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Local interactions affect spread of resource in a

consumer-resource system with group defense

Jorge Arroyo-Esquivel1, Alan Hastings2, and Marissa L. Baskett2

1 Department of Mathematics, University of California Davis
2 Department of Environmental Science and Policy, University of California Davis

Abstract

Integrodifference equations are a discrete time spatially explicit model that
describes dispersal of ecological populations through space. This framework
is useful to study spread dynamics of organisms and how ecological inter-
actions can affect their spread. When studying interactions such as con-
sumption, dispersal rates might vary with life cycle stage, such as cases with
dispersive juveniles and sessile adults. In the non-dispersive stage, resources
may engage in group defense to protect themselves from consumption. These
local nondispersive interactions may limit the number of dispersing recruits
that are produced and therefore affect how fast populations can spread.

We present a spatial consumer-resource system using an integrodifference
framework with limited movement of their adult stages and group defense
mechanisms in the resource population. We model group defense using a
Type IV Holling functional response, which limits survival of adult resource
population and enhances juvenile consumers production. We find that high
mortality levels for sessile adults can destabilize resource at carrying capacity.
Furthermore, we find that at high resource densities, group defense leads to a
slower local growth of resource in newly invaded regions due to intraspecific
competition outweighing the effect of consumption on resource growth.

Keywords: consumer-resource, integrodifference equations, group defense,
nondispersing, life stages
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1. Introduction11

Integrodifference equations (IDEs) are a modelling framework that de-12

scribes a population density in continuous space and discrete time by ex-13

ploring the growth and dispersal processes separately [20]. They have been14

successfully used to study the spread dynamics of annual plants [4], popula-15

tions in a river system [24], and populations with moving habitats [34]. This16

approach have also been expanded to consider population interactions such17

as consumption [27], parasitism [9], and competition [23].18

In a variety of organisms such as perennial plants, echinoderms [7, 31],19

and colonial insects [14], dispersal happens at some stages in their life history,20

with other stages being more sessile. The IDE framework can be expanded21

to consider these dynamics by explicitly adding a non-dispersing stage of a22

population. Such IDE models find that local interactions of these organisms23

may limit the number of dispersing recruits that are produced, which may24

lead to a slower spread rate. For example, [9] and [25] found that parasitism of25

more sessile stages destabilize the spatial distribution of the entire population26

and reduce the spread rate. In a model of competition of different green crab27

genotypes [16], an increased sessile adult survival of the entire population28

leads to an increased spread rate of the top competitor and a decrease in29

the spread rate of the lower competitor. However, this dynamic has not30

been previously included in consumer-resource systems, which includes both31

herbivore-plant and predator-prey interactions.32

When considering consumer-resource dynamics in organisms with limited33

movement, group defense mechanisms may allow resource to become more34

resistant to consumption. These group defense mechanisms reduce consump-35

tion intensity as resource density increases [11]. This behavior occurs in var-36

ious taxa where adults have limited movement. For example, bees produce37

social waves that repel predators [18], and kelp provide habitat for predators38

of their grazers, which induces cryptic behavior in grazers with subsistence39
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off of kelp detritus rather than active grazing [17]. A previous model with-40

out stage-dependent dispersal considered the spatial dynamics of a resource41

using group defense [33], where they found oscillatory spatial distributions42

at high initial resource densities caused by group defense. The potential43

for group defense to qualitatively affect dynamical outcomes of interacting44

species raises the question of how group defense in a sessile stage might affect45

overall spread given dispersive juveniles.46

In this paper we present and analyze an IDE model of the spatiotemporal47

dynamics of a consumer-resource system where adults have limited movement48

and resource present group defense. In Section 2 we introduce the model,49

which is based on the ideas presented by [16], and provide a nondimensional50

version which we will analyze. In Section 3 we analyze two features of the51

spatiotemporal dynamics: the dispersal induced instabilities of the resource-52

only system and the spread rate of resource. Finally in Section 4 we discuss53

how these results lead to a further understanding of how local interactions54

affect the spread of organisms.55

2. Model56

In this section we extend an integrodifference model to consider motile,57

dispersing juveniles and the local interactions between sessile adult stages. A58

similar extension was previously considered in [16] and a formal construction59

of this model is analogous to that in [6]. Consider a region in space denoted60

by Ω. At each time step m and point in space x ∈ Ω, our model follows61

populations densities of consumer Pm(x) and resource Nm(x) populations at62

reproductive age (hereafter adults).63

For each population i = P,N , at each time step m a fraction δi of the64

adult population survives to the next time step in absence of consumption.65

consumers consume adult resource following a unimodal, Type IV Holling66

functional response [5]. This functional form models group defense of resource67

with lower consumption strength at high resource density. Let γN be the68

attack intensity of the consumer and 1/
√
σN the density of resource at which69

consumption intensity is the highest.70

Juveniles of both populations disperse following a kernel ki(x, y) for i =71

P,N , and a fraction of those juveniles survive and become adults at the72

next time step. Consumers produce juveniles that survive to become adults73

proportional to their consumption intensity with a factor γP . Resources74

produce juveniles by a constant factor R, where R > 1 − δN for population75
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persistence. The fraction of newly-setting resource juveniles that survive to76

become adults depends on local consumer and resource densities. Consumers77

consume settling resources with a constant intensity γS. Local resources78

further limits resource settlement through intraspecific competition with a79

carrying capacity proportional to 1/β.80

These assumptions lead to the system of equations:81

Pm+1(x) = δPPm(x) + γP

∫

Ω

kP (x, y)
Pm(y)Nm(y)

1 + σNNm(y)2
dy,

Nm+1(x) = δNNm(x) exp

(

− γNPm(x)

1 + σNN2
m(x)

)

+R
exp (−γSPm(x))

1 + βNm(x)

∫

Ω

kN(x, y)Nm(y)dy.

(1)

To simplify our analysis, we first nondimensionalize the model. We use the82

same nondimensionalization than in [6]. For each m, let pm = γSPm, nm =83

βNm. Then, if γp = γP/β, γn = γN/γS, σ = σN/β
2, our nondimensional84

version of the model is85

pm+1(x) = δppm(x) + γp

∫

Ω

kp(x, y)
pm(y)nm(y)

1 + σnm(y)2
dy,

nm+1(x) = δnnm(x) exp

(

− γnpm(x)

1 + σn2
m(x)

)

+R
exp (−pm(x))

1 + nm(x)

∫

Ω

kn(x, y)nm(y)dy.

(2)

Note that we have also changed the indices of δi and ki in order to preserve86

clarity.87

3. Results88

3.1. Overview of nonspatial results89

In [6] we study the dynamics of the nonspatial version of Model 2 given90

by the system:91
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pm+1 = δppm + γp
pmnm

1 + σn2
m

,

nm+1 = δnnm exp

(

− γnpm
1 + σn2

m

)

+R
exp (−pm)

1 + nm

nm.
(3)

Here we summarize our main findings relevant to the analysis of the rest92

of this paper. Model 3 has four fixed points: an unstable extinction fixed93

point (0, 0), a resource-only fixed point (0, n∗) where n∗ is94

n∗ =
R

1− δn
− 1, (4)

and, when σ 6= 0, two coexistence fixed points (p∧, n∧) and (p∨, n∨). The95

lower coexistence fixed point (p∨, n∨) is always unstable, whereas the positive96

coexistence point (p∧, n∧) exchanges stability with the resource-only point97

(0, n∗) at the bifurcation value for γp:98

γ∗

p = (1− δp)
1 + σn∗2

n∗
. (5)

The resource-only fixed point is stable when consumer conversion inten-99

sity is under a given threshold γ∗

p (i.e. γp < γ∗

p) and unstable otherwise. In100

addition, the positive coexistence fixed point becomes biologically infeasible101

as it becomes stable as p∧ becomes negative. We can thus say that the pos-102

itive coexistence fixed point is unstable whenever it is biologically feasible.103

In the case the resource-only equilibrium is stable (when γp < γ∗

p), this104

stability is global, i.e. all trajectories converge to the equilibrium. In the105

case there are no stable fixed points (when γp > γ∗

p), the system converges106

globally to a quasiperiodic consumer-resource cycle.107

3.2. Dispersal-induced instabilities108

In this section we explore how dispersal affects the stability of the consumer-109

resource dynamics by analyzing Model 2. Dispersal can induce instabilities110

in stable population densities, a mechanism first observed by [30] and fur-111

ther analyzed by [22]. In the case of IDEs, this mechanism can be analyzed112

following the linearization process of [27]. We can write Model 2 in the same113

form as the model presented in [16]:114
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pm+1(x) =Pp(pm(x), nm(x)) + Sp(pm(x), nm(x))

∫

Ω

kp(x, y)Rp(pm(y), nm(y))dy,

nm+1(x) =Pn(pm(x), nm(x)) + Sn(pm(x), nm(x))

∫

Ω

kn(x, y)Rn(pm(y), nm(y))dy.

(6)

In addition, we will assume that dispersing juveniles do not die or escape115

the habitat during the dispersal process, i.e.116

∫

Ω

ki(x, y)dy = 1

for both i = p, n. Using this assumption, we linearize the system near a117

stable equilibrium as follows. Let (p, n) be a stable equilibrium of System 3,118

then if pm = p + ξm, nm = n + ηm, where (ξm, ηm) is a small perturbation119

around p, we linearize the first equation of System 6 as120

p+ ξm+1 = Pp(p, n) +

(

∂Pp

∂pm
ξm +

∂Pp

∂nm

ηm

)

+

(

Sp(p, n) +

(

∂Sp

∂pm
ξm +

∂Sp

∂nm

ηm

))
∫

Ω

kp(x, y)

(

Rp(p, n) +

(

∂Rp

∂pm
ξm +

∂Rp

∂nm

ηm

))

dy.

Multiplying the terms around the integral, and disregarding higher order121

terms yields122

ξm+1 =

((

∂Pp

∂pm
+Rp(p, n)

∂Sp

∂pm

)

ξm +

(

∂Pp

∂nm

+Rp(p, n)
∂Sp

∂nm

)

ηm

)

+

∫

Ω

k(x, y)Sp(p, n)

(

∂Rp

∂pm
ξm +

∂Rp

∂nm

ηm

)

dy

and a similar equation for ηm+1. Then, given J(F ) as the Jacobian matrix of123

a given function F evaluated at (p, n), our linearized system, in matrix form,124

is125

(

ξm+1(x)
ηm+1(x)

)

= J

(

Pp +Rp(p, n)Sp

Pn +Rn(p, n)Sn

)(

ξm(x)
ηm(x)

)

+

∫

Ω

K(x, y)J

(

Sp(p, n)Rp

Sn(p, n)Rn

)(

ξm(y)
ηm(y)

)

dy

(7)
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where K(x, y) = diag(kp(x, y), kn(x, y)) and the integral represents rowwise126

integration. To study how dispersal leads to instabilities in the system, let127

γp < γ∗

p and (p, n) = (0, n∗). Then, the linearized system (Equation 7 is128

ξm+1(x) =δpξm(x) +

∫

Ω

kp(x, y)
γpn

∗

1 + σn∗2
ξm(y)dy,

ηm+1(x) =−
(

δnγn
1 + σn∗2

+
R

1 + n∗

)

n∗ξm(x) +

(

δn −
Rn∗

(1 + n∗)2

)

ηm(x)

+

∫

Ω

kn(x, y)
Rηm(y)

1 + n∗
dy.

(8)

We then take the Fourier transform of Equation 8. Doing this, our system129

simplifies to130

(

ξ̂m+1(ω)
η̂m+1(ω)

)

= (A+KJ)

(

ξ̂m(ω)
η̂m(ω)

)

(9)

where f̂ corresponds to the Fourier transform of a given function f , i.e.131

f̂(ω) =

∫

∞

−∞

exp(iωx)f(x)dx, (10)

and the matrices A,K,J satisfy132

A =

(

δp 0

−
(

δnγn
1+σn∗2 +

R
1+n∗

)

n∗ δn − Rn∗

(1+n∗)2

)

K =

(

k̂p(ω) 0

0 k̂n(ω)

)

J =

(

γpn
∗

1+σn∗2 0

0 R
1+n∗

)

.

(11)

Decay of ξ̂m(ω) and η̂m(ω) for all ω guarantees the decay of ξm(x) and133

ηm(x), which would imply stability of the carrying capacity equilibrium. The134

matrix A+KJ has a triangular form, and thus the eigenvalues are135

λ1 =δp + k̂p(ω)
γpn

∗

1 + σn∗2
,

λ2 =δn −
Rn∗

(1 + n∗)2
+ k̂n(ω)

R

1 + n∗
.

(12)
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If both populations disperse following a Laplace kernel:136

ki(x− y) =
ai
2
exp (−ai|x− y|) (13)

for i = p, n, then the Fourier transform of these kernels is137

k̂i(ω) =
a2i

a2i + ω2
. (14)

Note that k̂i(ω) ≥ 0 for all ω, which implies that if γp < γ∗

p , then 0 <138

λ1 < 1 for all ω. For λ2, for any R, δn > 0, the inequality λ2 < −1 does not139

have a real solution. This implies that dispersal of a Laplace kernel will not140

induce instabilities in a resource-only state.141

If we choose instead a double-gamma distribution:142

ki(x− y) =
a2i
2
|x− y| exp (−ai|x− y|) (15)

for i = p, n, then their Fourier transform is143

k̂i(ω) =
a2i (a

2
i − ω2)

(a2i + ω2)2
. (16)

Equation 16 has a global minimum of −1
8
. If k̂p(ω) =

−1
8
, then we find144

that λ1 < −1 is satisfied when145

γp >
8(1 + δp)(1 + σn∗2)

n∗
> γ∗

p

which implies that λ1 > −1 for γp < γ∗

p . If k̂n(ω) =
−1
8
, then the expression146

λ2 < −1 has a solution whenever147

R > (1− δn)

(

9

8
− 1 + δn

1− δn

)

−1

provided that 9
8
− 1+δn

1−δn
> 0. This last inequality occurs only for δn < 1

17
,148

and thus instabilities will only be caused by dispersal for high local resource149

mortalities. We can compare that, at low local mortalities of resource, the150

eigenvalue λ2 is almost unchanged as the frequency ω changes (Figure 1a),151

whereas at high local mortalities, the eigenvalue has a wider range of change152

and crosses the -1 line (Figure 1b). This suggests that dispersal of resource153
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Figure 1: Values of λ2 in Equation 12 as the Fourier transform frequency ω varies, when
kn follows the double-gamma distribution kernel (Equation 15). In these figures we use
R = 20, and an = 1 with two values for resource adult survival: a) δn = 0.9, and b)
δn = 0.01.
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does not affect its stability when most of the reproductive adults can survive154

more than one time step.155

The spatial pattern formation presented by these dynamics is in Figure156

2. Even in the presence of instabilities caused by dispersal of resources,157

consumers are not able to invade. This shows that although resource density158

is varying, a low consumer conversion rate (γp < γ∗

p) makes it impossible for159

consumers to invade and have any influence over the resource population,160

making this system essentially a resource-only system.161

3.3. Spread rate of resource162

In a general integrodifference framework, the spread rate of a population163

is calculated by analyzing when the extinction equilibrium of the travelling164

wave solution of the system becomes unstable [35]. This also works in the165

case of a single-population dynamics system with sessile stages [10]. In the166

case of System 2, the extinction equilibrium of resource is always unstable,167

which implies that the resource is always able to invade when rare. Instead168

of explicitly calculating the spread rate, we numerically estimate the time169

it takes for the population to reach a specific population density at a given170

point in space.171

To do this, let Ω = [−L/2, L/2] for habitat length L. In addition, let the172

initial conditions be a constant consumer density p0 (i.e. p0(x) = p0) and173

the resource at carrying capacity at a single point at 20% of the length of174

the habitat (i.e. n0(x) = n∗δ(x− a), where δ(x) is the Kronecker delta, and175

a is the point that represents 20% of the length of Ω). We then calculate176

the time it takes for the resource to reach a population density of 80% its177

carrying capacity at 80% of the habitat length, i.e. we find the time M that178

satisfies179

M = min
m

{nm(b) = 0.8n∗} (17)

where b is the point that represents the 80% of the length of the habitat.180

An example of this procedure is in Figure 3. In this case M = 28. We then181

explore how does changing different parameters of the model makes these182

transient times vary.183

The results of these numerical experiments are in Figure 4. Intuitively,184

as more consumers are present in the environment (higher initial consumer185

density p0 (a), consumer survival δp (b) and dispersal ap (d)), the time to186

spread increases, and that, as more resource juveniles are produced (higher187
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Figure 2: Distributions of consumers pt(x) and resources nt(x) after 1000 time steps with
an initial distribution being a random perturbation of the uniform distributions p0(x) = 0
and n0(x) = n∗. In these simulations we use a double-gamma kernel (Equation 15) with
an = 1 and ap = 5. The other parameters of the model are δp = 0.8, γN = 0.1, σ = 1, R =
20, γp = 0.7, and γ∗

p with two values for prey adult survival: a)δn = 0.9 and b)δn = 0.01.
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Figure 3: Distributions of consumers pt(x) and resources nt(x) at a) initial setup described
in Section 3.3, and b) after 30 time steps. In these simulations we use a Laplace kernel
(Equation 13) with an = 1 and ap = 5. The other parameters of the model are L =
10, δp = 0.8, γN = 0.1, σ = 1, R = 20, γp = 0.7γ∗

p , and δn = 0.9.
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R (h)) and disperse further (higher an (i)), the time to spread decreases.188

More surprisingly, increasing adult resource survival (higher δn (f)) or group189

defense intensity (higher σ (e)) leads to a longer time to spread, increasing190

the attack intensity (γn (g)) does not have an impact over the time it takes191

to spread, and consumer conversion intensity (γp (c)) has a minimal impact,192

even after crossing the bifurcation value γ∗

p .193

To explain these results, note that a higher adult resource survival δn194

leads to a higher value of n∗ in Equation 4. This higher value of n∗ takes195

longer to be reached, thus making the conditions of Equation 17 take longer196

to be satisfied. For increasing group defense intensity σ, albeit having a197

smaller but potentially counter-intuitive impact, arises from the fact that,198

as σ increases, consumption intensity reaches its peak at a lower resource199

density. This causes intraspecific competition at a local scale to play a bigger200

role as a limiting factor of resource growth at lower densities, thus slowing201

down the spread process. Analogously, attack intensity might not have an202

impact over the time to spread because group defense makes consumption203

less important at high resource densities, which means the source population204

at the left of the habitat is not impacted by consumption and allows to source205

new juveniles that will eventually overcome consumption at a similar density.206

A similar argument explains the low impact of consumer conversion intensity207

γp over the spread time.208

4. Discussion209

In this paper we explored how local interactions of sessile organisms in210

a consumer-resource system affect the spread rate of resource. Two main211

results arise from this exploration: sessile resource adults stabilize the spatial212

distribution of resource, and group defense leads to a slower spread rate.213

We find that, when the consumers cannot invade the resource, and when214

most adults survive to the next reproduction period (high δn), these sessile215

adults stabilize the distribution of resource and prevent the resource carrying216

capacity to be destabilized by dispersal. This destabilization required a fat-217

tailed kernel, which leads to accelerated invasions [19]. These stability results218

also provide more evidence to the argument that increased dispersal leads to219

a negative correlation between spatial stability and synchrony in population220

densities between patches [1].221

In the case of resource spread when rare, we found a higher group defense222

(σ) leads to a higher time to reach carrying capacity at the other end of223

13



Figure 4: Number of time steps M required for the population to reach 80% of its carrying
capacity at 80% of the habitat Ω (Equation 17). Unless it’s the parameter being changed,
in these simulations we use a Laplace kernel (Equation 13) with an = 1 and ap = 5. The
other parameters of the model are L = 10, δp = 0.8, γN = 0.1, σ = 1, R = 20, γp = 0.7γ∗

p ,
and δn = 0.9. In the figure where γp varies, the red vertical dashed line represents γp = γ∗

p .
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a habitat. One explanation for this trend is a greater role of intraspecific224

competition at lower consumption intensity compared to a higher intensity.225

Previous empirical studies have found that at low consumption intensities,226

intraspecific competition can have a bigger impact on juvenile survival [26?227

] and spread [? ]. However, none of these studies looked at this question228

in the context of organisms presenting group defense. Another way that229

group defense might decrease spread rate, not modelled here but biologically230

feasible, is if resources’ energy investment in group defense reduces energy231

availability for reproduction [29].232

Another feature of our model is the implicit inclusion of stage structure in233

the spatial dynamics. The importance of stage structure in dispersal dynam-234

ics was first observed by [15] using spatially explicit models with continuous235

space and continuous time, and with discrete space and discrete time. In the236

case of continuous space and discrete time, previous analyses that expand237

the IDE framework to consider stages with limited movement also implicitly238

included stage structure [16, 32]. We find a similar general result to those239

previous analyses, where local interactions in the stages with limited move-240

ment affect the spread rate of the population. In our model, intraspecific241

competition slows down spread, in contrast to competitive systems, where242

a high survival of adults promotes spread of the top competitor[16], and243

analogous to single population dynamics where high mortality of stages with244

limited movement can lead to an Allee effect which slows spread rates [32].245

As with any model, we made a number of simplifying assumptions in our246

model. First, we only consider the case where consumers resource upon adult247

resource or settling juveniles. Growth of species with limited movement as248

adults such as urchins [3] and tunicates [28] has been linked to consumption249

of their dispersing larvae. We suspect dispersing larvae consumption will re-250

duce the impact of local interactions and give more emphasis on the dispersal251

dynamics. Second, we assume that the dispersing individuals are the juve-252

niles. This assumption doesn’t capture populations where larvae have limited253

movement ability compared to their adult stages such as a consumer-resource254

interaction between dragonflies and frogs [? ]. We speculate the model that255

captures those dynamics would have a similar structure to this one, which256

would imply that juvenile interactions would be the main constraint on of257

spread dynamics.258

Another limitation is that our environment is spatially homogeneous. In259

reality, spatial heterogeneity may lead to different dynamics than the ones260

observed in our model. In our model the only factor that produces habi-261
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tat heterogeneity for resource is the distribution of consumer population.262

However, other potential factors of heterogeneity not accounted by our anal-263

ysis are substratum topography [12, 21] and resource availability [13]. These264

factors can be included in our model with spatially variable survival or repro-265

ductive functions. This could render our problem intractable, which would266

require numerical analysis to be well explored.267

Finally, we assumed both consumer and resource have limited movement268

as adults. However, by setting the proportion of sessile adults that survive (δi269

for i = p, n) equal to 0, our model allows only one of the two species to have270

limited movement as adults. As seen in the dispersal-induced instabilities271

(Section 3.2), this is a sufficient condition for instabilities of resource at272

carrying capacity.273

In conclusion, in a consumer-resource system, local interactions between274

sessile adults are key to determining the ability of resource to spread by lim-275

iting their production of offspring through consumption. Similar results were276

obtained when modelling invasive algae, where the consumption of the sub-277

strate in the soil slowed the spread rate of the algae [8]. These observations278

contrast with those seen in competitive models, where competition acts on279

a more regional scale by allowing coexistence of competitors in space [2] or280

stopping the invasion front of the higher competitor [16]. These models ex-281

emplify the use the IDE framework in a wider range of interactions between282

species such as perennial plants and animals with limited movement.283
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