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ABSTRACT: We first report a global optimization approach based on GPU
accelerated Deep Neural Network (DNN) fitting, for modeling metal clusters
at realistic temperatures. The seven-layer multidimensional and locally
connected DNN is combined with limited-step Density Functional Theory
(DFT) geometry optimization to reduce the time cost of full DFT local
optimization, which is considered to be the most time-consuming step in
global optimization. An algorithm based on bond length distribution analysis is
used to efficiently sample the configuration space and generate random initial
structures. A structure similarity measurement method based on depth-first
search is used to identify duplicates. The performance of the new approach is
examined by the application to the global minimum searching for Pt9 and Pt13.
The ensemble-average representations of the two clusters are constructed
based on all geometrically different isomers, on which the structure transition is predicted at low and high temperatures, for Pt9
and Pt13 clusters, respectively. Finally, the ensemble-averaged vertical ionization potential changes when temperature increases,
and the property in conditions of catalysis can be different from that evaluated at the global minimum structure.

1. INTRODUCTION

The catalytic activity of platinum clusters has been intensely
investigated experimentally and computationally for a long
time.1−3 Since structure and property are related, finding the
correct geometry of the global minimum and low energy local
minima of these clusters becomes an essential part of the
catalytic property studies. However, this requires a significant
amount of computational efforts. Over decades many efficient
global optimization techniques have been developed, including
Genetic Algorithm (GA) based methods,4−8 Particle Swarm
Optimization (PSO),9,10 Simulated Annealing (SA),11 and
Basin Hopping (BH).12 Many of these methods incorporate the
Density Functional Theory (DFT) level local geometry
optimization procedure as an internal step of global
optimization.13 This important technique is a great compromise
between quality of the solution and a reasonable computational
expense and accelerates the global minimum searching.
However, for medium- to large-sized transition metal clusters,
the DFT local optimization step itself is very time-consuming,
especially when hybrid functionals are used. In addition, most
of the aforementioned global optimization methods, although
spectacularly successful in many cases, are less favorable in a
highly paralleled computational environment, because of their
evolutionary feature.
Force Field (FF) or Neural Network (NN) fitting, on the

other hand, can generate an approximate PES so that the efforts
on performing DFT level local optimization would be

alleviated. It is shown in our previous work14 that the FF
fitting can be used to assist global searching. However, the
restricted form of the FF function may prevent its extension to
larger systems. NN has been widely applied to the fitting of
molecular PES for many years.15 Nevertheless, most studies of
this fitting approach focus on small-sized clusters and
molecules, such as Si5,

16 BeH3,
17 and FH2O.

18 Recently, a
high-dimensional NN fitting method (atomistic NN) has been
proposed, which is based on expressing the total energy as the
sum of atomic energies.19,20 The new atomistic NN approach
has been successfully applied to the PES fitting of a variety of
systems, including ZnNON (N = 1−40).21 Very recently, it has
been shown that a combination of BH and atomistic NN
approaches (NN-BH) can be used for global optimization for
large-sized metal clusters, such as Au58

22 and Na20−40.
23 Despite

the success of the atomistic NN method, the many-body
expansion method has also been combined with NN for PES
fitting, and some applications to small molecules, such as
H2O2

24 and C2H3Br,
25 are reported.

To the best of our knowledge, all aforementioned NN PES
fitting approaches are based on the traditional NN with fully
connected and shallow structure (with typically three to four
layers). However, it is shown26 that NN with insufficient depth
may require a large number of training samples to tune the
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parameters. On the other hand, large scale fully connected NN
is difficult to train and can potentially cause overfitting issues.
During recent years, several novel approaches have been
proposed to solve the Deep Neural Network (DNN) training
problem. For example, the large Convolutional Neural Network
(CNN), as an example of locally connected DNN, is shown to
have an impressive performance on image classification.27

Alternatively, the Deep Belief Network (DBN)28 is an example
of DNN that can be pretrained using unsupervised learning
techniques. In addition, benefiting from recent progress on
GPU computing,29 the training of DNN can be largely
accelerated.
In this work, we discuss a general approach to find global and

low energy local minima of metal clusters at the DFT level,
using locally connected DNN fitting combined with a new
random structure generation algorithm based on bond length
distribution analysis. Unlike some other NN based global
optimization methods, the training data are not obtained by
performing full local optimization. Instead, the limited-step
local optimization is performed so that the PES can be
moderately explored, and meanwhile the time cost of local
optimization with DFT can be greatly reduced. The NN is
constructed in a truncated many-body expansion way, but
several mixing layers are added so that the NN potential can
represent a more general function than the original truncated
many-body one. The fitted NN is then used to optimize some
newly generated random structures. As a final step, automati-
cally selected NN-relaxed structures are fully optimized using
DFT to yield the final results. The performance of this new
approach is illustrated by the application to Pt9 and Pt13 gas
phase clusters. The properties of the clusters at catalysis
conditions are then explored by constructing an ensemble-
average representation of local minima.

2. METHOD
2.1. Bond Length Distribution Algorithm: Motivation.

One of the major differences between the global optimization
in a computational chemistry context and general global
optimization is that for chemical problems some restrictions
can be applied to generate start points that are very close to
minimum, rather than totally random. A common practice of
choosing such kind of restriction, namely, the Bound Checking
(BC) approach, is setting the lower and upper bounds of the
distance between each atom and its nearest neighbor (denoted
as l1).

23 The resulting initial structures are less probably to
suffer from a Self-Consistent Field (SCF) convergence

problem. In addition, the time cost for searching in a chemically
unfavorable configuration space can be greatly reduced.
Despite the fact that the BC approach for initial structure

generation has been successfully applied in many evolutionary
global optimization methods, we note that this may not be the
most natural or efficient way to sample the chemically relevant
configuration space. In contrast, the Coalescence Kick (CK)
method30 generates initial structures in a dynamical way: the
randomly positioned atoms are pushed toward the center of
mass step by step until all connected. The CK method is
equivalent to setting an upper bound of l1 and obtaining a more
natural distribution of l1 at the shorter bond length side. We
found that CK produces structures that are generally better
than those generated by BC. Nevertheless, the l1 distribution of
CK structures is still unnatural to some extent.
We may improve this by requiring that the initial structures

have a similar distribution to that of the expected local minima.
Figure 1 shows the l1 and l2 distribution of low energy local
minima of Pt6 clusters found using the CK method, where l2
denotes the distance between each atom and its next nearest
neighbor. It is obvious that for Pt6 clusters both distances can
be fitted to normal distribution. In addition, the mean values of
l1 and l2 (2.50 and 2.54 Å) are very close to the sum of covalent
radii of Pt atoms (1.28 × 2 = 2.56 Å). In light of this
observation, we may require that the l1 and/or l2 parameters of
initial structures be selected from normal distribution. We call
the generation algorithm based on this statistical restriction the
Bond Length Distribution Algorithm (BLDA).
When only l1 is restricted, the algorithm is referred to as first-

order BLDA (F-BLDA). When both l1 and l2 are restricted, the
algorithm is referred to as second-order BLDA (S-BLDA). It is
clear that when l2 is restricted to obey a normal distribution,
each atom in the generated cluster will have a coordination
number of at least two. While this is true for most metal
clusters, for other clusters (like Boron clusters14) this assertion
is very likely to fail. Therefore, we note that F-BLDA can be
used for most gas phase atomic cluster systems, and S-BLDA is
more focused on metal clusters, which tend to have compact
geometries in which their delocalized bonding is optimized. In
this work, S-BLDA is used as the initial structure generation
method for Pt9 and Pt13.

2.2. Bond Length Distribution Algorithm: Implemen-
tation. In F-BLDA, the cluster is created by each time adding
one atom to the current structure. The position of that atom is
determined by first selecting a random direction, to which the
new atom will be placed. After that, we only need to figure out

Figure 1. l1 and l2 distribution of 113 Pt6 low-energy local minima (with energy lower than 1.0 eV with respect to global minimum energy). The
initial structures are generated using CK, and the DFT optimization is done with Turbomole 6.6, the PBE0 hybrid functional, and def2-TZVP basis.
The dashed lines are corresponding normal distribution curves fitted based on the mean and standard deviation of l1 and l2 data.
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the distance between geometry center and the new atom. With
the distance and direction, we can thus construct a vector, along
which the new atom can be placed. The length of the vector is
the minimal length such that all of the distances between this
new atom and any other atom already present in the cluster are
greater than the lengths randomly picked from the required
normal distribution l1. The core step of adding one atom to the
existing structure is illustrated in Figure 2.
It should be noted that since a lot of value comparison and

selection are involved in this generation procedure, strictly
speaking the bond lengths resulting from this procedure will
not be exactly normal distributed. Nevertheless, in practice, we
have found that it gives a very good approximation to the
desired normal distribution.
Comparing to F-BLDA, the implementation of S-BLDA is

more complicated. Nevertheless, it is still based on the
procedure of adding one atom at a time. When placing the
first two atoms, we follow the same procedure as that in F-
BLDA. Starting from the third atom, the step of adding one
new atom is divided into four substeps:
1. Selection. Select any two atoms A,B from existing atoms.

At the same time, pick two lengths, λ1 and λ2 from norm(μ1,σ1)
and norm(μ2,σ2), respectively. These two normal distributions
are the required l1 and l2 distributions, respectively.
2. Circling. The new atom is required to have a distance of

the length λ1 to atom A and a distance of the length λ2 to atom
B. This restricts the new atom to pick a position on a circle in
three-dimensional space. The normal vector and radius of the
circle plane can then be determined.
3. Projection. Select a random direction vector in three-

dimensional space. Then project this random vector to the
circle plane so that we can determine the exact position on the
circle for the new atom to pick.
4. Checking. For each of the old atoms other than A and B,

denoted as Ci, pick a length λi from norm(μ1,σ1). The distance
between the new atom and atom Ci is required to be greater
than λi. If for any atom Ci this is not satisfied, go back to
substep (3) and select another random direction. If it still fails,
try at most 10 times from substep (3) to (4). If it fails more

than 10 times, go back to substep (1) and try another two
atoms A and B.

2.3. Deep Neural Network: Approximation. The NN
architecture used in this work is designed based on the
truncated many-body expansion approach,31 with only the k-
body terms considered. In this work, k = 4 is used. Based on
our experience, NN constructed using higher order terms can
make the training very time-consuming and may cause
overfitting issues. On the other hand, if only lower order
terms are included, poor fitting accuracy may be expected.
For simplicity, consider a homogeneous atomic cluster, say,

PtN (N ≥ k). The Cartesian coordinates of the atoms are
denoted as ri (i = 1, 2, ..., N). Given any set X, k(X) will be the
set of all subsets of X that are composed of k elements.
Obviously, if the number of elements in X, denoted as |X|, is
equal to N, then | k(X)| = C(N, k), which is the number of
combinations of k elements from X.
The original PES can be expressed as a function of {ri},

namely, F(r1, r2, ..., rN). Using the many-body expansion, if only
the k-body terms are retained, then the original PES is
approximated by F′({ri}) = sum(Fk({rj})), where k is a fixed
parameter, {rj}∈ k({ri}), and the sum is over all {rj} in

k({ri}). Now the undetermined function Fk can be fitted using
the traditional fully connected NN.
In practice, when N is large and k is kept to be a moderate

number (as in our case, four), this procedure may cause a large
fitting error since many high order terms are truncated. To
alleviate this problem, we replace the summation by an
undetermined function G. This will introduce some nonlinear
mixing among k-body terms, by which the fitting accuracy can
be improved. The original PES is then more accurately
approximated by F″({ri}) = G({Fk({rj})}), where G is a
function of C(N, k) variables. Since Fk is merely an intermediate
variable, it no longer has to be a scalar function. Therefore, in
our approach it is generalized to be a vector function Fk, and
this will introduce more flexibility in the constructed neural
network. Therefore, our final neural network framework to
approximate the real PES is F‴({ri}) = G({Fk({rj})}), where Fk
and G can be fitted simultaneously, by locally connected NN.

Figure 2. One intermediate step of first order Bond Length Distribution Algorithm (F-BLDA): adding an atom to the existing structure. Before
placing atom 4, a random direction is first selected. For each old atom i, a distance λi is picked from the required distribution norm(μ1,σ1). Then a
trial atom 4 is placed along the selected direction with a distance λi from atom i. Finally, among all trial atoms, the one with maximal distance from
the geometry center is accepted.
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We call this approach the Many-Body Expansion Neural
Network plus Mixing (MBE-NN+M) approach.
It is known that Cartesian coordinates are not suitable to be

directly used as input of NN.19 Therefore, two transformations
are performed on the input sample data in Cartesian
coordinates {rj}. The original coordinates {rj} (after k-body
selection procedure) are first transformed to interatomic
distances {am}, where m = 1, 2, ..., C(k, 2) are the indices of
all interatomic distances in the k-body fragment. After that, an
exponential function is applied to help better describe the
PES:32bm = exp(−am/L), where {bm} is the input of NN and L
is a fixed parameter. In this work, we choose L = 4.0 Å. The
output of NN is a single value representing the energy. A linear
transformation is used so that the energies are mapped to
interval [0, 1] for NN training, and the corresponding inverse
transformation is performed when interpreting NN predictions.
2.4. Deep Neural Network: Architecture. The DNN

architecture used in this work consists of three parts: MBE part,
mixing part, and pooling part. Local connectivity, parameter
sharing, and average-pooling33 are three main features used in
this NN, which make it different from the traditional fully
connected NN.
The MBE part of NN is used to fit Fk. Based on the MBE-

NN+M approach, the input of NN is a second-order tensor (or
two-dimensional array) of the size (C(N, k), C(k, 2)), where
the second dimension represents C(k, 2) variables of the
function Fk, and the first dimension indicates that there are
C(N, k) k-body terms, each denoted as Fk({rj}). To fit Fk, the
NN connection is localized in the second dimension, and the
layer size of the first dimension is kept fixed. The weights and
biases of NN connection are shared among different indices of
the first dimension, so that the fitted function form of Fk is kept
consistent among different k-body terms. Since Fk is a vector
function, the size of the output value (as a vector) of each Fk
term, denoted as f, must be determined when constructing NN.
In this work, we choose f = 2. The MBE part is composed of
four layers with the following sizes: (C(N, k), C(k, 2)) - (C(N,
k), 40) - (C(N, k), 70) - (C(N, k), 60) - (C(N, k), 2).
The mixing part is used to fit G. Within this part the NN

connection is localized in the first dimension, and the size of
the second dimension is kept fixed. The parameters of NN
connection in this part are shared among different indices of
the second dimension. In this work, the mixing part is
composed of two layers with the following sizes: (C(N, k), 2) -
(40, 2) - (10, 2).

The last part is used to transform the output of mixing part
to a single value, representing the energy. The average-pooling
is used, which means that we take the average value of all
elements in the matrix of the previous layer as the final output.
In this work, the pooling part is composed of one layer of the
size: (10, 2) - (1).
To describe the nonlinearity of the unknown function,

suitable activation functions must be used in NN architecture.
In previous NN PES fitting work by other authors, common
choices are the hyperbolic tangent and the sigmoid function.20

However, it has been found that these traditional activation
functions are less efficient in DNN.34 It has also been observed
that in some DNNs, the earlier layers tend to learn less
efficiently compared with later layers, when trained by
backpropagation learning algorithm.35 Therefore, in this work,
the first three hidden layers are activated by the hyperbolic
tangent, while the remaining layers except for the output layer
are activated by the softplus function. We found that this hybrid
approach is able to overcome the intrinsic disadvantage of both
activation functions and increase the training efficiency. The
overall architecture of NN used in this work is shown in Figure
3.

2.5. Deep Neural Network: Implementation. The NN
used in this work is constructed using theano framework,36

which is a python library that allows for the acceleration of the
evaluation and differentiation of mathematical expressions both
numerically and symbolically. Based on this framework,
efficient C/OpenMP codes and/or CUDA codes for GPU
can be automatically generated at runtime. We note that this
feature is significant for saving time during training our large-
scale deep NN. It is illustrated in Figure 4 that for a typical
DNN PES fitting task in this work, acceleration of computation
with GPU can be more than 50 times compared to that done
with only CPU. Based on this observation, in this work, the
GPU Tesla K40s is used for all NN training tasks.
The Mini-Batch Stochastic Gradient Descent with Momen-

tum (MB-SGD-M) method37 is used for NN training. This is a
widely tested training method for large-scale NNs. The step
decay approach is used to improve convergence. The step
length for parameter updating at epoch i is determined by s0r/(r
+ i), where s0 is the initial step length and r is the step decay
factor. In our work, we choose s0 = 0.1 and r = 60. When NN
training finished, the Limited-memory Broyden-Fletcher-Gold-
farb-Shanno (L-BFGS) method38 is used for NN based
geometry optimization.

Figure 3. Architecture of the deep neural network used in this work. The actual numbers of NN nodes (layer sizes) are larger than or equal to the
number of nodes shown in the figure. The layer sizes for the Pt13 case (N = 13, k = 4) are indicated in the bottom. There is no node connection
across the stacked planes.
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2.6. Structure Similarity Measurement. In order to
reduce the computational time for DFT-level optimization, an
automatic and reliable scheme for structure similarity measure-
ment is required. The simplest way is comparing two structures
based on their DFT energies.6 Since energy is not available for
initial structures, and for some large-sized clusters different
structures may have very close energies, this approach is not
always applicable. Another approach is based on the difference
of sorted atom−atom adjacency matrices39 or, similarly,
integrals over the distribution of atomic distances and angles.40

However, we note that two different structures can have exactly
the same atomic distance distribution or, equivalently, the same
sorted adjacency matrices, as illustrated in Figure 5, and this is
also true for the angle distribution, especially when many
distances or angles in the cluster are identical. Other
approaches use some fingerprint functions or descriptors,
such as spherical harmonics,41 spherically averaged scattering
intensity,42 and experimental elemental or molecular properties.
The effectiveness of fingerprint approaches will largely depend

on the selected functions and may not be equally applicable to
all cases. In particular, elemental and molecular properties are
not generally applicable or available for metal clusters.
Therefore, there is a need to develop a simple, reliable, and
nonenergy-dependent structure similarity measurement meth-
od.
The example shown in Figure 5 indicates that, in order to

distinguish two isomers with exactly the same interatomic
distance distributions, we need to also find a one-to-one atomic
matching. Based on a best atomic matching, the corresponding
interatomic distances can be compared between two structures.
If any of the matched pairs of two interatomic distances have a
difference larger than a threshold value, then we can assert that
the two structures are different. We note that the interatomic
distances based method cannot distinguish structures that are
mirror images of each other. However, the mirror images also
have the same energy at the DFT level, thus are unnecessary to
be separated.
Now the problem is how to find the best atomic matching

between two structures. A direct way is to enumerate all
possible sequences of atom indices for one structure and match
them to the sequence of the other. Since there are numerous
permutations of atom indices for clusters composed of ten or
more atoms, this is computationally too expensive. However,
given that the threshold value d for confirming similarity is
small, the comparison can be performed when an incomplete
atomic matching is available. If the maximum difference of
matched interatomic distances based on the given atomic
matching fragment is larger than the threshold, then all atomic
matching with that fragment will definitely fail. Using this rule,
only a small portion of permutation space is needed to be
checked. In practice, we use the Depth-First Search (DFS)43

algorithm to enumerate the sequences of atoms for one
structure and match each sequence to the ordered atomic
sequence of the other structure. Only atoms of the same
element will be matched. Whenever a new testing atomic
matching fragment is formed, the corresponding difference of
matched interatomic distances is checked against the threshold
value. If the difference is larger than the threshold value, all
sequences involving the current fragment will be excluded from
the searching space. Otherwise, we may find one atomic
matching, based on which all differences of matched
interatomic distances are smaller than the threshold value. In
this case, we assert that the two structures are similar. If no such
kind of atomic matching can be found, we claim that the
current structure is unique. Based on our testing, using this
approach on a single CPU core, thousands of structure
comparisons for Pt13 can be accomplished within seconds.
We denote this new, fast, and deterministic structure
comparison method as the Atomic Matching Depth-First
Search (AM-DFS) method.

2.7. Global Optimization. Combining the aforementioned
generating, comparing, and fitting methods, we are able to
propose a new NN fitting-based and highly paralleled global
optimization scheme shown in Figure 6. The scheme (NN-
PGOPT) consists of three major steps:
1) Initial structure preparation.
a. Random structure generation (S-BLDA)
b. Filtering out duplicates (AM-DFS)
2) Local optimization.
a. Limited-step geometry optimization (DFT)
b. PES fitting (MBE-NN+M and MB-SGD-M)
c. PES optimization (L-BFGS)

Figure 4. Training speed measured in number of epochs per minute
under different machine architectures. The test case is a 7-layer NN
PES fitting for Pt13 energy data. During each epoch, 50 000/5 000
random structures and their corresponding energies are used for
training/testing, respectively. For the first architecture (OpenMP/24),
the CPU model is Intel Xeon E5-2697v2 (2.7 GHz), and the 24 cores
OpenMP parallelism scheme is used. For the other two architectures, a
single CPU core and one indicated GPU accelerator are used.

Figure 5. An example of two different structures with the same
interatomic distance distribution. Note that when the distances are
matched, the corresponding atoms cannot be matched at the same
time. In this particular case, for planar quadrilateral the three “1.0”
distances connect atoms 1, 2, 3, and 4, but for a triangular pyramid the
three “1.0” distances connect atoms 1, 2, and 3. Therefore, the
requirement of a one-to-one atomic matching can be used to
distinguish the two structures. The AM-DFS method will first establish
such an atomic matching, then based on which differences of distances
are measured. This ensures an accurate measurement of structure
similarity.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00994
J. Chem. Theory Comput. 2016, 12, 6213−6226

6217

http://dx.doi.org/10.1021/acs.jctc.6b00994


d. Filtering out duplicates (AM-DFS)
e. Full-step geometry optimization (DFT)
3) Global minimum identification.
a. Filtering out duplicates (AM-DFS)

3. APPLICATIONS

3.1. Gas Phase Pt9 Global Optimization. 3.1.1. DFT
Parameters and Fitting Errors. The global optimization is
performed for Pt9 as an example of an application of the NN-
PGOPT scheme. A separate direct searching is also performed,
where the steps 2a−2d mentioned in section 2.7 are skipped, in
order to test the performance without NN fitting.
The DFT optimization is done using Turbomole 6.644,45

with the Tao, Perdew, Staroverov, and Scuseria hybrid
(TPSSh)46 functional, since the nonempirical TPSSh hybrid
functional has been found to have a good performance for late
transition metals clusters.47 To save DFT optimization time,
the randomly generated structures are first optimized with def2-
SV(P) and then with the def2-TZVP basis set,48 in the direct
searching case. For the NN-PGOPT scheme, the NN is fitted
for def2-SV(P) energies, and then the full-step DFT
optimization is performed with def2-TZVP.
500 unique initial structures are generated using the S-BLDA

approach with parameters μ1 = 2.50 Å, μ2 = 2.55 Å, and σ1 = σ2
= 0.04 Å for singlet, triplet, quintet, septet, and nonet
multiplicities, respectively. The threshold value d = 0.25 Å is
used to filter the S-BLDA generated structures. Ten DFT
optimization steps are performed on these initial structures to
yield 4240, 4770, 4670, 4210, and 4080 structure/energy
samples for each multiplicity, respectively. For each multiplicity,
the samples span an energy range of around 5.0 eV. Five
independent NNs are fitted for different multiplicities, and an
additional reference NN is first fitted for singlet to generate an
initial guess of NN parameters. 82%, 9%, and 9% of samples are
used for training, testing, and validation, respectively. Since the
cluster structure will be the same when the coordinates of any
two atoms of the same element are swapped, these atoms can

be randomly shuffled to generate more samples, so that the NN
can learn the permutation invariance of atoms of the same
element. In this way, 200 000, 20 000, and 20 000 samples are
generated for training, testing, and validation, respectively. The
minibatch size and the momentum are set to be 50 and 0.7,
respectively, as the parameter of the MB-SGD-M method.
Since N = 9 and k = 4, the layer sizes of the NN used for Pt9

PES fitting are (126, 6) - (126, 40) - (126, 70) - (126, 60) -
(126, 2) - (40, 2) - (10, 2) - (1). Therefore, the total number of
parameters (including weights and biases) used in this NN is 40
(6 + 1) + 70 (40 + 1) + 60 (70 + 1) + 2 (60 + 1) + 40 (126 +
1) + 10 (40 + 1) = 13022. The number of epochs, fitting errors,
and time are summarized in Table 1. We note that within each
epoch, all training samples are used once for training the NN
with random order, and then all testing samples are used once
to give the testing error. After all epochs, the validation samples
are used once to give the validation error. The parameters with
the lowest testing error are selected as the final parameters.
After the PES fitting, 5000 unique initial structures are

generated with the same parameters as those used in the first
step, for each multiplicity, and then optimized to their local
minima using the corresponding NN. Some NN-relaxed local
minima with interatomic distances that are too long or too
short are considered as extrapolated structures and are
excluded. Then the remaining NN-relaxed local minima are
filtered with threshold value d = 0.25 Å. Finally, 300 filtered
NN-relaxed local minima with relatively lower energies are
selected to perform the full-step DFT optimization with the
def2-TZVP basis set.

3.1.2. Time Efficiency. A separate direct global optimization
without NN fitting is also performed for Pt9 for comparison.
During the direct approach, 500 unique initial structures are
generated for each multiplicity using the same method and
parameters as those in the NN-PGOPT scheme. Thirty
additional converged local minima from singlet, triplet, quintet,
and septet are added to triplet, quintet, septet, and nonet initial
structures, respectively, since the converged minima of one
multiplicity can be a good initial guess to be relaxed for a

Figure 6. Overall flow chart of the NN-PGOPT scheme. The paralleled algorithms are indicated by multiple arrows, and the parallelism models are
shown in parentheses. The DFT optimization is paralleled in two levels. Different atomic configurations are independently paralleled at job level. For
every atomic configuration, the OpenMP or MPI parallelism is utilized as implemented in the DFT package.

Table 1. Number of Epochs, Average Fitting Errors Per Structure and Total Time Used in Training NN for Pt9 PES
a

NN parameter guess epochs training error (meV) testing error (meV) validation error (meV) total time (hour:min)

reference random 1400 236 262 252 3:57
singlet nonet 500 230 243 246 1:25
triplet reference 500 151 158 153 1:25
quintet triplet 500 137 147 146 1:25
septet quintet 500 136 146 142 1:25
nonet septet 500 129 131 132 1:25

aThe parameter guess column indicates that the final parameters of which NN are used as the initial guess of parameters. The errors are measured in
Root Mean Square Error (RMSE).
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different multiplicity. Full-step DFT optimization with the def2-
SV(P) basis set is then performed on these initial structures.
The threshold value d = 0.10 Å is used to filter the found local
minima for each multiplicity individually. After the filtering,
264, 300, 300, 294, and 212 unique lower energy local minima
are selected for DFT optimization with the def2-TZVP basis

set, respectively. The final results are filtered with the threshold
value d = 0.25 Å.
The CPU hours used during the DFT optimization for the

direct scheme and the NN-assisted scheme are summarized in
Table 2. We note that the total time for NN optimization and
filtering for all structures and multiplicities is about 10 h using a

Table 2. CPU Core Hours Used during the DFT Optimization for the Direct Scheme and the NN-Assisted Schemea

approach basis set singlet triplet quintet septet nonet total

direct def2-SV(P) 11096 7794 8769 8750 13939 50348
def2-TZVP 6066 4129 4039 4339 2819 21392
total 71740

NN-PGOPT def2-SV(P) 4344 2895 3271 3493 5182 19185
def2-TZVP 9515 6787 6324 6735 6369 35730
total 54915

aThe NN training and optimization time is about 10 CPU hours (with GPU acceleration) in total for all structures, which is order of magnitudes
smaller than DFT hours, and not included in this table.

Figure 7. Energy and some of the structures of 58 low energy optima of Pt9 found at the TPSSh/def2-TZVP level of theory using a direct approach.
Only structures with energy less than 0.40 eV relative to the putative global minimum (the leftmost structure) are listed. Green, purple, blue, orange,
and brown lines represent the energies of singlet, triplet, quintet, septet, and nonet multiplicities, respectively. The point group symmetry (if not C1)
is indicated for each structure.

Figure 8. Energy and some of the structures of 58 low energy optima of Pt9 found at the TPSSh/def2-TZVP level of theory using the NN-PGOPT
approach (after final full-step DFT optimization). Notations are the same as that of the previous figure.
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single CPU core. The total time for GPU accelerated NN
fitting is shown in Table 1. Therefore, the time cost for NN
fitting, optimization, and filtering is negligible compared to the
DFT optimization time. In total, 23.5% CPU hours can be
saved using the NN-PGOPT scheme for Pt9 global
optimization, compared to the direct approach. We note that
at the first stage with the def2-SV(P) basis set, since only the
first 10 steps of DFT optimization are performed using the
NN-PGOPT scheme, 62% CPU hours are saved. However,
because the quality of NN-relaxed structures is worse than that
of the fully DFT-relaxed structures, at the second stage with the
def2-TZVP basis set, 67% more CPU hours are required for the
NN-PGOPT scheme. Nevertheless, in terms of the total time,
NN-PGOPT is faster, given that the same number of initial
structures is used.
3.1.3. Performance of the Local Optima Search. The final

low energy isomers found using the direct approach and NN-
PGOPT are listed in Figure 7 and Figure 8, respectively. We
note that the number of isomers in the selected energy range
(0.0−0.4 eV), which corresponds to a catalyst condition related
region, is the same for the two approaches, and the first four
isomers with lower energies are also consistent. The
inconsistency in the higher energy region is due to the

complexity of PES and that 500 initial structures are not
enough to generate a complete list of local minima. However,
the requirement of completeness is both unnecessary and
computationally too expensive.
Figure 9 shows some NN-relaxed structures with relatively

low energy re-evaluated at the DFT level. Since these structures
are not real local optima at the DFT level, their energies are
generally higher than the DFT-relaxed optima shown in Figures
7 and 8. However, the geometry of these NN-relaxed structures
is already very close to their DFT-relaxed counterparts. For
example, the NN-relaxed structures 1, 5, 2, 7, 8, and 3 in Figure
9 are very similar to the local optima 1, 2, 3, 4, 5, and 6 in
Figure 8. We note that since the distances between these NN-
relaxed structures and their corresponding DFT optima vary,
the energy order is not expected to be consistent.
Figure 10 shows the energy and step distribution during the

first stage (with the def2-SV(P) basis set) of the direct
approach. The average energy of randomly created initial
structures is 3.7 eV higher than the energy of the global
minimum, while the average energy of the additional initial
structures borrowed from local minima of other multiplicities is
only 0.3 eV higher than the energy of the global minimum. This
indicates that the effect of multiplicity change on energy is

Figure 9. NN-relaxed low energy structures of Pt9 using the NN-PGOPT approach (before final full-step DFT optimization). The single point
energies (relative to the leftmost structure, which is 0.38 eV higher in energy than the putative global minimum in Figure 8) are re-evaluated at the
TPSSh/def2-TZVP level of theory. Notations are the same as that of the previous figure.

Figure 10. The energy and step distribution during the first stage of the direct approach for Pt9 global optimization. Left: the energy distribution of
S-BLDA generated initial structures (blue), additional initial structures borrowed from local minima of another multiplicity (green), and relaxed local
minima at the TPSSh/def2-SV(P) level of theory (orange). Right: the TPSSh/def2-SV(P) full-step local optimization step distribution. The mean
and standard deviation of the distribution are also indicated in the figure.
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much smaller than that of geometry change. The average
number of steps is 50 for the full optimization with the def2-
SV(P) basis set. Note that in the NN-PGOPT approach only
the first 10 of these steps are performed, but we can only save
62% of the time. This is because the beginning steps generally
take longer time.
Figures 11 and 12 show the energy and step distribution

during the second stage (with the def2-TZVP basis set) of the
direct and NN approaches, respectively. The average relative
energy of NN-relaxed and def2-SV(P) fully relaxed structures
are 1.5 and 1.2 eV, respectively, which means that the quality of
NN-relaxed structures is slightly worse. However, the average
relative energy of final rerelaxed structures for the NN and
direct approaches are 0.8 and 1.0 eV, respectively. This
indicates that in general the NN assisted approach is able to
generate final structures that are more concentrated in low
energy region.
3.1.4. Putative Global Minimum. In this work the septet

tricapped octahedron (A), shown in Figure 13, is found to be
the putative global minimum for Pt9. Singh and Sarkar49 have
also reported this structure (with nonet multiplicity) as the
lowest energy isomer. However, Kumar and Kawazoe50 and
Chaves et al.51 have reported the planar structure with four
squares (B) as the lowest. Winczewski et al.52 have reported the
defected tetrahedron (C). We reoptimized the three structures
using both TPSSh and PBE functionals. The structures and
their DFT energies with these two functionals are shown in
Figure 13. Based on the calculated energies, the difference in

global minimum structures is due to the different choice of the
DFT functional.

3.2. Gas Phase Pt13 Global Optimization. 3.2.1. DFT
Parameters and Fitting Errors. The Pt13 global optimization is
performed as another example of the application of the NN-
PGOPT scheme. The DFT optimization is done using the spin-
polarized DFT program implemented in Vienna Ab-initio
Simulation Package (VASP)53 5.4.1 with the Projector
Augmented-Wave (PAW) method54 and the Perdew−Burke−
Ernzerhof (PBE)55 functional. The cubic cell of size 15 × 15 ×
15 Å3 is used. The multiplicity is automatically relaxed during
the geometry optimization. Only the gamma point is sampled.

Figure 11. The energy and step distribution during the second stage of the direct approach for Pt9 global optimization. Left: the energy distribution
(at the def2-TZVP level) of def2-SV(P)-relaxed local minima structures (green) and rerelaxed local minima at the TPSSh/def2-TZVP level of theory
(orange). Right: the TPSSh/def2-TZVP local optimization step distribution.

Figure 12. The energy and step distribution during the second stage of the NN approach for Pt9 global optimization. Left: the energy distribution (at
the def2-TZVP level) of NN-relaxed local minima structures (red) and rerelaxed local minima at the TPSSh/def2-TZVP level of theory (orange).
Right: the TPSSh/def2-TZVP local optimization step distribution.

Figure 13. Putative global minima for gas phase Pt9 cluster proposed
in this work (A) and other literature (A, B, C). C is also found in this
work. The TPSSh and PBE energies relative to the energies of
respective lowest energy structure are also listed. The TPSSh energy is
evaluated using Turbomole 6.6 with the def2-TZVP basis set. The PBE
energy is evaluated using VASP 5.4.1 with 20 Å cubic cell and energy
cutoff 500 eV.
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To save time, the DFT optimization at both the first and
second stage of the NN-PGOPT scheme is performed with
energy cutoff 280 eV. The final local optima are reoptimized
with energy cutoff 400 eV, but no significant geometry or
energy change is observed.
1000 unique initial structures are generated using the S-

BLDA approach with the same parameters as the Pt9 case.
Twenty DFT optimization steps are performed to yield 19 860
structure/energy samples. After discarding some high energy
structures, 19 741 samples spanning an energy range of 5.44 eV
are used. 82%, 9%, and 9% of samples are atomically shuffled to
generate 200 000, 15 000, and 15 000 samples for training,
testing, and validation, respectively. The minibatch size and the
momentum are set to be 50 and 0.7, respectively, as the
parameter of the MB-SGD-M method.
Since N = 13 and k = 4, the layer sizes of the NN used for the

Pt13 PES fitting are (715, 6) - (715, 40) - (715, 70) - (715, 60) -
(715, 2) - (40, 2) - (10, 2) - (1). Therefore, the total number of
parameters (including weights and biases) used in this NN is 40
(6 + 1) + 70 (40 + 1) + 60 (70 + 1) + 2 (60 + 1) + 40 (715 +
1) + 10 (40 + 1) = 36582. The NN is trained for 700 epochs,
but no error improvement has been observed since the 410th
epoch. The final training, testing, and validation errors are 268,
298, and 303 meV, respectively.
After the PES fitting, 5000 unique initial structures are

generated and then optimized to their local minima using the
corresponding NN. Extrapolated structures and duplicates are
excluded. Finally, 500 NN-relaxed local minima with relatively
lower energies are selected to perform the full-step DFT
optimization.
3.2.2. Local Optima Searching Performance. Some of the

final low energy isomers found using the NN-PGOPT
approach are listed in Figure 14. Although the PES of Pt13 is
expected to be much more complicated than that of Pt9, fewer
low energy isomers are found within the 0.4 eV region. This
indicates that the energy of the global minimum is significantly
lower than most of other local isomers. This is different from
the situation of Pt9 and may have important practical
consequences, which is investigated in detail in the next
subsection. Figure 15 shows the energy distribution of initial,
partially DFT-relaxed, NN-relaxed, and fully DFT-relaxed
structures. From the average values shown in the figure, we

can infer that the constructed NN has the ability to predict new
lower energy structures than its input, because the average
energy of NN-relaxed structures is 0.9 eV lower than that of the
partially relaxed. Therefore, DFT local optimization time is
saved by the combination of partial DFT optimization and NN
fitting.

3.2.3. Putative Global Minimum. In this work the triplet
tricapped pentagonal prism (A) is found to be the putative
global minimum for Pt13, shown in Figure 16. Many other
publications have also reported this structure as the putative
global minimum.51,56,57 However, Sun et al. and Zhang et al.
have reported the square pyramid (B) as the global
minimum.40,58 As shown in Figures 14 and 16, the square
pyramid structure is 0.10 eV higher in energy (with PBE
functional) than the lowest one. Since the same DFT
parameters are used, it may suggest that our search is more
complete.

3.3. Ensemble-Average Representation of Pt Clusters.
Both Figures 13 and 16 show that different DFT functionals
could result in a different relative order of isomer energies and
thus change the geometry of putative global minima. This may
be partially due to the complexity of PES of both Pt9 and Pt13.
Nevertheless, at a realistic temperature, it is expected that the

Figure 14. Energy and some of the structures of 25 low energy optima of Pt13 found at the DFT/PBE level of theory using the NN-PGOPT
approach. Notations are the same as that of Figure 7.

Figure 15. Energy distribution of S-BLDA generated initial structures
(blue), all intermediate structures during the 20-step DFT
optimization (purple), NN-relaxed local minima structures (red),
and DFT rerelaxed local minima (orange) during Pt13 global
optimization. All energies are evaluated at the DFT/PBE level of
theory.
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global minimum will become less important; the energy
separations between local minima, however, will have a
significant effect on properties. The energy distribution of the
two clusters investigated in this work indeed show different
patterns, especially if we only focus on PBE energies.
Specifically, there are many more Pt9 isomers distributed in
the low energy range (0 to 0.25 eV). In view of this, a
quantitative analysis of the contributions of the isomers and the
changes of properties in realistic temperature is necessary. This
can be achieved by an ensemble-average representation of
isomers. In what follows, we assume that the interconversion of
isomers is not strongly kinetically hindered and that at high
temperatures, eventually, the thermodynamic equilibrium
would be reached, with every isomer being populated according
to its free energy. Kinetic trapping will be the subject of future
studies that will allow for the expansion of our model.
At finite temperature, the ensemble average of any property

A can be approximately computed by taking the weighted
average of that property of each geometrically unique isomer Ak

∑⟨ ⟩ ≈A P A
k

k k

where Pk are the occurrence probabilities of isomer k. The
probabilities Pk are obtained from the superposition approx-
imation,60 where the partition function of the system is
expressed as the sum over individual partition function of
isomers

∑= =Z Z P
Z
Z

,
k

k k
k

In order to compute Zk, the electronic, vibrational, and
rotational degrees of freedom of the system will be
considered.61 The translational contribution is almost the
same for each isomer, which is ignored here. Therefore, the
partition function of isomer k is written as

=Z Z Z Zk k k kelec, vib, rot,

where the electronic partition function is

= β−Z g ek k
E

elec, spin,
k

where gspin,k is the spin degeneracy, which is equal to the
multiplicity of the isomer. Ek is the ground state electronic
energy of the isomer. It is assumed that for small enough
clusters the quantum confinement effect is large enough to
make the ground and excited electronic states well-separated in
energy and contributions to the electronic entropy due to the

population of excited states being insignificant. This fact is
generally supported by the lack of multireference character of
the cluster wave functions in many selected Pt clusters that we
tried (CASSCF test).
The vibrational partition function is (using quantum

harmonic oscillator approximation)

∏=
−

β ω

β ω
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3 6 /2ki
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where ωki are 3N − 6 vibrational frequencies of the isomer k.
Note that the Zero-Point Energy (ZPE) and vibrational
entropy effect are included in this term. The rotational partition
function is (in high-temperature approximate form)
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where σk is the order of the rotational subgroup of the point
group symmetry of isomer k, and Ik1, Ik2, and Ik3 are the three
eigenvalues of the inertia tensor.
Figures 17 and 18 show the calculated probabilities of first

five low energy isomers of Pt9 and Pt13 clusters at finite

Figure 16. Putative global minima for gas phase Pt13 cluster proposed
in this work (A) and other literature (A, B) and a third-lowest isomer
found in this work (C). The shown PBE relative energies are evaluated
using VASP 5.4.1 with 15 Å cubic cell and energy cutoff 400 eV. Single
point energies at the TPSSh/aug-cc-PVTZ level of theory are
calculated for each of these structures using MOLPRO 2015.1.59

Figure 17. Occurrence probabilities of the first 5 low energy isomers
of Pt9 clusters at different temperatures, with energy and frequencies
evaluated using the PBE functional.

Figure 18. Occurrence probabilities of the first 5 low energy isomers
of Pt13 clusters at different temperatures, with energy and frequencies
evaluated using the PBE functional.
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temperatures, respectively. For Pt9, the PBE global minimum at
zero temperature (planar square, quintet) is no longer the most
populated one at T > 200 K, mainly due to the fact that the
second lowest isomer (tricapped octahedron, septet) has a
higher multiplicity and lower symmetry, which are favored at
high temperature. For Pt13, the structure favors its global
minimal shape (tricapped pentagonal prism, triplet) until T =
1000 K. After that, the third lowest isomer (pyramid over
square, quintet) becomes more populated. We note that the
second lowest isomer is not favored because of its slightly
higher symmetry.
The probability change between different temperature

indicates that there can be a structure transition for Pt9 (with
the PBE functional) at low temperature (T < 200 K) and for
Pt13 at relatively high temperature (T ≈ 1000 K). The structural
stability over a wide temperature range, predicted here for Pt13,
may play an important role in the explanation of catalyst
selectivity.
To confirm the existence of structure transition at a certain

temperature of the two structures, the heat capacity can be
computed as the following
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Figures 19 and 20 show the heat capacity of the two cluster
isomer ensembles as a function of temperature, for electronic

and all degrees of freedom, respectively. From the heat capacity
contributed from the electronic degree of freedom, we can
clearly identify a peak at T = 100 K for Pt9 and a peak at T =
950 K for Pt13. This agrees with our previous observation on
probabilities. We note that the peak for Pt9 is too small to be
observed in the total heat capacity, and the peak for Pt13 in total
heat capacity is shifted to T = 720 K. This can be ascribed to

the vibrational and rotational entropy effects. The dashed lines
in Figures 19 and 20 show that a significant underestimation of
heat capacity (and also some other properties) would be
expected if we only consider several low energy isomers.
Nevertheless, the first ten low energy isomers will be a good
approximation if one focuses on phenomena at room
temperature, for these systems. Figure 20 shows that the high
temperature limits of total heat capacity for Pt9 and Pt13 are
close to 22.5 and 34.5, respectively. This is related to the total
number of degrees of freedom that we have considered, namely,
3N − 6 from the vibrational and 1.5 from the rotational ones,
where N is the total number of atoms. Electronic degrees of
freedom, however, do not contribute at high T.
Finally, in Figure 21 we note that the electronic property of

the clusters at finite temperatures can be different from the

ones evaluated on just the global minimum. For example, The
Vertical Ionization Potentials (VIPs, E(Ptn

+) − E(Ptn)) of Pt9
and Pt13 show different trends when temperature increases. The
VIP of Pt13 changes relatively slowly, due to the fact that the
energies of Pt13 isomers are sparsely distributed.

4. CONCLUSIONS
We proposed a DNN fitting based parallel global optimization
scheme NN-PGOPT and demonstrated that this new scheme is

Figure 19. Heat capacity contributed from the electronic degree of
freedom for isomer ensemble of Pt9 (red) and Pt13 (blue), when all
found local minima (solid line) and only the first ten low energy
isomers (dashed line) are considered.

Figure 20. Heat capacity contributed from the electronic, vibrational,
and rotational degree of freedom for isomer ensemble of Pt9 (red) and
Pt13 (blue), when all found local minima (solid line) and only the first
ten low energy isomers (dashed line) are considered.

Figure 21. Ensemble-averaged vertical ionization potential of Pt9 (red)
and Pt13 (blue), evaluated at different temperatures.
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able to successfully find the global minima of Pt9 and Pt13,
which are in agreement with some other literature, as well as
low energy optima, which are important at realistic temper-
ature. Using the S-BLDA structure generation method, the
configuration space can be randomly sampled in an efficient
and natural way to generate initial structures. With the help of
NN based local optimization combined with limited-step DFT
optimization, the global optimization is proved to be faster than
the traditional full-step DFT optimization embedded way. In
addition, the training of DNN can be greatly accelerated by
modern GPU accelerators. An efficient DFS based structure
similarity measurement algorithm has also been proposed, and
duplicates can be excluded at different stages of the global
search. The tricapped octahedron structure is found to be the
putative global minimum of Pt9 using the TPSSh functional, but
a planar structure has even lower energy when the PBE
functional is used. The tricapped pentagonal prism structure is
found to be the putative global minimum of Pt13 using the PBE
functional, while the TPSSh functional favors a square pyramid
structure. However, at catalysis relevant temperature, the low
symmetry and high multiplicity structures are predicted to be
more populated, which is found to be a functional independent
fact, for the system investigated in this work. Particularly, the
structure transitions for Pt9 and Pt13 clusters can be identified,
at relatively low and high temperatures, respectively, based on
the ensemble-average representation of local minima. The
energy separation of isomers can also have a significant
influence on the properties observed at finite temperature.
Finally, we note that our DNN approach can also be

combined with evolutionary algorithms, such as GA, when
necessary. For larger systems, the time saving for DFT
optimization may become even more important, where the
global optimization can greatly benefit from the limited-step
DFT optimization and the NN fitting approach. However, in
this case the architecture of DNN should be carefully designed
so that the number of samples needed to train the NN can be
minimized. For practical applications, when the anharmonicity
of PES is important, the ensemble average can be more
accurately constructed using NN PES, in lieu of the harmonic
approximation.
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