy. We repeated this ten times using a different

fold for testing and the rest of the data for training. We select the

regularization parameters that produce maximum average accu-

racy across the 10 folds of the CV procedure. The classifier was

then estimated using all the training dataset and the optimal value

of the regularization parameter. Finally, the classifier’s general-

ization capability was evaluated using the testing dataset. In the

case of LRC, because there was no tuning of regularization

parameters, we just fitted the model using the whole training

dataset and its performance was evaluated using the testing

dataset.

We computed overall classification accuracy to evaluate

classifier performance as:

Analysis of Ill-Posedness of sMRI Classification
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Figure 1. Results of Experiment # 1. The dependence of classification accuracy on sample size is depicted for all sample sizes, dimensions and
methods we tested. Each panel represents the results of the three methods for a different dimension (50 K, 150 K, 310 K and 750 K). Each curve
represents the average performance of a specific method across 100 iterations; bars depict one standard deviation.
doi:10.1371/journal.pone.0044877.g001

Figure 2. Results of Experiment # 1. More detailed information is provided for four sample sizes (40, 60, 180 and 210) using box plots. Each
panel shows the behavior of the three methods across the selected sample sizes for a fixed dimension. For all three methods classification accuracy
increased as the sample size increased. The performance of the two regularized methods (RLR and SVM) was in general very similar across all
situations. Surprisingly, LRC was often very competitive, although it clearly performed worse for larger samples and lower dimensions.
doi:10.1371/journal.pone.0044877.g002

Analysis of Ill-Posedness of sMRI Classification
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Acc~
TPzTN

TPzFNzTNzFP
ð9Þ

where TP are AD patients correctly identified as AD, TN are

controls correctly classified as controls, FN are AD patients

incorrectly identified as controls and FP are controls incorrectly

identified as AD.

Evaluation of ill-posedness
In the context of discrete problems ill-posedness often translates

into ill-conditioning of the linear kernel matrix. A common

approach for evaluating the degree of ill-posedness for these

problems is the study of linear kernel matrix conditioning via the

use of the singular value decomposition(SVD) [32,47]. The

condition number is one measure often used to characterize

matrix conditioning, which is computed as the ratio of the largest

singular value to the smallest one. A matrix is singular if the

condition number is infinite (singular values equal zeros are

present) and ill-conditioned if its condition number is very large so

its reciprocal approaches the machine’s floating point precision

[47]. We evaluated the influence of these factors on machine

learning methods performance in the context of classification of

structural MRI brain images.

Evaluating the effect of dimension and sample size
The evaluation was based on the GM images of the CN and AD

participants that were vectorized and used as samples to estimate

the different classification models. For each sample size and

dimension, computations were repeated 100 times for different

samples of CN and AD participants selected at random. The

imaging data were always normalized by subtracting the mean and

dividing by the standard deviation in a voxel-wise fashion.

Experiment #1. We studied the impact of dimension and

training dataset sample size in the voxel space on RLR, LRC and

SM-SVM in terms of prediction performance (overall classification

accuracy) when discriminating between GM images of AD and

CN ADNI participants. The sample size was varied from 20 to 210

(20, 30, 40, 50, 60, 90, 120, 150, 180, 210) with balanced numbers

of CN and AD participants. We varied the dimensions, given by

the number of voxels included in the analysis, from 5|104 to

7:5|105 by selecting four different thresholds (0.86, 0.65, 0.2, and

0.0021) of the study-customized GM template.

Experiment #2. To study the conditioning of the linear

kernel associated with classification of sMRI images using our

ADNI dataset we estimated the singular values, rank and the

condition numbers of all linear kernel matrices (K) across all

samples sizes, dimensions and iterations tested in Experiment # 1.

Experiment # 3. We compared across 100 iterations the

prediction performance of RLR, LRC, and SVM both in voxel

and PC spaces for a very large dimension (D = 750 K voxels) and a

large but fixed sample size (210). To select the optimal number of

components for each iteration, we estimated classification accu-

racy for different sets of components generated by adding one

component at a time, starting from the first component up to the

total number of components. The maximum value of accuracy

Figure 3. Results of Experiment # 1. An alternative view of the results in Figure 2 is presented by depicting in each panel the performance of the
three methods across dimensions for a fixed sample size. It is clear that not only all methods were relatively robust to the increase of dimension, but
also that their performance often improved. This was especially the case for the non-regularized LRC.
doi:10.1371/journal.pone.0044877.g003

Analysis of Ill-Posedness of sMRI Classification
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obtained across different sets of components was taken as the final

result for a given iteration.

Results

The results of the first experiment describing the impact of

dimension and sample size in the voxel space on the RLR and

SM-SVM performances are presented in Figures 1, 2 and 3. In

Figure 1 the dependence of classification accuracy on sample size

is depicted for all dimensions and methods we tested. Each curve

represents the average performance across 100 iterations, with

bars representing one standard deviation. In Figure 2 more

detailed information is provided for four specific sample sizes (40,

60, 180 and 210) using box plots. Each panel shows the behavior

of the three methods across the selected sample sizes for a fixed

dimension. For the three methods classification accuracy increased

as the sample size increased. Note this effect was attenuated for

LRC in the smaller dimension. The performance of the two

regularized methods (RLR and SVM) was in general very similar

across all situations. Surprisingly, LRC was often very competitive,

although it clearly performed worse for larger samples and lower

dimensions. In Figure 3, the performance of the three methods

across dimensions for a fixed sample size is shown in each panel. It

is clear that all methods were relatively robust to the increase of

dimension, and that very often they showed slight improvements

in performance for larger dimensions especially for larger sample

sizes. This last effect across dimensions was greater for the non-

regularized LRC, especially for larger sample sizes.

Most of the results of the second experiment are shown in

Figures 4, 5 and 6. We found that in all cases (dimension-sample

combinations) and iterations, the linear kernels matrices were full

rank and well-conditioned. The observed patterns of conditioning

shed light on the behavior of the linear classifiers tested in the first

experiment. For example, a careful examination of the corre-

sponding panels in Figures 3 and 4 reveals that for a fixed sample

size, improvements in classifier performance with the increase of

dimension was related to improvements of conditioning of the

linear kernel matrices. The effect was more clearly observed for

the larger sample sizes, for which the differences of kernel

conditioning across dimensions were larger. The poorest condi-

tioned kernel matrices occurred for larger sample sizes and the

smallest dimension (50 K). This explains why the LRC clearly

underperformed compared the other two methods in this situation

(see Figure 1 upper left panel) but at the same time benefited the

most with the improvement of conditioning of kernel matrices

across dimensions. The regularization mechanism behind RLR

and SVM reduced the detrimental effect of the singular vectors

associated to the smaller singular values while the Moore-Penrose

pseudo-inverse did not. It is designed to remove only the influence

of singular values equal zero. One possible reason for the

improvements of conditioning with the increase of dimension is

the inclusion up to some point of a greater number of informative

voxels which seems to be attenuated for the two larger dimensions

we studied.

Figure 5 highlights that for a fixed dimension increases in

sample sizes leads to worse conditioning (increase of condition

numbers values) of the kernel matrices (especially for the smaller

dimension). Simultaneously, it leads to increases in classification

accuracy as seen in previous figures. A potential explanation is two

opposing factors are associated with sample size increases. While

increasing sample size provides additional information for

discrimination between the two classes, it also worsens condition-

ing of the kernel matrices possibly via the introduction of

collinearity across the rows of the kernel matrix. Regularized

Figure 4. Results of Experiment # 2. For fixed sample size, improvements of the linear kernels matrices conditioning were observed as the
dimension increased. The effect is more apparent for large sample sizes, when the difference in kernel’s conditioning across dimensions was greatest.
The worse conditioned kernel matrices were observed for larger sample sizes and the smallest dimension (50 K).
doi:10.1371/journal.pone.0044877.g004
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methods, as explained above, are capable of dealing with

detrimental effects of poor conditioning of the kernel matrices.

At the same time they take advantage of the additional

information provided by the larger sample size, which explains

their relatively greater increases in performance with respect to

LRC when the sample size increased in the lower dimensional case

(50 K).

In general, the ill-conditioning effects we discuss are very mild

since all the kernel matrices were full rank and the reciprocal of

their condition numbers were very far from the machine’s

precision. However, effects due to differences in conditioning did

exist, and they influenced the performance of these methods as we

have shown. In Figure 6 we show the structure of singular values

across selected sample sizes (40, 60, 180 and 210) for two

dimensions (50 K and 750 K). The median of the singular values

for the 100 iterations are plotted in logarithmic scale. The

additional information provided by larger sample sizes generally

produced larger singular values, except for those located towards

the ‘‘tails’’ (far right side). These few smaller singular values result

in poorer conditioned kernel matrices especially when dimensions

are small (e.g. 50 K). Regularized techniques, which are relatively

robust to the effects of these small singular values, gain greater

advantages from increases of sample size.

The main results of the Experiment # 3 are presented in

Figure 7. The voxel space performances of the three methods are

compared with their PC counterparts. Despite the huge difference

in the number of dimensions, relatively little or no gains were

achieved by the three methods in the PC space. While LRC and

the SVM showed slight improvements in performance in PC space

the RLR showed slight decrease of performance.

Discussion

This study provides a better understanding of the impact of

dimension on linear classification methods that directly operate on

high-dimensional neuroimaging spaces defined by voxels. It

provides further evidence to dispel the common belief that due

to the Curse of Dimensionality (CoD), feature selection is always

necessary to achieve good performances in high-dimensional

problem. Our research produced strong evidence about the

robustness of several linear classifiers to increased dimensionality

(up to 750 K voxels) in the context of sMRI data classification.

Some researchers have pointed out that the effect of the CoD on

a machine learning algorithm depends on how it deals with sample

neighborhoods [43]. Classifiers such as k-nearest or local kernel

methods that operate on local neighborhoods to produce function

estimates are more vulnerable to CoD effects, since in high-

dimensional spaces the neighborhoods are no longer local.

Cherkassky and Mulier noted that dimensionality alone is not

necessarily a good measure of function complexity [23]. They

suggested that it is necessary when characterizing function

complexity to take into account both smoothness and dimension-

ality. Our work provides evidence that the impact of dimension on

performance of machine learning methods depends on the

problem’s degree of ill-posedness. We observed, in classifying

sMRI images, that linear classifiers were robust to the increase of

Figure 5. Results of Experiment # 2. This figure highlights that for a fixed dimension increases in sample sizes led to poorer conditioning of the
kernels matrices (especially when the dimension was small) while at the same time as we observed in previous figures, it led to increases in
classification accuracy.
doi:10.1371/journal.pone.0044877.g005
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dimension. This behavior is very likely related to the fact that

unlike other types of data, structural MRI from CN and AD

subjects are characterized by a large number of informative and

correlated voxels, which leads in practice to well-conditioned

linear kernel matrices. The problem we are studying here is

strongly underdetermined, breaking the first (uniqueness) of the

three Hadamard properties of well-posed problems and therefore

is an ill-posed problem. On the other hand, it is characterized by

relatively well-conditioned kernel matrices leading to good stability

(third Hadamard’s property). Lack of stability is perhaps the more

complicated feature of an ill-posed problem. It implies that small

changes in data (e.g. due to noise, etc) can lead to very different

solutions and therefore regularization is needed. The lack of

stability in discrete linear problems is often associated to the

structure of the linear kernel matrices singular values and the

presence of very small singular values [31,32]. Regularization

techniques are designed to dampen or filter out the effects of small

singular values. The classification problem we studied here is

stable although mild effects on the linear classifiers performance

due to differences in conditioning of kernel matrices related to

different sample sizes and dimensions are still observed. As should

be expected the non-regularized LRC is the most affected by these

effects. Interestingly, Hastie and colleagues have noted that

another non-regularized technique the HM-SVM often shows

similar performance to its regularized counterpart SM-SVM in

high dimensional problems [43](page 658). HM-SVM works

relatively well when classifying AD MRI images in the voxel space

as reported before in the neuroimaging literature [14,18,52]. In

additional experiments we noted similar patterns of performance

of HM-SVM and LRC when compared to regularized methods

(See upper left panel in Figure S1). In situations of worse kernel

conditioning (lower dimension and larger sample sizes) they both

underperformed regularized techniques. This suggests that the

good performance of HM-SVM in high-dimensional problems is

related to the well-conditioning of the associated linear kernel

matrices.

It is striking how competitive the LRC performed (especially for

the higher dimension studied here) with the much more

sophisticated regularized methods, such as RLR and SVM. These

results are possibly related to a phenomenon characteristic of high

dimensional spaces called ‘‘data piling’’, recently discovered and

studied [53,54]. For many linear classifiers, it manifests when most

samples of one class project onto the same point of the separating

hyperplane direction vector and when different classifiers yield the

same direction vector. If two linear classifiers yield the same

direction vector of the separating hyperplane they will produce the

similar performance. Anh, Marron and their colleagues have

proposed the use of the maximal data piling direction to improve

performance of linear classifiers in high dimensional spaces

[54,55]. Our empirical work suggests that the data piling effect

could be associated with less need of regularization due to the well

conditioning of the linear kernel matrices. The three classifiers’

performances were most similar when linear kernel matrices had

best conditioning (e.g. larger dimensions). Interestingly, in a

Figure 6. Results of Experiment # 2. The structure of singular values across selected sample sizes (40, 60, 180 and 210) and iterations is shown
for two dimensions (50 K and 750 K). The median values of the singular values for the 100 iterations are plotted in logarithmic scale. The additional
information brought by the increase of sample size was reflected by patterns of greater singular values when sample sizes were large, with the
exception of the singular values located towards the ‘‘tails’’, which caused poorer kernel matrices conditioning especially for the smaller dimension
(50 K).
doi:10.1371/journal.pone.0044877.g006
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previous functional MRI study [10], similar performance of LRC,

L2 regularized logistic regression and linear SVM was reported,

with much smaller dimensions, fixed sample size and no

optimization of regularization parameters.

There are several limitations in our study. We have evaluated

the impact of dimension in a specific manner: by changing the

threshold of the DARTEL study customized GM template, we

generated problems of different number of variables. Although

other ways of evaluating the effect of dimension could be devised,

the approach chosen here naturally appears in the problem. In a

GM voxel space analysis, we would first introduce the voxels with

higher probability of being located in the GM tissue since it has

been reported by several groups [17,33,41] that GM is more

informative for brain MRI classification and regression than WM

and CSF. By decreasing the threshold in GM images, we will at

some point very likely including less informative or noisy voxels.

Although we used elastic net regularization, it was not done with

an optimal choice of both regularization parameters for compu-

tational reasons. We fixed in advance one of the regularization

parameters (a~0:001) and optimized the second. We have

observed in practice that this choice works well avoiding the

heavy computational burden related to the optimization of both

parameters. Finally, we focused our work on discrimination

between CN subjects and AD patients and we did not attempt

classification analyses using MCI data. The focus of our research is

to develop biomarkers based on imaging data. Several biomarkers

proposed before using machine learning methods such as SPARE-

AD and STAND [3,40] are metrics related to classifiers trained

with well characterized databases of CN and AD subjects. Thus, in

pursuing this goal it is important to develop classification methods

highly discriminative of CN individuals from AD patients using

sMRI and other types of information. We have recently proposed

the use of the class-conditional probabilities associated to RLR

study in work as a new biomarker for early prediction of AD

[17,56]. Importantly, a problem for this approach is that the

ADNI cohort was not designed as a diagnostic clinical classifica-

tion study to provide a realistic clinical testing ground. Thus, the

enrolled cohort represents typical cases rather than the difficult

diagnostic problems that clinicians have to face in practice [57].

Finally, we are not arguing that feature selection is not necessary

or useful. Nor have we claimed that the methods studied here are

the best solution to the problem of sMRI brain images

classification. Our point is that, in some problems as the one we

studied the commonly assumed devastating effect of dimension on

classifiers performance is not necessarily present. The huge

differences in dimensions between the voxel and PC spaces were

not reflected in large differences in performance of these three

methods. There are different factors that can influence the impact

of dimension on a machine learning algorithm as for example the

ill-posedness of the problem defined by the nature of the data.

Therefore, the usefulness of feature selection in general will

depend on the nature of the specific problem, employed machine

learning algorithm, signal to noise ratio (e.g., sample size, etc) of

the data, and other factors.

Figure 7. Results of Experiment # 3. The voxel space performances of the three methods are compared with their PC counterparts. We can see
that, in general, relatively little or no gains were achieved by the three methods in the PC space. While LRC and the SVM showed slight improvements
in performance, RLR showed slight decreases in performance.
doi:10.1371/journal.pone.0044877.g007
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Supporting Information

Figure S1 The performances of a hard margin (HM)-SVM and

SM-SVM were compared across sample sizes and two dimensions

50 K and 750 K using a similar setup as in Experiment # 1. The

HM-SVM shows, in general, a similar behavior to its regularized

counterpart, although in situations of worse conditioning of the

kernel matrices in this study (50 K and larger samples sizes) it

underperforms in a similar fashion as the LRC does. The HM-

SVM was implemented by setting the parameter C to 106.

(TIF)
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