
UC San Diego
Technical Reports

Title
Uniform Hashing with Multiple Passbits

Permalink
https://escholarship.org/uc/item/4dt6h2g9

Authors
Martini, Paul
Burkhard, Walter

Publication Date
2000-08-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dt6h2g9
https://escholarship.org
http://www.cdlib.org/

Uniform Hashing with Multiple Passbits

Paul Martini Walter A. Burkhard

�

Gemini Storage Systems Laboratory

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093�0114, USA

fpmartini, burkhardg@ucsd.edu

Abstract

We present a novel extension to passbits providing signi�cant reduction to unsuccessful search lengths

for open addressing collision resolution hashing. Both experimental and analytical results included

demonstrate the dramatic reductions possible. This method does not restrict the hashing table con�gu-

ration parameters and utilizes very little additional storage space per bucket. The runtime performance

for insertion is essentially the same as for ordinary open addressing with passbits; the successful search

lengths remain the same as for open addressing without passbits; the unsuccessful search lengths can be

made to be arbitrarily close to one bucket access for any desired loading factor.

1 Introduction

Hashing is a well-known implementation technique for organizing data stored internally or externally. Nu-

merous schemes exist for handling collisions such as open-addressing; each record determines the probe

sequence used to store or retrieve it. To store a record, it is placed in the �rst non-full bucket of its probe

sequence; to search for a record, buckets designated by its probe sequence are examined in order until �nd-

ing it or a non-full bucket, not containing it, is encountered indicating the record is not present. Uniform

hashing, introduced by Peterson [8], is an idealized model; double hashing is an e�cient scheme to generate

a record's probe sequence. Recently Lueker and Molodowitch [7] as well as Guibas and Szemeredi[4] have

shown double hashing to be asymptotically equivalent to the ideal uniform hashing which maps records to

random permutations.

In case the bucket capacity is one, Ullman [10] raised an optimality question and presented a model for

discussing it. More recently, Yao [11] has shown that uniform hashing is optimal among all open-addressing

schemes in the sense that the expected successful search length is at least ��

�1

log(1��) for loading factor

�. For the open-addressing expected unsuccessful search length, Yao [11] poses the question { is uniform

hashing also optimal among all open-addressing schemes in the sense that the expected unsuccessful search

length is at least 1=(1� �)?

One approach to signi�cantly reduce the unsuccessful search length is to include a passbit in each bucket

as presented by Furukawa [3] and Amble and Knuth [1]. The passbit is initially set false for an empty

structure, and it set true only when the bucket is full and at least one over
ow occurs at the bucket. Now

an unsuccessful search can terminate when the search accesses a bucket with a false passbit.

Technical Report CS00-xxx, Computer Science and Engineering, UCSD.

�

Sabbatic leave at IBM Almaden Research Center.

1

2 Multiple Passbits

We slightly modify the passbit approach in that each bucket will contain g � 1 passbits pb

0

; pb

1

; : : : ; pb

g�1

.

A table consisting of n buckets contains ng passbits. The hash value space is partitioned into g equal-sized

blocks referred to as varieties. Accordingly, any probe sequence within variety i will be associated with

passbit pb

i

at each bucket. All passbits are initially set false for an empty structure. Passbit pb

i

at a bucket

is set true only when the bucket is full and at least one over
ow occurs via a variety i probe. An unsuccessful

search via a variety i probe sequence will terminate at a bucket where pb

i

is false.

We present two table data type methods insert and fetch to demonstrate multiple passbits. These algo-

rithms are essentially the same as for the single passbit con�guration other than in the �rst step determining

which passbit j to access.

insert (Data & data)

1. determine probe sequence p

0

; p

1

; : : : ; p

n�1

and

determine passbit index j ;

2. for (i = 0 ; bucket [p

i

] is full ; i++)

check bucket [p

i

] for duplicate record ; if found return false ;

bucket [p

i

] : pb

j

= true ;

3. check bucket [p

i

] for duplicate record ; if found return false ;

copy record into bucket [p

i

] ; return true ;

fetch (Data & data)

1. determine probe sequence p

0

; p

1

; : : : ; p

n�1

and

determine passbit index j ;

2. for (i = 0 ; ; i++)

check bucket [p

i

] for record data ;

if found, copy data and return true ;

if (bucket [p

i

] . pb

j

is false) return false ;

The �rst step in either algorithm implementing double hashing would entail determining the initial probe

p

0

as well as the step size; designating the hash value as val, p

0

is calculated as val % n and the step size

is val % (n� 1) + 1. The passbit index is calculated as follows:

j = (val + val=g) % g:

We discuss the passbit index selection in section 4.

3 Multiple Passbits Analysis

Our table implementation algorithms are derived from open addressing with double hashing collision reso-

lution in which there are n buckets each containing b slots and g passbits. The passbits dramatically reduce

the expected unsuccessful search length as we will demonstrate here. A table con�guration of m records is

constructed using a sequence of k probes, referred to as the k-construction sequence, which is the concate-

nation of the pre�xes of probe sequences for each of the records stored within the table. This terminology

is exempli�ed in Figure 1. The 14-construction sequence of numbers conveys the record placement within

the table. The records were inserted into an empty table in the order shown within the �gure; cat, dog,

sow, etc. The record cat contributes the �rst entry 1 of the construction sequence, dog contributes the �rst

2, and sow contributes the next entry 4. After two more records, bucket 2 is �lled and when record ape

is inserted, it collides with bucket 2 and moves to bucket 4; passbit pb

2

, is set to true at this time. The

process is recorded as the next two entries within the construction sequence. The remaining portion of the

construction sequence is built in a similar fashion.

First we calculate the loading factor � given k. The loading factor measures the expected number of

records per slot; � depends upon b and n but not g.

2

b = 3

4:

3:

2:

1:

0:

doe

cat

dog

sow

bee

pig

ape

yak

cow

jay

n

=

5

p

b

0

p

b

1

T

T

F

F

FF

F

F

F

F

probe sequences variety

cat: 1, 2, 3, 4, 0 0

dog: 2, 4, 1, 3, 0 0

sow: 4, 2, 0, 3, 1 0

pig: 2, 3, 4, 0, 1 1

cow: 2, 0, 3, 1, 4 0

ape: 2, 4, 1, 3, 0 1

bee: 1, 2, 3, 4, 0 1

yak: 2, 1, 0, 4, 3 1

doe: 1, 0, 4, 3, 2 1

jay: 2, 4, 1, 3, 0 1

14-construction sequence: 1, 2, 4, 2, 2, 2, 4, 1, 2, 1, 1, 0, 2, 4

Figure 1: Con�guration with n = 5 buckets, b = 3 slots per bucket, and g = 2 passbits per bucket.

P

i

designates the probability that i of k probes, within the k-construction sequence, access a particular

bucket. Since uniform hashing is assumed, all buckets are equally likely to be accessed {

P

i

=

�

k

i

��

1

n

�

i

�

1�

1

n

�

k�i

0 � i � k: (1)

The expected number of records per bucket is

� b =

b�1

X

i=0

i P

i

+ b

k

X

i= b

P

i

:

Accordingly, we have

� = 1�

b�1

X

i= 0

�

b� i

b

�

P

i

: (2)

The loading factor � may be calculated given k and parameters b and n. We will have occasion to calculate

k for a given � as well; in case b is one, it is possible to determine a closed-form expression for k in terms

of �. Unfortunately, no other such inverse functions are known. The ratio k=n, referred to as the probing

factor, measures the number of probes per bucket in the k-sequence. In case b is one, the probing factor may

be approximated by � log (1� �). That is,

� = 1� P

0

= 1�

�

1�

1

n

�

k

:

Then letting k; n!1 such that the ratio k=n is constant �, we have � = 1� e

��

or � = � log (1� �). We

will have occasion to consider similar limiting situations subsequently and we designate as the asymptotic

situation the process of letting k; n!1 while maintaining a constant probing factor �.

3.1 Successful Search Length

The successful search length measures the number of probes per inserted record. The ratio k=nb measures

the number of probes per slot. Thus the ratio

k

n b�

3

measures the expected number of probes per record; that is, the expected successful search length. Accord-

ingly, we have

k

n (b�

b�1

P

i=0

(b� i)P

i

)

(3)

In case b is one, the asymptotic situation gives rise to the familiar formula for the expected successful search

length ��

�1

log (1��). The average successful search length measuring the number of probes per record is

given by the formula k=m; in Figure 1, the average successful search length is 1.4. The expected successful

search length, calculated via (2) and (3), is given in Table 1.

3.2 Unsuccessful Search Length

Suppose L

u

designates the number of buckets examined to conduct an unsuccessful search. The search

termination condition depends upon whether passbits are used or not. Without passbits, the unsuccessful

search terminates at an un�lled or open bucket; this condition provides the name for the general scheme.

With passbits, the search terminates at a bucket with a false passbit.

The probability a bucket is �lled (and the passbit is true if present) is q; we calculate q subsequently.

The probability an unsuccessful search requires at least � probes is

ProbfL

u

� � g = q

��1

� � 1 (4)

and the expected unsuccessful search length is

E[L

u

] =

X

��1

q

��1

=

1

1� q

: (5)

Since p̂ = 1 � q designates the probability the bucket is not �lled or the passbit is false (if present), we

calculate this value directly.

The average unsuccessful search length can be determined by calculating the length for each variety of

unsuccessful search; that is, by considering a unsuccessful search to begin at each bucket and have every

possible step size. The con�guration of Figure 1 has an average unsuccessful search length of 1.2. Table 1

contains the expected unsuccessful search length calculated via (5) using our results of Section 3.3.

k � u.s. s.s.

10 0.613 1.07 1.09

11 0.658 1.10 1.11

12 0.699 1.14 1.14

13 0.737 1.18 1.18

14 0.770 1.23 1.21

Table 1: Expected unsuccessful u.s. and successful s.s. search lengths for Figure 1 con�guration.

3.3 Results

We present our general result for the unsuccessful search length within multiple passbit double hashing. Our

results hold for any passbit; however, we will designate the passbits with indicies 1; 2; � � � ; g throughout our

analysis.

Theorem: The probability p a passbit is false within a bucket is

p̂ =

8

>

<

>

:

b

P

j

1

+j

2

+���+j

g

= 0

P

j

1

; j

2

;:::;j

g

+

b

P

j

g

=0

k�j

g

P

j

1

+j

2

+���+j

g�1

= b�j

g

+1

P

j

1

; j

2

;:::; j

g

�

b

j

g

�

=

�

j

1

+j

2

+���+j

g

j

g

�

k > b

1 otherwise

(6)

4

where g, the number of passbits per bucket, is at least two, k is the number of probes, b is the number of

slots per bucket, and p, the probability of accessing a bucket, is 1=n where n is the number of buckets and

P

j

1

; j

2

; ;:::; j

g

designates the probability that j

i

variety i probes access the bucket for 1 � i � g

P

j

1

; j

2

; ;:::; j

g

=

�

k

j

1

j

2

� � � j

g

��

p

g

�

j

1

+j

2

+���+j

g

�

1� p

�

k�j

1

�j

2

�����j

g

:

In case g is one, one passbit per bucket, the probability p̂ is

p̂ =

8

<

:

b

P

j = 0

P

j

k > b

1 otherwise

:

If no passbits are present, the probability p̂ is

p̂ =

8

<

:

b�1

P

j = 0

P

j

k � b

1 otherwise

:

This result is veri�ed within the Appendix.

A less apparent phenomenon within the p̂ expressions (6); for constant g, the expected unsuccessful search

length for larger b con�gurations will exceed that of smaller b con�gurations for loading factors greater than

approximately 0.85. This is intuitively clear; with more records per bucket, the net e�ect per passbit is

diminished as each becomes more likely set true. This behavior are present within both our experimental

data and our model.

4 Experimental and Analytical Results

We consider several con�gurations from simpler to more intricate in determining q the probability an unsuc-

cessful search continues beyond a particular bucket. For each con�guration, we present experimental data

together with expected values in graphical form. The experimental data is derived from a table consisting of

131 buckets each with b = 1; 2; 3; 4; 8; 16; 32; 64; 128 and 256 slots; each data point is the average of 10,000

instances of the con�guration. Expressions in closed-form for the expected unsuccessful search lengths will

the derived for a few cases. Our results are presented within the graphs of Figures 2 through 11; each curve

is for a particular bucket size. For small �, larger b produces smaller unsuccessful search lengths, while for

large � the opposite is true. This observation allows us to avoid cluttering the graphs with individual labels

for the curves; however, the crossing points are most visible within the graphs for large numbers of passbits.

Our analysis assumes independence of the initial bucket, step size, and the passbit. We calculate these

parameters as follows assuming the hash value for a record is value. The initial bucket accessed b is

b = value % n

where n is the number of buckets within the table, the step size s is

s = value % (n� 1) + 1

and

p = (value + value=g) % g

is the passbit index p. Accordingly, an interval of n (n � 1) g

2

consecutive (hash) values contains identical

numbers of occurrences of each bucket, step, and passbit combination (b; s; p) since the least common multiple

of n, n � 1, and g

2

divides n (n � 1) g

2

. Thus, we have that each bucket, step, and passbit combination

occurs with approximate probability 1=(n (n � 1) g); the probability is approximate only because we make

no assumption about the size of the hash value domain other than it be large.

5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: no passbits

expected value

experimental value

Figure 2: Unsuccessful search lengths with no passbits: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256.

4.1 No passbits

We begin without passbits, that is ordinary double hashing with b slots per bucket. We calculate the

probability p̂ that a bucket is not �lled, for k > b,

p̂ = P

0

+ P

1

+ � � �+ P

b�1

Then we have q = 1� p̂ and

E[L

u

] =

1

1� q

=

1

p̂

:

Here we have

p̂ =

b�1

X

i=0

�

k

i

��

1

n

�

i

�

1�

1

n

�

k�i

:

Figure 2 presents a graph containing both experimental data together with expected values.

In the asymptotic situation, we have

p̂ = e

��

b� 1

X

i= 0

�

i

i !

In case b is one, we have p̂ = e

��

and since the probing factor � is �log (1 � �), we obtain the familiar

E[L

u

] = 1=(1� �).

6

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: one passbit

expected value

experimental value

Figure 3: Unsuccessful search lengths with one passbit per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

4.2 Single Passbit

Next we consider a single passbit per bucket; the analysis of this con�guration is similar to the previous

analysis for no passbits. We calculate the probability p̂ that a bucket is not �lled or it is �lled but its passbit

is false; in this situation, at most b probes can be directed to the bucket, for k > b,

p̂ = P

0

+ P

1

+ � � �+ P

b�1

+ P

b

Since E[L

u

] = 1=p̂, we immediately obtain an improved unsuccessful search length due to the extra term

P

b

in the denominator. Figure 3 contains the experimental data as well as the expected values for this

con�guration.

In the asymptotic situation,

p̂ = e

��

b

X

i= 0

�

i

i !

In case b is one, p̂ = P

0

+P

1

= e

��

+�e

��

in the asymptotic situation and since � = � log (1��), we have

p̂ = (1� �) (1� log (1� �)): Finally,

E[L

u

] =

1

(1� �)(1� log (1� �))

(7)

an expression presented by Larson [6] who references Gunji [5] in this context.

4.3 Pair of Passbits

Now we consider a pair of passbits pb

1

and pb

2

per bucket. In this situation, we calculate p the probability

that passbit pb

2

is false. The probability P

j

1

;j

2

that j

1

probes of variety 1 and j

2

probes of variety 2 access

7

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: two passbits

expected value

experimental value

Figure 4: Unsuccessful search lengths with two passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256.

a bucket is given by

P

j

1

;j

2

=

�

k

j

1

; j

2

��

1

2n

�

j

1

+j

2

�

1�

1

n

�

k�(j

1

+j

2

)

j

1

; j

2

� 0 (8)

for k probes to construct the con�guration; we utilize the uniform hashing assumption to evenly divide the

probability of each variety of probe. Then p̂ is derived from the two events \pb

1

= false ^ pb

2

= false" and

\pb

1

= true ^ pb

2

= false" in which j

2

is no greater than b and the j

2

variety 2 probes must be among the

�rst b of the k-sequence to access the bucket

p̂ =

min (b; k)

X

j

1

+j

2

� 0

P

j

1

;j

2

+

b

X

j

2

= 0

k� j

2

X

j

1

= b+1�j

2

P

j

1

;j

2

�

b

j

2

�

�

j

1

+j

2

j

2

�
: (9)

The double summation on the right captures \pb

1

= true^pb

2

= false" and the single summation captures

\pb

1

= false^ pb

2

= false." The ratio containing binomial coe�cients measures the fraction of the sequences

of length j

1

+ j

2

containing j

2

probes of variety 2 within the �rst b probes; this ensures pb

2

= false. Figure

4 presents graphically the experimental and expected values.

In case b is one, we can obtain a closed-form expression for p. The two portions of the expression are

presented; the �rst three terms capture pb

1

and pb

2

both false and the two sums capture pb

1

true and pb

2

false, for k > 1,

p̂ = P

0;0

+ P

0;1

+ P

1;0

+

k

X

j � 2

P

j;0

+

k�1

X

j � 1

P

j;1

1

j + 1

:

8

Finally, we obtain

p̂ = 2

�

1�

1

2n

�

k

�

�

1�

1

n

�

k

:

In the asymptotic situation, we obtain p̂ = 2e

��=2

� e

��

: Since � is { log (1� �), we �nally obtain

E[L

u

] =

1

2

p

1� � � (1� �)

: (10)

In case b is two, we can obtain an expression for p̂ as well.

p̂ = P

0;0

+ 2P

1;0

+ 2P

2;0

+ P

1;1

+

k

X

j � 3

P

j;0

+

k�1

X

j � 2

P

j;1

2

j + 1

+

k� 2

X

j � 1

P

j;2

1

�

j+2

2

�
:

Finally the asymptotic situation obtains

p̂ = e

��

(4e

�=2

� 3� �)

and equation (2) provides the associated � values.

4.4 Four through 256 Passbits

We present our experimental and expected value results in �gures 5, 6, 7, : : : ; 11; the y-axis scaling is

magni�ed with increased passbit counts. In these con�gurations, we have no closed-form expressions in case

b is one. However, the structure of p̂ is similar to that presented for two passbits in the previous section and

the details are present within the appendix.

The crossing phenomema can be observed in these graphs; for small load factors, larger numbers of

slots per bucket produce smaller unsuccessful search lengths while for large load factors (0.85 or so) smaller

numbers of slots per bucket obtain smaller unsuccessful search lengths.

5 Expected Value Calculations

We provide an e�ective p̂ calculation scheme; without some care in this regard, the calculation of the nine

curves of one graph with more than one or two passbits, will take several days on a dedicated 233 Mhz

processor. As we note within the appendix, p̂ can be expressed as the \tail" of a binomial distribution or as

the sum of a pair of such tails.

We write

B (k; n; p) =

k

X

j = 0

�

n

j

�

p

j

(1 � p)

n�j

(11)

and note that

B (k; n; 0) = 1 :

Now we have

@B

@p

= �n

�

n� 1

k

�

p

k

(1 � p)

n�k�1

= � (n � k)

�

n

k

�

t

k

(1 � t)

n�k�1

since the sum telescopes to a single term. Thus we have

p

Z

0

@B

@p

dp = B (k; n; p) � B (k; n; 0) = � (n � k)

�

n

k

�

p

Z

0

t

k

(1 � t)

n�k�1

dt

9

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: four passbits

expected value

experimental value

Figure 5: Unsuccessful search lengths with four passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256.

Finally we have

B (k; n; p) = 1 � (n� k)

�

n

k

�

p

Z

0

t

k

(1 � t)

n�k�1

dt (12)

and by changing variables (t replaced by 1� t) and q = 1� p

= (n � k)

�

n

k

�

q

Z

0

t

n�k�1

(1 � t)

k

dt: (13)

Since B (k; n; 0) = 1, we have

1

Z

0

t

n�k�1

(1 � t)

k

dt = (n � k)

�1

�

n

k

�

�1

:

Accordingly

B (k; n; p) =

1�p

Z

0

t

n�k�1

(1 � t)

k

dt

�

1

Z

0

t

n�k�1

(1 � t)

k

dt

which has the structure of the incomplete beta function ratio [2, 9].

10

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: eight passbits

expected value

experimental value

Figure 6: Unsuccessful search lengths with eight passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

The incomplete beta function ratio I

x

(a; b) is de�ned as follows for a; b > 0 and 0 � x � 1

I

x

(a; b) =

x

Z

0

t

a�1

(1� t)

b�1

dt

�

1

Z

0

t

a�1

(1� t)

b�1

dt:

The following boundary values are useful, I

0

(a ; b) = 0 and I

1

(a ; b) = 1, as is the symmetry relation

I

x

(a ; b) = 1� I

1�x

(b ; a):

The cumulative binomial probability is related to the incomplete beta function ratio as we present above as

follows

k

X

j = b

�

k

j

�

p

j

(1� p)

k�j

= I

p

(b ; k � b+ 1):

And using the symmetry relation, we have

b

X

j = 0

�

k

j

�

p

j

(1� p)

k�j

= 1� I

p

(b+ 1 ; k � b) = I

1�p

(k � b ; b+ 1):

For large k values, calculation of I

x

is much more e�cient than calculating each of the binomial coe�cients

etc. of the sum [9].

In case there are no passbits, we have

p̂ =

b�1

X

j = 0

P

j

= I

1�p

(k � b� 1 ; b)

11

1

1.25

1.5

1.75

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: sixteen passbits

expected value

experimental value

Figure 7: Unsuccessful search lengths with sixteen passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

and in case g is one, we have

p̂ =

b

X

j = 0

P

j

= I

1�p

(k � b ; b+ 1)

For g greater than one, we show within the appendix that p̂ = P

A

+ P

B

and both terms are binomial

distribution tails.

P

A

=

b

X

0

P

j

= I

1�p

(k � b; b+ 1) (14)

and

P

B

=

�

g

g � 1

�

b

�

1�

1

n g

�

k

k

X

j = b+1

�

k

j

��

g � 1

n g � 1

�

j

�

g(n� 1)

n g � 1

�

k�j

=

�

g

g � 1

�

b

�

1�

1

n g

�

k

I

pg

(b+ 1 ; k � b): (15)

p̂ = P

A

+ P

B

=

�

g

g � 1

�

b

�

1�

1

n g

�

k

I

pg

(b+ 1 ; k � b) + I

1�p

(k � b ; b+ 1) (16)

where pg is (g � 1)=(n g � 1) and p is 1=n.

6 Appendix

We invoke uniform hashing to note that an event is equally likely to occur at all buckets. If there are k � b

probes then all passbits must be false and p̂ is one. In case g is one and k > b, then at most b probes can

12

1

1.17

1.33

1.5

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: 32 passbits

expected value

experimental value

Figure 8: Unsuccessful search lengths with thirty-two passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

access a bucket if its passbit is to remain false; the expression

P

b

j=0

P

j

measures the probability that passbit

pb

1

is false.

We consider the cases g equal to zero and one together as these con�gurations are very similar. In case

g is zero, we have, for k � b

p̂ =

b�1

X

j = 0

P

j

: (17)

Thus p̂ measures the probability a bucket is not �lled. In case g is one, we have, for k > b

p̂ =

b

X

j = 0

P

j

: (18)

Here p̂ measures the probability a bucket is either empty or �lled without over
ow. The g is one result has

been presented by Larson [6] (and Furukawa [3] check this!).

The p̂ expression, for g greater than one, is more intricate. We calculate the probability that passbit pb

1

is false. The expression is derived by considering two varieties of events. The �rst event A gives rise to all g

passbits pb

1

; pb

2

; : : : ; pb

g

each being false; this is similar to the g equals one case. The second event B gives

rise to pb

1

false while the expression pb

2

_ pb

3

_ � � � _ pg

g

is true; that is, at least one of these g � 1 passbits

must be true. The probability density function, generalizing (1), P

j

1

; j

2

; :::; j

g

designates the probability that

j

i

variety i probes access the bucket for 1 � i � g

P

j

1

; j

2

; :::; j

g

=

�

k

j

1

j

2

� � � j

g

��

1

n g

�

j

1

+j

2

+���+j

g

�

1�

1

n

�

k�j

1

�j

2

�����j

g

:

13

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: sixty-four passbits

expected value

experimental value

Figure 9: Unsuccessful search lengths with sixty-four passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

Then the probability of event A is

P

A

=

b

X

j

1

+j

2

+���+j

g

= 0

P

j

1

; j

2

;:::;j

g

(19)

where the sum ranges over all g-compositions of zero through b.

The probability of event B, designated P

B

, in which pb

1

is false and the expression pb

2

_ pb

3

_ � � � _ pb

g

is

true, is measured with a \double" sum. The leftmost sum ensures that at most b variety 1 probes access the

bucket. The remaining probes to the bucket are free to be of any other variety. The rightmost sum ensures

that the total number of probes to the bucket is between b + 1 and k thereby obtaining at least one true

passbit. The probability of event B is

P

B

=

b

X

j

1

=0

k�j

1

X

j

2

+j

3

+���+j

g

= b+1�j

1

P

j

1

; j

2

;:::; j

g

�

b

j

1

���

j

1

+ j

2

+ � � �+ j

g

j

1

�

(20)

where the rightmost sum ranges over all g{1 - compositions of b+1�j

1

through k�j

1

. The ratio of binomial

coe�cients captures the fraction of these k-sequences in which all of the j

1

variety 1 probes are within the

�rst b of the j

1

+ j

2

+ � � �+ j

g

probes to the bucket. If this condition does not hold, then pb

1

will be true.

There are

�

k

j

1

j

2

� � � j

g

�

possible k-sequences. Similarly, there are

�

b

j

1

��

j

2

+ j

3

+ � � � + j

g

j

2

j

3

� � � j

g

��

k

j

1

+ j

2

+ � � � + j

g

�

14

1

1.02

1.04

1.06

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: 128 passbits

expected value

experimental value

Figure 10: Unsuccessful search lengths with one hundred twenty eight passbits per bucket: b =

1, 2, 3, 4, 8, 16, 32, 64, 128, 256

k-sequences in which all of the variety g probes are among the �rst b of the j

1

+ j

2

+ � � �+ j

g

probes. This

is true since once the positions among the �rst b are choosen for the variety g probes, the j

2

+ j

3

+ � � �+ j

g

probes within the sequence are obtained by suitable translations based upon the j

1

variety 1 positions; this

multinomial coe�cient counts the number of such sequences. Finally, the rightmost binomial coe�cient

counts the number of con�gurations in which to include the j

1

+j

2

+ � � �+j

g

probes to create the k-sequence.

Thus the fraction of k-sequences in which all of the j

1

variety 1 probes within the �rst b of the j

1

+j

2

+� � �+j

g

is

�

b

j

1

��

j

2

+j

3

+ ���+j

g

j

2

j

3

��� j

g

��

k

j

1

+j

2

+ ���+j

g

�

�

k

j

1

j

2

��� j

g

�
=

�

b

j

1

���

j

1

+ j

2

+ � � � + j

g

j

1

�

as presented within the P

B

expression.

Since events A and B are disjoint, p̂ is P

A

+ P

B

. We simplify the two expressions to obtain the result.

Event A allows at most b probes and no bucket over
ows. Accordingly we might expect

P

A

=

b

X

j=0

P

j

where P

j

is speci�ed within (1) since the variety of probes is of no consequence, only the total probe count

per bucket. Indeed, this is the case as we show here. The multinomial theorem states

(x

0

+ x

1

+ x

2

+ � � �+ x

g

)

k

=

k

X

j

1

+j

2

+���+j

g

= 0

�

k

j

1

j

2

� � � j

g

�

x

j

1

1

x

j

2

2

� � �x

j

g

g

x

k�j

1

�j

2

�����j

g

0

15

1

1.02

1.04

1.06

0 0.2 0.4 0.6 0.8 1

loading factor

n

u

m

b

e

r

o

f

b

u

c

k

e

t

s

unsuccessful search: 256 passbits

expected value

experimental value

Figure 11: Unsuccessful search lengths with 256 passbits per bucket: b = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

where the sum is over all g-compositions of 0 through k. We have, using the binomial theorem as well,

(x

0

+ g)

k

=

k

X

i= 0

�

k

i

�

g

i

x

k�i

0

=

k

X

j

1

+j

2

+���+j

g

= 0

�

k

j

1

j

2

� � � j

g

�

x

k�j

1

�j

2

�����j

g

0

where i is j

1

+ j

2

+ � � �+ j

g

. Thus we obtain

�

k

i

�

g

i

=

X

j

1

+j

2

+���+j

g

= i

�

k

j

1

j

2

� � � j

g

�

(21)

with j

1

+ j

2

+ � � �+ j

g

ranging over all g-compositions of i. We could derive this combinatorially as well with

k labelled balls and g + 1 labelled cells. We use (21) to simplify the P

A

expression (19) where p is 1=n.

P

A

=

b

X

j

1

+j

2

+���+j

g

= 0

P

j

1

;j

2

;:::;j

g

=

b

X

j

1

+j

2

+���+j

g

= 0

�

k

j

1

j

2

� � � j

g

��

1

ng

�

j

1

+j

2

+���+j

g

�

1�

1

n

�

k�j

1

�j

2

�����j

g

=

b

X

j = 0

�

k

j

�

g

j

�

1

ng

�

j

�

1�

1

n

�

k�j

=

b

X

j = 0

P

j

: (22)

The P

B

expression (20) can be simpli�ed in a similar fashion; however, we must limit the range of j

1

.

Beginning again with the multinomial theorem, we have

(x

0

+ x

1

+ x

2

+ � � �+ x

g

)

k

=

k

X

j

1

+j

2

+���+j

g

= 0

�

k

j

1

j

2

� � � j

g

�

x

j

1

1

x

j

2

2

� � �x

j

g

g

x

k�j

1

�j

2

�����j

g

0

16

=

k

X

j

1

= 0

x

j

1

�

k

j

1

�

k�j

1

X

j

2

+j

3

+���+j

g

= 0

�

k � j

1

j

2

j

3

� � � j

g

�

x

j

2

2

x

j

3

3

� � � x

j

g

g

x

k�j

1

�j

2

�����j

g

0

:(23)

Similarly, we have (omitting x

1

) using both the binomial and the multinomial theorems,

(x

0

+ (g � 1))

k�j

1

=

k�j

1

X

j

2

+j

3

+���+j

g

= 0

�

k � j

1

j

2

j

3

� � � j

g

�

x

k�j

1

�j

2

�����j

g

0

=

k�j

1

X

j = 0

�

k � j

1

j � j

1

�

(g � 1)

j�j

1

x

k�j

0

(24)

where j = j

1

+ j

2

+ j

3

+ � � � + j

g

. Now, combining (23) and (24), to determine the coe�cient of x

j

1

1

x

k�j

0

within

(x

0

+ x

1

+ (g � 1))

k

=

X

�

k

j

1

j � j

1

�

x

j

1

1

(g � 1)

j�j

1

x

k�j

0

we have

X

j

1

+j

2

+j

3

+���+j

g

= j

�

k

j

1

j

2

j

3

� � � j

g

�

=

�

k

j

1

��

k � j

1

j � j

1

�

(g � 1)

j�j

1

=

�

k

j

��

j

j

1

�

(g � 1)

j�j

1

: (25)

We simplify (20) using (25) and j = j

1

+ j

2

+ � � �+ j

g

P

B

=

b

X

j

1

=0

k�j

1

X

j

2

+j

3

+���+j

g

= b+1�j

1

�

k

j

1

j

2

� � � j

g

��

1

ng

�

j

1

+j

2

+���+j

g

�

1�

1

n

�

k�j

1

�j

2

�����j

g

�

b

j

1

���

j

j

1

�

=

b

X

j

1

=0

k

X

j = b+1

�

k

j

��

j

j

1

�

(g � 1)

j�j

1

�

1

ng

�

j

�

1�

1

n

�

k�j

�

b

j

1

���

j

j

1

�

=

b

X

j

1

=0

�

b

j

1

��

1

g � 1

�

j

1

k

X

j = b+1

�

k

j

��

g � 1

ng

�

j

�

1�

1

n

�

k�j

=

�

g

g � 1

�

b

k

X

j = b+1

�

k

j

��

g � 1

ng

�

j

�

1�

1

n

�

k�j

=

�

g

g � 1

�

b

�

1�

1

n g

�

k

k

X

j = b+1

�

k

j

��

g � 1

n g � 1

�

j

�

g(n� 1)

n g � 1

�

k�j

(26)

Thus we have p̂ summing (26) and (22)

p̂ = P

A

+ P

B

(27)

consists of a pair of binomial distribution tail sums.

Acknowledgements

We gladly acknowledge discussions with Leonard Ha�, Paul Larson, Richard Olshen, and Gill Williamson

during the early stages of our investigation.

References

[1] O. Amble and D.E. Knuth. Ordered hash tables. Computer Journal, 17(2):135{142, 1974.

[2] W. Feller. An Introduction to Probability Theory and Its Applications, volume I. John Wiley, 1968.

17

[3] K. Furukawa. Hash addressing with con
ict
ag. Information Procedings of Japan, 13:13{18, 1973.

[4] L.J. Guibas and E. Szemeridi. The analysis of double hashing. Journal of Computer And System

Sciences, 16:226{274, 1978.

[5] T. Gunji. Analysis of hash addressing methods. Technical report TR-76-03, University of Tokyo, Tokyo,

Japan, 1976.

[6] P.-

�

A. Larson. Analysis of uniform hashing. Journal of the Association for Computing Machinery,

30(4):805{819, October 1983.

[7] G.S. Lueker and M. Molodowitch. More analysis of double hashing. Combinatorica, 13(1):83{96, 1993.

[8] W.W. Peterson. Addressing for random-access storage. IBM Journal of Research and Development,

1(2):130{146, 1957.

[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B. P. Flannery. Numerical Recipes in C, The Art of

Scienti�c Computing. Cambridge University Press, second edition, 1992.

[10] J.D. Ullman. A note on the e�ciency of hash functions. Journal of the Association for Computing

Machinery, 19(3):569{575, July 1972.

[11] A.C. Yao. Uniform hashing is optimal. Journal of the Association for Computing Machinery, 32(3):687{

693, July 1985.

18

