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Abstract

In earlier work, we proposed a memory model
that would facilitate the detection of opportuni-
ties to satisfy suspended goals. In this oppor-
tunistic memory model, suspended goals are in-
dexed under feature sets that are predictive of
the presence of the opportunity, and which are
likely to be encountered in the normal course of
future activity. The functional benefit of such
encoding depends crucially on the particular vo-
cabulary of features used, the costs of their de-
tection, and the overlap of features relevant to
the pursuit of different goals. In this paper
we investigate the feature vocabulary implied by
recent work on visual search [Treisman, 1985,
Tsotsos, 1990], and its use in indexing goals sus-
pended due to the lack of a particular object.

Opportunism

In daily life, people pursue a large number of different
goals, and display great flexibility in shifting attention
from one goal to another. These shifts in focus are
often in response to new information that could not
have been predicted in advance. We all capitalize on
chance encounters with people we have been intending
to talk to, buy things because we happen to see them
displayed in a store, realize that we can perform one
errand while “on the way” to perform another, and so
on.

There is good reason to believe that a better un-
derstanding of this sort of opportunistic behavior is
important for designing artificial agents as well. Any
agent that must pursue multiple goals in an unpre-
dictable world faces a problem of focus — which goals
should be acted on now? If there are too many goals
to plan for completely, or if not all of them are avail-
able when action must begin, then there must be some
heuristic selection of a subset of goals that should be
actively pursued. On the other hand, the agent needs
to be ready to reconsider these choices in the face of
unanticipated opportunities.
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The central problem for accounts of opportunistic
behavior is how to reconcile the background status of
a goal that is not under active consideration with the
fact that an opportunity to satisfy it can be recognized
at all. Recognition requires perceptual and inferential
work. If recognizing an opportunity to satisfy a back-
ground goal assumes as much work as actively seeking
to satisfy it does, then the functional benefit of focus-
ing on a small set of goals is lost.

Opportunistic Memory

In earlier work [Hammond, 1989b, Hammond et al.,
1988] we proposed a memory architecture that sup-
ports remindings of background goals at appropriate
times. The idea of opportunistic memory relies on the
fact that normal work toward the satisfaction of an ac-
tive goal demands perceptual and inferential effort. In
contrast to accounts of opportunistic behavior where
oals are imbued with autonomous processing power
Birnbaum and Collins, 1984], the opportunistic mem-
ory model relies on encoding-time work to appropri-
ately index passive notations in the same memory used
in execution, so that suspended goals can be cheaply
reawakened in the course of execution. Once “awak-
ened”, a suspended goal can be more thoroughly con-
sidered to see if it is plausible to pursue now. The po-
tential benefit is that given proper encoding-time work,
opportunity recognition can exploit the effort already
being expended on goals that are currently active.
In brief, the opportunistic memory “algorithm” is as
follows:

e Goals that cannot be immediately satisfied or inte-
grated into a currently active plan are considered
blocked, and are suspended [Schank, 1982].

e Suspended goals are associated with features in
memory that, if encountered in the world, would in-
dicate that the goal may now be satisfiable.

e The same memory structures are used to parse the
world and make routine execution-time decisions.
When the features that a suspended goal has been
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associated with are activated in the course of this,
the goal is brought back under consideration.

The objective of this encoding is that the agent will
have goals “resubmitted” to attention by memory at
exactly those times when they can be acted on. This
will be successful to the extent that

1. the agent can characterize the ways in which the
world would have to change to make the goal satis-
fiable, and

2. the agent can associate the goal with a set of easily
computed operational features that strongly predict
that such a change has taken place.

We now treat the first of these briefly, and then spend
the remainder of the paper on the second.

Reasons for goal blockage

The simplest way that a goal can become blocked is if a
standard plan associated with it is presently unusable
for some reason. The possibility of encountering such
a situation is an inevitable consequence of a case-based
planning framework [Hammond, 1989a), where the at-
tempt is made to reuse plans in situations that may
not be exactly the ones for which they were designed.

Among the things which can block the use of a stan-
dard plan are:

e Lack of time.

Due to other pressing goals and activities, there may
not be time at the moment to run the standard plan.
For example, the goal to run an errand to purchase
something may have to be suspended when running
late for an appointment.

e Lack of tool or resource.

The plan depends on something we don't possess at
the moment. For example, our plan to drink wine
with our picnic lunch might be blocked by lack of a
corkscrew.

e Lack of knowledge.

In this case there is no state in the world that 1s
blocking our efforts, but we lack the knowledge to
properly exploit it. For example, the plan to get
downtown via the infrequent commuter train might

be blocked by lack of knowledge of the schedule.

e Lack of proximity.
Being in a particular location is a common sort of
prerequisite for a host of mundane tasks. Remem-
bering that your plants need watering does not help
you when you are away from home.

The features that should cause a goal to become re-
activated don’t have to be limited to those produced by
a characterization of what originally blocked its satis-
faction — it might be reasonable to index a goal under
features that indicate unusual preconditions of a stan-
dard plan, on the theory that it is worth checking the
other preconditions at that point. But the realization
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that a blocking condition is no longer true should be a
strong predictor that the goal is now satisfiable.

Some of the categories above are abstract, and the
corresponding opportunities are probably difficult to
recognize (for example “having time”). From here on
we will focus on opportunity recognition that corre-
sponds simply to visually recognizing a particular ob-
ject.

Functional requirements on
indexing features

Clearly even with a good characterization of what
would constitute an opportunity, the benefit of the
encoding depends strongly on the particular vocabu-
lary of features and the costs of detecting them. If a
suspended goal is to be indexed under a given set of
features, then

1. The feature set should be cheap to compute relative
to the cost of completely verifying the existence of
the opportunity.

2. As much as possible, the features should be ones that

are likely to be checked anyway in pursuing other
courses of action. (This consideration trades off with
the previous one.)

3. The ratio of false negatives (missed opportunities)

to false positives (inappropriate activations of sus-
pended goals) should be in line with the urgency of
the goal and the cost of verification.

We now discuss these requirements in the context of
recent experimental results on visual search.

Visual search

It is extremely difficult to design experiments in cogni-
tive and perceptual psychology that balance the con-
flicting demands of experimental control and relevance
to real-world activity. Visual search is an attractive
paradigm in part because, although people rarely face
tasks exactly like the experimental task, it seems plau-
sible that the faculty being tested is a building block
(and possibly a bottleneck) in larger-scale visual activ-
ity.

In visual search experiments, subjects are given the
task of quickly detecting a target image amid a field of
distractors, and response time is measured. Treisman’s
interpretation of such experiments is to suggest that
there is a small set of attributes of the visual field which
are computed preattentively and in parallel [Treisman,
1985]. When the search task involves simply identi-
fying that such a “pop-out” property is present, re-
sponse times tend to be independent of the number of
distractors. When identification of the target requires
verifying a more complex property, or a conjunction of
pop-out properties, response times vary linearly with
the number of distractors, suggesting that serial atten-
tion is required in the verification. A small number
of properties pop out, among them color, brightness,
closure, curvature and tilt.



Tsotsos [Tsotsos, 1990] has argued for the intrinsic
difficulty of unbounded visual search, where success de-
pends on satisfying a function that, rather than being
a straightforward match to a target, may depend on
arbitrary interrelations of portions of the test image.
Examples are tasks such as identifying the “odd man
out” of a field of distractors, where the properties that
will be unique are not identified in advance. Tsotsos
proves an abstraction of unbounded visual search to be
NP-hard, and uses this result to motivate a particular
attentional architecture.

One implication of these results is, of course, that it
is very unlikely that we can instantly identify all the
objects in a complex visual scene. Ballard [Ballard,
1990] suggests that in general, the problem of simulta-
neously relating many different models to many visual
locations may be too hard, and argues for the sepa-
ration of location and identification algorithms, where
location algorithms attempt to find a known object in
the visual field, and identification algorithms do ob-
ject recognition in situations where the location is not
the issue. (In this he makes a functional argument for
a specialization that is believed to exist in biological
systems [Maunsell and Newsome, 1987, Mishkin, 1982,
Mishkin et al., 1983].) When incorporated in task-
dependent behaviors, location and identification algo-
rithms can use methods that are tailored to the out-
standing attributes that are likely to be present in the
context of the task, further avoiding visual reconstruc-
tion in its full generality. See e.g. [Swain, 1990] for
real-time algorithms for identification or location of ob-
jects by their colors.

Visual search and opportunism

One way in which visual search experiments idealize
real-world search is that, regardless of how the object
of search is specified, finding the object is the only goal.
It seems likely that in human activity, while there may
often be a particular object being sought or identified,
there are a number of other things that it is worthwhile
to notice if they are seen. Visual cues that indicate
opportunities to satisfy suspended goals may be among
them.

An example

To motivate the rest of the discussion, we will tell a
story:

When 1 was in college, my black leather jacket
was stolen. For some weeks after that, whenever
I saw anyone wearing anything black and shiny, it
“caught my eye”, and I checked to see if it was
my jacket. This happened even though, to my
knowledge, I wasn’t thinking about the jacket be-
forehand.

Depending on the importance of the goal of recov-
ering the jacket, this is a functional response. The
urgency and the chances of seeing the jacket at any
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one time don’t warrant actively searching for it all the
time. Still, if by chance it is encountered, it might be
worth having a word with the current wearer.

Choosing visual indices

How should the opportunity represented by seeing the
Jacket be indexed in memory?

Our aim here is to have as much as possible of the
work needed for opportunity recognition be done in
the normal course of activity, with our suspended goal
remaining a passive annotation. At the risk of drastic
oversimplification, we can use the results cited above
to sketch a hierarchy of effort that might be expended
in recognizing an opportunity associated with a par-
ticular object.

1. Recognition of a particular pop-out property in the
visual scene. For example, simply detecting an ob-
ject of a certain color. Also, it may be possible
to preattentively detect the conjunctive presence of
more than one pop-out property, without necessarily
verifying that they are in the same location or due
to the same object.

2. Verification of a conjunct of pop-out properties
in the same location, or any other process that
demands serial visual attention, whether overt or
covert.

3. True object recognition, i.e. classifying a seen object
as a jacket or a fork or a car.

4. Inference based on object recognition. Here we move
into processing that may or may not be completely
non-visual, but that has the recognition of a par-
ticular object as a prerequisite. Note that much
of the work of actually evaluating an opportunity
represented by seeing an object falls into this cat-
egory, since even if the object seen is exactly what
was being sought at encoding time, circumstances
may have changed so that the goal is not satisfiable
for some other reason.

The point of this hierarchy is that, while the pro-
cesses occurring at a given level may be very complex
(and poorly understood), it seems reasonable to as-
sume that the higher-numbered levels are dependent
on the lower ones, and work at all levels will have to
be done at some point to detect, verify, and evaluate
opportunities represented by seeing particular objects.
If a description that falls at one of these levels is as-
sociated with a suspended goal, we assume that acti-
vation of those features will be enough to activate the
goal, which in turn will lead to the direct suggestion
of the rest of the work necessary in its verification. So
the question in determining indexing features then be-
comes: what is the lowest level at which a given goal
should be indexed?

As we said above, a good recommendation for a
potential index is that it will be computed anyway.
Almost by definition, pop-out properties qualify (al-
though detecting a particular one may well require



some non-spatial attention, e.g. to a particular feature
map). There are two reasons why pop-out properties
may not provide good indices in particular cases. The
first is simply that many of these properties are quite
low-level and even in conjunction are not expressive
enough to characterize interesting opportunities. The
most promising ones seem to be motion, brightness,
and especially color — but if the relevant type of oppor-
tunity is seeing a restaurant, then they do not suffice.
The second reason is the possibility of an unacceptably
high rate of false alarms.

In our example story, the suspended goal of recover-
ing the jacket might simply have been indexed in as-
sociation with the color black.! Whenever that color
appeared in the visual field, the goal would be reac-
tivated, and further verification that in fact the color
was not due to the missing jacket would have to be
performed, probably resulting at least in redirection of
visual attention. One way to interpret the story is that
in fact the goal was associated with the conjunction of
a color and a texture, and that even that requirement
gave a sufficiently high false alarm rate that it caused
the experience to be memorable.

Indexing an opportunity at the level of full object
recognition may offer a better characterization and re-
sult in fewer false alarms, but it may also then restrict
discovery to things that are fully attended to and iden-
tified. This may be acceptable when the cost of com-
pletely missing the opportunity is low. It may also be
acceptable when enough is known about the structure
of future activities and tasks to predict that the given
object will be attended to at some point [Hammond,
1990]. For example, it may be reasonable to index the
goal of responding to a particular letter lost on a messy
desk by actually seeing and identifying the letter, if you
know that you will be cleaning the desk at some point
in the future.

No strong theory of how to determine the appropri-
ate level of indexing is offered here — in part it may just
have to be a process of adding features to conjuncts or
moving up the hierarchy given above in response to
a high false alarm rate. (For a decision-theoretic ap-
proach to tuning opportunity recognition, see [Brand,
1991].) The one thing that seems clear is that if the
feature set under which a goal is indexed needs to be
refined, there is a functional benefit to starting on the
overly inclusive side. It is easier to notice inappropriate
remindings than it is to notice the lack of appropriate
ones.

More realistic theories of attention and incremental
object recognition doubtless allow for better-defined
intermediate “hooks” on which annotations about op-

'Here we make the simplifying assumption that the
properties are binary—of course, the actual responses of
“detectors” for the features are likely to be complicated
and graded. The point here is that the goal is associated
with some visual characterization of the object that can be
detected preattentively.
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portunities can be hung. But to a great extent the
lower-level visual vocabulary seems likely to be fixed,
and choices of appropriate indexing level need to be
made from the options provided by it; the visual
system cannot be dynamically reconfigured to detect
leather jackets preattentively.

Discussion
Relevance to artificial systems

All the discussion so far has been grounded in the
particular feature vocabularies resulting from experi-
ments on human vision. How do these ideas transfer
to constructing systems that may operate under differ-
ent perceptual constraints?

There seem to be strong design advantages to giving
autonomous agents highly optimized peripheral per-
ceptual systems, which compute a wide (but fixed) va-
riety of low-level features all the time, very efficiently.
More recently, there has been growing interest in the
vision community in task-directed short-term control
of perception, which actively directs the orientation
of the perceptors, and uses attention to select a very
small task-relevant subset of the provided information.
At the same time, there is increased interest in the
planning-and-action community in the realities and
costs of perception

At its most abstract, our argument here is for cre-
ating indices for suspended goals on the fly, where the
indices are composed of primitive perceptual features
(whatever they happen to be) or features that may
be derived due to attention to other goals. These in-
dexed goals become activated when all their features
are seen, but until then do not compete for attentional
resources.

A closing story

There are types of opportunistic behavior which are
not covered in the framework we’ve been discussing,
one of which is exemplified by the following story:

While on vacation at a lakeside cabin, the frisbee
I was throwing became lodged in a tree. I moved
down to the nearby shoreline to look for a small
rock or piece of wood I could throw at the frisbee
to dislodge it. As I looked, I saw a long paddle
from a paddle-board, which 1 realized I could use
to poke the frisbee free,

In effect, the opportunism here is in the recognition
that the means to pursue an alternate plan is at hand.
In part this is outside the framework we've presented
because our focus has been on what goals should be
attended to at all, rather than on suggestion of plans.
The type of recognition that needs to be done is also
subtly different, however. The recognition depends
not only on object identification (as a paddle), but on
further inference about the uses to which the object
could be put (its suitability as a reach-extender), and



as such falls into the highest category in the hicrarchy
we sketched above.

The only connection between the object and the cur-
rent goal is through the plan that is eventually sug-
gested. For some suggestions how of this integration
of top-down and bottom-up inference might be imple-
mented, see [Hammond et al., 1990].
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