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ABSTRACT: Structure-based, virtual High-Throughput Screening
(vHTS) methods for predicting ligand activity in drug discovery are
important when there are no or relatively few known compounds that
interact with a therapeutic target of interest. State-of-the-art
computational vHTS necessarily relies on effective methods for
pose sampling and docking and generating an accurate affinity score
from the docked poses. However, proteins are dynamic; in vivo ligands
bind to a conformational ensemble. In silico docking to the single
conformation represented by a crystal structure can adversely affect
the pose quality. Here, we introduce AtomNet PoseRanker (ANPR),
a graph convolutional network trained to identify and rerank crystal-
like ligand poses from a sampled ensemble of protein conformations
and ligand poses. In contrast to conventional vHTS methods that
incorporate receptor flexibility, a deep learning approach can internalize valid cognate and noncognate binding modes corresponding
to distinct receptor conformations, thereby learning to infer and account for receptor flexibility even on single conformations. ANPR
significantly enriched pose quality in docking to cognate and noncognate receptors of the PDBbind v2019 data set. Improved pose
rankings that better represent experimentally observed ligand binding modes improve hit rates in vHTS campaigns and thereby
advance computational drug discovery, especially for novel therapeutic targets or novel binding sites.

1. INTRODUCTION
Successful drug discovery campaigns rely on identifying
biologically active lead molecules that are chemically distinct
from known compounds for the disease target. This is
especially challenging when there is little or no nearby ligand
data available, as is the case with novel targets, or when novel
scaffolds are distant in chemical space. Structure-based, virtual
High-Throughput Screening methods are designed to over-
come this challenge, by identifying novel compounds with
predicted activity from vast chemical libraries, for example,
MCULE1 or ENAMINE.2 vHTS is routinely applied as a first
step in the drug discovery process, with hit rates surpassing
those of experimental screens.3−5

Conventional, structure-based vHTS approaches use an
empirical- or force-field-based scoring function to dock distinct
ligand poses to a mostly rigid receptor and predict affinity.
Underlying structure-based vHTS approaches is the assump-
tion that receptor−ligand binding poses correlate with
experimentally observed affinities. While conventional ap-
proaches have led to several exciting results, including a potent
inhibitor for AmpV β-lactamase,6 they have several important
drawbacks. First, identifying a scoring function that simulta-
neously gives high docking power (distinguishing correct
docking poses from decoy poses) and high scoring power
(generating an affinity score) has historically been challeng-
ing.7 For example, the widely used molecular docking scoring

function AutoDock-Vina8 excels at pose reproduction but is
less competent at correlating poses to affinity, as assessed in
the CASF benchmark.9 Second, conventional methods bear
substantial computational cost. Consequently, their ability to
predict affinity is limited to small- or medium-sized chemical
libraries of tens to several hundred million compounds. Third,
the dynamic nature of proteins is exploited in ligand binding.10

Different receptor conformations can bind different ligand
chemotypes, perhaps best exemplified by the “DFG-in” and
“DFG-out” states occupied in different ratios by many protein
kinases.11 Docking a ligand to a rigid receptor conformational
substate that deviates from its native bound state (e.g., an apo
state) can result in inaccurate predictions of the bound
complex that are not useful for further drug design
applications. Unfortunately, incorporating receptor flexibility
and representing binding-competent receptor conformations
remain challenging in conventional methods12,13 and sub-
stantially increase computational cost.
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Machine learning (ML) and deep learning (DL) approaches
can mitigate these limitations. ML can help determine features
of the receptor−ligand complex that correlate with affinity to
augment scoring functions and improve docking and screening
power. For example, the ΔvinaRF20 scoring function combines
20 ligand, protein, and pharmacophore features selected
among a larger set of candidate features with random forest
regression.14 Postscoring with ΔvinaRF20 improved docking and
screening (ranking) power compared to the baseline
AutoDock Vina scoring function.8 A major advantage of
learning approaches compared to conventional methods is that
they can capitalize on the rapidly increasing availability of data
to improve accuracy.15

In contrast to ML-based methods, DL-based methods avoid
the requirement to specify features and instead learn relevant
features directly from structural representations of the
protein−ligand complex. In recent years, structure-based DL
architectures16−21 have enabled vHTS and contributed to the
discovery of numerous new leads for drugs, often for
challenging protein targets and diseases.22−24 However, early
structure-based DL approaches appeared to learn molecular
features from a pose-free structure-based descriptor only,
neglecting ligand binding modes and protein ligand
interactions.25 This is especially detrimental to predicting
affinity for ligands docked to noncognate receptors, which is a
typical use-case in structure-based drug discovery (SBDD). To
enforce sensitivity to protein−ligand interactions, more recent
DL vHTS approaches include ligand binding mode informa-
tion, either as a feature26 or as a training label in a multitask
architecture.27,28 Simultaneous learning on ligand binding
modes substantially improved activity screening and led to
better generalization beyond the training set. Importantly,
predicting correct ligand binding modes has merit in its own

right.29 Precise protein−ligand interactions are vital for
developing structure−activity relationships in hit-to-lead and
lead-optimization applications downstream from vHTS.30

The efficacy of structure-based virtual screening campaigns
relies on an adequate representation of the protein conforma-
tional ensemble. Proteins and their ligands undergo conforma-
tional exchange under physiological conditions,31−33 and in
many cases, ligands bind through induced fit (Figure 1A)34,35

or bind short-lived intermediate states through conformational
selection (Figure 1B).36 In those situations, the binding site of
a crystal structure may be partially or even fully occluded in the
absence of a ligand, hindering the discovery of potent binders.
In cases where the protein’s cognate ligand has small molecular
weight, a holo crystal structure would limit opportunities for
docking larger compounds even though those could be
accommodated by the protein’s full conformational ensemble
(Figure 1C). Similarly, structurally uncharacterized disease
mutations distal to the ligand binding site can shift the protein
conformational ensemble, dramatically reducing or even
depleting populations favorable for ligand binding in wild-
type protein in vivo (Figure 1D,E).33 Such a situation would
manifest itself by unfavorable binding kinetics in experimental
assays despite highly ranked compounds in the virtual screen.
Screening against multiple receptor conformations can fail to
enrich experimentally validated active compounds if the
conformations are higher-energy and unlikely to be accessible
in solution. Careful selection of receptor states37,38 can
mitigate these effects of protein dynamics and increase virtual
screening performance.39

How to optimally represent protein conformational states
computationally and how to generalize docking scores to
(unseen) conformational substates remain important open
problems. Some, but not all, proteins with ligands in the

Figure 1. Binding site plasticity challenges vHTS in structure-based drug design. A) Induced fit. B) Conformational selection. C) The GluN2A
NMDA receptor ligand-binding domain in complex with its cognate activating ligand L-glutamate (L-GLU, pdb ID 4nf8 (slate)) and antagonist 1-
(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA, pdb ID 4nf6 (gray)). The L-Glu occupied site requires dramatic structural
changes to accommodate the larger antagonist. D) Mutations distal to the binding site (yellow) can shift the conformational equilibrium, thereby
stabilizing nonbinding substates or abrogating substates that are required for conformational selection. E) The compound imatinib in complex with
Abl kinase (pdb ID 2hyy, slate). Imatinib binds Abl kinase in the inactive I2 state, which occupies a population of ∼6% in WT Abl (pdb ID 6xrg,
gray). A distal H415P mutation in Abl kinase, at 18 Å from the active site, reduces affinity for the inhibitor imatinib 5-fold. H415P destabilizes the
I2 state, reducing its population to below detectable levels (pdb ID 2f4j, salmon). Note the A-loop in the open conformation.
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Protein Data Bank (PDB) are structurally resolved in multiple
conformations. For individual systems, sophisticated and
resource intensive protocols including molecular dynamics
simulations and Markov state models can access biologically
relevant conformations,40,41 but these methods scale poorly to
large databases of thousands of receptors. Time-independent
sampling is a less resource-intensive alternative to access
conformational substates. A common limitation of screening
with multiple conformations, of any origin, is the challenge in
comparing docking scores for molecules docked to different
conformations. This has limited the adoption of earlier
ensemble approaches, but machine learning techniques can
mitigate this problem.42 Importantly, conventional docking
and scoring protocols cannot internalize receptor conforma-
tional variability encoded in the thousands of structurally
resolved receptor−ligand complexes in, for example, the
PDBbind data set.43,44 While DL approaches are relatively
underexplored in ensemble docking, they can, in principle,
learn and generalize how receptor flexibility accommodates
distinct binding modes, both of cognate and noncognate
ligands.
Here, we introduce a DL-based method for binding mode

prediction that exploits protein conformational ensembles
instead of single structures in vHTS applications. Starting from
a protein crystal structure or homology model, we use
Rosetta’s comparative modeling protocol (RosettaCM)45 to
sample low-energy conformations near the crystal structure to
generate a six-member conformational ensemble, which
includes the starting structure. We applied this protocol to
each receptor-compound pair in PDBbind v2019 to generate
FlexPDBbind v2019, a curated data set of conformational
ensembles of drug targets. To enrich the quality of compound
poses docked to these ensembles, we adapted AtomNet
GRAPHite, a new directional message passing graph convolu-
tional network, for Pose Ranking applications, which we
describe as AtomNet PoseRanker (ANPR). To maximize
learning on distinct receptor conformations, we additionally
trained ANPR on noncognate poses, obtained from cross-
docking ligands to distinct crystal structures of the same
protein (Uniprot identifier) in the PDBBbind v2019 data set.
We first demonstrate that ANPR rankings enrich pose

quality for compounds docked to single conformations of their
cognate receptors as well as noncognate receptors in the cross-
docked PDBbind v2019 data set compared to conventional
approaches. Our results indicate that training on a cross-
docked data set teaches ANPR to recognize distinct poses as
valid in different receptor conformations. ANPR trained on
FlexPDBbind v2019 achieved nearly the same enrichment,
suggesting that computationally sampled conformational

ensembles can augment experimental ensembles when the
latter are not available. Finally, we examined how conforma-
tionally diverse ensembles affect enrichment of active
compounds in a virtual screen of Abl kinase. Ensemble-based
procedures generally outperformed those using a single
conformation. Strikingly, however, we found that using a single
conformation with a cross-docked trained ANPR achieved
nearly identical enrichment as that using an ensemble,
suggesting that DL approaches can learn and infer receptor
flexibility from the training set.

2. METHODS

2.1. Preparing Train and Test Data Sets. We down-
loaded the PDBbind data set v2019 (http://www.pdbbind.org.
cn) and removed entries that contained cofactors, incomplete
ligands, more than one ligand, incorrect valences, entries
annotated as “NMR”, or entries for which the ligand was
annotated as a peptide. This resulted in a data set containing
4,593 crystal structures from the “refined” set and 10,011
structures from the “general” set. We split the data set into
train (10,919) and test (5,206) sets by requiring that receptors
share less than 70% or 50% sequence similarity between the
sets (“seqsim70” and “seqsim50” splits). For comparison, we
also generated train and test sets identical in size to the
seqsim70 and seqsim50 sets but split by enforcing that these
sets do not share identical Uniprot identifiers (“Uniprot split”).

2.2. Preparing Ligand Structures. We generated ligand
structures for docking based on the ligands provided by
PDBbind. To avoid biasing poses toward the crystal structures,
and in contrast to previously reported studies, we discarded the
native compound conformation and generated a UFF energy-
minimized starting conformation from the ligand SMILES
supplied by the PDB using RDKit.46 This approach better
reflects commercial vHTS campaigns, where a crystal pose or
experimental structure of the ligand is typically lacking. We
used a single low-energy ligand conformation for docking.

2.3. Preparing Receptor Structures. We prepared the
receptors for docking by a three-step process. For consistency
with our generated ensembles, we first read the crystal
structure into Rosetta and removed any crystallographic buffer
or water molecules but retained metal ions of the following
types: Na, Fe, Mg, K, Mn, Zn, and Ca. Using Rosetta, we filled
in missing atoms for incomplete protein residues. We then
define a bounding box surrounding each initial ligand used as
the search space for subsequent docking. For this study, we
accepted the protonation states of titratable residues found in
PDBbind (Figure 2).

2.4. Cross-Docking. We superimposed receptors of the
same Uniprot ID using the chain identifiers present in the

Figure 2. Flowchart illustrating data processing pipeline. Beginning from the PDBbind v2019 protein−ligand data set, we clustered ligands for all
structures of the same Uniprot into distinct binding sites to define cross-docking groups. We used Rosetta (weekly release r231, 2019) to prepare
the structures for docking, including filling in missing side-chain atoms and adding protons. We prepared 3D conformations for each ligand using
RDKit and used these conformations to dock to the crystal structures within each binding site cluster. We additionally prepared conformational
ensembles using the Rosetta hybridization protocol and docked ligands within each binding site cluster.
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“pocket” pdb file from PDBbind, keeping receptors that
superimposed to within 5 Å. We identified different binding
sites within the same Uniprot ID by clustering the center of
mass of the superimposed ligands with DBSCAN47 (param-
eters eps = 5., min_samples = 1). A small number of Uniprot
IDs (“targets”) are represented by hundreds of receptor-
compound pairs in PDBbind. To avoid those from dominating
the cross-docked data set, we randomly selected five
representatives from among the receptor-compound pairs to
be included in the cross-docking procedure. Cross-docking was
performed on all members of each binding site cluster. The
final training set consisted of targets that sampled at least one
low-RMSD pose. This procedure gave a total of 27,166 target-
compound pairs.
2.5. Ensemble Docking. We generated five diverse

receptor conformations using the Rosetta hybridize protocol
(Supporting Information) with the score3 and score4_-
smooth_cart scoring functions in stages 1 and 2 of the
centroid stage and the ref2015_cart scoring function
with metalbinding_constraint in the full atom
stage. Ligand parametrization relied on Rosetta’s templates
whenever available or was generated with Rosetta’s molfi-
le_to_params.py script using default settings. We used
default weights for intraligand hetatm_cst_weight =
1.0 and receptor−ligand hetatm_to_protein_cst_-
weight = 1.0 constraints. Fragment insertions were
disabled in stage 2: fragprob_stage2 = 0.0. We
adjusted the stage 2 Monte Carlo temperature to 0.5:
stage2_temperature = 0.5. Next, we subjected each
hybridized receptor conformation and the crystal structure to
six rounds of energy relaxation with Rosetta’s FastRelax
protocol, retaining metal coordination with the SetupMe-
talsMover protocol combined with a metalbin-
ding_constraint = 1.0. We observed that protein
side-chain metal coordination was not preserved consistently
throughout the hybridize protocol. In some cases, that led to
final models with unsatisfied coordinate-covalent bonds. We
created a final ensemble of six receptor conformations by
selecting the conformation with the lowest Rosetta energy
from each of the six relaxed conformations starting from the
hybridized models or crystal structure.

2.6. Docking. We used a slightly modified version of the
smina docking software48 with the vina scoring function to
generate binding poses for the receptor-compound pairs with
command line parameters --exhaustiveness 384
--energy_range 99999 --num_modes 64
--mc_steps 3 --minimize_iters 40 --accu-
rate_line --approximation linear --auto-
box_add 2.0 --seed 42. Our modification introduces
the additional parameter mc_steps which is used to tune
the number of steps in the Monte Carlo search. For cross-
docking, we determined bounding boxes for the docking site
using the largest ligand in the target class. We then added 2 Å
to define a small buffer region surrounding this expanded
search space (using the --autobox_add parameter). The
remaining smina input parameters were optimized primarily
for computational efficiency in docking ultralarge data sets, for
higher rates of successful pose generation even at lower ranks,
and to ensure a diverse set of negative examples. For each
receptor-compound pair, we generated up to 64 poses with the
default 1 Å minimum difference between poses. We labeled
poses within 2.5 Å of the native pose a “hit”, and those greater
than 4 Å a “miss”. Although pose classification work often uses
a 2.0 Å threshold to define success,9 we selected the slightly
more generous 2.5 Å threshold to accommodate slight
differences in alignment within our sampled ensembles, a
common approach when representing receptor conformational
flexibility.49 Poses in between were discarded from the training
set but retained in the testing sets. Note that this process
results in a highly imbalanced data set; for cross-docking, the
data set consists of 5.0% positive examples, 15.5% intermediate
examples, and 79.5% negative examples.
We calculated the RMSD between corresponding heavy

atoms of docked poses and native crystal structures of the
corresponding compounds by first matching substructures
using RDKit and accounting for symmetric substructures by
using the minimum RMSD in the case of multiple matches.
For the final data set, we required that each compound
adopted at least one pose within 2.5 Å of the native pose,
evaluated after superposition of protein structures in the case
of cross-docking.

Figure 3. Architecture of AtomNet GRAPHite, a directional Message Passing Neural Network. A) Ligand and receptor atoms are represented as
nodes in AtomNet Graphite, omitting their covalent structure. B) Overview of AtomNet GRAPHite’s graph convolutional network architecture.
After an initial embedding, any number of interaction blocks can be stacked. Each interaction block features a learnable pointwise convolution and
can be configured to allow interactions between ligand and/or receptor atoms with a customizable layerwise cutoff. A final readout layer extracts
relevant features from ligand and receptor embeddings independently and passes them through a final multilayer perceptron.
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2.7. Descriptor Generation. From each docked complex,
we generated descriptors for use in training and testing our
models. We describe each heavy atom with its corresponding
SYBYL atom type indicating its chemical environment,
generated by converting to Mol2 format using OpenBabel.50

We do not represent protons explicitly in our final descriptor
sets, and we treat all metals as a single type. We treat the
protein and ligand as distinct entities and encode their atom
types separately.
2.8. Markov State Models of Abl. We obtained

structures for 16 Abl kinase macrostates from the manuscript
by Roux and co-workers (PDB ID 2HYY).51 We prepared a
matching 16-member conformational ensemble using our
Rosetta-based ensemble-docking protocol. For each of those
ensembles, we prepared the receptors for docking following
our standard protocol described above. We prepared the single
receptor conformation for this analysis based on the crystal
structure 2HYY. We selected 8,946 compounds from our
internal databases to dock to Abl kinase, including molecules
with known activity (3,205), known nonbinders (4,459), and
random molecules (1,282). We ranked compounds using the
ANPR model trained on a data set that excluded Abl kinase or
receptors with more than 70% sequence similarity to Abl
kinase. We calculated enrichment factors as ef(ν) =
(ap)−1a(ν)/n(ν), where ap is the total fraction of actives in
the data set, a(ν) is the number of actives in the top ν-
percentile, and n(ν) is the total number of compounds in the
top ν-percentile.
2.9. AtomNet PoseRanker. Underlying ANPR is our

GRAPHite network architecture, a directional Graph Convolu-
tional Network (GCN)52,53 in which nodes encode receptor or
ligand atoms (Figure 3A). We do not impose a covalent
structure on the graph. Instead, pairs of atoms at layer

1... max= within a radial threshold Rc of each other can pass
messages along a directed edge. To enable a focus on the
ligand−receptor interface, we use a flexible framework that
allows us to configure distinct sets of “source” (S ) and “target”
(T ) atoms for messages in each layer (Figure 3B). At each
layer, we can select a new set of target nodes from ligand (T =
SL), receptor (T SR= ), or complex (T = SL R+ = S SL R∪ )

nodes. The target nodes of the previous layer T 1− will be
selected as the source nodes S .

We define a feature vector fi
N f∈ of N f features for

source atoms i S∈ , with f i
0 initialized using a one-hot

encoding of SYBYL atom types. The combination of the radial
threshold Rc and layer-wise choice of target nodes gives a

layer-wise neighborhood i j T d R( ) : ij c= { ∈ < }, where dij
= ||ri − rj|| is the pairwise distance between atoms i and j. Our
interaction block (Figure 3B) is based upon a continuous filter
convolution53

f W d f( )i
j i

ij j
sconv,

( )

bneck,∑←
∈

−

where f j
s bneck,− is a bottleneck source feature constructed by

concatenating all layers of matching source atoms
f f W( )j

s
S s j

sbneck,
:

bneck,= ⊕ ·−
′≤ =

′ −
′ . This bottleneck al-

lows us to change the number of filters on a layer and avoid
mismatched filter sizes.

We use convolutional kernels W r w j rz R( ) ( / )l
n
N

n n c0 0
b= ∑

constructed from linear combinations of zeroth-order spherical
Bessel functions with a layer-dependent normalization j0(x) =
√(2/Rc

l) sin x/x. Here, z0n is the n
th zero of j0(x), and wn are

learnable weights, and the number of basis functions is chosen
as N R /b c δ= ⌈ ⌉, where 5/32δ = . This parametrization
ensures that the convolutional kernels vanish at the edge of
an internal neighborhood. Note that since we are not
calculating forces, we do not need a smooth cutoff at the
boundary. After the graph convolution step, we add a
skip connection based upon the target-bottleneck
f f W( )i

t
T T j

tbneck,
:

bneck,= ⊕ ·−
′≤ =

′ −
′ and apply a Linear

− LeakyReLU − Linear − LayerNorm multilayer perceptron
(MLP). This bottleneck layer is used instead of the
conventional residual connection at the output of a
convolution block. We found empirically that this performed
better than standard skip connections from the previous layer
of the same set of source atoms.
To construct our final embedding, we concatenate readout

operations to the ligand and receptor features independently at
each layer: z zL S T L: L

= ⊕ ⊆ and z zR S T R: R
= ⊕ ⊆ , where

z fL i S iL
= Σ ∈ and z fR i S iR

= Σ ∈ are respectively the ligand and
receptor-only pooled features at layer (Figure 3B). Note that
if no features are included at a layer, we do not include them in
the embeddings. Finally, we concatenate all these embeddings
together, zread = zL ⊕ zR, and apply a Linear − LeakyReLU −
Linear MLP to obtain the ANPR ranking logit. We listed all
hyperparameters in Table S1.

3. RESULTS

3.1. Ligand:Receptor Interfaces Contribute to Pose
Prediction Accuracy. Several studies suggest that structure-
based vHTS CNN-based methods minimally rely on features
of the receptor54,55 but instead distinguish active from inactive
compounds primarily by ligand-based features. Carefully
designed data-augmentation can draw in receptor-based
features in these models, thereby promoting generalizability.56

By contrast, receptor features in graph-based models can affect
binding mode prediction.57 These reports of “memorization”
in bioactivity prediction, which can also affect other AtomNet
applications,58 motivated us to design AtomNet’s configurable
convolutional layers to deconvolve the role of the receptor and
the ligand in predictive performance and to probe and
optimize the role of ligand:receptor interactions. Note that in
the application to pose quality studied here, ligand 1D features
are identical in positive and negative examples, although 3D
conformation and receptor interactions vary. A hyperparameter
controls the number and configurations of AtomNet’s message
passing layers. If ‘l’ denotes the set of ligand atoms, ‘r’ denotes
the set of receptor atoms, and ‘lr’ denotes the combined set of
atoms; each layer can pass messages from ‘l’ to ‘r’, ‘r’ to ‘l’, ‘l’ to
‘l’, and ‘r’ to ‘r’, and each ‘l’ or ‘r’ in these can be replaced by
‘lr’.
To test the role of the ligand:receptor interface in classifying

poses, we evaluated the effect of distinct layer configurations
on distinguishing correctly docked poses from incorrectly
docked poses for the Uniprot split PDBbind data set. We
tested layer configurations featuring transitions between ligand
and receptor layers to focus on interface features. Table 1
reveals that, while the network demonstrates some capacity to
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identify correct poses based on ligand features alone, the test
AUC (PDBbind self-docking, Uniprot split) increased
dramatically when we included the ligand:receptor interface
in the layer configurations (test AUC > 0.9), compared to a
layer configuration between ligand atoms only (test AUC =
0.67). When we probed the interface with additional
convolutional layers, we observed a peak in test AUC at
0.92. Adding more layers did not result in further improve-
ments. These findings suggest that our graph convolutional
architecture is sensitive to mechanisms of molecular recog-
nition in structure-based drug design. To minimize the
potential of ligand- or receptor-based pattern memorization,
for the remainder of the study we adopted the “l→l→r→
l→r→l” layer architecture that includes edges only between
ligand−receptor atom pairs.
3.2. AtomNet PoseRanker Improves (sm)vina and

ML-Based Rankings. Next, we compared ANPR’s ability to
classify docked poses on the PDBbind data set to similar
classifiers. On the Uniprot split, ANPR’s test AUC was 0.93.
Other methods similarly reported AUCs in the 0.86−0.94
range27 (Table 2). By training simultaneously on poses and

activity, Lim et al.28 achieved an AUC = 0.94 on their data set.
Direct comparison of AUCs with these methods is difficult
owing to differences in the way the data is split which can lead
to memorization effects27 and slight random initializations of
the methods.
We then tested ANPR’s ability to generalize out of the

training data by evaluating its performance on the seqsim70
and seqsim50 data splits, which challenge memorization effects
of the training data. We observed a small decrease in
performance from AUC = 0.93 to 0.89.
In practical applications, pose ranking within a particular

target class is more important than the pose quality across all

targets as reported by AUC. ANPR significantly enriched the
fraction of poses within 2.5 Å of the native pose among the
top-n ranked poses compared to smina docking (Figure 4).
When “gap” poses between 2.5 and 4 Å were excluded in
training, 45% of the top poses in ANPR were within 2.5 Å of a
crystal pose by target class (Figure 4A black line), compared to
39% of the top smina poses on the (most challenging)
seqsim50 test set including “gap” poses (Figure 4A, blue line).

3.3. AtomNet PoseRanker Enriches Intratarget Com-
pound Rankings in Cross-Docking. While often the
redocking performance of a deep learning model is reported
to evaluate its performance, correctly predicting the binding
mode of a new ligand, possibly to a new target, is more
important in SBDD. The new target may even lack a crystal
structure, so vHTS will need to rely on a closely related
structural model or a homology model. We therefore trained
and evaluated ANPR on a cross-docked data set (Methods).
Table 3 reports the AUC for ANPR compared to smina
docking.
Unsurprisingly, distinguishing favorable docking poses from

unfavorable poses is more challenging in cross-docking
compared to self-docking, reflected by reduced AUCs for
ANPR and smina docking. There are numerous challenges in
cross-docking: 1) the binding site often has a different size
and/or shape owing to different (equilibrium) backbone and
side-chain positions; 2) amino acid insertions, deletions, or
substitutions can alter the steric and electrostatics character-
istics of the site; 3) changes in solvation characteristics; and 4)
experimental conditions like crystal packing, etc. Accordingly,
test AUC were reduced slightly compared to self-docking
across all data splits (Table 3).
Despite its reduced ROC-AUC, we observed marked

intratarget early enrichment among the top-ranked poses of
the model trained on cross-docked crystal structures compared
to the model trained on cognate receptors (Figure 4A, top-1
54% (pink) vs 45% (black)). Our highly imbalanced data set
could mask true model performance of the cognate model
reported by ROC-AUC (0.89 vs 0.86 for the cross-docked
model). However, we observed a concomitantly slightly
elevated PR-AUC for the cognate model (0.39 vs 0.36)
suggesting both models detect positives across poses at similar
rates. Nonetheless, the cross-docked model appears more
confident about good poses, likely because similar good poses
occurred across multiple receptor conformations, whereas
invalid poses were reproduced less across receptors. We note
that our baseline smina performance (blue) is lower than
similar applications using PDBBind,60 likely due to differences
in docking setup and parameters; for our intended application
in reranking, we optimized for sampling depth rather than top1
performance.

4. ENSEMBLE-BASED DOCKING
Next, to further examine how learning receptor conformational
diversity can help ANPR recognize valid binding modes, we
developed a protocol that creates an ensemble of computa-
tionally sampled receptor conformations for docking based on
Rosetta’s comparative modeling protocol45 (Methods). Aside
from providing conformational variability when multiple
experimental structures are lacking, computationally sampled
ensembles offer advantages over those constructed from
experimental structures for a pose training task, including
removing variations due to mutations or differences in
construct, normalizing the numbers and sources of different

Table 1. Distinct Configurations of Convolutional Layers
Respond Differentially to Mechanisms of Molecular
Recognitiona

layer configuration test ROC AUC

l→l→l→l→l→l 0.67
lr→lr→lr→lr→lr→lr 0.91
l→l→r→l→r→l 0.91
l→l→r→l→r→l→r→l 0.92

aTest AUC for distinct convolutional layer configurations in ANPR.
Test AUCs were computed from classifying poses obtained from self-
docking on the PDBbind data set Uniprot split.

Table 2. Pose Classification Compared to Other Methods
Across Different Train/Test Splitsa

ROC AUC (PR AUC)

method Uniprot seqsim70 seqsim50

ANPR 0.93 (0.47) 0.90 (0.45) 0.89 (0.39)
smina docking 0.82 0.82 0.81
Cornell et al.57 0.86
Ragoza et al.59 0.815c

Lim et al.28 0.94b

aBaseline random performance is 0.5 for ROC AUC and 0.05 for PR
AUC, reflecting the presence of 5% true positive good poses in the
test set. bIn contrast to other methods in this table, the model of Lim
et al. was trained simultaneously on poses and activity. cThree-fold
cross-validation on 90% sequence identity.
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conformations available for each protein in the data set, and
permitting the trained model to be used in practical
applications to docked poses to homology models produced
through Rosetta-based pipelines.
4.1. FlexPDBbind: Ensemble Models for 13,000

Biomolecular Complexes. For each biomolecular complex
in the PDBbind “refined” and “general” sets, we generated a
six-member conformational ensemble. We applied Rosetta’s
FastRelax protocol to the crystal structures to generate the first
member and then repeatedly applied the Hybridize and
FastRelax protocols to generate up to five additional
conformations (Methods). This resulted in 13,063 biomolec-
ular ensembles, for a total of 71,825 conformations. The mean
Root Mean Square Deviation (RMSD) of the ensembles
calculated over the CA atoms is 1.57 Å, and the Root Mean
Square Fluctuation is 2.10 Å (Figure 5A,B). This compares to
a mean RMSD of 1.24 Å for the structurally aligned crystal
structures. To evaluate the structural quality of the generated
models, we calculated clash scores and overall Molprobity
scores with Molprobity61 (Figure 5D,E). We discarded

ensembles with outlying clash scores (scores over 10). We
then docked ligands to each conformation of their cognate
receptor using the protocol detailed in Methods. The RMSDs
of docked ligand poses calculated to their starting pose in the
source receptor conformation reveal a distribution sharply
peaked around 3.5 Å with a long tail, illustrating enrichment of
low-RMSD poses in sampled ensembles (Figure 5C). The
distribution broadens when the RMSD is calculated with
respect to the pose from the crystal structure, owing to random
offsets in rigid body transformations of the generated
structures (Figure 5C, red). Figure 5F shows two examples
of conformations in FlexPDBbind.

4.2. Ensemble-Docking Mitigates Limitations of
Induced-Fit Docking. ANPR trained on the FlexPDBbind
ensemble of cognate receptors slightly improved top-1
enrichment compared to the model trained on single
conformations (Figure 4A; top poses: 48% (green) vs 45%
(black) for single conformations). However, we did not
observe improved enrichment beyond the top poses.
Unsurprisingly, the model trained on cross-docked crystal
structures outperformed the FlexPDBbind-trained model
(Figure 4A pink; top poses: 54%), likely owing to receptor
conformations that are closer to physiological substates and to
a more diverse representation of binding modes for targets
with a large number of receptor-compound pairs in PDBbind.
Approximately 80% of targets in PDBbind have fewer than six
structural representations. For a more direct comparison
between the cross-docked set and FlexPDBbind, we repeated
the analysis limited to targets that have at least six structural
representations in the cross-docked set (Figure 4B). While the
top-1 enrichment on the FlexPDBbind subset was similar to

Figure 4. Comparison of pose ranking performances. Cumulative fraction of targets with docked poses within 2.5 Å RMSD of the crystal pose
across all receptors within a target class by pose rank for the seqsim50 split according to vina (blue), ANPR trained on self-docked crystal structures
(black), ANPR trained on cross-docked crystal structures (pink), and ANPR trained on sampled conformational ensembles (green). Each figure
shows the top 16 ranked poses for each docking attempt in A) the full data set and B) targets that include at least six PDB structures, for a direct
comparison of experimental and sampled ensembles. C) Models applied to a data set of single receptor conformations for all targets for which only
one crystal structure is available. For reference, the vina ranking for the same targets across a six-member sampled ensemble is shown in orange.

Table 3. Cross-Docking Pose Ranking/Classification
Compared to smina Dockinga

ROC AUC (PR AUC)

method Uniprot seqsim70 seqsim50

ANPR 0.91 (0.46) 0.90 (0.45) 0.86 (0.36)
smina docking 0.78 0.79 0.78

aBaseline random performance is 0.5 for ROC AUC and 0.05 for PR
AUC, reflecting the presence of 5% true positive good poses in the
test set.
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that of the full FlexPDBbind set (Figure 4A), somewhat
surprisingly the enrichment gain between the cross-docked and
FlexPDBbind was substantially reduced on these subsets.
Strikingly, when we applied an ANPR model trained on

sampled ensembles to predict binding modes using a data set
of single receptor structures, we found that top poses were
enriched over the model trained on single structures (Figure
4C, green vs black line). Notably, ANPR enrichment on single
conformations exceeded that based on vina rank across six-
member sampled ensembles (Figure 4C, green vs orange line).
While, again, the improved ANPR performance could in part
perhaps be attributable to the larger training set for the
sampled ensembles, these results do suggest that the model
retains information about flexible binding sites, illustrating the
value of performing additional conformational sampling where
experimental data is limited.
4.3. Ensemble-Trained AtomNet PoseRanker En-

riched Abl Kinase Actives on a Conformational
Ensemble and a Single Conformation. 4.3.1. Abl Kinase.
As a practical application, we examined the effects of receptor
conformational ensembles and compound pose reranking in
identifying active compounds of Abl kinase (Abelson tyrosine

kinase). Abl is of clinical significance due to its causal role in
chronic myelogenous leukemia (CML); in about 90% of cases
of CML, a chromosomal translocation forms a “Philadelphia
chromosome”, which creates a fusion between the Abl and
break-point cluster (Bcr) genes to produce a protein with
constitutive kinase activity.62,63 Inhibitors of Abl kinase activity
are in clinical use as treatments for CML and other cancers
since the US approval of the targeted inhibitor imatinib in
2001 and have significantly improved clinical outcomes.63

Kinase inhibitors are often divided into multiple classes or
types depending on their binding mode.64 Type I inhibitors are
considered to bind to the “DFG-in” protein conformation,
while type II inhibitors bind the “DFG-out” conformation. The
DFG-in conformation is sterically incompatible with the most
common binding mode of type II inhibitors. Among known
mutations conferring resistance to imatinib and related
compounds, many exert their effect by changing the protein’s
conformational distribution and reducing occupancy of the
favored binding state (Figure 1E). As a result, identifying both
type I and type II inhibitors in a structure-based virtual screen
of the ATP binding site is important for identification of new
molecules of potential clinical utility and requires the use of

Figure 5. Descriptive statistics of FlexPDBbind ensembles. A) RMSD and B) RMSF distributions for six-member sampled ensembles. C)
Distribution of RMSDs of ligand poses docked to sampled ensembles (blue) and crystal structures (red). D) Molprobity clash scores and E) overall
scores for sampled ensembles. F) Examples of a sampled conformational ensemble for ABL1 in complex with an inhibitor (left, PDB ID5HU9) and
dethiobiotin synthetase in complex with CDP (right, PDB ID6CVF) with the crystal structure in purple and ensemble members in green. The
ligand corresponding to the crystal structure is shown in yellow.
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multiple protein conformations to adequately sample native-
like ligand binding modes.
We evaluated the power of our ensemble-docking protocol

to enrich known Abl inhibitors over an in-house curated library
of negative examples including known nonbinders and
randomly selected molecules. We compared a conformational
ensemble (n = 16, RMSF = 2.7 Å) generated using our
protocol to a conformational ensemble (n = 16, RMSF = 2.4
Å) derived from a Markov state model (MSM) based on
extensive molecular dynamics simulations.41,51 We also
calculated the enrichment factor from the smina rank of
docked poses to the (relaxed) crystal structure.
Docking compounds to an ensemble of MSM receptor

conformations dramatically improved early enrichment of
active compounds compared to docking to a single receptor
conformation when we ranked compounds by smina score
(Figure 6A, purple vs blue). We observed similar enrichment
factors when we ranked compounds docked to an ensemble of
Rosetta-generated receptor conformations using ANPR
(Figure 6A, red). While these enrichment factors are near-
indistinguishable, our Rosetta ensembles were generated at a
fraction of the computational cost compared to MSM
ensembles. Strikingly, early enrichment remained similarly
elevated when we ranked compounds docked to a single
receptor conformation using ANPR (Figure 6A, magenta).
Note that the ANPR model was trained on a cross-docked data
set, which led the model to recognize distinct but valid poses of
compounds corresponding to diverse receptor conformations.
ANPR in combination with the MSM ensemble did not
achieve the same enrichment factors (Figure 6A, yellow), likely
because the MSM receptor conformations are too distinct from
the Rosetta-generated conformations in the training set. Thus,
docking against an ensemble of conformations can lead to early
enrichment of active compounds, which can be retained using
even a single receptor conformation with the ANPR model.
We then compared the chemical diversity of active top

compounds docked to single receptor conformations to those
using the Rosetta ensemble. We selected the 1% top-ranked
compounds for each method. These 90 compounds would
approximately fill a 96-well plate used for experimental
validation in a vHTS screen. We then selected all active
compounds among the top 1% for the single receptor

conformation/smina ranking (31 compounds) and the
Rosetta-ensemble/ANPR (59 compounds) method. We
excluded two compounds that ranked within the top 90 in
both methods, since we are primarily interested in examining
their differences. A t-SNE65 projection of a principal
components analysis computed from their ECFP4 fingerprints
suggests that the Rosetta ensemble is slightly more diverse
compared to the single conformation compounds (Figure 6B).
Toward the lower left corner of the t-SNE projection, smina
uncovers exceedingly fewer compounds. In the lower right
corner, the first t-SNE coordinate separates a cluster of
compounds at “tsne 1” > 2 that were enriched nearly
exclusively in the ensemble. These compounds are all analogs
of Ponatinib (Figure 6C), notably sharing the ethynyl linker to
a imidazol-1,2-pyridazine-like hinge region of the compound.
ANPR identified the most hits in this cluster against receptor
conformations 1 and 16 (Figure 6D). Altogether, two out of 20
hits in this cluster were identified from docking to a single
receptor (using smina, blue circles). Among all top 1% of
compounds in both docking methods, only two Ponatinib
analogs were identified using smina ranking.

5. CONCLUSION
In this study, we describe ANPR, a graph-based convolutional
neural network trained to identify high-quality crystal-like
poses from docking. Importantly, and in contrast to previous
work, we use ligand conformations prepared without knowl-
edge of the ligand conformation in the PDB structure, which is
representative of use cases encountered in virtual screening
applications. Using the curated data set PDBbind 2019, we
demonstrate that our method is capable of improving upon
enrichment and ranking metrics for pose tasks compared to the
baseline established by the physics-based scoring function vina,
as implemented in the open-source docking software Smina.
An important aspect of pose prediction in practical use cases
for drug discovery campaigns is identifying a biologically
relevant and binding-competent receptor conformation. Where
there is limited crystallographic information available, such as
only a single crystal structure or only a homology model for a
target of interest, this can be particularly challenging. We
introduce a simple Rosetta-based protocol for focused
conformational sampling and demonstrate that docking to

Figure 6. Ensemble docking enriched known Abl inhibitors compared to single receptor conformations. A) Enrichment factors for established Abl
kinase inhibitors and confirmed nonbinders and random compounds. Colors represent different combinations of ensembles and scoring algorithms.
Compounds are ranked from best to worst according to the score for each method, i.e., the value 0.5 on the x-axis represents the top-scoring 50% of
compounds for each of the methods. B) Clustering by the ECFP4 fingerprint of active compounds selected by docking to a single conformation
(blue) or an ensemble (orange). C) The structure of ponatinib, a known Abl1 inhibitor. Compounds in the lower right cluster of panel B are
ponatinib analogs. D) The distribution of Rosetta receptor conformations for ANPR hits. Conformation 1 corresponds to the crystal structure.
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small receptor ensembles can improve pose ranking metrics.
The protocol is competitive in identifying active compounds
for a given target compared to ensembles generated with more
computationally intensive sampling techniques, such as
Markov state models derived from molecular dynamics
simulations. We have integrated our sampling and ANPR
reranking approach with vHTS models to improve hit
identification in drug discovery.58

6. DATA AND SOFTWARE AVAILABILITY
We provide input scripts and parameters for our Rosetta
protocol in the Supporting Information. Our FlexPDBBind
v2019 data set of sampled ensembles for PDBBind structures
and our analyses scripts are freely accessible and available for
download from http://atomwise.com/flexpdbbind2019. We
detailed minor modifications to the Smina software (https://
sourceforge.net/projects/smina/, commit ca9dcb) in the
Supporting Information. AtomNet PoseRanker is proprietary
software built on open-source tools Python and PyTorch. The
section “AtomNet PoseRanker” provides details for reimple-
mentation of the MPNN underlying AtomNet PoseRanker.
Note that our major findings, improved pose rankings from
training on a dynamic ensemble and internalization of receptor
conformational flexibility, should be similarly detected by high
performance MPNNs like ANPR.
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